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ABSTRACT 

Future military systems such a FCS require a robust and flexible 

network that supports thousands of ad hoc nodes; therefore, we 

must ensure the scalability of networking protocols (e.g., rout-

ing, security and QoS). The use of hierarchy is a powerful solu-

tion to the scaling problem, since it allows networking protocols 

to operate on a limited number of nodes, as opposed to the entire 

network. We have proposed an automated solution to dynami-

cally create and maintain such hierarchy based on a combina-

tion of global optimization algorithms [1] and local distributed 

maintenance protocols [2]. Global optimization clearly im-

proves performance in a static network but, it is unclear how 

effective it is in a dynamic ad hoc environment. As network and 

node characteristics change, the optimization algorithm may use 

incomplete, stale, or even inaccurate metrics. In this paper, we 

analyze how the hierarchy created deteriorates from the optimal 

as network conditions change.  We show that the fragility of the 

optimization depends on the particular cost function and the 

number of metrics that change. More important, we show, for 

the first time, that global optimization can remain effective for 

long periods with good cost functions, even in large dynamic ad 

hoc networks (where metrics may change rapidly due to node 

mobility and links making and breaking). This result shows that, 

with fast optimization algorithms such as modified Simulated 

Annealing [1], future military systems can use global optimiza-

tion to autoconfigure domains to significantly improve perform-

ance. We also show that local maintenance protocols support 

the global optimization mechanisms by extending the time the 

hierarchy remains feasible. 

INTRODUCTION 

If heterogeneous ad hoc battlefield networks are to scale to 

hundreds or thousands of nodes, then some form of hierar-

chy is needed. One technique is to dynamically create a 

good hierarchy using Domain Autoconfiguration. Domains 

allow routing, QoS and other networking protocols to op-

erate on fewer nodes, with cross-domain interaction only 

through a few border nodes. This division greatly reduces 

overall overhead (e.g., routing overhead with n nodes goes 

from ( )2O n  to ( )O logn n ).  
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To provide this hierarchy many dynamic clustering algo-

rithms, mainly based on local distributed approaches, have 

been proposed in the literature [5] [6] [7] [8]. Their draw-

back, however, is that they do not take into consideration 

the overall network environment. Indeed, in many cases, 

these algorithms harm network performance instead of 

improving it because of the reclustering overhead they im-

pose in a dynamic network. We have proposed an auto-

mated way to dynamically create a good hierarchy using 

Domain Autoconfiguration based on a combination of 

global optimization [1] and local distributed maintenance 

[2]. This allows selection of domains to ensure a global 

optimization and allows protocols to be placed in domains 

tuned to more homogenous conditions [3]. The centralized 

optimization algorithm relies on a set of cost functions [1] 

that are selected appropriately based on the network envi-

ronment and the performance parameters of the network to 

be improved. 

 

Using global network information, in addition to the local 

maintenance, appears counter-intuitive for ad hoc net-

works. Although the centralized global optimization pro-

vides significant benefits (i.e., obtains the most optimal 

clustering map for the given cost function) when first con-

figured, it must be shown how effective global optimiza-

tion is in a dynamic ad hoc environment. To minimize 

overhead, global optimization will run only occasionally. 

Thus, it may use incomplete, stale, or even inaccurate met-

rics. It is therefore important to analyze how quickly the 

optimization deteriorates as the variables (network condi-

tions) change. In particular, we must know how the opti-

mality degrades with time in dynamic networks. Also, if 

there is no local domain maintenance algorithm (e.g., [2]), 

not only domains may be non-optima but, may also be in-

feasible. 

 

Indeed, by the time the information is collected, the opti-

mization process terminates and configuration information 

is distributed, we found that in some cases the clusters 

generated by the algorithm are no longer optimal (and pos-

sibly infeasible). Thus, though we have made significant 

progress on improving the optimization time [1], it is criti-

cal we understand how quickly the optimality degrades 

over time in a dynamic network. In the case of networks 
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without local domain maintenance, we must also look at 

the time it takes for a solution to become infeasible. 

