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Abstract 12 

In this work, we aim to accurately predict the number of hospitalizations during the COVID-19 13 
pandemic by developing a spatio-temporal prediction model. We propose HOIST, an Ising 14 
dynamics-based deep learning model for spatio-temporal COVID-19 hospitalization prediction. By 15 
drawing the analogy between locations and lattice sites in statistical mechanics, we use the Ising 16 
dynamics to guide the model to extract and utilize spatial relationships across locations and model 17 
the complex influence of granular information from real-world clinical evidence. By leveraging rich 18 
linked databases, including insurance claims, census information, and hospital resource usage data 19 
across the U.S., we evaluate the HOIST model on the large-scale spatio-temporal COVID-19 20 
hospitalization prediction task for 2,299 counties in the U.S. In the 4-week hospitalization prediction 21 
task, HOIST achieves 368.7 mean absolute error, 0.6   and 0.89 concordance correlation 22 
coefficient score on average. Our detailed number needed to treat (NNT) and cost analysis suggest 23 
that future COVID-19 vaccination efforts may be most impactful in rural areas. This model may 24 
serve as a resource for future county and state-level vaccination efforts. 25 
 26 

Introduction 27 

The COVID-19 pandemic has caused the enormous social and economic loss. With over 90 28 
million confirmed cases and 1 million deaths in the U.S. by Aug 20221, the pandemic placed a heavy 29 
burden on national and global healthcare systems. The disparities in medical resource availability 30 
among U.S. counties – including ventilators, hospital beds, and critical care staff – can and, in some 31 
cases, have devastatingly impacted patient outcomes2. Nationwide vaccination efforts have 32 
primarily favored urban areas, and the urban-rural disparity in vaccination coverage has continued 33 
to worsen throughout the pandemic3. Rural vaccination efforts are technically challenging due to a 34 
combination of more limited access to healthcare, generally lower perception of the severity of 35 
COVID-19 by residents of rural communities, and usually higher levels of vaccine hesitancy3. This 36 
multi-year trend of relative rural under-immunization raises the question of whether further 37 
vaccination efforts might be more impactful in these under-immunized areas regarding 38 
hospitalization, death, and cost-effectiveness. Answering this question is technically challenging but 39 
clinically meaningful; if counties can be stratified in terms of improved outcomes per vaccination, 40 



this may provide meaningful insight into how local and statewide efforts might be distributed to 41 
maximize impact. To accomplish this task, we propose the following technical contributions: 42 
1. Extracting inter-region similarities. The pandemic progression might be similar in regions with 43 

similar geographical and socioeconomic properties. If so, extracting and utilizing these 44 
similarities would help the model better predict pandemic progression in the future. Most 45 
existing spatio-temporal pandemic prediction methods use pre-defined location graphs to 46 
explicitly inform the spatial connections to the model4-7. In contrast, these manually defined 47 
location graphs may differ significantly from the ground truth inter-regional relationships. Other 48 
works learn the spatial connectivity purely based on the historical pandemic progressions8,9, 49 
regardless of the underlying social, economic, or geographical similarities, which cannot 50 
capture the inter-region similarities in full view and lead to inferior prediction results. Therefore, 51 
it is non-trivial to model spatial dependencies with multi-source background data in a flexible 52 
way.   53 

2. Utilizing complex inner-region influence factors. Local COVID-19 hospitalization rates are 54 
likely affected by many factors, including the number of infected patients, high-risk patient 55 
population size, and vaccination rates. Estimating these effects becomes more challenging with 56 
more granular information, such as the number of COVID-19 immunizations per individual. 57 
Leveraging these complex inner-region influence factors, such as medical claims and 58 
vaccination statistics, may significantly improve hospitalization prediction performance. 59 
Recent research combines the susceptible-infected-removed (SIR) and susceptible-exposed-60 
infected-removed (SEIR) differential models with deep learning models to improve predictions 61 
by simulating real-world SIR dynamics4-7. However, when applied to hospitalization prediction 62 
tasks, these models face the following issues: (1) Limited data sources and model parameters 63 
in the traditional epidemiological model make it difficult to utilize these complex high-64 
dimensional inner-region factors effectively. Ignoring complex inner-region factors may cause 65 
the model to fail to capture the underlying disease distribution, virus subvariants, and 66 
vaccination effectiveness rates across the state, which could lead to biased results. While purely 67 
deep-learning-based time series prediction models such as recurrent neural networks (RNN) 68 
can handle high-dimensional data and extract complex nonlinear relationships, they ignore real-69 
world progression dynamics and have minimal interpretability compared to epidemiological 70 
based models. (2) Most epidemiological models offer a simple increasing-decreasing trend with 71 
different rates, while the hospitalization curves are more complex and may not follow this 72 
simple trend. (3). Moreover, the SIR dynamics are not designed for spatio-temporal prediction 73 
tasks, so these models cannot directly utilize for hospitalization prediction. 74 
To address the above challenges, we propose an Ising dynamics-based deep learning model for 75 

spatio-temporal COVID-19 hospitalization prediction. We have combined multiple data sources, 76 
including disease and vaccination statistics from real-world medical claims, medical resource usage, 77 
census, and geographical and mobility data, to create an evidence hub for the ability to train a 78 
complex evidence-driven spatio-temporal prediction model, HOIST. The proposed HOIST model 79 
can handle complex inner-regional influence factors from multiple data sources and adaptively learn 80 
the inter-regional relationships using the locational census and geographical and inter-locational 81 
mobility data without requiring a pre-defined location graph with fixed edges.  82 

The model learning process is guided by the Ising dynamics, a mathematical statistical 83 
mechanics model to estimate site spin configurations in square lattices10. By drawing the analogy 84 



between locations and lattice sites, we find the Ising dynamics a natural choice to model the inner-85 
region factors and inter-region similarities simultaneously: (1) the Ising dynamics guide the model 86 
to extract and utilize inter-region spatial relationships by taking prediction results from similar 87 
locations as kinetic energy; (2) the Ising dynamics model the complex influence of granular inner-88 
region factors from the real-world clinical evidence as potential energy (i.e., external fields). Both 89 
kinetic energy and potential energy jointly decided the energy of the location (predicted 90 
hospitalization case to increase or decrease). The Ising dynamics in this paper are used as a 91 
regularizer to guide the model learning and prediction process, which enables the model to learn 92 
complex nonlinear patterns flexibly. We use recurrent neural networks (RNN) to learn the 93 
parameters of the Ising model so our model can also extract and utilize temporal patterns in the data. 94 

The overview of HOIST is shown in Figure 1. The HOIST model first uses static data to 95 
calculate the distances between locations in the latent space. These distances are further normalized 96 
into 0 and 1, which indicate the connectivity between locations learned by the model. The dynamic 97 
data are used to estimate the External Fields (E.F.s) of locations and used to generate predictions 98 
with LSTM. The estimated E.F.s and the learned connectivity are used to calculate the Ising dynamic 99 
loss, which is then used to regularize the prediction results and better model the real-world 100 
connectivity and effects of various influence factors. 101 

