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We report the development of a novel line-scanning microscope capable of acquiring high-speed TCSPC-based FLIM. The 
system consists of a laser-line focus, which is optically conjugated to a 1024 × 8 single photon avalanche diode (SPAD) 
based line-imaging CMOS, with 23.78 μm pixel pitch at 49.31% fill factor. Incorporation of on-chip histogramming on the 
line-sensor enables acquisition rates 33 times faster than our previously reported bespoke high speed FLIM platforms. 
We demonstrate the imaging capability of the high-speed FLIM platform in a number of biological applications. 

For fluorescence lifetime imaging microscopy (FLIM), time-
correlated single photon counting (TCSPC) is unparalleled in its 
measurement accuracy particularly for multi-exponential decays 
[1, 2]. Until recently, high speed FLIM could only be performed using 
modulated or time-gated image intensifier systems [3, 4] as TCSPC 
was fundamentally limited with respect to photon counting rate in 
implementations of laser scanning microscopy [1]. This has 
restricted its use in several time-critical applications including in-
vivo imaging, diagnostics, and histological screening. 

One of the main issues limiting single photon acquisition speeds 
in conventional TCSPC was the long period, known as electronic 
dead time, between which the system could measure consecutive 
photon measurements. This has restricted the maximum photon 
rate to no more than 5% or less than the repetition rate of the laser 
in order to avoid pulse pile up and distortion of the fluorescence 
lifetime readout [5, 6]. Recently the incorporation of improved time-
to-digital convertor (TDC) electronics has dramatically reduced the 
dead time between consecutive pulses and facilitated count rates up 
to 80 Mega-photon counts/s [7, 8]. New FLIM platforms have also 
been presented utilizing time-gated SPAD arrays for widefield 
imaging [9] and fast digitization approaches to perform direct pulse 
sampling [10, 11]. Whilst extremely fast, facilitating image frame 
rate acquisitions up to 1 kHz with spatial binning [12], the 
performance of these fast digitization systems is compromised by 
the relatively long system instrument response functions (IRFs) (>1 
ns), which makes it difficult to detect lower fluorescence lifetimes 
and reduces the temporal resolution of the measured fluorescence 
lifetime decays [13]. 

Recently we have shown multifocal fluorescence lifetime 
imaging microscopy (M-FLIM) for confocal and multiphoton 
applications utilizing TCSPC [14-16] which dramatically increases 
the acquisition rate of high-resolution fluorescence lifetime imaging 
by parallelizing excitation and detection. Parallelized detection with 
TCSPC was achieved using specialized 32 x 32 10-bit TDC array 
(∼55 ps) each with their own integrated low dark-count single-
photon avalanche diodes (SPAD). 

In this Letter, we report the development of a novel line-
scanning microscope capable of acquiring high-speed TCSPC-based 
fluorescence lifetime images. The system consists of a laser-line 
focus, which is optically conjugated to a 1024 × 8 SPAD based line 
imaging CMOS, with 23.78 μm pixel pitch and 49.31% fill factor [17]. 
Utilising a cylindrical lens to generate a laterally stretched Gaussian 
intensity distribution beam and incorporation of a single 
galvanometer scanner with relay optics, we have been able to 
simplify the optical footprint of the system. The incorporation of on-
chip histogramming directly on the CMOS line-sensor electronics 
enables acquisition rates 33 times faster [15] than our previously 
reported bespoke high speed FLIM platforms. 

To evaluate the performance and high-speed capabilities of the 
FLIM system we demonstrate its use in imaging several biologically 
relevant samples. Whilst this CMOS line-sensor has previously been 
incorporated into a point scanning confocal setup [18], this is the 
first time that it has been used in a line-scanning FLIM. 
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Fig. 1. Showing the line sensor block diagram, individual pixel architecture 
and alignment and line sensor device dimensions. 

