
TECHNICAL RESEARCH REPORT

Almost Symplectic Runge-Kutta Schemes for Hamiltonian
Systems

by Xiaobo Tan

CDCSS TR 2004-1
(ISR TR 2004-1)

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CDCSS/cdcss.html

Almost symplectic Runge-Kutta schemes for Hamiltonian

systems

Xiaobo Tan

Institute for Systems Research, University of Maryland, College Park, MD 20742, USA

Abstract

Symplectic Runge-Kutta schemes for the integration of general Hamiltonian systems are implicit. In practice one has to

solve the implicit algebraic equations using some iterative approximation method, in which case the resulting integration

scheme is no longer symplectic. In this paper we first analyze the preservation of the symplectic structure under two popular

approximation schemes, fixed-point iteration and Newton’s method, respectively. Error bounds for the symplectic structure are

established when N fixed-point iterations or N iterations of Newton’s method are used. The implications of these results for

the implementation of symplectic methods are discussed and then explored through extensive numerical examples. Numerical

comparisons with non-symplectic Runge-Kutta methods and pseudo-symplectic methods are also presented.

AMS: 65L05; 65L06; 65P10

Key words: Geometric integrators; Hamiltonian structure; Symplectic Runge-Kutta methods; Pseudo-symplecticness;

Fixed-point iteration; Newton’s method; Convergence

1 Introduction.

Geometric integration methods − numerical methods that preserve geometric properties of the flow of a differential

equation − outperform off-the-shelf schemes (e.g., fourth order explicit Runge-Kutta method) in predicting the long-

term qualitative behaviors of the original system (Hairer et al., 2002). For systems evolving on differentiable manifolds

(including the important setting of Lie groups), geometric integrators that preserve the manifolds are currently a

Email address: xbtan@umd.edu (Xiaobo Tan).

subject of great interest to theorists and practitioners. See for instance Budd and Iserles (1999). Applications of such

techniques are of interest in a variety of physical settings. See for instance Krishnaprasad and Tan (2001) for results

related to the integration of Landau-Lifshitz-Gilbert equation of micromagnetics.

An important class of geometric integrators are symplectic integration methods for Hamiltonian systems. See Sanz-

Serna and Calvo (1994); Marsden and West (2001) and references therein. When the Hamiltonian has a separable

structure, i.e., H(p, q) = T (p) + V (q), explicit Runge-Kutta type algorithms exist which preserve the symplectic

structure (Forest and Ruth, 1990; Yoshida, 1990; Candy and Rozmus, 1991; McLachlan and Atela, 1992). However,

for general Hamiltonian systems, the symplectic Runge-Kutta schemes are implicit (Sanz-Serna, 1988). In practice

one has to solve the implicit algebraic equations for the intermediate stage values using some iterative approximation

method such as fixed-point iteration or Newton’s method.

In general, with an approximation based on a finite number of iterations, the resulting integration scheme is no longer

symplectic. Error analysis on the structural conservation, like the analysis on the numerical accuracy, provides insight

into a numerical method and helps in making judicious choices of integration schemes. An example of this is Austin

et al. (1993), where the error estimate for the Lie-Poisson structure was given for integration of Lie-Poisson systems

using the mid-point rule. The first objective of this paper is to investigate the loss of symplectic structure due

to the approximation in solving the implicit algebraic equations. The fixed-point iteration-based approximation

and Newton’s method-based approximation are analyzed, respectively. For either method, an error bound on the

symplecticness of the numerical flow is established when N iterations are adopted for any N ≥ 1. It turns out that,

under suitable conditions, the convergence rate of the symplectic structure is closely related (but not equal) to the

rate of convergence to the true solution of the implicit equations. Hence the methods become almost symplectic as

N gets large.

The implications of the error bounds for implementing symplectic Runge-Kutta schemes are then studied in combina-

tion with a series of numerical examples. The question is how to strike the right balance between the computational

cost and the structural preservation. Choice of the step size, the initial iteration value, and fixed point iteration

versus Newton’s method are discussed. Numerical comparisons are also conducted with non-symplectic explicit

Runge-Kutta methods and with pseudo-symplectic methods proposed in Aubry and Chartier (1998). Note that

pseudo-symplectic integrators are explicit and designed to conserve the symplectic structure to a certain order.

The remainder of the paper is organized as follows. In Section 2 the symplectic conditions for Runge-Kutta methods

2

are first briefly reviewed to fix the notation, and then the fixed-point iteration-based approximation is analyzed.

Analysis on Newton’s method-based approximation is presented in Section 3. Comparisons among these approxima-

tion schemes and two other schemes are conducted in Section 4 through various numerical examples with a special

focus on the nonlinear pendulum. Finally some concluding remarks are provided in Section 5.

2 Fixed-Point Iteration-Based Approximation

2.1 Symplectic Runge-Kutta schemes

Consider a Hamiltonian system 


ṗ(t) = −∂H(p,q)
∂q

q̇(t) = ∂H(p,q)
∂p

, (1)

with the Hamiltonian H(p, q), where (p, q) ∈ R
d ×Q for some integer d ≥ 1, and Q, the configuration space, is some

d-dimensional manifold. In this paper Q = R
d is assumed for ease of discussion, but the extension of the results to

the case of a general Q is straightforward. Let z
�
=




p

q




. Then (1) can be rewritten as:

ż(t) = f(z(t))
�
= J∇zH(z(t)), (2)

where

J =




0 −Id

Id 0




,

Id denotes the d-dimensional identity matrix, and ∇z stands for the gradient with respect to z.

An s-stage Runge-Kutta method to integrate (2) is as follows (Hairer et al., 1987):



yi = z0 + τ
∑s

j=1 aijf(yj), i = 1, · · · , s

z1 = z0 + τ
∑s

i=1 bif(yi)

, (3)

where τ is the time step, z0 is the initial value at time t0, z1 is the numerical solution at time t0 + τ , aij , bi are

appropriate coefficients satisfying the order conditions of the Runge-Kutta method.

3

Let Ψτ be the one time-step flow associated with the algorithm (3), i.e., z1 = Ψτ (z0). From Sanz-Serna (1988), the

transformation Ψτ preserves the symplecticness of the original system (2) if

biaij + bjaji − bibj = 0, i, j = 1, · · · , s. (4)

Thus if (4) is satisfied, we have:

(
∂Ψτ

∂z0
)T J(

∂Ψτ

∂z0
) − J = 0, (5)

where “T ” stands for the transpose. The condition (4) forces the symplectic Runge-Kutta method (3) to be implicit.

