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We propose a multilevel (hierarchical) ON/OFF model to simultaneously cap-

ture the mono/multifractal behavior of Internet traffic. Parameter estimation

methods are developed and applied to estimate the model parameters from real

traces. Wavelet analysis and simulation results show that the synthetic traffic

(using this new model with estimated parameters) and real traffic share the same

statistical properties and queuing behaviors. Based on this model and its statis-

tical properties, as described by the Logscale diagram of traces, we propose an

efficient method to predict the queuing behavior of FIFO and RED queues. In

order to satisfy a given delay and jitter requirement for real time connections, and

to provide high goodput and low packet loss for non-real time connections, we also

propose a parallel virtual queue control structure to offer differential quality of

services. This new queue control structure is modeled and analyzed as a regular



nonlinear dynamic system. The conditions for system stability and optimization

are found (under certain simplifying assumptions) and discussed. The theoretical

stationary distribution of queue length is validated by simulation.
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Chapter 1

Introduction

With the rapid development of communication and networking technologies in

the last three decades, the Internet has become the largest artificial system in the

world. It is one of the most important and quickest media for delivering information

nowadays. One may receive and send various kinds of information such as data,

voice and video, in the form of email, web page, Internet phone/conference and

online radio/TV. The life style of human beings has been greatly changed by

this diversity of information delivered and associated information processing and

utilization. However, the current usage of the Internet is far beyond its original

design envelope and causes many operational and performance problems. In this

dissertation, we focus on traffic modeling and active queue management policies

to improve the performance of the Internet.

1.1 Motivation

Recent studies [1] [2] [3] [4] [5] [6] [7] [8] on Internet traffic have shown that the ag-

gregate traffic driven by TCP based protocols such as HTTP is not only monofrac-
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tal (self-similar) but also multifractal. Wavelet analysis demonstrates that the In-

ternet traffic is monofractal at large time scales (5-10 minutes and larger), which

is mainly due to the heavy-tailed distribution of file sizes transferred over the In-

ternet [9] [10] [11] [12]. However, traffic behavior at small time scales is much

more complicated and has been shown to be multifractal [2] [13] [14] [15]. This

multifractal behavior is primarily due to protocol dynamics such as TCP flow

control, network congestion, packet loss and packet retransmission. Taqqu and

Willinger [16] explained the monofractal behavior at large time scales by aggre-

gating a large number of independent ON/OFF flows. The ON and/or OFF du-

ration in their model has a heavy-tailed distribution, which corresponds to the

total transmission time of a single file and the user think time respectively. They

proved that the aggregate traffic converges to the well-known fractional Brownian

motion [17] [18] asymptotically when the number of flows goes to infinity. They

also found a simple relationship between the shape parameter of the heavy-tailed

distribution and the Hurst parameter of self-similarity. However, the single level

ON/OFF model [19] [20] [21] [11] [22] [23] [24] is unable to explain the multifractal

behavior found at small time scales with its constant rate assumption in the ON

duration. On the other hand, Riedi proposed the Multifractal Wavelet Model to

capture the second order statistical behavior at all time scales [25] [26]. Like other

cascade models [27] [28] [14], these cascade models are unable to explain the ob-

served traffic behavior by simple operational network mechanisms. Furthermore,

these cascade models need typically many parameters to fit the statistical behavior

of real Internet traffic. Therefore, it is important to provide a more precise model

that can capture traffic behavior at all time scales and better explain the relation-

ship between observed traffic statistical properties and natural and simple network

2



operational mechanisms. One of the goals of this dissertation is to provide such a

model for the Internet traffic.

In addition, we are interested in network control and performance enhancement.

Most analyses of queuing behaviors [29] [30] [4] [31] has been concerned with infinite

or large buffer size. The effect of short range dependence (SRD) on the traffic is

absorbed by such a large buffer size. As a result, the analysis result of queuing

behavior is dominated by long range dependence (LRD) phenomena [32] [33] [30]

[17] [34] [35] [36]. However, the actual buffer size in a real router/switch is finite

and small. In this situation, the queue can not retain the “memory” for a long time.

