
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site   http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Lyapunov-Based Feedback Control of Border Collision 
Bifurcations in Piecewise Smooth Systems

by Munther A. Hassouneh, Eyad H. Abed

TR 2004-37



Lyapunov-Based Feedback Control of Border Collision
Bifurcations in Piecewise Smooth Systems

Munther A. Hassouneh and Eyad H. Abed
Department of Electrical and Computer Engineering

and the Institute for Systems Research
University of Maryland

College Park, MD 20742 USA
munther@umd.edu abed@umd.edu

Abstract— Feedback control of piecewise smooth discrete-
time systems that undergo border collision bifurcations is
considered. These bifurcations occur when a fixed point or a
periodic orbit of a piecewise smooth system crosses or collides
with the border between two regions of smooth operation
as a system parameter is quasistatically varied. The goal of
the control effort in this work is to modify the bifurcation
so that the bifurcated steady state is locally attracting and
locally unique. To achieve this, Lyapunov-based techniques are
used. A sufficient condition for nonbifurcation with persistent
stability in piecewise smooth maps of dimensionn that depend
on a parameter is derived. The derived condition is in terms
of linear matrix inequalities. This condition is then used as a
basis for the design of feedback controls to eliminate border
collision bifurcations in piecewise smooth maps and to produce
desirable behavior.

I. INTRODUCTION

Stabilizing feedback control laws for piecewise smooth
discrete-time systems exhibiting border collision bifurca-
tions are developed. The class of piecewise smooth systems
considered constitutes systems that are smooth everywhere
except along borders separating regions of smooth behavior
where the system is only continuous. Border collision
bifurcations are bifurcations that occur when a fixed point
(or a periodic orbit) of a piecewise smooth system crosses
or collides with the border between two regions of smooth
operation. The term border collision bifurcation was coined
by Nusse and Yorke [1]. Border collision bifurcation had
been studied in the Russian literature under the name C-
bifurcations by Feigin [2], [3]. The results of Feigin were
introduced to the Western literature in [4].

Border collision bifurcations (BCBs) include bifurcations
that are reminiscent of the classical bifurcations in smooth
systems such as the fold and period doubling bifurcations.
Despite such resemblances, the classification of border
collision bifurcations is far from complete, and certainly
very preliminary in comparison to the results available in the
smooth case. In smooth maps, a bifurcation occurs from a
one-parameter family of fixed points when a real eigenvalue
or a complex conjugate pair of eigenvalues crosses the unit
circle. In piecewise smooth (PWS) maps, on the other hand,
a discontinuous change in the eigenvalues of the Jacobian
matrix evaluated at the fixed point (or at a periodic point)

occurs when the fixed point hits the border. As a result, bor-
der collision bifurcations for piecewise smooth systems in
which the one-sided derivatives on the border are finite are
classified based on the linearizations of the system on both
sides of the border at criticality. The phenomenon of border
collision bifurcations has been observed both numerically
and experimentally in many systems, in applications such
as power electronic devices [5], [6], [7] and in studies of
grazing impact in mechanical oscillators [8], [9].

There is little past work on control of BCBs [10], [11],
[12]. The control method of [10], [11] is based on the
classification scheme of BCBs that was given by Feigin [4].
However, since Feigin didn’t give conditions for specific
scenarios, the results of [10], [11] do not address stabi-
lization. Moreover, references [10], [11] use a trial and
error approach that doesn’t provide analytical conditions for
existence of controllers. In our recent work [12], feedback
control of BCBs in one- and two-dimensional PWS maps
has been considered.

In the present paper, a sufficient condition for nonbifur-
cation with persistent stability in piecewise smooth maps
of dimension n that depend on a parameter is derived.
That is, a condition under which the PWS map possesses
a locally asymptotically stable fixed point which is also
the locally unique attractor for all values of the bifurcation
parameter in a neighborhood of the critical value. This
condition is derived using Lyapunov-based methods and is
given in terms of linear matrix inequalities (LIMs). The
derived condition is then used as a basis for the design of
feedback controls to eliminate BCBs in piecewise smooth
maps and to produce desirable behavior. The analysis and
control methodology presented in this paper have recently
been applied to a model of cardiac arrhythmia [13].

The paper proceeds as follows. In Sec. II, brief back-
ground material on BCBs is given. In Sec. III, Lyapunov-
based analysis of PWS maps undergoing BCBs is presented
and a sufficient condition for nonbifurcation with persistent
stability is derived. In Sec. IV, the results of Sec. III are
used in the synthesis of stabilizing feedback control laws
and numerical examples that demonstrate the results are
given. Concluding remarks are collected in Sec. V.



