TECHNICAL RESEARCH REPORT

On the Converse to Pompeiu's Problem

by C.A. Berenstein

TR 1997-22

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technology/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

El Problema de Pompeiu

CARLOS ALBERTO BERENSTEIN

Vamos a hablar aquí de tres trabajos sobre el tema, uno de L. Zalcman (Arch. for Rat. Mech. and Anal. vol. 47, 1972) y otros dos que aún no han aparecido: uno de Brown, Schreiber y Taylor, y el otro de Taylor y el autor. El trabajo de L. Zalcman contiene una abundante bibliografia, a la cual me remito.

El problema original que el matemático rumano D. Pompeiu consideró en 1929 es el siguiente:

Supongamos que D sea un conjunto compacto en el plano xy, Σ el grupo de los movimentos euclídeos (rotaciones y translaciones), f una función continua tal que

$$\iint_{\sigma(D)} f(x, y) \ dx \ dy = 0, \quad \forall \sigma \in \Sigma,$$

¿ésto implica que $f \equiv 0$?

Pompeiu dijo que si D era un disco entonces la conclusión era correcta, lamentablemente la función f(x, y) = sen a da un contraejemplo con una elección conveniente del valor a. Más tarde él probó que si D es un cuadrado y f tenía límite en el infinito entonces la conclusión valía. (Este resultado es correcto aún sin esta condición adicional sobre la función f.)

DEFINICIÓN — Una família $\mathcal{D} = \{D\}$ de conjuntos compactos en \mathbb{R}^2 tiene la propiedade (P) si para toda función continua f,

(1)
$$\int \int_{D} f(x, y) \, dx \, dy \quad \forall D \in \mathscr{D}$$

implica $f \equiv 0$.

Un problema parecido, que naturalmente se llamaría problema de Morera es el siguiente: sea $\mathscr{C} = \{C\}$ uma família de curvas cerradas y rectificables en el plano xy, z = x + iy, f contínua, y supongamos que

$$\int_C f(z) \, dz = 0 \qquad \forall C \in \mathscr{C},$$

i se deduce que *f* es una función analítica en todo el plano complejo? Si eso sucede, \mathscr{C} tiene la propiedad (*M*). Veamos que ellas están relacionadas. Primero, suponemos de ahora en adelante que \mathscr{D} es una familia invariante por translaciones. Como siempre ∂D denota la frontera del conjunto *D*.

LEMA. Si todos los conjuntos de la familia \mathcal{D} tienen frontera rectificable y $\mathscr{C} = \{\partial D : D \in \mathcal{D}\}$ entonces, \mathcal{D} tiene la propiedad (P) si y solo si \mathscr{C} tiene la propiedad (M).

DEMONSTRACIÓN. Primero observemos que podemos suponer que f es una función de clase C^{∞} . Dado que si $\varphi \in C_0^{\infty}(\mathbb{R}^2), \int \int \varphi(x, y) dx dy = 1$, definimos como de costumbre $\varphi_{\varepsilon}(x, y) = \varepsilon^{-2} \varphi(x/\varepsilon, y/\varepsilon)$ para $\varepsilon > 0$. Entonces, $f_{\varepsilon} = f * \varphi_{\varepsilon}$ satisface (1) (respectivamente (2)) si f lo hace pues la familia \mathcal{D} (resp. \mathscr{C}) es invariante bajo translaciones. Por otro lado, $f_E = f + sobre emjuntos acotados y por lo tanto si <math>f_e \equiv 0$ (resp. analítica) se deduce que f lo es

también

Ahora bien, como f es C^{∞} podemos usar la formula de Green, y tenemos

$$\iint_{D} \frac{\partial f}{\partial \overline{z}} dx dy = \iint_{D} \frac{1}{2} (f_{x} + if_{y}) dx dy = \frac{1}{2i} \iint_{D} \frac{\partial f}{\partial \overline{z}} d\overline{z} \wedge dz =$$
$$= \frac{1}{2i} \iint_{D} d(f dz) = \frac{1}{2i} \int_{\partial D} f(z) dz.$$

Por lo tanto se vé immediatamente que la propiedad (P) para \mathcal{D} implica (M) para \mathscr{C} , porque si f satisface (2) entonces $\frac{\partial f}{\partial \overline{z}}$ satisface (1) y por lo tanto $\frac{\partial f}{\partial \overline{z}} \equiv 0$, es decir f es analítica entera. Para probar la conversa basta usar el hecho que existe $g \in C^{\infty}$ tal que $f = \frac{\partial g}{\partial \overline{z}}$ y entonces utilizar la formula (3) con g en lugar de f. Q.E.D.

