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Abstract Word limit: 150 246 
Microglial research has advanced considerably in recent decades yet has been constrained 247 
by a rolling series of dichotomies such as “resting versus activated” and “M1 versus M2”. This 248 
dualistic classification of good or bad microglia is inconsistent with the wide repertoire of 249 
microglial states and functions in development, plasticity, aging and diseases that were 250 
elucidated in recent years. New designations continuously arising in an attempt to describe 251 
the different microglial states, notably defined using transcriptomics and proteomics, may 252 
easily lead to a misleading, although unintentional, coupling of categories and functions. To 253 
address these issues, we assembled a group of multidisciplinary experts to discuss our current 254 
understanding of microglial states as a dynamic concept and the importance of addressing 255 
microglial function. Here, we provide a conceptual framework and recommendations on the 256 
use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the 257 
foundations for a future white paper.  258 
 259 
Abbreviations 260 
AD – Alzheimer’s disease 261 
ARM – activated response microglia 262 
ATM – axon tract-associated microglia 263 
BAM – border-associated macrophage 264 
BBB – Blood-brain barrier 265 
CAM – CNS-associated macrophages 266 
CNS – central nervous system 267 
CSF – cerebrospinal fluid 268 
CSF1R – colony stimulating factor 1 receptor  269 
DAM – disease-associated microglia 270 
HAM – human AD microglia 271 
iPSC – induced pluripotent stem cells 272 
IRM – interferon-responsive microglia  273 
ISF – interstitial fluid 274 
LDAM – lipid-droplet-accumulating microglia in aging mice and humans 275 
MGnD – microglial neurodegenerative phenotype 276 
MIMS – microglia inflamed in multiple sclerosis 277 
MS – multiple sclerosis 278 
PAM – proliferative-region-associated microglia 279 
ROS – reactive oxygen species 280 
scRNASeq – single-cell RNA sequencing 281 
WAM – white matter-associated microglia  282 
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Names, names, names 283 
 284 

"If the names are unknown knowledge of the things also perishes."1 285 
(Carolus Linnaeus)  286 

 287 
And yet, we humans instinctively tend to name things and use that name to define their 288 
properties. Biologists are no exception: from the time of 18th century father of taxonomy 289 
Carolus Linnaeus, the main purpose of biology has been categorizing the natural world as a 290 
way of understanding it. Naming species and grouping them together into taxa served to define 291 
evolutionary relationships; even today taxonomy and phylogeny are closely interrelated. But 292 
we must never forget that nomenclatures and categories are artificial constructs and biology 293 
is seldom black and white, but rather an extended continuum of greys. While giving names is 294 
natural and useful, we need to be aware that categorization constrains our thinking by forcing 295 
us to fit our observations into established classes. As sociologists say, “categorization spawns 296 
expectations”2. This semantic issue has already been acknowledged by immunologists 297 
because, in fact, the given names have connotations that often imply a specific function3. In 298 
this paper, we extend similar initiatives on macrophages4, dendritic cells3, interneurons5, and 299 
astrocytes6 to discuss the widespread problems associated with categorization of microglia 300 
using outdated terms such as “resting versus activated” (Box 1) or “M1 versus M2” (Box 2). 301 
 302 
Dichotomic, rigid categories convey a dualistic idea of good versus bad microglia and may 303 
actually impede scientific advancement. Widely used terms, such as “neuroinflammation” as 304 
a synonym of microglial reactivity (Box 3) and naming a panoply of presumed microglial 305 
populations and assumed functions arising from single-cell transcriptomics, are misleading 306 
and increasingly problematic, especially to those entering the field of glial biology and 307 
neuroimmunology. This nomenclature does not address the important question: what are the 308 
specific functions of microglia in the contexts of development, health, aging, and disease? It 309 
is now clear that microglia exist in diverse, dynamic, and multi-dimensional states depending 310 
on the context including local environment (Figure 1). We define dimensions as the key 311 
variables driving the phenotypic transformations of microglia. These variables are molecularly 312 
distinct signaling pathways regulated at multiple levels (e.g., transcriptional, epigenetic, 313 
translational, metabolic) that each give rise to distinct microglial functions or properties. In this 314 
manner, categorizing microglia based on a historical, one-dimensional nomenclature in the 315 
absence of functional data will constrain and stifle future progress and innovation. 316 
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  317 