II. BACKGROUND ON BORDER COLLISION

BIFURCATIONS

Consider the one-parameter family of piecewise smooth
maps

f (x,µ) =
{

fA(x,µ), x ∈ RA

fB(x,µ), x ∈ RB
(1)

where f : R
n+1 →R

n is piecewise smooth in x; f is smooth
in x everywhere except on the border (hypersurface Γ)
separating RA and RB where it is only continuous, f is
smooth in µ and RA, RB are the two (nonintersecting) regions
of smooth behavior. Of great interest is the study of the
dynamics of f at a fixed point (or a periodic orbit) near or
at the border Γ. If the fixed point (or periodic orbit) is in RA

(respectively RB) and is away from the border, then the local
dynamics is determined by the single map fA (respectively
fB). If, on the other hand, the fixed point is close to the
border, then jumps across the border can occur except in an
extremely small neighborhood of the fixed point. Therefore,
for operation close to the border, both fA and fB are needed
in the study of the possible behavior. For a fixed point
at or near the border, the dynamics is determined by the
linearizations of the map on both sides of the border.

Various types of BCBs occur in (1) as the bifurcation
parameter µ is varied through a critical value [1], [14],
[15], [4]. Such bifurcations occurring in the map (1) can
be studied using the piecewise-linearized representation [4]

x(k +1) := F(x(k),µ) =
{

Ax(k)+bµ, x1(k) ≤ 0
Bx(k)+bµ, x1(k) > 0

(2)

where A is the linearization of the PWS map f in RA at a
fixed point on the border approached from points in RA near
the border and B is the linearization of f at a fixed point
on the border approached from points in RB and b is the
derivative of the map f with respect to µ. The coordinate
system is chosen such that the sign of the first component
of the vector x determines whether x is in RA or RB (a
transformation to the form (2) is given in [16]). If x1 = 0,
then x is on the border separating RA and RB. The continuity
of F at the border implies that A and B differ only in their
first columns.

The classification of BCBs depends on the eigenvalues
of A and B [4]. A complete classification of BCBs is only
available for one-dimensional PWS maps [17], [18]. For
two dimensional PWS maps, some results are available that
only address a class of two-dimensional PWS maps [1],
[19], [15], [20].

Although Feigin [4] studied general n-dimensional PWS
maps exhibiting border collisions, only very general condi-
tions for existence of a fixed point and period-2 solutions
before and after the border were given. The classification
scheme of [4] does not give any information about stability
or uniqueness of fixed points or period-2 orbits involved in
the border collision bifurcation nor does it give information
about higher period periodic orbits or chaos that might be
involved in a border collision bifurcation. Therefore, in this

paper, one of the main goals is to develop a sufficient
condition for nonbifurcation with persistent stability that
can be used in the design of stabilizing feedback control
laws. This is done in the next section using Lyapunov-based
techniques.

III. LYAPUNOV-BASED ANALYSIS OF PIECEWISE

SMOOTH MAPS

Recently, many researchers have studied stability of
a fixed point of switched discrete-time linear systems
(e.g., [21], [22], [23]) as well as continuous time switched
systems (e.g., [24]). In all the referenced studies, Lyapunov
techniques were used to obtain sufficient conditions for sta-
bility of the fixed point (or equilibrium point) of a piecewise
linear system. For instance, in [24], [22], quadratic as well
as piecewise quadratic Lyapunov functions were used in
the analysis of stability of switched systems and also in the
synthesis of stabilizing controls. The author is unaware of
any previous study using Lyapunov methods to analyze the
dynamics of switched systems depending on a parameter.
Here, a quadratic Lyapunov function is used to study border
collision bifurcations in PWS maps and to obtain sufficient
conditions for nonbifurcation with persistent stability in
such maps.

Consider the piecewise-linearized representation of PWS
maps given in (2). The sign of the first component of the
vector x determines whether x is in RA or in RB. If x1 = 0,
then x is on the border separating RA and RB. The continuity
of F at the border implies that A and B differ only in their
first columns. That is, ai j = bi j, for j �= 1, where A = [ai j]
and B = [bi j].