 

This paper will present the first results showing how opti-

mality degrades over time for centralized domain algo-

rithms. We show the dependence on the cost functions se-

lected for the optimization algorithm and the mobility 

characteristics of the participating nodes (the mobility 

models that we apply are the Random Waypoint Mobility 

Model and the Reference Point Group Mobility Model). 

The importance of the dependence on the cost functions is 

that if we cluster in a way to produce robust clusters (e.g., 

mobility characteristics of the nodes) then the optimality 

degrades slower over time compared to the case where we 

cluster independently of the mobility characteristics of the 

nodes (e.g., cluster size). 

 

In the next section we will present an overview of our cen-

tralized domain generation protocol our clustering method 

that consists of the Simulated Annealing algorithm and a 

set of metrics and cost functions. In section 3 we will de-

scribe the importance of determining the convergence time 

requirements and the factors that affect these bounds. Sec-

tion 4 presents the convergence time characteristics of SA 

and the method we applied for measuring the convergence 

time bounds along with their corresponding values. In the 

last section we will conclude this paper along with some 

directions for future work. 
 

DOMAIN OPTIMIZATION USING GLOBAL 

INFORMATION 

This section presents our domain optimization approach 

based on using global information [1] with various cost 

functions and topological constraints. We use a modified 

Simulated Annealing algorithm, but describe it only 

briefly, since the results in this paper are independent of 

the particular choice of algorithm. However, we will de-

scribe in detail ten different cost functions, since the rate 

of change of optimality depends heavily on these cost 

functions. We also describe the topological constrains, 

since, without local domain maintenance (e.g., [2]), the 

constraints affect the feasibility of the solution. 
 

A. SIMULATED ANNEALING 

Simulated annealing (SA) has been widely used for tack-

ling different combinatorial optimization problems [9]. 

The process of obtaining the optimum configuration is 

similar to that followed in a physical annealing schedule. 

In SA, however, the temperature is merely used as a con-

trol parameter and does not have any physical meaning. 

The description of our modified SA algorithm is described 

in detail in [1], but its operation is summarized in Figure 1. 

 

The objective of the algorithm is to obtain the K cluster 

network partition configuration, C*, that optimizes a par-

ticular cost function. The process starts with an initial tem-

perature value, T0, which is iteratively decreased by the 

cooling function until the system is frozen (as decided by 

the stop function). For each temperature, the SA algorithm 

takes the current champion configuration C
*
 and applies 

the recursive function to obtain a new configuration C’ and 

evaluates its cost, E’. If E’ is lower than the cost of the 

current E
*
, C’ and E’ replace C

*
 and E

*
. Also, SA ran-

domly accepts a new configuration C’ even though E’ is 

greater than E
* 

to avoid local minima. In the latter case C’ 

and E’ replace C
*
 and E

* 
respectively. A key characteristic 

of simulated annealing is that it allows uphill moves at any 

time and relies heavily on randomization. 
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Figure 1 Simulated Annealing algorithm for network partitioning 

 

From the point of view of this paper the important result is 

that the SA produces the optimal (or near optimal) Cluster-

ing C
*
 with the lowest Energy E

*
. We will measure how 

this Energy E
* 
changes over time as the metric change (i.e., 

nodes move) without any re-optimization. 

B. METRICS 

In this section we present the set of metrics that will be 

used in our cost functions. The metrics can be categorized 

in two large classes. The first class of metrics is related to 

the network environment characteristics [1]: 

•  Cluster  Size iC : The number of nodes that have 

been assigned to the cluster. Minimizing Cluster Size 

can reduce the overhead and improve the performance 

of most networking protocols. For example, we know 
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that the overhead of most routing protocols is propor-

tional to the square of the number of nodes. 

•  Cluster  Diameter
iCd : The size of the longest path 

within a cluster in number of hops. Minimizing diame-

ter can reduce overhead and latency of many network-

ing protocols. For example, a proactive routing proto-

col, which exchanges routing information among all 

nodes, can update information quicker (e.g., due to 

link failure) and using less total hops if the diameter is 

smaller. 

