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Abstract— We study the resequencing delay caused by multi-
path routing. We use a queueing model which consists of parallel
queues to model the network routing behavior. We define a new
metric, denoted by γ, to study the impact of resequencing on
the customer end-to-end delay. Our results characterize some
properties of γ with respect to different service time distributions.
In particular, the resequencing delay can be negligible when the
delay along each path is light-tailed, but can be of major concern
when it is heavy-tailed.

I. INTRODUCTION

A. Resequencing delay

Multipath routing has recently received a lot of attention
in the context of both wired and wireless communication
networks. By sending data packets along different paths,
multipath routing can potentially help balance the traffic load
and reduce congestion levels in the network, in the process
resulting in lower end-to-end delay and higher throughput.
This path diversity also increases the ability of the network
to adapt to link failures, an important issue in wireless ad hoc
networks where the topology often changes [10, 16].

There are already network layer protocols that provide
multipath routing, e.g., TORA [12] for MANETs, and trans-
port layer protocols supporting multipath routing are currently
under development. For example, the Stream Control Trans-
mission Protocol (SCTP) with multihoming is one approach
for supporting stream applications, such as multimedia, using
multipath routing. Under SCTP, multiple IP addresses are
associated with one client. The connection between these
different IP and the server IP are established on different
routes. As with TCP, SCTP is responsible for congestion
control and assuring packets arrival order.

Since consecutive packets travel possibly along different
paths from source to destination, they can easily be mis-
ordered, i.e., received out-of-order, at the destination. If the
application requires the packets to be processed in a certain
order at the destination, e.g., say the order in which they
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were sent, then the mis-ordered packets have to wait an
additional amount of time, known as the resequencing delay,
before being consumed. If this resequencing delay is too large,
it can significantly degrade the performance of some real
time streaming applications. The throughput provided by the
network layer may be high, but the instantaneous throughput
measured by applications may not be satisfactory and may
result in a poor end-to-end user experience.

Usually, the impact of mis-ordering is evaluated by com-
paring the expected resequencing delay against the expected
(system) end-to-end delay [14, 7]. These first order statistics
give some information concerning the average behavior, but
are only crude indicators of the more subtle interactions
taking place. Here, we seek to evaluate the relative importance
of the resequencing and end-to-end delays from a different
perspective. We do so by means of a new metric that measures
the conditional probability of the resquencing delay given the
end-to-end delay; see below for a more detailed description.

B. A simple model of mis-ordering and multi-path routing

We shall evaluate this new metric in the context of a simple
queueing model with mis-ordering, namely a set of K parallel
single server queueing stations ·|GI|1 fed by Poisson arrivals
under probabilistic state-independent routing. In short, the
discussion will be given for a queueing system comprising
a set of K parallel M |GI|1 queues.

This model constitutes an ersatz of the very complex
situation we seek to investigate: The multiple paths between
a given source/destination pair correspond to a set of parallel
stations with each source/destination path represented by a
single server queue. While many of the details of the protocol
have been eliminated, the essence of network behavior (i.e.,
mis-ordering) has been preserved. By controlling the service
time distribution at a station, we can model the delay of the
packets traveling along that path. When a packet is generated
at the source, it is sent out along one of the paths. Upon
reaching the destination, out-of-order packets are stored in a
resequencing buffer until they satisfy the ordering condition
of the application, at which point they leave the resequencing
buffer.

The study of resequencing problem in queueing networks is
not without history [5, 8, 2, 4, 13, 7]. Recently, large deviations



results have been obtained for the size of the resequencing
buffer for a system of two parallel M |M |1 queues [15]. The
analysis given here has its point of departure in the work of
[8] where the distributions of the resequencing and end-to-
end delays were derived for a system of parallel M |GI|1
queues. Unfortunately, most of the closed-form results rely
on the service times being exponentially distributed, while
general service time distributions do not always give nice
form solutions. For our purpose this limits somewhat the
usefulness of the results from [8] since in many circumstances,
it may not be appropriate to assume that the service times are
exponentially distributed. For instance, in the Internet, traffic
coming to a router arises as the aggregation of many flows
from many different sources, and the impact of the admission
control and scheduling policies is far from understood. It is
therefore unrealistic to assume that packet delays along a path
are exponentially distributed. Thus, in the name of model
robustness (and ignorance), it seems appropriate to make as
few assumptions on the service time distributions as possible.

C. A new metric

Let R and D denote the (stationary) packet resequencing
and end-to-end delays, respectively. The question of interest
here is as follows: If a packet experiences a long end-
to-end delay, is this caused by resequencing? One way to
approach this issue would be to study the joint distribution
of R and D, in the process going one step further than the
results on the individual distributions currently available in the
literature. However, as should be clear from earlier comments,
such a joint distribution depends heavily on the service time
distributions and is likely to be in quite a cumbersome form
unsuited for comparison.

For these reasons, we focus instead on a new metric that
reveals the relationship between the tail behaviors of R and
D. More precisely, define

γ = lim
x→∞

P [R > x]
P [D > x]

.

Since R ≤ D, we have 0 ≤ γ ≤ 1 and it is plain that γ is
asymptotically the conditional probability

γ = lim
x→∞

P [R > x, D > x]
P [D > x]

= lim
x→∞P [R > x|D > x] .

Thus γ could also be interpreted as the asymptotic fraction of
customers that given their end-to-end delay exceeds x, their
resequencing delay also exceeds x (for large x). In general,
the smaller value γ takes, the smaller impact the resequencing
delay has on the end-to-end delay. In some extreme cases, for
example:

(i) If γ = 0, then the tail of R is much lighter than the
tail of D – If a customer experiences a long end-to-end
delay, it is very likely due to the delay along the path,
not to resequencing; and

(ii) If γ = 1, then R and D are equivalent in the tail – Thus,
the long resequencing delay is a major contributor to the
long end-to-end delay suffered by the customer.

The tail probability of the service time distributions is
crucial in determining γ. Hence we will examine γ under a
wide range of service time distributions from light-tail distri-
bution, e.g., exponential distribution, to heavy-tail distribution.
Whether these service time distributions can be found in
existing networks is a subject for further study.

