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In this dissertation we propose a class of time series models for mixture data�

We call these logistic mixtures� In such models the mixture�s component densi�

ties have a generalized linear model �GLM� form� The regime probabilities are

allowed to change over time and are modeled with a logistic regression structure�

The regressors of both the component GLM distributions and the logistic prob�

abilities may include covariates as well as past values of the process� We develop

an EM algorithm for estimation� give conditions for consistency and asymptotic

normality� examine the model through simulations� and apply it to rain rate

data� Finally� we consider a likelihood ratio based test for determining if the

data arise from a logistic mixture versus the null hypothesis of the data coming

from a single distribution �i�e� no mixture�� Because the mixture probabilities

are not constant we are able to develop a test that avoids some of the problems

associated with likelihood ratio tests of mixtures�
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Chapter �

Introduction

In this dissertation we introduce a broad class of time series models that are

applicable to data arising from mixtures of parametric distributions� The class

of models we propose are formed by combining two time series following gener�

alized linear model �GLM� distributions and modeling the probability of which

distribution is applicable through a logistic regression structure� We call these

logistic mixture �LM� models� These models are motivated by the realization

that time series data may have parameters that are themselves changing over

time� This is a contrast to the situation expressed by a simple ARMA�k� l�

process�

Yt � ��Yt�� � ���� �kYt�k � �t � ���t�� � ���� �l�t�l

where �t are i�i�d� white noise and ��� ���� �k� ��� ���� �l are unknown constants such

that the roots of 
 � ��Z � ��� � �kZ
k and 
 � ��Z � ��� � �lZ

l lie outside the

unit circle in the complex plane� While ARMA models have been popular and

successful for describing several observed time series� they are not �exible enough

to account for situations when the investigator believes the parameters are not

constant�






Mixture models were developed as a way of allowing data to arise from a

combination of two or more distinct data generation processes� See McLachlan

and Basford �
��� Titterington� et� al� �
���� or Everitt and Hand �
�
�

for good introductions to mixtures� primarily in the context of i�i�d� random

variables� As a basis for later comparison to our model and to introduce notation

we present a simple parametric mixture model� let

� Yt denote i�i�d� observed univariate data� t � f
� �� ���� Tg�

� f�yt���� � � A denote a class of probability densities with respect to a

common sigma��nite measure where A is a subset of Rq for some q � N�

� It is an i�i�d unobserved state variable that determines the conditional

distribution of Yt� By this we mean It � f
� �� ���� rg for some r and

Yt is distributed as

�����������������������

f�yt���� if It � 
�

f�yt���� if It � ��

���

f�yt��r� if It � r

with �i �� �j if i �� j� A standard mixture model would have p� �

P�It � 
� � �� p� � P �It � �� � �� ���� pr � P �It � r� � �� and
Pr

� pi � 
 so

the density for Yt is given by g�yt���� � � � � �r� p�� � � � � pr� �
Pp

� f�yt��i�pi�

Throughout this work we use f��� to denote the conditional �also called com�
ponent� densities of a mixture density and g��� will denote the mixture density
composed of the f���s�

This model has the important property that the parameters governing the

data generation change among the set f��� ��� ���� �rg according to the random

�



values of the It�s� One can estimate the parameters in the model by performing

maximum likelihood estimation� If the It�s were observable we would write the

joint likelihood �joint in Yt and It� as

TY
t��

rY
j��

�f�yt��i�P �It � j����It�j�

where 	�S� is an indicator function of the event S� As we do not observe the It

we write the marginal likelihood of the Yt�s as

TY
t��

rX
j��

f�yt��j�pj �

and perform maximum likelihood to estimate ��� p�� ��� p�� ���� �r� pr using some

maximization procedure and applying the usual asymptotic theory for testing

purposes�

The logistic mixture models we consider in this dissertation are characterized

by the following modi�cations to the standard mixture model�

� We assume r � �� i�e� there are only two states which we label as state �or

regime� 
 and state �� We do not anticipate there being much di	culty in

extending our analysis to r � ��

� Let Wt denote a vector of observable auxiliary� or exogenous� information�

� We write f�yt jWt� Yt���Wt��� ���� Yt�p�Wt�p��i� instead of f�yt��i�� We

now interpret f�yt jWt� Yt���Wt��� ���� Yt�p�Wt�p��i� to be the conditional

distribution of Yt given Wt� Yt���Wt��� ���� Yt�p�Wt�p and It � i for i �
f�� 
g�

� f�yt jWt� Yt���Wt��� ���� Yt�p�Wt�p��i� has the form of a canonical GLM

with parameters given by known functions of �i andWt� Yt���Wt��� ���� Yt�p�

Wt�p�

�



� The state probabilities are not constant but given by a logistic regression

model�

P �It � 
 jWt� Yt���Wt��� ���� Yt�p�Wt�p� �
exp�Z �

t��


 � exp�Z �
t��

�
�
�

where Zt is a vector made up of known functions of Wt� Yt���Wt��� ���� Yt�p�

Wt�p and � is an unknown set of logistic regression coe	cients�

With these modi�cations we have explicitly introduced temporal dependence in

making the conditional distributions a function of the past� From this model

data is generated in the following manner�

� Given � and Zt� compute P �It � 
 j Wt� Yt���Wt��� ���� Yt�p�Wt�p��

� Generate a Bernoulli random variable� It� with mean given by the proba�

bility above�

� If It � 
 generate Yt from f�yt jWt� Yt���Wt��� ���� Yt�p� Wt�p����� if It � �

generate Yt from f�yt jWt� Yt���Wt��� ���� Yt�p�Wt�p�����

DeSarbo and Wedel �
���� provided a general EM algorithm approach to esti�

mating parameters in �nite mixtures of independent GLM data with covariates

and constant transition probabilities� The logistic modeling we add allows us

to incorporate non�constant probabilities and model the important e�ects co�

variates may have on the regime probability� This is an important and useful

extension of existing mixture models� Adding the �exibility of non�constant

probabilities should improve the model�s discriminatory power � thus allowing

better estimation of the component distributions� parameters� Furthermore� the

parameters of the logistic regression in the probability modeling may themselves

be of interest� While Kuk and Chen �
����� and Larson and Dinse �
��� have

�



employed logistic regression mixtures in the context of mixtures of hazard rates

we have not seen this method employed in other parametric situations� Fur�

thermore� we believe that neither asymptotic results nor testing for whether a

mixture is present has been addressed in the context of logistic mixtures�

��� Competing Models

In addition to the standard mixture model with �xed regime probabilities there

are two other broad types of time series models we will discuss in this disser�

tation � mostly as a basis for comparison� Both of these models are similar

to the mixture �or switching� models in that they posit the data arises from a

combination of data generating processes�

The �rst type we discuss are threshold models developed by Tong �
���


����� There are many generalizations to this simple model� but the basic idea

can be given by this two state self exciting threshold autoregressive �SETAR�

model�

Yt �

����� ��� � ���Yt�� � ���� �p�Yt�p � 
� � �t if Yt�d � �

��� � ���Yt�� � ���� �p�Yt�p � 
� � �t if Yt�d � �

where d �delay parameter�� p �lag length�� and � �threshold� are unknown� For

�xed �� d� p the ���� ���� ���� �p�� ���� ���� ���� and �p� are estimated by conditional

�



least squares� i�e�

b���� b���� ���� b�p�� b���� b���� ���� and b�p� �
Arg min

�������������p���������������p�
CSS�p� d� �� ���� ���� ���� �p�� ���� ���� ���� �p�� where

CSS�p� d� �� ���� ���� ���� �p�� ���� ���� ���� �p�� �X
t � Yt�d��

�Yt � ��� � ���Yt�� � ���� �p�Yt�p�
� �

X
t � Yt�d��

�Yt � ��� � ���Yt�� � ���� �p�Yt�p�
� �

The choices of p� d� and � may be informed by theory� or by experimenting until

one �nds bp� bd� and b� where
bp� bd� b� � Arg min

p�d��
CSS�p� d� �� b���� b���� ���� b�p�� b���� b���� ���� b�p��

and it is understood the b���� � � � � b�p� terms in the preceding equation are all
dependent upon p� d� and r� In these threshold models the primary feature is

that data generation process changes according to whether a variable �in this

case Yt�d� exceeds a particular threshold �� � or not� These models may be

generalized to include covariates with coe	cients that change depending upon

whether or not the threshold is exceeded � Tong calls these TARSO models�

A second class of models we will discuss are hidden Markov model regres�

sions �HMMRs�� These were introduced by Goldfeld and Quandt �
���� and

Lindgren �
��� and further developed and popularized among econometricians

by Hamilton �
���� 
����� These models have been used to describe many eco�

nomic time series including GNP �Hamilton �
������ business cycles �Diebold

et� al �
���� and Filardo �
������ stock price volatility �Fridman �
������ and

exchange rate �uctuations �Engel and Hamilton �
������ These models are sim�

ilar to the mixture �or switching� models used by economists �Quandt �
���

�



and Kiefer �
���� in that they assume the existence of an unobserved state

indicator� It� But in the case of hidden Markov models the Its are realizations

of a Markov chain� We introduce a relatively simple example of such a model

involving two states and with normal conditional distributions� As before let

� Yt be our observed outcome�Wt denote a vector of observable auxiliary in�

formation� and It be an unobserved indicator of which regime�s parameters

generate the data�

� Also as before we associate with states � and 
 two sets of parameters�

�� and ��� such that the conditional distribution of Yt given It � i and

Wt� Yt���Wt��� ���� Yt�p�Wt�p is given by

f�yt jWt� Yt���Wt��� ���� Yt�p�Wt�p��i��

where It � f�� 
g�

� In this HMMR� It is an unobserved stationary � state Markov chain with

transition matrix P containing elements �P �i�j � pij � P�It�� � j j It � i��

Furthermore� conditional on It� It�� is independent of all the Ys for s �
f�p��p� 
� � � � � Tg�

In most econometric applications the conditional densities are taken to be nor�

mally distributed�

f�yt jWt� Yt���Wt��� ���� Yt�p�Wt�p��i� �

p
���i

exp

���yt �X �
ti�i�

�

��i

�
where Xti is a vector composed of functions of Wt� Yt���Wt��� ���� Yt�p�Wt�p and

�i � ��i� �i�� These models generalize the basic mixture model by allowing the

state indicator probabilities to correspond to a Markov transition matrix� Max�

imum likelihood estimation of the parameters ���� ��� P � is usually performed

�



via the EM �Expectation�Maximization� algorithm� The addition of the Markov

structure does complicate estimation as the additional step of a �backward�

forward� algorithm is necessary to employ the EM approach for HMMR models

�see Hamilton �
���� or Fridman �
������

��� Partial Likelihood

Throughout this dissertation we use the terms likelihood� partial likelihood� and

conditional likelihood somewhat loosely and at times interchangeably� The dif�

ference in these terms largely depends upon how we think about our auxiliary

information� Wt� Before going further we de�ne more precisely what we mean

by these terms� The following description is drawn from Fokianos �
���� and is

based in turn upon Cox �
����� Wong �
���� and Slud and Kedem �
����� Sup�

pose �Yt�Wt�� t � f�p��p�
� ����
� �� 
� ���� Tg is a stochastic process and given
some initial information set� fy�� w�� y��� w��� ���� y�p� w�pg the joint distribution
of our sample is written as

g�yt� wt� yt��� wt��� ���� y�� w� j y�� w�� y��� w��� ���� y�p� w�p��

Then we may factor this is into the equivalent products
TY
t��

g�yt� wt j yt��wt��� ���� y�p� w�p� �
TY
t��

g�yt j dt�
TY
t��

g�wt j ct� �
���

where dt � �wt� yt��� wt��� ���� y�p� w�p� and ct � �yt��� wt��� ���� y�p� w�p�� �In

the expressions above we have abused our notation by using g��� as representing
joint as well as conditional probabilities or densities but the meaning should be

clear�� For Cox �
���� and Wong �
��� the
Q
g�yt j dt� term in �
��� is the

partial likelihood� Slud and Kedem �
���� provides a more formal de�nition

which includes parameters for a conditional density� We will adopt their usage�





De
nition ���� Let Gt� t � f�� 
� ���g be an increasing sequence of sigma �elds�

G� � G� � G����� and let Zt be a sequence of random variables on some common

probability space such that Zt is Gt�measurable� Denote the density of Zt given

Gt�� by f�zt j Gt����� where � � R
q represents a vector of parameters� The

partial likelihood function relative to ��Gt��� and the data z�� z�� ���� zT is given

by

TY
t��

g�zt j Gt������ �
���

Partial likelihood is somewhat di�erent then the general de�nitions of full and

conditional likelihood� Unlike full likelihood� partial likelihood does not require

complete knowledge of the joint distribution of the covariates � i�e� we do not

concern ourselves with the
Q
g�wt j ct� term in equation �
���� Unlike conditional

likelihood� complete covariate information need not be known throughout the

period of observation �from time t � 
 through t � T �� Partial likelihood

considers only what is known to the observer up to the time of observation�

Often the terms will be the same � we devote a large part of this work to

analyzing a situation when there are no Wt terms� only Yt�s� In this case our

notions of full and partial likelihood will coincide� The vector � that maximizes

�
��� for a given set of data is called the maximum partial likelihood estimator

�MPLE�� In the remainder of this study this is what we have in mind when we

refer to maximum likelihood estimates�

��� Overview of Presentation

In Chapter � we introduce our model and detail an EM algorithm approach to

�nding maximum likelihood estimates �or more precisely� maximum partial like�

�



lihood estimates� for the parameters in the two component distributions as well

as those parameters in the logistic regression that predict the regime probabili�

ties� The time series dependence is modeled through a homogeneous� continuous�

state� discrete�timeMarkov chain that allows us to express the sample likelihood

�conditional on some initial set of observations� as a product of mixture densities�

Chapter � addresses the large sample properties of a correctly speci�ed logis�

tic mixture model� As might be expected we are able to demonstrate consistency

and asymptotic normality under some very general assumptions� Asymptotic

results for time dependent models have been developed by Billingsley �
��
��

Wong �
���� and Kaufmann �
���� Our approach is most similar to Wong�s

though we tailor it so we may easily demonstrate the conditions for the asymp�

totic results are met by a logistic mixture of Gaussian AR�
� processes� The

primary di	culty in the chapter is to demonstrate that a process evolving from

a logistic mixture is asymptotically stationary and ergodic� From this we can

apply ergodic theorems to achieve the desired convergence� In Chapter � we then

illustrate estimation with some simulations and also show our model may be su�

perior to a standard threshold autoregression �SETAR� or a covariate threshold

model �TARSO� in that the logistic mixture may be more robust to noise in

the threshold variable� We close the chapter by applying the model to rain rate

data�

In Chapter � we present the most interesting part of this work� Here we

raise what has been a di	cult question in analysis of mixtures� how to test

whether the data are generated by a single parametric distribution or do they

arise from a mixture� The application of chi�squared tests to twice the log�

likelihood ratio is a popular though incorrect attempt to answer this question �


�



tionally �another criticism of Hansen�s work�� However the test is restricted to

mixtures with common variance �in the case of Gaussian component densities�

and it is not clear the method can incorporate covariates or be used with logistic

probabilities �as in �
�
���

As an alternative we propose a procedure that� like Gong and Mariano�s test�

yields an exact asymptotic distribution under the null hypothesis yet seems more

broadly applicable �e�g� allowing covariates�� One drawback for both our test

and that of Gong and Mariano is that the class of alternatives is smaller than

what seems natural or ideal� Both tests must exclude mixtures with constant

regime probabilities �i�e� P�It � 
 j the past � � p� a constant independent of

time� from the set of alternatives� Our test is more demanding computationally

which can be a drawback when there are a large number of covariates in the

logistic regression formulation� We develop the theory behind our test in Chapter

�� Chapter � examines out test�s performance in simulations and the rain data

example� We conclude this study with some thoughts about how this work may

be extended�


�



Chapter �

Description and Estimation of the

Logistic Mixture Model

As discussed in the introductory chapter the basic logistic mixture model con�

tains the following elements�

� Yt denotes an observed univariate time series� t � f�p��p� 
� �� 
��Tg�

� Wt a vector of exogenous random variables�

� Zt�Xt��Xt� sets of observable covariates composed of known functions of

Wt� Yt���Wt���Wt��� Yt��� ��� i�e� each of the three vectors is � Pt�� �


�Wt� Yt���Wt�����Y��W�� ���Y�p���W�p���� where 
��� denotes the sigma
algebra generated by the arguments� For notational simplicity we will

assume each vector is q � 
�

� Assume Yt can obey two di�erent regimes�models where Yt is generated

by the regime 
 distribution if It � 
 and Yt is generated by the regime �

distribution if It � � where

P �It � 
 j Pt��� �� � exp�Z �
t���
 � exp�Z

�
t��� ���
�


�



and � represents an unknown vector of regression parameters� In other

words� It is the dependent variable in a logistic regression model with

covariate vector Zt� It is important to note that the It�s are not observed�

�Throughout this work� vectors such as Zt will be assumed column vectors

with transposes denoted by Z �
t��

� Assume the density of Yt given the indicator It and past values has a

canonical GLM distribution with some regime speci�c covariates� i�e�

f�ytjIt � 
�Pt������ ��� � exp ��ytX
�
t��� � b�X �

t������� � c��yt� ���� �

�����

f�ytjIt � ��Pt������ ��� � exp ��ytX
�
t��� � b�X �

t������� � c��yt� ���� �

and Xt��Xt� � Pt���

The functions f�yt j It � i�Pt����i� �i�� i � f�� 
g are considered densities with
respect to some 
��nite measure� � on the real line� As examples� we can obtain

the normal and Poisson distributions with the following substitutions�

Normal� b�X �
ti�i� �

�X �
ti�i�

�

�
� �i � 
�

i � and c�yt� �i� � ��
�� ln ���i � �y�t
��i

Poisson � b�X �
ti�i� � exp�X

�
ti�i�� �i � 
� and c�yt� �i� � � ln yt��

The binomial and gamma distributions are other common families with GLM

form when modeled with covariates�

We de�ne � � ����� �
�
�� ��� ��� �

���� Our goal is to estimate � from our incom�

plete knowledge of the process �i�e� fItg is not observed�� We use the EM algo�

rithm popularized by Dempster� Laird� and Rubin �
���� � see also Wu �
���

or McLachlan �
����� In the next section we focus upon the role of � and conse�

quently will often write f�yt j It � i�Pt����� instead of f�yt j It � i�Pt����i� �i�


�



when we want to emphasize the dependence upon �� As �i and �i are compo�

nents of � there should be no confusion� Also� we will write

f�yt j It � 
�Pt������ ��� as f�yt j Xt����� ��� or as f�yt j Xt����

and similar expressions will be used for f�yt j It � ��Pt������ ���� However we

write this conditional distribution it is to be understood that f�yt j �� denotes
one of the component densities of the mixture � which density is designated by

a 
 or � subscript�

��� General EM Algorithm

In this section we brie�y outline a general EM �Expectation�Maximization� al�

gorithm for optimizing time series partial likelihoods of the type outlined above�

It should be stressed that the EM algorithm is primarily just an optimization

method that is particularly well�suited to data with missing �or unobserved�

components � other optimizing methods could be used �e�g� Newton�Raphson��

However� the EM does have the convenient property that the likelihood increases

when evaluated at each iteration�s new estimate� By this we mean if �k is our

EM estimate of �� �the true parameter� after k iterations of the algorithm� then

TY
g�yt j Pt����k��� �

TY
g�yt j Pt����k�� �����

This is clearly not the case for Newton�Raphson or other types of optimization

routines� This monotone property of the EM becomes more important as the

number of parameters we estimate increases and other methods have trouble

converging or �nding maxima of the likelihood�


�



To show how to implement the EM in our case we begin by considering di�er�

ent likelihood products�
QT

t�� g�yt j Pt����� is the partial likelihood expression

in the previous chapter�
QT

t�� g�yt� it j Pt����� denotes what we think of as the

joint �partial� likelihood of �Yt� It�� This corresponds to how we would think of

the likelihood if the It�s were observed� In our model of a logistic mixture

g�yt� it j Pt����� �g�yt� It � 
 j Pt�����itg�yt� It � � j Pt�������it �����

� �f�yt j It � 
�Pt������ ���P�It � 
 j Pt��� ���
it � �����

�f�yt j It � ��Pt������ ���P�It � � j Pt��� ���
��it � �����

The last product we consider is
QT

t�� g�it j yt�Pt����� � this is the product of

conditional probabilities of the indicator given contemporaneous values of Yt�Wt

and the past history of Ys�Ws for s � t� We may express this in terms of the

other two products as

TY
t��

g�it j yt�Pt����� �
TY
t��

g�yt� it j Pt�����
g�yt j Pt�����

� �����

In these likelihood products the parameter vector � is not assumed to be the

true value� ���

Given � and �� �possibly identical� we now de�ne

M
�
�� y�w� ��

�
�

TX
t��

Z
�log g�yt� it j Pt������ g�it j yt�Pt������dit ����

We write this as an integral to emphasize that it is an expectation � the expec�

tation of the EM algorithm� The y and w vectors correspond to our observed

sample data �y�p� y�p��� ���� yT� and �w�p� w�p��� ���� wT�� While the wt�s are not

shown explicitly on the right�hand side of our de�nition in ���� they are implic�

itly included in the Pt�� terms� Now� because It takes on only two values we


�



may rewrite our sum of expectations as

M
�
�� y�w� ��

�
�

TX
t��

�log g�yt� It � 
 j yt�Pt����� �P �It � 
 j Pt������ �

log g�yt� It � � j yt�Pt����� �P �It � � j Pt������� �

�����

We also de�ne

H
�
�� y�w� ��

�
�

TX
t��

Z
�log g�it j yt�Pt������ g�it j yt�Pt������dit

�
TX
t��

�log g�It � 
 j yt�Pt����� �P �It � 
 j yt�Pt������ �

log g�It � � j yt�Pt����� �P �It � � j yt�Pt������� �

With these de�nitions and the data� �y�w�� the algorithm is characterized by

the following two step process�

The E�Step� Given �k compute M��� y�w� �k�� We view this term as a

function of ��

The M�step� De�ne �k�� � Arg max�M��� y�w� �k��

We are now in a position to prove our statement that the algorithm produces

estimates that increase the likelihood in the sense described by equation ������

To do so we will �rst prove the following�

Lemma ���� For any given � and �� we have

M
�
�� y�w� ��

��H
�
�� y�w� ��

�
�

TX
t��

log g �yt j Pt����� � ���
��

i�e� the di�erence equals the sample�s partial log likelihood evaluated at parameter

value ��


�



Proof�

M
�
�� y�w� ��

��H
�
�� y�w� ��

�
� ���

�

TX
t��

Z
�log g�yt� it j Pt������ log g�it j yt�Pt������ g�it j yt�Pt������dit �

���
��

TX
t��

Z
log g�yt j Pt�����g�it j yt�Pt������dit� ���
��

The equality in equations ���
����
�� follows from the equivalence of the inte�

grands � see the relation in ������ But the function log g�yt j Pt����� is measur�

able with respect to 
 �yt�Pt��� and hence we may pass the function through the

integral in ���
�� and write

TX
t��

Z
log g�yt j Pt�����g�it j yt�Pt������dit � ���
��

TX
t��

log g�yt j Pt�����
Z

g�it j yt�Pt������dit � ���
��

TX
t��

log g�yt j Pt����� � our expression for partial log�likelihood� ���
��

With this lemma it is easy to demonstrate the increasing likelihood �or equiva�

lently the increasing log�likelihood� associated with the EM algorithm iterates�

Let �� be any starting point and consider the sequence �k generated by following

the two step algorithm� Then by our lemma we have

TX
t��

log g�yt j Pt����k��� �M
�
�k��� y� w� �k

��H
�
�k��� y� w� �k

�
���
��

and

TX
t��

log g�yt j Pt����k� �M
�
�k� y� w� �k

��H
�
�k� y� w� �k

�
� ���
�






If we subtract the two log�likelihoods we obtain

TX
t��

log g�yt j Pt����k����
TX
t��

log g�yt j Pt����k� � ���
��

�
M
�
�k��� y� w� �k

��M
�
�k� y� w� �k

�	
� �������

H
�
�k� y� w� �k

��H
�
�k��� y� w� �k

�	
� ����
�

By our de�nition of �k�� in the two step algorithm we see that the di�erence in

������ is greater than or equal to zero� If we expand the terms in ����
� we get

H
�
�k� y� w� �k

��H
�
�k��� y� w� �k

�
� ������

TX
t��

Z �
log g�it j yt�Pt����k�� log g�it j yt�Pt����k���

	
g�it j yt�Pt����k�dit�

������

By the Kullback�Leibler information inequality we have that this term is also

greater than or equal to zero� Combining these relations we obtain the desired

result that
TX
t��

log g�yt j Pt����k��� �
TX
t��

log g�yt j Pt����k��

In practice� �k usually has a �nite limit �as k increases� that corresponds to

a local maximum of the likelihood surface� There are unusual circumstances

where limk �
k may be a saddle point or even a local minimum �see Wu �
��� or

McLachlan �
������ These cases are somewhat pathalogical and it is usually the

case that by changing the starting value� the sequence will no longer converge

to these odd critical points� In general� one should examine various local MLE�s

that may be obtained by di�erent starting values�


�



��� EM Evaluation in the Context of Logistic

Mixtures

Before we apply the EM algorithm to our model we make an assumptions that

our process�s dependence upon the past is limited to the most recent p periods�

i�e�

g�yt j wt� yt��� wt��� ���� y�p��� w�p��� �g�yt j wt� yt��� wt��� ���� yt�p� wt�p� and

g�it j wt� yt��� wt��� ���� y�p��� w�p��� �g�it j wt� yt��� wt��� ���� yt�p� wt�p��

If we denote 
�Wt� Yt���Wt��� ���� Yt�p�Wt�p� by Gt�� in the same way we wrote
Pt�� � 
�Wt� Yt���Wt��� ���� Y�p���W�p��� then we may rewrite our likelihood

products in terms of Gt�� instead of Pt��� i�e�
Q
g�yt j Gt������

����� Calculating the E�Step

To implement the algorithm we take �k as given and evaluate M
�
�� y�w� �k

�
�

Our goal is to rewrite this expression in terms of equations ���
� and ����� �

densities and probabilities we know how to evaluate� From ����� we have

M
�
�� y�w� �k

�
�

TX
t��

�
log g�yt� It � 
 j Gt����� �P

�
It � 
 j yt�Gt����k

	
�

log g�yt� It � � j Gt����� �P
�
It � � j yt�Gt����k

	�
�

From equations ����������� we have

log g�yt� It � 
 j Gt����� � log �f�yt j It � 
�Gt������ ���P �It � 
 j Gt��� ���

� log f�yt j It � 
�Gt������ ��� � logP �It � 
 j Gt��� �� �

��



Similarly� for the case It � � we have

log g�yt� It � � j Gt����� � log f�yt j It � ��Gt������ ��� � logP �It � � j Gt��� �� �

If we de�ne pkt � P
�
It � 
 j yt�Gt����k

	
then we may write

M
�
�� y�w� �k

�
� ������

TX
t��

pkt �log f�yt j It � 
�Gt������ ��� � logP �It � 
 j Gt��� ��� � ������

TX
t��

�

� pkt

� � �log f�yt j It � ��Gt������ ��� � logP�It � � j Gt��� ��� � ������

Equations ���
� and ����� may be used to evaluate the all the terms except for

pkt � To determine p
k
t we see

pkt �P
�
It � 
 j yt�Gt����k

	
�

g�yt� It � 
 j Gt����k�

g�yt j Gt����k�
������

�
f�yt j It � 
�Gt����k� � �k�� �P

�
It � 
 j Gt��� �k

	P
i���� f�yt j It � i�Gt����ki � �ki � �P�It � i j Gt��� �k� � �����

where f�yt j It � i�Gt����ki � �ki � and P
�
It � 
 j Gt��� �k

	
may be evaluated using

equations ���
� and ����� and �k � ��k� � �
k
� � �

k
�� �

k
�� �

k�� Thus it is easy to express

M
�
�� y�w� �k

�
in terms of known functions and parameters�

Before moving forward it is worthwhile to consider the relationship between

pkt �P
�
It � 
 j yt�Gt����k

	
and

P
�
It � 
 j Gt����k

	
�exp�Z �

t�
k��
 � exp�Z �

t�
k���

pkt represents the expectation of It conditional on yt� wt� yt��� wt��� ���� yt�p� wt�p

while the second probability gives the expectation conditional on only wt� yt���

wt��� ���� yt�p� wt�p� In other words pkt updates this second probability by taking

into account the contemporaneous value of Yt� While we would not use the pkt

for predicting the conditional mean of Yt �it would be cheating as pkt already in�

corporates knowledge of yt� it is �ne to use it for �tting and estimation purposes�

�




����� Calculating the M Step

Recall that given �k and M
�
�� y�w� �k

�
we de�ne

�k�� � Arg max
�

M
�
�� y�w� �k

�
From equations ������ � ������ we may write M

�
�� y�w� �k

�
� H����� ��� p

k� �

H����� ��� p
k� �H���� pk� where

H����� ��� p
k� �

TX
t��

pkt � �log f�yt j It � 
�Gt������ ���� � ������

H����� ��� p
k� �

TX
t��

�
 � pkt � � �log f�yt j It � ��Gt������ ���� � and ������

H���� p
k� �

TX
t��

pkt � �logP �It � 
 j Gt������ ����
�

� �
� pkt � � �logP �It � � j Gt������ ������

In the de�nitions ofH��H�� and H� above� pk is shorthand for the vector �pk�� � � � �

pkt � � � � � p
k
T �� Because the di�erent elements of � � ����� �

�
�� ��� ��� �

��� are so

neatly separated into distinct terms the notation �k�� � arg max
�

M�� j �k�

means given pk choose

���� ��� to maximize H����� ��� p
k��

���� ��� to maximize H����� ��� p
k�� and

� to maximize H���� pk��

To maximize the above� note that for equations ������ and ������ optimization

in these case correspond to �nding MLEs of standard GLM models with prior

weights pkt �see p� �� McCullough and Nelder �
�����

��



����� Maximizing H����� ��� p
k�

Many statistical software packages will perform estimation of weighted GLM dis�

tributions� This is one simple option for maximizing H����� ��� p
k� �

PT
t�� p

k
t �

�log f�yt j It � 
�Gt������ ����� A second approach is to use a Newton�Raphson

method� From elementary di�erentiation we know log f�yt j Gt������ ���� is con�

cave w�r�t� �� for GLM distributions� This concavity implies concavity of

H����� ��� p
k� as H����� ��� p

k� is a weighted sum of concave functions� Con�

sequently� this implies a Newton�Raphson or Fisher scoring method should work

well for �nding MLE�s for �k��
� �

Once �k��
� has been obtained� the scale parameter� �k��

� � can be estimated

by using di�erentiation to minimize

TX
�

pkt �

�

ytX
�
t��

k��
� � b�X �

t��
k��
� �

	
��

� c��yt� ���

�
�

In the case of normally distributed component densities we obtain

�k��
� �


P
pkt

TX
t��

�yt �X �
t��

k��
� �� � pkt

The estimation of �k��
� and �k��

� from H����� pk� is completely analogous� except

that 
� pkt are used as weights� instead of p
k
t �

����� Maximizing H���� p
k�

Recall that �k�� � arg max
�

H���� pk� �

arg max
�

TX
t��

pkt � logP �It � 
�Gt��� �� � �
 � pkt � � log P �It � ��Gt��� �� ������

By di�erentiating twice we can see for logistic regression logP �It � 
 j Gt��� ��
and log P �It � � j Gt��� �� are concave in �� hence� so is H���� pk� as it is a sum

��



of weighted sums of concave functions� Therefore� again a Fisher Scoring type

algorithm should quickly �nd �k��� Using ���
� we may rewrite ������ as

�k�� � arg max
�

TX
t��

pkt log

�
exp�Z �

t��


 � exp�Z �
t��


� �
� pkt � log

�




 � exp�Z �
t��


This expression resembles the log likelihood of logistic regression except It and


 � It are replaced by pkt and 
 � pkt � Consequently� estimates of �
k�� could be

obtained through logistic regression with the pkt s as the dependent variables with

a computer package that allows such substitution� If this is not available then

the concavity of H���� pk� implies Newton�Raphson or Fisher scoring algorithms

should work to �nd �k���

��� Estimation procedure

To �t all the parameters in a particular model� the above procedures are com�

bined in the following way�


� Initialize the model by giving starting values for � � ����� �
�
�� �

�
�� �

�
�� �

���� ���

and a tolerance level� ��

�� Given �k� compute fpkt g using ������ ���
�� and ������ Next� obtain �k��
� �

�k��
� � �k��

� �and �k��
� with one of the algorithms described in Section ������

�k�� is obtained by following one of the optimizing procedures in Section

������ Repeat this step until
�����k�� � �k

���� � ��

��



Chapter �

Consistency and Asymptotic Normality

In this chapter we discuss large sample properties of the maximum likelihood es�

timators of a correctly speci�ed logistic mixture model� We will initially assume

the model satis�es various conditions that allow us to prove a particular result�

Then we choose a more speci�c model and show how these conditions may be

validated for this particular model choice�

��� Consistency for General Logistic Mixtures

First we recall the general model�

f�yt j Xt��� �� � exp

�
ytX

�
t� � b �X �

t��

�
� c�yt� ��

�
�

P �It � 
 j Zt� �� �
exp �Z �

t��


 � exp �Z �
t��

�

g�yt j Gt����� �P�It � 
 j Zt� �� � f�yt j Xt����� ��� �

�
�P �It � 
 j Zt� ��� � f�yt j Xt����� ����

where � ������ �
�
�� �

�� ��� ���
� and Gt�� � 
�Xt��Xt�� Zt��

��



We assume the true conditional distribution of Yt j Gt�� is given by g�yt j Gt������
for some �� � �� a subset of R�q��� where q is the common dimension of ��� ���

and � and the last two dimensions are for �� and ��� The conditions we will use

for demonstrating consistency are�

��
�A fYt�Xt��Xt�� Ztg is asymptotically stationary with W denoting a random

vector in R�q�� that has the joint stationary distribution� Furthermore�

Yt�Xt��Xt�� and Zt obey a strong law of large numbers in the sense that if

h��� is a measurable and integrable function of W then




T

X
h�Yt�Xt��Xt�� Zt�

a�s��� E �h�W �� �

We denote the conformably partitioned components ofW asWY �WX��WX�

and WZ� We will be more speci�c below�

This condition essentially presumes the existence of a stationary distribution

that describes the long term behaviour of our process� Such a distribution might

arise if we are able to view fYt�Xt��Xt�� Ztg as a Markov process with W having

the invariant distribution� We will discuss this condition at length in the next

section� and prove that it holds in a logistic mixture of Gaussian AR�
� processes�

��
�B E �log g�Wy jWX��WX��WZ���� � 	 for all � � � and is continuous in

�� By g�Wy jWX��WX��WZ��� we mean g�Yt j Gt����� with Yt�Xt��Xt��

and Zt replaced by WY �WX��WX�� and WZ� To save space we will write

g�Wy jWX��WX��WZ��� more concisely as g�W ����

It is important to note that the expectation above is unconditional � not condi�

tional� i�e� we do not mean

E �log g�Wy jWX��WX��WZ��� jWX��WX��WZ� �

��



The unconditional expectation is computed with respect to the measure associ�

ated with the distribution of W � i�e�

E �log g�Wy jWX��WX��WZ���� �

Z
log g�wy j wX�� wX�� wZ���P�dw�

where P�W � A� �

Z
A

P�dw��

It is this unconditional expectation that is relevant for the strong law results and

the majority of expectations in this chapter are computed this way� Conditional

expectations will be denoted in the usual manner � with the vertical bar� E �� j ���

��
�C There exists a compact set K � �� with �� � K such that if � � K and

� �� �� then E �log g�W ���� � E �log g�W ������

This is an identi�ability condition withK chosen to restrict the parameter space�

As discussed later �in Section ������ the likelihood for mixture models is sym�

metric with respect to some axis in the parameter space� By examining only

those parameter values in K we may say that �� is the unique parameter that

maximizes E �log g�W ����� This will be addressed at length below�

��
�D Given B���� � f�� � K � jj�� � �jj � �g we de�ne

g��W ��� �� � sup
���B�	�


g�W �����

This condition is that E �log g��W ��� ��� exists and

lim��� E �log g��W ��� ��� � E �log g�W ���� for all � � K�

With the exception of Condition ��
�A� these conditions are easily met by a

broad set of models� Most of the conditions are consequences of log g�W ���

being su	ciently smooth with respect to �� and with derivatives that may be

��



bounded by integrable functions �allowing applications of the dominated conver�

gence theorem��

With this set of conditions we may prove the following theorem�

Theorem ���� Under Conditions ��
�A���
�D we can show there exists a se�

quence of local maximum �partial� likelihood estimates f ��Tg � K such that

��T
a�s��� ���

By local maximum likelihood estimates we mean the f ��Tg maximize the likeli�
hood only over some �xed neighborhood of �� �K in this case�� not necessarily

the entire parameter space� The proof of this theorem adapts Wald�s approach

�
���� to time dependent data�

Proof� Let � � � be given� We want to show

P

h
lim

������ ��T � ��
������ � �

i
� � where ���
�

��T � Arg max
��K

TX
t��

log g�yt j Gt������

Here and elsewhere that we discuss the maximum likelihood estimate� ��T � we

assume there is some lexicographical rule that allows us to break ties in the event

there are two or more elemens of K that maximize the likelihood� For example�

we might de�ne ��T to be that element with the smallest value of ��� �or ��� if

there is more than one minimizing value of the likelihood with the same smallest

value of �����

Without loss of generality we may assume � is su	ciently small so that by

Conditions ��
�B and ��
�C we can �nd a B	���� such that

sup
��KnB�	��


E �log g�W ���� � E �log g�W ����� �

�



Next we choose � such that

E �log g�W ������ sup
��KnB�	��


E �log g�W ���� � � � ��

Now� for each � � K we use Condition ��
�D to �nd �� such that

� � E �log g��W ��� ����� E �log g�W ���� � �� which implies

E �log g��W ��� ����� E �log g�W ����� � ��� for all � � KnB	��
��� �����

By construction� fB�� ��� � � � KnB	����g form an open covering of KnB	����

and thus admit a �nite subcover we denote as fB������� ���� B�L��L�g� As a

bridge to proving Theorem ��� we �rst show

P

�
lim
T

sup
��KnB�	��


TX
t��

log g�yt j Gt������
TX
t��

log g�yt j Gt������ � �	
�
� 
�

�����

To show this we note that because fB������� ���� B�L��L�g covers KnB	����

sup
��KnB�	��


TX
t��

log g�yt j Gt����� �

max

�
TX
t��

log g��yt j Gt������ ���� ����
TX
t��

log g��yt j Gt����L� �L�
�
�

So equation ����� will follow if we show

P

�
lim
T

TX
t��

log g��yt j Gt����l� �l��
TX
t��

log g�yt j Gt������ � �	
�
� 
 �����

for l � 
���L� To prove ����� we see that because of Condition ��
�A and equation

����� we can conclude




T

TX
t��

log g��yt j Gt����l� �l�� 


T

TX
t��

log g�yt j Gt������ �����

a�s�� E �log g��W ��l� �l��� E �log g�W ����� � ��� � � �����

so

TX
t��

log g��yt j Gt����l� �l��
TX
t��

log g�yt j Gt������ a�s���	 �����

��



and the demonstration of ����� is complete� To show that this proves Theorem

��� we note that our de�nition of ��T implies

TX
t��

log g�yt j Gt��� ��T � �
TX
t��

log g�yt j Gt������ for all T�

Now suppose that ��T
a�s�

����� This would mean there exists a �� such that

P

h������ ��T � ��
������ � �� in�nitely often

i
� ��

Now
������ ��T � ��

������ � �� implies ��T � KnB	���
�� further implying

sup
��KnB��

	��


TX
t��

log g�yt j Gt����� �
TX
t��

log g�yt j Gt��� ��T �

�
TX
t��

log g�yt j Gt�������

So if

P

h
lim

������ ��T � ��
������ � ��

i
� � this means

P

�
lim sup

��KnB��
	��


TX
t��

log g�yt j Gt������
TX
t��

log g�yt j Gt������ � �

�
� ��

����

But this contradicts our result in ����� with � � ��� Therefore ��T
a�s��� ���

As we have proven the result under the stated conditions we now consider

whether these conditions are valid for logistic mixtures of AR�
� processes�

��� Consistency of a Logistic Mixture of Gaus�

sian AR��� Processes

Here we examine the conditions above in the case of a speci�c type of logistic

mixture model� The mixture of AR�
� normal processes is relatively simple� yet

��



complex enough to be used in applications as normal AR�p� models are used

in threshold and hidden Markov model regressions �see Tong �
���
���� for

threshold models and Hamilton �
���� and Chapter �� of Hamilton �
���� for

hidden Markov models�� Although we present results for AR�
� processes we

anticipate little di	culty in extending the results to AR�p� mixtures� p � 
� We
place the AR�
� mixture model in our previous notation as follows� let

f�yt j Yt����� �� � exp
�
��yt � Yt�����

��
� 


�
ln ���

�
�����

P�It � 
 j Yt��� �� � exp��� � Yt�����

 � exp��� � Yt�����

� ���
��

Our general model of a logistic mixture of this type is

g�yt j Gt����� � g�yt j Yt����� �f�yt j Yt������ ���P�It � 
 j Yt��� �� � ���

�

f�yt j Yt������ ���P�It � � j Yt��� �� � ���
��

where � ����� ��� ��� ��� ��� ���
�� ���
��

We now set about proving the conditions in Section ��
 are valid in this model�

We �rst de�ne our parameter space� �� We assume the true parameter �� �

����
�� ���� �

�
�
�� ���� �

���� lies in the compact space � given by

��� �� � ��
 � ��� 
� ���

�� � �M��M��� �� � �M��M�� and

��� �� � ��min� �max�� � � �min � �max �	

where �i denotes an arbitrarily small positive constant� and Mj an arbitrary

constant� In practice this seems reasonable as the applications considered should

allow the investigator to place bounds on the parameters� The next condition is

more di	cult to verify�

�




����� Condition ����A

Proving the stationarity and ergodicity of fYtg described in Condition ��
�A is

a lengthy and detailed process� We utilize results of continuous state Markov

chains� following the approach discussed in works by Chan �
����� Nummelin

�
���� and Tweedie �
����� We �rst introduce some notation�

Let fYtg denote a sequence of random variables on a common probability

space � �F �P� such that

P �x�A�
�
�P �Yt � A j Yt�� � x� is independent of t�

P�Yt � A j Yt��� Yt��� ���� Y�� � P �Yt � A j Yt���

P �x� �� is a probability measure on � �F� for all x � R

P ��� A� is a F�measurable function for all A � F �

Then we will refer to fYtg as a homogeneous Markov chain with transition kernel
P �x�A�� If we set

P �x�A� �

Z
A

g �yt j Yt�� � x���� dyt ���
��

where g��� is de�ned in ���

� then we can see that fYtg� our logistic mixture
of Gaussian AR�
� processes� is a homogeneous Markov chain on �R�B�R��P��
Here B�R� denotes the Borel measurable sets derived from open intervals of the

real line� The �rst question we address is that of aperiodicity and irreducibility

of fYtg� If necessary the reader may consult Nummelin or Chan for these de�ni�
tions� To prove irreducibility and aperiodicity it is su	cient to prove P �x�A� � �

for all x � R and all Borel measurable sets A with positive Lebesgue measure

�see Chan �
���� for why this is su	cient�� We can easily see this condition is

met for our mixture model�

��



Lemma ���� Let fYtg have the transition kernel indicated in ���
�� and A be

any set in B�R� with positive Lebesgue measure� Then P �x�A� � � for all x � R�

Proof�

P �x�A� �

Z
A

g �yt j Yt�� � x���� dyt ���
��

�
Z
A

f�yt j Yt�� � x����� �
�
��P �It � 
 j Yt�� � x� ��� dyt � �� ���
��

From its de�nition in ���
��� P�It � 
 j Yt�� � x� �� � � for any x� and the com�

ponent density corresponding to regime 
� f�yt j Yt�� � x���� ���� is a strictly

positive function on A� Therefore the last inequality in ���
�� is strict because

the integrand is strictly positive and the set A has positive measure�

To obtain useful results regarding ergodicity we need to introduce the concept

of a small set� In continuous state chains the small sets are analogous to the

states in a countable or �nite state chain� Their de�nition is available in the

aforementioned works � here we give a su	cient condition for a set to be small�

Theorem ���� �Theorem ��� Chan ������� Let fYtg be a Markov chain on

�R�B�R��P� such that P �x�A� is continuous in x for every �xed A � B�R� and
P �x�A� � � whenever ��A� � � where � denotes Lebesgue measure� If ��A� � �

then A is a small set�

This theorem does not characterize all small sets for our Markov chain but it is

su	cient for our purposes� In our de�nition of P ��� A� in ���
�� it is clear our
process satis�es the continuity condition in Theorem ��� so we may view Borel

measurable sets with positive measure as small� We also need the concept of

positive Harris recurrence to obtain laws of large numbers� A precise de�nition

��



is available in Nummelin and Chan though roughly stated positive Harris re�

currence means if ��A� � � then P�Yt � A in�nitely often j Y� � x� � 
 for all

x in R� Positive Harris recurrence is important because such aperiodic Markov

chains have a unique invariant distribution such that Yt is strongly stationary

if Y� is distributed according to the invariant measure� Also� it will be the case

that under very general conditions� the distribution of a positive Harris recur�

rent Markov chain� Yt� will converge to the invariant distribution regardless of

the distribution of Y�� Henceforth we will denote this invariant probability mea�

sure as �Y � Nummelin provides a criterion for checking whether an irreducible

Markov chain is positive Harris recurrent�

Theorem ���� �Proposition ��� in Nummelin ���	��� An irreducible

Markov chain fYtg is positive Harris recurrent if there exist a non�negative mea�
surable function l� a small set C and a constant � � � such that

E �l�Yt� j Yt�� � x� � l�x�� �� for all x � C� and ���
��

sup
x�C

Z
C�

l�y�P�x� dy��	� ���
�

Here the C � denotes the complement of C� We are now in a position to provide

theorems that will help us determine when a sum converges to an expected value�

This �rst theorem gives a test for integrability with respect to �Y �

Theorem ���� �Proposition ��� in Chan ������� Let fYtg by aperiodic and
positive Harris recurrent and h be a non�negative measurable function� In order

that
R
h�y��Y �dy� �	 it is su�cient that for some small set C with ��C� � �

and
R
C
h�x��Y �x� � 	� and some measurable function l with l�x� � h�x�� x �

��



C �� the following holdZ
C�

l�y�P �x� dy� � l�x�� h�x�� x � C � and ���
��

sup
x�C

Z
C�

l�y�P �x� dy� �	� ������

These theorems are primarily useful in allowing us to use this �nal theorem�

Theorem ���� �See Proposition ��� in Chan ������� Suppose fYtg is ape�
riodic and positive Harris recurrent with invariant measure �Y � The for any

�Y �integrable function f � and any initial distribution � of Y� we have




T

TX
t��

f�Yt�
a�s���

Z
f�y��Y �dy��

In order to apply this useful theorem we must �rst show our logistic mixture

model is positive Harris recurrent�

Theorem ��	� Let Yt have the transition kernel given by ���
�� and de�ne

l�x� � jxj� Then there exists a small set C � ��c� c� and a constant � such

that the conditions of Theorem 	�
 are met�

Proof� First we �nd C and � so ���
�� holds� Examining the left�hand side of

this equation we obtain

E �l�Yt� j Yt�� � x� �p��x�

Z
jytj f�yt j Yt�� � x���� ���dyt

��
� p��x��

Z
jytj f�yt j Yt�� � x���� ���dyt ����
�

where f and p��x� are shorthand for the terms respectively de�ned in ����� and

���
��� Since conditional on Yt�� � x� Yt has a N�x�� �� distribution� one can

showZ
jytj f�yt j Yt�� � x��� ��dyt �

���
�

p
��

exp

��x���

��

�
� x�

�

 � �!