On the other hand, short range dependence in the traffic also plays an important

role in queuing behavior. Wavelet analysis provides a convenient way to extract

important statistical properties from the traffic. For example, the Logscale diagram

of the wavelet analysis provides the second order statistical properties of the traffic

at all time scales (SRD and LRD). This background motivated us to propose a new

approach to describe traffic and predict the corresponding connection performance

such as the delay and delay jitter.

The buffer management policy at the bottleneck routers determines the connec-

tion quality directly. The drawbacks of the drop-tail policy, such as long queuing

delay and low link utilization, for Internet traffic were well-known [37] [38] [39] [40].

In order to improve network performance, many buffer management policies such as

RED (Random Early Detection) [41] [42] [43] [44], BLUE [40], FQ/WFQ (Weighted

Fair Queue) [45], CHOKe [46] have been proposed and evaluated. Among them,

RED attracted the most attention in the field. According to the TCP protocol, the

TCP connection decreases its flow rate dynamically if packets are lost. The basic

idea of RED is to maintain the queue length within a given region by randomly

3



dropping packets among the various connections before the buffer is overflowed.

The dropping probability is an increasing function of queue length. A connection

with a higher rate has a higher risk to lose packets and reduce its flow rate. Since

the queue length is controlled and kept within a desired region, link bandwidth is

fully utilized and the packets experience smaller mean delay and delay variation.

However, a great portion of Internet traffic belongs to web traffic (HTTP) and

voice/video streams (UDP). Most of web pages contain several small files and create

a short but bursty bandwidth requirement. As a consequence, the TCP protocol

of web connections is primarily operated in the slow start phase. Dropping packets

during this phase cannot effectively control the congestion level at the router, but

greatly increases the mean and variance of file delivery delay. Since the connection

quality of real time applications, such as web and voice/video traffic is sensitive

to the mean and variance of delay, these considerations motivated us to propose a

parallel virtual queue control structure to serve real time and non-real time traffic

separately, and adaptively.

1.2 Contributions

The contributions of this dissertation are in three areas. First, we developed a

new multilevel hierarchical model of Internet traffic traces, using simple oper-

ational patterns of packets and sessions. As such the principal model and its

derivative models can be used in a variety of situations (open-loop (i.e., without

flow control), closed-loop (i.e., with flow control)), with different flow and conges-

tion control schemes (i.e., not just TCP), and in modeling traffic at different layers

(network or application layer). Second, we developed queue behavior estimates

and predictions of performance for FIFO queues fed by such traffic traces. We also

4



developed estimates of delay and delay jitter. With these prediction results, one

can allocate network resources dynamically to guarantee differential quality of ser-

vice requirements. For example, in order to provide differential quality of service

in the DirecPC system, the bottleneck router (Satellite Gateway) in the network

operation center has high and low priority queues for different connections. Our

prediction method can help the network manager determine how much bandwidth

should be allocated to each queue so that their quality of service requirements can

be satisfied respectively. Third, we developed a new parallel queue control scheme

that treats bursty and non-bursty (real-time) traffic differently for higher perfor-

mance of bottleneck nodes. We also investigated analytically the stability of the

system.

The first and second areas and contributions are more connected and interre-

lated than the other. The second and third areas address queue control problems

from different perspectives. The connection between the first and third areas is

that the qualitative characterization of traffic in the first provided the inspiration

for the scheme in the third.