Figure 1. Microglial nomenclatures, past and future. Microglia have been traditionally 318 
framed into dichotomic categories but our current integration of epigenetic, transcriptomic, 319 
metabolomic and proteomic data favors a multidimensional integration of coexisting states. 320 
 321 
To examine and address these issues, we assembled a team of international experts who 322 
have made major contributions to microglia research, inclusive of various groups, and 323 
balancing gender, geographical distribution, and seniority. Authors from the fields of 324 
neuroscience, neurobiology, immunology, neuroimmunology, oncology, and neuropathology, 325 
both from academia and industry, discussed their perspectives on the current and future 326 
challenges in defining microglial states and nomenclature. A questionnaire (Supplementary 327 
Data) was created to collect all the authors’ opinions on several nomenclature issues and the 328 
importance of directly addressing microglial function. The responses to the questionnaire, an 329 
online meeting held in June 2021 and an open session held at the EMBO meeting Microglia 330 
2021 were used as a backbone to develop this paper. 331 
 332 
Herein, we summarize our current knowledge about the identity of microglia and discuss best 333 
practices for how to define and study microglial state dynamics. We then outline “classical” 334 
microglial nomenclatures, highlighting some of the key discoveries that led to the above 335 
classifications and their limitations. We intentionally focus on citing studies related to the 336 
nomenclature, rather than providing a comprehensive review of the history of microglial 337 
research, as it has been done elsewhere7,8. We discuss the overall limitations and conclude 338 
with recommendations for the proper usage of microglial nomenclature as research evolves, 339 
provide a conceptual framework for discussing microglia, and offer perspectives on the future 340 
questions, gaps in knowledge, and challenges to tackle as a field.  341 
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Microglial identity: what we mean about when we talk about microglia 342 
The origin and identity of microglia was for many years a matter of debate. In the dim and 343 
distant past, Ramón y Cajal´s disciple, Pío del Río-Hortega suggested that these cells were 344 
of mesodermal origin9. However, over time, an ectodermal origin was also proposed10, 345 
sparking controversy until the 1980s. The mesodermal origin took solid hold later with the 346 
advance of technical approaches revealing more similarities than differences with the 347 
functions and features of macrophages. In 1999, microglia were reported to appear in the 348 
brain rudiment as early as embryonic day E8 in mice, and proposed to originate from yolk sac 349 
progenitors11. The recent combination of fate mapping studies and transplantation approaches 350 
this debate, revealing key aspects of microglial identity and plasticity. In mice, unlike other 351 
model organisms such as zebrafish12,13, microglia are now considered to originate from a pool 352 
of macrophages produced during primitive hematopoiesis in the yolk sac, which start invading 353 
the neuroepithelium at E8.514-17. In humans, microglial precursors invade the brain primordium 354 
around 4.5 to 5.5 gestational weeks18. 355 
 356 
One key signaling pathway critical for microglial development and maintenance is the CSF1R 357 
(colony stimulating factor receptor). Ligands of CSF1R that sustain this pathway include two 358 
cytokines with different origins and primary sequences, but similar tridimensional structures 359 
and binding to CSF1R: IL-34 and CSF119. IL34 is produced by neurons, while CSF1 is 360 
secreted primarily by oligodendrocytes and astrocytes. Accordingly, the two ligands have 361 
distinct and non-overlapping functions in the establishment and maintenance of microglia 362 
within the grey and white matter20. Microglia have the capacity for self-renewal in certain 363 
contexts, allowing them to repopulate the central nervous system (CNS) within one week of 364 
depletion, even when more than 99% of microglia are ablated with CSF1R antagonists21,22 or 365 
diphtheria toxin22. This process, termed “microglial repopulation” or “microglial self-renewal”23-366 
25 is different from “microglia replacement” which, in contrast, occurs when endogenous 367 
microglia are replaced by exogenous cells that can include bone marrow-derived myeloid 368 
cells26-29, peripheral blood cells28,30, stem cell- or iPSC-derived peripheral blood cells31, across 369 
various experimental or pathological conditions31-33.  370 
 371 
Our current definition is that mammalian microglia are yolk sac-derived, long-lived cells within 372 
the CNS parenchyma that persist into adulthood, and self-renew without any contribution from 373 
bone marrow-derived cells at steady-state.  374 
 375 
The identification of microglia is currently based on the expression of specific genes highly 376 
enriched in microglia, which represent their transcriptional identity and are commonly 377 
employed as “microglial markers” (Table 1. Microglial markers). However, the expression of 378 
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each marker alone is not sufficient to define microglial identity, as levels of expression may 379 
change depending on microglial adaptation to local signals. The present consensus is that 380 
mammalian microglia can be identified by the expression of transcription factors like Pu.116, 381 
cytoplasmic markers such as ionized calcium-binding adapter molecule 1 (IBA1), and surface 382 
markers including the purinergic receptor P2YR12, transmembrane protein 119 (TMEM119), 383 
and CSF1R34. Based on these markers, genetic tools (such as Cx3cr1CreERT2, P2ry12CreERT2, 384 
Tmem119CreERT2 and HexbCreERT2 mouse lines) are available that allow for more specific 385 
manipulation or visualization of microglia, although they could also target other populations, 386 
including border-associated macrophages (BAMs), also named CNS-associated 387 
macrophages (CAMs) and other glial cells35-40. Most recently, a new binary transgenic model 388 
relying on co-expression of Sall1 and Cx3cr1 has been introduced that specifically targets 389 
microglia in a non-inducible way41.  390 
 391 
Nonetheless, many of these markers are downregulated in pathological states, and can be 392 
expressed by other brain macrophage populations such as BAMs residing in the perivascular 393 
space and leptomeninges42,43, which also derive from the yolk sac44. In addition, caution must 394 
be exercised, because many classical microglial markers can also be expressed by cells 395 
originating from monocytes or iPSCs, and therefore their presence does not imply bona fide 396 
microglia. These cells should be more accurately described as monocyte-derived microglia-397 
like or iPSC-derived microglia-like cells (iMGL cells). 398 
 399 
As resident macrophages of the brain parenchyma, microglia participate in many critical CNS 400 
functions ranging from glio-, vasculo- and neurogenesis to synaptic and myelination, through 401 
their process motility, release of soluble factors, and capacity for phagocytosis (Figure 2). 402 
These functions have been revealed using several constitutive and inducible knock-out 403 
models for microglial-specific genes45 and by microglial-depletion paradigms in animal 404 
models46, particularly rodents and zebrafish.  405 
 406 
The key role of microglia in maintaining CNS health is also supported by the severe phenotype 407 
displayed by patients lacking microglia due to loss-of-function CSFR1 mutations. 408 
Heterozygous mutations, particularly in the kinase domain of CSF1R are associated with 409 
ALSP (adult-onset leukoencephalopathy with axonal spheroids and pigmented glia, 410 
OMIM:221820) characterized by reduced microglial numbers and white matter atrophy that 411 
result in progressive cognitive and motor impairment, dementia, and early death47. 412 
Additionally, bi-allelic mutations are reported to cause complete absence of microglia with 413 
developmental brain malformation, hydrocephalus, bony lesions, and early death48,49. This 414 
phenotype, however, seems in apparent contradiction with the reported absence of gross 415 
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neurological abnormalities at birth observed in mice with genomic deletion of FIRE, an intra-416 
intronic super enhancer in the Csfr1gene enhancer region, whose brains lack microglia50, 417 
though more nuanced analyses are needed. Nonetheless, FIRE mice have premature lethality 418 
and increased amyloid pathology as early as 5 months of age51. The source of discrepancy 419 
between the developmental impact of CSFR1 mutations in humans and mice is not yet fully 420 
understood. One possibility is that microglial developmental functions are partly redundant, 421 
modified by other environmental factors, or compensated in their absence by other cell types, 422 
such as astrocytes52. It will be important to determine how microglia communicate with other 423 
glial cells and immune cell populations to support CNS maturation and function in the future. 424 
 425 

Figure 2. Microglial core properties and functions: Phagocytosis, surveillance and 426 
capacity for releasing soluble factors (inner circle) are core properties through which microglia 427 
contribute to key biological functions (outer circle). Created with BioRender.com.  428 
 429 
(Re)Defining microglial states: DAMs, HAMs, WAMs, and more 430 
Core markers of cellular identity are useful to identify microglia, but are not necessarily 431 
informative about the functional “state” of microglia, which depends on the context (i.e., the 432 
physiological conditions in which microglia are found at any given CNS region and time). 433 
Microglia have a complex “sensome”53, a series of surface receptors that allow them to detect 434 
changes in their environment. Microglial states are thus dynamic, and the outcome of the cell´s 435 
epigenome, transcriptome, proteome, and metabolome yields discrete morphological, 436 
ultrastructural and/or functional outputs (Figure 3). Microglia are anything but static, as they 437 
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are exceptionally responsive to alterations in their local environment. In the mature healthy 438 
CNS, the distribution of microglia is largely uniform and generally regular with little overlap 439 
between adjacent territories54. The cell bodies are largely sessile, but their processes are 440 
constantly moving and scanning the brain parenchyma55,56. Microglial functions adapt to their 441 
location and reciprocal interactions with nearby cells and structures. Their morphology, 442 
ultrastructure and molecular profile are similarly dynamic and plastic, resulting in many 443 
different cell states. As Conrad H. Waddington, founding father of systems biology, eloquently 444 
described: “Cells are residents of a vast ‘landscape’ of possible states, over which they travel 445 
during development and in disease”.57 446 

