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Modeling impedance boundary conditions and acoustic
barriers using the immersed boundary method:
The one-dimensional case

Stefan Bilbaoa)

Acoustics and Audio Group, University of Edinburgh, Room 2.10 Alison House, 12 Nicolson Square Edinburgh, EH8 9DF,
United Kingdom

ABSTRACT:
Immersed boundary methods are heavily used in computational fluid dynamics, as an alternative to volumetric

meshing, when a problem contains irregular geometric features. In wave-based architectural and room acoustics, the

dynamics are simplified, but boundary conditions and acoustic barriers are usually described in terms of frequency-

dependent impedance and transmittance functions. In this article, a formulation of the immersed boundary method is

developed in the informative special case of one-dimensional linear acoustics. It relies on dual driving terms applied

to the conservation of mass and momentum equations separately and is directly tunable against boundary impedan-

ces and barrier transmittances. It is shown how the driving terms may be combined to model either an impermeable

frequency-dependent boundary condition or a barrier with a given transmittance. An explicit time-domain numerical

method of finite-difference time-domain type is presented, and it is shown how the immersed boundary condition

may be included, at minimal additional computational cost. Special attention is paid to the discrete approximation of

the Dirac delta function, necessary in immersed boundary methods, as well as the discretisation strategy for

frequency-dependent boundary and barrier conditions. Numerical results are presented. A complete derivation of

numerical stability conditions for this immersed boundary method appears in an appendix.
VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0017763

(Received 2 November 2022; revised 14 March 2023; accepted 15 March 2023; published online 3 April 2023)

[Editor: Lauri Savioja] Pages: 2023–2036

I. INTRODUCTION

In fluid-structure interaction problems, typically for

nonlinear flow, immersed boundary methods1–4 have been

used for some time in order to avoid volumetric or form-

fitting meshing. Thus, the modeling of complex geometries

does not interfere with a regular grid arrangement, which is

ideal from the point of view of parallelisation for potentially

large scale problems.

The situation is different in the case of virtual and archi-

tectural acoustics applications, approached using wave-

based time domain methods, of which many varieties have

been proposed.5–10 The dynamics are greatly simplified

through linearisation. In addition, in contrast to moving-

boundary problems in fluid structure interaction, boundaries

are fixed but are characterised by a complex frequency

dependence, and this dependence carries through to acoustic

barriers, which are capable of transmitting energy. The pur-

pose of this article is to show how immersed boundary

methods can be reframed and extended to cope with new

features particular to virtual and room acoustics and at the

same time exploit the simplified dynamics of room and

architectural acoustics, leading to computationally efficient

and numerically well-behaved time domain algorithm

designs. For analysis purposes, this article is concerned with

the simplified test problem of one-dimensional acoustics,

and the use of immersed boundaries within a finite differ-

ence time domain framework. [See also related work in the

modeling of jump conditions for the wave equation11].

Extensions to the case of three-dimensional (3D) scattering

and transmission will be presented in future work.

One-dimensional (1D) acoustic wave propagation is

introduced as a test problem in Sec. II, with special attention

paid to traveling wave solutions under Laplace transforma-

tion. In Sec. III, various boundary configurations are intro-

duced, including the half space with a single impedance

boundary condition, and a two-sided barrier permitting both

reflection and transmission, and characterised by an admit-

tance/impedance pair. A condition under which the non-

transmitting impedance boundary is recovered is presented,

alongside other special cases. Finally, a basic immersed

boundary formulation is presented, framed in terms of a pair

of pointwise excitation terms, of strength dependent on the

acoustic field and with associated frequency-dependent

admittance and impedance. The formulation is shown to be

equivalent to a two-sided barrier and includes the single-

sided impedance boundary condition as a special case.

Discrete time simulation methods in 1D are introduced in

Sec. IV. A standard time-and space-interleaved formulation

is employed, alongside discrete approximations to thea)Electronic mail: sbilbao@ed.ac.uk
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pointwise driving terms, and a specialised passivity-

preserving numerical integration method for the excitation

functions. A variety of regularized approximations to the

Dirac delta function over a spatial grid are introduced.

Simulation results are presented, illustrating the behaviour

of non-porous barriers, impedance boundary conditions, per-

fect transmission through acoustic barriers, and the impor-

tant side effect of leakage through an immersed boundary. A

complete proof of numerical stability appears in the

Appendix, where it is demonstrated that the inclusion of the

immersed boundary does not interfere with the stability con-

dition for the scheme defined in free space.

Preliminary results appeared at the International

Congress on Acoustics in 2022.12

II. ACOUSTIC WAVE PROPAGATION IN 1D

Consider the equations of linear acoustics in one spatial

dimension (Morse and Ingard,13 p. 243),

1

qc2
@tpþ @xv ¼ 0; q@tvþ @xp ¼ 0: (1)

Here, p(x, t) and v(x, t) are the acoustic pressure and particle

velocity, respectively, defined for t � 0 and x 2D � R.

q and c are the density of air, in kg � m�3 and wave speed in

m � s�1, respectively. @x and @t represent partial differentia-

tion with respect to x and t, respectively. The acoustic field

is assumed initialised as

pðx; 0Þ ¼ p0ðxÞ; vðx; 0Þ ¼ v0ðxÞ (2)

for known pressure and velocity distributions p0ðxÞ and

v0ðxÞ, respectively, defined over x 2D. A driving term will

be added at a later stage, once the immersed boundary for-

mulation has been introduced.

Equation (1) is arrived at under various simplifications

to the full Navier-Stokes system describing fluids, including

linearity, losslessness, irrotational and zero-mean flow, and,

finally, the restriction to wave propagation in one spatial

dimension. In virtual and room acoustics applications, more

commonly seen is the equivalent second order wave equa-

tion in pressure (Morse and Ingard,13 page 243), but in this

article, we will work with the first order system.

A. Traveling wave solution

Equation (1) may be reframed in terms of traveling

waves a(x, t) and b(x, t), defined as

a ¼ pþ Z0v; b ¼ p� Z0v: (3)

Here, the characteristic impedance Z0 and admittance Y0 of

air are defined as

Z0¢qc; Y0¢1=Z0 ¼ 1=qc: (4)

This leads to the equivalent system,

@taþ c@xa ¼ 0; @tb� c@xb ¼ 0; (5)

and associated initial conditions aðx; 0Þ ¼ a0ðxÞ and

bðx; 0Þ ¼ b0ðxÞ defined, in terms of p0 and v0 as

a0 ¼ p0 þ Z0v0; b0 ¼ p0 � Z0v0: (6)

When defined over x 2 R, Eq. (5) is a pair of uncoupled

advection equations, with solutions

aðx; tÞ ¼ a0ðx� ctÞ; bðx; tÞ ¼ b0ðxþ ctÞ: (7)

a and b are thus rightward and leftward traveling wave com-

ponents. The full d’Alembert solution to the second-order

wave equation corresponding to Eq. (1) is composed of the

sum of these traveling wave components. See Fig. 1(a).