D. Outline of the paper

The paper is organized as follows: In Section II, we describe
the model and state some preliminary results from [8]. Some
simple but useful asymptotics that will be repeatedly used
are given in Section III. Sections IV – IX contain the main
results on the evaluation of γ. In Section IV we derive the tail
behavior of D under any service distributions. We examine
the tail behavior of R for different service time distributions
in Sections V and VII – IX. Section VI clarifies the definitions
and summarizes the properties of tails of distributions, which
are used in the rest of the paper. The two extreme cases, i.e.,
exponential services vs. heavy tailed services, are compared
in Section X and Section XI concludes the paper with a few
discussions on the future work.

A word on the notation used in this paper. Two R-valued
rvs X and Y are said to be equal in law if they have the
same distribution, a fact we denote by X =st Y . The rv X is
stochastically smaller the rv Y if P [X > x] ≤ P [Y > x] for
all x in R, a fact we denote by X ≤st Y . We assume the reader
to be familiar with the classes S and L of subexponential and
long-tailed probbaility distributions, respectively. Additional
material on these classes of distributions is available in the
monograph [6].

II. THE MODEL AND PRELIMINARIES

The system of interest, depicted in Figure 1, consists of
K queueing stations operating in parallel, followed by a
resequencing buffer. Upon arrival, each customer 1 is routed to
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Fig. 1. System model

one of the K stations. When it completes service, the customer
leaves the system immediately only if all prior customers2 have
already left the system; otherwise, the customer awaits in the
resequencing buffer until all prior outstanding customers com-
plete their service, at which point it leaves the resequencing
buffer. This ensures that each customer leaves the system in the

1From now on we adopt the generic terminology of Queueing Theory and
refer to packets as customers.

2Prior customers refer to the customers which have entered the system
before that particular customer.



order in which it arrived, possibly experiencing in the process
an additional delay in the resequencing buffer. Of particular
interest is the end-to-end delay experienced by customers; this
quantity is defined as the sum of the customer sojourn time
(i.e., the time spent at the station it joined, and composed of
the time waiting in buffer for service and of the time in service)
and of the customer resequencing delay (i.e., the time spent
in the resequencing buffer).

The discussion is carried out under the following assump-
tions: For each k = 1, . . . , K , the kth queueing station is
modeled as an infinite capacity buffer attended by a single
server which serves customers in the FCFS order; hereafter
we refer to the kth queueing station as queue k. Consecutive
service time durations provided at queue k are assumed to
be i.i.d. R+-valued rv, and let σk denote the correspond-
ing generic service time. Customers arrive into the system
according to a Poisson process with parameter λ, and each
incoming customer is routed probabilistically to queue k with
probability pk, k = 1, . . . , K , with pk > 0 and

∑K
k=1 pk = 1.

Routing decisions are made independently across customers,
and can therefore be modeled as a sequence of i.i.d. thinning
rvs. Throughout, we assume that the Poisson arrival process,
the routing process and the service duration processes at the
K queues are mutually independent.

Under these assumptions, by standard properties concerning
the Bernoulli thinning of Poisson processes, it is plain that the
K single server systems can be interpreted as K independent
M |G|1 queues operating in parallel. For each k = 1, . . . , K ,
queue k is fed by Poisson arrivals with parameter λpk and
generic service time σk , and its stability is characterized by

ρk := λpkE [σk] < 1. (1)

Under (1), there exist R+-valued rvs Wk and Tk which denote
the (customer) stationary waiting and sojourn times in queue
k.

The system is stable if and only if all queues are stable,
namely

ρk < 1, k = 1, . . . , K. (2)

Then, under (2), there exist R+-valued rvs T , R and D which
denote the (customer) stationary sojourn time, resequencing
delay and end-to-end delay, respectively. The next two results
summarize the distributional properties of these rvs, which can
be found as Theorems 3.1 and 3.2 in [8] with slightly different
notation: Let ν be an {1, . . . , K}-valued rv distributed accord-
ing to

P [ν = k] = pk, k = 1, . . . , K.

In what follows, the rvs Wk and σk , k = 1, . . . , K , and ν are
assumed to be mutually independent rvs defined on the same
probability space (Ω,F ,P), and

Tk = Wk + σk, k = 1, . . . , K. (3)

Strictly speaking, we only have Tk =st Wk + σk for each
k = 1, . . . , K . However, we shall engage in the common and
somewhat innocuous practice of taking Wk + σk to be the

customer stationary sojourn time Tk in the stable M |G|1 queue
introduced earlier.

Theorem 2.1: With

W̃ = max
k �=ν

Wk, (4)

it holds that
T = Tν , (5)

D = max
(
W̃ , Tν

)
(6)

and

R =
(
W̃ − Tν

)+

. (7)

The resequencing delay of a customer, if nonzero, is the
additional time it waits for all prior outstanding customers to
complete their service at all queues other than selected queue
ν. As a result, from (5) and (6) we get

R = D − T = max
(
W̃ , Tν

)
− Tν

and the form of (7) follows.
We can now make use of these representations to get the

distributions of D and R in terms of those of the rvs Wk and
Tk, k = 1, . . . , K . With

W̃k = max
� �=k

W�, k = 1, . . . , K (8)

it is a simple matter to conclude the following:
Theorem 2.2: The distribution functions of the rvs R and D

are given by

P [D ≤ x] =
K∑

k=1

pkP
[
max

(
W̃k, Tk

)
≤ x

]
(9)

and

P [R ≤ x] =
K∑

k=1

pkP
[
W̃k ≤ x + Tk

]
(10)

for all x ≥ 0.
As pointed out in the introduction, we seek to evaluate the

ratio

γ = lim
x→∞

P [R > x]
P [D > x]

. (11)

Our strategy for doing so is to identify the tail behavior of
the distributions of D and R, respectively. The next section
present some of the basic tools to do just that. This is followed
in Section IV by a general result of the tail behavior of D.

III. SOME EASY BUT USEFUL ASYMPTOTICS

We shall have repeated use for the next elementary lemma
where asymptotic equivalence is defined as follows: For map-
pings f, g : R+ → R, we write f(x) ∼ g(x) (x → ∞) if
limx→∞

f(x)
g(x) = 1. In what follows, without further mention,

all asymptotics are understood in the regime where x is large,
and the qualifier x → ∞ is now dropped from the notation.



