
TECHNICAL RESEARCH REPORT

Local Pursuit as a Bio-Inspired Computational Optimal Control
Tool

by Cheng Shao, Dimitrios Hristu-Varsakelis

CDCSS TR 2005-1
(ISR TR 2005-85)

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CDCSS/cdcss.html

LocalPursuit as aBio-InspiredComputational

OptimalControlTool �

Cheng Shao a, Dimitrios Hristu-Varsakelis b,∗
aDepartment of Mechanical Engineering and Institute for Systems Research

University of Maryland, College Park, MD 20742 USA

bDepartment of Applied Informatics, University of Macedonia, Thessaloniki 54006, Greece

Abstract

This paper explores the use of a bio-inspired control algorithm, termed “local pursuit”, as a numerical tool for computing
optimal control-trajectory pairs in settings where analytical solutions are difficult to obtain. Inspired by the foraging activities
of ant colonies, local pursuit has been the focus of recent work on cooperative optimization. It allows a group of agents to solve
a broad class of optimal control problems (including fixed final time, partially-constrained final state problems) and affords
certain benefits with respect to the amount of information (description of the environment, coordinate systems, etc.) required
to solve the problem. Here, we present a numerical optimization method that combines local pursuit with the well-known
technique of multiple shooting, and compare the computational efficiency and capabilities of the two approaches. The proposed
method method can overcome some important limitations of multiple shooting by solving an optimal control problem “in
small pieces”. Specifically, the use of local pursuit increases the size of the problem that can be handled under a fixed set of
computational resources. Furthermore, local pursuit can be effective in some situations where multiple shooting leads to an ill-
conditioned nonlinear programming problem. The trade-off is an increase in computation time. We compare our pursuit-based
method with direct multiple shooting using an example that involves optimal orbit transfer of a simple satellite.

Key words: Co-operative control, Optimization, Agents, Group work, Trajectories, Numerical methods, Nonlinear
programming

1 Introduction

Over the past decade, researchers have been increasingly
looking to cooperative strategies as a means for address-
ing systems problems which are difficult to solve by sin-
gle systems [18,5]. The push for cooperation is partly due
to the maturation of technology that makes it possible
to develop meaningful cooperation among, say, groups of
wheeled or flying vehicles, and partly because of the obvi-
ous success of biological cooperative systems which have
apparently evolved to “perform as more than the sum
of their parts” [6,13]. Notable examples include worker

� This work was supported by the National Science Founda-
tion under Grant No. EIA0088081 and by ARO ODDR&E
MURI01 Grant No. DAAD19-01-1-0465, (Center for Com-
municating Networked Control Systems, through Boston
University).∗ Corresponding author. Tel: +30-2310-891721, Fax: +30-
2310-891290.

Email addresses: cshao@glue.umd.edu (Cheng Shao),
dcv@uom.gr (Dimitrios Hristu-Varsakelis).

honey bees, which share information by “dancing” and
distribute themselves among different flowers according
to the “profitability” of each location; schools of fish
that swim in agile, tight formations; and ants, which use
pheromone secretions for recruiting nest-mates and for
discovering efficient paths between their nest and food
sources [4]. Observations of these and other natural col-
lectives have motivated a series of works on the model-
ing of movement in animal groups[4,2,9] as well as other
work on cooperative control strategies, from distributed
collective covering and searching [18,14], to estimating
by groups [15,11], and biologically-motivated optimiza-
tion [5,3,8].

In particular, [2] presented a decentralized organizing
principle, inspired by the foraging behaviors of ant
colonies, that allowed a group to optimize an initial
path between two locations on R

2, by having a sequence
of group members travel from one location to the other
while each member points its velocity vector towards
its predecessor. This so-called “local pursuit” rule was
generalized to non-Euclidean environments [7], and

13 April 2005

later to a pair of pursuit-based algorithms that applied
to a much broader class of optimal control problems
and to systems with non-trivial dynamics[8,16]. These
algorithms require each agent in the collective to solve
a series of locally optimal control problems within small
neighborhoods that are defined by its current state and
the state of its predecessor. Doing so defines a con-
trol/trajectory sequence that, under certain conditions,
converges to the optimum.

Local pursuit was originally conceived as a means of
solving optimal control problems in settings where
mapping, communication and sensing capabilities were
severely limited. The algorithm manages to avoid the
need for global information by breaking up the prob-
lem into many pieces, each to be optimized by leader-
follower agent pairs. Its key feature is a reduction in the
range (measured by time, distance or other metric) over
which computations must take place, by paying a price
in terms of the number of agents that are necessary to
carry out the algorithm. For example, in order for the
collective to solve an optimal control problem, it is not
necessary to have available a map of the environment,
an agreed-upon coordinate system, or even the coordi-
nates of the target state; only an initial feasible control
is required.