 447 
Figure 3. Microglial identity and states. The identity of microglia, compared to other CNS-448 
associated macrophages in the perivascular space, choroid plexus and leptomeninges, is 449 
established early on from yolk sac-derived progenitors. Once they colonize the brain 450 
parenchyma and differentiate, they can adopt multiple states depending on the particular 451 
spatio-temporal context, as shown in more detail in Figure 5. Created with BioRender.com.  452 
 453 
Single-cell technologies, multi-omics and integrative analyses of gene and protein expression 454 
have helped to not only locate cells on this landscape, but also provide new insight into the 455 
molecular mechanisms that shape the landscape and regulate specific cell states in a given 456 
context (e.g., development, adult, disease or injury model, etc.). Many diverse and context-457 
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dependent microglial states have been observed across species and models. Some examples 458 
of these states are the DAM (disease-associated microglia), originally associated with 459 
Alzheimer´s disease (AD) pathology models 58; MGnD (microglial neurodegenerative 460 
phenotype) documented across several disease models59; ARM (activated response 461 
microglia) and IRM (interferon-responsive microglia) in an AD pathology mouse model60; HAM 462 
(human AD microglia)61; MIMS (microglia inflamed in multiple sclerosis (MS))62; and LDAM 463 
(lipid-droplet-accumulating microglia in aging mice and humans)63, brain tumors (glioma-464 
associated microglia, GAM)64, amyotrophic lateral sclerosis (ALS)-associated signature65 and 465 
Parkinson’s disease (PD)-microglial signature66. In the developing and aging brain the WAM 466 
(white matter-associated microglia)67; ATM (axon tract-associated microglia)68, and PAM 467 
(proliferative-region-associated microglia, related to phagocytosis of developing 468 
oligodendrocytes)69, may share some features with the core DAM signature. In the developing 469 
human CNS, microglia also express some of the DAM/MGnD/ARM-like profiles70.  470 
 471 
While gene expression signatures indicate biological pathways, the functional implications of 472 
these states and relationship to one another remain unclear. In fact, the ever-growing list of 473 
branding clusters in single-cell RNA sequencing (scRNASeq) experiments and use of 474 
acronyms is not consistent across research groups and could hinder future advance of the 475 
field without validation and functional experiments to understand their meaning. Moreover, 476 
transcriptomic signatures depend on tissue dissection and gating strategies that can lead to 477 
isolation artifacts71-74, which, when layered with the technical limitations of single-cell 478 
sequencing, can make it difficult to assign state identity across different studies. Another 479 
source of complexity comes from evident interspecies differences75-77, which can further 480 
hamper comparisons. Advances in computational tools and approaches, which enable the 481 
alignment and integration of single-cell datasets, can help solve some of these issues, 482 
providing a powerful way to determine microglial state similarities across contexts78,79. 483 
 484 
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Figure 4. Microglial transcriptomic signatures. Recent scRNA-Seq studies have identified 485 
many microglial transcriptional signatures including but not limited to PAM and ATM in 486 
development; DAM, MgnD, ARM, MIMS in disease models of AD, MS, ALS and PD; and 487 
WAM, LDAM, HAM in aging, both in mice and human. The key upregulated (red) and 488 
downregulated (blue) genes in each signature are indicated. Created with BioRender.com. 489 
 490 
A practical limitation of solely defining functional states by their transcriptional signature is that 491 
mRNA expression may not directly predict protein levels80. Protein expression signatures 492 
obtained by methods, such as single-cell mass cytometry, have their own technical 493 
limitations81 but may better represent true cell states82,83. Importantly, mRNA or protein 494 
expression alone do not necessarily predict microglial function, although they can be used to 495 
generate functional hypotheses that need to be experimentally tested. There are many 496 
methods that allow for the classification of microglia based on their constituent states, 497 
including gene expression, protein expression, post-translational modifications, mRNA 498 
profiling, morphology and ultrastructure. All these approaches can vary in coverage (e.g., 499 
expression of a single cell versus whole-transcriptome profiling), which has created overall 500 
confusion and mislabeling in the field. Presumably, each microglial state is associated with 501 
unique or specialized functions, although the unique roles of any observed state have so far 502 
remained elusive. Thus, it is critical that we begin to define microglial states taking into account 503 
their specific context within and between species, across sex, space and time (e.g., CNS 504 
region and biological age) as well as layers of complexity (e.g., epigenetic, transcriptional, 505 
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translational, metabolic signatures), which ultimately determine together the cell’s phenome 506 
(i.e., motility, morphology, ultrastructure) and function (Figure 5). 507 
  508 