��x�p
�

�
�

������

��



where ! is the cdf for a standard normal random variable� From here it is easy

to see that

lim
jxj��

�
jxj j��j �

Z
jytj f�yt j Yt�� � x���� ���dyt

�
� � and

lim
jxj��

�
jxj j��j �

Z
jytj f�yt j Yt�� � x���� ���dyt

�
� ��

From this limiting relationship we see that for � there exists an associated c�

such that����jxj j��j � Z jytj f�yt j Yt�� � x���� ���dyt

���� � � and����jxj j��j � Z jytj f�yt j Yt�� � x���� ���dyt

���� � � for jxj � c��

������

De�ne �� � maxfj��j � j��jg� and � � ����
�
� Because j��j � j��j � 
 we have � � ��

Choose c � c�
� where c�
� is de�ned to satisfy the relations in ���� with � � ���

So for jxj � c � 
 we see

E �l�Yt� j Yt�� � x� �p��x�

Z
jytj f�yt j Yt�� � x���� ���dyt

� �
 � p��x��

Z
jytj f�yt j Yt�� � x���� ���dyt

�p��x� jxj j��j� �
 � p��x�� jxj j��j

� jxj�� � �

�
� jxj �
 � �� � � �

�

� jxj � �� � �

�
� jxj � ��

This concludes the proof for the �rst part of Theorem ���� The last part involves

showing

sup
x�C

Z
C�

l�y�P �x� dy� �	�

��



But this is straightforward sinceZ
C�

l�y�P�x� dy��

Z
l�y�P�x� dy��Z

R

jytj f�yt j Yt�� � x���� ���dyt �

Z
R

jytj f�yt j Yt�� � x���� ���dyt

From equation ������ we see these integrals are continuous functions of x and

hence bounded if x is required to lie in C� This proves the second condition is

met and thus the proof is complete�

Here we have demonstrated that if fYtg is a logistic mixture of normal AR�
�
distributions then fYtg is ergodic in the sense that �

T

P
h�Yt�

a�s���E �h�Y �� where

Y as the invariant distribution and E �h�Y �� � 	 � While this is useful it is

more important to considerW t

�
��Yt� Yt��� and determine if the ergodic property

holds� Though we omit the demonstration �see Chan �
����� one can show that

the aperiodicity� irreducibility� and positive Harris recurrence of Yt imply the

same for W t in our logistic mixture with the modi�ed transition kernel�

P� �x�w�
�
�

�������
� if w� �� x��

P �w�� x�� as in ���
�� otherwise

������

where x � �x�� x�� and w � �w�� w��� ������

This is important because the aperiodicity� irreducibility� and positive Harris

recurrence of �Yt� Yt��� implies �see the remarks preceding Theorem ���� that

there exists a stationary distribution� denoted �W � such that if W � �W��W��

has distribution �W then




T

TX
t��

h�Yt� Yt���
a�s��� E �h�W �� 
 E �h�W��W���

��



whenever E �h�W �� � 	� This is exactly what we want to demonstrate in

condition ��
�A� Thus we consider this condition validated for our case of logistic

mixtures of AR�
� processes�

����� Condition ����B

For the remainder of this chapter W � �W��W�� will denote a random vector

with distribution �W �the stationary distribution associated with �Yt� Yt���� and

Y will denote a random variable distributed according to �Y �the stationary

distribution for Yt�� It is clear that both W� and W� have marginal distributions

of �Y �

In demonstrating E �log g�W ���� �	 we will need to show E �h�Y ���� exists

for various functions h���� Rather than tackling each instance separately it is
more e	cient to show Y has a moment generating function � thus ensuring that

all the expectations we will need below do exist�

Theorem ���� Let Yt have the transition kernel given by ���
�� and s � R�

Then there exist an � � � and C � ��c� c� such that the conditions of Theorem

	�� hold with

h�x� � exp�sx� and l�x� � exp

�
�x�

��

�
where � � minf��� ��g�

The proof of this theorem is very similar to that of Theorem �� except it con�

tains more algebra and calculus� Consequently we omit it� Having established

the existence of the moment generating function for Yt we return to proving

Condition ��
�B�

�



Our notation here is

g�W ��� � p �W�� ��f �W� jW����� ��� � �
 � p �W�� ���f �W� j W����� ���

where p �W�� �� �
exp ��� �W����


 � exp ��� �W����
and � ������

f�W� jW���� �� � exp

�
��W� �W����

��
� 


�
log ���

�
� ������

Now because ��� �� � �min � � this implies that for all � there exists an M

such that log g�W ��� � M � i�e� the log density is bounded above by M �

Consequently we only need examine the event �	 � log g � �M in order to

determine integrability of log g� Since

log g � log�pf� � �
 � p�f�� � log pf� we see

jlog gj �M � jlog pf�j

and reduce the problem to examining the integrability of log pf� � log f��log p�

From our expression for f� in ���� and recalling that j��j � j��j � 
 we see that

jlog f�j ��jW�j� jW�j��
��min

�



�
log ���max and �����

E �log f�� �
�EW�

�

��min
�



�
log ���max� ������

Similarly�

jlog pj � jlog�exp��� �W������ log�
 � exp��� � ��W���j

�� j�� � ��W�j� log �

so jlog pj ��maxf���min
�

�� � j�max
� jg� log � � �maxf���min

�

�� � j�max
� jg jW�j and

������

E �log p� ��maxf
���min

�

�� � j�max
� jg� log � � �maxf

���min
�

�� � j�max
� jgE jW�j �	�

����
�

��



So we have shown that E �log g�W ���� �	� and that the integrand is uniformly
bounded by the integrable function M� the right�hand side of ����� � the

right�hand side of ������� Therefore we may apply the dominated convergence

theorem and conclude that E �log g�W ���� is a continuous function in � � thus

proving Condition ��
�B holds in this case�

����� Condition ����C

Recall from its de�nition that g�W ���
�
� g�W� jW���� where W � �W��W�� has

distribution �W � In this section we will view g �w� jW� � w���� as the condi�

tional density function of W� given W� � w�� Then we see g �w� jW� � w���� is

the density of a mixture of two normal distributions� one density is N�w���� ���

and the other is N�w���� ���� The associated mixture probabilities

exp ��� � w����


 � exp ��� � w����
and





 � exp ��� � w����
are in the open interval ��� 
��

Let �� � ����� �
�
�� �

�
�� �

�
�� �

�
�� �

�
��
� denote the true parameters with either ��� �� ���

or ��� �� ���� This restriction is necessary to ensure the mixture is not degnenerate�

i�e� a single normal distribution� Without such a restriction the logistic mixture

is not correctly speci�ed as its � parameter would be unidenti�ed� The question

of degenerate mixtures is addressed in Chapter ��

Let �� � ���
�� �

�
�� �

�
�� �

�
�� �

�
� � �

�
�� with �� �� ��� Teicher �
���� showed that

mixtures of normal distributions are identi�able in the sense that if there exists

��



some w� such that for all w� we have

g �w� jW� � w���
�� � g

�
w� jW� � w���

�
�
then either ������

w��
�
� � w��

�
�� w��

�
� � w��

�
�� �

�
� � ��

�� �
�
� � ��

�� and �
�
� � w��

�
� � ��� � w��

�
�

������

or

w��
�
� � w��

�
�� w��

�
� � w��

�
�� �

�
� � ��

�� �
�
� � ��

�� and �
�
� � w��

�
� � ���� � w��

�
��

������

The relations in ������ would hold if �� � ��� The situation in ������ corresponds

to the idea that if g�x� p� ��� ��� is some generic mixture of parametric densities

e�g� g�x� p� ��� ��� � p � f�x���� � �
 � p� � f�x���� then one can �switch the

labels� or permute the component densities and obtain g�x� p� ��� ���
x
� g�x� �
�

p�� ��� ���� The relations in ������ would hold under such label�switching �here

multiplying ��� � w��
�
� by �
 is analogous to substituting 
 � p for p�� To rule

out such label�switching let K be a bounded� closed ball in R� such that �� � K

but ���
�
������ �

�
�� �

�
�� �

�
������������ � K� This set K is the one mentioned in our

statement of Condition ��
�C�

Lemma ���� Let � � K with � �� ��� Then there exist a w� and a w� such

that g �w� jW� � w���� �� g �w� jW� � w������

Proof� Suppose the result is not true and there exists some � with components

���� ��� ��� ��� ��� ��� for which g �w� jW� � w���� � g �w� jW� � w����� for all

w� and w�� Then for each w� one of the two relations above �equation ������

or ������� must hold� Let us �rst examine what happens if we assume ������ is

applicable� Then for w� � 
 we obtain

��� � ��� �
�
� � ��� �

�
� � ��� �

�
� � ��� �

�
� � ��� � �� � ���

�




But the relation in ������ must also hold for w� � � which implies ������
�
� � ���

���� The only way all these equalities can hold is if � � ��� This contradicts our

assumption that � �� ��� Now we consider what happens if ������ is applicable�

Then for w� � 
 we obtain

��� � ��� �
�
� � ��� �

�
� � ��� �

�
� � ��� �

�
� � ��� � ��� � ���

If we set w� � � then we obtain ��� ���
�
� � ���� ���� These equalities can only

be met if � � ���� But we de�ned K so that ��� � K� Thus we have shown

there is no � � K� � �� �� such that g �w� jW� � w���� � g �w� jW� � w�����

for all w� and w��

The next step in proving Condition ��
�C is to apply the Kullback�Leibler infor�

mation inequality to the conditional densities� De�ne

h�w����
�
�E �log g �w� j W� � w���� jW� � w��

�

Z
R

log g �w� jW� � w���� g �w� jW� � w���
�� dw�

This equality follows because g �w� j W� � w����� is the true conditional density

of W� given W� � w�� From this representation it is clear that by the Kullback�

Leibler information inequality h�w���� � h�w���
�� for all w�� Now we want to

show this inequality is strict for some w��

Lemma ����� Let � � K� � �� ��� Then there exists w� � R such that

h�w���� � h�w������

Proof� Choose � � K� By Lemma ��
� there exists a w� and w� such

that g �w� jW� � w���� �� g �w� jW� � w������ By inspection we see that

g �w� jW� � w���� and g �w� jW� � w����� are continuous in w�� This implies

��



that for this particular w� there exists a compact Borel�measurable set A with

positive Lebesgue measure where g �w� jW� � w���� �� g �w� j W� � w����� for

all w� � A� Consequently the conditional distributions parameterized by � and

�� are di�erent and an application of the Kullback�Leibler inequality yields the

strict inequality�

We conclude our proof by showing Lemma ��

 is su	cient to show for all

� � K�� �� ��

E �log g�W� jW����� �E �log g�W� jW���
��� � or equivalently�

E �log g�W ���� �E �log g�W ����� �

Let � � K�� �� ��� Then through the use of iterated expectations we have

E �log g�W� jW����� log g�W� jW���
��� � E �h�W����� h�W���

��� � ������

Lemma ��

 shows us that for � there exists a w� such that h�w���� �� h�w������

We can �nd an integrable dominating function and apply the dominated con�

vergence theorem to show that h�w���� and h�w����� are continuous in w�

and hence there exists a compact Borel set A with positive measure such that

h�w���� �� h�w����� for all w� � A� The Kullback�Leibler inequality implies

that h�w���� � h�w����� for all w� � R� The existence of the set A means we

can strengthen this statement to

E �g�W ����� E �g�W ����� �E �h�W����� h�W���
���

�
Z
A

�h�w����� h�w���
��� dP�w�� � �

In the inequality above we have used the result that h�w���� � h�w����� for

w� � A and thus our condition is proven�

��



����� Condition ����D

This condition is most easily veri�ed using derivatives of log g�W ��� and the

mean value theorem� Let � be positive and �� be an arbitrary element of K�

Consider � � B������ Then by the mean value theorem

jlog g�W ���j � jlog g�W ����j�
����� � log g�W ���

���

����
�

����� � k� � ��k ������

where "� lies on a chord between � and �� and k � k denotes the Euclidean vector
norm in R�� Now suppose that for any � and �� there exists a R� valued function

D�W � �� ��� � �D�W � �� ����� � � � �D�W � �� �����
� such that for all � � B�����

D�W � �� ���i �

�����


� log g�W ���

���

����
�

�
i

����� and
E �D�W � �� ���i� �	 for i � f
� � � � � �g

Then we may deduce from ������ that

E � sup
��B�	��


jlog g�W ���j� � E �jlog g�W ����j� � kE �D�W � �� ����k � � �	

for all � � B���
��� To �nd such a function� D���� we examine one of the deriva�

tives � the others follow the same pattern� Consider

log g�W ��� �p �W�� �� f�W� jW�� ��� ��� � �
 � p �W�� ��� f�W� jW�� ��� ���

where f is as in ������� Then ������

� log g�W ���

���
�
f�W� jW�� ��� ���p �W�� ��

g�W ���

�W� �W����W�

��
�����

�
jW�W�j� jW �

� j
�min

������

because f	W�jW������
p	W���

g	W ��
 � 
 and j��j � 
� Setting D�W � �� ��� equal to the

right�hand side of ������ satis�es our requirements for D��� �at least for the

��



derivative with respect to �� � the other derivatives are similarly bound�� Thus

E �log g��W ���� ��� �	 for all �� � K and � small enough such that B����� � K�

Also� it should be clear that continuity of E �log g�W ���� and the bounding of

the derivatives as above is su	cient to show

lim
���

E �log g��W ���� ��� � E �log g�W �����

for any �� � K �the dominated convergence theorem is used��

With this we have validated Condition ��
�D for AR�
� logistic mixtures�

Consequently� we have demonstrated all our consistency conditions are met in

the case of logistic mixtures of AR�
� models and may conclude there exists a

sequence of local maximum �partial� likelihood estimators ��T such that ��T
a�s���

���

��� Asymptotic Normality for General Logistic

Mixture

Some of the convenient properties of GLM models include the log concavity of

the likelihood with respect to parameter space� and when a canonical link is

used� an equivalence between second derivatives of the log likelihood and �

times the Fisher information when the model�s regressors are non�stochastic

� see Appendix A�
 in Fahrmeir and Tutz �
����� Unfortunately� adding the

complexity of switching destroys these ideals and complicates questions about

large sample properties �see Fahrmeir and Kaufmann �
��� for a good treatment

of asymptotic theory for standard models�� What follows is similar to methods

used byWong �
��� and Cram#er �
����� Our general model of a logistic mixture

��



uses the same notation as described in Section ��
�

f�yt j Xt��� �� � exp

�
ytX

�
t� � b �X �

t��

�
� c�yt� ��

�
�

P �It � 
 j Zt� �� �
exp �Z �

t��


 � exp �Z �
t��

�

g�yt j Gt����� �P�It � 
 j Zt� �� � f�yt j Xt����� ��� �

�
 �P �It � 
 j Zt� ��� � f�yt j Xt����� ����

where Gt�� �
�Xt��Xt�� Zt��

We assume g�yt j Gt����� is three times continuously di�erentiable with respect
to � and that the conditional density of Yt givenXt��Xt�� and Zt is g�yt j Gt������
for some �� in the interior of �� a subset of Rv� �Here v � �q � � where q is

the common dimension of Xt��Xt�� and Zt �the other two dimensions are for ��

and �� if necessary��

Other notation we use in this section includes

�t��� �
� log g�yt j Gt�����

��
a v � 
 vector with elements � log g�yt j Gt�����

��r

for r � 
� ���� v�

ht��� � a v � v matrix with the �r�s� element given by
�� log g�yt j Gt�����

��r��s
�

ST ��� �
TX
t��

�t���� and HT ��� �
TX
t��

ht����

Condition �����

��
��A Yt�Xt��Xt�� Zt are strictly stationary and ergodic with the random vector

W having the common joint distribution� As in the previous chapter� we

mean if h��� is an integrable function of W then �
T

P
h�Yt�Xt��Xt�� Zt�

a�s���
E �h�W ��� We will sometimes write Wt � �Yt�Xt��Xt�� Zt� and partition

��



W as W � �WY �WX��WX��WZ� when we need to refer to its components�

As in Section 	�� we de�ne g�W ��� � g�WY jWX��WX��WZ����

��
��B There exist integrable functions� F��W � and F��W � such that for all r� s �
f
� �� ���� vg�

F��W � �

�����g�W ���

��r

���� � F��W � �

������g�W ���

��r��s

���� � and
E �F��W � j WX��WX��WZ� �	� E �F��W � jWX��WX��WZ � �	� Also�

E

��
� log g�W ���

��r

��
�
�	 and E

�
�� log g�W ���

��r��s


�	�

All derivatives above are understood to be evaluated at ���

��
��C �
T
HT ���

a�s��� E

h
�� logg	W ��


�����

i
uniformly for all � in some closed ball $O

containing ��� Furthermore� E
h
�� logg	W ��


�����

i
is a continuous function of �

on $O�

Again� as in the previous chapter� these conditions are relatively mild �with the

exception of Condition ��
��A� and are consequences of log g�W ��� and g�W ���

having enough derivatives that can be uniformly bounded so the dominated

convergence theorem may be applied� This will be demonstrated for a logistic

mixture of Gaussian AR�
� processes in the next section�

Remark� It is worthwhile to mention a distinction between Conditions ��
�A

and ��
��A� While both posit the existence of a stationary distribution� Con�

dition ��
��A assumes fYt�Xt��Xt�� Ztg have this marginal distribution while
Condition ��
�A only assumes convergence to the stationary distribution� It is

not strictly necessary to make this more stringent assumption �one could substi�

tute uniform integrability conditions� but it does make one of the proofs in this

chapter a little more straightforward�

��



Let us de�ne the matrices

Q � �E
�
�� log g�W ���

�����

����
��

�
and Q� � E

�
� log g�W ���

���
� log g�W ���

��

����
��

�
�

������

Remark� We assume that �� is such that Q is invertible� As will be discussed at

length in Chapter �� this excludes the case that �� correspond to a degenerate

mixture� i�e� ��� � ����Xt� � Xt�� and ��� � ���� For the remainder of this

chapter we assume that �� does not correspond to a degenerate mixture and Q

is invertible�

Theorem ����� Let ��T be a consistent sequence of local maximum �partial�

likelihood estimates of �� as described in ��
� Then under Conditions ��
��A

��
��C we have that

p
T
�
��T � ��

� D��N
�
�� Q��� � ����
�

Furthermore� Q � Q��

Proof� We begin by expanding a Taylor series about �� and obtain�

ST � ��T � � � � ST ��
�� �HT � $�T �� ��T � ��� ������

where $�T lies on the chord between ��T and ��� Dividing by T we see

� �
ST ����

T
�

�
HT ����

T
�

�
HT � $�T ��HT ����

�
T

�
� ��T � ���� ������

At this point we want to show the expression in brackets
P�� �Q� From Condi�

tion ��
��C we need only demonstrate �
T

�
HT � $�T ��HT ����

� P�� � �a matrix of

zeros�� To prove this let �� � � � be given� We want to �nd a T� such that

P

�



T

��HT � $�T ��HT ��
��
�� � �


� �

�



for all T � T� where k�k is a Euclidean matrix norm� Now�

P

�����HT � $�T ��HT ����
T

���� � �


������

�P
�����HT � $�T �

T
� E �h �W ����j ��T

���� � ��


������

�P
h���E �h �W ����j ��T � E �h �W ����j��

��� � ��
i

������

�P

�����E �h �W ����j�� �
HT ��

��
T

���� � ��


� ������

Now� without loss of generality we may take $O small enough such that

sup
������� �O

���E �h �W ����j�� � E �h �W ����j���
��� � ��� �����

Also� because ��T
P�� �� there exists a T� such that

P
�
$�T � $O	 � �� for T � T��

Next� the uniform convergence condition ���
��C� allows us to say there exists a

T� such that

P

�
sup
�� �O

����HT ���

T
� E �h �W ����j�

���� � ��


� �� for T � T��

Now� if we choose T� � maxfT�� T�g and combine the results in equations ������
� ����� we see T� satis�es the desired property and we conclude the bracketed

term in ������
P�� �Q� After inverting this term and multiplying by

p
T we �nd

p
T
�
��T � ��

�
� �

�
HT ����

T
�

�
HT � $�T ��HT ����

�
T

���
ST ����p

T
� ������

and so we need only show

ST ����p
T

D��N ��� Q� ������

��



to prove the theorem� By construction �and Condition ��
��B� f�tg is a martin�
gale di�erence sequence adapted to fGtg� To prove this� the critical point is to
establish