Up to now, discussions of local pursuit have focused on
broadening the domain of applicability of the algorithm
and on the limiting properties of the agents’ trajecto-
ries. However, its limited information requirements make
it a potentially useful tool in numerical trajectory op-
timization, where there are often similar trade-offs to
be made. In particular, given a control system which
must be steered between two states in a fixed amount of
time, one typically proceeds by “sampling” the system
trajectory at pre-determined times, and solving a non-
linear programming (NLP) problem to determine the
best placement of the samples in the statespace, subject
to constraints given by the equations of motion and con-
tinuity, among others. In that setting, there is a balance
that must be struck between the number of trajectory
samples and the size of the time intervals that separate
them. On one hand, we would like to keep the number of
segments small, so that the associated NLP problem has
reasonable storage requirements. If the number of seg-
ments is too small however, then propagating the state
vector from one sample point to the next may require
high-order approximation of the equations of motion,
and thus become time-consuming. If, on the other hand,
the trajectory is sampled densely, then there may not
be adequate memory to solve the associated nonlinear
programming (NLP) problem, which at the same time
is prone to a more significant accumulation of numerical
errors.

The purpose of this paper is to explore the application
of local pursuit as a computational tool in order to ad-
dress the shortcomings outlined above. We introduce

a numerical optimization method, titled “pursuit-based
multiple shooting” (PBMS), that combines a recently
reported local pursuit strategy with established numer-
ical methods. In particular, we propose a modified ver-
sion of the well-known multiple-shooting (MS) method
that uses local pursuit to overcome some of the limita-
tions of the original MS technique. The PBMS method
that is proposed here involves simulating group of agents
which cooperate to solve (numerically) an optimal con-
trol problem. Agents use standard MS to optimize their
short-term behavior.

A comparison of the computational complexity and size
of the resulting problems formulated via PBMS ver-
sus standard MS, reveals that cooperation among group
members can overcome some important limitations of
MS. Our pursuit-based formulation allows one to always
operate in the domain of manageable-sized problems,
while still being able to treat problems with very large
numbers of segments. As a result, it enlarges the maxi-
mum size of problems that can be handled given a fixed
amount of storage space. In addition, it can reduce com-
putational errors due to ill-conditioning of the non-linear
programming problem that must be solved when MS is
used. The trade-off is that, for well-conditioned prob-
lems, demands more running time than MS in order to
converge.

The remainder of this paper is organized as follows: Sec-
tion 2 defines a local pursuit algorithm which is applica-
ble to optimal control problems with fixed final time and
partially-constrained final states, and gives the main re-
sults concerning the behavior of a collective under that
algorithm. Section 3 begins with a brief introduction to
numerical optimization and goes on to discuss the poten-
tial advantages of modifying multiple shooting (one of
the best-known and widely used methods for numerical
optimal control) to include local pursuit. An illustrative
example is presented in Section 4 where we compare the
performance of multiple shooting to that of puruit-based
multiple shooting in a satellite orbit transfer problem.

2 A Bio-inspired Algorithm for Optimal Con-
trol

Local pursuit begins with a group of cooperating
“agents”, where the term “agent” refers to a copy of a
dynamical system:

ẋk = f(xk, uk), xk(t) ∈ R
n
, uk(t) ∈ Ω ⊂ R

m (1)

for k = 0, 1, 2 The problem of interest is as follows:

Problem 1 Find a trajectory x∗(t), and a final state
x∗(T), (T fixed) that minimize

J(x, ẋ, t0, T) =
∫ t0+T

t0

g(x, ẋ)dt + G(x(t0 + T)) (2)

2

subject to the constraints x(t0) = x0, and Q(x(t0+T)) =
0.

Here it is assumed that g(x(t), ẋ(t)) ≥ 0, G(x(t0+T)) ≥
0 and that Q(·) is an algebraic function of the state.

Definition 1 Given the final state constraint Q(x) = 0,
the constraint set of x is

SQ = {x ∈ R
n|Q(x) = 0}.

For any pair of fixed states a, b ∈ D ⊂ R
n, suppose

the optimal trajectory from a to b with fixed final time
(minimizing J with respect to x only) is denoted by
x∗(t). Then the cost of following x∗(·) is denoted by:

η(a, b, t0, T) �
∫ t0+T

t0

g(x∗(t), ẋ∗(t))dt (3)

subject to x(t0) = a, x(t0 + T) = b.

Now, let x∗(t) be the optimal trajectory (over T units
of time) from an initial state a to the constraint set SQ.
The cost of following x∗(·) is denoted by:

ηQ(a, t0, T) �
∫ t0+T

t0

g(x∗, ẋ∗)dt + G(x∗(t0 + T))

= min
x

J(x, ẋ, t0, T) (4)

subject to x(t0) = a,Q(x(t0 + T)) = 0.

2.1 Algorithm

In previous works [8,16] we have proposed two classes
of algorithms, one for problems with fixed boundary
conditions (final time and final states), and another for
problems with partially-constrained boundary condi-
tions. We will briefly present a “sampled” version local
pursuit for trajectory optimization problems with fixed
final time and partially-constrained final states (based
on algorithms from [8,16]).

