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Robust alignment of cross-session recordings of neural population activity by
behaviour via unsupervised domain adaptation

Justin Jude 1 Matthew G. Perich 2 Lee E. Miller 3 Matthias H. Hennig 1

Abstract

Neural population activity relating to behaviour is
assumed to be inherently low-dimensional despite
the observed high dimensionality of data recorded
using multi-electrode arrays. Therefore, predict-
ing behaviour from neural population recordings
has been shown to be most effective when using
latent variable models. Over time however, the
activity of single neurons can drift, and different
neurons will be recorded due to movement of im-
planted neural probes. This means that a decoder
trained to predict behaviour on one day performs
worse when tested on a different day. On the other
hand, evidence suggests that the latent dynamics
underlying behaviour may be stable even over
months and years. Based on this idea, we intro-
duce a model capable of inferring behaviourally
relevant latent dynamics from previously unseen
data recorded from the same animal, without any
need for decoder recalibration. We show that un-
supervised domain adaptation combined with a
sequential variational autoencoder, trained on sev-
eral sessions, can achieve good generalisation to
unseen data and correctly predict behaviour where
conventional methods fail. Our results further sup-
port the hypothesis that behaviour-related neural
dynamics are low-dimensional and stable over
time, and will enable more effective and flexible
use of brain computer interface technologies.

1. Introduction
In the brain, stimuli and behaviour can be decoded from
the activity of populations of neurons, and it is well estab-
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lished that correlations or co-variations between neurons
are a key ingredient in neural population codes (Saxena &
Cunningham, 2019). There has been considerable success
developing methods for decoding external variables from
recordings of even modestly sized populations of 10s or
100s of neurons (Hurwitz et al., 2021a), raising hopes that
brain computer interfaces (BCIs) can be an effective assis-
tive technology for severely disabled patients. However,
a decoder, once trained, requires stable recordings to per-
form well. Over the course of days and weeks, the signals
recorded from implanted extracellular probes will inevitably
change and drift due to factors such as impedance changes,
gliosis and probe and brain movement (Chestek et al., 2011).
Non-invasive systems such as electromyography (EMG) sen-
sors will not be worn permanently and positioned slightly
differently every time, creating even stronger variations in
recorded signals. Moreover, the activity of individual neu-
rons can change considerably over similar time scales due
to neural plasticity (Rule et al., 2019). Together these fluc-
tuations will lead to degradation of decoder performance
over time, thus to be effective, frequent recalibration of BCI
systems would be inevitable.

Given the limited long-term stability of recorded neural sig-
nals, reports of relatively stable behaviour decoding over
days with the same decoder may seem surprising (Chestek
et al., 2007). Recent work by Gallego et al. (2020) how-
ever showed that some aspects of the population activity of
cortical neurons remain very stable even over months and
years. Specifically, this study showed that neural population
activity in the primary motor cortex is highly restricted to
and evolves along a low-dimensional manifold that is stable
even when single neuron activity constantly fluctuates.

Low-dimensional neural dynamics can be effectively ex-
tracted from neural population activity with latent variable
models (Hurwitz et al., 2021a). These models use an often
small number of latent variables (or factors) together with an
appropriate observation model that relates latent variables
to the recorded activity. Importantly, the latent variables in
such models often predict stimuli or behaviour very well
even when they were only optimised to reproduce neural
activity (Hurwitz et al., 2021a). Nonlinear state space mod-
els such as LFADS are particularly powerful in predicting
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single trial activity and behaviour in test data (Pandarinath
et al., 2018).

Therefore, instabilities in neural recordings can be success-
fully compensated for by re-training the part of a model that
translates neural activity into the latent dynamics, which are
assumed stable over time (Farshchian et al., 2019; Daba-
gia et al., 2022; Degenhart et al., 2020; Wen et al., 2021;
Herrero-Vidal et al., 2021). As a behaviour decoder, this
can be more data-efficient than re-training a decoder from
scratch, but still requires regular interventions. Here we ask
if it is possible to recover the latent dynamics without any
re-training.