E

�
� log g�yt j Gt�����

���

����
��

�����Gt��
�
� ��

But the left�hand side above �

Z
� log g�yt j Gt�����

���

����
��
g�yt j Gt������dyt

�

Z
�g�yt j Gt��� �� ��

���

����
��
dyt

�
�

���

�Z
g�yt j Gt��� �� ��

�����
��
� ��

The interchange of di�erentiation and integration is justi�ed by the properties

of the F��W � function of Condition ��
��B� Since we have shown f�tg is a
martingale di�erence sequence then the same is true for fc��tg where c is an
arbitrary non�random element in Rv� At this point we introduce a martingale

central limit theorem we will need here and elsewhere� The theorem is drawn

from McLeish �
�����

Theorem ����� Let DT�t be a real�valued triangular martingale di�erence array

on � �F �P�� t� 
���T� T � N such that

for all � � � lim
T��

TX
t��

Z
jDT�tj��

D�
T�tdP� �� and ����
�

TX
t��

D�
T�t

P�� 
� ������

Then
PT

t��DT�t
D��N��� 
��

The proof comes from McLeish�s second theorem and the discussion following it�

��



To apply this theorem in our case we let � be given and de�ne

mt �m�Yt�Xt��Xt�� Zt�
�
� c��t���� and ������

DT�t
�
�
m�Yt�Xt��Xt�� Zt�p

Tvc
where vc � c�Qc� ������

Then

lim
T��

TX
t��

Z
jDT�tj��

D�
T�tdP� lim

T��



Tvc

TX
t��

Z
m�
t��

�Tvc

m�
t dP�

To show this limit is zero we �rst prove for all � we have

lim
T��




Tvc

TX
t��

Z
m�
t��

�Tvc

m�
tdP� lim

T��



Tvc

TX
t��

Z
m�
t��

m�
tdP� ������

To see this let T� � supfT � ��Tvc � �g� Then

lim
T��




Tvc

TX
t��

Z
m�
t��

�Tvc

m�
tdP ������

� lim
T��




Tvc



T�X
t��

Z
m�
t��

�Tvc

m�
tdP�

TX
t�T���

Z
m�
t��

�Tvc

m�
tdP

�

� lim
T��




Tvc

TX
t�T���

Z
m�
t��

�Tvc

m�
tdP �since the lim

T��



Tvc

T�X
t��

term � ��

� lim
T��




Tvc

TX
t�T���

Z
m�
t��

m�
tdP ������

From our Condition ��
��A we know the mt variables are identically distributed

with the variable m�W � having the common distribution� So

lim
T��




Tvc

TX
t�T���

Z
m�
t��

m�
tdP�




vc
E
�
m�W ��I�m	W 
��� �

	
�����

if the expectation on the right�hand side exists� But we know this expectation

does exist because from Conditions ��
��A and ��
��B

lim
T��




T

TX
t��

m�
t

P�� c�Q�c

�




and therefore

E
�
m�W ��

	
� c�Q�c and E

�
m�W ��I�m	W 
��� �

	
exists�

Putting together our results from equations ������ and ����� we obtain

lim
T��




Tvc

TX
t��

Z
m�
t��

�Tvc

m�
tdP� E

�
m�W ��I�m	W 
��� �

	
where the right�hand side can be made as small as desired by choosing � large

enough� Thus

lim
T��

TX
t��

Z
jDT�tj��

D�
T�tdP� lim

T��



Tvc

TX
t��

Z
m�
t��

�Tvc

m�
t dP� ��

and we see the Lindeberg condition ����
� holds� To check the second condition

of the theorem ������ we note that

TX
t��

D�
T�t �




vc




T

TX
t��

m�
t

a�s��� 


vc
c�Q�c �

c�Q�c

c�Qc
�

To show this is 
 we examine the �r� s�th elements of Q� and Q �we want to show

Q� � Q�� We now demonstrate

E

�
� log g�WY jWX��WX��WZ���

��r

� log g�WY jWX��WX��WZ���

��s


�

�E
�
�� log g�WY jWX��WX��WZ���

��r��s


� ������

where the derivatives are evaluated at ��� This is straightforward because from

Condition ��
��B we know the result holds for conditional expectation� i�e�

E

h
� logg	WY jWX��WX��WZ ��


��r

� log g	WY jWX��WX��WZ ��

��s

���WX��WX��WZ

i
� �E

h
�� logg	WY jWX��WX��WZ��


��r��s

���WX��WX��WZ

i
�

The two sides of the equation are functions ofWX��WX�� and WZ that are equal

almost everywhere� and thus the expectations of the functions are equal� So by

��



taking expectations of these conditional expectations we get the result in �������

Thus we see Q� � Q and consequently

TX
t��

D�
T�t � 
�

Now the two conditions of McLeish�s theorem hold so we have shown


p
T

TX
t��

c��t
D��N��� c�Qc�

for arbitrary c � Rq� By the Cram#er�Wold Theorem we may conclude

ST ����p
T

�

p
T

TX
t��

�t
D��N��� Q�

and our demonstration of asymptotic normality is complete�

��� Asymptotic Normality for Logistic Mixtures

of Gaussian AR��� Processes

As in Section ��� we examine the conditions just presented and try to verify

them for our logistic mixture of AR�
� models� The model speci�cation is the

same as that in Section ���� In this section we will freely use our results from

Section ��� which demonstrated the following�

 Let W t � �Yt� Yt���� Then there exists a random vector W with distribu�

tion �W such that if h��� is an integrable function of W then




T

X
h�Wt�

a�s��� E �h�W �� �

The components of W we will denote by W� and W�� Both W� and W�

have a common marginal distribution �Y �

��



 For Y a random variable with distribution �Y we have E �exp�sY �� � 	
for all s � R�

We now set about examining the three components in Condition ��
��

����� Condition �����A

The existence of an appropriate stationary distribution was established in Section

���� If we additionally assume �Y�� Y��� have �W as an initial distribution then

all the �Yt� Yt��� will be identically distributed as �W � Alternatively� one could

imagine our time series has been running long enough so that we may consider our

sample to be approximately identically distributed according to the stationary

distribution�

����� Condition �����B

There are two types of expectations we want to check� The �rst type concerns

showing the conditional expectation of derivatives of g��� is �nite� Though there
are several derivatives to check we present analysis for only one� the others follow

a similar pattern� As our example we consider

��g�Yt j Yt�����
������

����
��
� � exp���� � Yt������Yt��

�
 � exp���� � Yt��������



����

�
�Yt � Yt������

�

���
� 


�
�

exp

�
��Yt � Yt������

�

����
� 


�
ln �����

�
� Yt��




��min

�
Y �
t � Y �

t�� � � jYtYt��j
�min

� 


�

p

���min

������

��



and wish to show the E �RHS of ������ j Yt��� �	� For k a non�negative integer
we have

E

h
jYtjk j Yt��

i
�

Z
R

jYtjk exp
�
��Yt � Yt������

�

����
� 


�
ln �����

�
dYt � ����
�Z

R

jYtjk exp
�
��Yt � Yt������

�

����
� 


�
ln �����

�
dYt ������

which is clearly �nite since a normally distributed r�v� has all �nite moments�

This fact that E
h
jYtjk j Yt��

i
� 	 for all k is su	cient to show the right�hand

side of ������ is conditionally integrable�

We also wish to show that unconditional expectation of derivatives of log g���
are integrable� As an example we consider

�� log g�Yt j Yt�����
������

����
��
�� �
 � pt�����f�Yt j Yt������� ����

g�Yt j Yt������
�Yt � Yt������

���
Yt�� �

pt��
��f�Yt j Yt������� ����
g�Yt j Yt������




����
��

�Yt � Yt������
�

���
� 


�
where

pt��
�� �

exp���� � Yt������

 � exp���� � Yt������

and

f�Yt j Yt����� �� � exp
�
��Yt � Yt�����

��
� 


�
ln ���

�
�

Because
pt	��
f	YtjYt����

�

� �
�

�


g	YtjYt�����

� 
 and

	��pt	��

f	YtjYt����
�

� �
�

�


g	YtjYt�����

� 
 we have����� �� log g�Yt j Yt�����

������

����
��

����� �
�����Yt � Yt������

���

Yt��
����

�
�Yt � Yt������

�

���
� 

����� ������

The function on the right�hand side of ������ is clearly integrable if Yt and Yt��

have enough �nite moments� This is certainly the case as they are identically

distributed with a common distribution that has a �nite moment generating

function over the real line� As the other derivatives are handled the same way

we see that the mild moment conditions of ��
��B are met�

��



����� Condition �����C

The proof of this condition requires a theorem for uniform convergence� We will

digress from this discussion to examine such a theorem�

A Uniform Convergence Theorem

Here we present the primary theorem we will use throughout to demonstrate a

uniform law of large numbers over a compact parameter set� The theorem is an

adaptation of one presented in Andrews �
����

To introduce notation let fWtg be a sequence of Rp�valued random variables

on a probability space � �F � P �� We assume that the Wt�s are asymptotically

stationary and ergodic in the sense described in Condition ��
�A �the Wt�s could

also be considered identically distributed with the stationary distribution as in

Condition ��
��A�� Here we let W denote the Rp�valued vector with the station�

ary distribution� � � � �a subset of Rv� and B��� �� � f�� � �� jj�� � �jj � �g�
Further� suppose q�Wt��� � Rp��� R and Eq�W ��� �	 for all � � De�ne�

q��Wt��� �� � sup
��
fq�Wt��� � �

� � B��� ��g ������

q��Wt��� �� � inf
��
fq�Wt��� � �

� � B��� ��g� ������

The conditions for our theorem are�

��
��A The parameter space � is compact�

��
��B The rv�s q�Wt���� q��Wt��� �� and q��Wt��� �� satisfy pointwise strong

laws of large numbers for su�ciently small � that may depend upon ��

��
��C For all � � ��

lim
���

E sup
���B	���


jq�W ����� q�W ���j � ��

��



Theorem ����� Under Conditions ��
��A � ��
��C we have

sup
���

����� 
T
TX
t��

q�Wt���� Eq�W ���

������ � ������

almost surely� In other words �
T

PT
t�� q�Wt��� converges uniformly to Eq�W ����

almost surely�

Remark� If the pointwise convergence in Condition ��
��B is weak instead

of strong than the conclusions should be changed from �almost surely� to �in

probability��

Proof� Condition ��
��C shows that given � and � � � there exists a ���� such

that

Eq�W ��� � � � Eq��W ��� ����� � Eq��W ��� ����� � Eq�W ��� � �� ������

For the �xed � the collection fB��� �����g form an open cover of �� Under

Condition ��
��A we obtain a �nite subcover� fB��i� ���i�� � i � 
���Lg� Consider
a �xed i and the associated B��i� ���i��� For � in B��i� ���i�� we have




T

TX
t��

�q�Wt���� Eq�W ���� �

T

TX
t��

�q��Wt��i� ���i��� Eq��W ��i ���i���

� 

T

TX
t��

�q��Wt��i� ���i���Eq��W ��i ���i��� ����

and similarly�




T

TX
t��

�q�Wt���� Eq�W ���� � 

T

TX
t��

�q��Wt��i� ���i���Eq��W ��i� ���i�������

Now we consider arbitrary � in � which must be in one of the B��i� ���i�� balls�

��



Then

min
��i�L




T

TX
t��

�q��Wt��i� ���i��� Eq��W ��i� ���i���� �� �����

� 

T

TX
t��

�q�Wt���� Eq�W ���� ������

� max
��i�L




T

TX
t��

�q��Wt��i� ���i��� Eq��W ��i ���i��� � ��� ������

With an application of Condition ��
��B it is easy to see we may �nd a value T�

such that for all T � T� the expressions in ����� and ������ are arbitrarily close

to ��� and ��� with arbitrarily high probability� This implies that the right side
of ������ is arbitrarily close to �� �� with high probability for all � and T � T��

Because � and � are arbitrary the theorem is proven�

We may supply relatively mild conditions to replace Conditions ��
��B and

��
��C�

Condition ����� If q�W ��� has continuous derivatives with respect to � and

for � small enough there exists a function� D�W ��� �� such that if
��� "� � �

��� � �

then ����� �q�W ���

��

����
�

����� � D�W ��� �� and ED�W ��� �� �	�

To show Condition ��
� implies ��
��B we �rst show that Eq��W ��� �� is �nite�

Let � and � be given� Then from Condition ��
� we note there exists a � such

that q��W ��� �� � q�W ���� � � where� k�� � �k � �� Now

q�W ���� � q�W ��� �
�q�W ���

���

����
�

��� � �� where� "� � B��� ���

�



Taking expectations we obtain�

E kq��W ��� ��k �E kq�W ����k� E
����� �q�W ���

���

����
�

��� � ��

������ �

�E kq�W ����k� ED�W ��� �� � �� � �	 ����
�

So we have shown Eq��W ��� �� � 	� From our condition of almost sure con�

vergence we obtain




T

TX
t��

q��Wt��� ��
a�s��� Eq��W ��� ���




T

TX
t��

q��Wt��� ��
a�s��� Eq��W ��� ��� and




T

TX
t��

q�Wt���
a�s��� Eq�W ����

To show Condition ��
� implies ��
��C we see that

sup
���B	���


kq�W ����� q�W ���k � sup
��B	���


����� �q�W ���

���

����
�

����� � �
� D�W ��� �� � ��

Taking expectations and limits as � � � shows that Condition ��
��C follows�

Thus we have proven the following�

Theorem ���	� Under Conditions ��
��A and ��
� we have

sup
���

����� 
T
TX
t��

q�Wt���� Eq�W ���

����� a�s��� ��

Now we return to our example of logistic mixtures� To show uniform convergence

of �
T

P
ht��� we successively apply this theorem to the real valued elements of

ht����� i�e� we set q�Wt��� �
�� logg	Yt jYt����


��r��s
for r� s � f
� ���� vg� To apply our

result we verify the two conditions in Theorem ��
� As we previously explained

in discussing Condition ����B� it is clear E �q�W ���� �	 for each �r� s� pair� It

is left to verify Condition ��
�� that is show that all third derivatives may be

��



bound by integrable functions� Rather than demonstrate the technique for each

we will use one of the derivatives as an example of how to �nd the bounding

function D�Wt��� �� in Condition ��
�� In this case it will turn out that the

bounding function is independent of � �though it does depend on boundaries of

��� All the other derivatives may be bounded in the same manner� To reduce

notational clutter we will use the following abbreviations�

f� �f�Yt j Yt������� ���� ������

f� �f�Yt j Yt������� ���� ������

p �
exp���� � Yt������


 � exp���� � Yt������
������

g �pf� � �
 � p�f�� ������

The example we work with is

�� log g�Yt j Yt�����
���������

����
��
� �Yt��

���

�
Yt � Yt�����

���

�

�Yt � Yt������

�

���
� 


�
�

f
f�

g�
p�
 � p�

�

 � �p � �

�
f
 � f�

g

�
p�
 � p�


As before� the key to bounding the expression is to note that whenever there is

a g term in the denominator� there is an o�setting �
� p�f�� or pf� term in the

numerator� In the case of �
� p�f� in the numerator we note that

�
 � p�f�
g

�
�
� p�f�

pf� � �
� p�f�
� 
� ������

A similar inequality holds for pf�g� Using these facts and noting � � p� �
�p� �

 we can see����� �� log g

���������

����
��

����� � � jYt��j
�min

� jYt � Yt�����j
�min

�

�Yt � Yt������

�

�min
� 


�
�

��



Because j���j � j���j � 
 and both Yt and Yt�� have a �nite moment generat�

ing function it is clear the right�hand side above is �nite� and hence this third

derivative is bounded� the other third derivative are bounded similarly� Thus

we may �nd bounding integrable functions that allow us to apply Theorem ��


and the �rst part of Condition ��
��C has been proven�

The second part of this condition requires us to show E �h�W ���� is contin�

uous in �� We could show this by applying the same techniques we used for

the bounding the third derivatives of log g�W ��� to �nd integrable functions

that bound the second derivatives� Once these bounding function are found we

may appeal to the dominated convergence theorem and conclude the continuity

condition holds� With this we conclude the proof of Condition ��
��C

Conclusion

In this chapter we showed that the maximum �partial� likelihood estimates of

a correctly speci�ed logistic mixture model are both consistent and asymptoti�

cally normal if general conditions are met� We then showed these conditions are

satis�ed for the case of AR�
� mixtures�

�




Chapter �

Numerical Results

In this chapter we present simulations and an example of �tting the model to

rain rate data� The results from the �rst set of simulations adhere to our theory

regarding consistency and the asymptotic variance structure we developed in the

previous chapter� We see the � and � parameters in the component densities are

estimated relatively well though there appears to be bias in estimating �� This

bias is attenuated in large sample sizes� A second set of simulations suggests that

a logistic mixture model may be a superior model in circumstances in which one

might use a two regime threshold model� These simulations indicate the logistic

mixtures yield robust estimates when the threshold variable in a threshold model

is not directly observed but instead only a noisy approximation is available� The

results from the threshold model are biased and not robust in the presence

of noise� We close the chapter with an application of our model to rain rate

data that suggests a logistic mixture with variable regime probabilities may be

superior to a mixture model with constant regime probabilities�

��



��� Simulation I � Consistency and Asymptotic

Variance

In our �rst simulation component densities �as presented in equation ������ corre�

spond to Gaussian AR��� models with parameters chosen such that each regime

is� by itself� a stationary process� The logistic regression model in the form of

���
� contains only a slope and intercept parameter with the lagged value of the

switching process as a covariate�

P �It � 
 j Gt��� �P �It � 
 j Yt���

� exp��� � yt����
 � exp��� � yt����� ���
�

f�yt j It � 
�Gt��� �N���yt�� � ��yt��� ����� and �����

f�yt j It � ��Gt��� �N����yt�� � �
�yt��� 
�� �����

A total of ��� simulations were analyzed� For each simulation a time series of

��� observations was generated according to the model described above� For each

observation� the probability of drawing from the �rst regime was computed using

���
� and past values of Yt� A Bernoulli random variable with this mean was then

generated� When that variable was 
 the observation for Yt was drawn using the

distribution given by ������ otherwise Yt was obtained from the distribution in

������ Initial values� y� and y�� were set equal to ��

Each simulation produced not only an estimate of

�� �

�B� ��

��

�CA � �� �

�B� ���
��
�

�CA �

�B� ��

��

�CA �

�B� ���




�CA � and � �

�B� ��



�CA �

but also generated estimates of the standard errors of ���� ���� and ��� These

estimated standard errors were obtained using the large sample results from the

��



Parameter True Value Average $�
�asymp�� $�
�simul��

��� �� ���� ���
� �����

��� �� ���� ����� ���

��� ��� ����� ����� ����

��� ��
� ��
�� ����� ����

�� �� ���
� ���� ���

�� 
 
�

 ���� ����

�� � 
�
� ��� ���
 ����� ��

�� � 
�
� 
 ��� ���
 �
��

Table ��
� ��� Simulations of ��� Observations

previous section �see ������ with Q� estimated by the data using sample means

in place of expectations and estimated parameters in place of their true values��

These standard errors for each simulation were averaged� and the resulting means

are included in the table below under the heading �$�
�asymp���

A second method for estimating these standard errors is also presented� The

��� values of a given parameter� say f�	i

�� g� i � 
 � � � ��� form an i�i�d� sequence

of random variables with a common standard error that may be estimated by





��

���X
i��

��	i

�� � $����

�� �����

Here �	i

�� is the estimate of ��� from the ith simulation and $��� is the mean

value for the ��� simulations� The standard errors obtained in this manner are

included in the column headed �$�
�simul����

The model appears to have performed relatively well in generating point es�

timates of the regime speci�c parameters� � and �� but performs worse when

��



estimating �� To some extent the di	culty with estimating � is to be expected

given the small sample bias of logistic regression estimates in even optimal cir�

cumstances �see Chapter � of McCullagh �
���� and Chapter 
� of McCullagh

and Nelder �
����� These problems are probably exacerbated in the present

context� when� instead of estimating � from an observed sequence of ones and

zeros �as is the case for standard logistic regression�� we use probabilities associ�

ated with an unobserved process as a basis for estimating � �i�e� the probabilities

pkt in ��������

In addition to the problems in the point estimates of �� it is worth noting that

most of the standard errors derived from asymptotic results of the preceding sec�

tion underestimate the �true� standard error �as derived from the empirical sam�

ple of ��� simulations�� In each case corresponding to ���� ���� ���� ��� and ���

the asymptotic standard error is somewhat less than that derived from � ���� �the

standard errors for ��� are an exception�� We are not sure why this discrepancy

arises but it may occur because we lack enough observations to appropriately

apply the asymptotic normality results� In order to check this hypothesis we per�

formed a second set of ��� simulations with ����� instead of ��� observations�

Table ��� gives results from this second set of simulations that are consistent

with our hypothesis that the percent di�erences should shrink �at least with

respect to the � and � terms�� As expected� these estimates are better� but the

asymptotic standard errors are still generally smaller than those derived from

the sample� These simulations were run primarily to verify our programming

and asymptotic results were accurate� They also indicate that the estimates of

� su�er bias and have relatively large standard errors� This suggests caution in

placing much emphasis upon point estimates of ��

��



Parameter True Value Average $�
�asymp�� $�
�simul��

��� �� ���� ����� ����

��� �� ���� ���� �����

��� ��� ����� ���� �����

��� ��
� ��
�� ����
 �����

�� �� ����� ��� ���

�� 
 
��� �
�
 �
�

�� � 
�
� ��� ���� ���� �����

�� � 
�
� 
 ���� ����� �����

Table ���� ��� Simulations of ���� Observations

��� Simulation II � Comparison to Threshold

Method

As a second example we consider simulations drawn from a threshold autoregres�

sive model of the type developed by Tong �
���
����� As before� we assume

our observed process� Yt� comes from a mixture of AR��� processes� but in this

case the choice of regime is determined by whether the lagged value of a second

variable is above or below a threshold value� regime 
 is applicable if Xt�� � �
�

regime � is relevant otherwise� As constructed here Xt�� is correlated with Yt���

In this simulation Xt�� is not observed directly � only its noisy proxy� Yt��� is

available to the observer� The relationship between Yt�� and Xt�� is

Xt � Yt � � � �t

��



where �t is i�i�d� N��� 
� noise term that is independent of Ys for s � t and Xs

for s � t� The regime indicator It is determined by

It �

����� 
 if Xt�� � �


� otherwise�

With this structure we now de�ne how the Yt process evolves�

Yt �

����� ��Yt�� � ��Yt�� � �� � �t if It � 

�
Yt�� � �
Yt�� � �� � �t if It � ��

where �t is i�i�d� N��� 
�� independent of �s for all s�

Two methods were used to estimate

�� �

�B� �


��


�CA � �� �

�B� ��

��

�CA � and

�B� ��

��

�CA �

�B� ���

���

�CA �

In applying the logistic mixture model we use 
 and Yt�� as covariates in the

Zt vector of ���
�� It should be noted that the logistic mixture model is incor�

rectly speci�ed� The true model uses a threshold to select the relevant regime�

while this model posits the selection is made by the outcome of a Bernoulli ran�

dom variable with mean exp�Z �
t���
 � exp�Z

�
t���� In this sense the model is

misspeci�ed and the � coe	cients associated with the logistic regression do not

have corresponding �true� values� Nevertheless� as will be seen below� this model

performs very well in estimating ��� ��� ��� and ���

As an alternative to our model we present a threshold autoregressive �TAR�

model that estimates ��� ��� ��� ��� and the unknown threshold� denoted by � � in

the following manner �the true value of � is �
��

 For a �xed � let C�
� � ft � Yt�� � �g and C�

� � ft � Yt�� � �g� These sets
partition the data into two groups� The data in C�

� has observations in

��



which Yt�� is less than the hypothesized threshold� � � The Yt�� values of

those observations in C�
� exceed � �

 Using the C�
� set� estimate �� and �� by conditional least squares using

those values of Yt� Yt��� and Yt�� corresponding to observations in C�
� �

Similarly� estimate �� and �� from the observations corresponding to C�
� �

Ordinary least squares is typically the estimation method�

 Add the residual sum of squares from the two regressions to obtain an over�

all sum of squares� CSS�� �� We follow this procedure for several choices

of � and choose �� as the threshold that minimizes CSS�� � The ���� ���� ����

and ��� estimates that are associated with �� are the �nal estimates under

the TAR model�

In this instance we produced ��� simulations where each simulation con�

tained a time series of ��� observations� Each simulation was generated by

the parameters indicated above� In each simulation �� was chosen from the set

f�� ����� ����� ����� �
��� �
��� �
��� �
��� ����g� In Table ���� estimates produced
by the TAR method are included in the column headed �TAR � Yt���� The col�

umn headed �LM � Yt��� displays estimates derived from our logistic mixture

model� As before� the columns headed �$�
�simul��� indicate estimates of the

parameters� standard errors derived from the empirical sample� For the LM

estimates� there is a an additional column� �$�
�asymp��� that gives the average

standard error derived from the approximation to the Fisher information matrix

� see ������� The results show that the LM model has performed signi�cantly

better than the TAR model in determining the regime speci�c parameters� We

reiterate that both models use Yt�� instead of Xt��� the �TAR � Yt��� model

�



uses Yt�� as the threshold variable and the �LM � Yt��� model uses Yt�� as a

covariate in the logistic regression� It is surprising that although the LM model

is misspeci�ed� the standard error estimates for the � and � terms derived from

the asymptotic normality approximation �$�
�asymp��� agree closely with those

derived from the empirical sample �$�
�simul���� We do not claim this agreement

will hold in general� but it is nonetheless encouraging�

When we examine the results corresponding to the TAR model we suspect

that because the threshold variable� Xt��� is not directly observed� its imperfect

proxy� Yt��� occasionally misclassi�es observations into C� and C�� Thus if we

denote by f� the conditional density associated with Xt�� � �
 and f� the density

associated with Xt�� � �
 the class C�
� incorrectly contains some observations

that were generated by f�� Consequently� the estimates of �� and �� will be

LM � Yt�� TAR � Yt��

Parameter True Average $�
 �asymp�� $�
�simul�� Average $�
�simul��

��� �� ���� ���� ����� ��
� �����

��� �� �
�� ���� ����� �
�� ����

��� �
 ����� �
�� �
�� �
�� ���

��� ��
 ��

� �
�� �

� ������ ��
�

�� ��� ���� ����� ���� ���� ����

�� ��� ��� ����� ���� ���� ����


�� NA �
�� 
��� ���� NA NA

�� NA ����� ��� ��

 NA NA

Table ���� ��� Simulations of ��� Observations Using Yt�� as Threshold Variable

��



biased because they are not based on the appropriate set of observations� A

similar consequence holds for estimates of �� and �� based on the class C�
� �

The misclassi�cations act to pull the estimated parameter groups� ���� ��� and

���� ���� closer together� This bias would be more pronounced if the two sets

of parameters were further apart� Were the parameters closer together the bias

would be attenuated though still present� Also� the more noise in the threshold

variable �and hence the more likely that misclassi�cation occurs� the greater the

bias in the estimates� Though not presented here we have performed additional

simulations that exhibit this behavior� Finally� we have presented the model

as a �xed threshold ��
 in this case� with an imperfectly observed threshold

variable� The same results would be had if we considered the threshold variable

perfectly observed but the threshold level varying randomly about some mean in

an unobservable manner� If the statistician models such a process with a �xed�

constant threshold the same types of misclassi�cation and consequent bias would

arise�

We produce one more table based on this set of simulations� Using the same

data realizations as above� we useXt�� instead of Yt�� in computing the TAR co�

e	cients� This corresponds to the unlikely occurrence that the analyst observers

the threshold variable� Xt��� without error� We reproduce the LM estimates from

above as a basis for comparison� reiterating that these LM estimates were pro�

duced using the proxy Yt�� instead of Xt�� in the logistic regression� The most

noteworthy result in Table ��� is that the LM estimates for the regime�speci�c

parameters �the � and � terms� are not much worse than those derived from

the correctly speci�ed model with perfectly observed data� The estimates corre�

sponding to the regime for Xt�� � �
 are quite good while those for theXt�� � �


��



LM � Yt�� TAR � Xt��

Parameter True Average $�
 �asymp�� $�
�simul�� Average $�
�simul��

��� �� ���� ���� ����� ���
 �����

��� �� �
�� ���� ����� ���� �����

��� �
 ����� �
�� �
�� ���
 �����

��� ��
 ��

� �
�� �

� ��
�� �����

�� ��� ���� ����� ���� ���� ���
�

�� ��� ��� ����� ���� ���� ����


�� NA �
�� 
��� ���� NA NA

�� NA ����� ��� ��

 NA NA

Table ���� ��� Simulations of ��� Observations UsingXt�� as Threshold Variable

regime are not as good�

This particular set of simulations indicates that in some instances� the LM

estimation procedure may produce superior regime speci�c estimates in a two

regime threshold model� This is particularly true if either the threshold variable

is subject to noise and thus imperfectly measured or if the threshold value is

variable though modeled as constant�

��� Application to Rain Rates

In this section we �t a logistic mixture to rain rate data� The Global Atmospheric

Research Program�s Atlantic Tropical Experiment �GATE� data provides ship�

based radar measurements of rainfall collected from the South Atlantic during

the summer of 
���� Details regarding the data collection are available from

�




Hudlow and Patterson �
�����

The selection of data used in this section is drawn from the GATE Phase I

dataset� Every 
� minutes a radar snapshot of rain was obtained� This grid was

divided into pixels of size � km by � km and an average rain rate was computed

for each pixel� Our dataset contains only positive rain rates and the hour in

which the observation was made� Pixels in our dataset were selected so that a

minimum of �� km separated them from any other pixel in the dataset� Our

data consists of �� such observations�

For modeling purposes we treat the data as independently distributed� While

this assumption may not be entirely justi�ed it is common with GATE data

� see Kedem� Pfei�er� and Short �
���� and Bell and Suhasini �
����� This

independence is in contrast to our general model formulation in which Yt may

depend upon Yt��� Yt��� � � � � Yt�p as well as some exogenous covariates� However�

our general model does accommodate independent and�or identically distributed

data as a special case�

Some analysts have suggested that a log�normal or gamma distribution may

provide a reasonable parametric model for rain rate� given that it is raining �e�g�

Kedem� Pfei�er� Short �
���� and Kedem� Chiu� and North �
������ Others have

suggested there are di�erent types of rain �Houze �
�
�� which indicates that

a mixture density may be appropriate �Sansom and Thomson �
���� and Bell

and Suhasini �
������ The GATE dataset is particularly well suited for analysis

via mixtures as the tropical weather patterns exhibit both longer periods of

moderate rainfall �termed stratiform rain� as well as shorted periods of more

intense rain �convective rain��

We decided to model the data as a two regime mixture of log�normal distri�

��



bution with the component distributions corresponding to stratiform and con�

vective rain patterns� A logistic mixture model allows us to parameterize the

regime probabilities using a logistic regression model� Bell and Suhasini �
����

have suggested the regime probabilities should follow a daily� or diurnal� cycle�

Our model is well suited for this purpose� if ht � f
� �� � � � � ��g denotes the hour
the tth observation is made we model

pst �ht� a� b� d� �P
�
tth observation is stratiform j ht� a� b� d

	
�

exp �a sin �wht � b� � d�


 � exp �a sin �wht � b� � d�
and

pct�ht� a� b� d� �
� pst �ht� a� b� d� � P
�
tth observation is convective j ht� a� b� d

	
�





 � exp �a sin �wht � b� � d�
where w �

��

��
�

Remark� As an aside we note that the parameterization of the probabilities

as written above is not of the Z �
t� form of our general model� This Z �

t� form is

necessary to implement the EM algorithm� as we developed it� in Chapter �� We

may reparameterize the probabilities in the Z �
t� form in the following way�

a sin�wht � b� � d � a cos�b� sin�wht� � a sin�b� cos�wht� � d and setting

Zt � �
� sin�wht�� cos�wht��
� and � � ���� ��� ���� � �d� a cos�b�� a sin�b����

Then point estimates of a and bmay be obtained by considering �b � tan����������

and �a � ��� cos��b�� Standard errors can be derived using a multivariate delta

method approach �see page ��� in Billingsley �
����� Alternatively� one could

estimate the model using a general non�linear minimization package and estimate

the Fisher information matrix in an obvious way�

The way we model pst and pct imposes a diurnal cycle as long as a �� �� The

a parameter controls the variability� or amplitude in the cycle� The b gives

��



freedom to the phase shift of the cycle and the d term allows these probabilities

to �uctuate about some average value di�erent from ��� If we denote the log of

our observed rain rate by Yt then our logistic mixture model is given by

g �yt j ht�� � ��s� �s� �c� �c� a� b� d�� �pst �ht� a� b� d�f�yt��s� �s� � �����

pct�ht� a� b� d�f�yt��c� �c� �����

where f����� �� denotes the density of a N��� �� random variable and the s

and c subscripts are labels designating stratiform and convective� As a basis of

comparison we include results for two nested models�

g�yt��s� �s� �c� �c� p� � pf�yt��s� �s� � �
� p�f�yt��c� �c� and �����

g�yt��� �� � f�yt��� ��� ����

The model in ����� corresponds to a standard mixture model with �xed regime

probabilities and the model in ���� is a one regime� or no mixture model� In the

table below we present point estimates and standard errors �in parentheses� for

the three models� The column headed �LM� corresponds to results for logistic

mixtures� the ��R� heading denotes the mixture with constant regime probabili�

ties in ����� and the �
R� indicates results for the one regime model�

The results suggest that in passing to each of the more restrictive nested

model the explanatory power is signi�cantly weakened though we discuss no for�

mal test of such hypotheses until the next chapter� What may be most surprising

is the apparent power that is gained by parameterizing the regime probabilities

according to a daily cycle� The addition of the b and a parameters increases the

log likelihood by approximately �� over what was obtained from the �R model�

��



Parameter LM �R 
R

�s ������ �
��� ����

����
� ������ �������

�s ���� �
�� 
���

��
��� ������ �
�
�

�c 
��� ��
� NA

��
��� ������� NA

�c ��� 
��� NA

��
��� ��
��� NA

d 
�
� 
���� NA

������ ���
� NA

b ���� NA NA

��

�� NA NA

a 
�� NA NA

������ NA NA

Log Likelihood �
����� �
�
���� � 
������

Table ���� Three Models of Rain Rate

One might want to conclude that under the null hypothesis that the �R model

is correctly speci�ed� then

� � �Log�Likelihood�LM� � Log�Likelihood��R�� D�� 	�
��

This would be incorrect as the b term is not identi�ed under the null hypothesis

that pst �ht� a� b� d� � p� a constant� By this we mean while it is clear that a �

� under the null hypothesis� any value of b would su	ce� and hence b is not

��



identi�ed� A similar though more di	cult identi�cation problem arises if we want

to compare either the LM or �R model to the 
R model� These identi�ability

problems invalidate traditional approaches to hypothesis testing� We will take

up this question at length in the next chapter�

For now we will interpret the result of �tting the LM model� From the

parameter estimates we can obtain mean rain rates for each of the two densities�

The mean for the stratiform regime is exp������� � �� � ����� � 
��� mm�hr�

That for the convective regime is �� mm�hr� From these means and the derived

hourly regime probabilities we produce estimated hourly rain rates� A plot of

the stratiform regime probabilities and the estimated hourly rates is included in

Figure ��
�

Probability of Stratiform Rain by Hour of Day
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� Fitted Hourly Estimates
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The plots indicate that the more intensive rain rates are associated with the

afternoon� when warmer temperatures may make such events more likely�

The results of Table ��� include the surprising degree to which our estimates

of stratiform and convective parameters di�er between the LM and �R model�

This discrepancy may best be explained through examination of a histogram of

the log rain rates �see Figure �����

Histogram of Log Rain Rates
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Figure ���� Log Rain Rate Distribution

The histogram indicates there may be more than two modes in our mixture dis�

tribution and that the �R log�likelihood is maximized around a di�erent pair of

modes than those that maximize the LM log�likelihood� This �nding suggests

we should be diligent in making sure the log�likelihood is maximized at the re�

ported values� In our investigations the �R and LM estimates were both robust

��



to di�erent starting values as well as di�erent optimization methods �both the

EM algorithm approach outlined in Chapter � as well as generic minimization

routines were used�� We are not sure how to explain why the two models pick

out such di�erent component densities other than to surmise that the parame�

terization of the diurnal cycle captures e�ects that are obscured when constant

regime probabilities are imposed�

These results also suggest that perhaps investigation of a three regime model

is warranted� Bell and Suhasini used a non�parametric principal components ap�

proach to estimating a mixture of densities and found support for � distributions

�with mean rain rates of ��� and � mm�hr � very similar to our results� but

that the data was not better �t by allowing for � distributions� We performed

some estimation of � regime models with �xed probabilities but the estimates

were not robust �i�e� di�erent starting points led to di�erent estimates� and the

greatest log likelihood we were able to achieve was �
�
��� � still inferior to that

obtained under the � regime LM model ��
�
�� The development of logistic

mixture models with � or more regimes should be part of future work�

In this chapter we have made no attempt to formally test which of the three

models �
R� �R� or LM� may be better� In the next chapter we address some

aspects of how to make such comparisons�

�



Chapter 	

A Likelihood Ratio Test of One vs�

Two Regimes

In this chapter we develop a likelihood ratio test for determining if the data

come from a logistic mixture of distinct distributions or arise from a single dis�

tribution �i�e� no mixture�� It is well known that this test is non�standard in the

sense that some parameters are not identi�able under the null hypothesis of no

mixture �Ghosh and Sen �
��� and McLachlan and Basford �
���� Among

econometricians there has been recent work on likelihood ratio tests with non�

identi�able parameters �Andrews �
����� Andrews and Ploberger �
����� and

Hansen �
���a�� though� as they point out� their techniques are not directly ap�

plicable to mixture data� These tests have been applied to threshold and change

point models but the unobserved �or latent� variable structure of mixture models

make these techniques inappropriate as singular Fisher information matrices are

encountered� This singularity is the basis for the di	culties with mixtures�

There have been a number of recent approaches to constructing a likelihood

ratio test for the number of regimes in a mixtures with constant transition proba�

bilities and i�i�d� random variables �Garel �
����� Lemdani and Pons �
����� and

��



Dacunha�Castelle and Gassiat �
������ These papers are generally extensions of

the ideas in Ghosh and Sen though the Dacunha�Castelle and Gassiat paper in�

troduces new techniques and a broader level of generality� The logistic mixture

models we consider have two primary di�erences from standard mixtures� 
�

the transition probabilities vary� and �� we introduce correlation through time�

The variable transition probabilities in the logistic mixture do not pose any new

signi�cant problems � indeed the variation in these probabilities will prove to

be of great use to us� However� the time series aspect invalidates the moment

conditions necessary for the application of weak and uniform convergence the�

orems cited in the papers using i�i�d� data� At least this is true for our test

case of a logistic mixture of Gaussian AR�
� processes� This problem will be

spelled out below� As a consequence we develop a new test that has the �avor

of the approaches used for i�i�d� data with constant regime probabilities but

can accommodate the test case of mixing AR�
� processes� Unfortunately this

extension comes at a cost� The mathematical feature of the model that allows us

to implement our test is the variation �non�constancy� in the regime probabili�

ties� This means we are only able to test the hypothesis of no mixture against

the alternatives of mixtures with varying regime probabilities � we are unable to

include mixtures with �xed regime probabilities as part of the set of alternatives�

We will be more clear below�

In Section ��
 we will �rst discuss the problems with testing for mixtures in

the simpler case of i�i�d� data with constant regime probabilities� Section ���

introduces our approach to the problem using the variable regime probabilities

� �rst in the context of i�i�d� data and then in our time dependent situation�

Here we derive the asymptotic distribution for the likelihood ratio statistic of

�



models that obey a series of conditions� In the subsequent section we show

that our logistic mixture of normally distributed AR�
� processes satis�es these

conditions� In the following chapter we address the question of implementing

the test in practice� check its performance via simulations� and apply the test to

the rain data introduced in Chapter ��

	�� Problems Associated with Tests for Mix�

tures

The set of problems one encounters when testing for mixtures are extensive

and generally invalidate conventional approaches� To introduce the problems we

begin by discussing a simple mixture model with i�i�d� data and constant regime

probabilities�

Suppose fxtg� t � 
���T are i�i�d� and f�x��� is a parametric family of densities

with � � A� a parameter space� We want to test

H� � X � f�x���� for some unknown �� � A versus

H� � X � g�x����� �
�
�� p

�� where g�x���� ��� p� � pf�x���� � �
� p�f�x�����

��� �� ���� �
�
�� �

�
� are unknown elements in A� and p� an unknown point in

��� 
��

Let � � ���� ��� p�� A naive likelihood ratio approach might be to examine

%T
�
� �



sup

������p

TX
t��

log g�xt���� ��� p�� sup
�

TX
t��

log f�xt���

�

and suppose that %T
D�� 	�

� or 	
�
� distribution� An examination of the proof of

such results �e�g� Theorem ����� in Sen and Singer �
���� or Wilks �
����� shows






that to apply this result there must exist �true� values �� � ����� �
�
�� p

�� such

that for b� �
� Arg max�

P
log g�xt���� ��� p� we have b� P�� ��� �Throughout

this section it will be understood that b� and its components depend upon T

though we suppress this notation�� Under the null hypothesis of no mixture

such true values do not exist� To see why this is true suppose that we further

restrict our parameter space under the alternative to satisfy p � ��� 
� �� for

some small� positive �� Then if we estimate the mixture model when the data

are generated under the null hypothesis with � � �� we would expect for large

T to have b�� � �� and b�� � �� �i�e� one can show b��
P�� �� and b��

P�� ��

under mild conditions�� But while we can estimate bp for any �xed T� it will
never converge to any �xed value� This is so because

P
log g�xt��� � ��� �� �

��� p� �
P
log f�xt��

�� for any p � in other words p is not identi�ed� As b�� and

b�� converge to ��� bp will randomly move in ��� 
� �� as the sample size grows

and not approach any particular value�

Alternatively� suppose we restrict the parameter space to have j�� � ��j �
�� p � � � �� Then for large T we would obtain b�� � �� and bp � 
 but then ��

will be unidenti�ed because
P
log g�xt��� � ��� ��� p � 
� �

P
log f�xt���� for

any ��� In this case b�� will not converge to any true value� We obtain a similar

result if we require j�� � ��j � �� p � 
� � in which case �� will be unidenti�ed

when p � �� If we do not restrict the parameter space at all than it is not

clear that any of the components of b� will converge� This example illustrates

that any approach to the mixture problem that supposes the existence of true

parameters under the null hypothesis will fail unless it is altered to take into

account the identi�ability problem� This same problem is present in conventional

Akaike Information Criterion � Akaike �
������ Lagrange multiplier� Wald �see

�



Chapter � in Sen and Singer�� and Generalized Method of Moments �chapter 
�

in Hamilton �
���� and Hansen �
���� test procedures� Mixture models are not

unique in this aspect of having parameters that are identi�able only under the

alternative hypothesis� Change point and threshold models have the same type

of di	culty� Andrews �
���� and Andrews and Ploberger �
���� have developed

and summarized an empirical processes approach to these types of problems

utilizing likelihood ratio� Wald� and Lagrange multiplier tests� Although their

methods do not work for mixture models they are of the same general type�

The motivation for our approach will arise from an appreciation of some of

the mathematical di	culties we encounter when we try to apply a conventional

approach� To make matters concrete let us retain our example above� Suppose

the data Xt are generated by f�x���� for some unknown �� � A� Without

restrictions on our parameter space there are three ways to write f�x���� in

terms of our mixture distribution g�x����


� f�x���� � g�x��� � ��� �� unspeci�ed� p � 
�� or

�� f�x���� � g�x��� unspeci�ed� �� � ��� p � ��� or

�� f�x���� � g�x��� � ��� �� � ��� p unspeci�ed��

By restricting our parameter space we may choose one of these representations of

f in terms of the mixture� g� The reason for this is that we may specify how the

estimated parameters should behave if the null hypothesis is true� For instance�

if we require p � ��� 
� �� then we would obtain ���� ���
P�� ��� If we were to

try to analyze such statistics in a conventional way we would be interested in

calculating the Fisher information� If we let l�x��� � log g�x��� then we would

�



need to compute

E

��
�l

�p

��
�����
H�

�
�E

�
�f�x����� f�x�����

�

g�x����

�����
H�

�

�E

�
�f�x����� f�x������

f�x�����

�
� �

because the integrand is identically �� Consequently�

��l

�����

is not invertible for any p and thus the conventional variance�covariance matrix

does not exist� This variance matrix is very important in all of the empirical

processes approaches and without it we cannot move forward� We encounter

this same type of problem if we use either of the other two restrictions on the

parameter space �i�e� p � ��� 
 � �� or p � ��� 
� with j�� � ��j � ���

Redner �
�
� and Feng and McCulloch �
���� found that if we choose one

of these three restrictions and the null hypothesis is true� then the identi�ed

parameters will be consistent� For example if we restrict p � ��� 
� �� then

they show b��
P���� and b��

P���� though bp is not identi�ed and will randomly
wander as the sample size grows� However� these authors were unable to make

conclusions about asymptotic inference that would help in testing whether a

mixture is present� In other words� while it is possibly true there exists a Q such

that

p
T

�B� b�� � ��

b�� � ��

�CA D��N��� Q�

under the null hypothesis and the restriction that p � ��� 
� ��� no one has been

able to determineQ in a general case� If such a Q was determined then we could

use the relation above as a basis for hypothesis testing�

�



Ghosh and Sen �
��� used empirical process results to approach this prob�

lem� They analyzed the case of f�x���� � � R� They had in mind f�x���

corresponding to a normal distribution with unknown mean � � R and a known
variance of 
� In their approach they chose to restrict j�� � ��j � �� p � ��� 
� ��

and thus the null hypothesis distribution f�x���� has the mixture representation

g�x��� � unspeci�ed� �� � ��� p � �� � � � f�x���� � 
 � f�x��� � ����

Their idea was to perform pro�le �or concentrated� likelihood� holding �xed

the non�identi�ed parameter and then treating the resulting quantity as an em�

pirical process in that parameter� In this case �� is the non�identi�ed parameter�

We sketch their argument as follows� for �xed �� � A let

Lg
T ���� � sup

	���p
�A	���	��


TX
t��

log g�xt���� ��� p� and

�b������� bp����� � Arg sup
	���p
�A	���	��


TX
t��

log g�xt���� ��� p��

where A���� �� �� � f���� p� � �� � A� j�� � ��j � �� � � p � 
 � �g� Then under
some mild conditions they show

�b������� bp�����
P�� ���� 
� for all �� � A� and

�



Lg
T ����� sup

��A

TX
t��

log f�xt���

�
� �DT �����

� � I�DT 	��
��� ���
�

where DT ����
D��N��� 
� for all �� under the null hypothesis� �The indicator I�	�

arises from the fact that p�� lies on the boundary of the parameter space � see

Cherno� �
������ At this point we do not concern ourselves with the particular

form of DT other than its limiting distribution� Then the log�likelihood ratio

�



statistic

�



sup

���A�	���p
�A	���	��


X
log g�xt���� ��� p�� sup

��A

X
log f�xt���

�
reduces to

�

�
sup
���A

Lg
T ����� sup

��A

X
log f�xt���

�
� sup

��

D�
T ���� � I�DT 	��
���

To �nd the distribution of this last quantity they show there exists a mean zero

Gaussian process� D���� indexed by �� such that 
� for any �xed �� � A�D����

has a N��� 
� distribution� and �� DT ��� W��D��� where we interpretDT ��� to be a
stochastic processes on A indexed by �� and

W�� denotes weak convergence �see

Pollard �
��� or Billingsley �
��� for extensive discussion of weak convergence��

By the continuous mapping theorem we have

�



sup

���A�	���p
�A	���	��


X
log g�xt���� ��� p�� sup

��A

X
log f�xt���

�
D�� sup

��

�D�����
� � I�D	��
����

Determining the distribution of the right�hand side above is di	cult because

the supremum�s distribution will depend upon the covariance kernel of D����

which is not easily determined in general and often must be estimated through

simulation� If one can simulate the �D�����
� � I�D	��
��� process then one can use

the suprema of the simulations to obtain an empirical distribution and conse�

quently critical points for a test under the null hypothesis� Dacunha�Castelle

and Gassiat �
���� have extended these ideas to more general tests of mixtures

in the i�i�d� case �for example� testing a mixture with p components versus one

of q components��

To this point in our work� the extension of techniques for i�i�d� data to time

dependent data has not created much di	culty as we have found central limit

theorems and laws of large numbers to use that are valid for dependent� non�

�



identically distributed data� But here we do run into surprising problems for

some time series models� In both the Ghosh and Sen and Dacunha�Castelle and

Gassiat papers a basic quantity of analysis is

E

��
f�x����� f�x����

f�x����

�k
�
� E

��
f�x����

f�x����
� 


�k
�

�����

for various powers of k where �� is an arbitrary element of A and �� is the true

parameter under the null hypothesis� In the work of Ghosh and Sen this term

arises from moments of

� log g�x���� ��� p�

�p

����
������p��

and Dacunha�Castelle and Gassiat restrict attention to parameter combinations

of �� and �� for which the expectations exist with k at least �� Both sets of

authors assume these expectations exist for all ���� �
�� � A�A �or except for an

arbitrarily small area of A�A in Ghosh and Sen�s case�� In the time series case

these expectations do not always exist� To see this suppose we revisit our test

case of a logistic mixture of AR�
� processes� We will take the mixture prob�

abilities as constant �p� and suppose the component conditional densities have

common known variance 
 �the analysis remains the same if we allow the more

general circumstances of varying probabilities and di�erent unknown variances��

Within this framework we are interested in �nding

E

��
f�Yt j Yt������

f�Yt j Yt������
�k
�
�

Then under the null hypothesis we assume Yt � �� � Yt�� � �t where �t is i�i�d�

N��� 
�� Then assuming the Yt are identically distributed with the common

�



stationary distribution N��� �
 � ��������� we see

E

��
f�Yt j Yt������

f�Yt j Yt������
�k
�
� E

�
E

��
f�Yt j Yt������

f�Yt j Yt������
�k
�����Yt��

��
�����

�E

�Z
R

�
� �yt � Yt������ �yt � Yt�����

��	k � �yt � Yt����� dyt


�����

where ��x� � ������
� exp��x���� After some algebra this is simpli�ed toZ
R

r

� �����

��
exp

�
Y �
t����k

� � k���� � ���� � �
� �������� dYt��
which is �nite i� �k� � k���� � ���� � �
 � ������ � �� This restriction greatly

reduces our initial parameter space of ���� �
�� � ��
 � �� 
� ��� ��
� �� 
� ���

In Figure ��
 below the area between the curves show the allowable ���� �
��

combinations for k � ��
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Figure ��
� Allowable �� and �� Combinations for k � �

The graph indicates that for �� � �� this expectation is �nite only for �� � ��� 
��
approximately� The next �gure shows the allowable region if we need a �nite

expectation for k � � �which may be convenient for using the Cauchy�Schwarz

inequality�� Here we see for �� � �� we require �� � ���� ���� approximately�
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Figure ���� Allowable �� and �� Combinations for k � �

For us these parameter boundaries seem too restrictive to be of use in testing the

mixture of AR�
� processes � the set of mixtures under the alternative hypothesis

seems too small� These �gures contrast sharply to the i�i�d� case where for normal

component densities these expectations exist for all ���� �
�� � R� R� and k as

long as the variances �� and �� are the same or �close� to one another �the more

moments that are required� the closer they must be��

As we feel any method we try should apply to our test case of an AR�
�

logistic mixture we are forced to develop a di�erent test� In Ghosh and Sen

�� was initially held constant and pro�led maximization was performed with

respect to p and ��� Our approach is analogous to initially holding constant p

and maximizing with respect to �� and ��� This gives rise to a di�erent set of

derivatives that avoid expectations of the form

E

��
f�Yt j Yt������

f�Yt j Yt������
�k
�
�

While this choice of parameterization leads to some other problems that force

us to restrict the parameter space under the alternative hypothesis� we are able

�



to obtain results for a reasonably large set of alternatives to the null hypothesis�

	�� The Likelihood Ratio Test

In this section we describe a likelihood ratio test for a restricted set of alterna�

tive hypotheses that allow us to obtain an asymptotic test for this smaller set of

alternatives� Our restricted set of alternatives consists of those logistic mixtures

with non�constant regime probabilities �minus a bit more to maintain a compact

parameter space�� We show below that it is the constancy of regime probabili�

ties that causes the problems with the information matrix which invalidate an

empirical process approach to the problem� With non�constant probabilities the

problem is eliminated�

Before describing our test we think it useful to re�examine the simple mixture

model in the context of i�i�d� data to indicate the problem and its solution� Here

we sketch the overall idea � we defer the proofs until we discuss the problem in

the context of time dependent logistic mixtures� We return to the situation we

investigated in Section ��
� Suppose fXtg� t � 
���T are i�i�d� and f�x��� is a

parametric family of densities with � � A� a subset of Rd for some d� We want

to test

H� � X � f�x���� for some unknown �� � A � R
d versus

H� � X � g�x����� �
�
�� p

�� where g�x���� ��� p� � pf�x���� � �
� p�f�x�����

p� �� �� 
� ��� �� ���� and ���� �
�
� are unknown elements in A� Furthermore

we restrict p� to be in ��� 
� ���

Here we adopt a pro�le likelihood technique� we �rst hold p �xed and examine

��



the likelihood ratio associated with that p� Let us de�ne

�����p�� ����p�� � Arg max
�����

Lg
T �p� ��� ��� where �����

Lg
T �p� ��� ��� �

TX
t��

log g�xt���� ��� p�� �����

We assume the null hypothesis holds� i�e� there exists a �� � A such that the

data�s true density is given by f�x�����

We also assume the set of one and two regime mixtures are identi�ed in

the sense that if p � f�� 
g then E �log g�X���� ��� p� � log f�X����� � � and

equality holds i� �� � �� � ��� As discussed in Chapter � this is the case

for many exponential family distributions� This strict inequality is the critical

condition in a Wald�like approach to consistency� From this relation �and some

other mild conditions� it can be shown that

�����p�� ����p��
P�� ���� ��� �

From the usual likelihood ratio expansion about the values ���� ��� we obtain

Lg
T �p�

��� �Lg
T �p� �

��� �����




�


p
T

�Lg
T �p� ��

���

�����
����

�



T

��Lg
T �p� ��

�����

����
����

��

p
T

�Lg
T �p� ��

���

����
����

����

where � � ����� �
�
��
�� �� � ������ ��

�
��
�� �� � ����� ������ and $� lies on a chord between

�� and ��� In the expression above we have assumed that�



T

��Lg
T �p� ��

�����

����
����


is invertible� Under the usual type of regularity conditions �Cram#er �
�����

�




Chapter � in Sen and Singer �
����� and a weak law of large numbers we have�



T

��Lg
T �p� ��

�����

����
����


P�� �����

�E

��� � log g	X������

���

����
����

� logg	X������

���

� logg	X������

���

���
����

� log g	X������

���

� logg	X������

���

���
����

� logg	X������

���

����
����

��� � ���
��
In the case of our mixture this equals

�E

��� p�
h
� log f	X��


��

���
����

i�
p�
 � p�

h
� logf	X��


��

���
����

i�
p�
 � p�

h
� log f	X��


��

���
����

i�
�
� p��

h
� log f	X��


��

���
����

i�
��� � ���

�

The matrix above �without the negative sign� we will denote as I����� If I����

is invertible then it may be shown that �again under some regularity conditions�

�
�
Lg
T �p�

���� Lg
T �p� �

��
�
� ���
��


p
T

�Lg
T �p� ��

���

�����
����

�I�������

p
T

�Lg
T �p� ��

���

����
����

� op�
�
D�� 	�

�d�p� ���
��

where op�
� means uniform convergence to � in probability and the chi�square

random variable has �d degrees of freedom because � is assumed to be a d

dimensional vector� By uniform convergence we mean

sup
p��������

��



T

��Lg
T �p� ��

�����

����
����


� I ����

 
P�� ��

From here we try try to continue analysis of the problem using the Ghosh and

Sen approach outlined in the introductory section of of this chapter� By this

we mean we treat 	�
�d�p� as a stochastic process indexed by p in ��� 
� ��� The

problem is that I���� is not invertible if p is constant� In this case the second d

rows are obtained by multiplying the �rst d rows by �
�p�p� But what happens
if p in ���

� is not constant but instead is random& We claim that in this case

I���� is �usually� invertible� For the moment we will not be concerned with how

��



our expression for I���� was derived but instead focus upon whether or not it is

invertible if p is considered as a random variable�

Let p be a random variable in ��� 
�� q � 
 � p� and V be d � 
 a random
vector satisfying E �V V �� is positive de�nite� In this context we consider

V �
� log f�X���

���

����
����

�

Here p and V are de�ned on a common probability space�

Lemma ���� Let  � fp � E �V V � j p� is positive de�nite g� Assume P� � � �

and V ar�p j  �� � �i�e� p is not equal to a constant for p �  �� Then the �d��d
matrix E ��pV �� qV ����pV �� qV ��� is positive de�nite�

Remark� We will see �in Section ���� that P � � � 
 for our test case of Gaus�

sian AR�
� mixtures and hence the condition V ar�p j  � � � reduces to p not

constant� We expect this to be a common �nding� This will be discussed more

in Section ����

Proof� De�ne Q � �pV �� qV ����pV �� qV ��� a �d��d symmetric matrix �the expec�
tation of this matrix is I���� when p and V have the interpretation described

above�� Consider z � R
�d and partition z as z � �z��� z

�
��
� where z� and z� are

elements in Rd� We want to show for z �� ��d� z�E �Q� z � � �here ��d denotes a

�d dimensional vector of zeros�� Because of the special form of Q we see that

z�E �Q� z � E �z�Qz� � E

h�
�pz� � qz��

� V
��i

�

First we consider z�� z� such that z� �� cz� for any c � R �i�e� z� and z� are not

collinear�� Then� regardless of the distribution of p we have pz� � qz� �� �d �a d

��



dimensional vector of zeros�� Now

E

h�
�pz� � qz��

� V
��i

� E

h
E

h�
�pz� � qz��

� V
�� j pii

� E

h
E

h�
�pz� � qz��

� V
�� j pi � 
�i � �

because we see from the de�nition of  that the outer expectation is the integral

of a positive function over a set with positive measure� So for z such that z� and

z� are not collinear we have z�E �Q� z � ��

We �nish the proof by considering the case when z� and z� are collinear� i�e�

z� � cz� for some c � R� Without loss of generality assume z� �� �d� Then we

may write pz� � qz� � h�p�z� where h�p� � �p� qc�� Then we still have

z�E �Q� z � E �z�Qz� � E

h�
�pz� � qz��

� V
��i

� E

h�
�h�p�z��

� V
��i

Now because P� � � � it must be the case that

E �h�p�z��V V
�z�h�p�� � E �E �h�p�z��V V

�z�h�p� j p� � 
�� � �

if P�h�p� �� � j  � � �� At this point we consider the special case of c � 
� i�e�

z� � z�� Then h�p� � 
 for all p and it follows that P �h�p� �� � j  � � �� If c �� 

then the derivative of h with respect to p is �
 � c�� a non�zero constant and

thus V ar�p j  � � � implies P�h�p� �� � j  � � �� Consequently� if z� and z� are

collinear but not both equal to �d and if V ar�p j  � � �� we have z�E �Q� z � ��

When combined with our earlier result for the case of z� and z� not collinear we

obtain the desired result�

As we mentioned in the remark preceding our proof� it will often be the case

that P� � � 
 and hence the matrix will be invertible if p is not constant

with probability 
� While we are hesitant to claim this holds for all logistic

��



mixtures of GLM time series we will� for the remainder of this chapter� assume

the information matrix is invertible as long as p is not constant � thus allowing

us to continue in an empirical process approach� We have illustrated our ideas

using i�i�d� data because it simpli�es the problem�s presentation and solution�

We now develop our ideas for the general logistic mixture model for time series

data�

Adaptation for a Logistic Mixture of Time Series Data

Here we reintroduce our general model for logistic mixtures� Let

f�yt j Xt��� �� � exp

�
ytX

�
t� � b �X �

t��

�
� c�yt� ��

�
and

P �It � 
 j Zt� �� �
exp �Z �

t��


 � exp �Z �
t��

�

The logistic mixture densities are given by

g�yt j Gt����� �g�yt j Xt��Xt�� Zt���� ��� ��� ��� ��

�P �It � 
 j Zt� �� � f�yt j Xt����� ��� �

�
�P�It � 
 j Zt� ��� � f�yt j Xt����� ����

where Gt�� � 
�Xt��Xt�� Zt�� and � � ��
�
�� ��� �

�
�� ��� �

����

Our hypotheses of interest are

H� � Yt j Gt�� � f�yt j Gt������ ��� for some ���� ��� in the interior of B�����M��

�where B is a compact subset of Rd�� and M� � �� � �� versus

H� � Yt j Gt�� � g�yt j Gt������� ���� ���� ������

where ����� �
�
�� and ��

�
�� �

�
�� � B�����M�� and Zt and �� are such that Z �

t�
� � ����

Zt��
�
������Ztr�

�
r is not constant� The �

�
�� �

�
� � ���� �

�
r are required to lie in a compact

��



set� '� in Rr�� that excludes the points given by f���� �� ���� �� � Rr�� � �� � Rg�
The points must be excluded to ensure the regime probabilities are not constant�

We let � denote the set of allowable parameter points under the alternative

hypothesis�

� � f���� ��� ��� ��� �� � �B � ����M���� �B � ����M���� 'g �

Furthermore� we restrict the covariates Xt� and Xt� to be identical for all t� We

denote the common covariates by Xt� This allows us to say that given � and �

we have

g�yt j Gt����� � �� �� � �� �� � �� �� � �� �� � f�yt j Gt����� �� ���
��

for all � � '� In this way all the no mixture models �i�e� one regime models� are
nested within the logistic mixtures�

As we want to derive a test statistic�s distribution under the null hypothesis of

no mixture we assume the data Yt have conditional distribution f�yt j Gt������ ���
for some ���� ��� in the interior of B � ����M��� We de�ne ��� a subset of � by

�� � f���� ��� ��� ��� �� � � � 'g �

i�e� the collection of parameters values with the � and � terms set at �� and

�� and the � terms allowed to vary� In light of equation ���
�� we see that for

� � �� it is the case that g�yt j Gt������ 
 f�yt j Xt���� ���� Sometimes we will

write f�yt j Gt������ ��� instead of f�yt j Xt���� ����

To obtain asymptotic results we assume the following additional conditions

are met� These conditions are analogous to those we used in Chapter � to show

consistency of the maximum likelihood estimator�

��



����A fYt�Xt� Ztg is stationary and ergodic with W denoting a random vector

having the joint stationary distribution� By this we mean Yt�Xt� and Zt

obey a strong law of large numbers in the sense that if h��� is a mea�
surable and integrable function of W then �

T

P
h�Yt�Xt� Zt�

a�s��� E �h�W ���

We denote the associated components of W as WY �WX� and WZ� We

will sometimes write g�WY jWX �WZ��� as g�W ���� This condition was

discussed at length in Chapter ��

����B E �log g�W ���� �	 for all � � � and is continuous in ��

����C For any � � �n��� elements in � but not in ��� and "� � �� we assume
E �log g�W ���� � E

h
log g�W � "��

i
� From equation ���
�� it is clear that

E

h
log g�W � "��

i
is constant for all "� � ��� This constant value is

E �log f�WY j WX��
�� ���� �

Here f�WY jWX ���� ��� is f�yt j Gt����� with yt and Xt replaced by WY

andWX � This is analogous to the identi�ability condition ��
�C in Chapter

� but is modi�ed to account for the fact that � is not identi�able under

the null hypothesis�

����D Given B���� � f�� � K � jj�� � �jj � �g we de�ne

g��W ��� �� � sup
���B�	�


g�W �����

We assume that for any � � � E �log g��W ��� ��� exists for � su	ciently

small and

lim��� E �log g��W ��� ��� � E �log g�W ���� for all � � ��

As in the case of i�i�d� data we seek to use pro�le likelihood techniques � we �rst

�x � � ' and compute the log�likelihood ratio statistic at this point� We begin

��



by setting

� ��� ��� ��� �
�
�� ���

� ���
��

�� ������ ��� ���� ���� ���
��

����� � Arg max
�

Lg
T ��� �� where ���
��

Lg
T ��� �� �

X
log g�yt j Gt��� �� �� ���
�

���� � Arg max
�
E �log g�WY jWX �WZ� �� ��� � ���
��

In the notation of the previous section � � ���� ���� With these de�nitions we

may prove the following�

Lemma ���� Under Conditions ����A � ����D we have �����
a�s�� ����� Further�

more� ���� � ���� ��� ��� ��� for all � � '�

Proof� There are two statements to prove� The �rst assertion is that �����
a�s��

����� A comparison of the conditions in this section with those used in Section

��
 to prove Theorem ��� show we can apply the results of that theorem to our

case and obtain the desired conclusion� All that is necessary is noting that � in

Section ��
 corresponds to � in this section� K corresponds to �B � ����M��� �
�B � ����M���� and �� corresponds to ���

The second statement to prove is ���� � ����� ��� ���� ��� for all � � '� This
statement follows from the identi�ability condition �����C� and the strong law

of large numbers �Condition ����A�� It may be formally proved by following the

structure of the proof in Section ��
�

�



Now we try to explicitly �nd Lg
T ���

������ � Lg
T ��� �

��� Using a Taylor series

expansion about �� we have

Lg
T ��� ��� Lg

T ��� �
�� �

�Lg
T ��� ��

���

����
��
�� � ��� �




�
�� � ����

��Lg
T ��� ��

�����

����
��

�� � ���

������

with $� lies on the chord between �� and �� If we maximize the right�hand side

to �nd ����� then using calculus and assuming the matrix of second partials is

invertible we obtain�
������ ��

�
� �

�
��Lg

T ��� ��

�����

����
��

��
�Lg

T ��� ��

���

����
��
� ����
�

Upon substituting this back into ������ we see

Lg
T ���

������� Lg
T ��� �

�� �

�

�


p
T

�Lg
T ��� ��

��

����
��

�



T

��Lg
T ��� ��

�����

����
��

��

p
T

�Lg
T ��� ��

���

����
��

������

Here we add more conditions to our model� Almost all of these conditions can

be established if log g�W ��� is su	ciently smooth with respect to � and has

derivatives that may be bounded by integrable functions�

����E For all � � '

E

�
� log g�W � �� ��

���
� log g�W � �� ��

��

����
��


� �E

�
�� log g�W � �� ��

�����

����
��


exists�

Also we assume the matrix is a continuous function of � and � and in�

vertible for � � ��� Much of this chapter concerns the invertibility of these

matrices�

����F From condition ����A we have that for any � and � such that ��� �� � � is

an element of ��



T

��Lg
T ��� ��

�����


a�s�� E

�
�� log g�W � �� ��

�����
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Furthermore� this convergence is uniform for � � �� i�e�

sup
���

���� 
T ��Lg
T ��� ��

�����
� E

�
�� log g�W � �� ��

�����

���� a�s��� ��

����G �p
T

�Lg
T
	���


��

���
��

is uniformly bounded in probability� i�e� sup
���

�p
T

�Lg
T
	���


��

���
��

is

Op�
��

Now using these conditions and ������ we can derive the following series of

equations�

��Lg
T ���

������� Lg
T ��� �

��� � ������

� 
p
T

�Lg
T ��� ��

��

����
��
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p
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�Lg
T ��� ��
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� ������
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�Lg
T ��� ��
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����
��

�
E
� log g�W � �� ��

���
� log g�W � �� ��

��

����
��

��
�Lg

T ��� ��

���

����
��
� op�
��

������

Conditions ����F and ����G allow us to conclude that the op�
� term in ������ is

uniform for � � '� This will be important for us below� We demonstrate this
uniformity as follows�

sup
�

���� �
T

�Lg
T
	���


��

���
��

�h
�
T

��Lg
T
	���


�����

���
��

i��
�
h
E

� log g	W ����

���

� log g	W ����

��

���
��

i��
�Lg

T
	���


���

���
��

����
� sup

�

��� �p
T

�L
g
T 	���


��

���
��

����sup
�

�����h �
T

��L
g
T 	���


�����

���
��

i��
�
h
E

� log g	W ����

���

� logg	W ����

��

���
��

i������
� Op�
� � op�
� � op�
�

where k � k denote either vector or matrix Euclidean norms� Now� keeping in
mind our condition that we note that fYt�Xt� Ztg have the common stationary
distribution given by W we want to verify that


p
T

�Lg
T ��� ��

���

����
��
�


p
T

TX
t��

� log g�yt j Gt��� �� ��
���

����
��

������

is a martingale� This will be implied by the following additional condition�


��



����H g�WY �WX �WZ��� is three times continuously di�erentiable with respect to

�� Furthermore there exist integrable functions F��W � and F��W � such

that for all r� s � f
� �� ���� qg�

F��W � �

�����g�W ���

��r

���� � F��W � �

������g�W ���

��r��s

���� � and
E �F��W � jWX �WZ� �	� E �F��W � jWX �WZ� �	�

This condition implies the �rst part of Condition ����E�

To show how this implies �p
T

PT
t��

� log g	ytj Gt������

��

���
��
is a martingale the critical

point is to establish

E

�
� log g�yt j Gt��� �� ��

���

����
��

����Gt�� � ��
The left�hand side above �

Z
� log g�yt j Gt��� �� ��

���

����
��
g�yt j Gt��� �� ���dyt

�

Z
�g�yt j Gt��� �� ��

���

����
��
dyt

�
�

���

�Z
g�yt j Gt��� �� ��

�����
��
� ��

As the interchange of di�erentiation and integration is justi�ed by Condition

����H� the martingale property is established� From here we can apply the mar�

tingale central limit theorem �Theorem ��
�� to show


p
T

TX
t��

� log g�yt j Gt��� �� ��
���

����
��

D��

N

�
�� E

�
� log g�W � �� ��

���
� log g�W � �� ��

��

����
��

�
�

������

To demonstrate how to use Theorem ��
� we �rst establish the following lemma�

Lemma ���� Let Qt be a real�valued stationary martingale di�erence sequence

such that E �Q�
t � � v �	 and �

T

P
Q�
t

a�s��� v� Then


p
T

TX
t��

Qt
D��N ��� v� �


�




Proof� The proof is nearly immediate from Theorem ��
�� We de�ne DT�t �

�p
Tv
Qt� Then the conditions in Theorem ��
� are satis�ed�

With Lemma ��� we can demonstrate the convergence in ���� with an ap�

plication of the Cram#er�Wold device� From this result we may reexamine ������

and conclude

��Lg
T ���

������� Lg
T ��� �

��� D�� 	�
�d �����

where d is the dimension of ���� ����

At this point we de�ne our log likelihood ratio statistic as

LRT
�
� sup

���
Lg
T ���� sup

��

Lf
T ��� �� where ������

Lf
T ��� �� �

TX
t��

log f�yt j Gt����� ���

In order to tie this statistic to what we have developed thus far we note for�
��� ��

�
� Arg max��L

f
T ��� �� we see that

�LRT ��

�
sup
�
Lg
T ���

������� Lf
T �
��� ���

�
������

��

�
sup
�
Lg
T ���

������� Lg
T ��� �

��
�
� �

�
Lf
T �
��� ���� Lf

T ��
�� ���

�
� ����
�

The last equality above holds because we showed in Lemma ��� that ���� � �� �

����� ��� ���� ���� and so Lg
T ��� ����� � Lf

T ��
�� ��� as implied by ���
��� Using the


��



same Taylor series techniques we can show that under the null hypothesis

�
�
Lf
T �
��� ���� Lf

T ��
�� ���

�
� op�
� � ������

��

���E
��� � log f	ytj Gt�����


���
� logf	ytj Gt�����


��
� log f	ytjGt�����


���
� logf	ytj Gt�����


�

� log f	ytj Gt�����

��

� logf	ytj Gt�����

�

� log f	ytjGt�����

�

� logf	ytj Gt�����

�

���
���
��

�

������

D��	�
d� where � �

��� �p
T

P � logf	ytj Gt�����

���

�p
T

P � logf	ytj Gt�����

�

��� ������

and all derivatives are evaluated at ���� ���� The chi�square r�v� in this case has

d instead of �d degrees of freedom �the matrix in ������ is d � d�� So while we

know

�
�
Lf
T �
��� ���� Lf

T ��
�� ���

�
D�� 	�

d ������

and

�
�
Lg
T ���

������� Lg
T ��� �

��
�

D�� 	�
�d ������

for �xed �� �nding the asymptotic distribution of the right�hand side of ����
�

is considerably more complicated as the chi�square r�v�s in ������ and ������ are

correlated and a supremum is involved� To proceed further we appeal to the


��



theory of empirical processes� We begin by de�ning a �d dimensional vector

st ����

�����������������

� log g	ytj Gt������
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where (b �X �
t�
�� denotes the derivative of b�X �

t�
�� with respect to � evaluated at

��� As was partially demonstrated above� we can show that st��� is a martingale

di�erence sequence �above we showed only that the �rst �d elements of st���

was a martingale di�erence�� We can extend these ideas to the whole of the �d

dimensional vector� st���� In light of Condition ����A we see these martingale

di�erences have a common stationary distribution� From here we apply our usual

martingale central limit theorem �combined with the Cram#er�Wold device� to

obtain


p
T

TX
t��

st���
D��N ��� E �st���st���

��� �����

for any � � '� However� we will need a stronger statement regarding the con�
vergence of �nite dimensional distributions� Let ��� ��� � � � � �L be elements of '�

We want to show


p
T

�BBBB�
P

st����

���P
st��L�

�CCCCA D��N

�BBBB���
�BBBB�

K���� ���� � � � �K���� �L�

���

K��L� ���� � � � �K��L� �L�

�CCCCA
�CCCCA ������


��



where is the K��i� �j� is the �d��d matrix� E �st��i�st��j��� To show this we use
the Cram#er�Wold device along with Lemma ���� Consequently� convergence of

�nite dimensional distributions to a multivariate normal has been established�

Now suppose we can show the following condition is met �and we will show

this later for our special mixture of Gaussian AR�
� processes�

����I �p
T

PT
t�� st��� is a stochastically equicontinuous sequence of functions in

C�d �'�� the space of continuous functions h such that h � '� R
�d�

By de�nition �see Andrews �
����� this would mean that for every � � � there

exists a � such that

lim
T��

P

�
sup

��������

k�����k�	


p
T

�����
TX

st��
���

TX
st��

��

����� � �

�
� ��

With the �nite dimensional convergence of ������� compactness of '� and the

stochastic equicontinuity condition above we can conclude via an empirical pro�

cesses theorem �e�g� Theorem 
��� in Pollard �
����� that there exists a unique

stochastic process �S ���� taking values in C�d �'� �with probability 
� such that


�� For �xed �� S��� � N ��� E �st���st������� and

��� If l is a continuous functional such that l � C�d �'�� R then

l


�

p
T

TX
t

st��� � � � '
��

D�� l �fS��� � � � 'g� � ������

With this result we now try to �nd a functional l that corresponds to our expres�

sion for �LRT in ����
�� Then we examine the distribution of l �fS��� � � � 'g�
and use this for our asymptotic distribution of �LRT �

It is relatively easy to �nd an appropriate functional for l� Let us de�ne

V ��� � E �st���st������ the �d��d covariance matrix appearing in ������ V �d����


��



the �d � �d upper left corner of V ���� and V d the d � d lower right corner of

V ���� These last two matrices correspond to the asymptotic covariance matrices

of


p
T

X � log g�yt j Gt��� �� ��
���

����
��
and

��� �p
T

P � log f	ytj Gt�����

���

���
����

�p
T

P � log f	ytj Gt�����

�

���
����

��� �
Inspection of st��� in ������ shows that V d does not depend upon �� Now let

h��� be an element in C�d �'�� We may consider h��� a �d dimensional vector
and partition h��� as h��� � �h�d����� hd������ where the superscripts denote the

associated length of the vectors� Now we de�ne

l�h� � sup
���

h
h�d����

�
V �d���

���
h�d���� hd����

�
V d
���

hd���
i
� ����
�

When we examine equations ������� ������� and ����
� we see that

�LRT � �

�
sup
�
Lg
T ���

������� Lf
T �
��� ���

�
� l


�

p
T

TX
t��

st��� � � � '
��

� op�
��

������

It is a subtle but important point that the op�
� term above arises from the

condition that the op�
� term in ������ is uniform for � � '� From the relation

in ������ we conclude

�LRT
D�� l �fS��� � � � 'g� ������

where �p
T

P
st��� converges weakly to S���� To determine the process S��� we

know it is marginally Gaussian� i�e� S��� � N ��� V ����� We obtain this by

considering the functional l��h���� � h��� and noting that


p
T

TX
t��

st���
D��N ��� V ���� �


��



As a Gaussian process is completely determined by its mean and covariance

structure we only need �nd the right covariance structure� Though we do not

present the details it is clear that by considering di�erent types of functionals it

must be the case that E �S����S������ � E �st����st������� For each pair ���� ���

let us de�ne K���� ��� � E �st����st������� Then the mean zero Gaussian process

with covariance kernel K���� ��� must be the unique process S��� satisfying

�������

Now we are in a position to explore the distribution of l �fS��� � � � 'g�� For
the moment suppose we know the elements of K���� ��� for every ���� ���� Then

we could use a random number generator to create independent realizations of

the S��� process and compute l�S���� for the di�erent realizations� From this

sample we can �nd an empirical distribution of l�S���� to use for approximating
the distribution of �LRT �

Of course in practice we do not know K���� ��� but we may estimate it from

the data in an obvious manner� We de�ne

�KT

�
��� ��

�
�
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st

�
��� ��� ��

�
st

�
��� ��� ��

�
and from Condition ����A and Theorem ��
 it is easy to show �KT ���� ��� con�

verges uniformly� with probability 
� to K ���� ���� From �KT ���� ��� we can

generate realizations of �ST ��� processes where the �ST ��� processes are de�ned

so that


� �ST ��� has a N
�
�� �KT ��� ��

�
distribution and�

�� E
h
�ST ���� �ST ����

i
� �KT ���� ��� �
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Next we de�ne a new functional �lT �because the l functional depends on unknown

parameters as well��

�lT �h���� � sup
���

�
h�d����

�
�K�d
T ��� ��

���
h�d���� hd����

�
�Kd
T ��� ��

���
hd���


where h��� � �h�d����� hd������ is an element of C�d �'�� With these de�nitions

we approximate the functional

l �S ���� � sup
���

n
S�d����

�
K�d��� ��

���
S�d���� Sd����

�
Kd��� ��

���
Sd���

o
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�lT
�
�ST ���

�
� sup

���

�
�S�d
T ���

�
�
�K�d
T ��� ��

���
�S�d
T ��� � �Sd

T ���
�
�
�Kd
T ��� ��

���
�Sd
T ���
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As our test relies on this approximation we must show �lT

�
�ST ���

� D�� l �S �����

Theorem ���� Let �ST ��� be a stochastically equicontinuous sequence in C�d �'�

with �ST ��� converging weakly to S ���� Also� suppose �K�d
T ��� ��

a�s���K�d��� �� and

�Kd
T ��� ��

a�s���Kd��� �� where convergence is uniform in ' and both K�d��� �� and

Kd��� �� are nonstochastic invertible matrices� Then �lT

�
�ST ���

� D�� l �S �����

Proof� We sketch the proof as follows� Let h��� be an element in C�d �'� and
partition h��� as h��� � �h�d����� hd������� Now we de�ne the transformations

Q�h���� �h�d����
�
K�d��� ��

���
h�d���� hd����

�
Kd��� ��

���
hd��� and

�QT �h���� �h
�d����

�
�K�d
T ��� ��

���
h�d���� hd����

�
�Kd
T ��� ��

���
hd����

Then we may write

�QT � �ST ���� � Q� �ST ���� �
h
QT � �ST �����Q� �ST ����

i
� ������

Now because �ST ��� converges weakly to S��� and K�d��� �� and Kd��� �� are non�

stochastic and invertible it is clear that Q� �ST ���� converges weakly to Q�S����


�



and thus

sup
�
Q� �ST ����

D�� sup
�
Q�S����� ������

Next� we want to show the term in brackets in ������ is op�
�� uniformly for

� � '� To prove this we see that

sup
�

���hQT � �ST �����Q� �ST ����
i��� ��sup

�

��� �K�d
T ��� ���K�d��� ��

��� �
sup
�

��� �Kd
T ��� ���Kd��� ��

���� � sup
�

�ST ���
� �ST ����

From our uniform convergence conditions regarding �KT ��� �� and K��� �� we see
the term in parentheses is op�
�� Because �ST ���� is stochastically equicontinuous

we may conclude that sup
�

�ST ���� �ST ��� is Op�
� if �ST �"��� �ST �"�� is integrable for

some "� � '� The proof of this last assertion is similar to the proof of Lemma ���
in the next section so we omit it here� The integrability condition is clearly met

for all � because �ST ��� has a multivariate normal distribution� Consequently we

obtain

sup
�

���hQT � �ST �����Q� �ST ����
i��� � Op�
� � op�
� � op�
��

In light of these results we can rewrite ���� to say

sup
�

�QT � �ST ���� � sup
�
fQ� �ST ���� � op�
� ��g

�sup
�
fQ� �ST ����g� op�
�� ������

where op�
� �� corresponds to the bracketed term in ������� This implies

�lT � �ST ���� 
 sup
�

�QT � �ST ���� � sup
�
Q� �ST ���� � op�
�

D�� sup
�
Q�S���� 
 l�S����

and our proof is complete�
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We will illustrate this procedure in the last chapter but �rst we examine the

conditions of our test in the case of logistic mixtures of normally distributed

AR�
� processes�

	�� Examination of Conditions for Mixtures of

Normal AR��� Processes

We reintroduce the notation for our test case of logistic mixtures of normally

distributed AR�
� processes�

f�Yt j Gt����� �� �f�Yt j Yt����� ��

� exp

�
��Yt � Yt�����

��
� 


�
log ���

�
������

P�It � 
 j Gt��� �� �P�It � 
 j Yt��� �� � exp��� � Yt�����

 � exp��� � Yt�����

� �����

From these distributions we construct our general model of a logistic mixture of

this type as

g�Yt j Gt����� � g�Yt j Yt����� �f�Yt j Yt������ ���P�It � 
 j Yt��� �� � ������

f�Yt j Yt������ ���P�It � � j Yt��� �� � ������

where � ����� ��� ��� ��� ��� ���
�� ����
�

Our mixtures will have some restrictions on the parameter space � the �� and ��

terms are assumed to lie in ��
 � �� 
� �� and there exists � � �min � ��� �� �
�max and ���� ��� are assumed to lie in '� a compact subset of R� excluding

all points of the form f���� �� � �� � Rg� These points are excluded to ensure
the regime probabilities vary� We denote by � the set of ���� ��� ��� ��� ��� ����



�



satisfying these restrictions� In Chapter � we spent some e�ort showing the er�

godic and stationary behavior of fYt�Xt� Ztg � fYt� Yt��� Yt��g when the logistic
mixture is correctly speci�ed� Here we examine the case when the mixture is

incorrectly speci�ed �i�e� the null hypothesis of no mixture is true�� In this case

Yt j Yt�� has a N ���Yt��� ��� distribution and we can easily �nd the stationary

marginal distribution for Yt as

Yt � N

�
��

��


 � �����
�
�

Furthermore� fYt�Xt� Ztg � fYt� Yt��� Yt��g has an easily derivable trivariate
normal stationary distribution� Thus Condition ����A is met�

Conditions ����B� ����D� and ����H are easily satis�ed by �nding dominat�

ing functions that are integrable� For example� suppose we wish to verify that

E �g�W ���� is continuous with respect to �� Given the continuity of the inte�

grand we need only �nd an integrable function that bounds g�W ��� for any

� � �� Let W��W� denote r�v��s that have the stationary distribution associated

with Yt� Yt��� Then for any � � � we have

jlog g�W ���j � jlog f�W� jW����� ���j� jlog f�W� j W����� ���j where

jlog f�W� j W���� ��j �
�������W� �W��

���

��
� 


�
log ���

����� ������

�c�



�
log ���max �

W �
� �W �

� � � jW�W�j
��min

� ������

Because W� and W� are bivariate normal the right�hand side of ������ is clearly

integrable so continuity is established� The other claims in these conditions can

be similarly established�

Condition ����C may be veri�ed using the techniques in Section ������

The di	culty in obtaining a well behaved information matrix is the crux of








the trouble associated with tests for mixtures� As described in the introductory

section to this chapter it is this trouble which leads to an empirical processes

approach of Ghosh and Sen �
��� and Dacunha�Castelle and Gassiat �
�����

Unfortunately� neither of these approaches can be directly used as the restriction

to ��� �� and ���� ��� combinations satisfying

E

�
���� f�W ��� ��

f�W ���� ���

����k
��

�	

is too restrictive in the case of Gaussian AR processes �this was discussed at

length in Section ��
�� In our approach we consider a di�erent restriction of the

parameter space that allows us to avoid ratios of this form�

To check that our information matrices in Condition ����E are well behaved

we check to see that the conditions of Lemma ��
 are met� To use the notation

of the lemma we take

p �
exp ��� � ��W��


 � exp ��� � ��W��
and V �

��� 	W��W��
�
W�

�

	W��W���

�

�	�
�
� �

��

��� �
We want to show

E

���
�B� pV

qV

�CA
�B� pV

qV

�CA
���� is positive de�nite�

In Section ��� we claimed P � � � 
 for our logistic mixture of Gaussian AR�
�

processes� where

 � fp � E �V V � j p� is positive de�nite g�

To see this note that a given value of p uniquely determines a given value of W�

so we want to show E �V V � jW�� is positive de�nite for almost all W�� To show



�



this we �rst note that

V �
� log f�W� jW���� ��

���� ���

����
�������

�
�

��� � log f	W�jW����

���

���
�������

� log f	W�jW����

�

���
�������

��� �
Then it follows that

E �V V � jW�� �� E
�
�� log f�W� jW���� ��

���� ���������

����
�������

�����W�

�

�

��� W �
�

�
�

� �
���

���
which is clearly positive de�nite if W� �� �� As W� is marginally Gaussian this

exceptional set has measure �� Thus the conditions for Lemma ��
 are met and

Condition ����E is justi�ed�

The next condition we check is ����F which concerns uniform convergence�

In section ����� we showed how to prove uniform convergence of the Hessian

matrix when the logistic mixture was correctly speci�ed by �nding integrable

functions that bounded the third derivatives� This same approach works here

and we consider this condition justi�ed�

Establishing Condition ����G requires a little e�ort� Though there may be

other methods of proof we will use a theorem for stochastic equicontinuity of

martingales�

Lemma ���� Suppose�

p
T

TX
t��

� log g�yt j Yt��� �� ��
���

�����
��

�
T�N

������

is a stochastically equicontinuous sequence of functions in C�d�'�� the space of

R
�d�valued continuous functions with domain '� In addition suppose that� for



�



some "� we have


p
T

TX
t��

� log g�yt j Yt��� "�� ��
���

����
��

D��X ������

where X denotes an integrable random variable� Then

sup
���


p
T

TX
t��

� log g�yt j Yt��� �� ��
���

����
��
� Op�
�� ������

Proof� Let � � � be given and de�ne

RT ��� �

p
T

TX
t��

� log g�yt j Yt��� �� ��
���

����
��
�

From ������ we know there exists a T� and M� such that

P�jRT �"��j � M�� � �� for all T � T�� ������

From our de�nition of stochastic equicontinuity let � satisfy

lim
T��

P
�

sup
jj�����jj�	

��RT ��
���RT ��

��
�� � ��

	
� ��� �����

and let K � inf fN � N � N� � sup
�����

jj�� � ��jjg where throughout this proof ��

and �� are arbitrary elements in '� K is guaranteed �nite since ' is compact�

Then for arbitrary � � ' � jj� � "�jj � K�� and

�sup
���

jRT ����RT �"��j � K��� � � sup
jj�����jj�K	

��RT ��
���RT ��

��
�� � K��

	
� � sup

jj�����jj�	

��RT ��
���RT ��

��
�� � ��

	
which implies

P �sup
���

jRT ����RT �"��j � K��� �P� sup
jj�����jj�	

��RT ��
���RT ��

��
�� � ��

	 � ���

������



�



From ������ and ������ we see

lim
T��

P �sup
���

jRT ���j � M� �K��� ������

� lim
T��

P �jRT �"��j� sup
���

jRT ����RT �"��j � M� �K��� ����
�

� lim
T��

P �jRT �"��j � M�� � lim
T��

P�sup
���

jRT ����RT �"��j � K��� � �� ������

So

lim
T��

P�sup
���

jRT ���j � M� �K��� � ��

From our de�nition of RT ��� the proof is complete�

Remark� As mentioned in the previous section� this proof works to show that if

�ST ��� is stochastically equicontinuous and E
h
�ST �"��� �ST �"��

i
�	 for some "� � '

then sup
�

�ST ���� �ST ��� is Op�
�� In this case we de�ne RT ��� � �ST ��� and the

proof follows as above�

At this point we note that any � � ' will su	ce as the "� term in the statement
of the Lemma ��� since we know that


p
T

TX
t��

log g�yt j Gt��� �� ��
���

����
��

D��N ��� E �st���st���
��� �

As both this lemma and Condition ����I are concerned with stochastic equicon�

tinuity it seems the appropriate time to discuss a theorem that tells us when a

martingale may be stochastically equicontinuous� The theorem below is drawn

from Hansen �
���b� and is particularly suited for Lipshitz smooth functions of

our parameters� �� Let Wt be Rp valued random vector on � �F �P� and h�w� ��
be a parametric class of random functions from Rp � ' R�� where ' is compact

set �parameter space� in Ra � The conditions for this theorem are

A�
� The function h satis�es a Lipshitz condition��h�w� ���� h�w� ���
�� � b�w�

������ � ��
���� ������



�



for all ��� �� � ' where b � Rp� R�

A��� For some q � max��� a� �where a is the dimension of �� jjb�w�jjq �	�

A��� For all � � '� jjh�Wt� ��jjq �	� and

A��� fh�Wt� ��� 
�Wt���Wt��� ����g is a stationary and ergodic martingale di�er�
ence sequence�

where jj�jjq in A�� and A�� denotes the usual Lq norm�

Theorem ���� Under conditions A�
 � A�� we have that for every � � � there

exists a � � � such that

lim
T��

�����
����� sup

����� �

jjh	W���
�h	W���
jj
q
�	


p
T

�����
TX
t��

�h�Wt� �
��� h�Wt� �

���

�����
�����
�����
q

� �� ������

TheW in jjh�W����� h�W����jjq has the common distribution of the stationary
Wt�s� We should note that the result above is stated in terms of Lq equicontinuity

instead of the more familiar L� result and uses the Lq norm in de�ning the

modulus of continuity�

sup
����� �

jjh	W���
�h	W���
jj
q
�	


p
T

�����
TX
t��

�h�Wt� �
��� h�Wt� �

���

����� �
An application of the Markov inequality and the Lipshitz continuity condition

A�
 let us rewrite this in a more familiar way�

Corollary ��	� Under conditions A�
 � A�� we have for all � � � there exists a

� � � such that

lim
T��

P

�
sup
����� �

jj�����jj�	


p
T

�����
TX
t��

�h�Wt� �
��� h�Wt� �

���

����� � �

�
� ��



�



Remark� As de�ned above� h�W��� takes values in R though we have in

mind showing stochastic equicontinuity �s�e�� of �p
T

P
st��� which is a vector�

However� if each component of �p
T

P
st��� is s�e� then it follows that the vector

�p
T

P
st��� is also s�e� Thus it is su	cient to use the theorem to prove each

element of the vector is stochastically equicontinuous�

So as � is two dimensional we wish to apply this theorem twice with Wt �

�Yt� Yt��� and h�Wt� �� � st���i� the ith component of st��� as de�ned in ������

with

b�X �
t�
�� �

�Yt������

�
� c�yt� �� � � log ���

�
� �y�t
��

� and

pt��� �
exp ��� � Yt�����


 � exp ��� � Yt�����
and i � �� 
�

We have already demonstrated that st��� is a martingale and so we need only

demonstrate the existence of a function that uniformly bounds the derivatives

�with respect to �� and the existence of qth moments for st���� Techniques for

showing the integrability of such functions has been demonstrated previously so

we omit it and consider this condition justi�ed�

With this demonstration we have shown how our sample model �ts the con�

ditions of the previous section and will therefore have a likelihood ratio statistic

with the appropriate asymptotic distribution � see equation ������� The next

chapter is concerned with the performance of our test and includes a brief sum�

mary of the underlying theory we presented in this chapter�



�



Chapter 


Applications of the Likelihood Ratio

Test

In this chapter we examine the performance of our likelihood ratio test using

simulations and the GATE dataset� We begin by summarizing the theory un�

derlying our test and then discuss a general algorithm for producing realizations

of Gaussian �elds that have the required covariance structure� There are at least

two straightforward methods for producing such realizations and because they

have di�erent computational burdens it is worthwhile to examine the methods

in some detail� After describing our algorithm we perform some simulations to

check that our test works well when the null hypothesis of a one regime �no

mixture� model is true� Our results support the theory developed in the last

chapter� Next we examine the power of our test by comparing it to an alter�

native test procedure in simulations of logistic mixtures of AR�
� processes� In

this chapter we refer to our test as the empirical process� or EP� test and the

alternative test as the Monte Carlo� or MC� test� The simulations suggest our

test works well in comparison to the alternative Monte Carlo method� Finally�

we apply our test to the GATE data discussed in Chapter � and conclude that







there is strong evidence of a mixture of log�normal densities�


�� Implementing the Test

We begin with an observed set of data fyt�Xt� ZtgTt��� Under the hypothesis

that a logistic mixture is present we assume the conditional density of the fytg
is given by

g�yt j Gt������ �g�yt j Xt� Zt��
�
�� �

�
�� �

�
�� �

�
�� �

��

�P �It � 
 j Zt� �
�� � f�yt j Xt��

�
�� �

�
�� �

�
�P�It � 
 j Zt� �
��� � f�yt j Xt��

�
�� �

�
���

where Gt�� � 
�Xt� Zt�� �
� � ����

�� ���� �
�
�
�� ���� �

����

f�yt j Xt��� �� � exp

�
ytX

�
t� � b �X �

t��

�
� c�yt� ��

�
and

P�It � 
 j Zt� �� �
exp �Z �

t��


 � exp �Z �
t��

�

�� is assumed to be some unknown element of �� a compact subset of Euclidean

space� The � component of � is assumed to lie in ' a compact subset of Rr��

and it is assumed that for any � in '� Z �
t� � �� � ��Zt� � � � � � �rZtr is not

constant �i�e� Z �
t� varies with t��

Here we will summarize our results from Chapter �� Using the EM algorithm

approach of Chapter �� or some other maximization procedure� one �nds the

maximumlikelihood estimates of the mixture parameters� �� � ������ ���� ����� ���� ������

One must ensure that these estimates lie in the compact region ' � perhaps by

using a constrained optimization procedure� Once these parameters are found

we obtain the value of the mixture likelihood associated with this particular set�



�



We denote this by

Lg
T �
���

�
�Arg max

���

TX
t��

log g�yt j Gt��� ���� ���
�

To get the log likelihood ratio we need the corresponding maximum likelihood

parameters for a single regime model� We obtain these through some generalized

linear models �tting package and evaluate the log likelihood at these parameters�

This value we denote as

Lf
T �
��� ���

�
�Arg max

��

TX
t��

log f�yt j Gt����� ��� �����

Under the null hypothesis that there is no mixture and the true conditional

density is given by f�yt j Xt���� ���� we showed in the last chapter that

� �
�
Lg
T �
���� Lf

T �
��� ���

�
converges �in distribution� to the supremum of a transformation of a Gaussian

random �eld � elements of the �eld are denoted by S��� for � � '� For any

� � '� S��� has a �d dimensional mean zero multivariate normal distribution

with variance matrixK��� ��
�
�E �st���st����� where st��� is de�ned in ������ and

d is the dimension of ���� ���� For any two elements in '� the covariance matrix

is given by K���� ��� � E �st����st�������

The transformation we apply to this �eld is given by

S����d
� �
K��� ���d

	��
S����d � S���d

� �
K��� ��d

	��
S���d

where S����d denotes the �rst �d elements in the vector S���� S���d denote the

last d elements� and K��� ���d is the �d��d upper left hand corner of theK��� ��
matrix� and K��� ��d is the d � d lower right hand corner of the same matrix�


��



Showing K��� ���d is invertible was an important part of our discussion� Our

primary result from Chapter � was showing that

� �
�
Lg
T �
���� Lf

T �
��� ���

� D��

sup
���

n
S����d

� �
K��� ���d

	��
S����d � S���d

� �
K��� ��d

	��
S���d

o
� �����

Because we do not know K���� ��� we must estimate it from our sample data by

�KT ��
�� ���

�
�



T

TX
t��

st��
�� ��� ���st��

�� ��� ���� �����

where st��� ��� ��� corresponds to our de�nition of st��� in ������ except with � ��� ���

in place of ���� ���� With this change we approximate the original functional with

a new one�

sup
���

n
S����d

� �
K��� ���d

	��
S����d � S���d

� �
K��� ��d

	��
S���d

o
�

sup
���

�
�ST ���

�d�
h
�KT ��� ��

�d
i��

�ST ���
�d � �ST ���

d�
h
�KT ��� ��

d
i��

�ST ���
d

 
�����

where �ST ��� �
�
�ST ���

�d�� �ST ���d
���

has a N
�
�� �KT ��� ��

�
distribution with covariance kernel �KT ���� ��� for ��� �� � '� In Theorem ��� we

showed the two functionals above have the same asymptotic distribution�

We now address the question of how best to �nd the distribution of this

approximation� The simplest way is to create a large number� say L� independent

Gaussian random �elds that have the required covariance function �KT ��� �� and
directly compute

sup
��f������Ng

�
�ST ���

�d�
h
�KT ��� ��

�d
i��

�ST ���
�d � �ST ���

d�
h
�KT ��� ��

d
i��

�ST ���
d

 
for each realization where

!
�� � � � �N

"
is a grid of points in '� The maximumwe

obtain over the grid is then our proxy value for the maximum value over '�


�




The L maxima thus obtained will form an empirical distribution whose quan�

tiles approximate the quantiles of our unknown functional

sup
���

n
S����d

� �
K��� ���d

	��
S����d � S���d

� �
K��� ��d

	��
S���d

o
�

Hence� we are now interested in �nding good ways to generate Gaussian random

�elds with the appropriate covariance structure� The �rst way that might come

to mind requires the construction of a matrix with entries for each �KT ��i� �j�

submatrix where �i and �j are in f��� � � � � �Ng� With this approach we construct
a matrix with dimensions �d �N � �d �N consisting of N� blocks of size �d� �d�

�QT ��
�� ���� �N� �

������
�KT ���� ��� � � � � �KT

�
��� �N

�
� � � �KT ��i� �j�

�KT

�
�N � ��

�
� � � � �KT

�
�N � �N

�
������ �

Each �KT ��i� �j� block is constructed from the data as in equation ������ From

�QT ��
�� ���� �N� we may obtain a Cholesky factorization� �MT ��

�� � � � � �N � satisfy�

ing

�MT ��
�� � � � � �N � �MT ��

�� � � � � �N �� � �QT ��
�� � � � � �N �

where �MT ���� � � � � �N� is a lower triangular matrix and �MT ���� � � � � �N�� its upper

triangular transpose� If Z is a vector of i�i�d� N��� 
� random variables with

length �d �N then it is clear that

�MT ��
�� � � � � �N�Z has a N��� �QT ��

�� � � � � �N�� distribution�

By combining the appropriate elements of �MT ���� � � � � �N �Z with
h
�KT ��i� �i��d

i��
and

h
�KT ��i� �i�d

i��
one can �nd the supremum for this particular realization

of the �eld� Di�erent realizations of Z give di�erent realizations of the �eld�

While this method is conceptually clear there is a signi�cant drawback associated


��



with it� If � is multidimensional then the number of gridpoints can be quite

large and can make construction of this QT ���� � � � � �N� matrix di	cult from a

computational perspective�

As an example let � � ' � R
�� Suppose that for each of the three dimensions

of ' we sample 
� points so that we end up with 
��� � 
�� points in '� i�e�

N � 
���� Now� d is the dimension of ��� �� and is at least �� So our matrix

�QT ���� � � � � �N � has at least �� million entries� If each entry requires  bytes

this means we need approximately � megabytes of space to merely store the

�QT ��
�� � � � � �N � matrix� This does not take into account the resources and time

necessary to compute the Cholesky factor� Alternatively� if ' is � dimensional

and we sample at 
� points for each dimension we require ����
�� �
�� bytes
of space� less than � megabytes� This example indicates the Cholesky method is

quite sensitive to the dimension of '� Increasing the number of gridpoints by a

factor of 
� increases the computational burden by a factor of 
���

We present an alternative method that is less computationally demanding�

Here we de�ne Z � �Z�� � � � � Zt� � � � � ZT � to be a vector of i�i�d� N��� 
� random

variables of length T � the sample size� For each �i � f��� � � � � �Ng de�ne

�ST
�
�i
�
�


p
T

TX
t��

Zt � st��i� ��� ����

Then a bit of algebra shows
n
�ST ��i� � �i � f��� � � � � �Ng

o
has the right marginal

and joint distributions� As before� di�erent realizations of Z lead to di�erent re�

alizations of the Gaussian �eld� In this case we need not generate the �KT ��i� �j�

terms �for i �� j� which required so much time and space in the Cholesky method�

While this method is still sensitive to the dimension of '� the increased bur�

den from increasing the number of gridpoints is linear with this method� not


��



quadratic� We will use this method in the simulations and application below�


�� Simulation Results

In this section we present some simulation results� The �rst set of simulations

examines our claim that under the null hypothesis

� �
�
Lg
T �
���� Lf

T �
��� ���

�
� �����

sup
��f������Ng

�
�ST ���

�d�
h
�KT ��� ��

�d
i��

�ST ���
�d � �ST ���

d�
h
�KT ��� ��

d
i��

�ST ���
d

 
�����

for some suitably chosen grid of values in '� In a second set of simulations we see

how well our test detects a di�erence when the data is generated by a mixture

� i�e� we examine the power of our test for a �xed alternative and compare it to

that of another test�

Simulation Under the Null Hypothesis

We begin by generating ��� observations from a normal AR�
� process with

mean �� and standard deviation ��� That is

Yt j Yt�� � N ���Yt��� ���� �


��



Our alternative mixtures are characterized by the conditional density

g�yt j Yt����� �f�yt j Yt������ ���P�It � 
 j Yt��� �� �

f�yt j Yt������ ���P�It � � j Yt��� �� �

where � ����� ��� ��� ��� ��
� and

f�yt j Yt����� �� � exp
�
��yt � Yt�����

��
� 


�
log ���

�
P �It � 
 j Yt��� �� � exp��Yt���


 � exp��Yt���
�

To ensure the probabilities P�It � 
 j Yt��� �� are not constant� � is restricted to
lie in a compact set of the real line that excludes ��

From our set of ��� observations we �t a one regime �or no mixture� model

and generate estimates � ��� ���� These are the estimates that would be obtained

through ordinary maximumlikelihood �tting of AR�
� data� We also �t a logistic

mixture model and obtain estimates of ���� ��� ��� ��� ��� From these estimates

we obtain a log likelihood ratio that is one�half the term in ������

Next we select a grid of points at which to evaluate our random �eld � in

this case the grid is very coarse� consisting of the points f��������������
���
�
��������� ��� ��� 
� 
��� �� ���� ���g� Were we not performing simulations a �ner
grid would be chosen but to save time we used this one� We also chose � to be

one dimensional for the same reason� From examining realizations of our �eld

we believe the maxima would not be much greater if the grid were made more

�ne� Thus we feel comfortable with using a relatively coarse grid�

Following the procedure we outlined in the previous section� for our initial

sequence of ��� observations we generated L � 
�� random �elds with the co�

variance structure indicated by the st��� ��� ��� terms� From these 
�� realizations

of the random �eld we obtained 
�� suprema corresponding to the supremum in


��



equation ������ To construct a test with approximate size of ��� we reject our

hypothesis of no mixture if

� �
�
Lg
T �
���� Lf

T �
��� ���

�
� ��th ordered value of the 
�� suprema�

More generally� if we seek a test with size �
�� we reject the hypothesis of no

mixture if

� �
�
Lg
T �
���� Lf

T �
��� ���

�
� �
�� � ��th ordered value of the 
�� suprema�

Also we generate a p�value for each simulation by de�ning

p�value � ) of the 
�� suprema that exceed � �
�
Lg
T �
���� Lf

T �
��� ���

�
�

We performed these steps for each simulation �a simulation corresponds to

a single realization of ��� observations�� We duplicated this process 
�� times

with new sequences of ��� observations generated by an AR�
� process with

mean � ��� standard deviation � ��� From these 
�� simulations we produced


�� ��� quantiles to which we compared our 
�� likelihood ratio statistics �as

in ������� We also generated ���� ��� ���� and ��� quantiles as well� The table

below shows how our empirical quantiles corresponded to the theoretical results�

The empirical frequencies refer to the number of trials �out of 
��� in which the

likelihood ratio statistic exceeded the empirical quantile� The results indicate

the empirical distribution �ts quite well� The mean quantiles in the Table ��


are the averages of the 
�� quantiles generated� To further investigate the �t

we constructed a quantile plot of the p�values which we de�ned above� If the

empirical distribution is a good �t to the log�likelihood ratio we should see the

plot of the p�values lying close the the diagonal line that corresponds to the

quantiles of a uniform random variable�


��



Figure ��
 con�rms that the �t is good over the entire distribution� not just at

the selected quantiles presented in Table ��
� A Kolmogorov�Smirnov two�sided

test yields a p�value of ��� for the null hypothesis that the empirical p�values

pictured as dots on the graph come from a uniform distribution� We believe these

results support our view that the asymptotic distribution of the log likelihood

ratio is given by the distribution of our proposed functional�

Part of what is not addressed in this simulation is how well the asymptotic

distribution characterizes smaller sample sizes� We chose a large sample size of

��� to have some con�dence that the results should re�ect asymptotic behavior�

We did not explore the performance of the test with fewer observation� Future

work on logistic mixtures should examine this question�

Simulations Under the Alternative Hypothesis

Here we investigate how well our test detects the presence of a mixture� As we

wanted to contrast our results with a test that is already in use� we had at least

three tests from which to choose� Two such tests were discussed in the Chapter


 � tests by Hansen �
���� 
���b� and by Gong and Mariano �
����� Both of

Probability Mean Quantile Empirical Frequency Theoretical Frequency

��� ���� �� ��

�� ���� 
� 
�

��� ���� 
� 
�

��� ���� � �

��� ��
� � 


Table ��
� 
�� Simulations of ��� Observations
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Figure ��
� Quantile Plot When the Null Hypothesis is True

these tests were developed in the context of hidden Markov model regression and

we explored the possibilities for adapting them to our logistic mixture model�

In the case of Hansen�s test we developed an analogous procedure �Hansen�s

test is quite general with respect to model speci�cation� for logistic mixtures�

yet the test�s power was poor� This is not surprising as the critical values for the

test are derived not for the distribution of the log�likelihood ratio� but rather

for a variable that bounds �from above� the likelihood ratio� The observed

likelihood ratio is then compared to the critical value based on this bound� In

short� this bound is too generous to have much power� We did perform some

simulations �not presented here� in which both our test and the alternative test

we chose performed much better than Hansen�s� Originally we had planned to

use a Hansen�like approach to testing the likelihood ratio but its poor power


�



suggested that we develop another means�

Gong and Mariano �
���� presented a test statistic with an exact asymptotic

distribution� not a bound� The test is di�erent from any other considered in

that its test statistic is drawn from the spectral representation of the fYtg�
As with Hansen�s test this procedure was developed for a two regime hidden

Markovmodels with regime probabilities determined by a �xed transition matrix�

However� this test requires an analytic expression for the spectral distribution of

Yt under the alternative hypothesis and it is not clear to us how to derive this

in the context of logistic mixtures with covariates� Consequently we are unable

to use this test as an alternative�

Both of these proposed test and our test use the idea of performing pro�led

maximum likelihood holding �xed some parameter� say �� and then considering

the result a process that varies with �� A potentially more appealing approach

is to use a Monte Carlo or bootstrap approach to the problem� In the context of

i�i�d� data with constant regime probabilities this approach has been examined

by a number of authors � among them McLachlan �
���� McLachlan� Green�

and Basford �
����� and Feng and McCulloch �
����� The idea is that given a

sequence of observed data we obtain the log likelihood ratio by estimating the

model under both the single regime and the mixture hypotheses� Then� using

the results from the single regime estimation we generate independent datasets

according to the distribution given by the single regime parameter estimates� To

each of these datasets we �t both one and two regime models that give us a like�

lihood ratio statistic� Thus each independent dataset generates a likelihood ratio

statistic that is derived when the data was generated by our original sample�s

one regime estimates� We then compare the original likelihood ratio statistic to


��



quantiles derived from our empirical sample of likelihood ratio statistics� We re�

ject the hypothesis of no mixture if the original likelihood ratio statistic exceeds

some pre�speci�ed quantile of the empirical sample�

There are at least two drawbacks to such a procedure� First �as pointed

out by Hansen �
������ while the design is intuitively appealing the approach

lacks a theoretical basis for claiming the empirical sample should provide a good

estimate of the likelihood ratio when the null hypothesis is true� It may be that

there is an asymptotic equality but we are not aware of a demonstration to this

e�ect� Second� as also pointed out by Hansen �
���� and Hamilton �
����� there

is some di	culty in �nding maximum likelihood estimates of a mixture when the

data are generated by a one regime model� In such cases the m�l�e�s are di	cult

to �nd as the likelihood surface is likely to be relatively �at with many local

maxima� Yet this Monte Carlo method depends upon �nding the mixture m�l�e�s

for each of several independently generated datasets� In practice the search is

likely to result in an underestimated maximized likelihood values� This will lead

to rejecting the hypothesis of no mixture more often than is correct �under the

assumption that the empirical distribution of the independent datasets is a good

estimate of the likelihood ratio statistic under the null hypothesis�� The more

complicated the parameter space �or more dimensions� the more likely one is to

underestimate the maximized likelihood under the mixture hypothesis� On the

other hand many authors report this method works well in simulations and even

performs adequately in small samples �Feng and McCulloch �
������

To examine the two tests we used data generated by the following logistic


��



mixture model�

g�yt j Yt����� �f�yt j Yt������ ���P�It � 
 j Yt��� �� �

f�yt j Yt������ ���P�It � � j Yt��� �� �

where � ����� ��� ��� ��� ��
� and

f�yt j Yt����� �� � exp
�
��yt � Yt�����

��
� 


�
log ���

�
P �It � 
 j Yt��� �� � exp��Yt���


 � exp��Yt���
�

In the simulations ���� ��� � ���� ����� ���� ��� � ���� ���� and � � �
 and the
sample size was ���� These model parameters were chosen because they seemed

to generate data for which the tests had quite variable results as opposed to

di�erent parameter choices for which the tests nearly always rejected or nearly

always accepted the null hypothesis� Fifty samples of independent data were

generated according to the model above� For each of the �fty datasets we de�

termined the likelihood ratio statistic� Also for each of the �fty datasets� 
��

independent Gaussian �elds were generated which our test �which we refer to as

the empirical process� or EP test� used to create a p�value for the the hypothesis

that the dataset was generated by a one regime model �the grid points used in

the earlier simulations was used here as well�� In addition� for each of the �fty

datasets 
�� Monte Carlo simulations were produced to obtain a p�value for the

Monte Carlo �MC� test� We could have generated more than �fty sets of data

but the trends were clear�

In Figure ��� we show box�plots of the �� p�values we obtained under the two

test procedures� The �gure indicates that on average the EP test performed

somewhat better than the MC procedure � this despite the likelihood that the
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Figure ���� Comparison of Empirical Process and Monte Carlo Tests via Boxplot

MC test probably underestimated the maximized likelihood under the mixture

hypothesis� �It is also true that the EP test underestimates the quantiles of true

distribution because our search for the maxima is restricted to a �nite grid of

points� However� as mentioned above� our impression was that the realizations of

the chi�square processes were relatively �at and that more points would not have

greatly increased the maximum values�� The mean p�value for the EP test was

�

 and that for the MC test was �
� The corresponding standard deviations

were �
� and �
��

In Figure ��� we use a scatterplot to show how the two tests fared on each trial�

For points above the diagonal �� degree line the EP p�value was lower than the

MC test and the reverse was true for points above the line� From this we see


��



•

•

•

•

•
•

•
•

•

•

•

••
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

•

•

•

••

•

•
•

EP p-values

M
C

 p
-v

al
ue

s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure ���� Comparison of Empirical Process and Monte Carlo Tests via Scat�

terplot

that our empirical process test was more discriminating in the great majority

of the cases and we feel comfortable concluding that this suggests our empirical

process test is more powerful than the Monte�Carlo test � at least for this choice

of parameter values�


�� Application to Rain Data

In this section we apply our test to the rain rate data described in Chapter ��

We recall from Table ��� that the log�likelihood associated with the one regime

�
R� model was �
������ and that of the logistic mixture �LM� was �
�
 so our


��



test statistic is given by

� � ��
����� � 
������� � �����

Let � � �a� b� d� where a� b� and d are as de�ned in section ���� Now de�ne

st��� ��� ��� �

����������������

pst�ht� ��
P yt���

�

pst �ht� ��
P

�
��

�
	yt���
�

�
� 

�

pct�ht� ��
P yt���

�

pct�ht� ��
P

�
��

�
	yt���
�

�
� 


�
P yt���

�P
�
��

�
	yt���
�

�
� 

�

����������������
and

�KT ��
�� ��� �




T

X
st��

�� ��� ���st��
�� ��� ���

where �� � ���� and �� � 
��� correspond to the one regime model estimates

in Table ��� and we abuse notation by writing pst �ht� a� b� d� and p
c
t�ht� a� b� d� in

section ��� as pst�ht� �� and pct�ht� �� here� If we denote by �ST ��� a normally

distributed� six dimensional mean zero random vector such that

E

h
�ST ��

�� �ST ��
��
i
� �KT ��

�� ���

then we want to compare our test statistic�s value of ���� to quantiles of

sup
���

�
�ST ���

��
h
�KT ��� ��

�
i��

�ST ���
� � �ST ���

��
h
�KT ��� ��

�
i��

�ST ���
�

 
����

where the superscripts denote the partitioned components of the associated vec�

tors and matrices as described in Section ��
 and ' corresponds to a three di�

mensional parameter space for �a� b� d�� For any �xed � we know the expected

value of

�QT ���
�
� �ST ���

��
h
�KT ��� ��

�
i��

�ST ���
� � �ST ���

��
h
�KT ��� ��

�
i��

�ST ���
� �����
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is ��� � � because both quadratic forms have a marginal chi�square distribution�
While we cannot easily determine a closed form solution for the variance of �QT ���

�because of the correlation between the chi�square terms� it is hard to imagine

the variance would be large enough so that the supremum of the �QT ��� process

might approach our test statistic�s value of ����� However� in the interests of

completeness we do perform our test procedure� To implement our test we need

to specify a grid of points over which to search for suprema� For our grid we

take

a � A � f���
��
��� � � � � 
��� ��
g
b � B � f�� �
�� ��
�� � � � � ��g
d � D � f����
����
��� � � � � 
��� ���g

' � A�B �D contains ��� points�

We created 
�� simulations of our �eld and the empirical distribution of the

maxima is given below� The �rst two �gures in the table are the empirical

Mean Variance ��) ��) ��) ��) ��) ��) Max

���� ���� ���� ��
� ��� ���� ���� 

�� 
���

Table ���� Empirical Suprema

distribution�s mean and variance � the other �gures correspond to quantiles�

It is clear from these data that our test statistic of ���� far exceeds all the

empirical maxima� From this comparison we would reject the null hypothesis

that the rain data is produced by a single log�normal distribution in favor of

the alternative of a � regime logistic mixture model with non�constant regime

probabilities�

Another test we might wish to consider would examine the null hypothesis of


��



a mixture with constant probabilities �the �R model in Chapter �� against the

LM model� As discussed in Chapter �� a likelihood ratio test in this situation

also su�ers from identi�ability problems that might be eliminated with an em�

pirical process approach� Future work on the GATE dataset might include such

analysis�


��



Chapter �

Main Results and Future Work

��� Main Results

In this dissertation we introduced a broad class of time series mixture models�

Our results were for mixtures with only two component densities� The compo�

nent densities were assumed to have a GLM form and the mixture probabilities

varied according to a logistic regression model� We think these models an im�

portant addition to modeling choices as they allow the analyst to include factors

that may make one regime more likely than another� Threshold models have this

�avor but seem to us somewhat rigid� In Chapter � we de�ned an EM algorithm

approach to estimation and next showed that the estimates are consistent and

asymptotically normal under a set of general conditions� In Chapter � we used

simulations to suggest that these logistic mixture models may be superior to

conventional threshold autoregressive models that yield biased estimates if the

threshold variable is measured with noise�

In Chapter � we dealt with likelihood ratio tests for determining the presence

of a logistic mixture versus the null hypothesis that the data is generated by a


��



single regime �i�e� no mixture�� We found that because the regime probabili�

ties are not constant it is possible to obtain the asymptotic distribution of the

likelihood ratio statistic� This test necessarily excludes mixtures with constant

regime probabilities from the set of mixtures under the alternative hypothesis�

In Chapter � we used simulations to see the test had good performance under

both the null and alternative hypotheses�

��� Future Work

We encountered several interesting questions that we think worthy of more con�

sideration� We think there should be not much di	culty in extending the results

to more than two component densities � at least this should be true for the

estimation� consistency� and asymptotic normality results in Chapters � and ��

These models have a potentially wide range of applications� Situations in which

threshold and hidden Markov models have been used should be appropriate for

investigation via logistic mixtures�

We think the most interesting future work might involve the testing questions

addressed in Chapters � and �� As we saw in Chapter �� the likelihood ratio test�s

distribution depends crucially upon the parameter space under the alternative

hypothesis� Mixtures models with more than two component densities may have

more complicated restrictions on the region of the parameter space that may be

considered under the alternative hypothesis� For models with two components

it would be useful to conduct a more thorough analysis of the test�s power � par�

ticularly against other testing methods like the Monte Carlo approach discussed

in Chapter �� Of particular interest might be the tests� performance for smaller


�



sample sizes�

Also� we have the unfortunate caveat of excluding an interesting part of the

parameter space under the alternative hypotheses �that which corresponds to

mixtures with constant probabilities�� We suspect it may be possible to remove

this restriction and obtain a more general test� Techniques used by Dacunha�

Castelle and Gassiat �
���� may be useful in this respect�

We are eager to examine our test in the context of hidden Markov model

regression� In these models the regime probabilities change according to the

value of an unobserved Markov process� This randomness suggests that our test

may work for these models as well�
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