Relación con el problema de la síntesis espectral

Como hemos visto en el lema, podemos limitarmos a considerar funciones indefinidamente diferenciables. Si llamamos μ_D la medida de Lebesgue restringida a D (o la medida dz restringida a ∂D) cuando consideramos el problema de Pompeiu (resp. de Morera), entonces tenemos que las μ_D , $D \in \mathscr{D}$ (resp. \mathscr{C}), generan un sub espacio lineal cerrado $V \subseteq \mathscr{E}'(\mathbb{R}^2)$, las hipótesis implican que V es invariante por translaciones. Si f satisface (1) (resp. (2)) tenemos que

$$T(f) = 0 \qquad \forall T \in V$$

(y también $T*f \equiv 0, \forall T \in V$). Es decir, $f \in V^{\perp} \subseteq \mathscr{E}'(\mathbb{R}^2)$.

Es claro que V^{\perp} también es un subespacio cerrado, e invariante por translaciones, más aún $(V^{\perp})^{\perp} = V$. Con esta notación, la propiedad (P) (resp. (M)) es equivalente a cualquiera de estas dos cosas:

a) $V^{\perp} = \{0\};$ b) $V = \mathscr{E}'(\mathbb{R}^2)$.

~ ~

Ahora bien, asociado a un subespacio V como el de arriba, en análisis harmónico se acostumbra a considerar el espectro de V, es decir, el subespacio lineal cerrado de $\mathscr{E}(\mathbb{R}^2)$ generado por las funciones $p(x) e^{iz.x} \in V^{\perp}$, donde $x = (x_1, x_2), z = (z_1, z_2), z \cdot x = z_1 x_1 + z_2 x_2, y \text{ por } p(x) \text{ es un polinomio. A}$ este subespacio lo designaremos por V_0^{\perp} . Se acostumbra considerar el espectro numérico, sp(V), formado por los $z \in \mathbb{C}^2$ tales que $e^{iz.x} \in V^{\perp}$. En ese caso, el polinomio p de más arriba le asigna una "multiplicidad" al punto z, en el sentido seguiente:

Si $T \in V, z_0 \in sp(V)$ entonces $\widehat{T}(z_0) = \langle e^{iz_0 \cdot x}, T(x) \rangle = 0$, más aún, si $p(x) e^{iz_0 \cdot x} \in V^{\perp}$ entonces $p(D) |_{z=z_0} = 0$. Se puede ver facilmente que V_0^{\perp} es un subespacio invariante por translaciones y por lo tanto $V_0 = (V_0^{\perp})^{\perp}$ también lo es. Claramente $V_0 \supseteq V$, en realidad,

 $V_0 = \{T \in \mathscr{E}' \ (\mathbb{R}^2) : \widehat{T}(z) = 0 \text{ si } z \in sp(V) \text{ con la multiplicidad correcta}\}.$

Entonces, el problema de la síntesis espectral es fácil de enunciar, i es $V = V_0^2$. (Es decir, el espectro de V determina V completamente.) Es claro que podemos reemplazar 2 por *n* en todos lados y este problema sigue teniendo sentido. El resultado más importante que se conoce es el siguiente,