We assume that there is an available initial (but sub-
optimal) feasible control/trajectory pair (ufeas(t), xfeas(t))
for (1), which could have been obtained through explo-
ration or from a-priori knowledge. Agents are scheduled
to leave the starting state x0 sequentially, separated by
a pursuit interval of ∆ time units, i.e., if the first (ini-
tial) agent leaves at time t0, the kth agent will leave at
tk = t0 + k∆, k = 0, 1, 2, The first agent is required
to follow xfeas from x0 to SQ. The next agent attempts
to intercept its predecessor along an optimal trajecto-
ries defined by (3), as long as the predecessor has not
yet reached the target set SQ. If the predecessor is al-
ready in SQ then the follower moves along the optimal

trajectory defined by (4) (see Fig. 1 for illustration).
Agents do not monitor their predecessors continuously,
but instead updates their trajectories with the sampling
rate of 1/δ. The precise rules that govern the movement
of each agent are:

Algorithm 1 (Sampled Local Pursuit): Identify the
starting state x0 on D and the constraint set SQ.
Let x0(t) (t ∈ [0, T0]) be an initial trajectory satisfy-
ing (1) with x0(0) = x0, Q(x0(T0)) = 0. Choose the
pursuit interval ∆ and updating interval δ such that
0 < δ < ∆ ≤ T0.

(1) For k = 1, 2, 3 . . ., let tk = k∆ be the starting time
of the kth agent, i.e. uk(t) = 0, xk(t) = x0 for
0 ≤ t ≤ tk.

(2) When t = tk + iδ, i = 0, 1, 2, 3, . . ., calculate the
control u∗

t (τ) that achieves (subj. to (1)):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η(xk(t), xk−1(t), t,∆), if xk−1(t) /∈ SQ

(τ ∈ [t, t + ∆])

ηQ(xk(t), t, T − (t − tk)), if xk−1(t) ∈ SQ

(τ ∈ [t, tk + T])
(3) Apply uk(t) = u∗

tk+iδ(t) to the kth agent for t ∈
[tk + iδ, tk + (i + 1)δ) if ∆ + iδ < T , or for t ∈
[tk + iδ, tk + T) otherwise.

(4) Repeat from step 2 until the kth agent reaches SQ.

M

Xk

Xk+1

Xk-1

Initial Trajectory
Limit Trajectory
Locally Optimal
Trajectory

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxSQ

S

Fig. 1. Illustration of local pursuit on a manifold. Each agent
except the first one is trying to “catch up” its predecessor
before the predecessor reaches SQ, and trying to reach SQ

via a locally optimal trajectory otherwise.

The two adjustable parameters in sampled local pursuit
(SLP) algorithm are the pursuit interval ∆, which defines
how frequent agents depart from x0 (consequently how
far away agents are separated), and the updating interval
δ, which defines the frequency with which each agent
updates its trajectory. We will refer to two successive
agents as a “pursuit pair”. Within a pair, the (k − 1)th

agent will be known as the “leader”, and the kth agent

3

as the “follower”. We will refer to the times tik = tk +
iδ, i = 0, 1, 2, 3 . . . as the “updating times”. The SLP
algorithm employs two types of pursuit – “catching up”
and “free running” – depending on whether the leader
has reached the final constraint set SQ or not. The former
lets agents “learn” from their leaders, meanwhile the
latter enables them to find the optimal final state. This is
different from the version of sampled local pursuit in [8],
which involves only “catching up” stages, and because
δ is fixed, rather than determined on-line (as is the case
in [16]), the total number of updates performed by each
agent is pre-determined.

We now state the main result concerning the limiting
behavior of the SLP algorithm. Before proceeding to
the main theorem, we must require that the cost of (2)
changes “little” for small changes to the endpoints of a
trajectory:

Condition 1 Assume for a generic trajectory x1(t)
there exists an ε > 0 such that for all a, b1, b2 ∈ D and all
∆ > 0, there exists a trajectory x2(t) such that the cost
C(x1, 0, T) (x1(0) = a, x1(T) = b1) from a to b1 and cost
C(x2, 0, T) (x2(0) = a, x2(T) = b2) from a to b2 satisfy

‖b1 − b2‖∞ < ε

⇒‖C(x1, 0, T) − C(x2, 0, T)‖∞ < L∆

for some constant L independent of ∆.

Theorem 1 Suppose a group of agents evolve under
sampled local pursuit, and that at every updating time
tik, the locally optimal trajectories from follower to leader
are unique. If the updating interval δ and pursuit inter-
val ∆ satisfy 0 < δ < ∆ and Condition 1 holds, then the
limiting trajectory obtained is unique and locally opti-
mal. It is also smooth if the locally optimal trajectories
calculated at every updating time are smooth.

PROOF. See [8,16].

3 Local Pursuit as a Numerical Computational
Tool

Multiple-shooting, together with its various improved
forms, could be considered a workhorse of numerical op-
timization. However, the large storage requirements as-
sociated with MS limit the so-called “permitting size” of
problems which can be solved on a digital computer [1].
In the following, we briefly review the technique known
as multiple shooting (MS) before showing how it im-
proves when combined with SLP.