  509 
Figure 5. Microglial states defined by their intrinsic and extrinsic determinants, 510 
spatiotemporal context, and layers of complexity. Microglial states depend on intrinsic 511 
determinants (such as species, ontogeny, sex, or genetic background) as well as the specific 512 
context they inhabit, including age, spatial location, and environmental factors (such as 513 
nutrition, microbiota, pathogens, drugs, etc.). All together, these factors impinge on microglia 514 
at multiple levels (i.e., epigenomic, transcriptomic, proteomic, metabolomics, ultrastructural 515 
and phenomic), which ultimately determine microglial functions. Created with BioRender.com 516 
 517 
One major conceptual limitation of the various ‘one-off’ microglial acronyms (e.g., DAM, 518 
MGnD, etc.) is that they suggest stable states or phenotypes of microglia associated with a 519 
disease context, such as neurodegeneration. Intuitively, this classification system is similar to 520 
the concept of neuronal cell types, where neurons cluster into distinct subtypes based on their 521 
gene expression or neuroanatomy. However, contrary to microglia, neuronal groupings are 522 
considered fixed and terminally differentiated5. We do not know how temporally or spatially 523 
dynamic microglial states may be, as microglia are remarkably heterogeneous and plastic. 524 
Therefore, these cells are probably not permanently ‘locked’ into any single functional state. 525 
From the evidence available so far, microglial states appear dynamic and plastic, possibly 526 
transitory, and strongly dependent on the context84. New tools including imaging reporters for 527 
microglial states are needed to track transitions within individual cells over time and across 528 
the lifespan, following different challenges and perturbations, as well as in response to 529 
treatment. 530 
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Microglial heterogeneity in the healthy brain: it all depends on the context 531 
The term “homeostatic” is used to refer to microglia in physiological conditions but there are 532 
different interpretations of this nomenclature when describing microglia in health and disease. 533 
While homeostatic relates to the ‘physiological’ context assessed in space and time, it does 534 
not necessarily correspond to a unique molecular profile because, even without any 535 
perturbation, microglia display diverse morphological and functional states, depending on the 536 
signals from the CNS microenvironment. This continuous microglial sensing results in multiple 537 
transcriptional signatures from development to aging, depending on the specific local signals 538 
or challenges to the brain at each developmental stage53. A less responsive microglial state, 539 
which in other contexts would be considered more “homeostatic”, might be less effective at 540 
responding to damage or pathological cues in aging and disease contexts. For example, in 541 
aging and neurodegenerative disease, microglia may have reduced ability to rapidly respond 542 
to brain challenges (i.e., removing toxic amyloid, infected, damaged or degenerating neurons), 543 
leading to CNS dysfunction and disease progression. Microglia from adult TREM2 knockout 544 
mice have been described as ‘locked in a homeostatic state’ as they are less responsive to 545 
challenges (such as amyloid) and do not adopt a transcriptional DAM signature in disease 546 
contexts85,86. From this example, the term “homeostatic” is not informative if not well-defined 547 
and placed in the context of function. 548 
 549 
Key modifying factors that lead to microglial heterogeneous states include age, sex, circadian 550 
time, local CNS signals and peripheral cues, such as the changes in the microbiota87,88, or 551 
other systemic diseases (e.g., asthma)89, in addition to the pathophysiological state of the CNS 552 
and overall organism (discussed in the next section). Age, indeed, has a key influence on the 553 
microglial homeostatic state, which goes through several distinct temporal stages (embryonic, 554 
perinatal, adult, and aging microglia), each notably characterized by an enrichment of defined 555 
regulatory factors and gene expression profiles68,90. After the initial establishment of microglial 556 
identity by a network of developmentally programmed and environment-dependent 557 
transcription factors75,90, microglia become extremely heterogeneous in their transcriptome 558 
during early postnatal development, as determined by scRNASeq68,69,91. In contrast, microglia 559 
display a more limited transcriptomic heterogeneity in the adult CNS, where the different 560 
microglial scRNASeq clusters fall into a transcriptional continuum instead of representing 561 
distinct states68,69,91. Relatively small transcriptional differences may, however, lead to relevant 562 
functional differences, as exemplified by the functional variations between hippocampal and 563 
cerebellar microglia92,93. 564 
 565 
Sex differences due to sex chromosomes and/or gonadal hormones may also impact 566 
microglial states in different contexts. A growing body of evidence shows that male and female 567 
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microglia differ in their transcriptomic, proteomic, and morphological profiles, across brain 568 
colonization, maturation and function, in health and disease88,94-96. Of note, the microglial sex-569 
specific transcriptomic signatures appear to be intrinsically determined, being maintained 570 
when microglia are transplanted into the brains of mice from the other sex96. Sexually 571 
differentiated roles of microglia could critically influence a variety of biological processes, in a 572 
time-dependent manner, and thus, emerge as key disease modifiers across various 573 
pathological conditions with sexual dimorphism in prevalence, manifestation, and response to 574 
treatment97. 575 
 576 
Regardless of the reduced heterogeneity in the mature adult (compared to embryonic) CNS 577 
7,68,90, microglia do differ among CNS areas in terms of their morphology and ultrastructure, 578 
transcriptional, proteomic, epigenetic profiles, and functional specialization, suggesting that 579 
microglial states are modulated by local cues83,98,99. However, local CNS signals are not 580 
sufficient to determine microglial identity because macrophages engrafted in the brain 581 
parenchyma can acquire a microglia-like morphology without reaching a transcriptomic 582 
signature identical to host microglia, even after prolonged CNS residence26,100,101, supporting 583 
the idea that microglia are distinct from peripherally-derived macrophages, even when they 584 
colonize a similar niche. In addition, these findings suggest that once their identity is 585 
established, microglia assume different functional states in response to local CNS signals. 586 
Therefore, both the developmental genetic programs and CNS environment (nature and 587 
nurture) collaborate to dynamically determine microglial functional states. 588 
 589 
Beyond local signals: the influence of peripheral cues and adaptive immune cells on 590 
microglial heterogeneity  591 
Microglia not only respond to local cues within the brain, but they also receive continuous 592 
inputs from the periphery, including signals from the gastrointestinal tract102. In this context, 593 
the role of the host microbiota is gaining momentum in controlling microglial maturation and 594 
function in the CNS88, with growing evidence that microbiota-derived short-chain fatty acids 595 
represent major mediators of the gut-brain axis87,103. Another example of cross-talk between 596 
microglia and the periphery is the so called “sickness behavior”, as a result of the central 597 
response to peripherally released cytokines produced by peripheral immune cells and tissue 598 
resident macrophages detecting specific pathogen-associated molecular patterns 599 
(PAMPs)104. This complex and coordinated response, in which the functional role of microglia 600 
remains poorly understood, gives rise to adaptive behavioral strategies, including lethargy. 601 
Acute systemic inflammation, nevertheless, was extensively shown to impact on 602 
microglia105,106 and induce a microglial state associated with robust IL-1b production107. 603 
 604 
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The concept of the brain as an immune privileged organ has been challenged and definitely 605 
revisited in recent years. Indeed, peripherally produced cytokines and immune cells access 606 
the CNS and patrol the perivascular space in disease but also in health thus, playing important 607 
roles in coordinating central and peripheral immune responses108. It was also suggested that 608 
microglia require resident CD4+ T cells in the healthy developing brain for proper maturation 609 
and complete fetal-to-adult transition109. Microglia and T cell cross-talk was shown to help 610 
maintain homeostasis in the CNS, with dysfunctional regulation occurring in diseases, such 611 
as MS110, ALS111, AD112, and encephalitis113. It will be important to continue investigating the 612 
influence of the peripheral immune system including B cells, NKs and other cells on microglial 613 
states and function in both health and disease. 614 
 615 
Microglial states in the diseased CNS 616 
DAM states have been described in the human brain and across various animal models based 617 
on morphology and gene expression signatures, but can differ depending on the timing (i.e., 618 
disease stage), genetic background, and local environment. Context-dependent signals vary 619 
dramatically during disease progression; they range from apoptotic cells, extracellular debris, 620 
toxic proteins (i.e., amyloid, a-synuclein), and signals resulting from blood-brain barrier 621 
disruption and altered function of neurons and other glial cells. Microglia respond to these 622 
challenges by changing their molecular profile, morphology and ultrastructure (Box 3), as well 623 
as motility and function.  624 
 625 
The expression of core microglial markers is also altered over the course of disease, including 626 
downregulation of the “homeostatic” microglial signature. A prototypical example is P2RY12, 627 
one of the most widely used markers to discriminate microglia from other macrophages, with 628 
its reduced expression being one of the salient features of the microglial response to AD 629 
pathology and other disease conditions114, as shown in several mouse models of disease 630 
(Figure 4). The apparent contradiction that core markers do not have a steady expression, as 631 
could perhaps be expected, is likely reflecting the functions those proteins have and how they 632 
change in the diseased brain. For instance, P2RY12 upregulation in epilepsy may relate to 633 
microglial sensing ATP and nucleotides released during seizures115. This seeming paradox 634 
strengthens the fact that determining microglial expression profile is far from attributing any 635 
function to microglia, as it may only be suggestive of a potential functional identity, which –636 
with unanimous consensus from all the authors– requires experimental validation using 637 
appropriate animal models and mutagenesis while using analyses that preserve the 638 
environmental influences shaping microglial function. 639 
 640 
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A microglial state that has received particular focus is the one denoted by the DAM signature, 641 
initially identified in a mouse model with mutations within five AD genes (5XFAD)58 and later 642 
detected in other AD mouse models and samples from human AD (reviewed in 114) and MS 643 
patients62,116. Single cell transcriptomic profiling of human microglial nuclei revealed a tau-644 
associated microglia cluster that had not been identified in mice117, reinforcing the idea that 645 
more human studies are needed. The shared DAM signature includes downregulation of 646 
CX3CR1 and P2RY12, and upregulation of APOE, AXL, SPP1, and TREM2114, and it has 647 
been recently shown that it comprises two ontogenetically different cell lineages, both 648 
expressing TREM2: resident microglia and invading monocyte-derived cells (termed disease 649 
inflammatory macrophages, DIMs) that accumulate during aging118. Many questions remain 650 
open regarding the functional significance of the DAM signature.  651 
 652 
Are DAM beneficial, detrimental or both? Several studies, in both mouse and human stem 653 
cell-differentiated microglia, demonstrated that the transition to a DAM state is dependent on 654 
TREM258,59,85,119. How the TREM2 receptor drives the DAM transcriptional phenotype remains 655 
unclear, although the TREM2-ApoE signaling pathway is necessary for the switch from 656 
homeostatic to MGnD59. Many questions remain open on TREM2. For instance, is TREM2 a 657 
key sensor for amyloid-beta and other AD-related pathology or does its loss of function cause 658 
developmental defects in microglia that render them unable to change state? Is TREM2 659 
controlling the microglial state by regulating their energetic and anabolic metabolism?120,121 660 
New bulk and single-cell epigenetic approaches75,122-127 will help answer these questions and 661 
ultimately may provide a means to toggle microglial states at will, enabling the field to finally 662 
understand the function of distinct microglial states and their impact in different contexts. 663 
 664 
Additionally, many genes of the DAM signature were identified across various contexts. For 665 
example, a common set of markers including (but not limited to) an upregulation of TREM2, 666 
APOE, CD11c, CLEC7A and LPL, and downregulation of TGFβ, CSF1R, P2RY12, and 667 
TMEM119 has been recently used to denote a microglial state that associates with myelinating 668 
areas in the developing brain, but also with aging and several models of degenerative 669 
diseases, such as AD, ALS128, and MS58,67,129. These observations raise the question as to 670 
whether the DAM is a signature strictly associated with certain diseases, as the name implies, 671 
or perhaps represents a more universal core signature that appears in response to various 672 
challenges and may differ between the young/developing versus aged/diseased CNS, and 673 
across distinct regions. One of the most relevant questions to be addressed is to which extent 674 
microglial states identified in the mouse brain are conserved and functionally relevant in the 675 
human brain. 676 
 677 
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Nomenclature troubles 678 
Our current understanding of the plasticity of microglial states is at odds with the simplistic 679 
scenario established using outdated microglial nomenclature (resting versus activated and M1 680 
versus M2, Boxes 1 and 2). Thus, a systematic, careful naming approach would greatly 681 
benefit microglial biology. As a first step to guide the field regarding the use of nomenclature, 682 
we generated a questionnaire (Supplemental Data) and collected the responses from the co-683 
authors. 684 
 685 
Surprisingly, there was more consensus than disagreement that the current nomenclature has 686 
severe limitations, and a more useful conceptual framework is needed to properly understand 687 
microglial states. There is also agreement that this framework is a first important step to guide 688 
the field and should be revisited every five to ten years by an international panel of experts as 689 
new discoveries are made. There is also a broad agreement that microglial responses should 690 
be framed in a multidimensional space, and should not be simplified as dichotomic good 691 
versus bad (Figure 1). Another point of strong agreement: abandon M1/M2 (and similar) 692 
nomenclature once and for all and generally avoid using the vague term ‘neuroinflammation’. 693 
Most agree that inflammation is not always detrimental but, instead, represents an adaptive 694 
response to damage that can sometimes get out of control (Box 4). Quite importantly, a vast 695 
majority of authors support the use of “markers” (genes or proteins) to identify cell populations, 696 
but not as a readout of cell functions, which need to be addressed directly. 697 
 698 
Nonetheless, there were a few points that are still under intense debate. The term “resting” 699 
microglia is strongly avoided by some authors, whereas others acknowledge that they still use 700 
it even with its limitations, for lack of a better term. “Homeostatic” has more acceptance, 701 
although it is recognized that it is based on a very particular gene signature not shared by 702 
microglia across all physiological contexts, such as embryonic and postnatal development, 703 
and that several homeostatic states likely exist. Thus, the term ‘homeostatic’ should always 704 
be accompanied by an accurate description of the context. 705 
 706 
The opinion on use of the term “DAM”, on the other hand, is highly polarized. Many authors 707 
consider that a core set of transcripts in this signature is common to several pathological 708 
conditions and some physiological processes, including the development of white matter, 709 
whereas an equal number of authors state there is not enough evidence for “DAM” to be a 710 
universal signature of microglial response to damage. Finally, the extent to which microglia 711 
are unique or similar to other brain associated or tissue macrophages is evolving with new 712 
data and profiling methods: most agree that due to their lineage, microglia are to some extent 713 
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similar to other macrophages but have unique functions resulting from their longer residence 714 
in the CNS environment. 715 
 716 
Recommendations: DOs and DON’Ts  717 
Based on the collective opinions from the authors, we provide a series of recommendations 718 
for researchers, reviewers, and editors. As the field has not yet reached a consensus on 719 
several nomenclature topics, including the appropriate use of descriptors for microglial states, 720 
it is premature to provide clearer recommendations. Nevertheless, we aim to raise awareness 721 
on these issues and stimulate the launch of further initiatives that will guide the field and allow 722 
to develop more specific guidelines. 723 
 724 
Classic Nomenclature 725 
• Consider microglia as highly dynamic and plastic cells that display multivariate 726 
morphological/ultrastructural, transcriptional, metabolic and functional states both in the 727 
healthy and pathological CNS. 728 
• Describe microglia using as many as possible layers of complexity: ontogeny, 729 
morphology/ultrastructure, motility, -omics, and function, always placing them into a species 730 
and spatiotemporal context (Figure 5). 731 
• Refer to microglia in basal conditions as “homeostatic”, instead of “resting” microglia, 732 
considering the limitations discussed above (i.e., that these terms refer to microglia under 733 
physiological conditions, not to the function of microglia). Use the term “surveillant/surveilling” 734 
to refer to microglia that are engaged in surveillance, but not as a synonym of microglia under 735 
normal physiological conditions. 736 