To put (3) in a more compact form, denote

y
�
=




y1

...

ys




, F(y)
�
=




f(y1)

...

f(ys)




,

b
�
= (b1, · · · , bs), A0

�
= [aij], and A

�
= A0 ⊗ I2d, where “⊗” denotes the Kronecker (tensor) product. Recall for two

matrices M = [mij] and R = [rij], the Kronecker product

M ⊗ R =




m11R m12R · · ·

m21R m22R · · ·

...
...

...




.

The algorithm (3) can now be written as




y = G(z0,y)
�
= 1⊗ z0 + τAF(y)

z1 = z0 + τb ⊗ I2dF(y)

, (6)

where 1 is an s-dimensional column vector with 1 in every entry.

4

2.2 Approximation based on fixed-point iteration

It is well-known that for a fixed z0, when τ is sufficiently small, there is a unique solution y∗ to the first equation

in (6) and it can be obtained through fixed-point iteration (Hairer et al., 1987). The following proposition states a

similar result; the key difference is that uniform convergence (with respect to z0) is achieved. As we shall see, such

uniform convergence is crucial for establishing the convergence of the symplectic structure.

In this paper ‖ · ‖ will be used to denote the 2-norm (or the induced 2-norm) of a vector, a matrix, or a higher rank

tensor depending on the context. For an open set Ω, its ε−neighborhood, N (Ω, ε), is defined as

N (Ω, ε)
�
= {z ∈ R

2d : min
z0∈Ω̄

‖z − z0‖ ≤ ε},

where Ω̄ denotes the closure of Ω. Denote by N s(Ω, ε) the product of s copies of N(Ω, ε),

N s(Ω, ε)
�
= N (Ω, ε) × · · · × N(Ω, ε).

Proposition 2.1 Let Ω ⊂ R
2d be a bounded, convex, open set. Let f be continuously differentiable. Then for any

ε > 0, there exists τ0 > 0 dependent on Ω and ε such that, ∀τ ≤ τ0, ∀z0 ∈ Ω,

(1) G(z0, ·) maps N s(Ω, ε) into itself;

(2) There is a unique solution y∗ to the first equation in (6), and it can be approximated iteratively via



y[n] = G(z0,y[n−1])

y[0] = 1⊗ z0

; (7)

and

(3) ‖y[n] − y∗‖ ≤ δn‖y[0] − y∗‖ with 0 < δ < 1, where δ = τC1‖A0‖ and C1
�
= maxz∈N (Ω,ε) ‖∂f

∂z (z)‖.

Proof. Denote C0
�
= maxy∈N s(Ω,ε) ‖F(y)‖. Let τ1 = ε

C0‖A0‖ (note that ‖A0‖ = ‖A‖). Then ∀τ ≤ τ1, ∀z0 ∈ Ω,

G(z0, ·) maps N s(Ω, ε) into itself. Let τ2 > 0 be such that τ2C1‖A0‖ < 1. Since G(z0, ·) is Lipschitz continuous

with Lipschitz constant τC1‖A0‖ by the convexity assumption, it becomes a contraction mapping on N s(Ω, ε) when

τ ≤ τ0
�
= min{τ1, τ2}. The rest of the claims then follows from the contraction mapping principle (Smart, 1974). �

Remark 2.1 The convexity of Ω is assumed only for using the mean value theorem to get the estimate of Lipschitz

constant. This assumption is not restrictive since one can resort to its convex hull if Ω is not convex.

5

An explicit but approximate algorithm to solve (6) is as follows: for some N ≥ 1,




y[k] = G(z0,y[k−1]), k = 1, · · · , N

y[0] = 1 ⊗ z0

z
[N]
1 = z0 + τb ⊗ I2dF(y[N])

. (8)

From the implicit function theorem, when τ is sufficiently small, the solution y∗ to the first equation in (6) is a

function of z0, written as y∗(z0), and

∂y∗

∂z0
(z0) = [I2sd − τA

∂F
∂y

(y∗(z0))]−1(1 ⊗ I2d). (9)

Similarly z1 in (6), {y[k]}N
k=0 and z

[N]
1 in (8) (and smooth functions of them) are all continuously differentiable

functions of z0. In the sequel when we write, e.g., ∂y∗

∂z0
or ∂

∂z0
F(y[N]), we think of y∗ or F(y[N]) as a function of z0

although it is not explicitly written out.

Denote by Ψ[N]
τ the one time-step flow associated with the algorithm (8), i.e., z

[N]
1 = Ψ[N]

τ (z0). The following lemma

will be essential for studying how far Ψ[N]
τ is away from being symplectic.

Lemma 2.1 Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0, pick τ0 as in the proof of Proposition 2.1. Let f

be twice continuously differentiable on N (Ω, ε). Then ∀τ ≤ τ0, ∀z0 ∈ Ω,

‖∂y[N]

∂z0
− ∂y∗

∂z0
‖ ≤ D0(C2

1 + C0C2N)δN+1

C2
1

, (10)

‖ ∂

∂z0
(F(y[N]) − F(y∗))‖ ≤ D0(C2

1 + C0C2(1 + N))δN+1

C1
, (11)

where δ
�
= τC1‖A0‖,

D0
�
= max

y∈N s(Ω,ε),τ≤τ0

‖[I2sd − τA
∂F
∂y

(y)]−1(1 ⊗ I2d)‖ (= max
y∈N s(Ω,ε),τ≤τ0

√
s‖[I2sd − τA

∂F
∂y

(y)]−1‖), (12)

C0
�
= max

y∈N s(Ω,ε)
‖F(y)‖,

C1
�
= max

y∈N s(Ω,ε)
‖∂F

∂y
(y)‖ (= max

z∈N (Ω,ε)
‖∂f

∂z
‖), (13)

C2
�
= max

yi,j∈N s(Ω,ε),1≤i,j≤2sd
‖Q({yi,j})‖, and Q({yi,j}) is a third-rank tensor whose (i, j)−th element is a (14)

vector given by
∂

∂y
(
∂F
∂y

)i,j(yi,j) (here (∂F
∂y)i,j denotes the (i, j)−th component of ∂F

∂y).