B. Laplace-transformed solution

Consider now solutions under one-sided Laplace trans-

formation, defined for a function f(x, t), t � 0, as

f̂ ðx; sÞ ¼
ð1

0

f ðx; tÞe�stdt; (8)

where, here, f̂ ðx; sÞ is the Laplace transform in time of f(x,

t), and s, a complex frequency, is the transform variable.

The traveling wave solutions a(x, t) and b(x, t), from Eq. (7),

transform to âðx; sÞ and b̂ðx; sÞ as

â¼
ð1

0

a0ðx�ctÞe�stdt; b̂¼
ð1

0

b0ðxþctÞe�stdt; (9)

which may be re-expressed as spatial integrations using the

variables n ¼ x 7 ct, respectively, as

â¼e�sx=c

c

ðx

�1
a0ðnÞesn=cdn; b̂¼esx=c

c

ð1
x

b0ðnÞe�sn=cdn: (10)

Such forms will be used as a starting point for the analysis

in Sec. III.

FIG. 1. (Color online) Domains in 1D. (a) Unbounded domain R. (b) Half

space R�. (c) Barrier between two half spaces R� and Rþ. (d) Unbounded

domain R with an immersed boundary, operating as a forcing term.
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III. ACOUSTIC BARRIERS AND BOUNDARIES IN 1D

This article is concerned with time domain simulation,

but the behaviour of boundary conditions and barriers is nor-

mally framed in the frequency domain in terms of impedan-

ces and admittances (or reflectances and transmittances).

There is a large body of work concerned with time domain

representations of such functions,14,15 including their use

within time domain simulation applications in acoustics.16

A. Positive real functions and passivity

Acoustic boundaries and barriers are characterised by a

relationship between a pressure p(t) and a particle velocity

v(t) at a surface. This is normally expressed, using Laplace-

transformed quantities p̂ðsÞ and v̂ðsÞ, in terms of an imped-

ance z(s) or admittance y(s), so that

p̂ðsÞ ¼ Z0zðsÞv̂ðsÞ or v̂ðsÞ ¼ Y0yðsÞp̂ðsÞ: (11)

Here, constants Z0 and Y0, as defined in Eq. (4) have been

employed, and thus z(s) and y(s) are dimensionless.

In order to represent passive boundaries or barriers,

such functions are constrained to be positive real.17,18

Various definitions are available; here, following Brune,19

an immittance w(s), intended to represent either an imped-

ance or an admittance, is positive real if

Re wðsÞð Þ � 0 when ReðsÞ � 0; (12a)

Im wðsÞð Þ ¼ 0 when ImðsÞ ¼ 0: (12b)

Positive real functions are often restricted by definition to be

of rational form19

w sð Þ ¼

XP

�¼0

g�s
�

XQ

�¼0

f�s
�

: (13)

Positive realness implies various constraints20 on both the

orders P and Q of the numerator and denominator polyno-

mials, as well as the polynomial coefficients g�; � ¼ 1;…;P
and f�; � ¼ 1;…;Q. Positive realness of an impedance or

admittance reflects passivity or dissipativity.21 When

employed within a complete system, such a passivity con-

straint leads, in the frequency domain, to restrictions on

pole locations for the system. In the numerical setting, the

restriction on pole locations translates into a condition for

numerical stability—see the Appendix. Such positive real-

ness conditions are used in order to characterise locally

reactive impedances in linear acoustics (see Rienstra,21 and

also Pierce,22 p. 125), and in numerical designs for bound-

ary termination in wave-based acoustics8 and outdoor

acoustics.16

When expressed in the time domain, an ordinary differ-

ential equation (ODE) relating p(t) and v(t) results.14 For

rational w(s) in the form of Eq. (13), and representing an

impedance, the first expression of Eq. (11) becomes, in the

time domain,

XQ

�¼0

f�
d�

dt�
p ¼ Z0

XP

�¼0

g�
d�

dt�
v: (14)

Here, and elsewhere in this article, initial conditions for

such lumped ODEs, intended to represent the dynamics of a

barrier or impedance boundary, are taken to be zero.

A particularly useful non-trivial example is the case of

an immittance w(s) defined by

wðsÞ ¼ aþ bsþ c=s: (15)

For non-negative constants a, b, and c, w(s) is positive real,

and corresponds to a connection of a mass, spring, and

damper, in either series or parallel, depending on whether

w is taken to be an impedance or an admittance. In the set-

ting of boundary condition modeling in virtual and room

acoustics, far more complex constructions have been

employed;8 however, provided the immittance is rational,

and the positive realness condition Eq. (12) is satisfied, the

results in the remainder of this paper are unaffected by the

particular choice of an impedance or admittance.

B. Half-space with an impedance boundary condition

Consider now the system in Eq. (1) defined over the

half-space x 2D ¼ R� ¼ ½�1; 0�. See Fig. 1(b). A single

boundary condition at x¼ 0 is required, relating p and v—

take an impedance condition, expressed in terms of Laplace-

transformed quantities p̂ð0; sÞ and v̂ð0; sÞ, as

p̂ð0; sÞ ¼ Z0zðsÞv̂ð0; sÞ; (16)

for an impedance z(s). When rewritten in terms of waves a
and b, as in Eq. (3), a reflectance relationship results,

b̂ð0; sÞ ¼ zðsÞ � 1

zðsÞ þ 1|fflfflfflffl{zfflfflfflffl}
RðsÞ

âð0; sÞ: (17)

For z(s) positive real, the reflectance RðsÞ is bounded by

unity in magnitude for ReðsÞ � 0 (Pierce,22 p. 125).

Again using Laplace transform analysis, a complete

solution follows, for x 2 R�, as

â ¼ e�sx=c

c

ðx

�1
a0ðnÞesn=cdn; (18a)

b̂ ¼ esx=c

c
R
ð0

�1
a0ðnÞesn=cdnþ

ð0

x

b0ðnÞe�sn=cdn

 !
: (18b)

The solution for the rightward traveling wave â is

unchanged from the form in free space, from Eq. (10). The

solution for b̂, however, can be deduced directly from the

Laplace transform of the defining Eq. (5) for b(x, t), and
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retaining the initial condition b0ðxÞ. The resulting spatial inte-

gral may then be split in order to isolate b̂ð0; sÞ, which may

then be related to âð0; sÞ through Eq. (17), leading to the form

of b̂ above. Relative to the solutions from Eq. (10) in free space,

the leftward traveling wave component b̂ now contains a com-

ponent reflected from the boundary, with reflectanceR.

C. Two-sided barrier and transmission

Consider now a division of the domain D ¼ R into two

subdomains R� ¼ ½�1; 0� and Rþ ¼ ½0;1�. See Fig. 1(c).

The dividing point at x¼ 0 will constitute an acoustic barrier,

assumed infinitely thin, and is common to both regions. In

each domain, the transmission line in Eq. (1) holds in terms

of the variable pairs ðp�; v�Þ and ðpþ; vþÞ, so that

1

qc2
@tp

7 þ @xv
7 ¼ 0; q@tv

7 þ @xp7 ¼ 0: (19)

The system is assumed initialised with the distributions

p7
0 ðxÞ and v7

0 ðxÞ over R7. It is convenient to define the dis-

continuous jumps pDðtÞ and vDðtÞ in pressure and velocity

across the interface at x¼ 0 as

pDðtÞ ¼ p�ð0; tÞ� pþð0; tÞ; vDðtÞ ¼ v�ð0; tÞ� vþð0; tÞ; (20)

and average pressures and velocities �pðtÞ and �vðtÞ at the

interface as

�pðtÞ ¼ p�ð0; tÞþ pþð0; tÞ
2

; �vðtÞ ¼ v�ð0; tÞþ vþð0; tÞ
2

: (21)

Henceforth in this article, averaged field quantities are indi-

cated using an overbar notation.