•  Border  Routers 
iCBR : The number of nodes that in-

terconnect two or more clusters. There are scenarios 

where we want to have some minimum number of 

border nodes to improve robustness or provide more 

bandwidth for inter-domain communication. In other 

cases we want to minimize the number of border 

nodes, to minimize inter-cluster signaling). 

The second class contains the metrics related to the node’s 

mobility characteristics [10]: 

•  Direction iθ : The direction of a node described as the 

angle counter-clockwise from the straight from two 

consecutive points on the trajectory of the node and 

the straight line parallel to the positive x-axis (see 

Figure 2). A node can estimate its direction of move-

ment utilizing various tools, such as a GPS device. 
 

iθ
+

trajectory

estimated

linear path

node i

1 8 0 o

iθ =
+

trajectory

estimated

linear path

node i

iθ
+

trajectory

estimated

linear path

node i

1 8 0 o

iθ =
+

trajectory

estimated

linear path

node i

Figure 2 Definition of  iθ  

•  Speed iU : The speed of a node i is a measure of the 

rate of motion, defining the magnitude of the distance 

that is covered in a unit of time (meters per second). A 

node can estimate its speed using a GPS device or by 

other means. 

•  Relative Direction 
ijrθ : The relative direction of two 

nodes. If  nodei is moving with direction iθ  and nodej 

with direction jθ  then: 

( )
,

min ,360 ,  
i jr i j i jθ θ θ θ θ= − − −           (1) 

Note that )
,

, 0 ,360 ,  0 ,180
i j

o o o o

i j rθ θ θ  ∈ ∈   . Figure 3 

gives two graphical examples showing the computation of 

the relative direction 
ijrθ  of two nodes i and j. 
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Figure 3 Relative Direction of two nodes i and j 

•  Relative Velocity 
ijrU  The relative velocity of two 

nodes is the velocity with which a node approaches or 

recedes from another node: 

,

2 2( cos cos ) ( sin sin )
i jr i i j j i i j jU U U U Uθ θ θ θ= − + −  (2) 

  

•  Link Expiration Time ijLET : The Link Expiration 

Time is defined as the estimated lifetime of the link 

that connects two nodes i and j. Figure 4 shows an ex-

ample of the calculation of ijLET  for two nodes at co-

ordinates ( )ii yx ,  and ( )
jj yx , . 

 

, (  in this case is assumed the same for every node)

cos cos

sin sin
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Figure 4 Life Expiration Time for a link between two nodes  
 
For the example given in Figure 4 it can be shown [11] 

that: 

  

( )

( ) ( ) ( )22 2 2

2 2

( )

,nodes ,  are in range 

, 0 ,nodes ,  are not in range

,nodes ,  are relatively static

t j i

ab cd a b r ad bc

j ia c

LET j i D j i

j i

↔

− + + + − − += = ∞

    (3) 

 

C. COST FUNCTIONS 

Simulated Annealing is one of many global optimization 

algorithms that we can utilize to obtain optimal or subop-

timal clustering decisions [9]. The goodness of the cluster-

ing decisions depends not on the optimization algorithms 
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themselves, but on the cost functions that will be provided 

for optimization. We have found the careful design and 

selection of cost functions is very important for the quality 

of clustering decisions, with respect to the imposed net-

work objectives (e.g., minimum overhead or minimum 

latency).  The cost functions are based on various metrics 

of interest that can be measured from the network. Table 1 

lists some of the cost functions have been shown to meet 

the imposed objectives [1] [10]. 
Table 1 Cost Functions and Network Objectives 

Objective Cost Function 

Balanced Size Clus-

ters ( )( )2 2

1( ) min ,...., KJ C Var C C=   (1) 

2

1

( ) min
K

i

i

J C C
−

= ∑                             (2) 

Balanced Diameter 

Clusters ( )2

1

( ) min
i

K

C

i

J C d
−

= ∑                            (3) 

( ) ( )( )
1 2

2 2 2min , ,....,
KC C CJ C Var d d d=        (4) 

Balanced Size Clus-

ters with the mini-

mum number of 

Border Routers. 

Similar to (1) but 

more defined. 

