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Abstract

While conventional tomography is associated to the Radon transform
in Euclidean spaces, electrical impedance tomography or EIT is associ-
ated to the Radon transform in the hyperbolic plane. We discuss some
recent work on network tomography that can be associated to a problem
similar to EIT on graphs and indicate how in some sense it may be also
associated to the Radon transform on trees.

1 Introduction

As communication networks have become an essential part of everyday life, disruptions
may have very serious consequences. Thus, the need to prevent or, at least, detect them
early on, has become very important. In order to do that we discuss two models of
the problem, one based on weighted graphs and the second based on trees. The first
one is the discrete equivalent of the inverse conductivity problem, that is, of Electrical
Impedance Tomography. The second model was mentioned recently by E. Jonckheere
and his collaborators [29].

In both cases, the data we collect are obtained by monitoring traffic only at distin-
guished subsets of the network. We think about this subset as being the periphery of the
network.

2 The weighted graph model

In this case we model our network in the following way. We have a collection of nodes
and edges between the nodes in a finite planar connected graphG. We denote byV the
set of nodes ofG and byE the set of edges ofG. Usually, the graphG is denoted by
G(E, V ). A particular subset of this graphG is denoted by∂G and called the boundary

1 The present is an extended version of the lecture given by Prof. Berenstein at the special session on
tomography, 2004 AMS meeting, Rider University. The authors acknowledge partial
support on this research from grants ARO-DAAD-190110494 and NSF-DMS-0400698.
3 Department of Mathematics, University of Maryland, College Park, Maryland, 20742, USA
3 Institute for Systems Research, University of Maryland, College Park, Maryland, 20742, USA.1



of G. In our context these are the nodes accessible to whoever is trying to monitor
the traffic inG. The boundary edges are those links whose two endpoints are in∂G.
We assume thatG remains connected even if we remove the boundary edges. For our
present purposes, the boundary edges play no role, thus we may as well assume that
there are none. We also assume that∂G is not empty.

Furthermore, we assume that to every edge inE we have an associated non-negative
numberω(x, y) which corresponds to the traffic between the endpointsx andy of the
edge. Note that this is a static model and we are really thinking that the graph is a planar
graph, although this is not used anywhere in the reasoning. We define the degreedωx
of a nodex in the weighted graphG with weightω by

dωx =
∑
y∈V

ω(x, y)

the Laplacian operator corresponding to this weightω is defined by

∆ωf(x) =
∑
y∈V

[f(y) − f(x)]·
ω(x, y)

dωx
, x ∈ V

A graphS = S(V ′, E′) is said to be asubgraph of G(E, V ) if V ′ ⊂ V andE′ ⊂ E.
In this case, we callG ahost graph of S. The integration of a functionf : G → R on a
graphG = G(V,E) is defined by∫

G

f =
∑
x∈V

f(x)dωx or simply
∫

G

fdω

For a subgraphS of a graphG = G(V,E) the (node)boundary ∂S of S is defined to
be the set of all nodesz ∈ V not inS but adjacent to some node inS, i.e.,

∂S = {z ∈ V | z ∼ y for somey ∈ S}

and theinner boundary
◦

∂S by

◦

∂S = {z ∈ S | y ∼ z for somey ∈ ∂S}

wherez ∼ y means that the two nodesz andy are connected by an edge inE. Also,
by S we denote a graph whose nodes and edges are inS ∪ ∂S. The (outward) normal
derivative ∂f

∂nω
(z) atz ∈ ∂S is defined to be

∂f

∂ nω

(z) =
∑
y∈S

[f(z) − f(y)]·
ω(z, y)

d′ω z
,
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whered′ω z =
∑
y∈S

ω(z, y)

In this model, there are two kinds of disruptions of traffic data that could arise.
In one of them, disruptions occurs when an edge “ceases” to exist, in this case the
“topology” of the graph has changed, and we refer to the important work of Fan Chung
and her collaborators which offers crucial insights into this question. (See, for instance
[16], [17] and [18].). In the other, the weights change because of “increase” of traffic,
that is, the network configuration remains the same but the weights have either increased
or remained the same. In this second situation, we can appeal to the following theorem

Theorem 1 [11] Let ω1 and ω2 be weights with ω1 ≤ ω2 on S × S, G a graph and
f1, f2 : S → R be functions satisfying that for j = 1, 2,


∆ωj

fj(x) = 0, x ∈ S
∂fj

∂nωj

(z) = Φ(z), z ∈ ∂S∫
S

fjdωj
= K

for any given function Φ : ∂S → R with
∫

∂S
Φ = 0, and for a suitably chosen number

K > 0. If we assume that

(i)ω1(z, y) = ω2(z, y) on ∂S ×
◦

∂S
(ii) f1|∂S = f2|∂S ,

then we have
f1 = f2 on S

and
ω1 = ω2 on S × S

whenever f1(x) �= f1(y) and f2(x) �= f2(y) .

We conclude that the data distinguishes the two cases. That is, we can decide
whether there is an increase of traffic somewhere in the network or not. While this is
only a uniqueness theorem, nevertheless, we can effectively compute the actual weights
from the knowledge of the Dirichlet data for convenient choices of the input Neumann
data in a way similar to that done in [21] and [23] for lattices. Similarly, the Green
function of this Neumann boundary value problem can be represented by an explicit
matrix.