The multifractal behavior of Internet traffic at small time scale is mainly con-

tributed by the TCP flow control mechanism. The corresponding connection pa-

rameters such as round-trip time, TCP session lifetime and active time of burst

play an important role of traffic behavior. Based on these network parameters

estimated from real traces, we propose a key traffic model with a multilevel hier-

archical ON/OFF structure for Internet Traffic. The key idea is to simultaneously

emulate the packet arrival pattern (operational pattern and characterization) in

a typical Internet session at small time scales and the user behavior (operational

characterization) at large time scales. We first estimate model parameters such as

5



round-trip time and active time of each connection from real Internet traces. The

synthetic traffic trace is generated by the proposed model with the estimated pa-

rameters. The statistical behavior of both synthetic and real traffic are compared

by employing wavelet analysis techniques. We demonstrate that this new model

precisely captures the statistical behavior of real Internet traffic at all time scales.

In addition, many network simulations demonstrated that both real and synthetic

traffic traces also display a similar queuing behavior when the First In First Out

(FIFO) queue control policy is applied. The steady state distributions of queue

length in these FIFO queues by synthetic and real traces match as well within a

wide range of utilization conditions.

Upper Bound

Real Trace

Parameter
Estimation

Analytical
SolutionMultiLevel

ON/OFF
Model

Logscale

Diagram

Jitter Analysis        Aj
Workload

LogNormal
Distribution

E[Aj] Var[Aj]

of
Overflow

Prob.

Figure 1.1: Methodology

Since the Logscale diagram of wavelet analysis of traffic traces extracts the

second order statistics of traffic traces at all time scales, we provide a numerical

approach to obtain the Logscale diagram from the model parameters, instead of
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analyzing a long duration trace. Furthermore, we develop a fast algorithm to

predict the steady state queue length distribution of such a FIFO queue using

parameters computed from the trace Logscale diagram. An upper bound of buffer

overflow probability is also derived when the buffer size is finite and given. Figure

1.1 depicts how the trace analysis, traffic models, connection parameters, queue

length distribution are interrelated and used. These results are motivated from

and apply to network gateways between heterogeneous network domains.

To address the problems of buffer management policy, we first demonstrate

that the performance of RED is severely degraded by bursty web traffic. The

dropping probability of RED is very sensitive to instantaneous bursts and causes

the web connections to see a high instantaneous packet loss rate. This high packet

loss rate forces the web TCP connections to enter the congestion avoidance phase

prematurely, thus leading to a small TCP window at the sender and low goodput.

These effects result in a long delivery delay for small file transmission. In order to

prevent the bursty short-life connections (mostly operated in the slow start phase)

from disturbing the RED, we propose a parallel queue control structure and apply

the RED and drop-tail buffer management policies respectively to the two queues.

The proposed policy is validated and evaluated by simulation experiments. This

structure preserves the advantages of both RED and drop-tail policies such as high

link utilization, low loss rate, small packet delay and low delay jitter, in our new

structure/schehe.

Since the real time and non-real time traffic are served at different queues, we

have more freedom to control the connection rate. For the non-real time traffic,

connection goodput and low packet loss rate are more important than packet delay.

Instead of changing the dropping probability to control the flow rate, we propose a

7



dynamic threshold algorithm to control the flow rate by queuing delay so that the

packet loss rate can be limited and kept within a given region. The main advantage

of our approach is that it keeps the average packet loss rate within a range of very

small values so that the average TCP window size at the senders has a large value

in its congestion avoidance phase. Hence, any congestion at the router can not

cause another bottleneck at the TCP sender end.

Finally, we model and analyze this queue control system as a regular nonlinear

dynamical system. The conditions for system stability are found and stability

results are proved. We also develop a numerical approach to obtain the queue

length distribution for the dynamic thresholds case. We also provide a linear

approximation approach with a small perturbation assumption. Both theoretical

results are validated by simulations.

1.3 Organization

The arrangement of this dissertation is as follows. In Chapter 2, we briefly intro-

duce the wavelet analysis method for Internet traffic and show the mono/ multi-

fractal behaviors of real traces. In Chapter 3, we describe the proposed Internet

traffic model involving network parameters. We also develop parameter estima-

tion methods to obtain these model parameters from real traces. In Chapter 4, a

synthetic traffic trace is generated with the proposed model and estimated model

parameters. We compare the statistical properties of these synthetic traces with

the corresponding ones from real traces by wavelet analysis (Logscale diagram and

multifractal spectrum). Simulation experiments are used to demonstrate the simi-

larity of queuing behaviors in FIFO queues fed by synthetic and real traffic traces.

