
1. Introduction
The West Antarctic Ice Sheet (WAIS) is losing ice at an ever-increasing rate (Rignot et  al.,  2019; Shepherd 
et al., 2019) and forms a major uncertainty in projections of global sea-level rise (Fox-Kemper et al., 2021). 
The most rapid ice loss is occurring in the Amundsen Sea sector, where thinning and retreat of the floating 
ice shelves is causing acceleration of their tributary glaciers (De Rydt et  al.,  2021; dos Santos et  al.,  2021). 
Thwaites Glacier is one of the largest contributors to sea-level rise (Rignot et al., 2019; Shepherd et al., 2019), 
and offers the largest, and least-certain, potential future contribution (Alevropoulos-Borrill et al., 2020; Arthern 
& Williams, 2017; Joughin et al., 2014; Seroussi et al., 2020; Yu et al., 2018). Thwaites Glacier has accelerated 
(Mouginot et al., 2014), thinned (Konrad et al., 2017), and experienced grounding-line retreat (Milillo et al., 2019; 
Rignot et al., 2014) throughout the satellite era. The Thwaites sector lost 76 ± 6 Gt/y during 2012–2016, contrib-
uting ∼5% of global-mean sea-level rise (Fox-Kemper et al., 2021).

The floating section of Thwaites Glacier can be divided into Thwaites East Ice Shelf and Thwaites West Ice 
Tongue (TEIS and TWIT; Figure  1). TEIS is grounded on a prominent seabed ridge, buttressing ice flow, 
but  TWIT has only been grounded on a tiny pinning point on this ridge during the satellite era (Figure 1a; Hogan 
et al., 2020; Jordan et al., 2020; Rignot et al., 2014; Tinto & Bell, 2011). The ongoing ice loss is focused on 
the fast-flowing trunk of Thwaites Glacier, which flows into TWIT (Figure 1b; Konrad et al., 2017; Mouginot 
et  al.,  2014). TWIT was a coherent ice tongue that calved giant icebergs, but has disaggregated completely 
in recent decades (Figure 1d), with only a ∼10 km contiguous ice shelf remaining in a small embayment that 
we refer to as Thwaites Inlet (TI; Figure 1a; Ferrigno et al., 1993; MacGregor et al., 2012; Miles et al., 2020). 
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Historical thinning, ungrounding, and weakening of TWIT has permitted the ongoing ice loss from the trunk of 
Thwaites Glacier (Lhermitte et al., 2020; Miles et al., 2020; Surawy-Stepney et al., 2023; Tinto & Bell, 2011).

These changes must be caused by the rapid oceanic ice-shelf melting in this region (Shepherd et al., 2004), but 
it is not clear how this melting has changed, and whether anthropogenic forcing played a role. The ice loss may 
be driven by climatic trends (either anthropogenic or natural) that led to an increase in melting during the 20th 
century (Holland et al., 2019, 2022; Naughten et al., 2022). It is also possible that the changes were triggered 
historically by climate variability, and have since been perpetuated by feedbacks in the ice/ocean system (Holland 

Figure 1. (a) Area of ocean model domain, showing seabed elevation and the 2011 grounding line and ice-shelf extent; (b) flow of Thwaites Glacier in 2021 (Bevan 
et al., 2021); (c) 2011 ice draft; (d) 2022 ice draft; (e) modeled melting for 2022 in the WARM experiment. TEIS: Thwaites East Ice Shelf; TWIT: Thwaites West Ice 
Tongue; TI: Thwaites Inlet. Red: 2011 grounding line from InSAR. Blue: area of model subglacial inflow. Cyan: area with ice draft from TanDEM-X (time-varying), 
rather than REMA (steady). Green: area shown in Figures 2 and 4 and Figure S3 in Supporting Information S1. Axis tick marks are every 10 km.

 19448007, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103088 by T

est, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

HOLLAND ET AL.