3.1 A Brief Review of Multiple Shooting

In principle, MS is a type of NLP method[1]. Suppose,
for now, that we are interested in minimizing the scalar
cost function F (x) : R

n → R, subject to m (m ≤ n)
equality constraints c(x) = 0, where c(x) is an (m × 1)
vector. To do this, we first introduce the Lagrangian:

L(x, λ) = F (x) + λT c(x) (5)

The necessary conditions for the point (x∗, λ∗) to be an
optimum are satisfied by the stationary points of the
Lagrangian 1 :

∇xL(x, λ) = ∇xF (x) + ∇xc(x)T λ = 0 (6)

and

∇λL(x, λ) = c(x) = 0 (7)

The equations (6)∼(7) are usually solved via Newton’s
method. Proceeding formally we obtain the following
Karush-Kuhn-Tucker system:

[
HL ∇xc(x)T

∇xc(x) 0

] [
∆x

∆λ

]
=

[
−∇xF (x) −∇xc(x)T λ

−c(x)

]

(8)

where ∆x is the “search-direction” and HL is the Hessian
of the Lagrangian

HL = ∇2
xF (x) +

m∑
i=1

λi∇2
xci (9)

For convenience, we define

H =

[
HL ∇xc(x)T

∇xc(x) 0

]
(10)

Suppose now that we are interested in optimizing (2)
subject to the dynamics

ẋ = f(x(t), u(t)). (11)

1 Here, we use the notation:

∇xA(x) =

�
������

∂a1
∂x1

∂a1
∂x2

· · · ∂a1
∂xn

∂a2
∂x1

∂a2
∂x2

· · · ∂a2
∂xn

· · · · · · · · · · · ·
∂an
∂x1

∂an
∂x2

· · · ∂an
∂xn

�
������

4

Doing so with MS (here we mainly refer to di-
rect MS) involves breaking up the trajectory into
“shorter” pieces [1] by partitioning the time domain
[t0, tf] = ∪N−1

i=1 [ti, ti+1), t0 = t1 < · · · < tN = tf . Each
subinterval [ti, ti+1) is called a “segment”.

Multiple shooting uses NLP to find the optimal trajec-
tory (i.e. to minimize a scalar function along a trajec-
tory), by defining the NLP variables ν = [ν1, . . . , νN]
to be the arguments – usually they are concatenations
of the states and the corresponding controls – at times
t1, . . . , tN along a trajectory. The stationary points
[ν∗

1 , . . . , ν∗
N] obtained via NLP will approach points on

the optimal trajectory. Without loss of generality, we
choose to sample the state and control vectors at the
segment endpoints, and define the NLP variables

ν = {x1, u1, x2, u2, . . . , xN , uN} (12)

Notice that the dimension of xi and ui, i = 1, . . . , N is
Mx and Mu, respectively.

As the NLP variables are adjusted, one must ensure that
they satisfy the the system dynamics (11), and that se-
quential trajectory segments obey a matching condition
at their boundaries. This means that the evolution of
(11) from xi at ti with input ui, should steer the system
to xi+1 at ti+1. This suggests that the following con-
straints are necessary:

c(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 − x̄1

x3 − x̄2

...

xN − x̄N−1

φ0(x1, t0)

φT (xN , tf)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (13)

where the functions φ0(x1, t0) and φT (xN , tf) represent
the initial and final condition constraints, respectively,
and x̄i are to be calculated by integrating the differential
equation (11) from ti to ti+1.

In practice, one often computes x̄i only approximately,
instead of integrating the complete equations of motion.
For example, Euler’s method provides a first-order ap-
proximation to the integration of (11):

x̄i+1 = xi + hf(xi, ui) (14)

where h is the time step of each segment. The choice
of approximation should be based on the following con-
siderations: First, we have sampled the controls at the
segment boundaries (the samples are to be optimized)
instead of considering the continuous-time control on
the intervals [ti, ti+1]; therefore, we can not compute

the precise state evolution by integration. Second, using
linear approximation reduces computational burden; on
the other hand, higher-order approximations are likely
to produce more precise results, but they will also give
rise to more complicated equations in (6)∼(13) and the
resulting NLP problem will require more time to solve.

One shortcoming of linear approximation is that the time
separation between neighboring points must be limited
to a small time step h. If h is “too large”, then x̄i+1

will not be a good estimate of the true state of (11) as
it evolves from xi to xi+1 under ui, and NLP will pro-
duce erroneous results. The estimation error is of o(hn),
where n ∈ N is the order of the approximation methods
[10]. It is clear that a smaller h results in better approxi-
mation. For that reason, keeping the segment size small
is desirable and is a key feature of MS compared with
other single-step shooting methods [1].

Let us assume that we can fix an acceptable h, i.e.,
one that is small enough to lead to convergence for the
associated NLP. Then the permitting size of problems
that can be solved by MS depends solely on the number
of steps N required to cover the time span [0, T], with
T = (N − 1)h. Thus, solving large-scale problems (with
large time spans), requires a large number of segments
N = Th + 1. For problems with varying dynamics but
fixed time span, the requirement for N could be large
because nonlinearities in the dynamics make it neces-
sary to use small time steps to ensure that the estimates
x̄i are precise enough and that the associated NLP will
convergence.

Remark 2 For any given set of dynamics and choice
of NLP method, the time step h is upper bounded. The
permitting size in MS is proportional to the number of
segments N , if h is pre-determined.

Suppose now that the dimensions of system state x and
control u are Mx and Mu respectively, and the number
of segments is N , then the dimension of NLP variables
for a multiple shooting method is nx = (Mx + Mu)N ,
and the NLP has at least MxN constraints (the number
of constraints could be larger if the final states are fixed).
The Hessian in (9) is of dimension nx × nx = (Mx +
Mu)2N2. To proceed with NLP, one must obtain the
solution of (8), which requires finding the solution to
a linear system of algebraic equations with dimension
at least (Mu + 2Mx)2N2. Here we have seen that the
number of segments involved in the calculation affects
the “degree of labor-consumption” with O(N2).