In Chapter 5, we demonstrate the vulnerability of Adaptive RED to bursty web

8



traffic and propose a parallel virtual queue control structure for buffer management

in a router. The system model and performance is given in Chapter 6. Chapter 7

concludes this dissertation and describes directions for future work.
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Chapter 2

Preliminaries

In this chapter we provide a brief introduction to wavelet analysis of traffic traces,

self-similarity and multifractal processes.

2.1 Wavelet Analysis

Wavelet analysis is a multiresolution analysis (MRA) method and tool, which has

been widely used in signal processing and data analysis [47] [48]. It has remarkable

advantages in analyzing stochastic processes with long range dependence [49] [50]

[51] [52] [53] [54] [55]. For instance, wavelet analysis can eliminate the effect of

deterministic trends hidden in random processes if the wavelet function is chosen

properly. We now introduce the multiresolution analysis in L2(R).

Definition 2.1.1 Multiresolution Analysis [56] [57] A multiresolution analy-

sis consists of a sequence of closed subspaces Vj, j ∈ Z, of L2(R) satisfying

Vj ⊂ Vj−1 ∀j ∈ Z (2.1)

f ∈ Vj ↔ f(2i(·)) ∈ Vj−i ∀j ∈ Z (2.2)
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f ∈ V0 → f(· − k)) ∈ V0 ∀k ∈ Z (2.3)⋂
j∈Z

Vj = {0}; (2.4)

⋃
j∈Z

Vj = L2(R); (2.5)

There exists a function φ ∈ V0, such that

{φ(· − k) : k ∈ Z} is an orthonormal basis for V0. (2.6)

The function φ in (2.6) is called the scaling function of the given MRA.

V

Wj

j−1

Vj

Figure 2.1: Subspaces of multiresolution analysis

Remark 2.1.2 Riesz basis Eq.(2.6) implies that {φ(· − k) : k ∈ Z} is a Riesz

basis for V0. That is, for every f ∈ V0 there exist a unique sequence {αk}k∈Z such

that

f(t) =
∑
k∈Z

αkφ(t− k) (2.7)

with convergence of the series understood in L2(R) sense.
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Remark 2.1.3 Let φj,k = 2−j/2φ(2−jt − k). According to (2.2) and (2.6), {φj,k :

k ∈ Z} is an orthonormal basis for Vj.

Now, we introduce the construction of orthonormal wavelets from MRA. Let

W0 be the orthogonal complement of V0 in V−1; that is, V−1 = V0 ⊕W0. According

to Definition 2.1.1, we have

Vj−1 = Vj ⊕Wj, ∀j ∈ Z. (2.8)

Since Vj → {0} as j → ∞,

Vj−1 = Vj ⊕Wj =
∞⊕
n=j

Wn, ∀j ∈ Z. (2.9)

Since Vj → L2(Z) as j → −∞,

L2(R) =

∞⊕
n=−∞

Wn. (2.10)

To find an orthonormal wavelet with a given scaling function φ, all we have to

do is to find a function ψ ∈ W0 such that {ψ(· − k) : k ∈ Z} is an orthonormal

basis for W0. Daubechies [57] had shown the existence of orthonormal wavelets

with compact support (i.e. finite duration waveforms) in the following theorem:

Theorem 2.1.4 [56] [57] For any integer n = 0, 1, 2, ... there exists an orthonor-

mal wavelet ψ with compact support such that ψ has bounded derivatives up to

order n. Moreover, ψ can be obtained from an MRA whose scaling function φ also

has compact support and the same smoothness as ψ.