We evaluate the HOIST model on the large-scale spatio-temporal COVID-19 hospitalization 102 
prediction task for 2,299 counties in the United States. This scale is much larger and more granular 103 
than existing COVID-19 spatio-temporal predictive works. In the 4-week hospitalization prediction 104 
task, HOIST achieves 368.7 MAE, 0.6  and 0.89 CCC scores. We also conduct experiments with 105 
different lengths of prediction windows from 1 week to 5 weeks. Compared to the best baseline 106 
model, HOIST achieves 48% lower MAE, 65% lower MSE, 272% higher  and 51% higher CCC 107 
on average. The prediction performances under the temporal data split setting show that HOIST can 108 
consistently achieve low prediction error regardless of the underlying data distribution shift caused 109 
by new virus variants. These results suggest the HOIST model can accurately predict both long-110 
term trends and short-term variations, enabling broader real-world applications.  111 

Unlike totally black-box deep learning time-series models, the fusion of real-world dynamics 112 
in HOIST allows us to look deeper into the model to see how various influence factors affect the 113 
model predictions. By analyzing the weights of external fields, we find that the booster vaccination 114 
rate has a more significant negative correlation with future hospitalization cases (i.e., more profound 115 
impact) compared to the first and second vaccinations in the series. We also find that the effects of 116 
two major vaccination brands, Pfizer and Moderna, have no statistical difference in our model. By 117 
simulating varying immunization rates, we conduct a detailed analysis of the marginal benefit of the 118 
vaccination ratio by answering two questions: (1) How many more vaccinations are necessary to 119 
prevent one hospitalization case for a specific location? (2) What is the cost ratio between these 120 
vaccinations and the average COVID-19 hospitalization for a specific location? Quantitatively, our 121 
model shows that increasing the vaccination ratio by 10% can reduce the number of current 122 
hospitalization cases by 15% on average for all locations. We also find that the cost ratio is generally 123 
highest in much of the rural Midwest and Rock Mountain regions, suggesting that prioritization of 124 
vaccine efforts in these counties could most significantly reduce the overall statewide healthcare 125 
financial burden of COVID-19. For 368 counties among 43 states all over the United States, rural 126 
vaccination outreach efforts are likely cost-saving endeavors. We believe these results and our 127 
model may inform clinicians, healthcare institutions, and policymakers to improve their decisions 128 



and ultimately reduce the negative economic and health impacts caused by the pandemic. All 129 
detailed county-level analysis results are available at the online visualization platform at 130 
https://v1xerunt.github.io/HOIST/. 131 

Results 132 

Problem formulation and data sources 133 

We develop the HOIST model to predict the total number of COVID-19 hospitalization cases 134 
in an upcoming four-week period at a county level across the United States. Throughout this paper, 135 
we use  to denote the number of locations (counties) and  to denote the length of timesteps 136 
(days). The model uses static location background data to adaptively learn location connectivity and 137 
then uses dynamic data to learn the temporal patterns. The model uses the learned spatio-temporal 138 
patterns to conduct predictions. Concretely, we formulate model inputs and the prediction task as 139 
follows: 140 
Input 1 (Static Data). The static data include the distance matrices , ∈ ℝ ×  , population 141 
demographics statistics ∈ ℝ ×  and economics and healthcare statistics ∈ ℝ × .  is the 142 
geographical distance matrix and  is the mobility distance matrix. The geographical distances are 143 
the Haversine distances between  locations. The mobility distance includes the average mobility 144 
flows between   locations during 2020 and 2021. The mobility scores are collected from the 145 
Multiscale Dynamic Human Mobility Flow Dataset, which analyzed millions of anonymous mobile 146 
phone users' visits to various places provided by SafeGraph11. The census features ,  include 147 
populations of different age and race groups and medical resource statistics, which are collected 148 
from the county-level census dataset provided by12. 149 
Input 2 (Dynamic Data). All dynamic data are three-dimensional tensors, including the daily new 150 
infected COVID-19 case counts ∈ ℝ × × , medical claim statistics ∈ ℝ × × , vaccination 151 
statistics ∈ ℝ × × , and medical resource usage statistics ∈ ℝ × × . The daily new cases  152 
are collected from the Johns Hopkins COVID-19 Data Repository13. Claim statistics   include 153 
daily statistics of total patients, patients older than 65, and patients with certain comorbidities. The 154 
age threshold and comorbidities are derived from the CDC COVID-19 guidelines14 and the Charlson 155 
Comorbidity Index15. The vaccination statistics   include daily statistics of 13 different 156 
vaccination CPT codes. Both vaccination and claim statistics are collected from IQVIA's real-world 157 
claims dataset16. The medical resource usage statistics  include the usage of inpatient and ICU 158 
beds and their usage for COVID-19 patients, which are collected from HealthData.gov17. Though 159 

 also provide the information for hospitalization cases, we use  instead of  as the ground-160 
truth case numbers. This is because  only provides weekly statistics and the statistics are collected 161 
from fewer healthcare institutions compared to the claims data. We include medical resource usage 162 
statistics  to help reduce the potential biases in the claims data. 163 

The feature list and statistics can be found in the Supplementary Information. 164 
Task (Spatio-temporal COVID-19 Hospitalization Prediction). Given all static and dynamic data 165 
of   locations and   timesteps, our task is to predict the total number of COVID-19 166 
hospitalization cases in future  days for each of the N locations, denoted as ∈ ℝ . Since the 167 
claims data do not show the primary cause for hospitalizations, we define a hospitalization case as 168 
a patient hospitalized within 35 days after the COVID-19 diagnosis in the claims dataset and we 169 
calculate the total hospitalization cases for each location to get  . This setting is inspired by 170 



previous COVID-19 hospitalization prediction works18,19. 171 

Experiment settings 172 

In the experimental phase, we extract all the required data from September 2020 to May 2022. 173 
We set the input window  to 5 weeks and the prediction window  to 4 weeks. We select counties 174 
using the FIPS codes. The final number of counties are 2,299. We only exclude counties that have 175 
zero cases for all timesteps. Note that our experiment scale is much larger and more granular than 176 
existing works4,5, which allows for a wider scope of possible applications.  177 

We use the mean square error (MSE), mean absolute error (MAE), the coefficient of 178 
determination ( ), and the average concordance correlation coefficient (CCC) to evaluate model 179 
prediction. The CCC and  are computed as: 180 = 1 − ∑ −∑ − 1  181 

CCC =  2+ + −    2  182 

where   and   are the means for the predictions and ground-truth, and   and   are the 183 
corresponding variances.  is the correlation coefficient between the two variables  and . Note 184 
that the range of  is (−∞, 1), so an extreme value may significantly affect the average value. In 185 
contrast, the range of CCC is (−1,1), so this will be less affected by extreme values. 186 