3.2 Numerical Optimization by Local Pursuit

As we have seen, the number of segments used in MS
affects the dimension of the associated NLP variables
and the computational complexity of the NLP problem
to be solved. For that reason, it would be desirable to

5

use fewer segments with the MS method. However, be-
cause the time step h is upper bounded for a fixed set
of dynamics and NLP algorithm, decreasing the number
of segments means that NLP process can only deal with
trajectories spanning shorter time intervals. This limi-
tation can be circumvented by combining local pursuit
with direct MS, to obtain what we refer to as PBMS.
Specifically, one can introduce a sequence of simulated
agents that pursue each other using the algorithm given
in Sec. 2. Each agent will use MS to compute the opti-
mal trajectory from its own state to that of its leader,
giving rise to a series of smaller NLP problems, whose
time span is limited by the pursuit interval ∆. Although
there will be more of these NLP problems to solve, their
lower dimension will make it possible to handle larger
optimization problems overall.

3.2.1 Decreasing the size of the NLP problems during
computation

XK

XK+1

XK

XK+1

XK+2

Multiple Shooting

Local Pursuit

Fig. 2. Local pursuit could decrease the problem size in-
volved in calculation at every updating step. The number of
variables calculated in multiple shooting is N = 13, and the
number of variables calculated by each agent in local pursuit
is N∆ = 5.

For simplicity, fix h = T/(N − 1) and select the pur-
suit interval ∆ = (N∆ − 1)h, N∆ ∈ N, where N∆ is
the number of segments within ∆. Usually we will have
N∆ << N . For convenience, we also choose the updat-
ing interval in the SLP algorithm to be an integer multi-
ple of segment size, δ = Nδh, Nδ ∈ N so that the agents
are always updating their trajectories at the times ti
which we chose to sample the trajectory of (11). At each
updating step t = iδ, each agent is solving a NLP over
N∆ segments, with a time span of (N∆ − 1)h instead of
(N − 1)h, as illustrated in Fig. 2. Because the computa-
tional complexity of MS is related to the square of the
number of segments, using N∆ << N will significantly
decrease the computational burden for each agent. Ta-
ble 1 shows the dimensions of the NLP vector, ν, the
constraints c(x), and the matrix H in Eq. (10), respec-
tively, for MS and PBMS. The dimension of the associ-
ated Karush-Kuhn-Tucker system is on the order of N2

Table 1
Comparing the dimensions of the NLP problem variables
when using Multiple Shooting (MS) vs. Pursuit-based Mul-
tiple Shooting (PBMS).

MS PBMS

dim(ν) (Mx + Mu)N (Mx + Mu)N∆

dim(c(x)) MxN MxN∆

dim(H) ((Mu + 2Mx)N)2 ((Mu + 2Mx)N∆)2

for MS, vs. N2
∆ for PBMS. Operating on large matrices

consumes large amounts of memory, especially when us-
ing non-iterative methods, e.g., the memory of a typical
desktop PC can be easily used up by a matrix with di-
mension of 5000 × 5000 in Matlab when using 64 bits
of digital precision. However, under PBMS, the matrix
size is scaled down by a factor of (N∆/N)×(N∆/N) and
hardware requirements can be decreased significantly for
any given problem.

We note that under PBMS, each agent needs to solve
(N − N∆)/Nδ “smaller” MS problems in order to reach
the target set SQ from the initial state x0, but the time
needed to do so – denoted by Ta – will generally be less
than the total iterative time in multiple shooting, which
we will denote by TMS . Of course, the total running
time for PBMS – denoted by TLP – may be greater than
TMS because local pursuit relies on multiple agents to
converge to the optimum. Our experience in prior work
on local pursuit and in various numerical experiments
(including the example in next Section) has been that,
for well-conditioned problems, the convergence rate of
PBMS is usually slower than that of MS. As expected,
decreasing N∆ leads to slower convergence for PBMS.
However, the added running time comes with the ben-
efit of lower memory requirements, allowing us to han-
dle problems with larger state vectors and longer time
horizons. At the same time, if N∆ is decreased and the
available storage is fixed, one can afford to also decrease
the segment size h. Doing so has the effect of improving
the state estimates x̄i used to formulate the NLP, with-
out making the problem ill-conditioned. This situation
will be illustrated in the next Section.

3.2.2 Reducing numerical error when H is ill-
conditioned

Besides maximum problem size, another important con-
sideration in numerical optimal control, is the computa-
tional error introduced by the finite precision of digital
computers and by algorithmic accuracy. It is possible
that the error is too large to obtain useful results, e.g.,
solving a linear system with large condition number can
result in unacceptable errors and non-convergence. In
such settings, correction algorithms, such as Tikhonov
regularization, can be applied [10,12]; they are, however,
time and storage consuming, and do not always succeed.