• Refer to microglia in your experimental condition as “reactive to” or “responding to” 737 
while describing the particular signals they respond to (i.e., the context), instead of using the 738 
widely used broad term “activated”, as microglia are active in both health and disease. 739 
• Disregard simplistic, dichotomic categorizations by providing the observed data and its 740 
context. 741 
• Describe profiles of cytokine expression, considering that microglial complexity cannot 742 
be reduced to oversimplified and polarized “pro-inflammatory” versus “anti-inflammatory” 743 
categories. Similarly, do not use M1 versus M2 classification. 744 
● When using the term “DAM”, do not use it as a universal term applicable to all diseases, 745 
models or challenges. The jury is still out to test whether its full or core signature is common 746 
to all or a subset of pathologies, particularly in the human brain.  747 
 748 
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Introducing New Terminology 749 
● Until a consensus is reached about true subtype/s of microglia, with defined ontogeny, 750 
physical niches, functions, and transcriptional profiles (whether permanent or transient), use 751 
the term “state” rather than “subpopulation. 752 
● Use combinations of gene or protein “markers” to identify putative supopulations but 753 
be aware that their expression is plastic and may change over time and under different 754 
experimental conditions. Use fate mapping approaches with lineage tracing to track individual 755 
microglial cells and assess possible intrinsic differences as well as changes in their state over 756 
time84,130. 757 
● In scRNASeq studies, describe the transcriptional signatures (sets or modules of 758 
expressed genes) that can be compared with other studies114,131 To describe groups of 759 
transcriptionally similar cells in terms of signature, use the term “cluster”. 760 
● Avoid the use of acronyms wherever possible, and only use these once multiple 761 
laboratories have defined a stable state with a clearly defined functional role. 762 
● If new terminology needs to be introduced, follow FAIR principles: Findable, 763 
Accessible, Interoperable, and Reusable (https://neuronline.sfn.org/professional-764 
development/data-sharing-principles-to-promote-open-science). An example of naming cell 765 
lines following these principles can be found here132. 766 
 767 
Microglial Markers and Function 768 
● Use integrative methodological approaches that allow probing of microglia using 769 
different levels of analysis (Figure 5). 770 
● Follow updated consensus guidelines when using methodologies such as 771 
scRNASeq133, RTqPCR134, or digital PCR135.  772 
● Do not use morphology or gene/protein expression as a substitute for directly 773 
assessing cell function. Morphology and expression can be used to generate hypotheses 774 
about function that need to be specifically tested. 775 
 776 
Grammar Quandary:  777 
• “Microglia” as a population is a plural noun in English but a singular noun in Latin-778 
derived languages, which occasionally causes confusion. In English texts, microglial cells 779 
should always be referred to in the plural form unless referring to an individual cell. For 780 
example, “microglia are brain cells” but “this microglia is adjacent to a neuron”.  781 