TEOREMA (L. Schwartz, 1947). Si n = 1 entonces $V = V_0$. Para n > 1 aún no se sabe que sucede; veremos más abajo que los problemas de Pompeiu y Morera son casos particulares del problema de la síntesis espectral para n = 2. Antes de seguir recordemos que $\mathscr{E}'(\mathbb{R}^n)$ es un algebra sin divisores de cero para el producto de convolución. Es un resultado bien conocido que del hecho que $V y V_0$ son invariantes por translaciones y cerrados se deduce que son ideales de este algebra. Otro hecho bien conocido es que la transformada de Fourier

$$T \longrightarrow \widehat{T}, \quad \widehat{T}(z) = \left\langle e^{ix.z}, T(x) \right\rangle$$

es un isomorfismo algebraico entre el algebra $\mathscr{E}'(\mathbb{R}^n)$ y una subálgebra del espacio de funciones enteras en \mathbb{C}^n que denotamos $\widehat{\mathscr{E}}'(\mathbb{R}^n)$. A este espacio $\widehat{\mathscr{E}}'(\mathbb{R}^n)$ le asignamos la topología que hace que el isomorfismo $T \longrightarrow \widehat{T}$ se vuelva también un homeomorfismo. Llamamos I (resp. I_0) el ideal cerrado de $\widehat{\mathscr{E}}'(\mathbb{R}^n)$ formado por { $\widehat{T}: T \in V$ (resp. V_0 }. Claramente $I = I_0$, si y sólo si $V = V_0$ ¿cuál es la ventaja de toda esta notación? La siguiente, se hace entrar en juego un tercer ideal I_{loc} ,

$$I_{loc} = \{ \hat{T} \in \hat{\mathscr{E}}'(\mathbb{R}^n) : \hat{T} \text{ está en } I \text{ localmente} \}$$

es decir, si $\hat{T} \in I_{loc}$, entonces para todo $z_0 \in \mathbb{C}^n$ existe un entorno U de z_0 , funciones $\hat{T}_1, \ldots, \hat{T}_m \in I$ y funciones G_1, \ldots, G_m analíticas en U tales que

$$\widehat{T}(z) = \sum_{j=1}^{m} G_j(z) \quad \widehat{T}_j(z), \quad \forall z \in U.$$

Observemos que es fácil saber si $I_{loc} = \mathscr{E}'(\mathbb{R}^n)$ o no, basta que las funciones de I no tengan ceros comunes.

Ahora bien, después de todo esto, tenemos el siguiente lema folklórico.

Lema. $I_0 = I_{loc}$.

Por lo tanto, el teorema de Schwartz se reduce a: "para todo ideal cerrado I de $\hat{\mathscr{E}}'(R')$, tenemos $I = I_{loc}$ ". Facilmente se puede deducir de aquí el siguiente corolario.

COROLARIO. Sean σ , τ dos números positivos de cociente irracional. Si para todo par de números a < b tales que o bien $b - a = \sigma$ o bien $b - a = \tau$, tenemos que $\int_{a}^{b} f(x) dx = 0$ entonces $f(x) \equiv 0$.

Si ρ es una rotación en \mathbb{R}^2 y $T \in \mathscr{E}'(\mathbb{R}^2)$ definimos T_{ρ} mediante la fórmula

$$T_{\rho}(f) = T(f_{\rho}\rho^{-1}) \quad \forall f \in C^{\infty}(\mathbb{R}^{2})$$

Decimos que V es invariante por rotaciones si $T \in V$ implica $T_{\rho} \in V$ para toda rotación ρ .

Teremos ahora el seguiente teorema,

TEOREMA. Si $V \subseteq \mathscr{E}'(\mathbb{R}^2)$ es invariante por rotaciones, entonces $I = I_{loc}$ (y por lo tanto $V = V_0$)

De aquí se ve que en este caso las propriedades a) y b) de más arriba son equivalentes a

c) $I_{loc} = \hat{\mathscr{E}}'(\mathbb{R}^2)$ o d) las funciones de *I* no tienen ceros comunes.

Por lo tanto tenemos como corolarios las siguientes dos respuestas afirmativas al problema de Pompeiu.

EJEMPLO 1. La familia $\mathscr{D} = \{\sigma(D_0) : \sigma \in \Sigma, D_0 \text{ es un rectángulo fijo}\}$ tiene la propiedad (P). Más aún, basta tomar por D_0 un conjunto convexo cuya frontera contenga por lo menos un punto anguloso.