Many wavelet families such as Haar, Daubechies, Meyer, Morlet, Mexican-hat,

Battle-Lemarie, Shannon, etc. [56] [58] [59] [57] have been eveloped for different

purposes. We apply these useful results to analyze the statistical properties of

Internet traffic traces.
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We next give a simple example to explain the procedure. Assume our target

function X(t) is defined in the interval [0,1). Let the scaling function be φ(t) :=

1{0 ≤ t < 1}, which forms a basis for the subspace V0. Since the subspace Vj

are all nested, i.e. Vj ⊂ Vj−1, and formed by orthonormal bases φj,k(t) in Remark

2.1.3, the basis at level j = 0 should be expressed in terms of the basis at the finer

next level j = −1. According to (2.2) we have

φ(t) = φ(2t) + φ(2t− 1)

= 2−1/2φ−1,0(t) + 2−1/2φ−1,1(t). (2.11)

Let

aj,k :=

∫ ∞

−∞
X(t)φj,k(t)dt (2.12)

be the coefficient of φj,k(t) for all j, k ∈ Z. We have the projection of X(t) at the

subspace Vj:

Xj(t) := Projj(X(t)) =

∞∑
k=−∞

aj,kφj,k(t). (2.13)

Now, we define the detail (or residual) process of X(t) at level j as

Yj(t) := Xj−1(t)−Xj(t). (2.14)

Note that Yj(t) ∈ Wj by definition.

Our goal here is to find a basis for the subspace Wj . It is obvious that

a0,0 =

∫ ∞

−∞
X(t)φ(t)dt

=

∫ 1

0

X(t)dt (2.15)

a−1,0 =

∫ ∞

−∞
X(t)φ−1,0(t)dt
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= 21/2

∫ 1/2

0

X(t)φ(2t)dt

= 21/2

∫ 1/2

0

X(t)dt (2.16)

a−1,1 =

∫ ∞

−∞
X(t)φ−1,1(t)dt

= 21/2

∫ 1

1/2

X(t)φ(2t− 1)dt

= 21/2

∫ 1

1/2

X(t)dt (2.17)

and

a0,0 =
a−1,0 + a−1,1√

2
(2.18)

According to (2.11), (2.14) and (2.18), we have

Y0(t) = X−1(t)−X0(t)

= [a−1,0φ−1,0(t) + a−1,1φ−1,1(t)]− a0,0φ(t)

=
a−1,0 − a−1,1

2
[φ−1,0(t)− φ−1,1(t)] (2.19)

We can rewrite Y0(t) = d0,0ψ(t) for 0 ≤ t < 1, where

d0,0 :=
a−1,0 − a−1,1√

2
(2.20)

and

ψ(t) :=
φ−1,0(t)− φ−1,1(t)√

2

= φ(2t)− φ(2t− 1) (2.21)

can form an orthonormal basis for W0. ψ(·) is called the mother wavelet of the

MRA.

Given the scaling function φ and the corresponding mother wavelet ψ, the

discrete wavelet transform of the continuous time process X(t) is formally defined

as follows:
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Definition 2.1.5 Discrete Wavelet Transform [50] Given the scaling function

φ and the mother wavelet ψ, the approximation coefficients aj,k and detail coeffi-

cients dj,k of the discrete wavelet transform of process X(t) are defined as follows

aj,k :=

∫ ∞

−∞
X(t)φj,k(t)dt (2.22)

dj,k :=

∫ ∞

−∞
X(t)ψj,k(t)dt, (2.23)

where

φj,k(t) := 2−j/2φ(2−jt− k) (2.24)

ψj,k(t) := 2−j/2ψ(2−jt− k). (2.25)

The functions φj,k and ψj,k form an orthonormal basis for Vj andWj , respectively.

The X(t) has the following representation

X(t) =
∑
k

a∞,kφ∞,k(t) +

∞∑
j=−∞

∑
k

dj,kψj,k(t). (2.26)

This simple example we just introduced is called ‘Haar wavelets’.