 782 
Future questions and challenges 783 
From words to action: A key challenge in the field is to match microglial morphological, 784 
ultrastructural, transcriptomic, proteomic, metabolomics and emerging lipidomic changes with 785 
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functional responses (Figure 3). In the current single-cell era, an overwhelming wealth of data 786 
has been generated, profiling the expression of millions of microglia in different organisms, at 787 
different ages, across diverse brain regions. Yet, such ‘omics’ identities are not necessarily 788 
linked to functional states, and they often lack spatial resolution. Additionally, many widely 789 
used microglial markers are sensome genes, whose expression and activity at the microglial 790 
membrane may reflect functional adaptations to a changing environment, and are possibly 791 
more indicative of the microglial functional state than the transcription profile.  792 
 793 
Transcriptional analysis will benefit from ribosome profiling by RiboSeq136 and from gene-trap 794 
insertion profiling by TRAPSeq137. Proteomic approaches combined with in situ studies will 795 
provide better information in this respect, bridging the gap between expression and function. 796 
Further integration of complementary approaches, such as spatial transcriptomics, imaging 797 
mass cytometry, and correlative or conjugate electron microscopy in combination with other 798 
single-cell approaches, will provide a more comprehensive characterization of microglia. 799 
Ultimately, functional studies using specific pharmacological and transgenic approaches in 800 
animal models, as well as human-derived cells and organoids are indispensable to understand 801 
the multiple roles of microglia within specific spatiotemporal contexts of health and disease. 802 
 803 
How are microglial states coordinated? 804 
Even as we acquire more data about microglial states, there are still key questions remaining 805 
unanswered. To which extent are microglial states plastic and reversible? What is the 806 
relationship between microglial state and cellular function? These varied single-cell 807 
characterizations ultimately need to be linked to particular functions, to become relevant to 808 
development, health, and diseases. How do these states come about? How do signals from 809 
the CNS environment get integrated in microglia to produce specific states? New imaging tools 810 
and reporters that enable tracking and manipulation of specific microglial states are needed 811 
to address these questions. 812 
 813 
How similar are peripherally-derived macrophages and microglia? A burning question that 814 
surely requires further investigation is related to the identity and function of microglia versus 815 
other brain macrophages. Although recent studies have provided evidence for an intrinsic 816 
unique core signature of microglia, their functional resemblances and differences remain 817 
undetermined. For instance, could engrafted parenchymal macrophages functionally replace 818 
the resident microglia, despite having a different molecular identity, and could they serve as 819 
therapeutic vectors? 820 
 821 
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The devil is in the details: Another major caveat is that microglia are incredibly reactive cells 822 
and evidence indicates that artifacts are often introduced during sample processing for a 823 
variety of methodologies, such as RNA profiling, immunohistochemistry, FACS, in vivo 824 
imaging, and so on. Hence, we may be missing or confounding important pieces of information 825 
because we unintentionally introduce changes in the parameters we are trying to measure. In 826 
addition, these artifacts are likely to generate variability across laboratories using different 827 
protocols. A future challenge is to promote reproducibility of data across laboratories, by 828 
coordinating a shared database of protocols curated using STAR methods guidelines.  829 
 830 
Diversity as a source of richness: Many transcriptional states have been reported during 831 
embryonic development, aging, and disease. How many different microglial states can be 832 
identified? Within the homeostatic microglia, how many states exist? How do microglia 833 
navigate among their many states? Are they related through a transcriptional continuum, or 834 
perhaps as a hub-and-spoke set of states, as has been proposed for macrophages4? How 835 
dynamic are these states? And how spatially defined are they? Future research will need to 836 
address these important questions. 837 
 838 
Male versus female microglia: Sex differences have been reported to affect the brain 839 
colonization, maturation, structure, transcriptomic, proteomic, and functional profiles of 840 
microglia, in a time-dependent manner. To what extent these differences may regulate the 841 
susceptibility to neurological diseases remains a fascinating question that urgently awaits 842 
answers. Investigating the molecular and cellular mechanisms underlying sex-mediated 843 
differences in microglial states would advance our understanding of microglial implication in 844 
diseases with clear sex-related differences in their prevalence, symptoms, and progression, 845 
as well as response to treatments. 846 
 847 
Relevance to humans: It will be imperative to study developmental and functional differences 848 
between human and animal model microglia. To date, most of the studies on microglia were 849 
conducted in mice and a direct comparison among brain regions is still missing. Whether 850 
microglial states identified in mice also exist in humans is still under debate. Translating and 851 
validating these findings across species is critical and will help prevent failure of clinical trials 852 
that stem from animal model limitations. In addition, most human microglial studies were 853 
performed in Caucasians and only recently data from other groups, such as African American 854 
individuals, are becoming available138. 855 
 856 
Towards a unified nomenclature: The conclusion of this paper is that the community has not 857 
yet reached an agreement on what defines microglial identity compared to other cell types; 858 
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nor consensus on the number, dynamic nature, or definition of microglial states. The 859 
community advocates for creating harmonized, curated databases and guidelines for 860 
introducing novel terminology; to follow STAR methods; and share data as early as possible. 861 
Until such consensus is reached, the community urges all microglial studies to present data 862 
with all their layers of complexity and carefully define the context examined to offer clarity 863 
instead of confusion, thereby contributing to a more thorough understanding of the many 864 
facets of microglial biology. To establish new guidelines for microglial states and nomenclature 865 
we call for a community-based approach, whereby the issues and progress are discussed 866 
openly in workshops and meetings, with input from diverse researchers across fields and 867 
career stages. A useful model to look after are the 10 Human Leukocyte Differentiation Antigen 868 
workshops that have taken place since 1982, in charge of renaming CD (cluster of 869 
differentiation) antigens (https://www.sinobiological.com/research/cd-antigens/hlda1). We 870 
lastly advocate for the creation of an international panel/committee of experts in charge of 871 
overseeing the guidelines and establishing a specific roadmap to write a white paper by 2030.  872 
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Box 1. Resting versus activated microglia 873 
The development of specific silver staining techniques in 1919 allowed Río-Hortega to clearly 874 
identify microglia and study their response to experimental manipulations7,139. Early on, Río-875 
Hortega appreciated the striking morphological transformation of microglia following brain 876 
damage, but it was in the mid-1970s that the terms “resting” and “activated” microglia first 877 
appeared in the literature. These terms were used to morphologically describe cells with 878 
affinity for silver staining that were observed in physiological (“resting”) versus pathological 879 
(“activated”) conditions. This nomenclature consolidated in the 1980s and became widely 880 
used during the 1990s140, in parallel with the development and use of histochemical and 881 
immunohistochemical techniques, such as lectin staining141, detection of phosphatases and 882 
phosphorylases142, and antibodies against the complement receptor CR37. These techniques 883 
and nomenclature were pivotal in determining that “resting” microglia were unrelated to 884 
astrocytes, as some studies had wrongly concluded143, and that “reactive” microglia shared 885 
many characteristics with the blood-borne monocytes10. 886 
 887 
As shown by a PubMed search with microglia in all fields, there were only few papers 888 
published on the topic before the 1990s, and then a steady increase until the beginning of our 889 
century, followed by an exponential growth144. There is a first inflexion point in 2005, with the 890 
seminal discovery using non-invasive two-photon in vivo imaging that microglia are extremely 891 
dynamic in the absence of pathological challenge, continuously surveying the parenchyma 892 
with their highly motile processes55,56. The development of non-invasive methods was 893 
necessary for our understanding of microglial roles in the healthy brain (reviewed in145). In 894 
2005, microglial extreme dynamism in the intact brain was examined for the first time, through 895 
the skull of CX3CR1-GFP mice in which microglia are fluorescently labeled55,56. As a result, 896 
microglia are now considered to be the most dynamic cells of the healthy mature brain145. This 897 
seminal discovery prompted to rename quiescent or resting microglia as surveying56,146 or 898 
surveillant (from the verb to survey)147 microglia, and also led to propose the concept that 899 
microglia are never-resting148. Together, these and other in vivo two-photon imaging data put 900 
into serious doubt the concept of “activated” microglia, which suggests a unique form of 901 
response, as in fact microglia are always active, constantly responding (in different ways 902 
depending on the context) to the changes in their CNS environment, even under normal 903 
physiological conditions. Therefore, microglia do not switch from “resting” to “activated” in 904 
response to trauma, injury, infection, disease, and other challenges. Rather, microglia are 905 
continuously active and react to the stage of life, CNS region, species, sex, and context of 906 
health or disease by adopting different states and performing different functions. Thus, 907 
although still widely used, “resting” and “activated microglia” are labels that should be 908 
discontinued. 909 
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Box 2. M1 versus M2 microglia 910 
Another terminology emerged in the early 2000s from immunologists classifying macrophages 911 
based on findings obtained using in vitro models: “M1”, the classical activation, considered 912 
pro-inflammatory and neurotoxic, as well as closely related to the concept of “activated” 913 
microglia, and “M2”, or alternative activation, considered anti-inflammatory and 914 
neuroprotective149. These responses were related to those of T helper lymphocytes (Th1 and 915 
Th2) based on their in vitro activation by specific immune stimuli that activated differential 916 
metabolic programs and changes in cytokine expression150. An associated term is “M0” 917 
microglia, which describes their state when cultured in the presence of TGFβ (transforming 918 
growth factor beta) and CSF-1 to mimic in vivo counterparts151. The terms became widely 919 
adopted in microglial research and the 2010s saw a boom of papers phenotyping 920 
macrophages and microglia into “M1” and “M2” based on the expression of markers related to 921 
these categories, used to indirectly assume a detrimental (“M1”) or beneficial (“M2”) microglial 922 
role150. In many cases, editors and reviewers have asked authors to comply with this 923 
nomenclature. However, it soon became evident that macrophage responses are more 924 
complex than simply “M1” and “M2”152. In the case of microglia, the advent of single cell 925 
technologies provided clear evidence that microglia in the living brain do not polarize to either 926 
of these categories, often co-expressing M1 and M2 markers153, despite the continued use of 927 
M1 and M2 in the literature. We thus recommend to strictly avoid M1 and M2 labels and use 928 
more nuanced tools to investigate microglial function (reviewed in154). 929 
 930 
Box 3. Microglial morphological responses across species 931 
Microglial cells display a profusion of morphologies that have fascinated researchers since the 932 
early days of Río-Hortega. Many were tempted to equate morphology with function. Ramified 933 
microglia were traditionally associated with the “resting” state, although we now know that 934 
ramified microglia actively play many functions during normal physiological conditions. In 935 
contrast, “reactive” microglia (rounder cell body, generally with fewer and shorter processes) 936 
were called “activated” and equated with an inflammatory response. Only recently, however, 937 
a mechanistic link between microglial reduced branching and increased release of the 938 
inflammatory cytokine interleukin 1β was reported155. Activation of P2YR12 by tissue damage 939 
signals potentiates the tonically active potassium THIK-1 channel, expressed in microglia, 940 
leading both to decreased microglial ramifications and activation of the inflammasome 941 
machinery processing IL-1β precursors into their mature form155. Another morphology 942 
associated with functional changes is “ameboid” microglia, which were thought to be more 943 
“phagocytic”, but it is clear now that ramified microglia execute phagocytosis through their 944 
terminal or ‘en passant’ branches notably during adult neurogenesis156,157, while in disease 945 
conditions such as epilepsy ameboid microglia can display reduced phagocytosis158. 946 
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Therefore, morphological changes should not be interpreted in functional terms but, rather, 947 
taken as a suggestion prompting to investigate further the relationship between microglial 948 
structure and function. While the categorization described above is now outdated, the analysis 949 
of microglial morphology is considered valuable and still often used across animal model and 950 
human post-mortem brain studies. 951 
 952 
Studies in post-mortem brain samples have revealed that human and mouse microglia can 953 
adopt similar morphologies. Using the now outdated terms “ramified”, “primed” (larger cell 954 
body, ramified processes), “reactive” (ameboid, few ramified processes), and “ameboid” (less 955 
than two unramified processes) microglia were described in middle-aged individuals159. In 956 
addition, “rod-shaped” microglia (elongated cell body, polarized processes) were found to 957 
become more abundant with aging160. Similarly, “dystrophic” microglia, presenting apparently 958 
fragmented (but still intact at the ultrastructural level) processes were reported in aging161,162. 959 
These different morphological types observed in humans were previously described in rodent 960 
models (reviewed in163). Nevertheless, a more sensitive quantitative microglial morphological 961 
assessment using a computational pipeline involving cluster analysis revealed differences 962 
between mouse and human, with distinct clusters found to be unique to each species164. 963 
Subsequently, a high-throughput comparative morphology analysis revealed a generally 964 
conserved evolutionary pattern, with some intriguing differences observed between the leech, 965 
zebrafish, axolotl, turtle, chicken, gecko, snake, bearded dragon, bat, boar, sheep, whale, 966 
hamster, rat, mouse, marmoset, macaque, and human, and across brain regions between 967 
mouse and human76. While detailed comparative ultrastructural analyses of microglia between 968 
species are currently lacking, the state of “dark microglia” (named based on their increased 969 
electron density giving these cells a dark appearance, compared to other microglial states), 970 
which is defined using electron microscopy by its markers of cellular stress in contexts of aging 971 
and disease, was found to be conserved across mouse, rat, and human165. New strategies 972 
are currently being developed to provide morphological data analyses based on automated 973 
pipeline, thus overcoming feature-selection-based biases166. Future studies will show how 974 
these varied morphologies correlate with transcriptional and proteomic profiles, and what they 975 
imply for the cell’s function. At the molecular level, recent single-cell transcriptome analyses 976 
also revealed that human microglia show multiple clusters that indicate a greater heterogeneity 977 
than in other mammalian species such as the mouse76,91. 978 
 979 
Box 4. Microglia and the term “neuroinflammation”  980 
Although the term “neuroinflammation” is widely used as a synonym of microglial 981 
“activation”167, its definition varies dramatically among authors, according to our survey. Below 982 
are provided representative definitions to help clarify:  983 
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 984 
a. Neuroinflammation is inflammation of neural tissue particularly mediated by glial cells.  985 
b. Neuroinflammation is strictly limited to conditions in which leukocytes enter CNS, e.g., in 986 
stroke and MS. 987 
c. Neuroinflammation is whatever happens when CNS homeostasis is disturbed.  988 
d. Neuroinflammation is a mixed cellular response to brain infection or damage involving 989 
innate and adaptive responses of resident brain cells and circulating immune cells.  990 
e. The term neuroinflammation is too unclear and imprecise and should be avoided.  991 
  992 
As mentioned previously, inflammation taking place in the CNS is also beneficial or detrimental 993 
depending on the context. Therefore, when the term “neuroinflammation” is encountered in 994 
the literature, the reader must be aware that it means different things to different researchers. 995 
Our main recommendation for the field is to liberate neuroinflammation from microglia and 996 
microglia from neuroinflammation, and to use both terms rigorously. The consensus among 997 
authors is four-fold. First, protection against tissue damage and extreme departures from 998 
homeostasis as well as repair (i.e., ‘inflammation’) encompasses, in the CNS, a highly complex 999 
set of local responses, and equally complex interactions with circulating immune cells or with 1000 
immune cells residing in brain-blood and brain-cerebrospinal fluid interphases. In other words, 1001 
‘neuroinflammation’ is not a substitute for ‘microglial reaction’. Second, there are numerous 1002 
transcriptional states of microglia, astrocytes and oligodendrocytes. The functional outcomes 1003 
of cells undergoing these transcriptional states remain incompletely understood. Furthermore, 1004 
it is uncertain which transcriptional states are transient or represent durable cell fate choices. 1005 
It is also unknown whether changes in states during diseases are ‘inflammatory’ or dedicated 1006 
to maintaining microglial homeostatic functions. Taking these considerations together, one 1007 
should exercise extreme caution in simplifying these phenomena as ‘neuroinflammation’, as 1008 
at least some of these phenomena may represent alternative homeostatic or non-inflammatory 1009 
reactive states. Third, it is not appropriate to imply that neuroinflammation is invariably 1010 
deleterious. Rather, it should be recognized that each inflammatory response may exert 1011 
adaptive or maladaptive effects, contingent on context. To be more specific, research is 1012 
necessary to explore functions and distinct actions of cytokine-enriched microglia secretomes 1013 
beyond binary characterizations such as ‘pro-‘ and ‘anti-inflammatory’. Fourth, with regards to 1014 
nomenclature, we recommend the use of modest and precise terms to describe specific 1015 
phenomena such as: microglial reaction; astrocytic reaction; molecules involved; loss of 1016 
barrier function at the blood-brain barrier (BBB), etc. All in all, the main message we wish to 1017 
convey is that inflammation associated with the CNS follows unique rules that need to be fully 1018 
discerned experimentally and not simply extrapolated from observations in non-nervous 1019 
tissue. 1020 
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 1021 
 Marker Specificity Labeled states Staining patterns Main applications Ref. 
Antibodie