6

Proof. See Appendix A. �

The main result of this section is:

Theorem 2.1 Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0, pick τ0 as in the proof of Proposition 2.1. Let

f be twice continuously differentiable on N (Ω, ε). Then ∀τ ≤ τ0, ∀z0 ∈ Ω,

‖(∂Ψ[N]
τ (z0)
∂z0

)T J(
∂Ψ[N]

τ (z0)
∂z0

) − J‖ ≤ 2‖b‖D0D1(C2
1 + C0C2(1 + N))δN+2

‖A0‖C2
1

+(
‖b‖D0(C2

1 + C0C2(1 + N))δN+2

‖A0‖C2
1

)2 (15)

where

D1
�
= max

y∈N s(Ω,ε),τ≤τ0

‖I2d + τb ⊗ I2d
∂F
∂y

(y)[I2sd − τA
∂F
∂y

(y)]−1(1⊗ I2d)‖, (16)

and δ and the other constants are as defined in Lemma 2.1.

Proof. Let Ψτ be the one time-step flow associated with (6). From (6) and (8),

Λ[N](z0)
�
= Ψ[N]

τ (z0) − Ψτ (z0) = τb ⊗ I2d(F(y[N]) − F(y∗)).

Using Lemma 2.1, one derives

‖∂Λ[N](z0)
∂z0

‖ ≤ τ‖b‖D0(C2
1 + C0C2(1 + N))δN+1

C1
(17)

Next write

‖(∂Ψ[N]
τ (z0)
∂z0

)T J(
∂Ψ[N]

τ (z0)
∂z0

) − J‖

= ‖(∂Λ[N](z0)
∂z0

+
∂Ψτ (z0)

∂z0
)T J(

∂Λ[N](z0)
∂z0

+
∂Ψτ (z0)

∂z0
) − J‖

≤ ‖(∂Λ[N](z0)
∂z0

)T J(
∂Λ[N](z0)

∂z0
)‖ + 2‖(∂Λ[N](z0)

∂z0
)T J(

∂Ψτ (z0)
∂z0

)‖ + ‖(∂Ψτ(z0)
∂z0

)T J(
∂Ψτ (z0)

∂z0
) − J‖,

where the last term vanishes since Ψτ is symplectic. The claim now follows from (17), ‖J‖ = 1, and

‖∂Ψτ(z0)
∂z0

‖ = ‖I2d + τb ⊗ I2d
∂F
∂y

(y∗)
∂y∗

∂z0
‖ ≤ D1. (18)

�

7

Remark 2.2 Theorem 2.1 provides a structural error bound of Ψ[N]
τ in terms of various constants specific to the

problem of interest. Absorbing the constants and dropping the second term in the right-hand side of (15)(since the

first term dominates), the error bound is simplified to (c1 + c2N)δN+2 for c1, c2 > 0 and 0 < δ < 1. Note the

connection and the difference between this bound and item 3 of Proposition 2.1. As N gets large, the structural error

approaches zero and Ψ[N]
τ becomes almost symplectic.

3 Newton’s Method-Based Approximation

Newton’s method is an alternative to the fixed point iteration scheme for solving the implicit equation in (6). It

reads

y[n] = G̃(z0,y[n−1])
�
= y[n−1] − [I2sd − τA

∂F
∂y

(y[n−1])]−1(y[n−1] − 1 ⊗ z0 − τAF(y[n−1])). (19)

Typically convergence conditions for Newton’s method include that the Jacobian is invertible at the solution point

and that the initial condition is close enough to the solution (Schwarz, 1989). Such conditions often cannot be verified

directly. For the special case (6), however, Proposition 3.1 shows that when taking the natural candidate for y[0],

the convergence is guaranteed if τ < τ0, where τ0 can be determined explicitly.

Proposition 3.1 Let Ω ⊂ R
2d be a bounded, convex, open set. Let f be three times continuously differentiable. Then

for any ε > 0, there exists τ0 > 0 dependent on Ω and ε such that, ∀τ ≤ τ0, ∀z0 ∈ Ω,

(1) G̃(z0, ·) maps N s(Ω, ε) into itself;

(2) There is a unique solution y∗ to the first equation in (6), and it can be approximated iteratively via




y[n] = G̃(z0,y[n−1])

y[0] = 1⊗ z0

; (20)

and

(3) ‖y[n] − y∗‖ ≤ K2n−1‖y[0] − y∗‖2n

, where K > 0 and K‖y∗ − y[0]‖ < 1.

Proof. Through algebraic manipulations, G̃(z0,y) can be rewritten as

G̃(z0,y) = 1⊗ z0 + τ [I2sd − τA
∂F
∂y

(y)]−1A(
∂F
∂y

(y)(1 ⊗ z0 − y) + F(y)). (21)

8

Pick τ1 > 0 such that I2sd − τA∂F
∂y (y) is invertible ∀τ ≤ τ1, ∀y ∈ N s(Ω, ε). Let

E0
�
= max

y∈N s(Ω,ε),τ≤τ1

‖[I2sd − τA
∂F
∂y

(y)]−1‖, (22)

E1
�
= max

y∈N s(Ω,ε),z0∈Ω
‖∂F

∂y
(y)(1 ⊗ z0 − y) + F(y)‖, (23)

and let τ2 > 0 be such that τ2E0E1‖A0‖ < 1. Then it can be verified that if τ ≤ min{τ1, τ2}, G̃(z0, ·) maps N s(Ω, ε)

into itself.

The next goal is to establish that G̃(z0, ·) is a contraction mapping. This can be done by evaluating ∂G̃
∂y . To properly

handle the third-rank tensor ∂2F
∂y2 involved, for η ∈ R

2sd, one calculates

∂G̃
∂y

(z0,y) · η = −τH(y)A(
∂2F
∂y2

(y) · η)H(y)[y − 1⊗ z0 − τAF(y)], (24)

where “·” denotes the action of a second-rank or third-rank tensor on a vector, and

H(y)
�
= [I2sd − τA

∂F
∂y

(y)]−1. (25)

Denote

E2
�
= max

y∈N s(Ω,ε)
‖∂2F

∂y2
(y)‖, (26)

E3
�
= max

y∈N s(Ω,ε),z0∈Ω,τ≤τ1

‖y − 1⊗ z0 − τAF(y)‖, (27)

and pick τ3 > 0 such that τ3E
2
0E2E3‖A0‖ < 1. Then when τ ≤ min{τ1, τ2, τ3}, G̃(z0, ·) is a contraction mapping

and hence (20) converges to a (unique) fixed point, which is the solution to the first equation in (6).