A simplified diagram of the linear device [17, 19] architecture is 
shown in Fig 1. The sensor measuring 12.628 mm × 1.990 mm is 
fabricated by a 130 nm CMOS technology process. The device is 
composed of two individual sets of 1024 × 8 SPAD detectors, 
optimized to blue (450nm – 550nm) and red (600nm – 900nm) 
spectral regions respectively. Full characterization of this chip set 
and comparison with other existing technologies has already been 
presented elsewhere [17, 19]. For this paper only the blue sensitive 
SPAD arrays are used, which have an average IRF of 162 ps, median 
dark count rate (DCR) of 400 Hz and photo detection probability 
(PDP) of 40% @ 480 nm [17]. The SPAD array is split into 512 
individual ‘pixels’, where each pixel is composed of 2 × 8 SPAD sub-
arrays, all of which can be independently addressed and activated 
to provide customized structured detection. Each individual pixel 
has its own dedicated 16-bit TDC and can be operated in either 
conventional TCSPC mode or in on-chip histogramming mode, 
whereby individual photon arrival times for each pixel can be 
passed into and stored in their respective bin block. These 
histograms are then read off the chip after an externally triggered 
event. In histogramming mode, the bin width can be configured 
from 51.2 ps to 6.55 ns  providing a window range from 1.64 ns to 
209.92 ns [17]. The linear array sensor and PCB interfaces with the 
computer via an FPGA circuit board (Opal Kelly, XEM6310). 

The line-scanning optical layout is shown in Fig. 2. The system 
has been built around a Nikon Eclipse Ti inverted microscope for 
stability and ease of sample mounting. Laser light from a 
Ti:Sapphire laser system (Coherent, Chameleon Ultra II) is 
frequency-doubled using LBO non-linear crystal to generate 490 
nm output  and then expanded with lenses L1 and L2 onto a 
cylindrical lens CL (Thorlabs, LJ1567L2, f = 100 mm) to generate the 
line beam. This is then imaged through a dichroic filter (Semrock, 
FF509-Di01) onto a single-axis scanning mirror (Thorlabs, 
GVS011/M). The line beam is then directed through a scan lens SL 
(Thorlabs, AC254-100-A-ML, f=100 mm) and tube lens (f = 200 
mm) onto the back pupil of a x40 0.75 N.A. air objective lens OL 
(Nikon Instruments Ltd.). The horizontal line beam at the 
horizontally scanning mirror is conjugate to the back pupil of the 
objective to facilitate a sweeping line-scan directly on the sample 
plane. Fluorescence is collected by the same objective lens, relayed, 
de-scanned and then reprojected onto the blue sensitive portion of 
linear array sensor with the dichroic and lens L3 (Thorlabs AC254-
200-A-ML, f = 200 mm). The beamlet magnification is chosen to 

align the fluorescence line image at the correct orientation with 
respect to the detector array and utilizes the full 512 pixels of the 
detector array. 

Fig. 2. Simplified view of the confocal line-scanning FLIM system, outlining 
the optical set up and computer control. 

To acquire an image, signals are generated from a high-speed 
data acquisition device (National Instruments, Ni-DAQ, USB-6363) 
to synchronize the scanning galvanometer position with the data 
acquisition from the linear sensor. For each scanning step (driven 
using a ramping voltage applied to the galvanometer), the linear 
sensor array acquires photon arrival times to generate a 32-bin 
histogram for each pixel. At the end of the exposure cycle, 512 
histograms are sent to the computer via a USB3.0 bus. The line 
sweeps across the sample and the light collected is reconstructed 
into a 512 x 512 x 32 data set. All aspects of the microscope system 
are controlled using custom-developed software written in 
LabVIEW. The system can be operated to perform an acquisition at 
a single plane or at multiple depths to generate a 3-dimensional 
image. 

To illustrate and evaluate the capabilities of the imaging 
platform to obtain FLIM datasets, images of Convallaria Majalis (Lily 
of the valley) were acquired (Fig. 3). Datasets were acquired at 490 
nm excitation in 500 ms and fluorescence lifetimes for each pixel 
determined from their corresponding transient decays. The typical 
beam input power ~1-2 mW has been applied at the cylindrical lens 
to generate the laser line focus. For the data presented here lifetimes 
were calculated using a differential centre-of-mass method 
(CMMdiff) [16] for real-time readout. As the histogram data has 
been generated and saved, lifetime calculations could also be 
performed offline using Levenberg–Marquardt fitting to provide 
more accurate determination. As each pixel on the sensor has its 
own TDC, limitations in the fabrication process gives rise to distinct 
characteristics, resulting in a variability in the start point for each 
histogram. In order to compensate for this, precise positioning of 
the start point for each TDC was determined using the CMM from 
IRF measurements and then offsets applied off-chip to correct the 
lifetime readouts.