EJEMPLO 2. Llamemos $Q = \{s_1/s_2 : s_1 \neq 0, s_2 \neq 0 \text{ tales que la función } J_1$ de Bessel satisface $J_1(s_1) = J_1(s_2) = 0\}$. Entonces la familia \mathcal{D} generada (mediante translaciones) por dos discos fijos de radios r_1 y r_2 , tiene la propiedad (P) si y solo si $r_1/r_2 \notin Q$.

En el mismo espíritu se puede probar

TEOREMA. Si $I \subseteq \widehat{\mathscr{E}}'(\mathbb{R}^2)$ contiene una funcion cuyo conjunto de ceros es una union de rectas conplejas, entonces $I = I_{loc}$. Como aplicación tenemos

EJEMPLO 3. Sea *D* el cuadrado $\{x : |x_1| \le a, |x_2| \le a\}, a > 0$. Entonces $\hat{\mu}_D(z_1, z_2) = 4 \frac{sen \ az_1}{z_1} \cdot \frac{sen \ az_2}{z_2}$, y por lo tanto $\{z : \hat{\mu}_D(z) = 0\} = \bigcup_{\substack{m \ne 0 \\ m \ entero}} \left\{z : z_1 = \frac{\pi m}{a}\right\} \bigcup \left\{z : z_2 = \frac{\pi m}{a}\right\}.$

De aquí se deduce facilmente que si \mathcal{D} es la familia generada (por translaciones únicamente) por tres cuadrados como el de arriba de lados 2*a*, 2*b* y 2*c* respectivamente, entonces \mathcal{D} tiene la propiedad (*P*) si y solo si *a/b*, *b/c* y *c/a* son irracionales.

Si tomamos D como arriba, pareceria ser que siempre se necesitan por lo menos dos otros conjuntos D' y D'' para que la familia \mathcal{D} generada por ellos (mediante translaciones solamente) tenga la propiedad (P).

Finalizamos con un resultado curioso de L. Zalcman, que no se obtiene por los métodos esbozados más arriba. Llamemos D el cuadrado unidad, es decir $0 \le x_1, x_2 \le 1$. A cada punto $x \in D$ le podemos asociar un cuadradito D_x de centro x tal que D_x sea el cuadrado más grande posible contenido en Dy de lados paralelos a los ejes. Supongamos que f sea continua en D y que

$$\iint_{Dx} f(x_1, x_2) \ dx_1 \ dx_2 = 0 \qquad \forall x \in D$$

entonces se puede ver que $f \equiv 0$ de la manera siguiente. Sea *m* un número natural arbitrario (m > 1), dividimos *D* de la manera obvia en m^2 cuadraditos iguales de lados paralelos a los ejes coordenados. Llamemos D_1 al cuadradito que está en el vértice superior izquierdo, y D_2 , D_3 , D_4 los tres únicos cuadra-

ditos adjacentes yendo en el sentido de los agujas de un reloj. Se deduce de las hipótesis que si $D_5 = \bigcup_{j=1}^{4} D_j$ entonces

$$\iint_{D_j} f(x_1, x_2) \ dx_1 \ dx_2 = 0. \text{ para } j = 1, 2, 4, 5$$

y por lo tanto (4) también vale con j = 3. De esta manera se sigue, y se ve fácilmente que la integral sobre cualquier cuadradito es cero. Por lo tanto fes identicamente nula.

Modifiquemos levemente el problema, llamemos $\frac{1}{2}$ D_x al cuadradito similar a D_x pero de lado mitad y asumamos solamente

$$\iint_{\frac{1}{2}Dx} f(x_1, x_2) \ dx_1 \ dx_2 = 0 \qquad \forall x \in D$$

i es que $f \equiv 0$? No sé, es fácil ver que $f \equiv 0$ sobre ∂D .

Instituto de Matemática Pura e Aplicada Rio de Janeiro — Brasil

University of Maryland Maryland — USA