Since ∂G̃
∂y (z0,y∗) = 0, the convergence rate of (20) is quadratic, as is standard for Newton’s method (Schwarz, 1989):

‖y[n] − y∗‖ ≤ K‖y[n−1] − y∗‖2 ≤ K2n−1‖y[0] − y∗‖2n

, (28)

where

K
�
= max

y∈N s(Ω,ε),z0∈Ω,τ≤τ1

‖∂2G̃
∂y2

(z0,y)‖. (29)

It’s easy to see that ∂2G̃
∂y2 (z0,y) contains a factor of τ . On the other hand, ‖y[0] − y∗‖ ≤ τC0‖A0‖, where C0 is as

defined in Lemma 2.1. Therefore there exists τ4 > 0 such that when τ ≤ τ4, K‖y∗ − y[0]‖ < 1. Finally τ0 in the

statement of the proposition can be chosen to be τ0 = min{τ1, τ2, τ3, τ4}. �

9

Analogous to (8), an approximation scheme for solving (6) can be constructed based on Newton’s method: for some

N ≥ 1,




y[k] = G̃(z0,y[k−1]), k = 1, · · · , N

y[0] = 1 ⊗ z0

z
[N]
1 = z0 + τb ⊗ I2dF(y[N])

. (30)

Denote by Ψ̃[N]
τ the one time-step flow associated with the algorithm (30). The following two lemmas will be used

in the proof of Theorem 3.1.

Lemma 3.1 Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0, pick τ0 as in the proof of Proposition 3.1. Let

f be three times continuously differentiable on N (Ω, ε). Define H(·) as in (25), and J(y)
�
= H(y)A∂F

∂y (y). Then

∀τ ≤ τ0, ∀z0 ∈ Ω,

‖∂y[N]

∂z0
‖ ≤ Cy

�
=

√
s(1 +

E0

1 − γ0
), (31)

‖ ∂

∂z0
H(y[N])‖ ≤ CH

�
=

γ0Cy

E3
, (32)

‖ ∂

∂z0
J(y[N])‖ ≤ CJ

�
=

‖A0‖(C1γ0 + E0E2E3)Cy

E3
, (33)

where γ0
�
= τ0E

2
0E2E3‖A0‖; C1 is as defined in (13); E1, E2 are as defined in (23), (26); and E0 and E3 are as

defined in (22), (27) with τ1 replaced by τ0.

Proof. See Appendix B. �

Lemma 3.2 Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0, pick τ0 as in the proof of Proposition 3.1. Let f

be three times continuously differentiable on N (Ω, ε). Then ∀τ ≤ τ0, ∀z0 ∈ Ω,

‖∂y[N]

∂z0
− ∂y∗

∂z0
‖ ≤ Dyδ

2N−1
, (34)

‖ ∂

∂z0
F(y[N]) − ∂

∂z0
F(y∗)‖ ≤ C1Dyδ2N−1

+
C2D0

K
δ2N

, (35)

where δ
�
= τC0‖A0‖K < 1, Dy

�
= τ0

K (CJ + C1CH‖A0‖ + 1√
s
C2D

2
0‖A0‖), CJ and CH are as defined in Lemma 3.1,

and C1, C2, D0 and K are as defined in (13), (14), (12) and (29), respectively.

Proof. See Appendix C. �

10

Following the arguments as in the proof of Theorem 2.1 and using Lemma 3.2, we can show:

Theorem 3.1 Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0, pick τ0 as in the proof of Proposition 3.1.

Let f be three times continuously differentiable on N (Ω, ε). Let Ψ̃[N]
τ be the one time-step flow associated with (30).

Then ∀τ ≤ τ0, ∀z0 ∈ Ω,

‖(∂Ψ̃[N]
τ (z0)
∂z0

)T J(
∂Ψ̃[N]

τ (z0)
∂z0

) − J‖ ≤ 2τD1‖b‖(C1Dyδ
2N−1

+
C2D0

K
δ2N

) + (τ‖b‖(C1Dyδ2N−1
+

C2D0

K
δ2N

))2,(36)

where D1 is as defined in (16), and δ and the other constants are as defined in Lemma 3.2.

4 Numerical Examples and Discussion

The performances of approximation schemes (8) and (30) on symplectic structure conservation have been character-

ized in Theorem 2.1 and Theorem 3.1, respectively. Under suitable conditions and with proper choices for the step

size and the initial iteration value y[0], both schemes uniformly (with respect to z0) converge, and the convergence

rate of symplectic structure for either scheme is closely connected to the corresponding rate for the solution conver-

gence (i.e., ‖y[N] − y∗‖). In this section the implications of these results for implementing symplectic Runge-Kutta

schemes are explored through a variety of numerical examples.

Important factors in choosing a Runge-Kutta scheme for Hamiltonian systems include the numerical accuracy,

the structural preservation performance (symplecticness) and the computational cost. Since the issue of numerical

accuracy is not the focus of this paper, the discussion will be centered around the interplay between the symplecticness

and the computational complexity. For illustrational purposes, the methods listed in Table 1 will be compared in the

numerical problems. For a definition of pseudo-symplecticness order, we refer to Aubry and Chartier (1998). The

mid-point rule and the Gauss method are implicit, and both fixed-point iteration and Newton’s method will be used

to solve the implicit equations. Table 2 lists the test problems. Some of these problems were also used in Aubry and

Chartier (1998). The computation was done in Matlab on a Dell laptop Inspiron 4150.

4.1 The nonlinear pendulum problem

An essential property of a symplectic map is area-preservation. The ellipse shown in Fig. 1, with semi-major axis = 1.8

and semi-minor axis = 1.2, represents the set of initial conditions for the nonlinear pendulum problem. Numerical

solutions after one time-step under different methods are compared with the exact solution in Fig. 2, where the time

11

Table 1

Runge-Kutta methods used in numerical examples.

Notation Method Order Pseudo-symp. order s

MidPoint Mid-point rule 2 symplectic 1

Gauss4 Gauss method (Hairer et al., 2002) 4 symplectic 2

PS63 Pseudo-symp. method (Aubry and Chartier, 1998) 3 6 5

RK4 Classical Runge-Kutta 4 4 4

Table 2

Test problems used in the numerical study.

Problem Hamiltonian H(p, q) Step size τ Initial Conditions

Nonlinear pendulum p2

2
− cos(q) 1.6, 0.8, 0.2 See the text

Linear pendulum 1
2
(p2 + q2) 0.5 (2, 2)T

Kepler problem 1
2
(p2

1 + p2
2) − 1√

q2
1+q2

2
0.1 (0, 2, 0.4, 0)T

Bead on a wire p2

2(1+U′(q)2)
+ U(q) with U(q) = 0.1(q(q −

2))2 + 0.008q3

1
6

(0.49, 0)T

Galactic dynamics 1
2
(p2

1+p2
2+p2

3)+
1
4
(p1q2−p2q1)+ln(1+

q2
1

a2 +

q2
2

b2
+

q2
3

c2
), with a = 5

4
, b = 1, c = 3

4

0.2 (0, 1.689, 0.2, 2.5, 0, 0)T

step τ = 1.6, and the implicit equations in MidPoint and Gauss4 were solved using Newton’s method up to machine

accuracy. As one can see, the (exact) final configuration is distorted from the initial elliptical curve. By symplecticity

of the exact flow, the area enclosed by the exact solutions at t = 1.6 is equal to that enclosed by the initial curve.

