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Abstract Today’s electric power systems are often subject to stress by heavy
loading conditions, resulting in operation with a small margin of stabil-
ity. This has led to research on estimating the distance to instability.
Most of these research efforts are solely model-based. In this work, a
signal-based approach for real-time detection of impending instability is
considered. The main idea pursued here involves using a small additive
white Gaussian noise as a probe signal and monitoring the spectral den-
sity of one or more measured states for certain signatures of impending
instability. Input-to-state participation factors are introduced as a tool
to aid in selection of locations for probe inputs and outputs to be mon-
itored. Since these participation factors are model-based, the chapter
combines signal-based and model-based ideas toward achieving a robust
methodology for instability monitoring.

Keywords: Monitoring, power systems, stability, instability, precursors, bifurcation,
voltage collapse, participation factors.

1. Introduction
Today’s electric power systems are often subject to stress due to heavy

loading conditions. Under such conditions, a power system that appears
to be functioning well could actually be very vulnerable to loss of stabil-
ity. Stability loss can, in turn, trigger a chain of events leading to failure
of the system. Stability loss can occur in several forms, but the most
common one resulting from heavy load conditions is voltage instability,
which leads to voltage collapse through cascading of system events [11].
This differs markedly from transient instability following a system con-
tingency, since this type of instability usually results from slow changes
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in system parameters, such as loading or generation. There is an in-
herent difficulty in predicting voltage instability, since the parameter
values at which it occurs depend on component dynamics in an uncer-
tain and complex interconnected system. Inaccurate system models can
easily yield incorrect results for the stability envelope of the system.
When a system must be operated near its stability limits, any model
uncertainty can result in the system exiting its stable operating regime
without warning. Even the most detailed calculations are insufficient in
these circumstances.

In this chapter, instability monitoring using (noisy) probe signals is
considered. The use of probe signals is shown to help reveal an im-
pending loss of stability. This is because probe signals propagate in the
power system and give certain signatures near an instability that can
be used as a warning signals for possible impending voltage collapse.
Such warning signals are needed to alert system operators of a situa-
tion that may require preventive control, and to provide the operators
with valuable additional time to take necessary preventive (rather than
corrective) measures.

The chapter proceeds as follows. In Section 2, participation factors for
linear systems are discussed. This includes both the modal participation
factors, and newly introduced input-to-state participation factors. In
Section 3, a signal-based approach to instability monitoring is presented.
In Section 4, three case studies are given that demonstrate the proposed
approach to instability monitoring. Concluding remarks are collected in
Section 5.

2. Participation Factors
As mentioned above, the approach to instability monitoring presented

in this chapter involves injecting probe signals at certain locations in a
power network and monitoring the effects on measured output variables.
Participation factors, specifically input-to-state participation factors in-
troduced in this section, play an important role in selection of sites
for probe signal injection and output measurement. Because of this, a
brief summary of modal participation factors is given first, along with
a derivation of input-to-state modal participation factors. This will be
helpful background in the discussion of precursor-based monitoring in
the next section.

Participation factors are nondimensional scalars that measure the in-
teraction between the modes and the state variables of a linear sys-
tem [9, 12, 2]. Since their introduction in [9, 12], participation factors
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have been used for analysis, order reduction and controller design in a
variety of fields, especially electric power systems.1

2.1 Modal participation factors
Consider a general continuous-time linear time-invariant system

ẋ = Ax(t) (1.1)

where x ∈ �n, and A is a real n×n matrix. Suppose that A has a set of
n distinct eigenvalues (λ1, λ2, . . . , λn). Let (r1, r2, . . . , rn) be right eigen-
vectors of the matrix A associated with the eigenvalues (λ1, λ2, . . . , λn),
respectively. Let (l1, l2, . . . , ln) denote left (row) eigenvectors of the ma-
trix A associated with the eigenvalues (λ1, λ2, . . . , λn), respectively.