We split the sequence into train, validation, and test sets in a 3:1:1 ratio. The training sequences 187 
are from Sep 04, 2020 to Sep 02, 2021; the validation sequences are from Sep 03, 2021 to Dec 23, 188 
2021, and the test sequences are from Dec 24, 2021 to Apr 15, 2022. We train the model on the 189 
training set and save the model and hyper-parameters with the best performance on the validation 190 
set. We then test the model on the testing set and report the performance. We train all models 5 times 191 
with different random initializations and calculate the standard deviations. Due to diverse location 192 
characteristics, the average hospitalization cases vary from a few to tens of thousands of cases. This 193 
large variation in case numbers poses a challenge for the deep learning model to learn stable 194 
parameters. We therefore conduct the log transformation on the prediction targets and scale the 195 
model predictions back to the original scale, then calculate the performance metrics. We also provide 196 
the prediction uncertainty at 90% confidence in all county-level and state-level prediction plots 197 
using the conformal methods20. The conformal algorithms possess explicit and non-asymptotic 198 
guarantees without distributional assumptions or model assumptions, so that they can be easily 199 
applied to all trained models. The prediction interval  is estimated as: 200 = − , +  (3) 201 
where   is the average prediction using the 5 models with different random initializations,  202 
denotes the standard deviation of 5 models. The value of parameter  depends on the required 203 
confidence. For example, if we aim to obtain the prediction interval with 90% confidence, we use 204 
calculate the  to make the prediction interval  covers 90% ground truth on the validation set. 205 
Then we applied the  on the test set to calculate the test prediction interval. We provide more 206 
detailed model uncertainty analysis in the Supplementary Information.  207 

We use Python 3.9, PyTorch 1.1221, scikit-learn 1.2, NumPy 1.19 to collect the data and 208 
implement the models. We use the mini-batch gradient descent strategy to train the models and the 209 
batch size is set to 128. We use Adam optimizer with learning rate 0.01 for 300 epochs. We save the 210 



model with the highest score on the validation set and report the prediction performances on the 211 
testing set. All the experiments are done on the server with Intel i9-13900K CPU, 64 GB RAM and 212 
one NVIDIA RTX 4090 GPU. The HOIST source code is publicly available on GitHub 213 
(https://github.com/v1xerunt/HOIST). 214 

Baseline models 215 

 We compare HOIST with the following epidemiology and deep-learning methods. 216 
1. DELPHI-SEIR22: This is a variant of the SEIR (susceptible, exposed, infectious, and 217 

recovered) epidemiology model. Compared with the traditional SEIR model, DELPHI-218 
SEIR can model hospitalization trends and policy strategies. We use the trust region23 219 
optimization strategy to estimate the model's parameters. 220 

2. GRU: We input all features into a gated recurrent unit (GRU) model and predict the future 221 
number of cases. The GRU model is a variant of RNN, widely applied in multiple pandemic 222 
prediction works24-26. The hidden dimension of GRU is set to 128. 223 

3. LSTM: We input all features into a long short-term memory (LSTM) model and predict 224 
the future number of cases. The LSTM model is another variant of RNN. The hidden 225 
dimension of LSTM is also set to 128. 226 

4. ColaGNN9: ColaGNN learns the location graph with sequential data to learn spatial 227 
relationships for pandemic progression. The hidden dimension of RNN is set to 128, and 228 
the convolution filter dimension is set to 64. 229 

5. ACTS8: ACTS is a COVID-19 forecasting model which uses the inter-series attention 230 
mechanism to learn spatial relationships between locations. The convolution filter 231 
dimension is set to 64 and the segment length is set to 14. 232 

6. CovidGNN27: CovidGNN uses a graph neural network with skip connections to predict 233 
future COVID-19 cases. We use a two-layer graph attention network, and the graph network 234 
dimension is set to 64. 235 

7. STAN4: STAN fuses the SIR dynamics into a spatio-temporal prediction model for 236 
COVID-19 case prediction. The graph network dimension is set to 64, and the hidden 237 
dimension of GRU is set to 128. Since the SIR dynamics do not apply to the hospitalization 238 
prediction task, we remove the SIR constraints in the STAN model. 239 

All models can access the same data sequences with the same input window and are all 240 
evaluated on the same testing set. For the spatial-temporal prediction models (i.e., ColaGNN, ACTS, 241 
CovidGNN, STAN), we use the static data to build the location graph or calculate the location 242 
similarities in their algorithms. For the GRU and LSTM model, we concatenate the static data with 243 
the original inputs at each timestep to the model. The SEIR model cannot take the static location 244 
data as inputs. All model hyper-parameters are decided by using grid search on the validation dataset. 245 
For the DELPHI-SEIR model, we use the deployed version of the DELPHI-SEIR model (i.e., 246 
DELPHI-SEIR V4) and recommended optimal parameters. To assess the performance improvement 247 
from the Ising dynamics, the adaptative connectivity learning, and the real-world evidence, we 248 
conduct an ablation study by comparing HOIST against the following ablation versions from both 249 
a data perspective and a method perspective: 250 

1. HOIST-Vaccination: We remove the vaccination statistics data from the model input 251 
sequences of HOIST.  252 

2. HOIST-Risk: We remove the high-risk patient statistics in the real-world claims data from 253 



model input sequences of HOIST.  254 
3. HOIST-AC: We remove the adaptative connection learning module from HOIST. The  255 

matrix is learned by calculating the sequence similarities instead of using location 256 
background data. 257 

4. HOIST-Ising: We remove the Ising dynamic loss and replace the E.F. modeling module 258 
with a naïve LSTM network in HOIST. 259 

Model performance analysis 260 

We design experiments to answer the following research questions: 261 
1. How well does HOIST perform in the hospitalization prediction task? 262 
2. How well does HOIST perform with different lengths of prediction window? 263 
3. How well does HOIST perform under temporal data split setting? 264 
4. What is the analysis of the learned external field weights? 265 
5. How does the HOIST model help to increase vaccination rates effectively? 266 

28-day hospitalization prediction performance 267 

 Table 1 shows the performance of the 28-day hospitalization prediction task. Compared to the 268 
best baseline model, HOIST reaches 70% lower MSE and 50% lower MAE. It also achieves an  269 
score of 0.6 and a CCC of 0.89 while the best baseline model achieves 0.16  and 0.6 CCC. We 270 
find ColaGNN and ACTS achieve better prediction performance among the compared models; this 271 
may be because both CovidGNN and STAN require a fixed location graph structure as input, while 272 
ColaGNN and ACTS can learn the spatial relationships based on the sequence similarity. Compared 273 
to the infected case prediction task, the spatial patterns of hospitalization cases may be more 274 
complex and thus cannot be pre-defined using a fixed location graph. Therefore, models that can 275 
learn flexible connections commonly outperform all others in this task. By utilizing the location-276 
static background data, HOIST can better extract spatial patterns of the pandemic progression. We 277 
also find that traditional epidemiology SEIR models fail to predict accurately in this task, probably 278 
because the hospitalization curves do not follow a simple increasing-decreasing trend, which is the 279 
underlying assumption of most epidemiological models. Additionally, the ground-truth curves may 280 
have multiple peaks and complex short-term variations, which increases the difficulty of the 281 
predictive task. Note that when calculating  and CCC scores, the average value  used in the 282 
denominator is the average value in the test time phase, which is often difficult to beat since the 283 
future  is unavailable at the prediction time. Therefore, in all experiments, any positive  or 284 
high CCC scores can be impressive to achieve. 285 