Among the numerical solutions, Gauss4 has the best performance in terms of accuracy and area-preservation since

it completely overlaps the exact solution. The solution of MidPoint is noticeably different from that of the exact one

because it is of the second order. The area-preserving performance of MidPoint cannot be easily told from the figure

(theoretically it should be as good as that of Gauss4). Under PS63 it can be seen that the area has shrunk a little

bit, while RK4 delivers the worst performance in area preservation.

To provide a quantitative measure of area preservation, we have picked 104 points on the ellipse (as initial conditions).

12

The initial area A0 at time t = 0 is approximated by the sum of areas of 104 triangles formed by the picked points

and the origin (see Fig. 1 for illustration, where 8 points are used). The final area A1 at t = 1.6 is calculated similarly,

using the current 104 solution points. The (normalized) area error is then defined as |A1−A0|
A0

.

One goal of this paper is to provide insight into the choice of fixed-point iteration versus Newton’s method. From

Theorem 2.1 and Theorem 3.1, Newton’s method enjoys much faster structural convergence than the fixed-point

iteration in terms of the number of iterations. This is verified in Fig. 3 and Fig. 4. Fig. 3 shows the decrease of area

error with the number of fixed-point iterations, where the underlying algorithm used was MidPoint. In the figure,

the bound from Theorem 2.1 is also plotted. Note the similar trend in both curves, in particular, their consistent

convergence rates. In Fig. 4, the area error stops decreasing after 4 iterations, and it stays around 0.5 × 10−8. This

is not due to the limitation of machine accuracy. It is considered to arise from approximating the area based on 104

points. Indeed, we have observed that the error stops decreasing around 10−6 if 103 points are used in computing

the area.

Despite the faster convergence, Newton’s method takes longer time in each iteration than the fixed-point iteration.

This brings up the issue whether the aforementioned advantage is still an advantage when actual computation time is

considered. In terms of N , the computation times of the two methods can be approximately expressed as T a
0 +NT a

1 ,

T b
0 +NT b

1 , respectively. Here T a
0 and T a

1 represent the computation overhead and the computation cost per iteration

for the fixed-point scheme, respectively, and T b
0 and T b

1 represent the counterparts for Newton’s method. The actual

computation times taken by the two methods are plotted in Fig. 5, both displaying a linearly increasing trend. As

N gets large, the ratio of their computation costs approaches a constant T a
1

T b
1
. Considering their convergence rates,

one can conclude that Newton’s method is more time-efficient when very low structural error is needed.

Two other step sizes τ = 0.8, τ = 0.2 are used to integrate the nonlinear pendulum equation while the final time is

kept the same, i.e., t = 1.6. Therefore the time steps for these step sizes are 2 and 8, respectively. Fig. 6 shows the

work-precision diagrams of the fixed-point iteration scheme for the three different step sizes. It can be seen that for

the same amount of CPU time, with τ = 0.8, the area error is smaller than that with τ = 1.6 or with τ = 0.2. It

can be explained as follows: when τ is relatively big, the convergence rate is slow; while when τ is relatively small,

it requires many time steps which, to keep the total CPU time the same, leads to a small number N of iterations at

each time step. Therefore to maximize the computational efficiency (defined as the level of structural preservation

per CPU time unit), one needs to seek a moderate step size. Fig. 7 shows the work-precision diagrams of Newton’s

13

method-based approximation under different step sizes. For this particular problem, even with τ = 1.6, at most 4

iterations would bring the area error down to the order of 10−8 (the achievable limit as explained earlier), and there

is not much to gain by using smaller τ in the sense of computational efficiency defined above.

Fig. 8 through Fig. 10 compare the work-precision diagrams of Gauss4/FixedPt (solving Gauss4 with fixed-point

iteration), Gauss4/Newton (solving Gauss4 with Newton’s method), PS63 and RK4 for different step sizes. PS63

always beats RK4 at a slight cost of computational time. For same amount of CPU time, PS63 also leads to smaller

area error than Gauss4/FixedPt and Gauss4/Newton. However, while the structural error under Gauss4/FixedPt or

Gauss4/Newton approaches zero with increasing CPU time, the error of PS63 can be large when τ is relatively big

(Fig. 8 and Fig. 9). Finally, it can be seen that corresponding to relatively large error, Gauss4/FixedPt needs less CPU

time than Gauss4/Newton; but for very small error, Gauss4/Newton requires less CPU time than Gauss4/FixedPt.

From (28) and the proof of Lemma 3.2, a better choice of y[0] (i.e., smaller ‖y[0] −y∗‖ with y[0] smoothly dependent

on z0) leads to faster convergence of the symplectic structure. A hybrid approximation scheme is motivated by this

observation: first use 1⊗z0 as the initial guess and run the fixed-point iteration N1 times, then use y[N1] as the initial

value and run Newton’s method for N2 iterations. The idea is to use relatively cheap computation of the fixed-point

algorithm to get a better initial estimate for Newton’s method. Fig. 11 shows the work-precision comparison of

this hybrid scheme (with N1 = 1) with the plain Newton’s method, where both cases of τ = 1.6 and τ = 0.8 are

displayed. From the figure it can be seen that the hybrid scheme offers faster convergence rate with a slight increase

of computational cost. Again when looking at the figure, one should keep in mind that 0.5 × 10−8 is the achievable

area-error limit as a result of our area-approximation method, and hence he or she should not be confused by the

somewhat misleading slopes of the last segments of the curves.

4.2 Other problems

Fig. 12 shows the trajectories of the linear pendulum in the phase space under Gauss4/FixedPt and Gauss4/Newton

for 5 × 104 time steps (the data were down-sampled by 20 to reduce the file size). For the fixed-point iteration

method, the energy decays to zero if the iteration number N = 3. The energy decay rate is significantly reduced

when N is increased to 5, and with N = 8, the trajectory almost stays on the circular orbit. Newton’s method, on

the other hand, gives rise to the exact solution (up to the machine precision) in one iteration since the system is

linear.