The dynamics of the barrier itself may be described in

the Laplace domain in terms of two immittance definitions,

p̂DðsÞ ¼ 2Z0zvðsÞ�̂vðsÞ; v̂DðsÞ ¼ 2Y0ypðsÞ�̂pðsÞ: (22)

Here, zvðsÞ and ypðsÞ are a nondimensional impedance and

admittance, respectively—not necessarily related, except

under some useful special cases, as described in Sec. III D.

Both are assumed positive real, satisfying Eq. (12). A factor

of 2 has been employed here in order to simplify subsequent

expressions.

An exact solution follows from a transformation to trav-

eling waves, as defined in Eq. (3), leading to a pair of sys-

tems analogous to Eq. (5),

@ta
7 þ c@xa7 ¼ 0; @tb

7 � c@xb7 ¼ 0; (23)

over R7. The distributions a7 and b7 are initialized by

a7ðx;0Þ ¼ p7
0 ðxÞþZ0v

7
0 ðxÞ; b7ðx;0Þ ¼ p7

0 ðxÞ�Z0v
7
0 ðxÞ:

(24)

Solutions in the Laplace domain for the waves â�ðx; sÞ
and b̂

þðx; sÞ incoming at the barrier [see Fig. 1(c)] follow

immediately, from Eq. (10), as

â� ¼ e�sx=c

c

ðx

�1
a�0 ðnÞesn=cdn; b̂

þ ¼ esx=c

c

ð1
x

bþ0 ðnÞe�sn=cdn:

(25)

For outgoing waves, after Laplace transformation of the

defining Eq. (5), one arrives at

âþðx; sÞ ¼ � e�sx=c

c

ð1
x

aþ0 ðnÞesn=cdn

¼ âþð0; sÞe�sx=c þ e�sx=c

c

ðx

0

aþ0 ðnÞesn=cdn; (26a)

b̂
�ðx; sÞ ¼ � esx=c

c

ðx

�1
b�0 ðnÞe�sn=cdn

¼ b̂
�ð0; sÞesx=c þ esx=c

c

ð0

x

b�0 ðnÞe�sn=cdn; (26b)

where the boundary values âþð0; sÞ and b̂
�ð0; sÞ are yet to

be determined. The immittance conditions from Eq. (22)

can be rewritten in terms of the four wave variables incident

at x¼ 0, first using the definitions from Eqs. (20) and (21) of

pD; vD; �p, and �v in terms of p and v at x¼ 0, and then the

definitions from Eq. (3) of traveling wave variables, as

b̂
�ð0; sÞ

âþð0; sÞ

" #
¼
RB T B

T B RB

" #
â�ð0; sÞ
b̂
þð0; sÞ

" #
; (27)

where the reflection coefficient RB and transmission coeffi-

cient T B may be written in terms of zv and yp as

RB ¼
1

2

1� yp

1þ yp
þ zv� 1

zvþ 1

� �
; T B ¼

1

2

1� yp

1þ yp
� zv� 1

zvþ 1

� �
: (28)

Now, beginning from the representation in Eq. (26), and

writing âþð0; sÞ and b̂
�ð0; sÞ in terms of â�ð0; sÞ and

b̂
þð0; sÞ from Eq. (27), and finally the known solutions for

incoming waves from Eq. (25) evaluated at x¼ 0, an exact

solution for outgoing waves âþðx; sÞ and b̂
�ðx; sÞ follows as

âþ ¼ e�sx=c

c

ðx

0

aþ0 ðnÞesn=cdn

þ e�sx=c

c

 
T B

ð0

�1
a�0 ðnÞesn=cdn

þRB

ð1
0

bþ0 ðnÞe�sn=cdn

!
; (29a)

b̂
� ¼ esx=c

c

ð0

x

b�0 ðnÞe�sn=cdn

þ esx=c

c

 
RB

ð0

�1
a�0 ðnÞesn=cdn

þT B

ð1
0

bþ0 ðnÞe�sn=cdn

!
: (29b)
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In general, the system as a whole permits the reflection and

transmission of energy across the interface at x¼ 0, charac-

terised byRB and T B, respectively.

D. Special cases

Various special cases emerge. In acoustics, the most

commonly occurring condition by far is

ypðsÞ ¼ 0: (30)

This corresponds to the case of a non-porous barrier, and

implies from Eq. (22) that vD, the velocity jump across the

barrier, is zero. As pointed out by Pierce,22 p. 161, this con-

dition can also be used to approximate the behaviour of

some thin porous barriers, such as an acoustic blanket. This

is also the condition explored recently in the context of dis-

continuous Galerkin methods.23 In this case, zvðsÞ has the

direct interpretation of a slab impedance; the transmission

coefficient T BðsÞ reduces to

T BðsÞ ¼ 1=ð1þ zvðsÞÞ (31)

in this case. When zv ¼ þ1, transmission is zero, and a per-

fectly rigid boundary results. The condition from Eq. (30) is

also commonly used in immersed boundary methods.

From a numerical perspective, if one is interested in

modeling an impedance boundary condition, rather than a

barrier, then the condition in Eq. (30) is too strict. Consider

the following relationship between zvðsÞ and ypðsÞ:

zvðsÞ ¼ 1=ypðsÞ: (32)

Now T BðsÞ ¼ 0 and there is no transmission of energy

across the barrier. The system reduces to an impedance

boundary, as described in Sec. III B, with

R ¼ RB ¼ ðzv � 1Þ=ðzv þ 1Þ. Considering the solution over

R�, the solution above for the reflected wave b̂
�

, as given

in Eq. (29b) is equivalent to the reflected wave solution

given in Eq. (18).

Now, consider the case of

zv ¼ yp: (33)

This case, less useful in practice, corresponds to pure trans-

mission, with RB ¼ 0, and thus no reflections occur at the

barrier. An impinging wave undergoes distortion as it passes

through the barrier, with a transmission coefficient of

T B ¼ ð1� zvÞ=ð1þ zvÞ.

E. Immersed boundary

Now consider the case of 1D acoustics with additional

pointwise driving terms at x¼ 0, and defined for D ¼ R,

1

qc2
@tpþ @xvþ dð1ÞðxÞvD ¼ 0; q@tvþ @xpþ dð1ÞðxÞpD ¼ 0:

(34a)

Here, dð1ÞðxÞ is a 1D Dirac delta function selecting x¼ 0,

and vDðtÞ and pDðtÞ are driving functions, with dimensions

of velocity and pressure, respectively. In immersed bound-

ary methods, the driving functions are drawn directly from

the acoustic field, through their dependence on �pðtÞ and �vðtÞ,
defined as

�p ¼
ð1
�1

pðn; tÞdð1ÞðnÞdn; �v ¼
ð1
�1

vðn; tÞdð1ÞðnÞdn: (34b)

Note that these correspond to the definitions in Eq. (21)

given earlier in the case of the two-sided barrier. Note that if

pðn; tÞ or vðn; tÞ are discontinuous at n ¼ 0, the operation

above returns the average value on either side of the forcing

location.