We conduct the student t-test to evaluate the significance of the performance differences. The 286 
results show that the performance differences between HOIST and the best baseline models are 287 
significant (p<0.001). HOIST also outperforms all ablation versions of HOIST by a large margin, 288 
validating the effectiveness and necessity of all proposed modules. According to the performance 289 
analysis, the Ising dynamics are the most critical component of HOIST. By modeling various 290 
influence factors as external fields and using spatial-temporal dynamics to regularize the model 291 
learning process, HOIST confirms that the Ising dynamics can improve spatio-temporal predictive 292 
performance by more closely resembling the real-world curve. Furthermore, integrating real-world 293 
evidence data, such as high-risk patient cohorts and vaccination statistics can reduce prediction error. 294 
Using background data to learn adaptative spatial connectivity in HOIST also enables it to 295 



outperform the reduced model, which only uses sequence similarities (i.e., HOIST-AC). The 296 
adaptative connectivity learning module also helps the HOIST learn clustered spatial embeddings 297 
using the demographics data. We provide visualization plots of the learned embeddings in the 298 
supplementary material. The results show that HOIST can not only extract geographical similarities 299 
between locations, but also can identify geographically distant but socio-economically similar 300 
locations. We also provide the predicted curve plots for all US states in the Supplementary 301 
Information. 302 

Prediction performance with different lengths of prediction window 303 

 In this section, we evaluate each model's long-term and short-term prediction performance by 304 
changing the prediction window  from 1 week to 5 weeks and then train and evaluate all the 305 
models with the same strategy. The MAE, MSE, , and CCC of HOIST and the 6 best baseline 306 
models are shown in Figure 2. Due to its poor performance, we exclude the SEIR model. 307 
 The results demonstrate that the MSE and MAE of all models increase as the length of the 308 
prediction window increases. This is expected since predicting further into the future becomes 309 
progressively more challenging. However, HOIST consistently achieves a much lower MAE and 310 
MSE than all baseline models. HOIST also achieves consistently high   and CCC scores. 311 
Compared to the baseline models, HOIST achieves on average a 48% lower MAE, 65% lower MSE, 312 
272% higher , and 51% higher CCC. The results demonstrate that the HOIST model accurately 313 
predicts both long-term trends and short-term variations, enabling broader real-world applications. 314 

Prediction performance under temporal data split setting 315 

New variants of COVID-19 virus can lead to different disease severity. It is non-trivial for a model to 316 
accurately predict future hospitalization under such distribution transitions. We design experiments to 317 

evaluate how model performance evolves over time. We use a sliding window training setting by using 318 
10 weeks data for training and using next 4 weeks data for testing. We split the time from Sep 2020 to 319 

April 2022 into 7 periods and the model are tested in 7 testing time phases. We compare HOIST against 320 
other 3 best baseline models (i.e., LSTM, ACTS and ColaGNN). The results are shown in  321 

Figure 3. 322 
 The results show that HOIST consistently outperform all baseline models in terms of MSE and 323 
MAE on all testing phases. HOIST consistently achieves low prediction errors and high CCC scores 324 
and is less affected by the temporal data distribution shifts. We notice that some baseline models 325 
experience low prediction performance on Feb 2021 and Jan 2022. This may be due to distribution 326 
shifts between training and testing data caused by emerging of new variants of the COVID-19 virus. 327 
However, HOIST achieves lower prediction error than baselines on these time phases. 328 

Analysis of learned external fields 329 

 Compared with the baseline black-box models, modeling external fields with Ising dynamics 330 
allows us to analyze the importance of different factors for different locations, providing us with 331 
more insight into which features are most predictive of hospitalization. In the learned E.F. 332 
parameters , each dimension denotes the weight of the corresponding input factor. To visualize the 333 
effect of the number of vaccinations on the hospitalization rate, we plot the corresponding weights 334 
of the following vaccination features: 1) total number of vaccinations, 2) number of first vaccination 335 
administrations, 3) number of second vaccination administrations, and 3) number of booster 336 



administrations, as shown in Figure 4. 337 
 The negative EF weights occur because vaccination ratio is negatively correlated with 338 
hospitalization case count. However, the results show that the E.F. weights of all four features are 339 
increasing, meaning the predictiveness of vaccinations are decreasing over time. This is possibly 340 
due to the increased prevalence of new variants of the virus, many of which are more resistant to 341 
vaccinations, which is consistent with conclusions in recent medical research28,29. However, we can 342 
still observe that the booster doses (the purple line) are more effective than the first and second 343 
doses (p-value < 0.05). We also compare the model effect (i.e., the E.F. weights) of Pfizer (CPT 344 
code 0001A~0004A) and Moderna (CPT code 0011A~0013A, 0064A) COVID-19 vaccines, and 345 
we find that their effects do not have statistical difference in our model (p-value 0.1). 346 
 We also explore the E.F. weights of high-risk conditions, which are condition codes defined by 347 
the CDC COVID-19 People with Certain Medical Conditions guideline14 and the Charlson 348 
Comorbidity Index15. These features are proved to have significant impacts on COVID-19 patients’ 349 
outcomes30,31. We find the feature with the highest E.F. weight is the number of patients older than 350 
65. The top 5 conditions are: renal disease, dementia, immunodeficiency, malignancy, and chronic 351 
lung disease. The results are consistent with CDC guidelines, and we do not observe statistically 352 
significant differences in these five features.  353 

Predicted hospitalization hotspot map and error analysis 354 

 We present the predicted hospitalization hotspot map in Figure 5. Figure 5-(a) is the hotspot 355 
map colored by the number of hospitalization cases and Figure 5-(b) is colored by the ratio of 356 
hospitalization cases over total population. There are some blank areas in the map in cases of no 357 
valid data or zero case counts in these counties. These heatmaps can be accessed in an online 358 
visualization platform at https://v1xerunt.github.io/HOIST/. 359 
 We find that the spatial patterns of hospitalization are similar in both figures. West coast, 360 
Northeast coast and Midwest areas generally have high hospitalization case counts and per-person 361 
occurrence. Interestingly, we also find that some locations – such as the San Diego county (A) and 362 
Riverside county (B) along the West coast – have very high case counts but only medium-level 363 
hospitalization ratios. A possible interpretation could be that the people from these counties tend to 364 
travel to Los Angeles for hospitalization. 365 
 We also plot a heatmap to show the spatial patterns of the mean average percentage error 366 
(MAPE). We only calculate the MAPE for locations where case counts are larger than 100 in the 367 
testing phase because a small prediction error can lead to very large MAPE for locations with low 368 
counts. The results are shown in Figure 5-(c). 369 
 We find that HOIST achieves low MAPE for most locations, with only 15 locations having a 370 
MAPE greater than 0.5. For these locations, HOIST tends to underestimate the case counts. This 371 
may be because there are some pattern changes in the testing time window; for example, in 372 
Effingham, Georgia, HOIST has 0.64 MAPE. When we plot the predicted hospitalization curve and 373 
the number of infected cases (Figure 6), we find several peaks in the infected case count curve 374 
during both the validation and testing phases, which is quite different from training patterns. These 375 
sudden fluctuations in input features may cause HOIST to fail to accurately predict the surge of 376 
hospitalization cases during the testing phase. We provide another two case examples for error 377 
analysis in the Supplementary Information. 378 