The right and left eigenvectors are taken to satisfy the normalization

lirj = δij

where δij is the Kronecker delta:

δij =
{

1 i = j
0 i �= j

The definition of modal participation factors is as follows. The partic-
ipation factor of the i-th mode in the k-th state is defined to be the
complex number

pki := likr
i
k

This formula also gives the participation of the k-th state in the i-th
mode. Participation factors measure the level of participation of modes
in states and the level of participation of states in modes. The partici-
pation factors are dimensionless quantities that are independent of the
units in which state variables are measured [9, 12, 2].

2.2 Input-to-state participation factors
The concept of participation factors of modes in states and vice versa

has been extended to linear time invariant systems with inputs [16]

ẋ = Ax + Bu (1.2)
y = Cx. (1.3)

We consider the case where the input is applied to one component, say
the q-th component, of the right side of (1.2) and only one state, say the
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k-th state, is measured. That is, in Eqs. (1.2)-(1.3), B and C take the
form

B = eq = [0 . . . 0 1︸︷︷︸
q−th

0 . . . 0]T ,

C = (ek)T = [0 . . . 0 1︸︷︷︸
k−th

0 . . . 0].
(1.4)

With this choice of C and B, in steady state the output in (1.3) (in the
frequency domain) is given by

y(s) = xk(s) = C(sI − A)−1Bu

=
n∑

i=1

CriliB

s − λi
u(s)

=
n∑

i=1

ri
kl

i
q

s − λi
u(s) (1.5)

We take

pi
qk = |CriliB|

= |ri
kl

i
q| (1.6)

as the participation factor of mode i in state k when the input is applied
to state q. We call this quantity the input-to-state participation factor
(ISPF) for mode i, with measurement at state k and input applied to
state q. Note that the ISPF is dimensionless given that the input and
output vectors B and C take the special form in (1.4). In [8], the quantity
pi

qk = ri
kl

i
q is called a generalized participation.

3. Precursor-Based Monitoring
As noted by Hauer [5], the recurring problems of system oscillations

and voltage collapse are due in part to system behavior not well cap-
tured by the models used in planning and operation studies. In the face
of component failures, system models quickly become mismatched to
the physical network, and are only accurate if they are updated using a
powerful and accurate failure detection system. Therefore, it is impor-
tant to employ nonparametric techniques for instability monitoring. In
this work, noisy probe signals are used to help detect impending loss of
stability.

Recently, Kim and Abed [7] developed monitoring systems for de-
tecting impending instability in nonlinear systems. The work builds on
Wiesenfeld’s research on “noisy precursors of bifurcations,” which were
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originally introduced to characterize and employ the noise amplifica-
tion properties of nonlinear systems near various types of bifurcations
[14, 15]. Noisy precursors are features of the power spectral density
(PSD) of a measured output of a system excited by additive white Gaus-
sian noise (AWGN). In [7], the noisy precursors concept was extended
from systems operating at limit cycles to systems operating near equi-
libria, and closed-loop monitoring systems were developed to facilitate
use of noisy precursors in revealing impending loss of stability for such
systems. It was shown in [7] that systems driven by white noise and
operating near an equilibrium point exhibit sharply growing peaks near
certain frequencies as the system nears a bifurcation. In particular, it
was shown that for stationary bifurcation where an eigenvalue passes
through the origin (as in the case of pitchfork or transcritical bifurca-
tion), the peak in the PSD occurs at zero frequency. Analogously, for the
case of Hopf bifurcation (complex conjugate pair of eigenvalues crossing
the imaginary axis transversely), the peak in the PSD occurs near ωc,
the critical frequency of the Hopf bifurcation.

In this work, we show that noisy precursors can be used as a warning
signal indicating that the power system is operating dangerously close
to instability. We also show that the spectrum of a measured state of
the system is proportional to the square of the input-to-state participa-
tion factors. Thus, ISPFs can be used to determine the best location
for applying the probe signal and for choosing which state to measure
where the noisy precursor would be most apparent. Figure 1.1 shows a
schematic diagram of our instability monitoring technique.