Our approach uses a domain adaptation inspired solution.
Sources of session to session variability in neural recordings
are shown in Figure 1 and include existing neurons lost from
recording electrodes, existing neurons replaced by unseen
neurons, and all recording electrodes shifting systemati-
cally due to probe array shift. This variability is substantial
enough that each recording session can be constituted as a
separate domain.

Original Neuron Lost

Neuron Replaced Probe Array Shift

Figure 1. Causes of session-to-session variability in recordings
from neural populations. Neurons from the original recording
session can be lost from the recording array, original neurons can
be replaced by unseen neurons and the entire probe array can
shift, causing a systematic change in neuron position. In addition,
spike sorting can induce variability as the signal to noise ratio of
individual neurons changes between sessions. Domain adaptation
of many varied sessions enables our model to learn these sources
of variability.

We treat each recording session as a separate domain, each
of which can be used to predict the same set of behaviours.
The model is optimised using both recorded activity and be-
haviour to recover the same latent variables irrespective of
the domain so it is capable of predicting behaviour cor-
rectly for a previously unseen session without need for
re-calibration. In contrast, latent variable models without
domain adaptation fail to generalise to unseen data, and
instead partition the latent space into distinct parts corre-
sponding to the individual recording sessions. We test this

model with long-term recordings from the primate motor
cortex during a reach task and show that, provided sufficient
training data, it can predict behaviour well for previously
unseen sessions. BCI decoders that can generalise well to
unseen sessions or subjects without any re-training have not
yet been demonstrated. We believe this is the first work
to show such cross-session decoder generalisation without
recalibration.

2. Related Work
This issue of neural stability is investigated by Gallego et al.
(2020) where the dynamics of a set of a single animal’s
M1 cortex neurons are recorded from over many days. The
authors find that the underlying dynamics of these neurons
over time are indeed reconcilable. Principal component
analysis (PCA) is used to reduce the dimensionality of the
neural activity on each day, and these variables are then
aligned using canonical correlation analysis (CCA). After
alignment, neural activity is regenerated for up to 16 days
with close similarity and accurate decoding of behaviour.

Farshchian et al. (2019) take this approach a step further
and utilise an adversarial approach with a non-linear model
(ADAN) to directly align neural activity over many days in
order to accurately predict EMG during movement. A dis-
criminator network is trained in a similar fashion to LFADS,
tasked with autoencoding neural activity from day 0. A
generator neural network is optimised to align neural popu-
lation activity to that recorded at day 0. The autoencoding
discriminator is tasked with maximising the alignment loss.

Sussillo et al. (2016) build a robust decoder capable of utilis-
ing large amounts of training data and maintaining decoding
performance in the face of recording condition changes such
as neuron turnover. Herrero-Vidal et al. (2021) introduces a
robust probabilistic approach for neural alignment in a com-
mon low dimensional manifold. Their method is applied to
recordings from the mouse olfactory bulb, revealing low-
dimensional population dynamics that are odour specific
and have consistent structure across animals. Following
the same idea, Wen et al. (2021) uses adversarial generative
modelling to generate large amounts of synthetic spike data
from just the behaviour of a separate recording session or
subject, mimicking the spike data of that session/subject.
Together with this generated synthetic spike data and a small
amount of real spike data from the unseen session, the au-
thors are able to achieve relatively good behaviour decoding
accuracy on the held out session. This model is more data
efficient than the previously mentioned approaches. Never-
theless, in all these cases data from all recording sessions
or animals is required for good behaviour decoding, and the
models are not capable of generalisation to unseen sessions.
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Hurwitz et al. (2021b) combines ideas from Pandarinath
et al. (2018) and Sani et al. (2021) to jointly model the neural
activity and external behavioural variables by separating the
latent space into behaviourally relevant and behaviourally
irrelevant components; the relevant dynamics are used to
reconstruct the behaviour through a flexible linear decoder
and both sets of dynamics are used to reconstruct the neural
activity through a linear decoder with no time lag. This work
shows that an LFADS-like model can jointly model neural
activity and associated behaviour or movement, hence po-
tentially isolate invariant behaviour-related dynamics that
can be used for cross-session decoding.