Number needed to treat prediction with HOIST 379 

Increasing a community's vaccination rate is an effective method of reducing both the 380 
occurrence and severity of COVID-1932. However, there is still uncertainty surrounding how and 381 
whether this effectiveness is influenced by local vaccination rates. In other words, we ask the 382 
question, "Due to the disproportionately higher vaccination rates in urban areas, do inequalities exist 383 
regarding the number of additional vaccinations necessary to reduce a single hospitalization or 384 
death?" We also calculate the cost effectiveness of future vaccination efforts based on the county-385 
level average cost of COVID-19 hospitalization. Accurately answering these questions at the county 386 
level may allow policymakers and healthcare institutions with limited distribution capabilities and 387 
finite medical resources to develop more targeted vaccination efforts.  388 

The high predictive accuracy of HOIST enables us to answer these questions. By changing the 389 
vaccination rates in the input features, HOIST can simulate the changes of the predicted 390 
hospitalization curve. We use the predicted number of hospitalizations to calculate the Number 391 
Needed to Treat (NNT) with respect to how many vaccinations are needed to prevent one 392 
hospitalization at each county. For each location, we increase the vaccination rate by 10% (i.e., 10%  393 
total population) and calculate the predicted hospitalization case reduction between the original 394 
prediction  and the simulated prediction . The NNT for hospitalization is calculated as: 395 NNT = 1CER − EER = 10.1 − 0.1 = 10( − ) (4) 396 

where CER denotes the control event rate (original predicted hospitalization rate), EER denotes 397 
the experimental event rate (simulated hospitalization rate after the vaccination rate increases by 398 
10%), and  denotes the population size of the location.  399 

Furthermore, we acknowledge that morbidity and mortality among individuals hospitalized 400 
with COVID-19 occur disproportionately in certain ethnic and racial minority groups. To address 401 
these outcome disparities in our model, we adjust the NNT for each county based on its 402 
demographics and their respective risk ratios: 403 NNT = NNT1 ∗ , + 0.8 ∗ , + 1.7 ∗ , + 1.8 ∗  (5) 404 

where ,  , ,   and ,   denote the population ratio of White, Asian, and Black 405 
non-Hispanic persons, and  denotes the population ratio of Hispanic or Latino persons. All 406 
county-level population ratios are extracted from the census data. The risk adjustment factor for 407 
each race and ethnicity is based on national COVID-19 death risk ratios reported by the CDC33,34. 408 
While NNT  represents the predicted number of vaccinations needed to prevent one hospitalization, 409 NNT  is not a direction calculation of NNT for death prevention; instead, its purpose is to illustrate 410 
how locations with similar NNT   might be further stratified based on the predicted outcomes of 411 
those predicted hospitalizations. The resultant NNT   favors locations with more Black/African 412 
American, Hispanic, and Latino populations. Future analytical and predictive efforts incorporating 413 
county-level death rates are warranted. 414 

The heatmaps of NNT  and NNT  are shown in Figure 7. Note how the count and ratio maps 415 
identify hotspots primarily among urban and metropolitan areas. In contrast, the NNT values are 416 
generally lowest in the rural region, which are highly clustered in certain states, including North 417 
Dakota, South Dakota, Kansas, Nebraska, Montana, etc. Quantitatively, increasing the vaccination 418 



ratio by 10% can reduce the number of current hospitalization cases by 15% on average for all 419 
locations. 420 

We further calculate the cost ratio between state average vaccination costs and state average 421 
COVID-19 hospitalization costs. We collect the state-level average vaccine cost from the Centers 422 
for Medicare and Medicaid Services (CMS)35 and hospitalization cost for both complex and 423 
noncomplex COVID-19 inpatients from the COVID-19 Cost Tracker36. The cost ratio is then 424 
calculated as: 425 = ∗ + ∗NNT ∗  (6) 426 

where  and  are the average complex and noncomplex COVID-19 inpatients 427 
ratio extracted from the hospital resource data.  and  are hospitalization costs 428 
for complex and noncomplex COVID-19 inpatients.   is the cost of one vaccine. All 429 
parameters to calculate the  vary by location. 430 

The cost ratio heatmap is shown in Figure 7-(c). A cost ratio greater than 1 indicates that 431 
increasing the number of vaccinations in that location by the NNT is less expensive than the cost of 432 
the single prevented hospitalization. The heatmap demonstrates a ratio favoring future vaccination 433 
efforts in primarily rural regions, most commonly among centrally located and landlocked counties. 434 
We list the NNT  and NNT  of the top 15 locations with the highest (most favorable) cost ratios 435 
in Table 2. The full county-level table can be accessed in the GitHub repository and the visualization 436 
platform. These results suggest three meaningful conclusions. First, even small-scale vaccination 437 
efforts in targeted counties are likely to prevent at least one hospitalization and its related sequelae. 438 
Secondly, rural vaccination outreach efforts are likely cost-saving endeavors in 368 counties among 439 
43 states (with cost ratio > 1). Thirdly, we find that locations that have high cost ratio also have high 440 
adjust ratio. This may indicate large healthcare disparities for different race in these locations. More 441 
life could be saved by improving the vaccination fairness in these locations. 442 

Discussion 443 

 In this work, we propose an Ising dynamics-based deep learning model, HOIST, for spatio-444 
temporal COVID-19 hospitalization prediction. The HOIST model is built with multiple data 445 
sources including disease and vaccination statistics from real-world medical claims, medical 446 
resource usage, census, geographical and mobility data. HOIST can handle complex inner-region 447 
influence factors and adaptively learn the inter-regional relationships without requiring a pre-448 
defined location graph with fixed edges. By drawing the analogy between locations and lattice sites, 449 
we use the Ising dynamics as a regularizer to guide the model learning and prediction process, which 450 
is a natural choice to model the inner-region factors and inter-region similarities simultaneously.  451 

We evaluate the HOIST model on the large-scale spatio-temporal COVID-19 hospitalization 452 
prediction task for 2,299 counties in the United States. In the 4-week hospitalization prediction task, 453 
HOIST achieves 368.7 MAE, 0.6   and 0.89 CCC scores. For different lengths of prediction 454 
window from 1 week to 5 weeks, HOIST achieves 48% lower MAE, 65% lower MSE, 272% higher 455 

 and 51% higher CCC on average compared to the best baseline models. We conducted a detailed 456 
analysis of the model results and learned parameters. We find that the booster shot of vaccination 457 
population percentage has a more significant negative correlation to future hospitalization cases 458 
than the first and second vaccination shots. We also find that the effects of two major vaccination 459 
brands, Pfizer and Moderna, have no statistical difference in our model.  460 