In this case, and keeping in mind the discussion in

Sec. III C, one may define immittance relationships as in

Eq. (22), expressed in terms of Laplace-transformed quanti-

ties, and repeated here as

p̂DðsÞ ¼ 2Z0zvðsÞ�̂vðsÞ; v̂DðsÞ ¼ 2Y0ypðsÞ�̂pðsÞ: (34c)

A complete solution for the system in Eq. (34), in terms

of Laplace-transformed traveling waves âðx; sÞ and b̂ðx; sÞ
may be arrived at through direct calculation and is of the form

â ¼ e�sx=c

c

ðx

�1
esn=ca0dn

þ hþe�sx=c

c

 
T B � 1ð Þ

ð0

�1
esn=ca0dn

þRB

ð1
0

e�sn=cb0dn

!
; (35a)

b̂ ¼ esx=c

c

ð1
x

e�sn=cb0dn

þ h�esx=c

c

 
RB

ð0

�1
esn=ca0dn

þ T B � 1ð Þ
ð1

0

e�sn=cb0dn

!
: (35b)

Here, hþðxÞ and h�ðxÞ are step functions, defined as

h6ðxÞ ¼ 1

2
1 7 sgnðxÞð Þ; (36)

in terms of the signum function sgnðxÞ. The complete deri-

vation of the solution above is lengthy and omitted here for

the sake of brevity, but consists of the following steps. First,

the system in Eq. (34) is written in terms of traveling wave

components a(x, t) and b(x, t). Next, the system is Laplace

transformed, and also spatially Fourier transformed over

x 2 R. Terms in the doubly-transformed wave variables

may then be collected, and then the resulting expressions

inverse Fourier-transformed. The immittance relationships

in Eq. (34c) are then employed, yielding the solution above.

By confining attention to the domains x � 0 and x � 0

separately, it is easily verified that the solution in Eq. (35)
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for the system with an immersed boundary, as defined in

Eq. (34), is identical to the solutions in Eqs. (25) and (29)

for the system described in Sec. III C. The key point under-

lying the flexibility of the immersed boundary method is the

form from Eq. (34), where the boundary is modeled directly

in terms of driving terms applied locally, thus removing the

need for any subdivision of the domain itself into separate

regions. While in 1D, this is not a major concern, in the 3D

case, the problem of meshing of boundary surfaces or bar-

riers becomes severe and immersed boundary methods

become a means of sidestepping such difficulties.

F. Complete system

A more general form of Eq. (34) is

1

qc2
@tpþ @xvþ dð1Þðx� xBÞvD ¼ dð1Þðx� xsÞu;

q@tvþ @xpþ dð1Þðx� xBÞpD ¼ 0;

(37a)

with

�p ¼
ð1
�1

pðnÞdð1Þðn� xBÞdn; �v ¼
ð1
�1

vðnÞdð1Þðn� xBÞdn

(37b)

and

p̂DðsÞ ¼ 2Z0zvðsÞ�̂vðsÞ; v̂DðsÞ ¼ 2Y0ypðsÞ�̂pðsÞ: (37c)

Now, the barrier is positioned at x ¼ xB, shifting the locations

of the driving terms in Eq. (37a) and field interpolation points

in Eq. (37b). Also, an external forcing term, located at x ¼ xs,

with source strength u(t), in m � s�1 has been introduced,

allowing a closer representation of realistic virtual and room

acoustics applications—in what follows, initial conditions

will be set to zero. The system from Eq. (37) will be used as

the starting point for time domain simulation in Sec. IV.

G. Remarks

A major distinction of the system in Eq. (37) with

respect to the standard immersed boundary method, as

employed in other computational fluid dynamics applica-

tions is the use of a pair of driving functions; both are neces-

sary in order to model an impedance boundary condition in

virtual and room acoustics applications, as shown above. In

many instances, especially in the setting of incompressible

flow,3,4,24–26 but also in the present case of linearized com-

pressible flow in acoustics,27 it is only the driving term pD

that is employed. Another difference is the direct specifica-

tion of arbitrary (positive real) immittance conditions at the

immersed boundary. Normally, the immersed boundary

method is framed in a manner similar to a feedback control

system, with proportional/integral, and sometimes derivative

terms,3 but here, the frequency-domain behaviour of the

boundary is specified directly, allowing for a closer practical

and conceptual match with virtual acoustics applications.

IV. TIME DOMAIN SIMULATION IN 1D

It is useful to examine the basic system from Eq. (1)

without the immersed boundary present. Consider the simu-

lation of Eq. (1) over a regular interleaved grid of spacing X
m, and with time step T s. Let the grid function pn

l represent

an approximation to p(x, t), at t ¼ nT and x ¼ lX, for integer

n � 0 and l 2 Z. An interleaved grid function vnþ1=2

l�1=2
approx-

imates v(x, t) at t ¼ ðnþ 1=2ÞT and x ¼ ðl� 1=2ÞX, again

for integer l and n � 0. See Fig. 2.

Basic forward and backward difference operations D6
t

and D6
x may be defined, in terms of operation on a grid

function f n
l , as

D6
t f n

l ¼ 6 f n61
l � f n

l

� �
; D6

x f n
l ¼ 6 f n

l61 � f n
l

� �
: (38)

ð1=TÞD6
t and ð1=XÞD6

x are second-order accurate approxi-

mations to @t and @x, respectively. The definitions in Eq.

(38) apply equally in the case of an interleaved grid function

f
nþ1=2

l�1=2
.

An interleaved scheme approximating Eq. (1) follows,

in operator form, as

1

qc2T
Dþt pn

l þ
1

X
Dþx vnþ1=2

l�1=2
¼ 0; (39a)

q
T

D�t vnþ1=2

l�1=2
þ 1

X
D�x pn

l ¼ 0: (39b)

It can be seen to be explicit by writing in an update form,

pnþ1
l ¼ pn

l � Z0kDþx vnþ1=2

l�1=2
; (40a)

vnþ1=2

l�1=2
¼ vn�1=2

l�1=2
� Y0kD�x pn

l : (40b)

Here, Z0 and Y0, as defined in Eq. (4) appear, as well as the

Courant number k ¼ cT=X. For the explicit scheme in Eq.

(39), the Courant-Friedrichs-Lewy (CFL) condition,28

k � 1; (41)

must be satisfied for numerical stability.