Lemma 3.1: Consider a finite family of functions
f1, . . . , fL, g1, . . . , gL : R+ → R. If f�(x) ∼ g�(x) for
each � = 1, . . . , L, then we have

L∑
�=1

f�(x) ∼
L∑

�=1

g�(x).

Now consider a finite collection of R+-valued sequences,
say {a1,n, n = 1, 2, . . .}, . . ., {aL,n, n = 1, 2, . . .} for some
integer L.

Lemma 3.2: If limn→∞ a�,n = 0 for each � = 1, . . . , L,
then it holds that

lim
n→∞

1 −∏L
�=1 (1 − a�,n)∑L
�=1 a�,n

= 1. (12)

Before giving a proof, recall some elementary facts from
calculus: As x ↓ 0, we have

log(1 − x) = −x + o(x), 0 ≤ x < 1 (13)

and

1 − ex = −x + o(x), x ≥ 0. (14)

Proof. Fix n = 1, 2, . . . and write

un =
L∑

�=1

log (1 − a�,n) .

Then, we note that

1 −
L∏

�=1

(1 − a�,n) = 1 −
L∏

�=1

elog(1−a�,n)

= 1 − eun

= −un + o(un)
= −un(1 + o(1)) (15)

as we make use of (14) since limn→∞ un = 0 under the
enforced assumptions. On the other hand, (13) readily yields

un = −
L∑

�=1

a�,n (1 + o(1))

= −
(

L∑
�=1

a�,n

)
(1 + o(1)). (16)

Combining (15) and (16) yields

1 −
L∏

�=1

(1 − a�,n) =

(
L∑

�=1

a�,n

)
(1 + o(1))

and the desired conclusion follows. �

IV. THE TAIL BEHAVIOR OF D

Taking (9) as the point of departure, we first deal with the
tail behavior of the rvs W̃1, . . . , W̃K .

Lemma 4.1: For each k = 1, . . . , K , it holds that

P
[
W̃k > x

]
∼
∑
� �=k

P [W� > x] . (17)

Proof. This is a straightforward consequence of Lemma 3.2
once we note that

P
[
W̃k > x

]
= 1 −

∏
� �=k

P [W� ≤ x]

= 1 −
∏
� �=k

(1 − P [W� > x]) , x ≥ 0

under the independence assumptions. �

Lemma 4.1 readily leads to the next asymptotic equivalence.

Lemma 4.2: For each k = 1, . . . , K , it holds that

P
[
max

(
W̃k, Tk

)
> x

]
∼ P [Tk > x] +

∑
� �=k

P [W� > x] . (18)

Proof. Fix k = 1, . . . , K and x ≥ 0. By independence of W̃k

and Tk, we find

P
[
max

(
W̃k, Tk

)
> x

]
= P [Tk > x] + P

[
W̃k > x

]
P [Tk ≤ x]

and the result is immediate from Lemma 4.1 as we note that
P
[
W̃k > x

]
P [Tk ≤ x] ∼ P

[
W̃k > x

]
. �

We are now in a position to characterize the tail behavior
of the end-to-end delay D.

Proposition 4.3: It holds that

P [D > x]

∼
K∑

k=1

pkP [Tk > x] + (1 − pk)P [Wk > x] . (19)



Proof. From (9), upon using Lemma 4.2, we get

P [D > x] =
K∑

k=1

pkP
[
max

(
W̃k, Tk

)
> x

]

∼
K∑

k=1

pk

⎛⎝P [Tk > x] +
∑
� �=k

P [W� > x]

⎞⎠
∼

K∑
k=1

pkP [Tk > x]

+
K∑

k=1

pk

⎛⎝∑
� �=k

P [W� > x]

⎞⎠ . (20)

Easy algebra leads to desired conclusion (19) since

K∑
k=1

pk

∑
� �=k

P [W� > x] =
K∑

�=1

⎛⎝∑
k �=�

pk

⎞⎠P [W� > x]

=
K∑

�=1

(1 − p�)P [W� > x]

for all x ≥ 0. �

The tail behavior of R is more delicate to obtain and
depends very much on the distributional assumptions made on
the service time durations. We explore this point in turn for (i)
exponential services [Section V], (ii) services with exponential
tails [Section VII], (iii) subexponential services [Section VIII]
and (iv) a combination of service times with exponential and
heavy tails [Section IX].

V. EXPONENTIAL SERVICES

We begin with the simple situation where the service times
at each queue are exponentially distributed, i.e., for each k =
1, . . . , K , we have

P [σk ≤ x] = 1 − e−µkx, x ≥ 0 (21)

for some µk > 0. Queue k is an M |M |1 queue and closed-
form expressions are thus available for the distributions of the
waiting time Wk and of the sojourn time Tk. We write

αk := µk − λpk = µk(1 − ρk)

where, as customary, we have set ρk = λpk

µk
. It is known [9,

pp. 202-203] that

P [Wk ≤ x] = 1 − ρke−αkx, x ≥ 0 (22)

and
P [Tk ≤ x] = 1 − e−αkx, x ≥ 0. (23)

In this case, we can compute γ directly. Set

α� := min (α1, . . . , αK) (24)

and introduce

M := {k = 1, . . . , K : αk = α�} . (25)

Proposition 5.1: For exponentially distributed services
(21), it holds that

P [D > x] ∼
(∑

k∈M
(pk + (1 − pk)ρk)

)
e−α�x. (26)

Proof. Substituting (22) and (23) into (19) leads to

P [D > x] ∼
K∑

k=1

(pk + (1 − pk)ρk) e−αkx,

and the conclusion (26) is now straightforward. �

Next, we tackle the tail behavior of R. To state the result,
for each k = 1, . . . , K , define

α�
k := min (α�, � �= k) (27)

and

Γk :=

( ∑
�∈Mk

ρ�

)
(28)

with
Mk := {� �= k : α� = α�

k} . (29)

Proposition 5.2: For exponentially distributed services
(21), it holds that

P [R > x] ∼
( ∑

k∈M�

pk
αk

α� + αk
Γk

)
e−α�x (30)

where
M� := {k = 1, . . . , K : α�

k = α�} . (31)

A proof of Proposition 5.2 is given in Appendix I. The
evaluation of γ is now within easy reach by combining
Propositions 5.1 and 5.2.