Assume that 1 /∈σ(A), 1 /∈σ(B) (i.e., both I−A, I−B are
nonsingular). Formally solving for the fixed points of (2)
yields xA(µ) = (I −A)−1bµ and xB(µ) = (I −B)−1bµ. For
xA(µ) to actually occur, the first component of xA(µ) must
be nonpositive. That is,

xA1(µ) = (e1)T µ(I −A)−1b ≤ 0 (3)

where (e1)T = (1 0 · · · 0). Similarly, for xB(µ) to actually
occur, one needs

xB1(µ) = (e1)T µ(I −B)−1b > 0. (4)

If on the other hand, the first component of xA(µ) is positive
(the first component of xB(µ) is nonpositive), then the fixed
point is called a virtual fixed point. Virtual fixed points are
important in studying the dynamics of a PWS map at or
near the border.

Let pA(λ) and pB(λ) be the characteristic polynomials
of A and B, respectively. Then, pA(λ) = det(λI −A) and
pB(λ) = det(λI −B).

The fixed points can be written as

xA(µ) = (I −A)−1bµ

=
adj(I −A)bµ

det(I −A)

=
b̄A

pA(1)
µ, (5)



and

xB(µ) = (I −B)−1bµ

=
adj(I −B)bµ

det(I −B)

=
b̄B

pB(1)
µ, (6)

where b̄A =adj(I − A)b and b̄B =adj(I − B)b. It can be
shown that b̄A1 = b̄B1 =: b̄1 [4]. To see this, recall that A
and B differ only in their first columns and adj(I −A) =
(co f (I −A))T . Thus, the first row of adj(I −A) is equal to
the first row of adj(I−B), which implies that (e1)T ad j(I−
A)b = (e1)T ad j(I−B)b =: b̄1. Thus, the first component of
xA(µ) is xA1(µ) = b̄1

pA(1)µ and the first component of xB(µ) is

xB1(µ) = b̄1
pB(1)µ. For the fixed point xA(µ) to occur for µ≤ 0,

it is required that xA1(µ)≤ 0, i.e., b̄1
pA(1)µ ≤ 0 ⇐⇒ b̄1

pA(1) > 0.
Similarly, for the fixed point xB(µ) to occur for µ > 0, it
is required that xB1(µ) > 0, i.e., b̄1

pB(1)µ > 0 ⇐⇒ b̄1
pB(1) > 0.

Therefore, a necessary and sufficient condition to have a
fixed point for all µ is pA(1)pB(1) > 0 which is assumed to
be in force in the remainder of the discussion.

Next, a change of variables is performed on (2) to
simplify the analysis.
Case 1):µ ≤ 0. The fixed point of F is xA(µ) = (I−A)−1bµ.
Changing the state variable in (2) to z = x− xA(µ) yields
after simplification

z(k +1) =
{

Az(k), if z1(k) ≤−xA1(µ)
Bz(k)+ cµ, if z1(k) > −xA1(µ) (7)

where c = (B−A)(I−A)−1)b. In the new coordinates, z = 0
is a fixed point for all µ ≤ 0. (Note that the border zborder =
{z : z1 =−xA1(µ)}, varies as a function of µ.) Note that since
B and A differ only in their first columns, all elements of
B−A are zero except for the first column. Thus, cµ = (B−
A)(I−A)−1bµ = (B−A)xA(µ) = xA1(µ)(B1−A1), where the
notation Ai means the i-th column of the matrix A.

Consider the quadratic Lyapunov function candidate

V (z) = zT Pz, where P = PT > 0 (8)

The forward difference of V along trajectories of (7) is
∆V (z(k)) = V (z(k + 1) − V (z(k)). There are two cases:
z1(k) ≤−xA1(µ) and z1(k) > −xA1(µ).
Case 1.1): z1(k) ≤−xA1(µ)

∆VL(z(k)) = V (z(k +1))−V (z(k))
= (Az(k))T PAz(k)− z(k)T Pz(k)
= z(k)T (AT PA−P)z(k) (9)

Case 1.2): z1(k) > −xA1(µ)

∆VR(z(k)) =V (z(k +1))−V (z(k))
= (Bz(k)+ cµ)T P(Bz(k)+ cµ)− z(k)T Pz(k)
= z(k)T (BT PB−P)z(k)+2µcT PBz(k)+µ2cT Pc

= z(k)T (BT PB−P)z(k)+2xA1(µ)(B1 −A1)T PBz(k)
+x2

A1
(µ)(B1 −A1)T P(B1 −A1) (10)

Combining (9) and (10) yields

∆V (z(k)) =
{

∆VL(z(k)), if z1(k) ≤−xA1(µ)
∆VR(z(k)), if z1(k) > −xA1(µ) (11)

From (9) and (10), a necessary condition for ∆V (z(k))
to be negative definite is that the following two matrix
inequalities hold:

AT PA−P < 0, (12)

BT PB−P < 0. (13)

Moreover, the following claim, which asserts sufficiency
of (12),(13) for negative definiteness of ∆V (z(k)) is stated
and proved.

Claim: (Sufficiency of LMIs (12)-(13) for Decreasing Lya-
punov Function)
If the matrix inequalities (12)-(13) are satisfied with P =
PT > 0, then ∆V (z(k)) given by (11) is negative definite.

Proof: Assume that there is a P = PT > 0 such that (12)-
(13) are satisfied. Then, ∆VL = zT (AT PA−P)z < 0 ∀z �= 0.
It remains to show that ∆VR < 0. Let z = (z1,z2)T , where
z1 ∈ R and z2 ∈ R

n−1. Note that ∆V is continuous for
all z. Continuity of ∆V follows from the continuity of V
and continuity of the map (7). Since ∆VL < 0 (∆VL = 0
if and only if z = 0) and ∆V is continuous for all z, it
follows that ∆VR < 0 at the border {z1 = −xA1(µ)} (since
lim(z1,z2)→(−x−A1(µ),z2) ∆VL = lim(z1,z2)→(−x+

A1(µ),z2) ∆VR). It re-
mains to show that ∆VR < 0 for all z in the region z1 >
−xA1(µ) (note that −xA1(µ) > 0). Completing the squares
in (10) allows us to write ∆VR(z) as follows:

∆VR(z) = zT (BT PB−P)z+2xA1(µ)(B1 −A1)T PBz

+x2
A1

(µ)(B1 −A1)T P(B1 −A1)

= (z−α)T (BT PB−P)(z−α)−αT (BT PB−P)α
+x2

A1
(µ)(B1 −A1)T P(B1 −A1) (14)

where α = −xA1(µ)(BT PB−P)−1BT P(B1 −A1). Let N ⊂
R

n such that N is convex and contains the origin (for
example, a ball). Since the fixed point xA(µ) is close to
the origin for small µ, the hyperplane z1 = −xA1(µ) slices
the neighborhood N. Consider ∆VR(z) restricted to N. The
second derivative of ∆VR(z) with respect to z (i.e., its
Hessian matrix) is ∇ 2∆VR = 2(BT PB−P) < 0. Thus, ∆VR(z)
is strictly concave on N, i.e., for every z, y ∈ N, and
θ ∈ (0,1), ∆VR(θz + (1− θ)y) > θ∆VR(z) + (1− θ)∆VR(y).
Note that ∆VR(0) = x2

A1
(µ)(B1 −A1)T P(B1 −A1) > 0. Now,

we show that ∆VR < 0 ∀z∈N with z1 >−xA1(µ). By way of
contradiction, suppose there is a y ∈ N, with y1 > −xA1(µ),
such that ∆VR(y) > 0. Since ∆VR(z) is strictly concave,
it follows that ∆VR(z) is positive along the line segment
connecting 0 and y: ∆VR(θ ·0+(1−θ)y) > θ∆VR(0)︸ ︷︷ ︸

>0

+(1−

θ)∆VR(y)︸ ︷︷ ︸
>0

> 0, ∀θ ∈ (0,1). But, along the line connecting

z = 0 with z = y, there is a point z∗ with z∗1 =−xA1(µ) where



∆VR(z∗) < 0, which is a contradiction. Thus, ∆VR(z) < 0 for
all z ∈ N with z1 > −xA1(µ) > 0.

The following proposition summarizes the results so far.

Proposition 1: The forward difference of V = zT Pz, with
P = PT > 0, along trajectories of (7) with µ ≤ 0 is negative
definite (i.e., ∆V (z) < 0) if and only if the following matrix
inequalities hold:

AT PA−P < 0, (15)

BT PB−P < 0. (16)

Case 2):µ > 0. The fixed point of F is xB(µ) = (I−B)−1bµ.
Changing the state variable in (2) to z = x− xB(µ) yields
after simplification

z(k +1) =
{

Az(k)+ cµ, if z1(k) ≤−xB1(µ)
Bz(k), if z1(k) > −xB1(µ) (17)

where c = (A−B)(I−B)−1)b. In the new coordinates, z = 0
is a fixed point for all µ > 0. (Note that the border zborder =
{z : z1 = −xB1(µ)}, varies as a function of µ.) Note that
since B and A differ only in their first columns, all elements
of A−B are zero except for the first column. Thus, cµ =
(A−B)(I −B)−1bµ = (A−B)xB(µ) = xB1(µ)(A1 −B1).

Consider the same quadratic Lyapunov function candi-
date as in (8) above:

V (z) = zT Pz, where P = PT > 0

The forward difference of V along trajectories of (17)
is ∆V (z(k)) = V (z(k + 1)−V (z(k)). There are two cases:
z1(k)≤−xB1(µ) and z1(k) >−xB1(µ). (Note that xB1(µ) > 0
from (4).)

Case 2.1): z1(k) ≤−xB1(µ)

∆VL(z(k)) = V (z(k +1))−V (z(k))
= (Az(k)+ cµ)T P(Az(k)+ cµ)− z(k)T Pz(k)
= z(k)T (AT PA−P)z(k)+2µcT PAz(k)+µ2cT Pc

= z(k)T (AT PA−P)z(k)+2xB1(µ)(A1 −B1)T PAz(k)
+x2

B1
(µ)(A1 −B1)T P(A1 −B1) (18)

Case 2.2): z1(k) > −xB1(µ)

∆VR(z(k)) = V (z(k +1))−V (z(k))
= (Bz(k))T PBz(k)− z(k)T Pz(k)
= z(k)T (BT PB−P)z(k) (19)

Combining (18) and (19) yields

∆V (z(k)) =
{

∆VL(z(k)), if z(k) ≤−xB1(µ)
∆VR(z(k)), if z(k) > −xB1(µ) (20)

Proposition 2: (Necessary and Sufficient Conditions for
Decreasing Lyapunov Function)
The forward difference of V = zT Pz, with P = PT > 0,
along trajectories of (17) with µ≥ 0 is negative definite (i.e.,

∆V (z) < 0) if and only if the following matrix inequalities
hold:

AT PA−P < 0, (21)

BT PB−P < 0. (22)

Proof: Necessity follows from (18) and (19), and the proof
for sufficiency is similar to that for the case µ≤ 0 above.

By combining Proposition 1 and Proposition 2, the main
result of this paper is obtained.

Proposition 3: (Sufficient Condition for Nonbifurcation
with Persistent Stability in n-Dimensional PWS Maps)
The PWS map (2) has a globally asymptotically stable fixed
point for all µ ∈ R if there is a P = PT > 0 such that

AT PA−P < 0,

BT PB−P < 0.

Corollary 1: If at µ = 0 the origin of the map (2) is
quadratically stable, i.e., using a quadratic Lyapunov func-
tion V = xT Px, with P > 0, then the fixed point depending on
µ on both sides of the border is attracting and no bifurcation
occurs from the origin as µ is varied through zero.

Below, a numerical example is given to demonstrate how
the Lyapunov-based techniques considered in the previous
section can be used in the stability and bifurcation analysis.

Example 1: Consider the three-dimensinal PWS map

x(k +1) =
{

Ax(k)+bµ, x1(k) ≤ 0
Bx(k)+bµ, x1(k) > 0

(23)

where

A =


 0.4192 0.3514 0.3473

0.2840 −0.2733 −0.3107
0.1852 −0.2224 −0.3974


 ,

B =


 −0.60 0.3514 0.3473

0.56 −0.2733 −0.3107
−0.90 −0.2224 −0.3974


 and b =


 1

0
0


 .

The eigenvalues of A and B are σ(A) =
{0.5653,−0.7413,−0.0755} and σ(B) =
{0.0395,−0.6551 ± j 0.4246}, respectively. Although
both A and B are Schur stable matrices, it cannot be
concluded that no bifurcation for (23) occurs at µ = 0.

A common quadratic Lyapunov function V = xT Px, with
P = PT > 0 that satisfies the conditions of Proposition 3
exists for this example. To wit:

P =


 1.6304 0.1559 −0.1313

0.1559 1.3200 0.4436
−0.1313 0.4436 1.3266




is obtained using the MATLAB LMI toolbox. Thus, the
PWS map (23) has a unique attracting fixed point for all µ
(see Figure 1).
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Fig. 1. Bifurcation diagram for Example 1. Each solid line represents a
path of stable fixed points.

IV. LYAPUNOV-BASED FEEDBACK CONTROL DESIGN

In this section, the results of Section III are used in the
design stabilizing feedback control laws. It is important
to emphasize that for our approach to apply, the control
action should not introduce discontinuity in the map. This
is because, as discussed in the introduction, the definition
of BCBs requires that the system map be continuous at
the border, and thus our results on nonbifurcation with
persistent stability also apply only under this condition.
Therefore, to maintain continuity of the map after control
is applied, it is assumed that the input vectors on both sides
of the border are equal. In this work, the input vectors are
taken to be equal to b (the derivative of the map with respect
to the bifurcation parameter.)

Simultaneous feedback control is considered first, fol-
lowed by switched feedback control design.

A. Simultaneous Feedback Control Design

In this control method, the same control is applied on
both sides of the border. The purpose of pursuing stabilizing
feedback acting on both sides of the border is to ensure
robustness with respect to modeling uncertainty. Moreover,
transformation to the normal form is not required when
simultaneous control is used. All that is needed is a good
estimate of the Jacobian matrices on both sides of the
border.

Consider the closed-loop system using static linear state
feedback

x(k +1) =
{

Ax(k)+bµ+bu(k), if x1(k) ≤ 0
Bx(k)+bµ+bu(k), if x1(k) > 0

(24)

u(k) = gx(k) (25)

where g is the control gain (row) vector.
The following proposition gives stabilizability condition

for the border collision bifurcation with this type of control
policy.

Proposition 4: If there exists a P = PT > 0, and a feed-
back gain (row) vector g such that

P− (A+bg)T P(A+bg) > 0 (26)

P− (B+bg)T P(B+bg) > 0 (27)

then, any border collision bifurcation that occurs in the
open-loop system (u ≡ 0) of (24) can be eliminated and
persistent stability is guaranteed using simultaneous feed-
back (25). Equivalently, if there exists a Q and y such that(

Q AQ+by
(AQ+by)T Q

)
> 0, (28)(

Q BQ+by
(BQ+by)T Q

)
> 0, (29)

then any border collision bifurcation that occurs in (24)
can be eliminated using simultaneous feedback (25). Here
Q = P−1 and the feedback gain is given by g = yP.

Proof: The closed-loop system is given by

x(k +1) =
{

(A+bg)x(k)+µb, if x1(k) ≤ 0
(B+bg)x(k)+µb, if x1(k) > 0

(30)

Using Proposition 3, a sufficient condition to eliminate the
BCB is the existence of a P = PT > 0 such that

P− (A+bg)T P(A+bg) > 0 (31)

P− (B+bg)T P(B+bg) > 0 (32)

where g is the control gain to be chosen.
Next, inequalities (31)-(32) are shown to be equivalent

to (28)-(29) using the Schur complement [25], [22]. It is
straightforward to show that

P− (A+bg)T P(A+bg) > 0

⇐⇒ P−1 − (A+bg)P−1(A+bg)T > 0,

and P− (B+bg)T P(B+bg) > 0

⇐⇒ P−1 − (B+bg)P−1(B+bg)T > 0.

The nonlinear matrix inequalities above are transformed into
LMIs using the Schur complement [25], [22]:

P−1 − (A+bg)P−1(A+bg)T

= P−1 − (A+bg)P−1PP−1(A+bg)T

= P−1 − (AP−1 +bgP−1)P(AP−1 +bgP−1)T > 0

⇐⇒
(

P−1 AP−1 +by
(AP−1 +by)T P−1

)
> 0

Similarly,

P− (B+bg)T P(B+bg) > 0

⇐⇒
(

P−1 BP−1 +by
(BP−1 +by)T P−1

)
> 0

by similar reasoning.
The following proposition states that if a CQLF exists in

one coordinate system, another CQLF exists in a different
coordinate system arrived at using a simultaneous similarity
transformation applied to both A and B.



Proposition 5: (CQLF and Similarity Transformations)
Suppose V = xT Px (with P = PT > 0) is a common quadratic
Lyapunov function for both of the matrices A and B (i.e.,
AT PA−P < 0 and BT PB−P < 0). Then Ṽ = xT P̃x with P̃ =
(T−1)T PT−1 = P̃T > 0 is a common quadratic Lyapunov
function for Ã = TAT−1 and B̃ = T BT−1 (i.e. ÃT P̃Ã− P̃ < 0
and B̃T P̃B̃− P̃ < 0). In other words, if a CQLF exists in one
coordinate system, another CQLF exists if a simultaneous
change of coordinates is applied to both A and B.

Proof: See [16].

Remark 1: The switching control design presented above
does not depend on the border separating the two regions of
smooth behavior. Thus, transformation to the normal form
is not required before the control design.

B. Switched Feedback Control Design

Consider the closed-loop system using static piecewise
linear state feedback

fµ(x(k)) =
{

Ax(k)+bµ+bu(k), if x1(k) ≤ 0
Bx(k)+bµ+bu(k), if x1(k) > 0

(33)

where

u(k) =
{

g1x(k), x1(k) ≤ 0
g2x(k), x1(k) > 0

(34)

with the restriction that g1 and g2 may only differ in their
first component, i.e., g1i = g2i, i = 2,3, · · · ,n. This condition
is imposed to maintain continuity along the border {x : x1 =
0}.

Proposition 6: If there exists a P = PT > 0, and feedback
gains g1 and g2 with g1i = g2i, i = 2,3, · · · ,n such that

P− (A+bg1)T P(A+bg1) > 0, (35)

P− (B+bg2)T P(B+bg2) > 0, (36)

then any border collision bifurcation that occurs in the
open-loop system (u ≡ 0) of (33) can be eliminated using
switching feedback (34). Equivalently, if there exists a Q,
y1 and α ∈ R such that(

Q AQ+by1

(AQ+by1)T Q

)
> 0, (37)(

Q BQ+by1

(BQ+by1)T Q

)
−α

(
0 b(e1)T Q

Qe1bT 0

)
> 0, (38)

then any border collision bifurcation that occurs in (33) can
be eliminated using switching feedback (34). Here, Q = P−1

and the feedback gains are given by g1 = y1P and g2 =
g1 −α(e1)T .
Proof: The closed-loop system is given by

x(k +1) =
{

(A+bg1)x(k)+µb, if x1(k) ≤ 0
(B+bg2)x(k)+µb, if x1(k) > 0

(39)

Using Proposition 3, a sufficient condition to eliminate the
BCB is the existence of a P = PT > 0 such that

P− (A+bg1)T P(A+bg1) > 0 (40)

P− (B+bg2)T P(B+bg2) > 0 (41)

where g1, g2 are the control gains to be chosen. Inequali-
ties (40),(41) are equivalent to(

Q AQ+by1

(AQ+by1)T Q

)
> 0 (42)(

Q BQ+by2

(BQ+by2)T Q

)
> 0 (43)

respectively, where Q = P−1, g1 = y1P and g2 = y2P. This
equivalence can be shown using similar reasoning as that
used in the proof of Proposition 4.

The restriction g1i = g2i, i = 2,3, · · · ,n, can be written as

g2 = g1 −α(e1)T (44)

where α ∈ R. Therefore,

y1 − y2 = g1Q−g2Q

= (g1 −g2)Q
= α(e1)T Q (45)

Substituting y2 = y1 − α(e1)T Q in (43) yields (38). This
completes the proof.

Note that if α = 0 in (38), then the switching feedback
control (34) becomes simultaneous control.

Remark 2: We remark that switching control design
(with no restriction on feedback gains) was used in [22]
for stabilization of the origin of discrete time switching
systems. No bifurcation control was considered in the
referenced work.

C. Numerical Examples

Below, numerical examples that demonstrate the pro-
posed feedback control methods are given.

Example 2: (Fixed point attractor bifurcating to instan-
taneous chaos)
Consider the three dimensional PWS map

x(k +1) =
{

Ax(k)+bµ, x1(k) ≤ 0
Bx(k)+bµ, x1(k) > 0

(46)

where

A =


 0.0334 1.7874 −0.1705

−0.4588 −0.4430 −0.8282
0.0474 −0.0416 0.8000


 ,

B =


 0.8384 1.7874 −0.1705

−0.8180 −0.4430 −0.8282
0.6602 −0.0416 0.8000


 and b =


 1

0
0


 .

The eigenvalues of A and B are σ(A) =
{0.766,−0.1878 ± j 0.8389} and σ(B) =
{−0.1157,0.6555 ± j 1.0987}, respectively. Note that
A is Schur stable, but B is unstable. Simulation results
show that (46) undergoes a border collision bifurcation
from a fixed point attractor to instantaneous chaos at µ = 0
(see Figure 2).
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Fig. 2. Bifurcation diagram for Example 2. The solid line represents a
path of stable fixed points and the shaded region represents a one piece
chaotic attractor growing out of the fixed point at µ = 0.

Feedback control design: Using the results of Proposition 4,
a symmetric and positive definite matrix Q and a feedback
control gain vector g that satisfy the LMIs (28)-(29) are
sought. A solution to (28)-(29) is obtained using the MAT-
LAB LMI toolbox. To wit:

Q =


 0.4753 −0.0428 −0.1694

−0.0428 0.8821 −0.1647
−0.1694 −0.1647 0.5041


 ,

y =
( −0.1601 −1.4937 0.3356

)
,

g = yQ−1

=
( −0.5193 −1.7324 −0.0747

)
.

The closed-loop matrices are given by

Ac = A+bg

=


 −0.4859 0.0550 −0.2452

−0.4588 −0.4430 −0.8282
0.0474 −0.0416 0.8000


 ,

Bc = B+bg

=


 0.3191 0.0550 −0.2452

−0.8180 −0.4430 −0.8282
0.6602 −0.0416 0.8000


 .

Their eigenvalues are: σ(Ac) = {0.8141,−0.4715 ±
j 0.1409} and σ(Bc) = {−0.4507,0.5634± j 0.3498}. The
bifurcation diagram of the closed loop system is depicted
in Figure 3.

Example 3: (Saddle-node border collision bifurcation)
Consider the three dimensional PWS map

x(k +1) =
{

Ax(k)+bµ, x1(k) ≤ 0
Bx(k)+bµ, x1(k) > 0

(47)

where

A =


 0.0350 −0.2280 −0.9385

−0.3123 −0.0029 0.9191
−0.3825 −0.5107 0.5553


 ,
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Fig. 3. Bifurcation diagram for Example 2 with simultaneous feedback
control u(k) = gx(k). The solid lines represent a path of stable fixed points.

B =


 3.3000 −0.2280 −0.9385

−0.6299 −0.0029 0.9191
0.3705 −0.5107 0.5553


 and b =


 1

0
0


 .

The eigenvalues of A and B are σ(A) = {−0.2921,0.4397±
j 0.3470} and σ(B) = {3.1739,0.3392 ± j 0.4756}, re-
spectively. Note that A is Schur stable, but B is unstable.
Simulation results show that (47) undergoes a saddle node
border collision bifurcation where a stable and an unstable
fixed point collide and disappear as µ is increased through
zero (see Figure 4).
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Fig. 4. Bifurcation diagram for Example 3 without control. The solid line
represents a path of stable fixed points whereas the dashed line represents
a path of unstable fixed points.

Feedback control design: Simultaneous stabilizing feedback
control based on Proposition 4 does not exist for this
example. Therefore, a stabilizing switched feedback control
using Proposition 6 is sought. Using the LMI toolbox in
MATLAB, a symmetric and positive definite matrix Q and
a feedback control gain vectors g1 and g2 that satisfy the



LMIs (37)-(38) are obtained:

α = 3.0972

Q =


 25.3606 4.5507 7.9810

4.5507 43.0961 9.8713
7.9810 9.8713 30.8840


 ,

y1 =
(

5.7709 14.8260 34.4887
)
,

g1 = y1Q−1

=
( −0.1436 0.1024 1.1211

)
,

g2 = g1 −α(e1)T

=
( −3.2408 0.1024 1.1211

)
.

The closed-loop matrices are given by

Ac = A+bg1

=


 −0.1086 −0.1256 0.1826

−0.3123 −0.0029 0.9191
−0.3825 −0.5107 0.5553


 ,

Bc = B+bg2

=


 0.0592 −0.1256 0.1826

−0.6299 −0.0029 0.9191
0.3705 −0.5107 0.5553


 .

Their eigenvalues are: σ(Ac) = {0.0011,0.2213± j 0.6236}
and σ(Bc) = {−0.0002,0.3059± j 0.5102}. The bifurcation
diagram of the closed-loop system is similar to Figure 3.

V. CONCLUDING REMARKS

Lyapunov-based analysis of piecewise smooth discrete-
time systems that undergo border collision bifurcations
has been considered. One of the main contributions of
this paper is that a sufficient condition for nonbifurcation
with persistent stability in PWS maps of dimension n that
depend on a parameter was derived. This condition has
been used in the design of stabilizing feedback control
laws to eliminate border collision bifurcations in PWS maps
and produce desirable behavior. Numerical examples were
given to demonstrate the efficacy of the proposed control
techniques.
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