For the optimal control problem of interest, consider, for

6

example, using Gaussian elimination to solve (8) with
limited digital precision. Every step of the elimination
algorithm introduces some truncation error, so that the
total accumulated error when solving a large linear sys-
tem will generally be much larger than that associated
with solving one of lower dimension, because the number
of steps required by the algorithm is proportional to the
system size. Furthermore, if H in (10) is ill-conditioned,
then the numerical solution of (8) introduces small er-
rors which accumulate towards the final segment N . If
the problem’s time horizon is long, the accumulated er-
ror may lead to erroneous results, or prevent MS from
converging. PBMS can help reduce these numerical er-
rors because the algorithm’s simulated agents solve MS
problems with a shorter time horizon, compared to that
of the original problem. This implies that the dimension
of (8) for each agent is reduced and there will be cases in
which PBMS will succeed where MS failed to converge.
Furthermore, if every locally optimal trajectory satisfies
the convergence criteria of the numerical method used
to solve the “short-range” MS problems between leader-
follower pairs, then the convergence of the agents’ tra-
jectory sequence is guaranteed by the local pursuit algo-
rithm itself.

3.2.3 Remarks

In summary, the combination of MS with local pursuit
can increase the permitting size of problems that can
be handled with fixed storage, because at every updat-
ing step, each agent deals with a problem with “reduced
size”. The development of NLP algorithms (and of MS)
has followed the growth of the digital computer. The size
of a typical application in the early 1960s was n,m ≈ 10,
while in the 1970s and early 1980s most application were
of size as n,m < 100. With subsequent advances in lin-
ear algebra techniques, such as matrix sparsity, and on-
going progress in the semiconductor industry, the per-
mitting size in late 1990s was n,m ≈ 10, 000 [1]. How-
ever, when using a fixed time partition, PBMS involves
solving problems of size N∆ instead of N . Therefore, we
can address much larger problems under the limits im-
posed by the hardware. Although it requires more run-
ning time, PBMS does provide a feasible solution when
the traditional formulation exceeds those limits, making
it impossible to proceed.

In cases where MS fails to converge because the er-
rors introduced by the approximation to (11) are too
great, PBMS may succeed by reducing the segments N∆,
thereby reducing the accumulated error over the tra-
jectory of a single agent. In next section we present an
example of MS stagnancy caused by an ill-conditioned
matrix H and how PBMS can avoid the problem.

4 Example: An Orbit Transfer Problem

Consider an idealized spacecraft which must be trans-
fered from one stable orbit 2 to another, within some
fixed time T . For simplicity, we only consider the effect
of the Earth and restrict the problem to a plane, as il-
lustrated in in Fig. 3.

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

R

Earth

Spacecra

I

Fig. 3. A planar spacecraft in orbit around the Earth.

The dynamics of this system are

r̈ =
θ̇2

r
− uE

r2
+

Pu1

mg

θ̈ =−2θ̇ṙ

r
+

Pu2

mgr

ṁ =−P (u2
1 + u2

2)
g2

(15)

u1 = I sin(ϕ)
u2 = I cos(ϕ)

where r is the distance between the spacecraft and the
center of Earth, θ is its longitude with respect to the
horizontal line, m is the mass of the spacecraft, uE is
the gravitational parameter of Earth, P is a constant
concerning engine power, and g is the acceleration of
gravity at sea level [17]. The control inputs, u1 and u2,
are functions of I and ϕ, the thrust force and thrust
steering angle with respect to the tangent of the local
orbit.

We would like to minimize the fuel consumed (equiva-
lently, to maximize the final mass m(T)):

J =
∫ T

0

(u1(t)2 + u2(t)2)dt

2 The term “stable orbit” means that the spacecraft will
remain on this orbit if no external force (other than gravity)

is applied, i.e. θ̇ =
�

uE/r3.

7

while steering the system (15) from the initial condition
r(0) = R0, ṙ(0) = 0, θ̇(0) =

√
uE/R3

0,m(0) = M0 to the
final condition r(T) = RT , ṙ(T) = 0, θ̇(T) =

√
uE/R3

T ,
where T is fixed. For simplicity, we assumed there was
no upper bound of the thrust force, thus there is no
restriction for the control u1 and u2.

4.1 Applying MS vs. PBMS

To solve the problem by MS, we used Euler’s method
to estimate the piecewise integration of Eq. (11) and
imposed the following constraints:

0 = rj+1 − r̄j

= rj+1 − (rj + hj ṙj)
0 = ṙj+1 − ¯̇rj

= ṙj+1 − (ṙj + hj(
θ̇2

j

rj
− uE

r2
j

+
Pu1j

mjg
))

0 = θ̇j+1 − ¯̇
θj

= θ̇j+1 − (θ̇j + hj(−2θ̇j ṙj

rj
+

Pu2j

mjgrj
))

0 = mj+1 − m̄j

= mj+1 − (mj − hj
P (u2

1 + u2
2)

g2
)

for j = 1, 2, 3 . . . , N − 1 and
0 = r1 − R0

0 = ṙ1 − Ṙ0

0 = θ̇1 − θ̇0

0 = m1 − M0

0 = rT − RT

0 = ṙT − ṘT

0 = θ̇T − θ̇T (16)

where ri = r((i − 1)h), ṙi = ṙ((i − 1)h), . . . and h =
T/(N − 1) was the time step. The dimension of con-
straints c(x) (m as we denoted before) was (4 × (N −
1) + 7). The NLP variable

ν = {r1, . . . , rN , ṙ1, . . . , ṙN , θ̇1, . . . , θ̇N ,m1, . . . ,mN

, u11, . . . , u1N−1, u21, . . . , u2N−1} (17)

was of dimension (6 × N − 2).