Proposition 5.3: For exponentially distributed services
(21), it holds that

γ =

∑
k∈M� pk

αk

α�+αk
Γk∑

k∈M(pk + (1 − pk)ρk)
. (32)

The expression (32) takes a particularly simple form when
the waiting time and sojourn time distributions at all the
queues have the same decaying rate; this can be seen by direct
substitution.

Corollary 5.4: For exponentially distributed services (21)
with α1 = . . . = αK , we have

γ =
1
2

Γ
1 + Γ

where

Γ :=
K∑

k=1

ρk(1 − pk).

In this special case, we have γ < 1
2 for any finite value

K , which implies that a long end-to-end delay is more likely



to result from factors other than resequencing. However, it is
still possible for γ � 1 under certain conditions. For instance,
when the service rates of the stations are drastically different
among themseleves, the resequencing delays of mis-ordered
customers become a large portion of their end-to-end delays.
We illustrate this point with the following numerical example
with three stations in parallel, i.e., K = 3. The customer arrival
rate is λ = 5, and the service rates are µ1 = 0.3, µ2 = 8
and µ3 = 12, respectively. Stability is ensured by taking the
routing probabilities to be p1 = 0.05, p2 = 0.35 and p3 = 0.6.
Direct calculations based on (32) yield γ = 0.9346. Station 1
has the slowest service rate, which limits the amount of work
that can be routed to it. Thus, a large number of customers
served by stations 2 and 3 are very likely to spend a long
time in the resequencing buffer waiting for a small number of
customers arrived earlier to finish their service from station 1.

VI. TAILS OF DISTRIBUTIONS

In this section we have collected some of the basic defini-
tions and properties pertaining to tails of distributions which
we shall use in the remainder of this paper.

A. Exponential tails

Definition 6.1: The R+-valued rv X has an exponential(ly
decaying) tail, denoted X ∈ E , if

θ� := sup
(
θ ∈ R : E

[
eθX

]
< ∞) > 0. (33)

Note that
E
[
eθX

]
= ∞, θ� < θ.

Markov’s inequality (applied to eθX with θ > 0) yields

P [X > x] ≤ e−θxE
[
eθX

]
, x ≥ 0 (34)

whenever 0 < θ < θ�, and the rv X satisfying (33) indeed
displays an exponentially decaying tail.

A little more can be said under (33): It is plain from (34)
that

lim
x→∞

P [X > x]
e−θx

= 0, 0 < θ < θ� (35)

On the other hand, for each θ > 0, we have

E
[
eθX

]
= 1 + E

[∫ X

0

θeθxdx

]

= 1 + E
[∫ ∞

0

1 [X > x] θeθxdx

]
= 1 +

∫ ∞

0

θeθxP [X > x] dx (36)

by Tonelli’s Theorem. With the help of this last relationship,
it is then not too difficult to show that

lim
x→∞

P [X > x]
e−θx

= ∞, θ� < θ. (37)

In general, the limit

lim
x→∞

P [X > x]
e−θ�x

(38)

may not exist, as can be seen through the example

P [X ≤ x] = 1 − K + cosx

K + 1
e−x, x ≥ 0

with K > 2.3 Obviously θ� = 1 here but

P [X > x]
e−θ�x

=
K + cosx

K + 1
, x ≥ 0

and the limit does not exist owing to the oscillatory nature of
the cosine function.

Yet, as we shall see shortly, there are natural circumstances
where the limit (38) exists, i.e., there exist constants α > 0
and C > 0 such that

P [X > x] ∼ Ce−αx. (39)

In that case, it is easy to check from (36) that α = θ� with
E
[
eθX

]
< ∞ (resp. E

[
eθX

]
= ∞) whenever θ < α (resp.

α < θ).

B. Heavy tails

In order to capture the notion of heavy tailed distributions,
we shall rely on the following definitions.

Definition 6.2: The R+-valued rv X has a long tail, denoted
X ∈ L, if P [X > x] > 0 all x ≥ 0 and

lim
x→∞

P [X > x − y]
P [X > x]

= 1, y ∈ R. (40)

Definition 6.3: The R+-valued rv X has a subexponential
tail, denoted X ∈ S, if P [X > x] > 0 all x ≥ 0 and

lim
x→∞

P [X + Y > x]
P [X > x]

= 2 (41)

where Y is an independent copy of X .
The inclusion S ⊂ L is known to hold [6, p. 50] (and

references therein). Moreover, S contains many well-known
distributions such as Weibull, log-normal, Pareto and regularly
varying distributions. Some useful facts concerning the classes
L and S are presented below;

Proposition 6.4: Assume X ∈ L.
(i): For every θ > 0, it holds that

lim
x→∞ eθxP [X > x] = ∞

whence E
[
eθX

]
= ∞;

(ii): If 0 < E [X ] < ∞, then

P [X > x] = o(P [X� > x])

where X� denotes the forward recurrence time associated with
X ; it is the rv with integrated tail distribution given by

P [X� > x] := E [X ]−1
∫ ∞

x

P [X > t] dt, x ≥ 0; (42)

(iii): For any R+-valued rv Y which is independent of X , the
equivalence

P [X > x + Y ] ∼ P [X > x]
3This will ensure that the right handside is indeed increasing and therefore

a bona fide distribution.



holds.
A proof is available in Appendix II. The following fact is

a simple consequence of (35) and of Claim (i) of Proposition
6.4.

Corollary 6.5: For R+-valued rvs X and Y , it holds that

P [X > x] = o(P [Y > x]) (43)

whenever X ∈ E and Y ∈ L.