14

The numerical solutions of the Kepler problem (q1 and q2 components) are plotted in Fig. 13 (after down-sampling by

20). For comparison, the exact orbit is also shown. The total number of time steps is 2×104. It can be observed that

when N = 6, the solution with Gauss4/FixedPt follows a precession motion of the elliptical orbit. This is also true for

Gauss4/Newton (N = 2). Such “precession” effect is typical when integrating the Kepler problem with a symplectic

scheme (Hairer et al., 2002). Note that PS63 also demonstrates the similar behavior with a slower precession rate.

For Gauss4/FixedPt with N = 2, 4 and RK4, the solutions distort the ellipse. The angular momentum is also a

conserved quantity for the Kepler problem. Fig. 14 shows the angular momentum error under different schemes.

Listed in Table 3 is the CPU time used in the computation.

Fig. 15 and Fig. 16 show the evolution of error in the Hamiltonian for the bead-on-a-wire problem and the galactic

dynamics problem. Table 4 and Table 5 list the CPU time used by different algorithms.

Table 3

CPU time used in solving the Kepler problem.

Gauss4/FixedPt Gauss4/Newton

Method N 2 4 6 8 N 2 3 PS63 RK4

Time (sec.) 49.9 70.6 89.3 108.2 73.0 91.0 55.0 44.7

Table 4

CPU time used in solving the bead-on-a-wire problem.

Gauss4/FixedPt Gauss4/Newton

Method N 3 5 7 N 1 2 3 PS63 RK4

Time (sec.) 160.4 197.0 240.0 158.3 191.0 220.4 146.4 129.2

Table 5

CPU time used in solving the galactic dynamics problem.

Gauss4/FixedPt Gauss4/Newton

Method N 2 4 N 1 2 PS63 RK4

Time (sec.) 283.9 360.0 311.9 376.4 318.2 264.2

15

5 Conclusions

Symplectic Runge-Kutta schemes for the integration of general Hamiltonian systems are implicit. When approxi-

mation methods are used to solve the implicit equations, the resulting integration schemes do not fully preserve

the symplectic structure of the original systems. It is thus of interest to understand the structural error incurred

by the approximation schemes. In this paper approximations based on two common iterative methods for solving

implicit equations, fixed-point iteration and Newton’s method, were analyzed and the corresponding error bounds

established. Under proper conditions, these schemes become almost symplectic as the iteration number N gets large.

Although the results show that the structural convergence of either scheme is closely related to its numerical con-

vergence, the former (essentially ‖∂y[N]

∂z0
− ∂y∗

∂z0
‖) does not follow merely from the latter (‖y[N] − y∗‖); instead it

is a consequence of the uniform convergence of the iterative schemes with respect to the initial condition z0, the

particular choices of the initial iteration values, and the smoothness of the mappings G(·, ·) and G̃(·, ·).

The theoretical results can be used in selecting an appropriate approximation scheme when integrating a specific

problem. The emphasis here is the trade-off between the computational cost and the structural preservation perfor-

mance although the numerical accuracy (the order of a method) also plays an important role in implementation. The

faster convergence rate of Newton’s method-based scheme makes it more favorable than the fixed-point iteration-

based scheme, especially when very small structural error is required. This was verified in the numerical tests.

The effect of the step size on the computational efficiency was studied in the numerical experiments. We also note

that the arguments in the proofs of Proposition 2.1 and Proposition 3.1 may be used to find the step size τ0 (below

which the scheme is convergent) for the specific problem of interest. For stiff problems, τ0 will be very small for

the fixed-point algorithm and Newton’s method is generally more efficient. After observing that a better initial

guess would speed up the convergence rate of Newton’s method, a hybrid scheme (running one or several fixed-point

iterations to obtain initial values for Newton’s method) was proposed and explored. Simulation suggested that the

hybrid scheme has a potential to out-perform the plain Newton’s method.

The almost symplectic schemes were also compared against a pseudo-symplectic method and a non-symplectic

method. It is of no surprise that the non-symplectic method delivers the poorest performance in area-conservation

and energy-conservation. For methods of comparable orders of accuracy, the pseudo-symplectic one delivers slightly

better structural preserving performance than an approximation-based symplectic scheme if the latter spends the

same amount of CPU time. However, with increased CPU time (which is still comparable to the CPU time used

16

by the pseudo-symplectic one) the approximation scheme has the potential to reach very low structural error and

becomes almost symplectic. On the other hand, as admitted in Aubry and Chartier (1998), the design of a pseudo-

symplectic method (in particular, of order p and of pseudo-symplecticness order 2p (Aubry and Chartier, 1998))

beyond order (3,6) is very complicated. This will hinder the use of pseudo-symplectic methods in very long time

simulation of Hamiltonian systems.

Acknowledgement.

The author would like to thank Professor P. S. Krishnaprasad for numerous discussions and valuable suggestions

on this work. The work in this paper was supported in part by the Army Research Office under the ODDR&E

MURI97 Program Grant No. DAAG55-97-1-0114 to the Center for Dynamics and Control of Smart Structures

(through Harvard University) and under the ODDR&E MURI01 Program Grant No. DAAD19-01-1-0465 to the

Center for Networked Communicating Control Systems (through Boston University), and by the Lockheed Martin

Chair Endowment Funds.

References

Aubry, A., Chartier, P., 1998. Pseudo-symplectic Runge-Kutta methods. BIT 38 (3), 439–461.

Austin, M. A., Krishnaprasad, P. S., Wang, L., 1993. Almost Poisson integration of rigid body systems. Journal of

Comput. Phys. 107 (1), 105–117.

Budd, C., Iserles, A. (Eds.), 1999. A Special Issue on “Geometric integration: numerical solution of differential

equations on manifolds”. Vol. 357 of Philosophical Transactions of Royal Society of London A. Number 1754.

Candy, J., Rozmus, W., 1991. A symplectic integration algorithm for separable Hamiltonian functions. Journal of

Comput. Phys. 92, 230–256.

Forest, E., Ruth, R. D., 1990. Fourth-order symplectic integration. Phys. D 43, 105–117.

Hairer, E., Lubich, C., Wanner, G., 2002. Geometric Numerical Integration: Structure-Preserving Algorithms for

Ordinary Differential Equations. Springer-Verlag, Berlin, New York.

Hairer, E., Nørsett, S. P., Wanner, G., 1987. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-

Verlag.

Krishnaprasad, P. S., Tan, X., 2001. Cayley transforms in micromagnetics. Physica B 306, 195–199.

Marsden, J. E., West, M., 2001. Discrete mechanics and variational integrators. Acta Numerica , 357–514.