When applying local pursuit, the N should be replaced
by N∆ in the above equations. The dimension of the
constraint set and the NLP variable were (4 × (N∆ −
1) + 7) and (6 × N∆ − 2), respectively.

4.2 Results

We solved the problem both by PBMS and standard MS.
The criteria for convergence were ‖m(T)i+1−m(T)i‖ ≤

1E − 8 (to guarantee little improvement with future it-
erations) and ‖c(x)‖ ≤ (1E − 15)×m, where m was the
dimension of constraints (to guarantee that the trajec-
tory satisfies the system dynamics). The total time T
was fixed to 300 minutes. The numerical properties of
the problem – and consequently the performance of the
two methods – dependeded on the selection of the total
number of segments N .

4.2.1 Well-conditioned case

With N = 101, the matrix in Eq. (8) was well condi-
tioned (can be verified by its condition number and the
fast convergence rate for MS shown below). The per-
formance of MS and PBMS are summarized in Table
2, where c(H) was the condition number of matrix H;
The “iterations” column lists the iteration numbers for
convergence in multiple shooting, and number of agents
needed for local pursuit to converge, respectively.

Table 2
Comparison between Multiple Shooting and Local Pursuit
in well-conditioned case

N=101 MS PBMS PBMS

(N∆ = 30, (N∆ = 60,

Nδ = 16) Nδ = 32)

Comp. Time 66.8594 793.8594 430.2344

Iterations 14 277 41

m(T) 0.524246124 0.524245714 0.524246100

‖c(x)‖ 3.7144E-14 9.2499E-15 9.9170E-15

Ave(c(H)) 1.5931E+6 4.8919E+5 5.3612E+5

We can see that both methods were successful and that
the convergence rate of PBMS was slower than that of
MS. Increasing N∆ resulted in increased need for storage
and decreased running time. If N∆ = N , then PBMS
reduces to MS. The final trajectories obtained by both
methods are shown in Fig. 4.

4.2.2 Ill-conditioned case

When the segment size was halved, i.e., N ≥ 201, MS
became stagnant because the matrix H in (10) was ill-
conditioned. The error generated by solving Karush-
Kuhn-Tucker system became so large that the NLP al-
gorithm (using Newton’s method) was not able to con-
verge. The large condition number of H (our criteria of
ill-condition) was due to the large number of segments
(in fact H’s condition number increased with the size of
segments, see Table 3). For PBMS, the reduction in the
number of segments for the sub-problems solved by pur-
suing agents meant a reduction in the condition number
of H when using small N∆. The results from both meth-
ods are summarized in Table 3.

8

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

Initial Trajectory

Multiple Shooting

Local Pursuit

Fig. 4. Trajectories of both methods under well-conditioned
case with N = 101, N∆ = 30, Nδ = 16. The trajectories
obtained from both methods were virtually identical.

Table 3
Comparison between Multiple Shooting and Local Pursuit
in ill-conditioned case

N=201 MS PBMS PBMS

(N∆ = 30, (N∆ = 60,

Nδ = 16) Nδ = 32)

Time ≥100000 32911.8750 10676.9844

Iteration ≥3000 7223 603

m(T) 0.523948746 0.524560874 0.524571236

‖c(x)‖ 0.01709873 6.0790E-14 1.4019E-14

Ave(c(H)) 1.8263E+10 5.0576E+5 4.7881E+5

Max(c(H)) 4.3377E+12 6.1142E+5 5.6897E+5

N=301 MS PBMS PBMS

(N∆ = 30, (N∆ = 60,

Nδ = 16) Nδ = 32)

Time ≥360000 239601.4219 81264.3906

Iteration ≥3200 30722 2845

m(T) 0.527347984 0.524643889 0.524700485

‖c(x)‖ 0.04135162 2.6051E-13 1.2922E-13

Ave(c(H)) 4.5106E+10 5.3032E+5 4.8184E+5

Max(c(H)) 7.3201E+10 6.5692E+5 6.5833E+5

In this case, MS could not converge (the values of the
constraint residues c(x) did not become sufficiently
small), and the iterative process became stagnant. On
the other hand, PBMS was effective in producing the
optimal trajectory. The final trajectories of both meth-
ods are shown in Fig. 5. By comparing to the trajecto-
ries generated in the well-conditioned case, it is obvious

that the trajectory obtained from multiple shooting was
sub-optimal.

 5

 10

 15

 20

30

210

60

240

90

270

120

300

150

330

180 0

Initial Trajectory

Multiple Shooting

Local Pursuit

Fig. 5. Trajectories under ill-conditioned case with selection
of N = 201, N∆ = 30, Nδ = 16. The trajectory obtained
from local pursuit was essentially optimal, while the one
obtained from multiple shooting was far away from optimum.