Fig. 3. Convallaria Majalis dataset acquired in 500 ms. Intensity, lifetime and 
intensity weighted lifetime composite images are presented. Image size 512 
(135 µm) × 512 (135 µm). A histogram of the lifetime distribution and raw 
transient decays of individual example pixels are also presented. 

As mentioned previously, the line detector array [19, 20] has 
been shown to have a variable temporal window which can be 
adjusted by the user. For this set-up the temporal window was 
adjusted to 13.11 ns, with a temporal bin size of 409.6 ps, to closely 
match the pulsed laser modulation of 80 MHz. To demonstrate the 
capability of the system to provide intensity and FLIM images of 
high dynamic range at high-speed, we imaged mouse pulmonary 
tissue sample stained with hematoxylin and eosin (H&E) provided 
by Calamat Ltd. In Fig. 4 datasets were taken of two example regions 
of the sample and the intensity and lifetime histograms presented. 
For a 512 × 512 image this translates as many 1000s of 
photons/pixel/s (as shown in the intensity histograms), negating 
the need to perform spatial pixel-binning to provide accurate 
lifetime determinations. 

The incorporation of a motorized stage (Ti-S-ER) on the Nikon 
Ti microscope enables positional control of the sample and 
facilitates the high-speed acquisition of tiled mosaic FLIM images. 
Due to the high-speed imaging capability of the system, these 
macroscale datasets can be acquired in the order of seconds, whilst 
still providing FLIM information and diffraction limited resolution. 
In Fig. 5 examples of this mosaic functionality are shown. To 
generate a 2 mm × 2 mm mosaic in 49 seconds, 14 × 14 (196) 
images were acquired at acquisition times of 250 ms. The Mouse 

Lung H&E macro image was acquired in 12.5 seconds and 
composed of 7 × 7 individual images. 

Fig. 4. Single intensity and lifetime composite images of mouse pulmonary 
sample stained with H& E. Image size 512 (135 µm) x 512 (135 µm). Total 
image acquisition time = 500 ms. Intensity and lifetime histograms of each 
dataset are also displayed. 

1 x 1 mm H&E stained 
mouse lungAcquired in 12 seconds



Fig. 5. Macroscale FLIM composite images of A Convallaria Majalis (7168 × 
7168 pixels) acquired in 49 seconds and B Mouse Lung H&E sample (3584 
× 3584 pixels) acquired in 12.5 seconds. Zoomed regions of single image tiles 
(512 × 512) are also included. 

In summary, we have developed a high-speed line scanning 
FLIM microscope for biological imaging applications. We have 
demonstrated that line generation and laser-line scanning in 
conjunction with on-chip histogramming on a linear SPAD array 
sensor is practical, fast and offers novel advantages for fluorescence 
lifetime imaging. We have presented the system operating at 
acquisition speeds up to 4 frames/s, acquiring many thousands of 
photons per second per pixel without the need to perform pixel 
binning. Whilst the maximum photon counting rates of this device 
has been quoted previously as 16.5 GHz [17], this is only  achievable 
in strong light conditions where the sample imaged is 
homogeneous in intensity. In most cases we would expect the 
sample imaged to be highly heterogeneous in nature and this 
maximum count rate would not be achieved. Each of the 512 pixels 
on the line sensor is capable of simultaneously acquiring a 
maximum of 32.23 Mega-photon counts/s, facilitating high speed 
parallelized image acquisition. 

For samples with low levels of fluorescence, the mass-
parallelization of both fluorescent excitation and detection provides 
a great advantage over single beam scanning FLIM technologies, 
where the high laser power excitation required at short pixel dwell 
times for high-speed FLIM acquisition will undoubtedly perturb or 
damage the sample. For the images presented here the system was 
operating much less than 1% of the total laser output power. This 
provides us with the dynamic range required to acquire datasets for 
photon starved samples and applications. In future, with further 
improvements to control software and FPGA firmware should 
enable acquisition speeds up to 30 frames/s.  
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