Domain adaptation broadly aims to predict classes from la-
belled data of a similar nature, albeit from differing sources
or domains. The method relevant to this work is by Ganin
& Lempitsky (2015), who use a negative gradient between
a domain classifier and feature extractor in order to coerce
the feature extractor to produce domain invariant features
from which a label predictor can infer data classes reliably.
This method of domain unification is unsupervised.

An application of domain adaptation to correct for vari-
ability in experimental data by Gonschorek et al. (2021)
used an autoencoder model and a domain classifier to align
two-photon imaging data across experiments. The authors
successfully align their recording sessions but they do not
test efficacy on unseen sessions. They also explicitly use
experimental session ID as domains and show efficacy on
non-sequential data in this respect. In this work we show
that it is beneficial to not explicitly use session/experiment
ID for domain adaptation but to instead use neural patterns
directly to align recording sessions for high dimensional
sequential data.

In this work we model each session of neural recording as
a separate domain and predict behaviour from all of these
sessions simultaneously. Domain-invariant latent variables
are obtained using the paradigm of unsupervised domain
adaptation via a negative gradient, which are then optimised
to reconstruct the observed behaviour.

3. Model
This model is based on the hypothesis that behaviour y is
encoded in a stable latent space with variables z, and that the
two are related linearly as y = f(z). Equally, neural activity
x is related to the latent variables through a simple function,
and as in related models we choose a linear read-out with a
Poisson link function to generate non-negative firing rates
(Pandarinath et al., 2018). However, this function will differ
between recording sessions (or domains) d as we expect to
observe different neurons in each session, and the activity of
neurons may change over time. The problem is thus to find
the correct encoding function z = g(x) to transform neural

activity into the latent space which then allows decoding
of behaviour. As explained above, re-training this part of
the model for each session can successfully align different
sessions. Here we show that this can be achieved without
the need for re-training.

Specifically, as proposed by Pandarinath et al. (2018) we
assume that the latent dynamics evolve autonomously pro-
vided a set of initial conditions zi that are modelled as Gaus-
sian random variables. These latent variables are produced
for each trial by an encoder network consisting of bidirec-
tional Gated Recurrent Units (Cho et al., 2014) (GRU). They
are used to simultaneously predict behaviour, and to recon-
struct the original trial-specific neural activity. We apply
recurrent and kernel regularisation to the encoder GRU to
enable better generalisation to unseen sessions.

A further bidirectional GRU is used as a decoder for neural
reconstruction and a final separate GRU is used to predict
behaviour from the generated latent variables. Training is
based on a mean squared error loss for behaviour and Pois-
son likelihood for neural activity. Importantly, we reverse
the backpropagation gradient between the neural reconstruc-
tion decoder and the encoder. This gradient reversal layer
leads to maximisation of the neural reconstruction loss in the
encoder network while, at the same time, the neural decoder
network is adversarially optimised to minimise neural re-
construction loss. This implicitly encourages the encoder to
generate latent variables which are not separated by session
of data collection.

The behaviour decoder meanwhile forces the encoder to gen-
erate latent variables which are differentiated by behaviour.
Ultimately, this produces a latent space separable by be-
haviour but not by session of data collection. The complete
model is illustrated in Figure 2.

The model is trained using real neural activity which corre-
sponds to consistent behaviours (movement directions in a
centre-out reach task, see below). The generative process of
our model is as follows:

zi = Wenc(GRUθenc
(xi,1:T )), (1)

g1:T = GRUθdec(zi), (2)
b1:T = GRUθbeh(zi), (3)

rt = exp(Wrate(Wfac(gt))), (4)
x̄t ∼ Poisson(rt), (5)
ȳt = Wbeh(bt) (6)

where θenc, θdec, θbeh are the parameters of the GRUs used
to encode spike trains into latent variables, decode spike
trains from the generated latent variables, and to decode be-
haviour from the latent variables respectively. Wenc, Wfac,
Wrate and Wbeh are non-linear layers which produce latent
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Figure 2. Our model (SABLE) consists of a sequential variational autoencoding approach combined with a sequential behaviour decoder.
Notably, we implement a reverse gradient layer between the neural decoder and encoder GRUs. The encoder can then learn to extract the
invariant latent dynamics determining behaviour from data obtained in different sessions with variability in the recorded neural activity.

variables, neural activity factors, generate firing rates and
predict behaviour respectively at each time step per trial.

At each training iteration the following three losses are opti-
mised using Adam (Kingma & Ba, 2015) asynchronously:

Lrec = −
t∑

t=1

log(Poisson(xi,t|rt)) (7)

Lbeh =
1

T

t∑
t=1

(yi,t − ȳi,t)
2 (8)

Lkl = DKL[GRUθenc
(zi|xi)||N (0, I)]

= −1

2
[log(z2i,σ)− z2i,µ − z2i,σ + 1] (9)

where yi is the true behaviour per trial and ȳi is the predicted
behaviour. The loss in Eq. 7 is maximised by the encoder
network and minimised by the neural decoder network (and
not applicable to the behaviour decoder network). This
adversarial training is the most crucial aspect of our model.
As the encoder maximises the neural reconstruction loss
throughout training, it produces increasingly spike pattern-
invariant latent variables.

Behaviour loss (Eq. 8) is minimised by both the encoder and
behaviour decoding network while the Kullback–Leibler
(KL) divergence loss (between a multivariate standard Gaus-
sian distribution and the encoder generated latent variables)
is minimised by just the encoder network. Thus the total
error for all parameters in the model across all training trials

can be summarised as:

E(θenc,Wenc, θdec,Wfac,Wrate, θbeh,Wbeh) =

i∑
i=1..N

Li
beh(θenc,Wenc, θbeh,Wbeh)

+ Li
rec(θdec,Wfac,Wrate)

+ λklL
i
kl(θenc,Wenc)− λr

i∑
i=1..N

Li
rec(θenc,Wenc)

(10)

where λkl is the weight of KL divergence and λr is the
weight of the reverse gradient applied to the encoder RNN.
λkl rises exponentially as training progresses while λr

decays exponentially (thereby increasing session invari-
ance over training). We denote our model Stable Align-
ment of Behaviour through spike-invariant Latent Encoding
(SABLE).

SABLE does not require specific hyperparameter tuning
for either monkey tested in Section 6, however, in subjects
or experimental setups where neural drift is more variable
between recording sessions, tuning recurrent dropout and
kernel regularisation values may be beneficial for optimal
behaviour decoding performance from unseen session trials.

4. Data
4.1. M1 neural recordings during reach task

We verify that SABLE is able to predict behaviour from
unseen neural activity by applying it to data from a previ-
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Spikes X,Y Position

Figure 3. Experimental setup: In each trial one randomly chosen
target direction (indicated by one of 8 coloured circles) appears on
screen, and the monkey is instructed to control the cursor (white
circle) by moving the manipulandum. The monkey moves the
cursor to the target location after a go cue. The collected data for
each trial consists of the neural spikes and monkey hand position
across all timesteps. Our model is tasked with predicting hand
position from neural spikes at each timestep.

ously published experiment (Gallego et al., 2020). In this
experiment, two monkeys are trained to perform a center-
out reach task towards eight outer targets. On a go cue, each
monkey moves a manipulandum along a 2D plane to guide
a cursor on a screen to the target location (Figure 3). On
successful trials a liquid reward is given. Spiking activity
from the motor cortex (M1) along with the 2D hand position
are recorded during each trial. Spike trains are converted
into spike counts in 10ms bins, and behaviour variables
are used at the same resolution. Only successful trials are
used, all trials are aligned to movement onset and cut from
movement onset to the shortest reach time across all trials.

For our analysis, we train SABLE on many consecutive
days of recorded data and test on a subsequent held out day
of recordings for each monkey. In total there are 13 near
consecutive days of recordings for monkey 1 and 6 near-
consecutive days of recordings for monkey 2, with fewer
recorded neurons and timesteps for monkey 2 overall. Each
day for each monkey consists of one recording session.

5. Models for comparison
We compare the ability of SABLE to predict behaviour from
sessions of unseen spike data against existing methods and
against a variation of our own model. We look at the fol-
lowing existing models: LFADS (Pandarinath et al., 2018)
and RAVE+ (Gonschorek et al., 2021). We also compare

against our own model where we do not reverse the gra-
dient between the encoder and decoder, which we denote
SABLE-noREV. In addition, we compare against a baseline
RNN (GRU) with a linear readout layer optimised to predict
movement from spiking data without autoencoding.

LFADS has been shown to have good efficacy at neural
reconstruction across trials and sessions with some separa-
tion of behaviour in its latent space in previous work. We
implement RAVE+ as an autoencoding model with GRUs
for the encoder and decoder as our data are time series, and
treat recording sessions as separate domains. As with our
own model, the encoder is tasked with generating a small
number of latent variables following a multivariate standard
Gaussian distribution from neural data while the decoder is
tasked with reconstructing the data from the latent variables.
We use a non-linear layer as a domain classifier on the latent
space between the encoder and decoder and implement a
negative gradient between this classifier and the encoder
network, thus encouraging the encoder to produce session-
invariant latent variables. For all models we use the same
regularisation techniques in the encoder or predictor as we
do for SABLE to maximise generalisation.

For LFADS and RAVE+ we use a separately trained GRU
to predict behaviour from the latent space of these models.
We do not include ADAN (Farshchian et al., 2019) or the
generative adversarial model by Wen et al. (2021) as both
require at least some training data from held out session or
subject to be effective. Implementation details of SABLE
and all comparison models can be found in the Appendix
(Section B).

6. Results
6.1. Application to motor cortex neural recordings

during a reach task

We train all models on varying numbers of training sessions
and for both monkeys, testing behaviour (2D hand position)
prediction on intermediate and subsequent held out record-
ing sessions. Our results, summarised in Figure 4, show that
SABLE is capable of generalising to unseen data provided
a sufficient number of training sessions are provided. In all
cases tested SABLE outperforms the comparison models.
For example, decoding accuracy for SABLE on an unseen
intermediate session for monkey 1 with 12 training sessions
is 0.91, which exceeds all other models by at least 0.25. For
comparison, the RNN decoder typically yields an accuracy
of around 0.92 on held-out data when trained and tested on
a single session, indicating that SABLE can achieve satura-
tion performance on unseen data. RAVE+ has a relatively
high decoding performance when a large number of train-
ing sessions are used, likely because its domain adaptation
paradigm removes some session specific variance in this
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Monkey 2

+

Monkey 1

Intermediate Test Session End Test Session

Figure 4. Behaviour prediction performance when testing all models on a completely unseen recording session. We report the mean
r-squared between the inferred and true x,y positions. Each model is tested on a held out session while trained on different numbers of
training sessions for both monkeys. The left column shows results for a held-out testing session which is in the chronological centre of the
training sessions whereas the right column shows results for a test session recorded after all training sessions. Each test condition is run
10 times with different random seeds, with error bars showing standard deviation.

case. In contrast, SABLE-noREV and LFADS have low
decoding performance across monkeys and session numbers
although they gradually improve with increasing session
numbers.

Comparing the performance between the two monkeys, we
see generally better overall decoding performance for mon-
key 2 at the same number of train sessions as monkey 1,
although monkey 1 has far more total training data avail-
able (12 total consecutive sessions from monkey 1 vs. 5 for
monkey 2) and so has higher peak behaviour decoding per-
formance for all models. In addition, we limit the number of
neurons for each monkey to the lowest number of neurons
in any given session. Therefore, monkey 1 has 42 neurons
of neural data across sessions whereas monkey 2 has 16.

Next we compare the difference between test performance
for all models on both monkeys for different held out test ses-
sion ordering (intermediate or end). While SABLE achieves
end test session decoding performance exceeding that of
current methods (0.71 mean r-squared with 12 train ses-
sions), performance on any given intermediate test session
is substantially higher (0.90 mean r-squared with 12 train
sessions). Moreover, the performance of SABLE decreases
noticeably faster when applied to an end test session when

the number of training sessions is reduced versus an inter-
mediate test session. This confirms that drift in recordings
is gradual, not random.

6.2. Latent space analysis

Figure 5 shows T-SNE embeddings of the latent space of
all autoencoding models. Each colour represents a different
target direction with respect to behaviour, and embeddings
of the training data are shown as circles while the test trials
are shown as triangles.

The embeddings of the LFADS latent space show a clear
separation that corresponds to the different training sessions.
This shows that there are indeed significant differences be-
tween the sessions that are captured in the latent space and
prevent generalisation to unseen sessions. Within each ses-
sion cluster there is a good separation by target direction,
indicating that the latent variables extract behaviourally rele-
vant information from the neural activity. In contrast, many
trials from the test session form a cluster in a region not cov-
ered by the training data, with some degree of separation by
behaviour in monkey 1 (where more sessions are available
for training). Here the model fails to assign these trials to
meaningful latent variables as the differences in activity are
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Figure 5. T-SNE embeddings of latent space for autoencoder models. In each embedding, points denoted by a circle are trials from 12
training sessions for monkey 1 and 5 training sessions for monkey 2. Points denoted by a triangle are trials from a held out intermediate
test session for both monkeys. Each colour represents a target direction for the centre out reach task.

too large to be mapped appropriately. We denote trials such
as these hereafter as unassigned. Some trials are assigned
locations in the latent space also occupied by the training
data, indicating that despite session differences occasionally
a matching of unseen to training data can be achieved, again
with some separation by target direction. However there is
also a cluster of unseparated test trials which the encoder
of the model has failed to produce meaningful latent vari-
ables for due to these test trials being too disparate from the
training trials.

For LFADS applied to monkey 2, the encoder still manages
to separate trials by train session, but to a lesser degree.
We suspect this is due to fewer neurons being available
for the sessions of monkey 2. Here there is no longer a
cluster of separated test trials, instead some test trials are
assigned to existing train clusters as they are fairly similar.
Here again however we see a large cluster of unassigned
test trials. Overall we see that LFADS clusters train trials
and coinciding test trials well but its encoder cannot effec-
tively generate latent variables for dissimilar test trials for
behaviour decoding.

The picture is different for RAVE+, where the latent space
seems better aligned (more session invariant) but no longer
well separated by behaviour for monkey 1 (larger training
set and more neurons). In contrast, for monkey 2 we see
little session alignment but better behaviour separation is
achieved (fewer sessions and fewer recorded neurons). In

this case there is some degree of merging of session clusters
and organisation by behaviour target direction, but this is
insufficient for good test behaviour decoding. For monkey
1 we see 7 clusters, 4 of which have some separation by
direction for train session trials. However test trials are not
separated well at all by direction. For monkey 2 there is
far less clustering by session and some of these clusters
separate by direction. Here there is also a large cluster of
unassigned test trials. The domain adaptation method used
in RAVE+ (reverse gradient based on session ID explicitly)
thus does not seem to prevent trials clustering by session.

SABLE-noREV, our model without the reverse gradient,
produces a result very similar to LFADS. For both mon-
keys, there is a cluster of well separated test trials and also
many test trials that are unassigned to any cluster (either
by direction or session). Therefore, using the latent space
for both neural reconstruction and behaviour decoding si-
multaneously, as proposed by Hurwitz et al. (2021b), is not
beneficial to test behaviour decoding across sessions.

Finally, applying SABLE to either monkey produces latent
spaces which are very well separated by behaviour and al-
most entirely training-session invariant. We denote each
unseen test trial as correctly classified in terms of target di-
rection by observing whether a given trial gives a behaviour
decoding r-squared of above 0.6. When applied to monkey
1 we see a small degree of misclassification of test trials by
direction (13% of total test trials), but only when the correct
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and incorrect target directions are adjacent to each other
spatially in the task outlined in Figure 3. This confirms
that more similar behaviours in a task have more similar
neural patterns and may be difficult for any decoder to dis-
entangle. There are also a small number of unclassified test
trials (3% of total test trials) in the centre of the embedding
plot, we suspect these may be trials with highly contrasting
spiking patterns to any train trial. When applied to monkey
2, we see less misclassification (4% of total test trials) by
test behaviour direction and just a couple of unclassified
test trials. We also note that both SABLE embeddings are
topographically similar and correspond to the spatial aspect
of the movement directions of the task outlined in Figure 3.

The stark differences in latent variables seen between
SABLE-noREV and SABLE are quite surprising consider-
ing the only difference between these models is the reverse
gradient between neural decoder and encoder in SABLE
versus a positive gradient in SABLE-noREV. This shows
the importance of a negative neural reconstruction gradient
in training the SABLE encoder network to generate ses-
sion invariant latent variables. In addition, we suspect that
SABLE’s encoder generates far fewer unassigned latent vari-
ables than the other autoencoding models due to the simpler
and more behaviourally structured latent space.

6.3. Behaviour decoding

Monkey 1

Monkey 2

Intermediate Test Session End Test Session

Figure 6. Predicted 2D monkey hand position of test trials using
SABLE when trained on 12 train sessions for monkey 1 and 5 train
sessions for monkey 2 and tested on an unseen intermediate or end
test session.

Examining the decoded behaviour of monkey hand position
using SABLE (Figure 6) shows good overall reconstruction
of movement trajectories, especially when testing on an

intermediate test session. The intermediate test session
behaviour decoding for both monkeys mirrors the SABLE T-
SNE embedding in Figure 5. Test trials which are incorrectly
assigned with respect to movement directions (Figure 5)
are decoded correspondingly (Figure 6). Therefore, the
behaviour decoder network of SABLE directly utilises latent
variables in a particular cluster and decodes one particular
direction of movement. Our model is thus consistent with
the hypothesis outlined above.

When decoding from an end test session however, this phe-
nomenon is less pronounced as the encoder seems to be less
certain of the clusters formed in the latent space. There are
more wrongly assigned test trials and the decoded move-
ment trajectories are more spread out, leading to a lower
overall mean r-squared when predicting behaviour.

6.4. Predicting behaviour from an unseen subject

Next we predict behaviour from the unseen neural data from
37 sessions of monkey 2 when SABLE is trained on 14
recording sessions of monkey 1. We use all available record-
ing sessions available for monkey 1 spread across 3 years to
train SABLE as we believe this gives the best opportunity
for cross subject generalisation. However, for the held-out
data we only obtain a mean r-squared of 0.03, so the model
fails to generalise to a different animal. Examining the T-
SNE embedding in Figure 7 shows that the trials from the
training sessions of monkey 1 cluster well by movement
direction but the trials from monkey 2 do not map to these
direction clusters as the separated sessions of either just
monkey 1 or monkey 2 do (as seen in Figure 5). Therefore
it appears that the relationship between the recovered latent
dynamics and behaviours differs between the two animals,
and may require an extra alignment step.

7. Discussion
In this work we present a new method, SABLE, for aligning
neural activity with complex temporal dynamics from dif-
ferent recording sessions to allow for consistent behaviour
decoding across sessions. We apply it to neural recordings
from primate motor cortex during a reaching task where the
considerable variability between recording sessions prevents
generalisation for a conventional decoder.

The model is trained as a variational autoencoder similar
to LFADS (Pandarinath et al., 2018), with an additional
gradient from behaviour decoder that disentangles the la-
tent space to enable improved behaviour decoding (Hurwitz
et al., 2021b). Reversing the gradient from the neural re-
construction encourages the model to ignore variability in
the activity that is irrelevant for decoding activity, which in
turn results in an session-invariant encoding of behaviour-
relevant factors.
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Unlike other domain adaptation methods, our model does
not require domain labels, but is trained on a single data set
that contains different experimental sessions. This is an ad-
vantage in potential BCI applications as variability may not
only exist between single sessions, but also within a single
session, and in addition the degree of variability may differ
as well. As a result, the model still requires considerable
amounts of session data for good behaviour reconstruction.
We found that performance did not saturate when it was
trained on 12 sessions. In contrast, good behaviour decod-
ing with our baseline RNN model could be achieved from a
single session with less than 200 trials. Yet we expect that
the number of trials per session required is much less than
used here.

A main limitation of this method, which may also limit its
direct application in a BCI system, is that it assumes that be-
haviour is generated by autonomous neural dynamics which
relies on specification of appropriate initial conditions that
form the latent variables in the model. This approach has
been shown to successfully capture neural dynamics in a
range of scenarios (Pandarinath et al., 2018) and has the
advantage of a relatively compact and behaviorally relevant
latent encoding that supports discovering invariant features
in the neural activity. A possible extension to remove this
limitation may be the inclusion of a controller input that
models additional temporal dynamics to better account for
behavioural variability (Pandarinath et al., 2018). This ex-
tension of the latent space can be trained in the same manner
and may allow modelling of more complex and variable be-
havioural paradigms.

We compare our model to RAVE+ (Gonschorek et al., 2021),
to our knowledge currently the only other method for do-
main adaptation of inter-session data. RAVE+ does show
some indication of alignment when sufficient individual
recording sessions are available, but its latent space fails
to capture behaviourally relevant structure. As a result, be-
haviour decoding for unseen test data is poor. We suspect
that the RAVE+ fails because the temporal dynamics in
our data are too variable between trials. As pointed out by
the authors, RAVE+ requires consistent temporal dynam-
ics between trials, which can be controlled in experiments
where stimuli are presented, but that are rarely obtained
in behavioural experiments. The other models shown here
(LFADS, RNN decoder) are included to contrast domain
adaptation to conventional encoders, and not as a baseline
for generalisation performance.

Our results are consistent with recent reports showing that
motor control is based on low-dimensional latent neural
dynamics that are very stable over time despite ongoing
neural drift (Gallego et al., 2020). Our model can be used to
discover these latent dynamics in data with high variability.
Tests we performed on synthetic data (a Lorenz system)

indicate that this approach is also successful when neural
dynamics are generated from latent dynamics with random
transformations (not shown).

Our finding that SABLE has a better performance for inter-
mediate held-out sessions than for sessions at the end of a
sequence of training sessions suggests that performance will
likely eventually decline for long time intervals between
train and test sessions. As long as the latent dynamics are
stable however, we expect that training the model with more
sessions will eventually stabilise generalisation performance.
Taken together these results are encouraging for BCI appli-
cation as they suggest highly consistent recordings may not
be required for good performance as long as it is possible to
recover relevant latent dynamics.
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A. Cross-subject decoding T-SNE Embedding

Figure 7. T-SNE embedding of SABLE latent space when training on 37 sessions of monkey 1 and testing on 14 sessions of monkey 2.
Training trials are denoted by circles and test trials by triangles. Each colour denotes a particular movement direction.
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B. Model Details
Below are implementation details for all models used in this paper.

SABLE
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Batch Normalisation on all layers
- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially

(between encoder and neural de-
coder)

Reverse Gradient weighting (λr) 1.0 to 0.000000001 Decaying exponentially
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SABLE-noREV
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Batch Normalisation on all layers
- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially
Reverse Gradient weighting (λr) N/A Constant positive gradient of 1

LFADS
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Trained separately to rest of model
Batch Normalisation on all layers

- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially
Reverse Gradient weighting (λr) N/A Constant positive gradient of 1
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RAVE+
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Trained separately to rest of model
Batch Normalisation on all layers

- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Domain Classifier
- Non-linear layer Units 256 X 2 Batch Normalisation
- Dropout 0.1
- L2 Regularisation 0.001

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially

(between encoder and Domain Classi-
fier)

Reverse Gradient weighting (λr) 1.0 to 0.000000001 Decaying exponentially