We note that, in contrast to many previous models, our HOIST-based clinical and economic 461 
predictions suggest a need to prioritize future vaccination efforts in rural areas over urban centers. 462 
The results indicate that increasing the total vaccination ratio by 10% can make the number of 463 
current hospitalization cases reduce by 15% on average for all locations. We believe these 464 
predictions accurately reflect the growing disparity in vaccination rates between these communities. 465 
Additionally, we note a positive correlation between vaccination rate and NNT; in fact, the adjusted 466 
NNT map appears strikingly similar to maps depicting percentages of fully vaccinated residents by 467 
county37. We surmise that communities with lower-than-average proportions of vaccinated 468 
individuals are more likely to benefit from further vaccination efforts irrespective of rurality. For 469 
368 counties among 43 states, increasing vaccination ratio in these counties can significantly reduce 470 
the overall healthcare costs for COVID-19 patients. We hope these results and our model can inform 471 
clinicians, healthcare institutions, and policymakers to improve their decisions and ultimately 472 
reduce the negative economic and health impacts caused by the pandemic. 473 
 This research is not without limitations. In the data collection process, the number of 474 
hospitalization cases may have bias. We define a hospitalization case as a patient hospitalized within 475 
35 days after the COVID-19 diagnosis. We extract these statistics from the claim dataset, so we 476 
cannot know if COVID-19 is the primary cause of hospitalization. Though this definition is the 477 
same with existing COVID-19 prediction works38,39, the model may conflate hospitalizations trends 478 
due to other causes with those accurately attributed to COVID-19. This is especially true in the 479 
pediatric population where COVID-19 infectivity is high but severe cases are uncommon. Despite 480 
these limitations, we still select claims data as our primary data source as it provides valuable 481 
granular county-level statistics.  482 
 The second limitation concerns data preprocessing. The original data distribution of 483 
hospitalization cases is highly skewed. Our dataset is much larger than previous research; over 80% 484 
of locations have fewer than 1,000 hospitalization cases in the 28-day prediction window, and only 485 
2% have more than 10,000 hospitalization cases. To maintain the stability of the machine learning 486 
models, we conduct a log transformation on the prediction target, followed by a z-score 487 
transformation to normalize the sequence. Therefore, model prediction results require two reverse 488 
transformations to return to the original scale. This transformation may cause a small error in the 489 
prediction scale to grow exponentially as it converts to the original scale. As a result, we observe 490 
that baseline models sometimes have abnormal large prediction errors and standard deviations (e.g., 491 
over 10,000 MAE), especially when the prediction window is long. We manually remove these 492 
outliers from the performance table. Though we do not find these issues in HOIST, which further 493 
demonstrates the stability of the model, we still believe this is an open research challenge in the 494 
large-scale spatio-temporal prediction work. The data scale issue might be solved by proposing more 495 
advanced preprocessing techniques or new scale-invariant models. 496 
 A third limitation exists at the methodology level. Though the spatial connectivity learning 497 
module is more flexible than previous works requiring fixed graph structures, the learned 498 
connectivity does not change with time. In real-world scenarios, spatial connectivity may be affected 499 
by several factors, including weather, holidays, and travel restrictions. Therefore, future works may 500 
include integrating more data sources such as real-time mobility data between locations to further 501 
improve the extracted spatial patterns, interpretability analysis on the feature contributions and more 502 
granular age information. Besides, the Ising dynamics maybe not the only choice to model the 503 
spatial and social background factors for hospitalization prediction. The reason we choose the Ising 504 



dynamics is that it can incorporate both inter-region spatial relationships and inner-region factors 505 
and can handle these complex factors compared to naïve SIR and SEIR models. We are inspired by 506 
previous sociology studies that use Ising models for human behavior tendencies40. Though the Ising 507 
dynamics show good prediction performances in HOIST, we hope our exploratory work can provide 508 
more inspiration for future studies using other real-world dynamics. 509 

Methods 510 

 We follow the recommendations set out in the Global Code of Conduct for Research in 511 
Resource-Poor Settings when designing, executing and reporting the research and this research does 512 
not use individual-level data which may raise ethic issues. Our study complies with the 513 
recommendations of the GATHER statement. 514 

Background 515 

 Machine learning and deep learning models have been widely applied in pandemic predictions. 516 
Statistical epidemic prediction models, including SIR, SEIR, and their variants, have achieved some 517 
success in infection, hospitalization, and mortality prediction tasks25,41,42. To extract complex 518 
temporal patterns, some works have applied the recurrent neural network (RNN) and its variants, 519 
such as long short-term memory network (LSTM) and gated recurrent unit network (GRU), to 520 
predict future infected and hospitalization cases24-26.  521 

To further improve the spatio-temporal prediction performance, a significant line of research 522 
focuses on extracting and utilizing spatial dependencies. Graph neural networks (GNN) 4,27,43,44 and 523 
metapopulation analysis models45-47 have achieved remarkable success in solving this issue. In these 524 
works, counties and states are modeled as nodes in the graph, and the edges are defined using 525 
geographical and sociological similarities or mobility scores. By combining the GNNs and RNNs, 526 
these models can extract spatio-temporal patterns in the data and make better predictions. However, 527 
most of these models rely on pre-defined location graphs. These manually defined location graphs 528 
may differ greatly from the ground truth inter-regional relationships and spatial pandemic 529 
transmission patterns. Besides, some metapopulation models are only applicable for infectious 530 
diseases since the underlying assumption is the population flow, which makes it difficult to extract 531 
other spatial patterns such as hospitalizations. Some works aim to solve this issue by adaptively 532 
learning the connection weights between locations. Jin et al. 8 and Deng et al. 9 utilize the attention 533 
mechanism to predict future infected cases in pandemics. Their work learns the connection weights 534 
based on the similarities of historical case curves at different locations but largely ignores the 535 
underlying social, economic, medical, and geographical similarities, which may have a profound 536 
impact on the inter-location relationships. Therefore, further exploration is needed to discern how 537 
best to model spatial dependencies with multi-source background data in a flexible way. 538 

Another line of research focuses on integrating real-world disease transmission dynamics into 539 
deep learning models. Though deep learning networks can extract complex temporal patterns, they 540 
can only predict known data patterns and thus have worse long-term prediction accuracy. Integrating 541 
epidemiology models such as SIR and SEIR can help deep learning models predict curves 542 
resembling real-world transmission patterns. Gao et al.4 used an SIR model as a regularizer term in 543 
the loss function to help the GAT-GRU model predict county-level COVID-19 infection case 544 
numbers in the United States. Storlie et al.6 proposed a stochastic SIR model to predict future 545 
COVID-19 cases. Though these models can be applied in the COVID-19 hospitalization prediction, 546 



their main approach involves dividing the infected population into hospitalized and non-hospitalized 547 
cohorts and then modifying the transmission equation accordingly. However, as mentioned in the 548 
introduction, the relatively few parameters in most epidemiological models may not fully describe 549 
the influences of complex underlying disease distribution, viral variants, and vaccination effects. 550 
Additionally, these epidemiological models are not designed for general spatio-temporal predictions 551 
and thus cannot extract and utilize inter-regional interactions. Therefore, integrating appropriate 552 
real-world dynamics that can naturally model spatio-temporal hospitalizations may improve the 553 
prediction performance. The Ising model is a statistical mechanics model for site spin configuration 554 
estimations; it has been applied in sociology research to model social behavior by considering each 555 
individual as a site40. In this work, instead of directly using statistical methods to estimate the Ising 556 
parameters in a low-dimensional and static-variable-only dataset, we combine the Ising dynamics 557 
with deep learning techniques to model the spatio-temporal pandemic hospitalization patterns from 558 
complex, high-dimensional multi-source data. 559 