VII. THE EXPONENTIAL TAIL CASE

We generalize the setup of Section VII to service time
distributions with exponentially decaying tails: For each k =
1, . . . , K , we assume σk ∈ E , namely

θk := sup
(
θ ∈ R : E

[
eθσk

]
< ∞) > 0. (44)

At this level of generality, closed form expressions such as
(22) and (23) are usually not available for the rvs Wk and Tk.
However, the tail behavior of Wk can be characterized through
the classic Cramér-Lundberg approximation [1, Example 5.5,
p. 366]. For easy reference, we briefly discuss this approxi-
mation in the context of M |G|1 queues considered here: The
Lundberg equation takes here the special form

E
[
eθσk

]
= 1 + (λpk)−1θ, θ > 0 (45)

and under the stability condition (1) it has a unique solution
which we denote by αk. It is plain that αk ≤ θk. As we are in
the non-lattice case for the underlying random walk, it follows
[1, Thm. 5.3, p. 365] that

P [Wk > x] ∼ Cke−αkx (46)

for some constant Ck given by

Ck :=
1 − ρk

λpkE [σkeαkσk ] − 1
(47)

with ρk given by (1). Details are available in [1, p. 367].
The Cramér-Lundberg approximation leaves open the ques-

tion of the tail behavior of the sojourn time Tk. Given that
Wk ≤st Tk, it is plain from (46) that if the asymptotics

P [Tk > x] ∼ Dke−βkx (48)

were to hold with constants Dk > 0 and βk > 0, then
necessarily βk ≤ αk. In the case of exponentially distributed
services, we do in fact have (48) with βk = αk. However,
the asymptotics (48) appear not to hold in the same level of
generality as the Cramér-Lundberg approximation (46). Still,
for our purpose, some pertinent information can be deduced
from (46).

As already pointed out in Section VI, under (46), we have
E
[
eθWk

]
< ∞ (resp. E

[
eθWk

]
= ∞) if θ < αk (resp. αk <

θ). The independence of the rvs Wk and σk yields

E
[
eθTk

]
= E

[
eθWk

] · E [eθσk
]
, θ ∈ R (49)

and from earlier remarks we conclude that

E
[
eθTk

]
< ∞, θ < min (θk, αk) = αk (50)

while
E
[
eθTk

]
= ∞, αk < θ. (51)

Using Markov’s inequality again we get

P [Tk > x] ≤ e−θxE
[
eθTk

]
, x ≥ 0 (52)

whenever 0 < θ < αk. In short, under (44), we have

Wk ∈ E and Tk ∈ E . (53)

These observations can now be put to work towards charac-
terizing the tail behavior of D and R.

Proposition 7.1: If (44) holds for each k = 1, . . . , K , then

P [D > x] ∼
∑
k∈M

pkP [Tk > x]

+

(∑
k∈M

(1 − pk)Ck

)
e−α�x (54)

with α� and M defined at (24) and (25), respectively.

Proof. In view of the observations made earlier, it is clear
that

P [Tk > x] = o(e−α�x), k �∈ M (55)

since α� < αk for k not in M. Combining the Cramér-
Lundberg approximation (46) with the asymptotics (19) now
leads to

P [D > x]

∼
K∑

k=1

pkP [Tk > x] +
K∑

k=1

(1 − pk)Cke−αkx

and (54) follows as we make use of (55). �

Under the enforced assumptions, there is no guarantee a
priori that the limits

lim
x→∞

P [Tk > x]
e−α�x

, k ∈ M

exist.
We now turn to the tail behavior of R: For each k =

1, . . . , K , define α�
k and Mk as before by (27) and (29),

respectively, and set

Γk :=
∑

�∈Mk

C�. (56)

This is the analog of (28) for service time distributions with
exponentially decaying tails. A proof of the next result is
available in Appendix III.

Proposition 7.2: If (44) holds for each k = 1, . . . , K , then

P [R > x] ∼
( ∑

k∈M�

pkΓkE
[
e−α�

kTk

])
e−α�x (57)

with M� given by (31).



VIII. THE SUBEXPONENTIAL CASE

In this section, we consider the situation where the service
times at all the queues are “heavy tailed” in the following
technical sense: For each k = 1, . . . , K ,

σk ∈ L and σ�
k ∈ S (58)

where σ�
k denotes the forward recurrence time (42) associated

with the service time rv σk. Sufficient conditions on σk to
ensure that σ�

k is subexponential can be found in [6, p. 52].
The tail behavior of the rvs Wk and Tk is summarized here

for future reference.
Proposition 8.1: Under the asumptions (58), it holds that

P [Wk > x] ∼ ρk

1 − ρk
P [σ�

k > x] with Wk ∈ S (59)

and
P [Tk > x] ∼ P [Wk > x] with Tk ∈ S. (60)

Proof. By interpreting the Pollaczeck-Khintchine formula in
stable M |GI|1 queues, we can express the stationary waiting
time as a geometric sum of i.i.d. forward recurrence time
associated with the service time [1, p. 296] [9, p. 201]. More
precisely, let νk be a geometric rv with parameter ρk, i.e.,

P [νk = n] = (1 − ρk)ρn
k , n = 0, 1, . . .

and let {σ�
k,n, n = 1, 2, . . .} denote a collection of i.i.d. rvs

distributed according to σ�
k. Then, it holds

Wk =st

νk∑
n=1

σ�
k,n (61)

where the rv νk is taken to be independent of the sequence
{σ�

k,n, n = 1, 2, . . .}. Then, (59) follows by the Random Sum
Theorem for subexponential rvs [1, Lemma 9.2., p. 296] [6,
Thm. A3.20, p. 580].

To obtain the tail behavior of Tk, observe from Claim (ii)
of Lemma 6.4 that σk ∈ L implies

P [σk > x] = o(P [σ�
k > x]),

and the equivalence P [Tk > x] ∼ P [Wk > x] follows from
(59) upon making use of Lemma A3.23 in [6, p. 582].
The statement Tk ∈ S follows by tail equivalence from the
statement Wk ∈ S [6, Lemma A3.15, p. 572]. �

Under the asumptions (58), reporting the asymptotic equiv-
alence (60) into Proposition 4.3 yields

P [D > x] ∼
K∑

k=1

P [Wk > x] (62)

and the asymptotic equivalence (59) leads to the following
Proposition 8.2: If (58) holds for each k = 1, . . . , K , then

P [D > x] ∼
K∑

k=1

ρk

1 − ρk
P [σ�

k > x] . (63)

The behavior of R is examined next, with a proof given in
Appendix IV.

Proposition 8.3: If (58) holds for each k = 1, . . . , K , then
we have

P [R > x] ∼
K∑

k=1

(1 − pk)P [Wk > x] . (64)

The asymptotics (62) and (64) already suggest

γ = lim
x→∞

∑K
k=1(1 − pk)P [Wk > x]∑K

k=1 P [Wk > x]
(65)

provided the limit exists. This observation can be exploited as
follows when uniform routing is used.

Corollary 8.4: If (58) holds for each k = 1, . . . , K , with
p1 = . . . = pK = 1

K , then the limit (65) exists with

γ =
K − 1

K
. (66)

This result is independent of the specific form of the service
times σ1, . . . , σK under condition (58). Moreover, γ will
become increasignly close to 1 as K becomes large.