FIG. 2. Grid functions p and v defined over an interleaved spatiotemporal

grid, with time step T and grid spacing X.
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A. Domain of finite spatial extent and vector-matrix
form

It is useful, in practice, to restrict the grid functions to be

finite in spatial extent, and consolidate the values of the func-

tions in vectors. Thus, for a domain D ¼ ½0; L�, for some length

L in m, one may define N ¼ L=X, and the column vectors pn

and vnþ1=2, of length Nþ 1 and N values, respectively,

pn ¼ pn
0;…; pn

N

� �>
; vnþ1=2 ¼ vnþ1=2

1=2
;…; vnþ1=2

N�1=2

h i>
: (42)

Here, > indicates the transposition operation. Under the

assumption of zero velocity vnþ1=2

�1=2
¼ 0 and vnþ1=2

Nþ1=2
¼ 0 at

the “ghost” grid locations l ¼ �1=2 and l ¼ N þ 1=2, the

operators Dþx and D�x can be represented as matrices Dþx and

D�x , of sizes ðN þ 1Þ � N and N � ðN þ 1Þ, respectively,

Dþx ¼

1

�1 1

. .
. . .

.

�1 1

�1

2
66666664

3
77777775

D�x ¼ �ðDþx Þ
>: (43)

A vector form of Eq. (40) follows as

pnþ1 ¼ pn � Z0kDþx vnþ1=2; (44a)

vnþ1=2 ¼ vn�1=2 � Y0kD�x pn: (44b)

Other boundary conditions could be introduced, altering the

forms of D6
x ; here, as the focus is on the behaviour of

immersed boundaries in the problem interior, such condi-

tions will be generally set to be of Neumann type.

B. Discrete approximations to the Dirac delta function

Referring to the system in Eq. (37), with pointwise driv-

ing at the location x ¼ xB in Eq. (37a) and field interpolation

in Eq. (37b), discrete representations of the Dirac delta func-

tion dð1Þðx� xBÞ are necessary. Notice that in this inter-

leaved setting, two distinct approximations are necessary

over alternating grids. Consider the case of the grid over

which pressure pn is defined, with grid locations x ¼ lh, for

integer l ¼ 0;…;N. In all cases, the approximation to the

Dirac is of the form of an ðN þ 1Þ � 1 vector,

jpðxBÞ ¼ jp;0ðxBÞ; …; jp;NðxBÞ
� �>

; (45)

so that

1

X
jpðxBÞu d1ðx� xBÞ with

XN

l¼0

jp;lðxBÞ ¼ 1: (46)

This is the first so-called moment condition,29 and corre-

sponds to the defining property of the Dirac delta function

that it integrates to unity.

Many designs are of the form30

jp;lðxBÞ ¼ /ðjlX � xBj=XÞ (47)

for functions /ðrÞ of a non-negative nondimensional argu-

ment r—note that the interpolation location xB is arbitrary,

and does not need to lie at a grid location. Most designs are

of small spatial extent, and are often continuous, but not

necessarily differentiable. Care must be taken to ensure that

such kernels are applied strictly over the problem interior,

and thus do not overlap with the boundary of the computa-

tional domain. A common choice in immersed boundary

applications is the four-point raised cosine distribution,31

/ðrÞ ¼
1

4
1þ cos ðpr=2Þð Þ; 0 � r � 2;

0 else:

8><
>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4-pt: raised cosine

(48)

See Fig. 3 at top left. Also useful is the family of piecewise

polynomial functions /ðrÞ corresponding to Lagrange inter-

polation to Kth order, for odd integer K,

/ðrÞ ¼

YKþ1
2

d¼�K�1
2

r þ d � q

d � q
;

q� 1 � r < q;

q ¼ 1;…;
K þ 1

2
;

0 r � ðK þ 1Þ=2:

8>>>><
>>>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kth-order Lagrange

(49)

See Fig. 3, second to fourth panels, illustrating linear, cubic,

and quintic interpolants. The linear interpolant, or hat func-

tion, for K¼ 1, is used in immersed boundary applications,

sometimes extended to a width of four points.3,4 Many other

designs are possible, including heavily-used piecewise non-

polynomial forms.2 See Refs. 29–31 for more on the general

construction of regularized approximations to the Dirac

delta function.

Suppose that interpolants jpðxBÞ and jvðxBÞ, as defined

in Eq. (45) have been designed separately over the pressure

grid and velocity grid, and are of sizes ðN þ 1Þ � 1 and

N � 1, respectively. The field interpolation operations from

FIG. 3. (Color online) Kernel functions /ðrÞ for various approximations to

the Dirac delta function, in terms of dimensionless coordinate r. Multiples

of the grid spacing X are indicated by blue points—note, however, that the

interpolant will in general be centered in between grid points.
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Eq. (37b) may be approximated immediately, using the vec-

tor grid functions pn and vnþ1=2, as defined in Eq. (42),

through

�pn ¼ jpðxBÞ>pn; �vnþ1=2 ¼ jvðxBÞ>vnþ1=2: (50)

An additional approximation to a Dirac delta function is

necessary in order to approximate the source term in Eq.

(37a), selecting the source location x ¼ xs, over the pressure

grid. An ðN þ 1Þ � 1 vector jsðxsÞ results. In what follows,

the location selected by the Dirac delta function is sup-

pressed, so, e.g., jp is employed instead of jpðxBÞ.

C. Approximation of immittances

Assume now that the two immittances zvðsÞ and ypðsÞ
defining the immersed boundary are rational and positive

real functions, of the form given in Eq. (13),

zv sð Þ ¼

XPv

�¼0

gv;�s
�

XQv

�¼0

fv;�s
�

; yp sð Þ ¼

XPp

�¼0

gp;�s
�

XQp

�¼0

fp;�s
�

: (51)

The immittances, in general distinct, are defined in terms of

parameters gv;� ; � ¼ 1;…; Pv; fv;� ; � ¼ 1;…;Qv; gp;�; �
¼ 1;…; Pp and fp;� ; � ¼ 1;…;Qp.

Approximations to auxiliary subsystems, such as

impedance boundary conditions in finite difference time

domain/finite volume time domain (FDTD/FVTD) meth-

ods,8,32 are conveniently obtained using trapezoidal integra-

tion. For immersed boundaries, the use of such an integrator

leads to a guarantee of numerical stability when coupled

with the full scheme, as shown in the Appendix. To this end,

define the two-point averaging operators M6
t , in terms of

their operation on a time series f n, by

M6
t f n ¼ 1

2
f n61 þ f n
� �

; (52)

and the trapezoidal difference operator D	t by

D	t ¼ ðMþt Þ
�1Dþt ¼ ðM�t Þ

�1D�t : (53)

Here, ðM6
t Þ
�1

are interpreted as operator inverses so,

for two time series fn, gn intended as approximations to

the continuous functions f(t) and g(t), the approximation

to the differential relationship g ¼ df=dt may be written

as

gn ¼ 1

T
D	t f n|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Operator Form

; gnþ1 þ gn ¼ 2

T
f nþ1 � f n
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Update Form

: (54)

Consider now the immittance relationships in Eq. (37c),

with immittances of rational form, as in Eq. (51), leading to

a time domain pair of ordinary differential equations,

XQv

�¼0

fv;�
d�

dt�
pD ¼ 2Z0

XPv

�¼0

gv;�
d�

dt�
�v; (55a)

XQp

�¼0

fp;�
d�

dt�
vD ¼ 2Y0

XPp

�¼0

gp;�

d�

dt�
�p: (55b)