Measurements

Control

Power System

Probe Signal

Inputs

Instability Detector
Signal Analysis/

Preventive

Figure 1.1. Precursor-based instability monitor with external probe signal.
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Consider a nonlinear dynamic system (“the plant”)

ẋ = f(x, µ) + ξ(t) (1.7)

where x ∈ Rn, µ is a bifurcation parameter, and ξ(t) ∈ Rn is a zero-
mean vector white Gaussian noise process [7]. Let the system possess an
equilibrium point x0. For small perturbations and noise, the dynamical
behavior of the system can be described by the linearized system in the
vicinity of the equilibrium point x0. The linearized system corresponding
to (1.7) with a small noise forcing ξ(t) is given by

ẋ = Df(x0, µ)x + ξ(t) (1.8)

where x now denotes x − x0 (the state vector referred to x0). For the
results of the linearized analysis to have any bearing on the original
nonlinear model, we must assume that the noise is of small amplitude.

The noise ξ(t) can occur naturally or can be injected using available
controls. We consider the case where the noise is applied to one state and
the power spectral density of another state is calculated. That is, we con-
sider the case where ξ(t) = Bη(t) with B = eq = [0 . . . 0 1︸︷︷︸

q−th

0 . . . 0]T ,

η(t) is a scalar white Gaussian noise with zero mean and power σ2, and
the output is given by y = Cx with C = (ep)T = [0 . . . 0 1︸︷︷︸

p−th

0 . . . 0].

In steady state, the output of system (1.8) forced by a small AWGN
is given by

y(s) = xp(s) =
n∑

i=1

CriliB

s − λi
η(s)

=
n∑

i=1

ri
pl

i
q

s − λi
η(s). (1.9)

The power spectral density of the output of a linear system with
transfer function H(jω) is related to the power spectral density of the
input by [6]

Sy(ω) = H(jω)H(−jω)Sη(ω) (1.10)

Thus, the power spectrum of the p-th state is given by

Sxp =

(
n∑

i=1

ri
pl

i
q

jω − λi

) (
n∑

k=1

rk
p lkq

−jω − λk

)
σ2

= σ2
n∑

i=1

n∑
k=1

ri
pl

i
q

jω − λi

rk
p lkq

−jω − λk
(1.11)
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Suppose that the system is nearing a Hopf bifurcation. Specifically,
assume that a complex conjugate pair of eigenvalues is close to the
imaginary axis, and has relatively small negative real part in abso-
lute value compared to other system eigenvalues. Denote this pair as
λ1,2 = −ε ± jωc, with ε > 0 small and ωc > 0:

|Re(λi)| � ε, i = 3, . . . , n. (1.12)

Under this assumption, Sxp(ω) can be approximated as

Sxp(ω) ≈ σ2
2∑

i=1

2∑
k=1

ri
pl

i
q

jω − λi

rk
p lkq

−jω − λk

= σ2
(

1
ε + j(ω − ωc)

1
ε − j(ω + ωc)

(r1
pl

1
q)

2

+
1

ε + j(ω + ωc)
1

ε − j(ω − ωc)
(r2

pl
2
q)

2

+
1

ε + j(ω − ωc)
1

ε − j(ω − ωc)
r1
pl

1
qr

2
pl

2
q

+
1

ε + j(ω + ωc)
1

ε − j(ω + ωc)
r1
pl

1
qr

2
pl

2
q

)

= σ2

( |r1
pl

1
q |2

ε2 + (ω − ωc)2
+

|r1
pl

1
q |2

ε2 + (ω + ωc)2

+ 2Re
{

1
ε + j(ω − ωc)

1
ε − j(ω + ωc)

(r1
pl

1
q)

2
})

. (1.13)

Here, ri
p denotes the p-th component of the i-th right eigenvector ri

(the eigenvector corresponding to λi), and liq denotes the q-th compo-
nent of the i-th left eigenvector li. Note that all terms containing λi,
i = 3, . . . , n have been neglected and only terms containing the critical
eigenvalues λ1 and λ2 have been retained. After algebraic manipula-
tion and substituting (r1

pl
1
q)

2 = α + jβ where α = |r1
pl

1
q |2 cos (2θpq) and

β = |r1
pl

1
q |2 sin (2θpq), with θpq = tan−1

(
Im{r1

pl1q}
Re{r1

pl1q}

)
, the power spectral

density of xp can be rewritten as

Sxp(ω) = σ2|r1
pl

1
q |2

(
1

ε2 + (ω − ωc)2
+

1
ε2 + (ω + ωc)2

)

+ σ2 (βε + αωc)(ω − ωc) + ε(εα − ωcβ)
(ε2 + ω2

c )(ε2 + (ω − ωc)2)

− σ2 (βε + αωc)(ω + ωc) − ε(εα − ωcβ)
(ε2 + ω2

c )(ε2 + (ω + ωc)2)
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= σ2|r1
pl

1
q |2

[
(1 + G1(ω))

1
ε2 + (ω − ωc)2

+ (1 − G2(ω))
1

ε2 + (ω + ωc)2

]
(1.14)

where

G1(ω) =
(ε sin(2θpq) + ωc cos(2θpq))(ω − ωc) + ε(ε cos(2θpq) − ωc sin(2θpq))

ε2 + ω2
c

,

G2(ω) =
(ε sin(2θpq) + ωc cos(2θpq))(ω + ωc) − ε(ε cos(2θpq) − ωc sin(2θpq))

ε2 + ω2
c

.

For ω = ωc and sufficiently small ε (ε � ωc), the power spectral density
of xp is given by

Sxp(ω) = σ2|r1
pl

1
q |2

(
1
ε2

+ O

(
1
ε

)
+ O(1)

)
. (1.15)

Note that the ISPFs are related to the spectral densities of the states
of a system driven by small AWGN as in Eq. (1.14). The amplitude of
the spectrum is proportional to the square of the ISPFs. The input-to-
state participation factors can be used to determine the best location for
applying the probe signal and also the state that will have the highest
spectral peak.

4. Case Studies
Below, the instability monitoring technique presented above is demon-

strated on sample power system models. First, a single generator with
dynamic load is considered. Then, a single generator with an infinite bus
together with excitation control is considered. Finally, a three-generator
nine-bus power system model is considered.

4.1 Single generator with dynamic load
Consider the single generator power system model with induction mo-

tor load [13]:

˙δm = ω (1.16)
Mω̇ = −dmω + Pm − EmV Ym sin(δm − δ) (1.17)

Kqwδ̇ = −Kqv2V
2 − KqvV + Q(δm, δ, V ) − Q0 − Q1 (1.18)

TKqωKpvV̇ = KpωKqv2V
2 + (KpωKpv − KqωKpv)V

+ Kqω(P (δm, δ, V ) − P0 − P1)
− Kpω(Q(δm, δ, V ) − Q0 − Q1) (1.19)
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The state variables are δm (the generator phase angle, closely related to
the mechanical angle of the generator rotor), ω (the rotor speed), δ (the
load voltage phase angle) and V (the magnitude of the load voltage).
The load includes a constant PQ load in parallel with an induction mo-
tor. The real and reactive powers supplied to the load by the network
are

P (δm, δ, V ) = −E
′
0V Y

′
0 sin(δ) + EmV Ym sin(δm − δ),

Q(δm, δ, V ) = E
′
0V Y

′
0 cos(δ) + EmV Ym cos(δm − δ)

− (Y
′
0 + Ym)V 2

where

E
′
0 =

E0√
1 + C2Y −2

0 − 2CY −1
0 cos θ0

Y
′
0 = Y0

√
1 + C2Y −2

0 − 2CY −1
0 cos θ0

θ
′
0 = θ0 + tan−1

{
CY −1

0 sin θ0

1 − CY −1
0 cos θ0

}

The values of the parameters for this model are given in the appendix.
It has been shown that a supercritical Hopf bifurcation occurs in this

power system model as the reactive load Q1 is increased through the
critical value Q∗

1 = 2.980138 [13].
Next, we consider the system operating at loads close to the Hopf

bifurcation, say at Q1 = 2.9. The corresponding operating point is
x0 = [0.2473, 0, 0.0398, 0.9248]. The Jacobian of the system at this
operating point is

A =




0 1 0 0
−324.5254 −3.4153 324.5254 −73.8611
33.3333 0 −29.2479 72.7220
−3.3656 0 1.5180 −11.1529




The eigenvalues of A are {−0.7923 ± j6.6318, − 21.1157 ± j10.9959}.
To monitor the system, an AWGN probe signal is applied to the me-

chanical power Pm. Figure 1.2 depicts the spectral densities for the
four states δm, ω, δ and V for Q1 = 2.9 and σ = 0.001. As it is clear
from this figure, the state ω has a higher peak than all other states.
Figure 1.3 demonstrates the variation of the spectral density peak near
ω = ωc ≈ 6.6 rad/s as a function of the bifurcation parameter Q1. The
values of the input-to-state participation factors of the critical mode in
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all states are given in Table 1.1. As predicted by the analysis in Sec-
tion 3, the ordering of the peaks of the spectral densities of all states at
ωc can be predicted from the values of the ISPFs.

Table 1.1. Input-to-state participation factors and spectral peaks at ωc.

States Spectral peak Input-to-state participation
at ωc ≈ 6.6318 factors (ISPFs)

δm 9.528 × 10−4 p1
21 = 2.8992

ω 40.38 × 10−4 p1
22 = 19.364

δ 6.616 × 10−4 p1
23 = 2.4013

V 0.305 × 10−4 p1
24 = 0.4981
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Figure 1.2. Power spectral densities of the states of the model given in (1.16)-(1.19).
The bifurcation parameter was set to Q1 = 2.9. White Gaussian noise of zero mean
and (0.001)2 power was added to Pm.

4.2 Single generator connected to an infinite bus
Consider a synchronous machine connected to an infinite bus together

with excitation control [1]. It was shown [1] that this system undergoes a
Hopf bifurcation as the control gain in the excitation system is increased
beyond a critical value. The dynamics of the generator is given by:
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Figure 1.3. Variation of the peak value of the power spectral density of ω as a
function of the bifurcation parameter Q1. White Gaussian noise of zero mean and
(0.001)2 power was added to Pm.

δ̇ = ω (1.20)
2Hω̇ = −Dω + ω0(Pm − Pe) (1.21)

τ ′
d0Ė

′
q = EFD − E′

q − (Xd − X ′
d)id (1.22)

with the following algebraic equations:

Pe = Eqiq
Eq = E′

q + (Xq − X ′
d)id

id = x(Eq − E cos δ) − rE sin δ
iq = r(Eq − E cos δ) + xE sin δ

x = Xl+Xq

R2
l
+(Xl+Xq)2

r = Rl

R2
l
+(Xl+Xq)2

The subscripts d and q refer to the direct and quadrature axes, respec-
tively. The dynamics of the excitation control is given by

τEĖFD = −KEEFD + VR − EFDSE(EFD) (1.23)

τF V̇3 = −V3 +
KF

τE
(−KEEFD + VR − EFDSE(EFD)) (1.24)

τAV̇R = −VR + KA(VREF − Vt − V3) (1.25)
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Here Vt is the terminal voltage and is given by

V 2
t = v2

d + v2
q

where

−vd = ψq = −Xqiq
vq = ψd = E′

q − X ′
did.

The saturation function SE(EFD) is usually approximated as SE(EFD) =
AEX exp(BEXEFD). An equilibrium point of this system is denoted by
x0 = (δ0, ω0, E′

q
0, E0

FD, V 0
3 , V 0

R). The values of the parameters that ap-
pear in this power system model are given in Table 1.A.1.

For Pm = 0.937, VREF = 1.130, λ = 2, it has been shown that a
subcritical Hopf bifurcation occurs at K∗

A = 193.74 [1].
Next, we consider the system operating before the Hopf bifurcation,

say at KA = 185. The corresponding operating point is given by x0 =
[1.3515, 0, 1.1039, 2.3150, 0, 0.5472]. The Jacobian of the system at
this operating point is

A =




0 1 0 0 0 0
−62.2 −0.2 −79.7 0 0 0
−0.2 0 −0.4 0.2 0 0

0 0 0 −1.1 0 2
0 0 0 0 −1.7 0.1

125.9 0 −1157.6 0 −1850 −10




.

The eigenvalues of A are {−0.0139±j7.7707, −4.5832±j12.6178,−2.1029±
j0.9417}.

Note that for this model, there are two physically feasible locations for
applying the probe signal. The probe signal can be either applied to Vref

or to Pm. The input-to-state participation factors are used to determine
the best location for applying the probe signal. From the values of the
ISPFs (see Table 1.2), it is clear that mode 1 has higher participation in
other states when the probe signal is applied to Pm than when applied
to Vref . This can be also seen from the power spectral densities shown
in Figures 1.4 and 1.5. Also, the ISPFs give an indication of which state
to monitor. The higher the participation factor of the critical mode in
a state, the higher the peak of the spectrum for that state. Figure 1.6
shows the variation of the power spectral peak at the critical frequency
as a function of the bifurcation parameter when noise is added to Pm.

4.3 Three-generator nine-bus power system
Below, we consider the Western System Coordinating Council (WSCC)

3-machine, 9-bus power system model, which is widely used in the liter-
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Table 1.2. Input-to-state participation factors and spectral peaks at ωc for the single
generator connected to an infinite bus.

State Spect. peak at ω ≈ 7.8 ISPFs Spect. peak at ω ≈ 7.8 ISPFs
(noise added to Pm) (noise added to Vref )

δ 0.0226 p1
21 = 0.0648 0.0019 p1

61 = 0.0024
ω 1.2880 p1

22 = 0.4923 0.1084 p1
62 = 0.0185

E
′
q 0.75938 × 10−4 p1

23 = 0.0038 0.68651 × 10−5 p1
63 = 0.0001

EFD 0.2326 p1
24 = 0.2084 0.0210 p1

64 = 0.0078
V3 2.4644 × 10−4 p1

25 = 0.0068 2.2288 × 10−5 p1
65 = 0.0003

VR 3.3923 p1
26 = 0.8006 0.3064 p1

66 = 0.0301
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Figure 1.4. Power spectral densities of the states of the single generator connected
to an infinite bus system. The bifurcation parameter was set to KA = 185. White
Gaussian noise of zero mean and (0.000032)2 power was added to Pm.

ature [10, pp. 170–177],[3]. The dynamics of this model includes three
identical IEEE-Type I exciters for the three machines. The machine
data and the exciter data are given in [10, 3].

In this model, a subcritical Hopf bifurcation occurs as the load on bus
5 is increased beyond 4.5 pu [10]. Our goal in this case study is to de-
tect this impending loss of stability by using an AWGN probe signal and
continuously monitoring the power spectral densities of certain states.
This would give the system operator (or an automatic controller) valu-
able time to take appropriate preventive measures (e.g., shedding loads
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Figure 1.5. Power spectral densities of the states of the single generator connected
to an infinite bus system. The bifurcation parameter was set to KA = 185. White
Gaussian noise of zero mean and (0.000032)2 power was added to Vref .

at certain buses). The simulations of this model were conducted using
PSAT [3]. For values of the load on bus 5 close to 4.0 pu, the lineariza-
tion of the system at the operating point has two complex conjugate
pair of eigenvalues close to the imaginary axis, λ1,2 = −0.17665± j8.184
and λ3,4 = −0.3134± j1.7197. As the load on bus 5 is increased further,
the pair λ3,4 approaches the imaginary axis, while the other pair λ1,2

changes only slightly. For example, when the load at bus 5 is 4.4 pu,
λ1,2 = −0.18231±j8.0978 and λ3,4 = −0.04602±j2.1151. Increasing the
load on bus 5 beyond 4.5 pu causes the pair λ3,4 to cross the imaginary
axis from left to right.

From the values of the ISPFs calculated for this system, we found that
both of the critical modes have higher participation when the probe sig-
nal is applied to Pm3 , the mechanical power of generator number 3. Also,
we found that these modes have high participation in the field voltage
of the exciters. Therefore, in the following simulations, the probe signal
is added to Pm3 and the power spectral densities of the field voltages of
the three exciters (i.e., Efdi , i = 1, 2, 3) are monitored. Figure 1.7 and
Figure 1.8 show the power spectral densities of Efdi , i = 1, 2, 3 when the
load on bus 5 (PL5) is 4.0 pu and 4.4 pu, respectively. It is clear from
Figure 1.7 that when the load on bus 5 is 4.0 pu, the spectrum has two
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Figure 1.6. Variation of the peak value of the power spectral density of VR as a
function of the bifurcation parameter KA. White Gaussian noise of zero mean and
(0.000032)2 power was added to Pm.

Table 1.3. Input-to-state participation factors for the 3-machine nine-bus system
(partial listing). The load at bus 5 is 4.4 pu.

States measured
Input noise Efd1 Efd2 Efd3 ω1 ω2 ω3

added to

Pm1 3.0017 2.6973 2.1357 0.0033 0.0028 0.0031
Pm2 2.6113 2.3465 1.858 0.0029 0.0024 0.0027
Pm3 4.7816 4.2967 3.4022 0.0052 0.0044 0.0049
Vref1 0.0155 0.014 0.0111 0.0000169 0.0000143 0.000016
Vref2 0.0233 0.021 0.0166 0.0000255 0.0000215 0.00002409
Vref3 0.0475 0.0427 0.0338 0.0000519 0.000043 0.000049

peaks at 0.28 Hz and 1.3 Hz. These two frequencies correspond to the
complex eigenvalues λ3,4 and λ1,2, respectively. Note that the peak at
1.3 Hz that corresponds to the pair of complex eigenvalues λ1,2 is higher
than the peak at 0.28 Hz. However, when the load at bus 5 is increased
to 4.4 pu, the peak at 0.28 Hz becomes much larger than the one at 1.3
Hz (see Figure 1.8), which is an indicator that an instability is being
approached. Figure 1.9 shows the power spectral density of Efd1 for
three values of PL5 : 4.0 pu, 4.25 pu and 4.4 pu.



16

0 0.5 1 1.5 2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Freq [Hz]

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
Efd

1
Efd

2
Efd

3

Figure 1.7. Power spectral densities of the states Efd1 , Efd2 and Efd3 . The load
on bus 5 was used as a bifurcation parameter. The load value is 4.0 pu. White
Gaussian noise of zero mean and 0.05 power was added to Pm3 , the mechanical power
of generator number 3.

5. Conclusions and suggested future research
An instability monitoring technique that aims at detection of impend-

ing instability has been described and illustrated in several example sys-
tems. The theme of the approach is to provide a warning when the mar-
gin of stability of a power system is compromised, without dependence
on availability of an accurate system model. The approach consists of
using additive white Gaussian noise probe signals and monitoring the
spectral densities of certain measured states. Models are used in the ap-
proach in the selection of sites for probe signal injection and monitored
output signal measurement (akin to actuator and sensor placement in
control design). Input-to-state participation factors were presented and
used as a tool for selection of probe and measurement siting.

The methods presented here are mathematically based but address
engineering problems that are not easily defined in a crisp form. There
are several directions that can be pursued for furthering the aims of this
chapter.

A particularly challenging problem involves detection not only of the
fact that an instability is near, but also detecting the severity of the
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Figure 1.8. Power spectral densities of the states Efd1 , Efd2 and Efd3 . The load
on bus 5 was used as a bifurcation parameter. The load value is 4.4 pu. White
Gaussian noise of zero mean and 0.05 power was added to Pm3 , the mechanical power
of generator number 3.

impending instability from the point of view of nonlinear system behav-
ior. For example, an oscillatory instability can be of the hunting type,
in which small amplitude oscillations occur, or it can be divergent, re-
sulting in complete loss of operation. Although this can be determined
using analytical models using known methods of bifurcation analysis, it
is not known how this can be achieved using a signal-based approach.

Another direction involves studying use of other probe signals in addi-
tion to AWGN. Examples include periodic signals, chaotic signals cover-
ing an appropriate frequency range, and colored noise signals. The rela-
tive advantages and disadvantages of the various probe signals should be
considered. In this regard, connections to past work in real-time probing
of power systems and aircraft dynamics should be studied. In research
aircraft, for example, it is common to use “chirp” signals to probe the
aircraft for its stability properties in various parts of its flight envelope.

The integration of stability monitoring and fault detection is an im-
portant long-term research goal. In the meantime, it will be useful to
pursue case studies that will shed light on what will be required to
achieve this integration.
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Figure 1.9. Power spectral density of Efd1 for three values of PL5 (the load on bus
5): PL5 = 4.0 pu (dash-dotted line), PL5 = 4.25 pu (dashed line) and PL5 = 4.4 pu
(solid line). White Gaussian noise of zero mean and 0.05 power was added to Pm3 ,
the mechanical power of generator number 3.

Finally, we mention the application of closed-loop monitoring systems
to electric power system models. These designs, as described in [7], may
provide added flexibility and surety to the conclusions reached regarding
the presence of impending instability.
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Appendix: Parameter values for the generators in
Secs. 4.1 and 4.2
Parameters for the single generator model with dynamic load:

M = 0.01464, C = 3.5, Em = 1.05, Y0 = 3.33, θ0 = 0, θm = 0, Kpω = 0.4,
Kpv = 0.3, Kqω = −0.03, Kqv = −2.8, Kqv2 = 2.1, T = 8.5, P0 = 0.6, P1 = 0.0,
Q0 = 1.3, E0 = 1.0, Ym = 5.0, Pm = 1.0, dm = 0.05.

All values are in per unit except for angles, which are in degrees.

Parameters for the single generator model with an infinite bus:
The parameter values are given in Table 1.A.1 below.
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Table 1.A.1. Parameter values for the single generator connected to an infinite bus
model.

Synchronous machine Exciter Transmission line

H = 2.37 s KE = −0.05 R0
l = 0.02

D = 1 pu KF = 0.02 X0
l = 0.40

Xd = 1.7 τE = 0.50 s Rl = λR0
l

X ′
d = 0.245 τF = 0.60 s Xl = λX0

l

Xq = 1.64 τA = 0.10 s
ω0 = 377.0 rad/s AEX = 0.09
τ ′

d0 = 5.9 s BEX = 0.50

Notes
1. In [2], a new approach to defining modal participation factors was presented. The new

approach involved taking an average or a probabilistic expectation of a quantitative measure
of relative modal participation over an uncertain initial state vector. The new definitions
were shown to reduce to the original definition of participation factors of [9, 12] if the initial
state obeys a symmetry condition.
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