Under non-uniform routing, the existence of the limit at
(65) is not automatically guaranteed. We explore the issue
by strengthening the underlying assumptions used thus far.
Specifically, in addition to the assumptions (58) holding for
each k = 1, . . . , K , there exists an R+-valued rv Z ∈ S such
that

P [σ�
k > x] ∼ ckP [Z > x] (67)

for some constant ck ≥ 0. The case ck > 0 coresponds to
the rvs σ�

k and Z being tail equivalent, and (67) does imply
σ�

k ∈ S. On the other hand, ck = 0 represents the situation
where the rv σ�

k has a weaker tail than Z .4 In either case,
under (58) the equivalence (59) yields

P [Wk > x] ∼ dkP [Z > x] with dk = ck
ρk

1 − ρk
(68)

and (65) easily leads to the following asymptotics.
Proposition 8.5: If (58) holds for each k = 1, . . . , K with

(67), then the limit (65) exists with

γ =
∑K

k=1(1 − pk)dk∑K
k=1 dk

(69)

provided
K∑

k=1

dk > 0.

4The property σ�
k ∈ S is not necessarily implied, and therefore needs to

be assumed.



IX. THE GENERAL CASE

Assume now that the set of K queues is partitioned into
two non-empty subsets, say

{1, . . . , K} = E ∪H (70)

with E and H containing the queues with exponentially decay-
ing services times and heavy-tailed service times, respectively.
More precisely, we assume that (44) holds for each k in E ,
while (58) holds for k in H. In other words,

θk := sup
(
θ ∈ R : E

[
eθσk

]
< ∞) > 0, k ∈ E (71)

and
σk ∈ L and σ�

k ∈ S, k ∈ H. (72)

To eliminate situations previously encountered in earlier sec-
tions, we assume that both E and H are not empty, i.e., |E| ≥ 1
and |H| ≥ 1. Although the symbol E has been given two
different meanings, this will not create any confusion.

Under these assumptions, it is plain from Corollary 6.5 that

P [W� > x] = o(P [Wk > x]), � ∈ E , k ∈ H (73)

and

P [T� > x] = o(P [Wk > x]), � ∈ E , k ∈ H (74)

as we recall that W� ∈ E and T� ∈ E while Wk ∈ S. Reporting
these observations into (19) gives

P [D > x] ∼
∑
k∈H

P [Wk > x] (75)

upon using (60). Finally, the explicit asymptotics (59) leads to
Proposition 9.1: If (71) and (72) hold under the decompo-

sition (70), then

P [D > x] ∼
∑
k∈H

ρk

1 − ρk
P [σ�

k > x] . (76)

The behavior of R is examined next, with a proof given in
Appendix V.

Proposition 9.2: If (71) and (72) hold under the decompo-
sition (70), then

P [R > x] ∼
∑
k∈H

(1 − pk)P [Wk > x] . (77)

This time, the asymptotics (75) and (77) suggest

γ = lim
x→∞

∑
k∈H(1 − pk)P [Wk > x]∑

k∈H P [Wk > x]
(78)

provided the limit exists. This constitutes a natural generaliza-
tion of (65).

A situation where the limit (78) exists is presented next; it
parallels the uniform routing case discussed in Corollary 8.4:
Assume that

p := pk =
1 −∑k∈E pk

|H| , k ∈ H. (79)

Under this assumption, (75) and (77) lead to

P [R > x] ∼ (1 − p)P [D > x]

with
P [D > x] ∼

∑
k∈H

P [Wk > x] .

Corollary 9.3: Assume that (71) and (72) hold under the
decomposition (70). With (79), the limit at (78) exists and is
given by

γ = 1 − p (80)

This result is independent of the specific form of the service
times σ1, . . . , σK under conditions (71) and (72). Moreover,
Corollary 9.3 automatically applies when |H| = 1, in which
case γ = 1 − p1 under the convention H = {1}.

When (79) fails to hold, then the existence of the limit
at (78) is not automatically guaranteed. Here, as we did in
the previous sections, we need to strengthen the underlying
assumptions. Thus, we complement (72) by requiring the
existence of an R+-valued rv Z ∈ S such that for each k
in H,

P [σ�
k > x] ∼ ckP [Z > x] (81)

for some constant ck ≥ 0. We close with the following analog
of Proposition 8.5.

Proposition 9.4: Assume that (71) and (72) hold under the
decomposition (70). If (81) holds, then the limit (78) exists with

γ =
∑

k∈H(1 − pk)dk∑
k∈H dk

(82)

provided ∑
k∈H

dk > 0.

X. DISCUSSION

To get a better sense of the impact of the service distri-
butions on the value of γ, we compare the results in two
extreme situations, namely the one where the service times
are all exponentially distributed and the one where they are
all heavy-tailed.

As seen earlier, when the workload is evenly distributed
with p1 = . . . = pK = 1

K , then γ < 1
2 in the exponential case

with µ1 = . . . = µK , while γ still goes to 1 as K increases
for the heavy-tailed case regardless of the exact distributions
of the service time.

Now, in order to go beyond this uniform allocation, we
consider the following situation. The number K of stations,
the customer arrival rate λ and the load allocation vector p =
(p1, . . . , pK) are given and will be the same in both cases.
In the heavy-tailed case, we take the service times to have a
Pareto distribution, e.g., for each k = 1, . . . , K , we take

P [σk > x] =
(

Bk

Bk + x

)βk

, x ≥ 0



with Bk > 0 and βk > 1. In that case, E [σk] is finite and
given by

E [σk] =
Bk

βk − 1
.

It is well known that σk and σ�
k are both in S [6].

We shall take β1 = . . . = βK = β to simplify matters
somewhat. In order to make the two situations comparable, we
require that the expected service times at each station coincide,
i.e.,

Bk

β − 1
= E [σk] =

1
µk

, k = 1, . . . , K.

Thus,

Bk =
β − 1
µk

, k = 1, . . . , K.