s 

F4/80 

(EMR1) 

Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated. 

Expressed in 

rodents, but 

presence not yet 

confirmed in 

human. 

Does not provide a 

detailed cellular 

visualization, especially 

in homeostatic 

conditions, due to its low 

basal expression. 

Its expression varies 

significantly between 

species and is low in 

human macrophages. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution, and 

categorization into 

morphological 

states 

168-170 

CX3CR1 Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated, but 

downregulated by 

the DAMs, 

MGnD, dark 

microglia, and 

other pathological 

states. 

 

CX3CR1-GFP reporter 

line generally used for 

visualization, with or 

without GFP 

immunostaining. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution, and 

categorization into 

morphological 

states. 

58,59,171-

173 

IBA1 Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated. 

Downregulated in 

some contexts 

(e.g., obesity and 

aging) and by 

some 

pathological 

states (e.g., DAM, 

dark microglia). 

Provides exceptional 

visualization of microglial 

cell body and processes, 

including distal 

extremities. 

Diffuses throughout the 

cytoplasm. 

Staining can however be 

discontinuous in aging. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution, and 

morphology. 

Ultrastructural 

studies. 

174,175 
58,76,162,1

76-179 
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Used to study 

microglia in early 

embryonic and 

postnatal 

development. 

Conserved 

across several 

species including 

human. 

MerTK Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated. 

Expressed in 

health and across 

various contexts 

of disease, 

notably in 

association with 

the phagocytosis 

of newborn 

neurons, amyloid, 

and myelin. 

Partial visualization of 

microglial cell bodies and 

diffuse staining of their 

processes preventing a 

complete morphological 

visualization. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution. 

Morphological 

analysis or 

categorization into 

morphological 

states possible in 

combination with 

IBA1. 

180-183 

CD11b/c Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated. 

Used to study 

microglia in early 

postnatal 

development. 

Conserved 

across species 

including human. 

Visualization of microglial 

cell body and processes. 

Low basal expression in 

adult microglia. 

Staining is mainly 

restricted to the plasma 

membrane. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution, and 

morphology 

Ultrastructural 

studies of subsets 

downregulating 

IBA1. 

184 
173,185-

188 

P2RY12 Largely 

microglia-

Homeostatic 

marker. 

Visualization of microglial 

cell body and processes. 

Brightfield or 

fluorescence 

115,189-

191 
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specific (not 

expressed 

by 

monocytes), 

but state-

dependent 

Strongly 

downregulated in 

disease-

associated and 

reactive states 

(but upregulated 

in status 

epilepticus). 

Used to study 

microglia in early 

postnatal 

development. 

Conserved 

across several 

species including 

human. 

Staining can localize to 

the plasma membrane or 

diffuse throughout the 

cytoplasm and can be 

more profuse than IBA1 

depending on staining 

conditions. 

analysis of 

microglial density, 

distribution, and 

morphology. 

Ultrastructural 

studies. 

TMEM11

9 

Largely 

microglia-

specific, but 

state-

dependent 

Homeostatic 

conditions and 

disease-

associated, but 

downregulated on 

reactive microglia 

in some contexts 

(e.g., traumatic 

brain injury and 

ischemia, MS). 

Developmentally 

regulated. 

Conserved 

across species 

including human. 

Partial visualization of 

microglial cell bodies and 

diffuse staining of their 

processes preventing a 

complete morphological 

visualization. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution. 

Morphological 

analysis or 

categorization into 

morphological 

states possible in 

combination with 

IBA1. 

192-196 

TREM2 Macrophag

es including 

microglia, 

state-

dependent 

Microglial subsets 

in early postnatal 

development, 

aging, and 

disease 

Visualization of microglial 

cell body and processes. 

Staining diffuses 

throughout the 

cytoplasm. 

Brightfield or 

fluorescence 

analysis of 

microglial density, 

distribution, and 

173,181,19

4,197,198 
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conditions (e.g., 

microglia involved 

in synaptic 

pruning or 

associated with 

amyloid plaques 

in AD pathology). 

Shown to label 

monocytes or 

neurons instead 

of microglia in 

human. 

categorization into 

morphological 

states. 

Ultrastructural 

studies of 

pathological states 

downregulating 

IBA1. 

Mouse 

lines 

CX3CR1

-GFP 

Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated, but 

downregulated in 

DAM, MGnD, 

dark microglia, 

and other 

pathological 

states. 

Visualization of microglial 

cell body and processes. 

Fluorescence diffuses 

throughout the 

cytoplasm. 

Bright enough for two-

photon in vivo imaging. 

A limitation is that the 

heterozygous mice used 

for in vivo imaging are 

partially deficient in 

fractalkine signaling, with 

possible outcomes on 

the brain and 

behavior199. The 

homozygous mice are 

knockout for CX3CR1 

and used to study the 

outcomes of fractalkine 

receptor deficiency. 

Two-photon in vivo 

imaging or 

fluorescence 

analysis of 

microglial density, 

distribution, 

dynamics, 

interactions with 

other parenchymal 

elements, and 

categorization into 

morphological 

states. 

Ultrastructural 

studies using 

staining against 

GFP. 

55,56,171,1

73,178,200 

Iba1-

EGFP 

Macrophag

es including 

microglia 

Homeostatic 

conditions and 

disease-

associated. 

Visualization of microglial 

cell body and processes. 

Two-photon in vivo 

imaging or 

fluorescence 

analysis of 

173,177,20

1 
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Downregulated in 

some contexts 

(e.g., obesity and 

aging) and in 

some 

pathological 

states (e.g., DAM, 

dark microglia). 

Used to study 

microglia in early 

embryonic and 

postnatal 

development. 

Conserved 

across several 

species including 

human. 

Fluorescence diffuses 

throughout the 

cytoplasm. 

Less bright than 

fluorescence in 

CX3CR1-GFP mice, but 

generally sufficient for 

two-photon in vivo 

imaging of cell body and 

proximal processes. 

These mice are not 

partially deficient in IBA1 

in their heterozygous 

state, which is a main 

advantage. 

microglial density, 

distribution, 

dynamics, 

interactions with 

other parenchymal 

elements, and 

categorization into 

morphological 

states. 

Ultrastructural 

studies using 

staining against 

GFP. 

Fms-

EGFP or 

CSF1R-

EGFP; 

CSF1R-

FusionR

ed 

Macrophag

es including 

microglia. 

CSF1R is 

expressed 

by most 

microglia. 

Homeostatic 

conditions and 

disease-

associated, but 

considered to be 

downregulated in 

DAM and other 

pathological 

states. 

Fluorescence is less 

bright than in CX3CR1-

GFP mice, and generally 

sufficient for two-photon 

in vivo imaging. It also 

allows for fluorescence-

activated cell sorting and 

fluorescence imaging 

when combined with 

immunostaining. These 

mice are not partially 

deficient in CSF1R in 

their heterozygous state, 

which is a main 

advantage. 

Fluorescence-

activated cell 

sorting and 

fluorescence 

analysis of 

microglial density, 

distribution, 

dynamics, 

interactions with 

other parenchymal 

elements, and 

categorization into 

morphological 

states when 

combined with 

immunostaining. 

34,156,202 

HEXB-

TdTomat

o 

Largely 

overlaps 

with IBA1 

Expression 

appears stable in 

homeostatic 

Visualization of microglial 

cell body and processes. 

Two-photon in vivo 

imaging or 

fluorescence 

38 
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staining but 

restricted to 

microglia. 

Does not 

label CAMs 

and other 

border-

associated 

macrophag

e 

populations. 

conditions and 

disease-

associated states. 

The labeled 

microglia are also 

depleted by 

CSF1R inhibition. 

Fluorescence diffuses 

throughout the 

cytoplasm. 

Bright enough for two-

photon in vivo imaging. 

A limitation is that the 

heterozygous mice used 

for in vivo imaging are 

partially deficient in 

HEXB. However, their 

microglial gene 

expression patterns do 

not appear affected. 

analysis of 

microglial density, 

distribution, 

dynamics, 

interactions with 

other parenchymal 

elements, and 

categorization into 

morphological 

states. 

 1022 
Table 1. Main antibody markers and mouse lines used to visualize microglia in rodents 1023 
and humans from early embryonic development to adulthood and aging. Other proteins 1024 
expressed by microglia but whose specificity is not confirmed include APOE, CLEC7A, ITGAX, 1025 
and LPL. 1026 
  1027 
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Questions 
 
1. How do you define yourself? (if more than one, assign order) 

a. Neuroscientist/Neurobiologist 
b. Immunologist 
c. Neuroimmunologist 
d. Other 

 
2. Do you think that microglia can be subdivided in closed/fixed categories based on their 

morphology, marker expression or transcriptional profile? Or do you think those 
categories are meaningless? 

3. Do you think microglial responses are all-or-nothing or is there a continuum? 
 

4. What is your opinion on the different microglial nomenclature historically proposed:  
a. Resting vs Activated 
b. M1 vs M2 
c. Homeostatic vs DAM 
d. Do you think that these different nomenclatures are related? 
e. How often do you use them?  
f. Do you think the community should replace these with a consensus 

nomenclature? 
g. Do you think that having a consensus nomenclature is useful for the field? 

 
5. What is your definition of “marker”? Which ones are relevant to study microglia? For 

which purposes you use them? 
 

6. Is phenotyping (even with sophisticated methods such as scRNAseq) sufficient to assess 
microglial function? 

 
7. What is your definition of neuroinflammation? 

 
8. Do you agree with the assumption that neuroinflammation is always detrimental? 

 
9. How similar do you think microglia are to other resident macrophages? 

 
10. Are there any other points you would like to bring up? 
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