10.1029/2023GL103088

3 of 10

Figure 2. Ice cavity geometry and ocean response for the WARM experiment in 2011 (top), 2022 (middle), and their difference (bottom). The green contour shows 
the 2011 grounding line. Velocity vectors represent currents in the top 10 m of ocean beneath the ice, averaged over 8×8 model grid points horizontally. The blue line 
shows the section in Figure S2 in Supporting Information S1.
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et al., 2019, 2022; J. A. Smith, Andersen, et al., 2017; Steig et al., 2012). Understanding the relative importance 
of forcing and feedbacks is needed to quantify the future sea-level rise from Thwaites Glacier and its sensitivity 
to greenhouse-gas emissions.

Several feedbacks have been identified as contributing to ice loss in the Amundsen Sea. These include ice flow accel-
eration related to bed geometry (Favier et al., 2014; Joughin et al., 2014) and ice damage (Lhermitte et al., 2020; 
Surawy-Stepney et al., 2023) and increased oceanic melting related to freshwater fluxes (Bett et al., 2020) and 
the geometry of ice-shelf cavities (Bradley et al., 2022; De Rydt & Gudmundsson, 2016; De Rydt et al., 2014; 
Donat-Magnin et al., 2017). Oceanic melting in new ice-shelf areas, formed as the grounding line retreats, is an 
important control on future sea-level rise (Arthern & Williams, 2017; De Rydt & Gudmundsson, 2016; Seroussi 
et al., 2017).

In this study we investigate the ocean melting feedback during the recent retreat of Thwaites Glacier. We use 
ocean simulations to model the ice-shelf melting for Digital Elevation Models (DEMs) of Thwaites Glacier 
geometry each year from 2011 to 2022 (Bevan et al., 2021), holding other forcings constant. This set of simu-
lations allows us to quantify the geometrical feedback onto melting during the retreat. Next, we determine the 
relative importance of this feedback by changing ocean forcings and subglacial meltwater in the model. This 
provides insight into how far ocean melting of Thwaites Glacier is controlled by internal feedbacks rather than 
external climatic forcing.

2. Methods
A general lack of observations beneath TWIT leads to many sources of uncertainty in our modeling, including 
seabed and ice geometries, ocean conditions, the influx of subglacial water from beneath the ice sheet, and in 
model parameterizations of turbulent mixing and ice-shelf melting. As a result, our model experiments should be 
viewed as hypothesis tests, not realistic model hindcasts.

2.1. Model Setup

We use a hydrostatic implementation of the MITgcm ocean model in a small 120 km × 120 km domain focused on 
the ocean cavity beneath Thwaites Glacier (Figure 1a). Wider ocean forcing is applied through restoring bound-
ary conditions for temperature and salinity on the open-ocean boundaries. No ocean surface fluxes or sea-ice 
model are applied. The simulations rapidly attain a steady state in which heat and salt sources from the boundaries 
are balanced by the heat sink and freshwater source from ice-shelf melting. Simulations are run for 6 months and 
results averaged over the final month. The equations are solved on a 200 m (horizontal) by 10 m (vertical) grid, 
with a timestep of 30 s. Ice-shelf melting and subglacial inflow are implemented as virtual heat and salt fluxes to 
avoid a rising sea surface. A standard three-equation ice-shelf melting parameterization is used, with parameter 
choices following Jenkins et al. (2010) (see Text S1 in Supporting Information S1). Constant viscosities (1 m 2/s 
horizontal, 5 × 10 −4 m 2/s vertical) and diffusivities (0.1 m 2/s horizontal, 5 × 10 −5 m 2/s vertical) are used.