Learning adaptative connectivity in the latent space 560 

 Pandemic progression patterns have spatial similarity depending on the underlying population, 561 
economic, geographic, and mobility factors in various locations. Recent works suggest that utilizing 562 
these spatial similarities can guide the model to better extract progression patterns and make more 563 
accurate predictions4,27,43,44. In this work, instead of pre-defining a connected location graph with 564 
fixed edges, we aim to learn the adaptative connectivity between locations. Concretely, we measure 565 
the latent distances between locations from multiple perspectives from the static data, and then 566 
normalize the distances to similarities. 567 
 In HOIST, each location will be embedded in a multi-dimensional latent space. The latent space 568 
is created by considering the set of socio-demographic variables as dimensions so that each location 569 
will have a unique position, and locations that are similar in these socio-demographic factors will 570 
be embedded closely in the space (also known as the Blau space in sociology study)48. To calculate 571 
the distance of two locations in the latent space, previous works directly use the sum of Euclidean 572 
distance over all dimensions40. This is applicable in small-scale settings, but our setting is large-573 
scale and high-dimensional, containing all counties in the United States. The scale differences in 574 
some factors are substantial (e.g., population size and geographic distance). Using Euclidean 575 
distance may lead to biased connectivity. Furthermore, we also aim to capture the complex nonlinear 576 
similarity, which is difficult for scale-invariant distance metrics such as Mahalanobis distance. In 577 
this work, we calculate the distances using the graph attention mechanism49. Concretely, for location 578 
 and , the latent distance  is calculated as: 579 = ( , ( , || , ))∀ ∈ , + , ( , ( || ))  (7) 580 

where  denotes the -th row vector of the  matrix (i.e., the population demographics  and 581 
the economics and healthcare statistics  ),   and   denote the value at  -th row and  -th 582 
column in the matrices   and   (i.e., the distance between location   and  ), 583 , , , , , , ,  are weight matrices,  denotes the sigmoid activation function, and (∙ || ∙584 ) denotes the concatenation operation. Using this attention mechanism, the model can adaptatively 585 
learn the distance between two locations from multiple perspectives including demographics, 586 
populations, economics, healthcare, geographic distance, and mobility. The distances are further 587 
normalized to obtain the similarity  as: 588 



= exp∑ exp( ) (8) 589 

where  indicates the normalized adaptative similarity between location  and  learned by the 590 
model. The higher the , the more similar the two locations. The similarity scores of all locations 591 
formulate the matrix ∈ ℝ ×  which is used to inform how the model utilizes the learned spatial 592 
connectivity in the following sections. 593 

Modeling the external fields in Ising dynamics 594 

 In the Ising model, the energy of a spin configuration  of lattice sites is given by the  595 
Ising Hamiltonian , which takes the form: 596 

= − + ,   (9) 597 

where  denotes the interaction between two sites  and , and  denotes the external field 598 
(E.F.) interacting with site . The Ising Hamiltonian  can be considered as the sum of the energy 599 
related to the interactions between sites and the energy related to the external field. This Ising 600 
Hamiltonian form is applied to capture pandemic hospitalization patterns. First, the hospitalization 601 
patterns are highly correlated with the location-specific distributions on comorbidity, vaccination, 602 
and hospital resource usage. This can be modeled as the first term in the Ising Hamiltonian . 603 
Secondly, the hospitalization patterns are highly correlated across locations depending on the 604 
underlying socioeconomic factors. The second term in the Ising Hamiltonian matches location-605 
correlation. We propose to use the Ising dynamics to guide the model learning process in this manner.  606 
 To fuse this dynamic equation into the HOIST model, the initial step is to model the external 607 
fields using Ising dynamics. More specifically, we model the external fields of a specific location 608 
from multiple perspectives. The idea is to utilize historical statistics to infer future hospitalization 609 
cases. For example, if the number of infected cases among high-risk cohorts has risen in the past 610 
few months, the number of hospitalization cases is also likely to rise soon. This temporal delay is 611 
expected since many infected patients, even those at high risk for critical illness, do not develop 612 
severe manifestations immediately. Of course, we also take vaccinations into consideration; as the 613 
number of immunized individuals increases, the hospitalization rate decreases. All sequence vectors 614 
are flattened into vectors in a historical window  instead of just the values at timestep  (e.g., 615 ′ = [ , , … , ]). Likewise, we create the historical new infected case sequence ′ , 616 
claim statistics sequence ′ , vaccination statistics ′ , and medical resource usage sequence ′  617 
at timestep . Note that we omit the location index  in this section because we are only discussing 618 
one specific location. The parameters of external fields are modeled as: 619 = ( )  (10) 620 = ( ) (11) 621 = ( ) (12) 622 = ( ) (13) 623 
where : ℝ → ℝ  denotes the  projection function to generate scaling factors for each 624 
sequential factor. By multiplying the scaling factors and the sequential factors, the final predictions 625 
are calculated as: 626 = [ ∙ || ∙ || − ∙ || ∙ ] (14) 627 = LSTM ,  (15) 628 



Here LSTM(∙)  denotes a multi-layer perceptron to capture temporal progressions, the (∙) 629 
operation denotes the Hadamard product and (∙ || ∙)  denotes the concatenation operation. This 630 
process is essentially learning weights (i.e., , ,  and ) for different influence factors. The 631 
larger the weight, the greater the influence of the corresponding factors on the prediction result. This 632 
is also why we add the negative symbol before , since the vaccinations should be negatively 633 
correlated with hospitalization cases. By concatenating all the scaling factors, we obtain the E.F. 634 
strength vector . We further use an LSTM network to model the temporal progression of the E.F. 635 
 To generate the final predictions for location  (here we bring back the location subscript as 636 , ), we calculate the weighted sum of the final hidden state from the LSTM network from other 637 
locations. We use the adaptative connectivity  as the connection weight as: 638 

, = , + ,   (16) 639 

, = MLP ,  (17) 640 
In this way, the final prediction result ,   considers not only the temporal progression of the 641 
pandemic and influence factors (Equation 3), but also the relevant spatial relationships (Equation 2 642 
and 4). 643 

End-to-end learning with the spatio-temporal Ising loss function 644 

 Our loss function consists of a prediction loss and an Ising dynamics constraint loss. First, the 645 
prediction loss is calculated by using the mean square error: 646 

ℒ = , − ,    (18) 647 

The second loss term is the Ising constraint loss ℒ , which takes the form: 648 

= ,  (19) 649 

, = , + , ,  (20) 650 

ℒ = , − ,  (21) 651 

The term   denotes the summation over all dimensions of  , and ,   denotes the  -th 652 
dimension in the  vector, which turns the E.F. vector into a scalar, denoting the E.F. strength.  653 
is the value at the -th row, -th column in the  matrix, which is the similarity score between 654 
location  and . ℒ  is essentially another mean square error loss between the ground truth value 655 
and the estimated value using the Ising dynamics (i.e., , ). In the original Ising dynamics setting, 656 
the system's energy should be as low as possible to keep the system stable. Here, we use the same 657 
idea to reduce the prediction error ℒ  as part of our loss function. It is worth noting that ,  is the 658 
final prediction result and ,  is only used as an auxiliary output to optimize the Ising constraint 659 
parameters. The final loss takes the form: 660 ℒ = ℒ + ℒ  (22) 661 