Let ΓE(p) and ΓS(p) denote the value of γ in the exponen-
tial and Pareto cases, respectively, under the load allocation p.
These quantities were evaluated in a large number of scenarios
(some of which are reported below). The findings can be
summarized as follows:

(i) In all situations considered, we had ΓE(p) ≤ ΓS(p). In
other words, everything else being equal, resequencing is felt
more strongly in the heavy tail case;

(ii) When µ1 = . . . = µK (in which case B1 = . . . = BK),
we found

ΓS(p′) ≤ ΓS(p) (83)

whenever p is “more balanced” than p ′. A formal way to
express this situation is to say that p is majorized by p′, written
p ≺ p′ [11]. This is equivalent to

k∑
�=1

p′(�) ≤
k∑

�=1

p(�), k = 1, . . . , K − 1 (84)

and5
K∑

�=1

p′(�) =
K∑

�=1

p(�) (85)

with p(1) ≤ p(2) ≤ . . . ≤ p(K) and p′(1) ≤ p′(2) ≤ . . . ≤ p′(K)

denoting the components of p and p ′ arranged in increasing
order, respectively. The comparison (83) is certainly in line
with intuition since as p gets more skewed, more customers
are routed to a smaller set of queues and these customers will
not be mis-ordered; and

(iii) The property (83) does not hold in the exponential case.
In many cases, ΓE(p) appears to be less sensitive to changes
in load allocation compared to ΓS(p).

We illustrate these findings through the following numerical
example displayed in Figure 2. The parameters used are
K = 3, λ = 5, β = 3 and µ1 = µ2 = µ3 = 4.
Calculations were performed for the four load allocations
p1 = (0.33, 0.33, 0.34), p2 = (0.25, 0.25, 0.5), p3 =
(0.1, 0.35, 0.55) and p4 = (0.05, 0.35, 0.6). The data points
in cross and circle are for ΓE(p) and ΓS(p), respectively.
Note that p1 ≺ p2 ≺ p3 ≺ p4, and that the corresponding

5Obviously, here the condition (85) automatically holds since the vectors
of interest are load allocation vectors.

data points have been arranged in that order on the x-axis at
x = 1, x = 2, x = 3 and x = 4, repectively. As shown in the
figure, ΓS(p) is indeed monotone decreasing.
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Fig. 2. Comparison of γ with equal service rates

XI. CONCLUSIONS AND FUTURE WORK

We have studied the impact of packet mis-ordering due
to multipath routing on their resequencing delay using a
simple queueing model. A new metric γ was introduced as
the asymptotic ratio between the tail probability of the rese-
quencing delay and that of the end-to-end delay. We evaluate
this parameter under different service time distributions (and
hence different delay statistics along the multiple paths). By
examining γ, we are now in a position to better understand
whether the long end-to-end delay experienced by a customer
is due to its resequencing delay.

A few words on the future work. Obviously, we can
minimize γ by simply sending all of the traffic to one of
the stations. Thus, minimizing γ alone is somewhat coun-
terproductive as this would of course negate the potential
benefits of path diversity. On the other hand, it is proved in
[8] that when the service time distributions are identical for
all queues, the uniform load allocation minimizes the sojourn
time in the stochastic order and the end-to-end delay in the
convex increasing order. The remaining question is how to
select a load allocation vector so that the expected end-to-
end delay is minimized while keeping γ below some given
threshold. Admittedly our choice of service time distributions
with various tail behavior was driven mainly by mathematical
convenience. However, validating this tail behavior (of both
service times and delays) in current networks is an interesting
direction for future work.
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APPENDIX I
A PROOF OF PROPOSITION 5.2

Fix k = 1, . . . , K . Lemma 4.1 yields

P
[
W̃k > x

]
∼
∑
� �=k

ρ�e
−α�x ∼ Γk · e−α�

kx (86)

where a�
k and Γk are given by (27) and (28), respectively.

Fix x ≥ 0. The independence of the rvs W̃k and Tk yields

P
[
W̃k > x + Tk

]
= αk

∫ ∞

0

P
[
W̃k > x + t

]
e−αkt dt,

which leads to

ea�
kxP

[
W̃k > x + Tk

]
= αk

∫ ∞

0

P
[
W̃k > x + t

]
e−α�

k(x+t)
· e−(α�

k+αk)t dt. (87)

From (86), for every ε > 0, there exists x�
k = x�

k(ε) > 0
such that

Γk(1 − ε) ≤
P
[
W̃k > x

]
e−α�

k
x

≤ Γk(1 + ε)

whenever x ≥ x�
k. Therefore, on that range, it is also the case

that the bounds

ea�
kxP

[
W̃k > x + Tk

]
≤ αk

α�
k + αk

Γk(1 + ε)

and
αk

α�
k + αk

Γk(1 − ε) ≤ eα�
kxP

[
W̃k > x + Tk

]
hold since ∫ ∞

0

(α�
k + αk)e−(α�

k+αk)t = 1.

It is now plain that

P
[
W̃k > x + Tk

]
∼ αk

α�
k + αk

Γke−α�
kx (88)

given that ε > 0 is arbitrary.
Next, returning to (10), we conclude that

P [R > x] ∼
K∑

k=1

pk
αk

α�
k + αk

Γke−α�
kx

∼
( ∑

k∈M�

pk
αk

α�
k + αk

Γk

)
e−α�x (89)

where we have set

α� = min (α�
1, . . . , α

�
K) (90)

and

M� := {k = 1, . . . , K : α�
k = α�} . (91)

We reconcile (89) with the desired result (30) upon noting that
α� = α� so that M� = M�.

APPENDIX II
A PROOF OF PROPOSITION 6.4

Claim (i) is Claim (b) of Lemma 1.3.5 [6, p. 41]. Claim
(ii) is a simple consequence of the membership X ∈ L upon
taking x going to infinity in the relation

P [X� > x]
P [X > x]

= E [X ]−1
∫ ∞

x

P [X > x + t]
P [X > x]

dt

valid for all x > 0. Details are standard and left to the
interested reader.

Finally, set

P (x) := P [X > x] , x ≥ 0.