What we want to discuss now is the relationship between the above results to the
problem of understanding a large network like the internet. One way to make more
concrete this problem was discussed by T. Munzner in [32] and [33] on visualizing the
internet. It implies that the natural domain might be a hyperbolic space of dimension
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higher than 2. One can see that Munzner’s suggestion leads to a question closely re-
sembling EIT, and it is natural to consider it a problem in hyperbolic tomography [7],
[8]. On the other hand, we have just obtained a significant result on the inversion of the
Neumann-Dirichlet problem by studying it directly on “weighted” graphs [11]. Sim-
ilarly, the Radon transform in the hyperbolic plane has been studied in [7], [8], and
[27].

In addition, in a recent lecture, E. Jonckheere [29] indicated that at least locally in-
ternet traffic could see modelled as being part of a tree and therefore it can be visualized
using 2-dimensional hyperbolic geometry. As a consequence, a different way to study
locally this kind of networks can be done using the Radon transform on trees. As it
turns out, inversion formula for the Radon transform on trees is already known and it
can be found in [9].

For the sake of completeness, we will describe here a simplified version of the
Radon transform on trees and its inversion formula. As explained below, this seems to
be enough to deal with the network problems we are interested in.

3 The Radon transform on homogeneous trees

Let us now remind the reader what do we mean by a treeT. A tree T is a finite or
countable collectionV of vertices{vj , j = 0, 1, ....} and a collectionE of edgesejk =
(vj , vk), in other words, pairs of vertices. We orient the edgeejk by thinking thatvj

is the first node andvk the second node. We always include the edgesekj in this
collection, which have the reverse orientation. Given two verticesu andv,we say they
are neighbors if(u, v) is an edge and writeu � v in this case. A geodesicγ from u0 to
ul is a collectionu0 , u1 , ....., ul−1 , ul of pairwise distinct vertices such thatu0 � u1 ,
u1 � u2 , ...., ul−1 � ul . It turns out thatu0 � ul then we consider the closed
geodesic path

_
γ by adding the edge(ul , u0 ) to γ. Unless explicitly mentioned, our

geodesics will not be closed. To simplify the notation, for any geodesicγ = u0 �

u1 � u1 � u2 � .... � ul−1 � ul open or closed, we denote by−γ the geodesic
with the opposite orientation , i.e., -γ = ul � ul−1 � .... � u0 . The collection of
all (open) geodesics is denoted byΓ. If T is infinite, then a complex valued function
f ∈ L1(T ) if . ∑

v∈V

|f(v)| < ∞

the Radon transformR of a functionf ∈ L1(T ) is simply the bounded functionRf on
Γ defined by

Rf(γ) =
∑
v∈γ

f(v)

Given a nodev we denote byυ(ν) the number of edges that containv as an endpoint.

4



This number is sometimes called the degree of the node. We will assume throughout
that we always haveυ(ν) ≥ 3 to ensure that the Radon transform in injective. (In
our applications this is only needed for nodesv that lie in supp(f). In the terminology
of [9] we are assuming there are neither black holes nor flat points inT. Under these
conditions, the Radon transform in a tree is invertible. In fact, the explicit inversion
formula resembles that of the inversion for the Radon transform in the Euclidean plane
[10], [12], [13], and [27]. Unfortunately, even in this case, we need to introduce a
significant amount of auxiliary notation. For the purpose of illustration we describe the
inversion formula here only for the case of homogeneous trees.

4 Inversion of the Radon transform in homogeneous
trees

Consider a homogeneous treeT in which each vertex touchesq + 1 edges withq ≥ 2.
If n is a nonnegative integer, letv(n) the number of vertices ofT at distancen from a
fixed vertex ofT . It follows that{

1 if n = 0
(q + 1)qn−1 if n ≥ 1

We give the following definitions. Letv, w two vertices inT that are connected by
a path(v = v0, ...., vm = w), then thedistance betweenv andw is the nonnegative
integer|v, w| = m. Also, for f ∈ L1(T ), let µn the average operator defined by

µnf(v) =
1

v(n)

∑
|v,w|=n

f(w), for v ∈ T

It can be seen thatµn is basically a convolution with radial kernel

hn(v, w) =

{ 1
v(n)

if |v, w| = n

0 if |v, w| �= n

Let β = q/(2(q + 1)) andR∗ be the dual Radon transform defined forΦ ∈ L∞(Γ)
by

R∗Φ(v) =

∫
Γv

Φ(γ)dρv(γ) for each vertexv ∈ T,

with respect to a suitable family{ρv : v ∈ T} of measures onΓ whereΓv is the set of
all of the geodesics containing the vertexv.

In order to obtain the inversion ofR we observe thatR∗R acts as a convolution

operator given by the radial kernelh = βh0 +
∞∑

n=1
2βhv.
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Proposition 2 The identity

R∗R = βµ0 +

∞∑
n=1

2βµn on L1(T ),

holds in L1(T ), where the series is absolutely convergent in the convolution operator
norm on L2(T ), thus providing a bounded extension of R∗R to L2(T ).

Theorem 3 The unique bounded extension to L2(T ) of the operator R∗R is invertible
on L2(T ), and its inverse is the operator

E =
2(q + 1)3

q(q − 1)2

[
µ0 +

∞∑
n=1

(−1)n2µn

]

which acts as the convolution with the radial kernel 2(q+1)3

q(q−1)2 [h0 +
∞∑

n=1
(−1)n2hn]. As

before, this series converges absolutely in the convolution operator norm on L2(T ); in
particular, E is bounded.

Corollary 4 The Radon transform R : L1(T ) → L∞(Γ) is inverted by

ER∗Rf = f.
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