By optimizing the Ising constraint loss and the prediction loss together, the model can extract 662 
the temporal hospitalization progression patterns as well as optimize the spatial adaptative 663 
connectivity. Using the Ising dynamics as a constraint instead of directly using  as the prediction 664 
result and only optimizing ℒ  allows the model to have more flexibility to learn spatio-temporal 665 
patterns from high-dimensional data. 666 

Data Availability 667 

The mobility scores are collected from the Multiscale Dynamic Human Mobility Flow 668 
Dataset11 (https://github.com/GeoDS/COVID19USFlows). The census features are collected from 669 
the county-level census dataset provided by the US County-level Dataset12 670 
(https://github.com/JieYingWu/COVID-19_US_County-level_Summaries). The daily new cases 671 
are collected from the Johns Hopkins COVID-19 Data Repository13 672 
(https://github.com/CSSEGISandData/COVID-19). The medical resource usage statistics are 673 
collected from HealthData.gov17 (https://healthdata.gov/Hospital/COVID-19-Reported-Patient-674 
Impact-and-Hospital-Capa/anag-cw7u). All the processed public data are available at 675 
https://github.com/v1xerunt/HOIST. The claims data contains sensitive healthcare information and 676 
are extracted from https://www.iqvia.com/solutions/real-world-evidence/, which can be accessed on 677 
request. Our model can be trained without using claims data. Source data of tables and figures are 678 
provided with this paper. 679 

Code Availability 680 

The codes for model construction, training and inference used in this paper are publicly 681 
available at https://github.com/v1xerunt/HOIST. The visualization results are available at 682 
https://v1xerunt.github.io/HOIST/. 683 
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Tables 819 

Table 1 Performance of 28-day hospitalization prediction. The performance numbers are mean (std). The 820 
bold values denote the best results. The asterisk * denotes the performance differences between HOIST 821 
and the best baseline models (ACTS) are significant based on the two-sided t-test results (p<0.001). 822 
Source data are provided as a Source Data file. 823 

Model MSE (× ) MAE  CCC 
DELPHI-SEIR 400.3 (-) 1,647 (-) <-1 0.02 (-) 
GRU 
LSTM 

149.2 (6.6) 
133.9 (6.9) 

897.7 (20.9) 
826.6 (30.0) 

-0.04 (0.04) 
0.06 (0.04) 

0.27 (0.20) 
0.48 (0.10) 

ColaGNN 138.5 (9.5) 801.9 (32.1) 0.10 (0.13) 0.52 (0.09) 
ACTS 127.9 (14.1) 732.1 (45.3) 0.19 (0.15) 0.60 (0.10) 
CovidGNN 181.0 (46.2) 1,048.0 (126.2) -0.26 (0.18) 0.18 (0.16) 



STAN 148.3 (30.7) 948.2 (68.4) -0.06 (0.46) 0.18 (0.12) 
HOIST-Risk 
HOIST-Vaccination 

65.2 (14.7) 
62.1 (13.2) 

530.6 (59.5) 
515.3 (42.3) 

0.41 (0.21) 
0.45 (0.24) 

0.71 (0.08) 
0.78 (0.07) 

HOIST-AC 73.4 (38.4) 562.5 (87.9) 0.27 (0.30) 0.68 (0.15) 
HOIST-Ising 135.0 (15.4) 735.5 (28.6) 0.17 (0.14) 0.39 (0.07) 
HOIST 38.5 (10.2)* 368.7 (18.7)* 0.60 (0.16)* 0.89 (0.02)* 
p-value 3e-6 2e-7 1e-5 7e-4 

 824 
 825 

Table 2 NNT for hospitalization and death of the top 15 locations ranked by the cost ratio. Source data 826 
are provided as a Source Data file. 827 

County State Hospitalization NNT Adjusted NNT Cost ratio 
Butte  Idaho 130 73 60.3  

Woodbury  Iowa 76 44 34.5  
Toole  Montana 230 130 34.5  

Sheridan  Montana 204 115 34.0  
Broadwater  Montana 186 109 33.7  

Mineral  Nevada 273 159 32.1  
Garfield  Washington 156 89 31.8  

Stonewall  Texas 71 42 31.8  
Lincoln  Nevada 201 114 31.2  
Stanton  Kansas 101 67 29.2  
Oneida  Idaho 287 163 28.7  

Bowman  North Dakota 142 81 28.1  
Phillips  Montana 234 132 27.4  

Ness  Kansas 145 84 25.2  
Teton  Montana 308 172 25.0  

 828 

Figure Captions 829 

Figure 1 The proposed HOIST model.  830 
We use static data to calculate the latent distances between locations. The latent distances are then used 831 
to calculate the adaptative connectivity of the location graph. The dynamic data are used to estimate the 832 
External Fields (E.F.s) and then generate predictions using the LSTM network. We use the Ising 833 
dynamics to regularize the spatio-temporal prediction results using the estimated E.F.s and the 834 
adaptative connectivity.  835 
 836 
Figure 2 Prediction performance plots under different lengths of prediction window .  837 
Data are presented as mean values +/- standard deviations. The error bars are standard deviations over 838 
5 experiments with random initializations with n=2,299 locations. Source data are provided as a Source 839 
Data file. 840 

 841 
Figure 3 Prediction performance under different time split in MSE (A), MAE (B) and CCC (C).  842 
Each dot denotes a testing phase. Source data are provided as a Source Data file. 843 



 844 
Figure 4 Temporal change of external field weights for vaccination features.  845 
Source data are provided as a Source Data file. 846 
 847 
Figure 5 Predicted hospitalization hotspot and error map by HOIST.  848 
a. Predicted hospitalization hotspot map in future 28 days by HOIST, colored by case count. West coast, 849 
Northeast coast and Midwest areas generally have high hospitalization case counts. b. Predicted 850 
hospitalization hotspot map in future 28 days by HOIST, colored by hospitalization ratio. We find two 851 
example locations San Diego county (A) and Riverside county (B) along the West coast – have very high 852 
case counts but only medium-level hospitalization ratios. c. Prediction errors for locations with more 853 
than 100 cases in the testing time window, colored by mean average percentage error. HOIST achieves 854 
low prediction errors on most locations. Source data are provided as a Source Data file. 855 
 856 
Figure 6 Predicted hospitalization and infected case count curves for Effingham, Georgia.  857 
a. Predicted curve by HOIST. The line denotes the mean value and the shadowed area denotes the 858 
prediction interval with 90% confidence. b. Curve of infected case count. Source data are provided as a 859 
Source Data file. 860 
 861 
Figure 7 County-level NNT and cost ratio heatmap.  862 
a. Predicted NNT heatmap by HOIST, colored by NNT . Red locations indicate that only few vaccine 863 
shots can help reduce a hospitalization case. b. Race-adjusted NNT heatmap by HOIST, colored by 864 NNT . The spatial pattern is similar to the unadjusted map but some locations are affected by the race 865 
percentage. c. Heatmap of cost ratio between hospitalization costs and vaccination costs. Red locations 866 
indicate that they can save healthcare costs by giving more vaccinations (i.e., cost ratio > 1). Source data 867 
are provided as a Source Data file. 868 
 869 
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