Under trapezoidal numerical integration, through the substi-

tution d=dt! ð1=TÞD	t these ODEs become

XQv

�¼0

fv;�

T�
ðD	t Þ

�p
nþ1=2

D ¼ 2Z0

XPv

�¼0

gv;�

T�
ðD	t Þ

��vnþ1=2; (56a)

XQp

�¼0

fp;�

T�
ðD	t Þ

�vn
D ¼ 2Y0

XPp

�¼0

gp;�

T�
ðD	t Þ

��pn; (56b)

where here, p
nþ1=2

D and vn
D are discrete equivalents of the

pressure and velocity jumps across the barrier, and related to

the interpolated field quantities �vnþ1=2 and �pn obtained

through Eq. (50). Upon expansion of the operators D	t as in

Eq. (54) and rearrangement, the recursions in Eq. (56) may

be written as

p
nþ1=2

D ¼ Z0cv�v
nþ1=2 þ qn�1=2

v ; vn
D ¼ Y0cp�pn þ qn�1

p ; (57)

where cv and cp are constants derived from the coefficients

of zv and yp, and constrained, by positive realness of these

immittances, to be non-negative. The time series qn�1=2
v and

qn�1
p consist of linear combinations of previously computed

values of pD; �v and vD; �p, respectively.

D. Complete scheme

A complete scheme for the system in Eq. (37) now fol-

lows, as an extension of the scheme in Eq. (44) in vector

update form for the free field calculation. Equation (37a) is

approximated as

pnþ1 ¼ pn � Z0k Dþx vnþ1=2 þ jpMþt vn
D � jsM

þ
t un

	 

; (58a)

vnþ1=2 ¼ vn�1=2 � Y0k D�x pn þ jvM
�
t p

nþ1=2

D

	 

: (58b)

Combining Eq. (58) with the field interpolation operation in

Eq. (50) approximating Eq. (37b), and the update of Eq.

(57) approximating Eq. (37c) leads to the form

Appnþ1¼Bppn�Z0k Dþx vnþ1=2þjpMþt qn�1
p �jsM

þ
t un

	 

; (59a)

Avv
nþ1=2 ¼ Bvv

n�1=2 � Y0k D�x pn þ jvM
�
t qn�1=2

v

� �
: (59b)

Here, the ðN þ 1Þ � ðN þ 1Þ matrices Ap; Bp, and the N�N
matrices Av; Bv are of the form

Ap ¼ INþ1 þ
kcp

2
jpj>p ; Bp ¼ INþ1 �

kcp

2
jpj>p ; (60a)
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Av ¼ IN þ
kcv

2
jvj
>
v ; Bv ¼ IN �

kcv

2
jvj
>
v ; (60b)

where INþ1 and IN are the ðN þ 1Þ � ðN þ 1Þ and N�N
identity matrices, respectively.

E. Remarks

All of the matrices defined in Eq. (60) are of the form

of the identity plus a rank-1 perturbation. Multiplications by

Bp and Bv may thus be performed using O(N) operations,

and, more importantly, the linear systems involving Ap and

Av in Eq. (59) may be solved in O(N) operations using the

Sherman Morrison inversion theorem.33 So,

A�1
p ¼ INþ1 �

cpk
2

jpj>p

1þ cpk
2

j>p jp

; A�1
v ¼ IN �

cvk
2

jvj
>
v

1þ cvk
2

j>v jv
: (61)

Thus, the computational cost of the scheme in Eq. (59),

which is formally implicit due to the need for linear system

solutions, is only marginally larger than that of the explicit

scheme in Eq. (44) for the free space problem without a

barrier.

The scheme as a whole is numerically stable under the

CFL condition in Eq. (41), provided that the immittances zv

and yp are positive real, and approximated using the trape-

zoid rule, as described in Sec. IV C. Thus the immersed

boundary does not introduce any new stability concerns. A

full analysis is presented in the Appendix. Computational

cost and numerical stability are independent of the particular

choices of the interpolants jp and jv. It is, however, impor-

tant, that the same interpolants are used both in the field

interpolation in Eq. (50), and in the eventual driving of the

system in Eq. (58)—this property is necessary in order to

prove numerical stability, and as has been pointed out by

various authors.2,26

V. NUMERICAL EXAMPLES

As a basic example, consider scheme in Eq. (59), oper-

ating with an audio rate time step of T ¼ 2� 10�5 s, and

over a domain length L¼ 4. The barrier is assumed posi-

tioned in the domain center, at xB ¼ L=2 ¼ 2 m. Here,

q ¼ 1:2 kg � m�3 and c¼ 343.4 m � s�1, corresponding to an

ambient pressure of 101.325 kPa and temperature of 20 	C,

and zero humidity. The grid spacing X is chosen to satisfy

the CFL condition in Eq. (41) as close to equality as possi-

ble, subject to the constraint that L / h is an integer—in this

case, k ¼ 0:9993.

The input location is chosen as xs ¼ 1 m, to the left of

the barrier, and the input driving function un is of the form

of a shifted and scaled Gaussian,

un ¼ umaxe�ðnT�t0Þ2=2r2

: (62)

Here, umax > 0 is a maximal amplitude, in m � s�1, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ln ð10Þ

p
=pf60, for a frequency f60 in Hz, corre-

sponding to an effective Gaussian bandwidth at which spec-

tral amplitude drops to 10–6 of its maximal value. The shift

t0 can be chosen as t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln ð�=umaxÞ

p
r, for machine

epsilon �, so that in finite precision arithmetic, un effectively

begins at zero at time step n¼ 0. In double precision floating

point arithmetic, � ¼ 1:11� 10�16.

Several examples of the behaviour of the barrier are

shown in Figs. 4–6, corresponding to different choices of

the barrier immittances yp and zv under the special cases

described in Sec. III D. The time evolution of the pressure

field is illustrated for a wave impinging upon an immersed

boundary located at xB ¼ 0. A high bandwidth Gaussian

input signal, of the form of Eq. (62) is employed, with

f60 ¼ 12 kHz and umax ¼ 10�3. First is the case of a non-

porous barrier, where yp ¼ 0, and with zv ¼ wðsÞ, where

w(s) is of the form given in Eq. (15), as illustrated in Fig. 4.

Second is the case of an impedance boundary, with zero

FIG. 4. (Color online) Time evolution of the pressure field, at times as indicated for a wave incident on a non-porous barrier at xb ¼ 0, and simulated with

an immersed boundary. Here, yp ¼ 0 and zv ¼ wðsÞ, for w(s) of the form given in Eq. (15), and under different choices of the defining parameters a, b, and c.
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transmission for the model problem, where yp ¼ 1=wðsÞ and

zv ¼ wðsÞ, as illustrated in Fig. 5. Finally, in Fig. 6, the case

of pure transmission, with zero reflection for the model

problem is shown, where yp ¼ zv ¼ 1=wðsÞ. In all cases,

results are plotted for various choices of the parameters a, b,

and c that define w(s), as indicated.