( ) ( )2 2

1

1

min ,....,
i

K

K C

i

J C Var C C BR
−

  = +    ∑   (5) 

Cluster members 

move in a similar 

direction, so we 

expect longer dura-

tions of stable clus-

ter membership 

,

2

1 , 1

( ) min
z

i j

CK

r

z i j

J C θ
= =

   =      
∑ ∑                  (6) 

( ) ( )
1,2 1,

1

min ,...,z z
C Cz z

K

r r
z

J C Var θ θ
−

=

 =   ∑       (7) 

Cluster members 

have similar veloc-

ity, so we expect 

longer durations of 

stable cluster mem-

bership 

( )
,

2

2

1 , 1

min
z

z
i j

CK

r
z i j

J C U
= =

   =     
∑ ∑     (8) 

Cluster members 

have long expiration 

time estimates. Im-

proves the lifetime 

of the generated 

hierarchy 

( ) ( )
2

1 , 1

min
zCK

z ij

z i j

J C I LET
= =

   = −      
∑ ∑ (9) 

Cluster members 

move with similar 

direction and veloc-

ity, so we expect 

more stable cluster 

membership. Like 

(6),(7),(8) capturing 

more node dynam-

ics (e.g., direction 

and velocity)   

( ) ( )
,

,

2

, 1

1

, 1

2*max
min

180

z z
i j

z

i j

C
r

K
i j

C
z r

i j

U

S
J C

θ
=

=

=

      =     +     

∑
∑
∑

   (10) 

 

 

D. TOPOLOGICAL CONSTRAINTS 

The clustering decisions where the optimization algorithm 

(e.g., Simulated Annealing) searches for the optimal clus-

tering is limited by the requirements of the domain topol-

ogy. In particular we want a node within a cluster to be 

able to reach all other members of the cluster without pass-

ing outside the cluster. More formally we define a topo-

logical cluster as a set S  of nodes where for 

,i jnode node∀ ∈ S  and i j≠ , there is always a path 
ijP  

from 
inode  to 

jnode  such that 
knode∀ ∉ S  holds 

that
k ijnode P∉ . The constraint of topological clusters is 

important, since we want the members of the generated 

clusters to be isolated from the members of other clusters. 
 

TIME TO CALCULATE THE OPTIMAL DOMAINS 

This section looks at the time required to calculate the 

optimal domains, using a modified Simulated Annealing 

algorithm, for different network sizes and numbers of gen-

erated domains.  

 
A. RELEVANCE OF RUNNING TIME FOR 

OPTIMIZATION 

The time it takes for the optimization to complete does not 

affect the rate of degradation of the optimality (or how 

quickly the solution can become infeasible); however, the 

speed of optimization does place a lower bound on good-

ness of centralized optimization. For example, if it takes 

two minutes to generate the optimal solution and the solu-

tion becomes infeasible after one minute we should not 

consider central optimization. In other words, if the opti-

mization operates on metric values collected ct  seconds 

before, the optimization itself takes ot  seconds and the 

distribution of the new configuration takes dt  seconds, 

then the result has already degraded for doc ttt ++  sec-

onds. As ct  and dt  are typically not under our control, we 

investigate the optimization time ot . 

 

As we have shown in [1] the important parameters that 

determine the convergence time characteristics of Simu-

lated Annealing algorithm is the applied cost function, the 

number of generated clusters, the selection of cooling 

schedule and the termination condition of the algorithm 

(e.g., StopRepeats value). Note, however, that even though 

this section calculates optimization time ot  based on 

Simulated Annealing, this does not affect the results for 

degradation of the optimality or how quickly the solution 

can become infeasible. 
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B. OPTIMIZATION TIME RESULTS 

Figure 5 shows the time it takes for the Simulated Anneal-

ing algorithm to run for the first cost function shown in 

Table 1. The results were obtained on a 700MHz Pentium 

III processor with 256MB RAM, which was running Linux 

(kernel v. 2.4.20-6). It shows the results for different num-

ber of nodes in the network (from 100 to 1000) and for 

different numbers of generated clusters (from 2 to 10). 
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Figure 5 Convergence Time of SA algorithm with respect to the 

network size and the number of generated clusters 

 

The general observations are: that the larger the network 

size and the smaller the number of generated clusters the 

higher the convergence time of SA. The convergence time 

decreases as the number of generated clusters increases 

because for a specific network size the more the number of 

generated clusters the less the potential clustering solu-

tions. By analyzing more these results, we can conclude 

that the size of generated clusters has the most significant 

impact on the convergence time. This is because the clus-

ter size parameter depends both on the network size and 

the number of generated clusters. For larger cluster sizes 

the fewer are the potential clustering solutions to be evalu-

ated from the SA algorithm, which results in shorter con-

vergence times. 

RATE OF DEGRADATION OF OPTIMALITY 

The section presents results on the rate of degradation of 

optimality with respect to changes in metrics that cause 

changes in the input to the cost function and topological 

constraints. 
 

A. PROBLEM 

When nodes are mobile, the network topology changes and 

so do the corresponding metric values. We investigate the 

rate of degradation of optimality of the cost functions for 

given topological constraints due to changes in these met-

rics. In general, the rate of degradation depends on the:  

•  Dynamics of the network to be clustered. Clearly, 

the more mobile the nodes and the more independent 

their movement, the faster the topology changes and 

the lower the probability the solution is feasible upon 

the termination of the algorithm.  

•  Cost Function. If we cluster based on the expected 

mobility characteristics of the nodes, the generated 

clusters are expected to degrade slower than if ex-

pected mobility is ignored (e.g. cluster based only on 

cluster size).  

 

Due to the generality of the method, results here obtain 

apply to other centralized optimization algorithms. For the 

characterization of the network environment we applied 

two different mobility models: 

•  Random Waypoint Mobility Model (RWPM). In 

RWPM model the nodes select a random destination 

within the limits of a pre-specified area. Nodes move 

to these destinations with constant speed, selected at 

random between 0 and a pre-specified maximum 

value. When nodes reach their destinations, they im-

mediately select new destinations and new speed.  

•  Reference Point Group Mobility Model (RPGM). 

In RPGM we define a number of Reference Points 

(RPs) equal to the number of mobility groups we 

want to establish. Each node is then assigned to a RP. 

The movement of the nodes is characterized from the 

mobility patterns of their corresponding RPs. These 

mobility patterns are assigned manually to the various 

RPs in the form of trajectories. When a RP moves to 

a new location each corresponding node is assigned 

to a random radius and direction around the new posi-

tion of the RP. Because of the functionality of RPGM 

model and the randomness in the selection of the new 

node position, it is obvious that nodes that belong to 

the same group may have different speeds and direc-

tions. 

 

The input to the method is a random placement of nodes. 

Next, the optimization algorithm decides the clustering 

map. We then apply a mobility model to the nodes and 

recalculate the energy function as the links between nodes 

make and break. 
 

B. CONVERGENCE TIME BOUND IN THE ABSENCE 

OF LOCAL DOMAIN MAINTENANCE 

Once the clustering decision is made we change the net-

work topology according to one mobility model. The con-

vergence time bound is defined as the time it takes for a 

clustering decision to become infeasible because the clus-

ters do not satisfy the constraint of constructing topologi-

cal clusters. Figures 6 and 7 represent the convergence 

time requirements for the cost functions (1) and (8) respec-
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tively in the case where the nodes are moving in accor-

dance to the Random Waypoint Mobility Model. The 

maximum allowable speed was varied between 0.1 m/s to 

1 m/s and there was no pause time assumed. The number 

of generated clusters was varied from 2 to 15 clusters and 

the network size is 200 nodes. 
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Figure 6 Convergence Time Bounds for cost function (1) 
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Figure 7 Convergence Time Bounds for cost function (8) 

The convergence time bound on the clustering algorithm is 

much stricter for cost function (1) than for cost function 

(8). The objective of cost function (1) is to generate bal-

anced size clusters, thus it does not take node mobility into 

consideration, while (8) generates robust (long-lived) clus-

ters by grouping nodes with similar mobility characteris-

tics. We conclude that, to extend the applicability of cen-

tralized algorithms to dynamic networks, cost functions 

must take into account the dynamics of the nodes.  

 

Figure 8 shows the ratio of feasible clustering decisions 

taken by SA at the time the algorithm terminates as a func-

tion of node mobility and cost functions. A cluster con-

figuration is unfeasible if it violates the topological cluster 

requirement.  
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Figure 8 Acceptance (%) of the clustering decisions subject to 

RWPM model 

Interestingly we found a case where the acceptance per-

centage stays constant.  In this case we applied the RPGM 

model where we assumed two mobility groups (50 nodes 

each) that where moving towards the same direction but 

with an average relative speed of 4m/s. We also assume 

the application of cost function (8) identified accurately 

the two mobility groups. In this case the clustering deci-

sions were always feasible. The latter is because the cost 

function (8) can accurately identify the mobility groups 

that present different direction and/or speed characteristics. 

Since the groups are identified accurately, the nodes of 

these groups continue to move together through time, so 

the clustering is always the optimal one with respect to the 

mobility cost function. 

B. CLUSTERING DEGRADATION RATE WITH 

LOCAL MAINTENANCE 

In the previous subsection we assumed there was no local 

maintenance algorithm.  We have proposed an automated 

solution to dynamically create and maintain such hierarchy 

based on a combination of global optimization algorithms 

[1] and local distributed maintenance protocols[2]. For 

example, implementing a simple local maintenance algo-

rithm a node that gets disconnected from its cluster can 

join another cluster; if the node can join more than one 

cluster without violating the feasibility criterion it selects 

the one with the lowest cluster ID. We assume the local 

maintenance protocol is able to maintain connected clus-

ters; but will not be able to maintain the optimality. There-

fore, we must investigate how the goodness of the optimi-

zation deteriorates. 

 

We propose to use the behavior of the energy (cost) func-

tion to measure this degradation. These results can indicate 

the time intervals at which the optimization must run and, 

indeed, whether it is worth doing any global optimization. 



7 of 7 

Figure 9 shows how energy (cost) degrades as the time 

progresses for cost function (1) (i.e. balanced size clusters) 

and the RWPM mobility model. There are three curves 

represented in Figure 9, each representing a different 

maximum speed 3 m/s, 5 m/s and 10 m/s.  As expected it 

is observed that the optimality degrades fast for higher 

node mobility. 
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Figure 9 Energy Degradation after Optimization with Local 

Domain Maintenance (100 Nodes, 10 Clusters, Random Way-

point Model , Cost function (1)) 

 

CONCLUSIONS 

The paper shows that centralized algorithms can be use-

fully applied to create better domains for even dynamic ad 

hoc networks. Even though applying centralized algo-

rithms based on global optimization seems counter intui-

tive, the observations we make in this work show that 

there are many scenarios where the algorithm can be used 

with great success. We show the optimization degrades 

with time and that without local domain maintenance the 

optimization can quickly become infeasible. However, we 

also show that even with a simple local domain mainte-

nance algorithm (e.g., [2]) the clustering does not become 

infeasible and the degradation is gradual. Moreover, we 

show that by choosing cost functions that select domains 

based on mobility [10], the rate of degradation in time can 

be kept much smaller. With higher mobility we need cost 

function takes into account the dynamics of the nodes, so 

clusters optimality degrades is not too fast that it requires 

frequent optimization with high computational and band-

width overhead. We believe the results show the domain 

optimization can be applied with great benefit in future 

dynamic military networks, such as WIN-T and FCS.  

 

The paper also shows that how the convergence time of 

Simulated Annealing optimization on a modest 700MHz 

processor allows hundred of nodes to be clustered. We also 

show that the SA convergence time is proportional to the 

network size but counter proportional to the number of 

generated clusters. Even though we focus on Simulated 

Annealing, this class of results can be generalized for any 

clustering algorithm due to the independence of the 

method we applied to derive them. The results of this work 

can be used as a reference point for the application of any 

algorithm based on global information in a time sensitive 

dynamic ad hoc environments.   
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