17

McLachlan, R. I., Atela, P., 1992. The accuracy of symplectic integrators. Nonlinearity 5, 541–562.

Sanz-Serna, J. M., 1988. Runge-Kutta schemes for Hamiltonian systems. BIT 28, 877–883.

Sanz-Serna, J. M., Calvo, M. P., 1994. Numerical Hamiltonian Problems. Chapman & Hall, London, New York.

Schwarz, H. R., 1989. Numerical Analysis: A Comprehensive Introduction. Wiley.

Smart, D. R., 1974. Fixed Point Theorems. Cambridge University Press, London, New York.

Yoshida, H., 1990. Construction of higher order symplectic integrators. Phys. Lett. A 150 (5-7), 262–268.

A Proof of Lemma 2.1

Proof. From (6) and (8),

y[N] − y∗ = τA(F(y[N−1]) − F(y∗)). (A.1)

Taking derivative on both sides of (A.1) with respect to z0 and re-arranging terms, one gets

∂y[N]

∂z0
− ∂y∗

∂z0
= τA[

∂F
∂y

(y[N−1])(
∂y[N−1]

∂z0
− ∂y∗

∂z0
) + (

∂F
∂y

(y[N−1]) − ∂F
∂y

(y∗))
∂y∗

∂z0
]. (A.2)

Eq. (A.2) implies

‖∂y[N]

∂z0
− ∂y∗

∂z0
‖ ≤ τ‖A0‖ ‖∂F

∂y
(y[N−1])‖ ‖∂y[N−1]

∂z0
− ∂y∗

∂z0
‖ + τ‖A0‖ ‖∂F

∂y
(y[N−1]) − ∂F

∂y
(y∗)‖ ‖∂y∗

∂z0
‖

≤ τC1‖A0‖ ‖∂y[N−1]

∂z0
− ∂y∗

∂z0
‖ + τD0‖A0‖ ‖∂F

∂y
(y[N−1]) − ∂F

∂y
(y∗)‖. (A.3)

By the mean value theorem, the (i, j)−th component of ∂F
∂y (y[N−1]) − ∂F

∂y (y∗) can be expressed as

(
∂F
∂y

(y[N−1]) − ∂F
∂y

(y∗))i,j =
∂

∂y
(
∂F
∂y

)i,j(yi,j) · (y[N−1] − y∗) for some yi,j ∈ N s(Ω, ε),

which leads to

‖∂F
∂y

(y[N−1]) − ∂F
∂y

(y∗)‖ ≤C2‖y[N−1] − y∗‖

≤C2δ
N−1‖y[0] − y∗‖ (from Proposition 2.1)

≤ τC0C2‖A0‖δN−1‖ (since y∗ − y[0] = τAF(y∗)). (A.4)

Plugging (A.4) into (A.3) and performing recursions, one has

‖∂y[N]

∂z0
− ∂y∗

∂z0
‖ ≤ δN‖∂y[0]

∂z0
− ∂y∗

∂z0
‖ +

C0C2D0NδN+1

C2
1

.

18

Eq. (10) is then proved by noting

‖∂y[0]

∂z0
− ∂y∗

∂z0
‖ = ‖τA∂F

∂y
(y∗)

∂y∗

∂z0
‖ ≤ τC1D0‖A0‖.

To show (11), write

∂

∂z0
(F(y[N]) − F(y∗)) =

∂F
∂y

(y[N])(
∂y[N]

∂z0
− ∂y∗

∂z0
) + (

∂F
∂y

(y[N]) − ∂F
∂y

(y∗))
∂y∗

∂z0
, (A.6)

and then use (10) and (A.4). �

B Proof of Lemma 3.1

Proof. Differentiating both sides of (19) with respect to z0 leads to

∂y[N]

∂z0
=

∂G̃
∂y

(z0,y[N−1])
∂y[N−1]

∂z0
+

∂G̃
∂z0

(z0,y[N−1]). (B.1)

From ‖∂G̃
∂y (z0,y[N−1])‖ ≤ τE2

0E2E3‖A0‖ (recall (24)) and ‖ ∂G̃
∂z0

(z0,y[N−1])‖ = ‖H(y[N−1])1⊗I2d‖ ≤ √
sE0, one gets

‖∂y[N]

∂z0
‖ ≤ τE2

0E2E3‖A0‖ ‖∂y[N−1]

∂z0
‖ +

√
sE0.

Since ‖∂y[0]

∂z0
‖ =

√
s,

‖∂y[N]

∂z0
‖ ≤ √

s(γN +
E0(1 − γN)

1 − γ
),

where γ
�
= τE2

0E2E3‖A0‖. Eq. (31) then follows from 0 < γ ≤ γ0 < 1.

Eq. (32) can be shown by writing

∂

∂z0
H(y[N]) =

∂H
∂y

(y[N])
∂y[N]

∂z0
= τH(y[N])A

∂2F
∂y2

(y[N])H(y[N])
∂y[N]

∂z0

and then using (31).

Finally to show (33), note that

∂

∂z0
J(y[N]) =

∂

∂z0
H(y[N])A

∂F
∂y

(y[N]) + H(y[N])A
∂2F
∂y2

(y[N])
∂y[N]

∂z0
,

and then use (31) and (32). �

19

C Proof of Lemma 3.2

Proof. From (19) and y∗ = G(z0,y∗) , one can derive

y[N] − y∗ = −τJ(y[N−1])(y[N−1] − y∗) + τH(y[N−1])A(F(y[N−1]) − F(y∗)). (C.1)

Taking derivative on both sides of (C.1) with respect to z0 and using (A.6), it can be shown that

∂y[N]

∂z0
− ∂y∗

∂z0
=−τ

∂

∂z0
J(y[N−1])(y[N−1] − y∗) + τ

∂

∂z0
H(y[N−1])A(F(y[N−1]) − F(y∗))

+τH(y[N−1])A(
∂F
∂y

(y[N−1]) − ∂F
∂y

(y∗))
∂y∗

∂z0
. (C.2)

By Lemma 3.1 and the mean value theorem, Eq. (C.2) implies that

‖∂y[N]

∂z0
− ∂y∗

∂z0
‖ ≤ τ(CJ + C1CH‖A0‖ +

1√
s
C2D

2
0‖A0‖)‖y[N−1] − y∗‖.

Eq. (34) then follows from Proposition 3.1. Eq. (35) is obtained by making use of (A.6) and (34). �

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

Fig. 1. Initial conditions for the nonlinear pendulum problem and the schematic of approximating the enclosed area with a

finite number of triangles.