Visible in Figs. 5 and 6 are effects of spurious transmis-

sion and reflection, respectively; in the case of the imped-

ance boundary condition in Fig. 5, this is a form of leakage

through an immersed boundary—a long-recognized

effect.4,26 In general, the effect is dependent on many fac-

tors. In the present case of an arbitrary frequency-dependent

barrier, this includes the particular forms of the barrier

impedances—notice, in Fig. 5, that the spurious leakage is

greater in the case of reactive conditions (second, third, and

fourth rows) than in the case of a purely resistive condition

(top row). It is also highly dependent on the particular

choice of approximation to the Dirac delta function. In all

cases, however, leakage disappears in the limit of low fre-

quencies or small time steps—the choice of a high-

bandwidth pulse in Figs. 5 and 6 was made in order to illus-

trate a worst-case scenario. A further consideration, in 3D,

is the density of driving terms relative to the grid spacing.34

In order to illustrate the effect of the choice of approxi-

mation to the Dirac delta function, consider the case of an

impedance boundary, with a wave impinging on the

immersed boundary from the left. The barrier admittance yp

is of the form of yp ¼ 1=wðsÞ, where w(s) is as defined in

Eq. (15), under resonant conditions with a ¼ 0, b ¼ 0:001,

and c ¼ 50000. The source is located 85.7 cm to the left of

FIG. 5. (Color online) Time evolution of the pressure field, at times as indicated for a wave incident on an impedance boundary at xb ¼ 0, and simulated

with an immersed boundary. Here, yp ¼ 1=wðsÞ and zv ¼ wðsÞ, for w(s) of the form given in Eq. (15), and under different choices of the defining parameters

a, b, and c.

FIG. 6. (Color online) Time evolution of the pressure field, at times as indicated for a wave incident on a non-reflective boundary at xb ¼ 0, and simulated with an

immersed boundary. Here, yp ¼ 1=wðsÞ and zv ¼ 1=wðsÞ, for w(s) of the form given in Eq. (15), and under different choices of the defining parameters a, b and c.
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the immersed boundary, and a high bandwidth Gaussian

input signal of the form of Eq. (62) is used, with f60 ¼ 15

kHz. See Fig. 7, illustrating output drawn from the acoustic

field due to reflection, 50 cm to the left of the immersed

boundary (at left), and due to spurious transmission, 50 cm

to the right of the immersed boundary (at right). Different

choices of Dirac delta function approximations are used,

including Lagrange interpolation and the cosine window

(see Sec. IV B). In the case of the reflected wave, an effec-

tively exact solution is also shown, computed using a direct

solution to the case of an impedance boundary condition

using the simple FDTD scheme in Eq. (39) terminated

directly on a grid point, and with a very small time step of

T ¼ 10�6 s. Leakage is reduced using Lagrange interpolants

as the order increases.

The other factor that influences leakage is the position-

ing of the immersed boundary relative to the underlying

grid. A particular case is shown in Fig. 7—that of an inter-

polation location xB directly between two grid points on the

pressure grid. Suppose now that xB ¼ ðlB þ aBÞX, where lB

is the grid index to the left of the immersed boundary

location, and 0 � aB < 1 represents the fractional distance

of the immersed boundary location between grid points. See

Fig. 8, showing spurious transmission, using a quintic

Lagrangian interpolant, and for different choices of aB.

Though, in 1D, the user has some control over the position-

ing of the immersed boundary relative to the grid, this

advantage disappears in the 3D case, where a bounding sur-

face is approximated by a number of driving functions cov-

ering the surface.

Regardless of the choice of interpolant, the leakage

does vanish in the limit of a small time step, as is to be

expected. See Fig. 9, illustrating the maximum absolute

value of the spurious leakage signal over time, under differ-

ence choices of time step, and for different choices of inter-

polant, for the example of Fig. 7. The leakage vanishes to

first order with the time step. It would be useful to under-

stand the nature of this order of convergence, and whether it

can be improved upon within the current framework.

VI. CONCLUDING REMARKS

The main contribution in this article is a unified numeri-

cal approach to both the modeling of boundaries and barriers

in the setting of virtual and room acoustics. It is framed in

terms of an extension of immersed boundary methods to

include a dual set of driving terms, both characterised inde-

pendently in terms of positive real immittances. Under the

appropriate choice of immittances, impermeable impedance

boundary conditions or barrier transmittances may be

modeled.

One key feature here is that, when transferred to the dis-

crete time setting of wave-based acoustic simulation, and

under the appropriate choice of time domain integration

method for the immittances, the additional cost of including an

immersed boundary is negligible in this case. This efficiency

advantage is available despite the formally implicit nature of

the update, and relies on the closed form solution (through

Sherman-Morrison inversion) of the linear system that arises. It

is shown (see the Appendix) that stability conditions for time-

domain schemes such as FDTD are unaffected by the inclusion

of the immersed boundary. The extension of this property to

more accurate schemes, beyond the basic FDTD method pre-

sented here remains an open problem.

FIG. 7. (Color online) Top: Reflected wave output from an impedance con-

dition of resonant type, using an immersed boundary, under different

choices of Dirac delta function approximation, as indicated, and an effec-

tively exact solution, computed using an FDTD method with a small time

step of T ¼ 10�6 s. Bottom: spurious transmission of energy through the

immersed boundary, under the same choices.

FIG. 8. (Color online) Variation of leakage with immersed boundary loca-

tion relative to the underlying grid. Interpolation is of quintic Lagrangian

type, and the problem specifics are otherwise the same as in the caption to

Fig. 7.

FIG. 9. (Color online) Maximum value of the leakage signal yn
spurious, as a

function of time step, and for different choices of interpolant as indicated.

The conditions are the same as in Fig. 7.
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The problem of leakage remains, and is an important

practical consideration. Worst-case results (high bandwidth

excitation) have been presented here, and it has been shown

that there is a large effect of the particular design of the

approximation to the Dirac delta function, as well as the

location of the immersed boundary relative to the underlying

grid. Other approaches to immersed boundary method

design can mitigate this effect—these include one-sided

approximations and “blocking” techniques,35,36 suitable for

impermeable boundaries, but it is less clear how to adapt

such methods to the case of an acoustic barrier allowing

transmission. It has been shown that such leakage effects do

disappear in the limit of small time steps, but only to first

order—it would be of great interest to determine conditions

for higher-order vanishing of leakage.

APPENDIX: NUMERICAL STABILITY

Consider the complete immersed boundary scheme

described in Sec. IV D. Numerical stability analysis is most

easily carried out in the frequency domain. First consider

general interleaved vector time series fn and gnþ1=2.

Suppose that these exhibit complex sinusoidal dependence,

at complex frequency sd ¼ rd þ ixd , so that

fn ¼ f̂esdnT ; gnþ1=2 ¼ ĝesdT=2esdnT ; (A1)

where f̂ and ĝ are constant complex amplitudes. This

assumption is equivalent to z-transform analysis techniques

used for finite difference methods (Strikwerda,37 page 41).

For sinusoidal signals, the difference and averaging opera-

tors defined in (38), (52) and (53) behave as constant

multipliers:

D6
t ! 2e6

sd T

2 sinh
sdT

2

� �
; (A2a)

M6
t ! e6

sd T

2 cosh
sdT

2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¢h

D	t ! 2 tanh
sdT

2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¢w

; (A2b)

where h and w have been defined above as a short-

hand—note also that, using this shorthand,

D6
t ! 2e6sdT=2hw.