Text S2 in Supporting Information S1 describes in detail how the model seabed and ice draft fields are generated, 
which is summarized here. A simulation is performed for each year between 2011 and 2022, and the different 
simulations are compared to reveal the effect of the changing ice geometry. All simulations use the seabed geom-
etry from BedMachine version 3 (Morlighem et al., 2020; Figure 1a), but each simulation has a different steady 
ice-shelf draft, constructed as follows. First, ice-shelf surface elevation is taken from the Reference Elevation 
Model of Antarctica (REMA) (Howat et al., 2018). Next, a series of TanDEM-X DEMs (Bevan et al., 2021) 
are used to replace REMA over TWIT. We select one DEM from each year during 2011–2022, yielding 12 
yearly surface elevation datasets that differ over TWIT only (e.g., Figures  1c and  1d). These surface eleva-
tions are converted to ice draft assuming floatation, with a correction near grounded ice. Each ice draft field 
defines a grounding line wherever the floatation ice base is below the seabed. The resulting grounding-line 
evolution  agrees closely with satellite radar interferometry (Figure 1a; Milillo et al., 2019; Rignot et al., 2014).

2.2. Model Experiments and Forcing

We use the term “experiment” to refer to a set of 12 simulations, one for each year from 2011 to 2022, under a 
particular choice of forcings. By comparing the 12 simulations within an experiment we derive the influence of 
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changing ice geometry. By comparing different experiments to each other we derive the influence of changing 
forcings. In geophysical experiments, we test the influence of warm and cool ocean forcing and a subglacial 
inflow. In diagnostic experiments, we test the influence of changes in the grounding line and water-column 
thickness. The different experiments are summarized in Table S1 in Supporting Information S1 and described 
fully below.

To quantify the influence of ocean forcings, we follow De Rydt et al. (2014) in conducting two illustrative exper-
iments using extreme warm and cool ocean boundary conditions guided by observations taken on the Amundsen 
Sea shelf. The thickness of the warm Circumpolar Deep Water (CDW) layer in this region varies substantially 
in response to decadal climatic variability (Dutrieux et al., 2014; Jenkins et al., 2018). To the best of our knowl-
edge, 2009 was the warmest year on record, and 2012 the coldest (De Rydt et al., 2014), despite the availability 
of more recent observations (Davis et al., 2023; Dotto et al., 2022; Wåhlin et al., 2021). Ocean forcing profiles 
in WARM and COOL model experiments are shown in Figure S1 in Supporting Information S1. In the WARM 
experiment, representative of 2009, we prescribe a warm (+1.2°C) and saline (34.7 PSU) deep CDW layer below 
600 m depth, with a colder (−1°C) and fresher (34 PSU) Winter Water layer above 200 m depth, and thermocline 
in between (De Rydt et al., 2014). This WARM experiment is used as a baseline against which other experiments 
are compared. In the COOL experiment, representative of 2012, the thermocline is shifted downwards by 200 m, 
to provide a thinner CDW layer and cooler water column (De Rydt et al., 2014).

To quantify the influence of subglacial meltwater inflow, we introduce a 150 m 3/s flux into TI (Hager et al., 2022) 
with a salinity of 0 PSU and temperature of −0.5°C (approximately the freshwater freezing point at depth). This 
influx is uniformly distributed (vertically and horizontally) over all cells in a selected volume that is within 2 km 
of the grounding line and is ungrounded in all of the 12 yearly geometries (Figure 1a). This steady inflow repre-
sents the mean meltwater production at the base of the ice sheet, and does not account for subglacial lake filling 
or drainage. The subglacial inflow is enabled in all experiments except the NOSG experiment, which has WARM 
ocean forcing and no subglacial inflow.

We explain the geometrical feedback using experiments in which the 12 yearly simulations have parts of their 
geometrical change disabled. In the FIXGL experiment we modify the ice draft as before, but set the grounding 
line in all 12 simulations equal to the maximum grounded extent in any of the 12 yearly geometries. This is prac-
tically identical to fixing the grounding line at its 2011 position. In the FIXWC experiment we fix the grounding 
line in the same way, but also preserve the water-column thickness field at its 2011 values in all 12 simulations, 
by artificially changing the seabed to follow the changes in ice-shelf draft. Both FIXGL and FIXWC experiments 
use WARM ocean forcing.

3. Results
Figure 1e shows the ice-shelf melt rate in the 2022-geometry simulation from the WARM experiment, which 
totals 71.1 Gt/y. The melting is strongly focused upon the thickest, steepest ice near the western grounding line 
and in TI (Nakayama et al., 2019). There are no ocean observations in this area and estimates of melting are 
highly uncertain. Satellite-derived estimates of overall Thwaites melting are similar to the model, 60–100 Gt/y 
(Adusumilli et  al., 2020; Depoorter et  al., 2013; Liu et  al., 2015; Rignot et  al., 2013), but these assume that 
the ice is a continuum, which is not the case (Figure 1d). The model agrees with observations of weak melting 
beneath TEIS (Davis et al., 2023; Dotto et al., 2022), but this provides little constraint over the stronger melting 
to the west. These higher melt rates are plausible: ∼100 m/y melting is consistent with ice thickness changing by 
∼300 m over ∼10 km in ∼3 km/y ice flow (Figure 1). Therefore we proceed with the standard melting parameter 
choices of Jenkins et al. (2010), rather than tuning the model further (Text S1 in Supporting Information S1). The 
remainder of this paper focusses on the rapidly melting region marked on Figure 1e.

3.1. Response of Melting to Geometrical Changes

Figure 2 shows the ice cavity geometry and modeled ocean behavior in the 2011 and 2022 simulations from the 
WARM experiment. The first two columns show the dramatic geometry change that occurred during this period 
(Bevan et al., 2021; Milillo et al., 2019). The ice thinned in TI and along the grounding line to the east, increas-
ing the water-column thickness (Figure 2j), causing grounding-line retreat, and ungrounding an ice rumple in 
TI (Figure 2i). The ice shelf thickened offshore of these regions, presumably in response to the changed ocean 
melting and ice flow patterns.
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Modeled melting in the region increases from 34.0  Gt/y to 45.1  Gt/y in 
response to this geometry change, with the greatest increases in the newly 
ungrounded areas and in TI (Figure 2k). The changes in melting are driven by 
the exposure of newly ungrounded areas to warm ocean waters, and changes 
in ocean currents immediately beneath the ice (Figure  2l). Both of these 
factors control melting through their effect on turbulent ocean heat fluxes 
(see Text S1 in Supporting Information S1). The overall increase in melting 
arises through a complex pattern of positive and negative melting changes, 
as spatial shifts in the currents move the rapidly-melting regions (Figure 2l).

Strong sub-ice currents flow westward along the steep ice slopes near the 
grounding line (Figure 2), driven by buoyant melt water under the influence 
of Coriolis force (Holland & Feltham, 2006). In 2011 this current seems to 
disappear within TI, leading to low melting (Figure 2d). A vertical section 
through this region (Figure S2 in Supporting Information S1) shows that the 
ice slopes upward toward the grounding line in 2011, trapping a layer of 
cold, fresh water. This displaces the westward current downwards, away from 
the ice, leading to weak melting (Figure 2c). This situation is analogous to 
recent observations beneath TEIS (Davis et al., 2023; Schmidt et al., 2023). 
By 2022 the ice slope is reversed (Figure S2 in Supporting Information S1) 
and the sub-ice current remains attached to the ice base throughout the sector, 
dominating melting (Figure 2h).

Figure 3 shows timeseries of melting in the different experiments, constructed 
by joining together the separate yearly simulations. The WARM experiment 
is shown in both panels, with 2011 and 2022 simulations corresponding to 
those shown in Figure 2. The fastest increase in melting occurs in response to 
a geometrical change during the Austral summer 2012/13. Closer inspection 
of the geometries shows that this is when the ice rumple in TI ungrounded 
and the ice basal slope changed. It is not clear that this ungrounding had 
any particular driver, since it preceded subglacial lake drainage events that 
occurred later in 2013 (Malczyk et  al.,  2020; B. E. Smith, Gourmelen, 
et al., 2017); it may have simply been caused by the general ice thinning in 
this region.

3.2. Factors Contributing to the Geometrical Response

Figure  3a also shows the FIXGL and FIXWC experiments, which have a much smaller geometrical melting 
response. By comparing these to the WARM experiment, we may gain insight into the underlying causes of the 
geometrical melting response. Text S3 in Supporting Information S1 presents additional investigation into these 
causes, which we summarize here.

Overall melting increases by 11.1 Gt/y between 2011 and 2022 geometries in the WARM experiment, but in 
FIXGL this melting increases by only 2.9 Gt/y (Figure 3a). This implies that 8.2 Gt/y (∼80%) of the overall melt-
ing increase is caused by grounding-line retreat (which is present in WARM but absent in FIXGL). This is easily 
explained because grounding-line retreat exposes new ice-base area to ocean waters. These new ice-shelf areas 
typically host high melt rates, as they feature steeply sloping ice bathed in deep warm water.

In FIXWC the melting actually decreases by 1.2  Gt/y between 2011 and 2022 (Figure  3a). This means that 
all of the overall melting increase in WARM is explained by the combination of grounding-line retreat and 
water-column thickness changes (which are present in WARM but absent in FIXWC). The thicker water column 
allows ocean currents to flow unimpeded into TI.

The small melting decrease in FIXWC must be caused by changes in ice draft, despite the absence of grounding-line 
retreat or water-column thickness changes. This must be caused by changes in ice-base slope. While these changes 
have a remarkably weak effect overall, they dominate the spatial pattern of the melting response (Figure S3 in 
Supporting Information S1).

Figure 3. Timeseries of ice basal mass loss over the area shown in Figure 2 
for the different model experiments. Yearly simulations are marked at the time 
of the corresponding TanDEM-X ice geometry.
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In summary, the FIXGL and FIXWC experiments demonstrate that the overall change in melting is dominated by 
grounding-line retreat and water-column thickening, while the regional pattern of change is dominated by changes 
in ice-shelf slope. All of these changes may be important to the evolution of Thwaites Glacier (Morlighem 
et al., 2021).

3.3. Comparison to Changes in Forcing

It is unsurprising that a change in geometry induces a change in melting, so the pertinent question is whether 
this change is large enough to matter. In Figure 3b we compare overall melting in the WARM experiment to the 
COOL and NOSG experiments. The geometric response is captured in the evolution of the curves over time, 
while the response to forcings is captured in the offset between curves. It is immediately clear that the geometric 
response (11.1 Gt/y increase between WARM 2011 and WARM 2022 simulations) is substantial relative to the 
ocean temperature response (16.3 Gt/y increase between COOL 2022 and WARM 2022 simulations) and the 
subglacial inflow response (6.1 Gt/y increase between NOSG 2022 and WARM 2022 simulations).

Figure 4 shows the spatial patterns of melting changes caused by these different factors. The ocean temperature 
response (Figure 4g) is substantially larger than the geometric response (Figure 4f) overall, but is more evenly 
distributed with much weaker local changes in melting, particularly near the grounding line. This is because 
the geometric melting response is strongly influenced by changes in currents, while the ocean temperature 
response reflects the more spatially uniform warming. The subglacial inflow response is focused on its inflow 
region (Nakayama et al., 2021) but also induces a modest increase in melting to the east, accelerating currents 

Figure 4. Comparison of the geometrical response to the influence of ocean temperature changes and subglacial inflow. The top row shows the melting in the different 
cases, and the bottom row shows the response to each factor (WARM 2022 simulation in panel a minus the relevant simulation from the top row). Green: area of 
subglacial inflow.
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throughout the region (Figure 4h). These results show that the geometric melting response is of leading impor-
tance to Thwaites Glacier melting in both a local and area-averaged sense.

4. Discussion
Our results show a remarkably strong oceanic melting response to the recent geometrical changes in Thwaites 
Glacier. These changes occurred over only 12 years, but their effect on melting is comparable to extreme changes 
in other forcings (the coldest-to-warmest oceanic conditions on record, and a complete removal of subglacial 
inflow). These strong melting changes are expected to further influence ice geometry, implying a geometric 
melting feedback.

This geometric feedback is particularly strong when considered in the context of centennial changes. The 
COOL and WARM experiments have a temperature difference peaking at 1.2°C in the thermocline. This 
can be compared to modeled Amundsen Sea warming of just ∼0.35°C over the 20th century (Naughten 
et al., 2022), or ∼1.5°C over the 21st century under extreme anthropogenic forcing (Jourdain et al., 2022). 
Thus, the temperature increase between COOL and WARM is a reasonable analog for the warming expected 
from 100 years of strong anthropogenic forcing. Based on Figure 4, we conclude that the geometric feedback 
over the 12-year period studied here has a comparable influence on melting to a whole century of anthropo-
genic ocean warming.

The production of subglacial meltwater is controlled by frictional heating at the bed of Thwaites Glacier (Hager 
et al., 2022; Joughin et al., 2009). The glacier flow speed approximately doubled since the 1970s (Mouginot 
et al., 2014). If the subglacial inflow had also doubled, that suggests a melting increase of ∼3 Gt/y over 50 years 
(half of the 6.1 Gt/y total influence of subglacial inflow). This weak feedback is dwarfed by the 11.1 Gt/y geomet-
rical feedback over 12 years. However, intermittent subglacial lake drainage events may strongly influence melt-
ing on shorter timescales (Malczyk et al., 2020; B. E. Smith, Gourmelen, et al., 2017), and the resulting changes 
in ice geometry may further trigger geometric melting feedbacks.

The role of ice and ocean feedbacks has been investigated in models (Arthern & Williams, 2017; De Rydt & 
Gudmundsson, 2016; Donat-Magnin et al., 2017; Seroussi et al., 2017), but we believe this is the first time a 
strong geometric ocean melting feedback has been demonstrated for the real ice retreat. It is unclear how preva-
lent these processes are in different regions and time periods, and whether the feedback might operate in reverse 
during ice advance. It also remains to be determined how such fine-scale processes may be incorporated into 
ice-sheet projections. This geometric ocean melting feedback is expected to operate in addition to other feed-
backs, such as ice acceleration related to bed geometry (Favier et al., 2014; Joughin et al., 2014) and ice damage 
(Lhermitte et al., 2020; Surawy-Stepney et al., 2023).

Our findings have grave implications for the influence of greenhouse-gas emissions policy on sea-level rise 
from Thwaites Glacier. It might be hoped that lower emissions would lead to lower future ocean warming and 
lower rates of ice loss. However, our results show that ocean temperature changes exert a limited influence on 
the melting of Thwaites Glacier because it is also subjected to a strong geometric feedback. The feedback could 
continue to increase melting even in the absence of further ocean warming. This suggests that greenhouse-gas 
emissions mitigation will not prevent Thwaites Glacier from making a substantial sea-level contribution in the 
coming centuries.

5. Conclusions
This study examines ocean melting beneath the floating section of the main trunk of Thwaites Glacier, 
which connects the current grounding line to the deepest grounded ice inland, with the largest potential 
sea-level contribution (Joughin et al., 2014; Yu et al., 2018). The results show that a strong geometric feed-
back enhanced ocean melting during the recent ice retreat. This feedback is caused by changes in ocean 
currents and temperatures, driven by changes in grounding-line position, water-column thickness, and ice 
base slopes. The geometric feedback over just 12  years has a comparable effect on melting to the ocean 
warming expected from a century of anthropogenic forcing. This has important implications for the future ice 
loss from Thwaites Glacier, suggesting that it may only be weakly influenced by greenhouse-gas emissions 
mitigation.
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Data Availability Statement
The above-described model setup is available at https://doi.org/10.5281/zenodo.7598677. The model output is 
available at https://doi.org/10.5285/30067E7B-93F8-4284-AA84-DAB4EACD4520. The Tandem-X DEMs are 
available at https://doi.org/10.5285/24AEF4F2-3BFC-4014-88E8-34644FDC71A3.
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