By the independence of the rvs X and Y , we have

P [X > x + Y ]
P [X > x]

= E
[
P (x + Y )

P (x)

]
, x ≥ 0. (92)

Now, let x go to infinity in this last relation, and observe
that x → P (x) is non-increasing over R+. The Bounded
Convergence Theorem yields

lim
x→∞

P [X > x + Y ]
P [X > x]

= E
[

lim
x→∞

P (x + Y )
P (x)

]
= 1

since X ∈ L, and the desired conclusion follows. �



APPENDIX III
A PROOF OF PROPOSITION 7.2

The proof is similar to that of Proposition 5.2 given in
Appendix I: Fix k = 1, . . . , K . Using the Cramér-Lundberg
approximation (46) together with Lemma 4.1, we get

P
[
W̃k > x

]
∼
∑
� �=k

C�e
−α�x. (93)

Therefore, with α�
k, Mk and Γk defined by (27), (29) and

(56), respectively, we get

P
[
W̃k > x

]
∼ Γke−α�

kx. (94)

Thus, for each ε > 0, there exists x�
k = x�

k(ε) > 0 such
that

Γk (1 − ε) ≤
P
[
W̃k > x

]
e−α�

kx
≤ Γk (1 + ε) (95)

whenever x ≥ x�
k. Therefore, on that range, upon making use

of the independence of the rvs W̃k and Tk, we of the rvs W̃k

and Tk, we readily get the bounds

P
[
W̃k > x + Tk

]
≥ Γk (1 − ε)E

[
e−α�

k(x+Tk)
]

= Γk (1 − ε)E
[
e−α�

kTk

]
e−α�

kx

and

P
[
W̃k > x + Tk

]
≤ Γk (1 + ε)E

[
e−α�

k(x+Tk)
]

= Γk (1 + ε)E
[
e−α�

kTk

]
e−α�

kx.

With ε > 0 arbitrary, it follows that

lim
x→∞

P
[
W̃k > x

]
e−α�

kx
= ΓkE

[
e−α�

k(x+Tk)
]
. (96)

This constitutes the appropriate generalization of (88).
Reporting this fact into (10), we find

P [R > x] ∼
K∑

k=1

pkΓkE
[
e−α�

kTk

]
e−α�

kx

∼
( ∑

k∈M�

pkΓkE
[
e−α�

kTk

])
e−α�x (97)

with α� and M� as defined at (90) and (91), respectively.
The desired result (57) follows from (97) upon noting again
that α� = α� and M� = M�. �

APPENDIX IV
A PROOF OF PROPOSITION 8.3

Fix k = 1, . . . , K . Lemma 4.1 yields

P
[
W̃k > x

]
∼
∑
� �=k

P [W� > x] (98)

where for each � = 1, . . . , K , W� ∈ S, hence W� ∈ L, by
Proposition 8.1. Consequently,

P [W� > x + t] ∼ P [W� > x] , � = 1, . . . , K

for each t ≥ 0, and W̃k ∈ L as well. In W̃k ∈ L as well. In
other words,

lim
x→∞

P
[
W̃k > x + t

]
P
[
W̃k > x

] = 1, t > 0 (99)

with the limit taking place from below. The rvs W̃k and Tk

being independent, the equivalence

P
[
W̃k > x + Tk

]
∼ P

[
W̃k > x

]
(100)

follows from Claim (iii) of Proposition 6.4.
Returning to (10), we conclude from (98) and (100) that

P [R > x] ∼
K∑

k=1

pkP
[
W̃k > x

]

∼
K∑

k=1

pk

⎛⎝∑
� �=k

P [W� > x]

⎞⎠
∼

K∑
�=1

⎛⎝∑
k �=�

pk

⎞⎠P [W� > x]

and (64) follows. �

APPENDIX V
A PROOF OF PROPOSITION 9.2

Fix k = 1, . . . , K and recall from Lemma 4.1 that

P
[
W̃k > x

]
∼
∑
� �=k

P [W� > x] . (101)

For k in E , it is plain from (73) and (101) that

P
[
W̃k > x

]
∼
∑
�∈H

P [W� > x] . (102)

But for each � in H, W� ∈ S by Proposition 8.1, whence
W� ∈ L. Thus, the rvs W� and Tk being independent, we find

P [W� > x + Tk] ∼ P [W� > x] , � ∈ H
by Claim (iii) of Proposition 6.4, and it is now a simple matter
to check that

P
[
W̃k > x + Tk

]
∼
∑
�∈H

P [W� > x] , k ∈ E . (103)

For k in H, the situation is somewhat more involved: If
|H| = 1, write H = {1} and E = {2, . . . , K} for sake of
definiteness. Thus, k in H means k = 1, and (101) becomes

P
[
W̃1 > x

]
∼

K∑
�=2

P [W� > x] (104)

with

P [W� > x] = o(P [W1 > x]), � = 2, . . . , K



by virtue of (73). This yields

P
[
W̃1 > x

]
= o(P [W1 > x]), (105)

whence
P
[
W̃1 > x + T1

]
= o(P [W1 > x]) (106)

by a simple bounding argument. On the other hand, (103)
specializes here to

P
[
W̃k > x + Tk

]
∼ P [W1 > x] , k = 2, . . . , K. (107)

Combining (106) and (107) leads to

P [R > x] ∼
K∑

k=2

pkP [W1 > x]

∼ (1 − p1)P [W1 > x] (108)

and (77) indeed holds.
Assume now that |H| > 1. For each k in H, we write Hk

to denote the subset of H obtained by deleting k from it. The
arguments, based on (73) and (101), and which lead to (102),
can also be used to conclude

P
[
W̃k > x

]
∼
∑

�∈Hk

P [W� > x] . (109)

Again, Claim (iii) of Proposition 6.4 can be used to validate
the equivalence

P [W� > x + Tk] ∼ P [W� > x] , � ∈ Hk

since W� ∈ L for � in Hk and the rvs W� and Tk are
independent. It is now a simple matter to conclude via (109)
that

P
[
W̃k > x + Tk

]
∼
∑

�∈Hk

P [W� > x] , k ∈ H. (110)

Combining (103) and (110) yields

P [R > x] ∼
∑
k∈E

pk

∑
�∈H

P [W� > x]

+
∑
k∈H

pk

∑
�∈Hk

P [W� > x]

∼
(∑

k∈E
pk

)(∑
�∈H

P [W� > x]

)

+
∑
k∈H

pk

(∑
�∈H

P [W� > x] − P [Wk > x]

)

∼
(∑

k∈E
pk +

∑
k∈H

pk

)∑
�∈H

P [W� > x]

−
∑
k∈H

pkP [Wk > x]

and the conclusion (77) follows. �


