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How building layout properties influence pedestrian route
choice and route recall
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ABSTRACT
How pedestrians find and choose routes in buildings is a fundamen-
tal research topic that is immediately relevant to building design and
safety. However, few studies have explored the relationship between
pedestrian route choice and building layout in a systematic way.
Here, we introduce a method based on spatial network theory for
generating buildings with various layout properties. We conduct a
virtual experiment with over 200 participants and many generated
buildings to investigate how layout properties influence different
aspects of pedestrian route choice. Our findings suggest route recall
isworse inbuildings that havemore connections andpossible routes,
even when the overall size of buildings and length of routes is kept
constant. Pedestrians also prefer more regular building layouts and
are more likely to adopt the heuristic of walking along the outer
edgesofbuildings the less regular they are and themore connections
they have.
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1. Introduction

Pedestrian route choice is one of the most interesting and challenging problems for
research into pedestrian behaviour (Hoogendoorn andBovy 2004). Route choice behaviour
of pedestrians inside buildings, especially in complex facilities, such as airports and hospi-
tals, is often directly relevant to building design, crowd management and evacuations in
emergencies. It has long been a question of great interest in awide range of fields including
engineering, mathematics, psychology, and safety science.

In general, pedestrians are assumed to perceive and process environmental spatial
information through a subjective cognitive process and then choose routes based on
preferences, such as the shortest distance and the fewest turns (Andresen, Chraibi, and
Seyfried 2018). This process can depend on individual characteristics. Previous studies have
established that age, gender, culture and vision ability can affect how pedestrians choose a
route (Bernhoft and Carstensen 2008; Lawton and Kallai 2002; Han, Liu, and Li 2021). How-
ever, the factors deemed tobemost important in route choicebehaviour are environmental
factors. Static information (time-independent), such as signs and building layout, has been
distinguished from dynamic information (time-dependent), such as the level of congestion
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along different routes (Bode, Wagoum, and Codling 2014). The influence of both types of
information on route choice has been widely investigated using experiments and simula-
tions (Haghani and Sarvi 2017; Lovreglio et al. 2014). The effect of dynamic information is
often tested by updating the information shown to participants in well-controlled exper-
iments or by setting simulated rules based on assumptions in simulations. For example,
Lin et al. (2020) investigated how pedestrians choose their routes when presented with
different split levels of crowd flow via an immersive virtual metro station experiment. In
contrast, static information is more likely to be tested by comparing the route choice of
pedestrians in different pre-designed buildings with specific structures. For example, Zhu
et al. (2020) investigated how likely pedestrians were to follow signs with different designs
during evacuations. Furthermore, different information use strategies influence pedestrian
route choice. For example, Lin, Zhang, and Hang (2022) identified reactive pedestrians who
only rely on current information to make decisions and predictive pedestrians who choose
routes based on the predictive travel cost.

In addition to individual characteristics, previous research has established that pedes-
trian route choicedependson the context.Motivations, social influence and familiarity have
been identified as essential factors affecting pedestrian route choice. Motivation indicates
the travel purposes of pedestrians and affects their route choice strategies. For example,
compared to commuters who prefer the shortest possible route without inclines (Sar-
jala 2019), tourists are more likely to choose routes with more pleasant visual attractions
(Davies 2018). Social influence describes how pedestrians change their route choice in a
social environment (Nicolas and Hafinaz Hassan 2021). For example, some studies found
pedestrians in a social group that are connected via social relationships such as friendship
or work relationships, prefer to stay close to each other and share the same destination
(Yamaguchi et al. 2011; Hu et al. 2020). Familiarity reflects the spatial knowledge of pedes-
trians about the environment surrounding them (Andresen, Chraibi, and Seyfried 2018).
Somework reveals that pedestrians aremore likely to choose familiar exits evenwhenother
available exits are closer (Benthorn and Frantzich 1999). In contrast, pedestrians who are
not familiar with the environment have to seek other information for their route choices
such as the movements of others (Tong and Bode 2021) or signs (Ronchi, Nilsson, and
Gwynne 2012).

A crucial but understudied aspect of pedestrian environments is the layout of build-
ings, that is to say, the spatial arrangement of rooms, corridors, doors, and walls. Previous
work already provides evidence that building layout properties, such as curved and angled
corridors, influence pedestrian movement characteristics (Jiang et al. 2022). Two types of
research can be distinguished: first research that considers only part of the building layout
and second research that considers the entire building layout. The former type of research
has received much attention and focuses on specific structures, such as obstacles in front
of doors, the number of doors, and exit widths (Li et al. 2019). In contrast, the latter type
of research is concerned with investigating the influence of the entire building layout on
pedestrian route choice. It has received much less attention and is the focus of our work
presented here.

One of the essential concepts of investigating the influence of building layout on pedes-
trian route choice canbedescribedasbuilding layout complexity. This term reflects the con-
dition of the geometric elements in a building and the forms of relationships among these
elements. As it is a broad concept, different approaches to quantifying it exist (Hölscher and
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Conroy Dalton 2008; Stankiewicz, Legge, and Schlicht 2001). An important measure is the
Inter Connection Density (ICD), defined by O’Neill (1991) as the total number of choices at
decision points divided by the number of decision points in the building. ICDmeasures the
density of available paths between places in an environment, such as a building. Findings
suggest that as the average ICD of buildings increases, individuals construct less accurate
cognitivemaps of buildings and theirwayfindingperformance,measuredby thenumber of
wrong turns and backtracking events, decreases (O’Neill 1991). Other work also found that
people spend more time and have higher errors in wayfinding tasks in environments with
higher ICD values (Slone et al. 2015). Going beyond the ICD, the effect of other building
layout measures, such as geometrical misalignment (Werner and Schindler 2004), a spa-
tial relation that measures whether the current perspective is parallel to the perspective of
pedestrians when they obtain map information, and intersections of corridors with various
angles (Jansen-Osmann, Schmid, and Heil 2007) have been investigated but no statistically
significant results were found.

While the influence of ICD on pedestrian route choice has been confirmed in several
studies,Werner and Schindler (2004) argue thatmanybuildingsmayhave the same ICD val-
ues but different other geometrical attributes and pedestrians perform differently in these
cases. Thus, theremight be someother factors affecting pedestrian behaviour. Importantly,
most previous research has only considered a limited number of manually constructed
building layouts (fewer than 10). Therefore, more empirical data that involve a large num-
ber of building layouts are needed to ensure a broader range of possible layout properties
is investigated.

Previous research indicates that how pedestrians interpret route information from their
own subjective perspective is essential for pedestrian route choice (Shatu, Yigitcanlar,
and Bunker 2019). Cognitive maps, the mental representations of external environments
constructed by pedestrians, can capture the cognitive factors that might affect pedes-
trian route choice. This concept is termed by Tolman who found evidence that rats pos-
sess a clue about specific objects and their spatial relation obtained from previous vis-
iting experiences, and that hippocampal formation is involved in the establishment of
such a cognitive map (Tolman 1948). They found that specific cells, such as grid cells
(Moser et al. 2008) and border cells (Solstad et al. 2008), play a role in spatial infor-
mation perception. Similar cells that provide environmental information have also been
discovered in the human brain (Ekstrom et al. 2003). Five elements of cognitive maps
are identified: paths, nodes, districts, edges and landmarks (Lynch et al. 1964). Paths
refer to the shared corridors, edges are limiting or enclosing features, districts are larger
spaces sharing some common characters, nodes are the intersections of major paths
or places, and landmarks distinctive features that people use to reference and locate
themselves.

Network theory is a convenient and successful approach to represent the relations
betweendiscrete objects andhasbeenwidely used (Parkhe,Wasserman, andRalston2006).
Networks can be used to represent spatial relations. When representing building layouts
via networks, each node represents an intersection point, and each edge that links nodes
represents the space pedestrians can walk through, such as corridors (Barthélemy 2011).
Measures, such as the average path length (average length of connections between inter-
section points), have been developed to characterise properties of networks. For example,
the ICD discussed above is exactly the concept of average degree – the average number
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of edges per node in a network. This suggests concepts in network theory are suitable for
measuring building layout properties.

Previous studies have adopted various measures to create different levels of simulated
stress for participants in experiments, such as imposing time pressure, giving financial
incentives andpresentingmotivational instructions. However, studies on theeffect of stress
have produced diverse results. The work by Haghani, Sarvi, and Shahhoseini (2020) shows
stressmay increase the vigilance of participants and thus decrease their reaction time, lead-
ing to a short evacuation time. In contrast, theworkbyBodeandCodling (2013) found stress
may impair pedestrian information processing ability and leads participants to choose
routes that are far from optimal. Moreover, it is difficult to achieve consistent and desired
participant responses or stress levels in virtual experiments. Therefore, in this work, we only
present participants with motivational messages and argue that this is sufficient to test
participants’ responses to different building layouts.

Pedestrian route choice can be regarded as a decision-making process in terms
of spatial navigation in psychological research. Tong and Bode (2022) identify four
processes of pedestrian route choice: ‘information perception’ considers how pedes-
trians perceive information in a selective and purposeful way, ‘information integra-
tion’ deals with how pedestrians subjectively integrate environmental spatial informa-
tion into mental representations, ‘responding to information’ describes how pedestri-
ans tend to respond to information individually and collectively and ‘decision-making
mechanisms’ are concerned with how pedestrians trade-off the evidence and make
final route choice. In each process, pedestrian behaviours change across contexts. It is
almost impossible to consider all potential factors that will result in the subjectivity of
pedestrian route choice. Therefore, we focus on the processes of ‘responding to infor-
mation’ and ‘decision-making mechanisms’ in this work. We abstract complex buildings
into networks and investigate the relationship between properties of building layouts
and pedestrian route choice without considering heterogeneous cognitive maps in data
analysis.

In this contribution, we first develop a method for automatically generating building
layouts and then investigate the influence of building layout properties on pedestrian
route recall and route choice behaviour in a virtual experiment that involves over 200
human participants. Using a virtual experiment means we can easily expose participants
to a wide variety of buildings with different layout features. The paradigm of virtual experi-
ments is established andwidely used in research on pedestrian decision-making (Kinateder
et al. 2014; Drury et al. 2009), as they are safe, cheap and allow exposing participants to
carefully controlled environments (Lovreglio and Kinateder 2020). Different types of virtual
reality technologies can be classified: desktop VR, head-mounted display, and cave auto-
matic virtual environment (Feng2021). In thiswork,weusedesktopVRbecause it is cheaper
and allows participants to attend remotely. While desktop VR provides a less immersive
environment, previous work has established participants make similar route choices in dif-
ferent types of virtual environments (Ruddle and Péruch 2004; Feng 2021), which indicates
the validity of desktopVR.While it has not yet beendetermined towhat extent humandeci-
sions in virtual environments extend to the real world, they nevertheless provide an ideal
starting point to explore what characterises building complexity and how it affects route
choice. In our experiment, participants can navigate a virtual avatar to complete several
route choice tasks in a large number of automatically generated buildings with different
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layout properties. We analyse the route choice strategies of participants and the effects of
the building layout properties on pedestrian route choice behaviour.

The key novelty of this work lies in two aspects. On the one hand, the method we
developed allows us to automatically generate building layouts whose properties (e.g. the
average degree of their network representations) can be controlled by a few variables. This
research method can be applied in other research into building design and pedestrian
behaviour. On the other hand, we use large numbers of automatically generated buildings
with different layout properties to test pedestrian route choice mechanisms. Our research
greatly expands the available data on pedestrian behaviour in buildings with different lay-
outs, compared to previous research that normally considers a limited number of manually
constructed building layouts.

2. Experiment

2.1. Generation of spatial networks representing building layouts

The layout of a building can be represented as a spatial network composed of nodes rep-
resenting intersections and lines representing paths that connect nodes (see Figure 1 for
an example). There are many methods to generate complex networks with selected prop-
erties for experiments or simulations (see Prettejohn, Berryman, and McDonnell 2011 for
a review). In this work, we refer to previous work (Mireles de Villafranca, Connors, and
Eddie Wilson 2017) to construct network generation algorithms but make some modifi-
cations to meet the following requirements: (1) The generated networks should be planar
graphs, meaning their edges only meet at nodes. (2) The generated networks should have
a wide range of properties, such as the average number of connections between nodes, to
ensure the possible variability in building layouts is captured. (3) The generated networks
should be comparable in spatial extent, seeing that we want to compare the route choice
behaviour of people across networks.

Taking these criteria into consideration, we generate spatial networks stochastically
using the following three steps. First, we generate a grid of nodes. Second, we adjust the

Figure 1. An example of how a building layout is represented as a spatial network.
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Figure 2. Generation of spatial networks: (a) a regular grid with 25 nodes arranged; (b) adjusting the
regularity of the grid of nodes; (c) the Gabriel graph based on the nodes; (d) reduced Gabriel graphswith
a lower average degree.

regularity of the grid of nodes, and third, we generate two networks based on the nodes
with different average degrees: Gabriel graphs and reduced Gabriel graphs, as shown in
Figure 2.

2.1.1. Randomising the node-set
We generate a regular grid of 25 nodes arranged equally spaced in a 5 × 5 grid (see Figure
2(a)) to avoid the influence of different aspect ratios of building layouts on pedestrian route
choice. The distance between any two nodes is given by d units. To reduce the regularity
of the grid, we implement the parameter ‘randomness’, which is defined as the maximum
ratio of the coordinate offset of each node to the original coordinate and d. For example,
if d = 1 unit and randomness = 0.02, for each node in the grid, its horizontal and vertical
coordinates will randomly increase or decrease by nomore than 0.02 units (see Figure 2(b)
for an example). As the randomness increases, the regularity of the network decreases and
overlaps of nodes may occur. To avoid this from happening, we set the randomness to be
between 16% and 32% of d.
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2.1.2. Generation of Gabriel graphs
We generate Gabriel graphs based on the grid of nodes generated in the previous step.
In Gabriel graphs, two nodes are linked if a circle centred on their midpoint with diameter
equal to thedistancebetween thenodes contains noother nodes (see Figure 2(c)).Weuse a
well-established algorithm to construct Gabriel graphs for a given set of nodes (Jaromczyk
and Toussaint 1992).

2.1.3. Generation of reduced Gabriel graphs
As the average degree of Gabriel graphs has a narrow distribution, we select some gener-
atedGabriel graphs to reduce their average degree by randomly deleting the links between
some nodes (see Figure 2(d)). By doing this, we can obtain a certain number of networks
with similar randomness but a wide range of average degrees.

The algorithm is as follows:

(1) Calculate the average degree of the spatial network.
(2) Calculate the degree of each node.
(3) For each node, if its degree is greater than the average degree and no less than 2

randomly remove one of the links to other nodes.
(4) Repeat steps 2 to 3 until no link meets the above conditions (i.e. the original average

degree is used throughout).

The steps described above define the process for how one spatial network represent-
ing a building layout is generated. To obtain a wide range of network and therefore layout
properties, the ‘randomness’ parameters is uniformly randomly selected from the interval
[0.16,0.32], and each generated Gabriel graph has a 50% probability of being reduced (see
Section 2.1.3). Using thismethodology, we generate 1200 building layouts. The distribution
of selected network/layout properties is shown in Figure 3.

2.2. Virtual experiment

2.2.1. Overview
To investigate the influence of building layout properties on pedestrian route choice, we
conduct a virtual experiment with human participants. Participants could move on build-
ing layouts that were randomly selected from the 1200 networks we generated and they
were asked to complete two different tasks twice. The first task was designed to test route
recall and the second task was designed to test route choice behaviour. The experiment is
described in detail below.

In our experiment, participants were shown a top-down view of a virtual environment in
which a building was displayed in the form of a network (see Figure 4). Participants could
control an avatar represented by a red circle in two ways: by using the arrow keys on the
keyboard to move forward and backwards, turn left and right, or by selecting the position
they wanted the avatar to move to with the mouse, ensuring that participants who have
different preferences of computer input habits can control the virtual pedestrian in their
preferred way. In each task, participants were asked to move the avatar to a designated
or preferred destination. We did not record any identifying information about participants.
We only recorded the movements of participants inside the experiment and (optionally)
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Figure 3. Distributions of building layout properties (the definition of properties can be found in
Table 1).

Figure 4. Still images of the virtual experiment as seen by participants on screen for the first task (a) and
the second task (b).

the age and gender of participants. The virtual environment was implemented in Unity 3D
(Version 2019.3). Ethical approval for our experiment was granted by the Ethics Committee
of the Faculty of Engineering at the University of Bristol.
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At the start of the experiment, participants were shown a building floor plan and the
corresponding network used to represent it to demonstrate the link between networks and
buildings and to introduce the experiment (see Figure A1 in appendix). In addition to this
introduction, participants received the information that ‘In each task, task information will
be shown at the bottom right of the screen. You are a person (represented by a red circle)
in a building. There is no correct answer to the route choice, so please decide according to
how you think you would choose in reality’.

In the first task of the experiment, participantswere asked tomove to a designated desti-
nation via a route of their choice (see Figure 4(a)). The instructions for this part were ‘Please
move to the destination at the top right as soon as possible’. Once they reached the desti-
nation, they were asked to retrace their route to return to the starting point: ‘Please try to
goback towhere you started through the same route you came in’. The taskwas completed
once participants reached the starting point. This task was designed to test the influence of
building layout properties on route choice strategy and route recall.

In the second task, participants were asked to a designated destination in the same way
as in the first task. However, when they reached the destination, another building layout
was displayed (see Figure 4(b)). Participants were at the intersection of these two buildings,
equidistant from their starting point and a new alternative destination. They were asked to
move toeither of thesedestinations via a routeof their choice. The instructionswere: ‘Please
move to your preferred destination either at the top right or the left bottom’. The task was
completed once participants reached their preferred destination. This taskwas designed to
test the influence of building layout properties on route and destination choice.

In our experiment, participants were asked to complete a total of four tasks, two repli-
cates each of the two tasks described above. The tasks were placed in a randomised order,
ensuring that the first two tasks were different and thus making participants not do the
same task in succession. To investigate learning or habituation effects arising from partici-
pants completing the same taskmore than once, we tested for an effect of task order on the
behaviour shown by participants. For each participant, we selected six different networks
at random from the 1200 networks we generated: two networks for the first task and four
networks for the second task. We recorded all movements of participants inside the virtual
environment.

2.2.2. Data collection
We recruited participants on the online platformProlific1 between the 22nd and the 23rd of
July 2021. Participants were paid an amount equivalent to $7.5 per hour based on the esti-
mated time to completion (this equated to $1.7 per person). All participants were briefed
on the broad purpose of the experiment and were asked to only take part once. Partici-
pants had to download an executable file for the virtual experiment onto their computer
and return an output file via email upon completion of the experiment. The experiment file
could only be executed once.

A total of 506participants signedup for our experiment onProlific: 272participants com-
pleted their submission, 216 participants decided to leave the experiment early and 18
participants exceeded the maximum time allowed without completing their submission.
Of the 272 participants who completed the experiment, 6 participants uploaded incorrect
data files, 10 participants took part in the experiment twice and 55 participants failed to
submit the output file. Therefore, the data from 201 participants were analysed.
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Reported ages ranged from 18 to 64, with a median and average age of 23 years and
25 years, respectively (5 participants did not disclose their age). The gender distribution
included 77 female participants (39.5%), 118 male participants (60.5%) and 6 participants
(3%) not identifying with either of these categories or choosing not to disclose a gender. In
terms of how participants moved the avatar inside the virtual experiment, 88 participants
(43.78%) used the keyboard, 70 participants used the mouse (34.83%) and 43 participants
(21.39%) used a mix of both controls.

2.2.3. Data analysis
We summarise the properties of routes and building layouts used in our data analysis in
Table 1. For the first task, in which participants were asked to retrace their route, we used a
measure for spatial similarity between two routes (Abraham and Lal 2012).

For route A(Ra) and route B(Rb), the spatial similarity between them (sim(Ra, Rb)) can
be described as the ratio of common nodes and the total of nodes across both routes, as
shown in Equation (1).

sim(Ra, Rb) = Number of nodes common to Ra and Rb
Total Number of nodes in Ra and Rb

(1)

Thus, 0 ≤ sim(Ra, Rb) ≤ 1 and sim(Ra, Rb) = sim(Rb, Ra).
For our statistical analysis, we use generalised linearmodels (GLMs)with a Binomial error

structure and a logit link function. We provide details on the model structure below and
we confirmed the appropriateness of these models by examining residual plots. All data
analysis was conducted in Matlab R2021a (MATLAB 2021).

3. Results

3.1. Pedestrian route choice strategies

We first investigate factors influencing the route choice of participants in the experiment.
At the start of each task, participants were asked to choose their preferred route to a des-
ignated destination. Only when they reached the destination, they were informed of the
following tasks. Therefore, we use their route choice data from this part of the experiment.
Figure 5 shows the distributions of the route properties introduced in Table 1. We find that
distance, the number of turns and accumulated angle changes of routes were important
factors influencing the route preferences of participants. Many participants selected the
shortest routes with the smallest accumulated angle change and the smallest number of
turns (see Figure 5(a–c)). Although overall participants were not inclined to routes with
many turns greater than 45◦, there were still more people choosing routes with only one
big turn than those without big turns (see Figure 5(d)). No one selected a route with a turn
greater than 90◦ (see Figure 5(e)).

We found a large number of participants preferred a route with many nodes on the
periphery of the network (see Figure 5(f)). It could be expected that using the keyboard
to steer the avatar in the experiment may affect this preference. Walking in straight lines is
the least effort in this case and the routes around the periphery of the network are mostly
along straight lines with one big turn in a corner of the network (compare to Figure 4).
However, we found no evidence for an effect of the steering mechanism participants used
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Table 1. Summary of the measures of building layout and route properties.

Measurement Factor Definition Purpose

Randomness The maximum ratio of the coordinate offset for
each node compared to the original coordinate
and the default distance between any two
nodes(d)

To measure the regularity of the network

Building layout measurements Average degree The average number of edges per node in the
network

To measure the connection between nodes

Average path length The average number of steps along the shortest
paths for all possible pairs of network nodes

Tomeasure the efficiency of transport on a network

Relative distance The ratio of the length of the chosen route and the
shortest route among all possible routes

To measure how close the selected route is to the
optimal route in terms of distance

Relative number of turns The ratio of the number of turns in the chosen
route and the smallest possible number of turns
across all possible routes

To measure how close the selected route is to the
optimal route in terms of the number of turns

Route measurements Relative accumulated angle change The ratio of the accumulated angle change
between consecutive links in the chosen route
and the smallest possible value for this measure
across all possible routes

To measure how close the selected route is to the
optimal route in terms of the accumulated angle
change

Proportion of the path on the edge (edges are
the outside limit of the building and contain all
periphery nodes of the grid)

The number of periphery nodes passed by a route
divided by the total number of nodes included
in this route

To measure the tendency of people to follow
the linear physical heterogeneities of the
environment

Large turn preference The number of turn angles between consecutive
links on a route that are greater than 45◦ or 90◦

To measure the preference of people choosing the
turn with a greater angle
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Figure 5. Distributions of route properties as shown in Table 1.

Table 2. Statistical analysis of the behaviour of pedestrians walking along
the periphery of spatial networks.

Effect Estimate SE F P

Intercept −13.72 3.167 −4.3323 1.4759 × 10−5

Randomness 38.462 14.395 −2.6719 0.007543
Average degree 3.3221 0.87171 3.811 0.00013838

To distinguish participants completely following the periphery of the network, the
response variable is a Boolean indicating whether the participants choose the path
that is all on the edge of the building or not (1 for yes, 0 for no). Explanatory vari-
ables are the building layout properties randomness and average degree. Average path
length is excluded from the model because of its high correlation with average degree
(R = −0.6746, p = 0.00). P-values less than 0.05 are shown in bold. Positive parameter
estimates correspond to it being more likely that participants choose to walk along the
edge of the building.

on their edge-seeking behaviour (χ2
1 =1.4769, p=0.2243) by comparing the proportion

of the path on the edge of data from participants using different steering mechanism. Our
statistical analysis suggests that on average, participants tended towards walking far away
from the edge of the building (intercept in Table 2). One possible explanation for this is that
many participants preferred both the shortest route and the route with the least accumu-
lated angle change. These routes track the leading diagonal through the network and are
thus not close to the periphery of the network. For increased randomness or the average
degree of the building layout, participants became more likely to select a route along the
periphery of the network (parameter estimate in Table 2). This implies that when partici-
pants were facedwithmore uncertainty caused by a less regular layout or a higher number
of connections in the network leading to more possible route choices, they preferred the
route on the edge of the building that is easy to remember, even though other routes are
optimal in terms of distance and accumulated angle change.
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3.2. Route recall

As shown in Figure 6(a), most participants could retrace their route accurately in the first
task of our experiment (route similarity = 1). We test what factors influence the similar-
ity between the original and retraced route of participants. We use our measure for route
similaritywhich indicates theproportionof commonnodesbetween the two routes. Impor-
tantly, we find no evidence for a difference in results between the two replicates of this
experimental task using theWilcoxonTest (p = 0.9218) andwe thus combine thedata from
two repeated tasks in the following analysis. As explanatory variables for route similarity,
we consider the factors in Table 1 and assess if they help explain our data using likelihood-
ratio tests. Based on this analysis, we exclude the randomness (Likelihood-ratio test, χ2

1 =
0.6825, p = 0.4087) and the proportion of the path on the periphery of the network
(Likelihood-ratio test, χ2

1 = 0.4541, p = 0.5004). In addition, the correlation between the
average path length and the average degree (R = −0.7019, p = 6.57 × 10−61), between
the relative number of turns and the relative distance (R = 0.7943, p = 1.29 × 10−88), and
between the number of large turns over 45◦ and the relative accumulated angle change
(R = 0.5593, p = 1.86 × 10−34), suggest one factor of each of these pairs of factors should

Figure 6. Distributions of measures for route recall in the first task of the experiment. (a) shows the
route similarity measure, (b) the difference in length, and (c) shows the difference in accumulated angle
change between the initial route and the recalled route. Negative values in (b,c) indicate that the initial
route was longer or had a higher value of the accumulated angle change, respectively.
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Table 3. Statistical analysis of route similarity.

Effect Estimate SE F P

Intercept 11.386 3.0509 3.7321 0.00019
Average degree −1.421 0.6035 −2.3545 0.018548
Relative distance −2.889 1.4528 −1.9886 0.046741
Relative accumulated angle change −0.41698 0.21033 −1.9825 0.047425

P-values less than 0.05 are shown in bold. Positive parameter estimates indicate it is more likely that par-
ticipants select a route that is similar to the route they used to reach the destination and vice versa. We
fit a Generalised Linear Model with binomial errors and a logit link function.

be included into our statistical analysis to avoid multicollinearity. Therefore, the explana-
tory variables included in our statistical analysis are average degree, relative distance, and
relative accumulated angle change, as shown in Table 3.

Our statistical analysis shows that on average, participants tend to select a similar route
to return their starting point (large positive intercept in Table 3 implying a route similarity
close to one). The average degree, relative distance and angle change all have a non-zero
effect on route similarity. As all three parameter estimates were negative, the route similar-
ity score decreases both when the building layout has a larger average degree and when
the initial route chosen by participants is longer or hasmore turns compared to the optimal
route in the network (larger relative distance and accumulated angle change, respectively;
Table 3). As discussed above, participants prefer the shortest route with the smallest accu-
mulated direction changes. For many building layouts only one or very few routes that
are optimal according to these factors are available. So, participants may choose this most
direct route consistently. However, as the average degree of the building layout increases,
the number of the possible routes also increases, whichmightmake itmore difficult for par-
ticipants to choose the same route, even if they are looking for the most direct route. This
could explain why increasing average degrees of building layouts had a negative effect on
the route recall of participants.

In addition to route similarity, we investigate two further measures for the difference
between the two routes chosen by participants: the difference in length and the difference
in accumulated changes in direction between the two routes.We consider the samepredic-
tors for thesemeasures as for route similarity but use Linear Models, to capture the positive
and negative valueswe find.Most retraced routes are similar to the initial route participants
choose (see Figure 6( b,c)). This is also reflected in our statistical analysis (see low values
for intercepts in Tables 4 and 5). When participants select a longer route than the shortest
route to come in, they aremore likely to choose a shorter retraced route (seeparameter esti-
mate for relative distance in Table 4). Similarly, when participants choose a less direct route,
they are more likely to choose a more direct route subsequently (see parameter estimate
of accumulated angle change in Table 5).

3.3. Building layout preference

In the second task, participants are asked tomove to a designated destination and another
building layout is displayed when they reach the destination. Therefore, participants are
facedwith a choice: either choose the destination in the building they havewalked through
or select the destination in the new alternative building. We study how the properties of
the building layout influence participant preference by comparing the layouts of these two
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Table 4. Statistical analysis of distance using a standard linear model.

Effect Estimate SE F P

Intercept 0.20063 0.058337 3.4391 0.00064525
Average degree 0.0078684 0.01058 0.7437 0.45749
Relative distance −0.19653 0.032982 −5.9588 5.5988 × 10−9

Relative accumulated angle change −0.0046288 0.00495 −0.93511 0.3503

The responsevariable is thedifference indistancebetween the initial and the recalled route. It is positive if the recalled
route is longer and vice versa. The explanatory variable is the relative distance of the initial route participants chose
compared to the shortest possible route. P − values < 0.05 are shown in bold.

Table 5. Statistical analysis of the accumulated angle change.

Effect Estimate SE F P

Intercept 0.30917 0.278 1.1121 0.26676
Average degree 0.060017 0.050418 1.1904 0.23461
Relative distance −0.24322 0.15717 −1.5475 0.12255
Relative accumulated angle change −0.12759 0.023589 −5.4089 1.0968 × 10−7

The response variable is the difference in accumulated angle change between the initial and the recalled route. It
is positive if the recalled route has a higher value of the accumulated angle change and vice versa. The explana-
tory variables are the average degree of the building layout, the relative distance and the relative accumulated
angle change of the initial route participants chose compared to the shortest possible route and the route with
the smallest accumulated angle change. P−values < 0.05 are shown in bold.

Table 6. Statistical analysis of building layout preference.

Effect Estimate SE F P

Intercept 1.1173 0.2036 5.4878 4.07 × 10−8

Difference in randomness −0.5049 0.2254 −2.2401 0.02508
Difference in average degree 0.1050 0.2256 0.4658 0.6414

The response variable is a Boolean variable indicating whether participants choose the desti-
nation in the building they entered (0 for no and 1 for yes). Explanatory variables are the
difference in the randomness parameter and the average degree between the first building
and the second building. P−values < 0.05 are shown in bold.

buildings. We find that on average, participants prefer the destination in the first build-
ing that they are already familiar with (positive intercept in Table 6) and are more likely
to choose the destination in the building with a smaller randomness parameter (negative
parameter estimate for the difference in Table 6). In other words, participants prefer more
regular building layouts. We find no evidence for an influence of average degree on des-
tination selection (p = 0.6414). The average path length is not considered, as it is highly
correlated with the average degree.

For participants who chose the destination in the new alternative building, they may
make this decision because they found a preferred route in the new alternative building
rather than because they preferred the building layout. To clarify this, we compare the
properties of the two routes: one is the participants’ previous preferred route in the first
building and the other is chosen route in the new alternative building. We find that the two
routes are similar in terms of relative distance and relative accumulated angle change (see
Figure A2 in the Appendix). This suggests that the preference of participants for a building
layout depends on the properties of the building layout itself rather than on whether they
can choose a better route in either building layout.
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4. Discussion

We develop a method to generate buildings with random layout properties, conduct a
virtual experiment with over 200 participants and use statistical models to explore the
influence of building layout properties on pedestrian route choice behaviour. We find that
increases in the average degree of building layouts represented as networks negatively
affect the route recall of participants. Participants prefer the destination they are familiar
with and more regular building layouts. We also observe edge-seeking behaviour of par-
ticipants in that they follow the periphery of the networks representing buildings. Similar
behaviour has previously been found in buildings with low or limited visibility where peo-
ple walk alongwalls to evacuate, because it is a safe way to avoid the obstacles and find the
exit when there is no visible directional information (Guo, Huang, and Wong 2012; Jansen-
Osmann, Schmid, and Heil 2007). There is also considerable evidence for edge-seeking
behaviour in animals such as ants (Dussutour, Deneubourg, and Fourcassié 2005) andmice
(Saloma et al. 2003). The causes andmechanisms for this behaviour are likely to differ across
contexts but a common aspect is that edges can be used as structural guidelines to orient
and navigate in an environment. In our experiment, edge-seeking behaviour occurs more
frequently with decreases in regularity and increases in average degree of building layouts.
One possible explanation for this is that in the experimental environment, participants only
control themovementof the virtual pedestrian, in away that is far less labour-intensive than
in reality, so they are less sensitive to distance differences between routes and thus tend
to follow a specific heuristic for route choice. Another possible reason is that it presents a
simple, repeatable, and low-risk route choice or even heuristic for pedestrians that avoids
the effort or need to carefully evaluate alternative routes in less regular environments with
many options. Although the reasons for pedestrians walking along edgesmay differ across
a low-visibility context and abstracted route choice, for example, the fact that it occurs
repeatedly suggests it may be a fundamental behaviour that may be worthy of further
research.

Our findings reveal pedestrian route preferences in buildings: participants tend to select
the shortest routes with the smallest accumulated direction change and number of turns.
This preference for the most direct route has also been found in previous work (Hochmair
and Frank 2000; Stigell and Schantz 2011). Building layouts are generated automatically
in our research, which means we cannot disentangle the relative effects of route length
and direction changes, as the smallest values for these factors may coincide in many build-
ings. Nevertheless, our experimenthelps to establish ageneral understandingof pedestrian
strategies through the data and expands the empirical database on the role of building
layout in pedestrian route choice.

In the first task of our experiment, we find that as the average degree of the building
layout increases, participants retrace their route less accurately. As discussed in the intro-
duction, the average degree has also been described as Inter Connection Density (ICD) and
our work confirms the role of this measure on pedestrian route recall and route choice.
The consistency between this work and the results of previous studies suggests the poten-
tial and feasibility of the network method in how building layout affects pedestrian route
choice. The network method allows not only to generate building layouts with controlled
properties effectively but also to apply the well-established knowledge in the field of net-
work science to explore how to capture building layout properties that have immediate
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relevance to pedestrian spatial decisions. For example, while the average degree in this
work can measure the connections between nodes in a network, the degree distribution,
the probability distribution of these degrees over the whole network, can measure the
connections in another way (Yuan et al. 2015). Pedestrians may have more predictable
route choices in a network that follows a power-law degree distribution, because in this
type of network, only a few nodes have many more connections than others (Warren,
Sander, and Sokolov 2002), probably making them have a high probability of being on
the path of pedestrians. Therefore, other network summary statistics may also help to
explain pedestrian route choice strategies and this could be an interesting topic for further
investigation.

In the second task of our experiment, we find that participants tend to choose the route
in the original building they are familiar with. The preference of pedestrians for familiar
places has been suggested to be an essential factor in pedestrian route choice (Sime 1983).
One possible explanation for this is that the uncertainty in unfamiliar places may result in
spatial anxiety, which is a situation pedestrians try to avoid (Phillips et al. 2013). In addi-
tion, participants in our experiment prefer the more regular building layout (generated
with a smaller randomness value). This is an entirely novel finding, the mechanism for
which is yet to be studied. One explanation for this could centre on the perceptual fluency,
the subjective feeling of ease or difficulty while processing perceptual information (Reber,
Winkielman, and Schwarz 1998), which has been widely studied in the field of cognitive
psychology (McKean et al. 2020). Compared with disorganised information, people prefer
regular information that leads to a higher perceptual fluency (Bloch 1995). A limitation of
this task in our experiment is that the difference in the layout properties of two buildings
is limited to a range due to the constraints imposed in the layout generation. Therefore,
the conclusion we draw about pedestrians choosing destinations based on layout proper-
ties rather than route properties is only valid within the range of layouts we studied and
it may not be valid when there are extreme differences between building layouts. A new
building generation method that can generate a wider range of layout properties that are
still meaningful would be useful to explore the trade-offs between the layout and route
preferences.

There are many other building layout properties (e.g. network orientation or direction)
and potential factors that affect pedestrian route choice (e.g. movements of other pedes-
trians). However, we argue that our work is not an exhaustive examination and still can
provide a starting point for future investigations.

Control over extraneous variables is essential in our experiments. We have investigated
the influences of several variables on experiment results. First, we provided two types of
steering mechanism participant could use to control the movements of the virtual avatar
and testedwhether the steeringmechanismaffected their behaviours. Second, participants
were asked to complete several tasks in their experiment, sowe randomly assigned the task
order and investigated the effect of task order on participant route choice. However, there
were other factors that possibly affected pedestrian route choice but were not considered.
For example, the orientation of the 2Dmaps shown to participants implies themainmove-
ment direction is along the diagonal from bottom left to top right. This might potentially
play a role in pedestrian route choice, especially for participants who had a specific ori-
entation preference. Therefore, more empirical work on factors affecting pedestrian route
choice remains to be done.
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The method of generating building layouts we use is primarily controlled by three
parameters: the randomness (related to the regularity of the grid of nodes), the distance
between nodes and the minimum degree of nodes when generating reduced Gabriel
graphs. This method allows us to automatically create a large number of networks repre-
senting buildingswith different layout properties but cannot ensure the authenticity of the
generated buildings, because the building layout is not abstracted from real building floor
plans. We suggest that our approach is sufficient for a preliminary investigation on the role
of building layout properties on pedestrian route choice. Our approach can help identify
relevant factors that can then be compared with real or planned building layouts, and with
pedestrian behaviour in the real world.

One of the limitations of our study comes from the method we used. We conduct our
experiment in a virtual environment and participants interact with abstracted building lay-
outs for decision-making, raising questions of the extent to which our findings extend to
pedestrian behaviour (Lovreglio and Kinateder 2020). Our experiment also presents par-
ticipants with a top-down view of an entire building layout. This could be compared to
choosing a route on a map and the difference between this situation and human visual
cognition in real-world settings, as well as the effects of human–computer interaction,
could influence our findings. There is work that directly demonstrates the validity of the vir-
tual experiment paradigm for pedestrian route choice and decision making (Li et al. 2019)
and the route choice of participants in abstracted buildings can still capture their prefer-
ences (Feng, Duives, and Hoogendoorn 2021; Feng et al. 2018). Moreover, the discussion
above shows that elements of our findings on route choice confirm the findings of previous
research, suggesting our approach is valid. Moreover, the 2D representation of the building
allows participants to have global knowledge about the building simply and quickly. This
could produce new features affecting pedestrian spatial perception such as the orientation
of maps. Therefore, further research on how spatial representations can affect pedestrian
route choice would be useful (e.g. comparison of pedestrian route choice in 2D and 3D
virtual environments).

Participants for our experiment were recruited using a dedicated platform for scientific
research and the experiment was conducted online. While online recruitment allows us to
collect data cheaply, effectively and flexibly, there may be issues with this type of data col-
lection. For example, the self-selected pool of participants may not be representative for
the general population and participants who are not directly supervised by researchers
may show different behaviours. Research on this issue has suggested that in principle
this data collection paradigm is valid, but caution is warranted (Crump, McDonnell, and
Gureckis 2013). A possible measure that can address this issue is to conduct online and
offline experiments simultaneously, aiming to obtain a truly representative sample.

5. Conclusion

Pedestrians are assumed to make route choice decisions based on the static information
obtained from prior knowledge of buildings and dynamic information during walking. The
role of static information, especially building layouts, has to date not received much atten-
tion. Our study investigates for the first time how building layout properties can influence
the route choice of pedestrians using large numbers of automatically generated build-
ings with different layout features. Our work reveals that more connections in buildings
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negatively affect pedestrian route recall and a more regular building layout is preferred by
pedestrians. The edge-seeking behaviour occurs more frequently as regularity decreases
and the number of connections increases. These findings not only provide a deeper insight
into how building layout affects pedestrian spatial behaviour that may be of assistance to
building design but also identify several metrics for quantifying ‘building layout complex-
ity’, an essential concept but is not clearly defined. Furthermore, this work suggests the
potential and feasibility of network methods in pedestrian route choice inside buildings.
Future research should be carried out to determine the role of building layout in human
behaviour using real building samples and to explore the application of research results in
building design and pedestrian management.

Note

1. Prolific: Online participant recruitment for surveys and market research URL: https://prolific.co/,
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Appendix. Details of statistical models

The statistical models used in Tables 2–6 are Generalized Linear Models (GLMs). GLMs are a standard
tool in statistics (Dobson and Barnett 2018), which aim to explain variability in a response variable
y in terms of explanatory variables, xi (where i = 1, 2, 3, . . .). For our models, we assume y follows a
Binomial distribution and we also assume that the expectation of y, E(y), satisfies the following rela-
tionship: logit(y) = k0 + k1x1 + k2x2 + k3x3 + · · · , where k0 is the intercept and k1, k2, k3, . . . are the
regression coefficients corresponding to the explanatory variables.
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Figure A1. Still image of the virtual experiment as seen by participants on screen before route choice
tasks start.

Figure A2. Route comparison of the first and second leg for the participants who selected different
destinations in the second task of the experiment. Dashed horizontal lines show the mean of the data.
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