In the frequency domain, the trapezoid rule corresponds

to a bilinear transformation, or the replacement s! wðsdÞ,
where wðsdÞ is as defined in Eq. (A2b). For any immittance

w(s), the positive realness property from Eq. (12) is inher-

ited by the discrete-time immittance under trapezoidal inte-

gration, now in terms of the discrete complex frequency

variable sd through wðsdÞ,

Re wðwÞð Þ � 0 when ReðsdÞ � 0; (A3a)

Im wðwÞð Þ ¼ 0 when ImðsdÞ ¼ 0: (A3b)

This property is well known, particularly in the context of

numerical simulation of electrical circuits.38

1. System matrix

Assuming that pn; vnþ1=2; p
nþ1=2

D ; vn
D, and un exhibit

complex sinusoidal dependence at complex frequency sd, as

in Eq. (A1), then Eq. (58) takes the form

2wY0p̂ þ k
h

Dþx v̂ þ kjpv̂D ¼ kjsû;

2wZ0v̂ þ
k
h

D�x p̂ þ kjvp̂D ¼ 0:
(A4a)

The interpolations in Eq. (50) hold instantaneously, and thus

may be framed in terms of amplitudes �̂p and �̂v as

�̂p ¼ j>p p̂; �̂v ¼ j>v v̂: (A4b)

Finally, the impedance of the relationships in Eq. (37c) may

be written, after application of the trapezoid rule, as

p̂D ¼ 2Z0zv�̂v ; v̂D ¼ 2Y0yp �̂p ; (A4c)

in terms of discrete-time immittances zvðwÞ and ypðwÞ. From

Eq. (A3), all such immittances are positive real with respect

to the discrete complex frequency variable sd.

The complete system in Eq. (A4) can be consolidated

as

H
p̂

v̂

� 
¼ kjsû

0

� 
; (A5)

where H ¼ H0 þHIB, with

H0 ¼
2wY0INþ1

k
h

Dþx

k
h

D�x 2wZ0IN

2
664

3
775;

HIB ¼
qpypq>p 0

0 qvzvq
>
v

" #
; (A6)

and with constant vectors qp and qv defined by

qp ¼
ffiffiffiffiffiffiffiffiffiffi
2Y0k

p
jp; qv ¼

ffiffiffiffiffiffiffiffiffiffi
2Z0k

p
jv: (A7)

The system matrix H thus separates into H0, characterising

the scheme in free space, with additional effects due to the

immersed boundary consolidated in HIB.

2. System poles and stability

The system poles, or natural frequencies, are deter-

mined by the frequencies sd ¼ �sd ¼ �rd þ i�xd at which

HðsdÞ drops rank, or when detðHð�sdÞÞ ¼ 0. Clearly, in order

to correspond to a stable numerical method, the system

poles must satisfy Reð�sdÞ � 0. It is demonstrated here that

system poles with Reð�sdÞ > 0 cannot occur. To this end,

assume that detðHð�sdÞÞ ¼ 0, for some �sd with Reð�sdÞ
¼ �rd > 0. Because Hð�sdÞ is rank deficient, this implies that

there are complex-valued column vectors f 2 C
Nþ1 and

g 2 C
N , not both zero, such that
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W¢ f
 g

� �

H
f

g

" #
¼ f
 g

� �

H0

f

g

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

W0

þ f
 g

� �

HIB

f

g

" #
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

WIB

¼0:

(A8)

Here, 
 indicates conjugate transposition. We now examine

the two terms W0 and WIB separately.

For W0, and assuming Dþx ¼ �ðD�x Þ
>

as in, e.g., Eq.

(43), one has

W0 ¼ 2�wðY0jfj2 þ Z0jgj2Þ þ
k
�h

f
Dþx gþ g
D�x f
� �

¼ 2�wðY0jfj2 þ Z0jgj2Þ þ
2ki
�h

Im g
D�x f
� �

; (A9)

where �w ¼ wð�sdÞ and �h ¼ hð�sdÞ. Furthermore,

ReðW0Þ ¼ 2Reð�wÞðY0jfj2 þ Z0jgj2Þ � 2kIm
1
�h

� �
Im g
D�x f
� �

:

(A10)

Now, note that, for �rd > 0, and using standard expressions for

hyperbolic trigonometric functions (Bronshtein,39 p. 700),

Reð�wÞ ¼ sinhð�rdT=2Þcoshð�rdT=2Þ
cos2 �xdT=2ð Þ þ sinh2 �rdT=2ð Þ

> 0; (A11a)

jImð1=�hÞj ¼ sinhð�rdT=2Þj sin ð�xdT=2Þj
cos2 �xdT=2ð Þ þ sinh2 �rdT=2ð Þ

¼ Reð�wÞ j sin ð�xdT=2Þj
coshð�rdT=2Þ � Reð�wÞ: (A11b)

This further implies that

ReðW0Þ � 2Reð�wÞ Y0jfj2 þ Z0jgj2 � kjIm g
D�x f
� �

j
	 


� 2Reð�wÞðY0jfj2 þ Z0jgj2 � kjg
D�x fjÞ: (A12)

However, for all j > 0, it is generally true that

jg
D�x fj � 1

2
jjgj2 þ 1

j
jD�x fj2

� �
� 1

2
jjgj2 þ e2ðD�x Þ

j
jfj2

� �
:

(A13)

The first inequality noted previously follows from the

Cauchy-Schwartz inequality and holds for any constant

j > 0. The second follows from the use of, eðD�x Þ the larg-

est singular value of the matrix D�x . Choosing j ¼ Z0eðD�x Þ
leads, finally, to

ReðW0Þ � 2Reð�wÞðY0jfj2 þ Z0jgj2Þ 1� keðD�x Þ
2

� �
; (A14)

and thus

ReðW0Þ > 0 when k < 2=eðD�x Þ: (A15)

Now turning to WIB in Eq. (A8), first define ~f ¼ q>p f

and ~g ¼ q>v g. Thus,

WIB ¼ ~f


yp

~f þ ~g
zv~g; (A16)

and through positive realness of the immittances yp and zv

for Reð�sdÞ > 0, it is true that

ReðWIBÞ ¼ ReðypÞj ~f j2 þ ReðzvÞj~gj2 � 0: (A17)

Furthermore, from Eqs. (A15) and (A17),

ReðWÞ > 0 when k < 2=eðD�x Þ: (A18)

Thus, when k < 2=eðD�x Þ, Eq. (A8) cannot hold, and

detðHðsdÞÞ cannot vanish for ReðsdÞ > 0. As a result, Eq.

(59) has no system poles exhibiting exponential growth.

For the scheme in Eq. (59), with operators D6
x defined

as in Eq. (43), eðD�x Þ ¼ 2, and bound Eq. (A18) reduces to

k < 1; (A19)

which is very nearly the CFL condition from Eq. (41) and

achieved using von Neumann analysis37 but with the case of

equality ruled out. Though not a practical concern, it is

unclear how to extend the analysis here to achieve equality.
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