20

−2 0 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

Exact
Gauss4

−2 0 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

Exact
MidPoint

−2 0 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

Exact
PS63

−2 0 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

q

p

Exact
RK4

Fig. 2. Comparison of numerical solutions with the exact one at t = 1.6 (τ = 1.6) for the nonlinear pendulum problem.

0 10 20 30 40 50 60 70 80
10

−10

10
−5

10
0

10
5

Iteration number

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Bound
Simulation

Fig. 3. Decrease of the area error vs the number N of iterations with fixed-point iteration computed for the nonlinear pendulum

problem. MidPoint is used with τ = 1.6 and the number of time steps is one.

21

1 2 3 4 5
10

−10

10
−8

10
−6

10
−6

10
−4

10
−2

Iteration number

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Fig. 4. Decrease of the area error vs the number N of iterations with Newton’s method computed for the nonlinear pendulum

problem.. MidPoint is used with τ = 1.6 and the number of time steps is one.

1 2 3 4 5
0

5

10

15

20

25

30

Iteration number

C
PU

 ti
m

e
(s

ec
.)

Fixed Point
Newton

Fig. 5. Comparison of the computation time (for one time-step) vs the number N of iterations for fixed-point iteration and

Newton’s method. The nonlinear pendulum problem is computed and MidPoint used with τ = 1.6.

22

0 10 20 30 40 50 60 70 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

τ=1.6
τ=0.8
τ=0.2

Fig. 6. Work-precision diagrams for the nonlinear pendulum problem under the fixed-point iteration scheme with different

step sizes. Final time t = 1.6 fixed. Underlying algorithm: MidPoint.

0 20 40 60 80 100 120 140 160 180

10
−9

10
−7

10
−5

10
−3

10
−1

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

τ=1.6
τ=0.8
τ=0.2

Fig. 7. Work-precision diagrams for the nonlinear pendulum problem under Newton’s method-based scheme with different

step sizes. Final time t = 1.6 fixed. Underlying algorithm: MidPoint.

23

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Gauss4/FixedPt
Gauss4/Newton
PS63
RK4

Fig. 8. Comparison of work-precision diagrams for the nonlinear pendulum problem under different schemes (τ = 1.6). Final

time t = 1.6.

10 20 30 40 50 60 70 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Gauss4/FixedPt
Gauss4/Newton
PS63
RK4

Fig. 9. Comparison of work-precision diagrams for the nonlinear pendulum problem under different schemes (τ = 0.8). Final

time t = 1.6.

24

60 80 100 120 140 160 180
10

−9

10
−7

10
−5

10
−3

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Gauss4/FixedPt
Gauss4/Newton
PS63
RK4

Fig. 10. Comparison of work-precision diagrams for the nonlinear pendulum problems under different schemes (τ = 0.2). Final

time t = 1.6.

10 15 20 25 30 35

10
−9

10
−7

10
−5

10
−3

10
−1

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Gauss4/Hybrid
Gauss4/Newton

20 30 40 50 60

10
−9

10
−7

10
−5

10
−3

10
−1

CPU time (sec.)

N
or

m
al

iz
ed

 a
re

a
er

ro
r

Gauss4/Hybrid
Gauss4/Newton

(a) τ =1.6 (b) τ =0.8

Fig. 11. Comparison of work-precision diagrams for the nonlinear pendulum problem under the hybrid scheme and Newton’s

method, where the underlying algorithm is Gauss4. Gauss4/Hybrid: run fixed point iteration once and then run Newton’s

method. (a) τ = 1.6; (b) τ = 0.8. Final time t = 1.6 for both (a) and (b).

25

−2 0 2
−3

−2

−1

0

1

2

3

q

p

−2 0 2
−3

−2

−1

0

1

2

3

q

p

−2 0 2
−3

−2

−1

0

1

2

3

q

p

−2 0 2
−3

−2

−1

0

1

2

3

q

p

Gauss4/FixedPt (N=3) Gauss4/FixedPt (N=5)

Gauss4/FixedPt (N=8) Gauss4/Newton (N=1)

Fig. 12. Trajectories of the linear pendulum in the phase space under Gauss4/FixedPt and Gauss4/Newton.

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

q
1

q 2

Exact
FixedPt(N=2)

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

q
1

q 2

Exact
FixedPt(N=4)

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

q
1

q 2

Exact
FixedPt(N=6)

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

q
1

q 2

Exact
Newton(N=2)

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

q
1

q 2

Exact
PS63

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

q
1

q 2

Exact
RK4

Fig. 13. Exact and numerical solutions of the Kepler problem. The underlying algorithm for FixedPt and Newton was Gauss4.

26

0 500 1000 1500 2000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (Sec.)

A
ng

ul
ar

 m
om

en
tu

m
 e

rr
or

Gauss4/FixedPt(N=2)
Gauss4/FixedPt(N=4)
RK4

0 500 1000 1500 2000
−6

−4

−2

0

2
x 10

−4

Time (Sec.)
A

ng
ul

ar
 m

om
en

tu
m

 e
rr

or

Gauss4/FixedPt(N=6)
Gauss4/FixedPt(N=8)
Gauss4/Newton(N=2)
Gauss4/Newton(N=3)
PS63

Fig. 14. Comparison of the angular momentum error for the Kepler problem.

0 2000 4000 6000
−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Time (Sec.)

H
am

ilt
on

ia
n

er
ro

r

Gauss4/FixedPt(N=3)
Gauss4/Newton(N=1)
RK4

0 2000 4000 6000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−6

Time (Sec.)

H
am

ilt
on

ia
n

er
ro

r

(A)Gauss4/FixedPt(N=5)
(B)Gauss4/FixedPt(N=7)
(C)PS63

0 2000 4000 6000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−6

Time (Sec.)

H
am

ilt
on

ia
n

er
ro

r

(A)Gauss4/Newton(N=2)
(B)Gauss4/Newton(N=3

(A)

(B)

(C)

(A)

(B)

Fig. 15. Comparison of the Hamiltonian error for the bead-on-a-wire problem.

27

0 2000 4000 6000 8000 10000 12000

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (Sec.)

H
am

ilt
on

ia
n

er
ro

r

Gauss4/FixedPt(N=2)
Gauss4/Newton(N=1)
RK4

0 2000 4000 6000 8000 10000 12000
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−5

Time (Sec.)

H
am

ilt
on

ia
n

er
ro

r

(A)Gauss4/FixedPt(N=4)
(B)Gauss4/Newton(N=2)
(C)PS63

(C)

(A)

(B)

Fig. 16. Comparison of the Hamiltonian error for the galactic dynamics problem.

28