4.2.3 Large number of segments

When N ≥ 600 the orbit transfer problem could not be
solved a PC with 1Gb of RAM using MS 3 . On the other
hand, PBMS’s lower memory requirements meant that
the algorithm was able to operate and converge to the
optimum. Here we used N∆ = 60, Nδ = 32; the final
trajectory is shown in Fig. 6.

5 Conclusions and ongoing work

This paper explored the use of a bio-inspired coopera-
tive strategy termed “local pursuit” for solving a class
of numerical optimal control problems. We discussed a
pursuit algorithm appropriate for problems with fixed
final time and partially-constrained final states. The al-
gorithm mimics the foraging behavior of ant colonies and
allows a collective to discover optimal controls, starting
from an initial suboptimal solution and using only local,
pair-wise interactions.

We proposed combining local pursuit with multiple
shooting (MS) as a way to overcome some of the com-
putational and storage limitations of the latter method.

3 This includes the memory requirements of the function
used to compute condition numbers. If we did not want to
record condition numbers and only used Gaussian elimina-
tion method to solve the linear system, then N could be
increased a bit further.

9

 5

 10

 15

 20

30

210

60

240

90

270

120

300

150

330

180 0

Initial Trajectory

Multiple Shooting

Fig. 6. Spacecraft trajectory in the case of large number of
segments, N = 601, N∆ = 60, Nδ = 32.

The new method, termed pursuit-based multiple shoot-
ing (PBMS) involves a kind of “breaking down” of the
original problem down to smaller segments, to be op-
timized (using MS) by a group of (simulated) agents.
PBMS has slower convergence than pure MS but can ex-
ceed the limitations of MS due to memory requirements
by taking advantage of the cooperation among a group,
and of the nonlinear relationship between a problem’s
time horizon and the memory required to solve it by
MS. Furthermore, for an optimal control problem with
a given time horizon, PBMS gives one the option to in-
crease the number of intermediate points along the solu-
tion, increasing the solution’s accuracy and performing
better in cases where MS becomes ill-conditioned. These
properties of PBMS, and a comparison with MS were
illustrated using an example involving orbit-transfer of
a spacecraft.

6 Acknowledgment

The authors would like to thank Prof. P. S. Krish-
naprasad and Prof. B. Balachandran for their helpful
discussion on the subject of numerical computation.

References

[1] J.T. Betts. Survey of numerical methods for trajectory
optimization. Journal of Guidance, Control and Dynamics,
21(2):193–207, Mar.–Apr. 1998.

[2] A.M. Bruckstein. Why the ant trails look so straight and
nice. The Mathematical Intelligencer, 15(2):59–62, 1993.

[3] A.M. Bruckstein, C.L. Mallows, and I. A. Wagner.
Probabilistic pursuits on the grid. The American
Mathematical Monthly, 104(4):323–343, April 1997.

[4] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau. Self-Organization in
Biological Systems. Princeton University Press, Princeton,
New Jersey 08540, 2001.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. Ant systems:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man and Cybernetics, Part B,
26(1):29–41, 1996.

[6] D.M. Gordon. Ants at work. The Free Press, New York, 1999.

[7] D. Hristu-Varsakelis. Robot formations: Learning minimum-
length paths on uneven terrain. In Proceedings of the 8th
IEEE Mediterranean Conference on control and Automation,
2000.

[8] D. Hristu-Varsakelis and C. Shao. Biologically-inspired
optimal control: learning from social insects. the
International Journal of Control, 77(18):1545–1566, Dec.
2004.

[9] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules.
IEEE Transactions on Automatic Control, 48(6), June 2003.

[10] R. Kress. Numerical Analysis. Springer-Verlag New York
Inc, New York, 1998.

[11] R. Kurazume and S. Hirose. Study on cooperative positioning
system: optimum moving strategies for cps-iii. In Proceeding
of the 1998 IEEE International Conference in Robotics and
Automation, volume 4, pages 2896–2903, Leuven, Belgium,
May 1998.

[12] A. Neumaier. Solving ill-conditioned and singular linear
systems: a tutorial on regularization. SIAM Review,
40(3):636–666, Sep. 1998.

[13] J.K. Parrish and W.M. Hammer. Animal groups in three
dimensions. Cambridge University Press, Cambridge, U.K,
1997.

[14] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu,
Y. Yang, M. Flint, and M. Baum. Cooperative control for
autonomous air vehicles. In R. Murphey and P.M. Pardalos,
editors, Cooperative control and optimization, pages 233–272.
Kluwer Academic Publishers, 2002.

[15] S.I. Roumeliotis and G.A. Bekey. Distributed multi-
robot localization. IEEE Transactions on Robotics and
Automation, 18(5):781–795, 2002.

[16] C. Shao and D. Hristu-Varsakelis. A local pursuit strategy for
bio-inspired optimal control with partially-constrained final
state. Technical Report TR 2005-76, Institute for Systems
Research, University of Maryland, College Park, MD 20742,
2005.

[17] S.R. Vadali and R. Nah. Fuel-optimal planar earth-mars
trajectories using low-thrust exhaust-modulated propulsion.
Journal of Guidance, Control, and Dynamics, 23(3):476–482,
May–Jun. 2000.

[18] I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein.
Distributed covering by ant-robots using evaporating traces.
IEEE Transactions on Robotics and Automation, 15(5):918–
933, 1999.

10