Definition 2.1.6 Haar Wavelet [56] If

φ(t) =




1, if 0 ≤ t < 1,

0, otherwise,

and

ψ(t) =




1, if 0 ≤ t < 1
2
,

−1, if 1
2
≤ t < 1,

0, otherwise,

then ψ is an orthonormal wavelet for L2(R). This is called the Haar wavelet and

{ψj,k : j, k ∈ Z} is an orthonormal system in L2(R) and is shown in Figure 2.2.
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1

1/2

1

sqrt(2)sqrt(2)

1/2

1
1

1/2
11

1/2

φ ψ

φ (t)

(t)−1,0(t) −1,0

1/2

ψ(t)

φ (2t) ψ(2t)

t

t

t

t

t

t

Figure 2.2: Scaling function φ(t) and mother wavelet ψ(t) of Haar wavelets

Remark 2.1.7 Since φj,k(t) and ψj,k(t) of Haar wavelets are orthonormal, the

coefficients aj,k and dj,k have the following relation:

aj,k =
aj−1,2k + aj−1,2k+1√

2
(2.27)

dj,k =
aj−1,2k − aj−1,2k+1√

2
(2.28)

Theoretically, the projection can be performed from j = −∞ to∞. However, in

practice we have a finite index from j = 0 to J and we only consider the subspaces

VJ ⊂ VJ−1 ⊂ ... ⊂ V0.

For a discrete time process Xi, i = 0, 1, 2, ..., the discrete wavelet transform

can be implemented by the fast pyramidal algorithm [60] [61]. To understand

the behavior of the traffic Xi, we are more interested in the detail process of the

discrete wavelet transform dj,k. In the next section, we briefly introduce the long-

range dependence property of Internet traffic and its self-similar behavior.
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2.2 Self-Similarity and Long-Range Dependence

It is well known that Internet traffic is self-similar and has a long-range dependent

property [9] [62] [10]. Many studies [63] [64] have also shown that this long-range

dependence property indeed plays an important role in network performance.

Let T be either R, R+ or {t : t > 0}.

Definition 2.2.1 Self-Simiarity [65] The real-valued process X(t) is self-similar

with index H > 0 if for all a > 0, the finite-dimensional distributions of {X(at), t ∈

T} are identical to the finite-dimensional distributions of {aHX(t), t ∈ T}; i.e., if

for any k ≥ 1, t1, t2, ...., tk ∈ T and any a > 0,

[X(at1), X(at2), ..., X(atk)]
d
= [aHX(t1), a

HX(t2), ..., a
HX(tk)]. (2.29)

Where X
d
= Y denotes that r.v. X and Y have identical distributions.

Definition 2.2.2 Long-Range Dependence [66] A stationary finite-variance

process Xi displays long-range dependence with parameter α if its autocovariance

function R(k) := E[(Xi − EXi)(Xi+k −EXi+k)] satisfies

R(k) ∼ Crk
α−1 as k → ∞, (2.30)

where 0 < α < 1 and Cr is a positive constant.

This also implies that the corresponding spectral density S(ω) := F{R(k)}

satisfies

S(ω) ∼ Cf |ω|−α as ω → 0, (2.31)

where Cf =
Cr

2Γ(1−α)sin(πα/2)
and Γ denotes the Gamma function.

Leland et al. [62] have indicated that the Internet traffic is long-range depen-

dent and has a self-similar behavior with Hurst parameter 0.5 < H < 1. The
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Internet traffic observed at different time resolutions has similar statistical prop-

erties and this phenomenon cannot be modeled well by traditional traffic models

such as Poisson and Markovian processes. A well-known mathematical process for

modeling a self-similar process is the so-called fractional Brownian motion process.

Definition 2.2.3 fractional Brownian motion [29] The fractional Brownian

motion {BH(t), t ∈ R} is a Gaussian process with zero mean and autocovariance

function:

Cov(BH(t1), BH(t2)) =
1

2
{|t1|2H + |t2|2H − |t1 − t2|2H}V arBH(1). (2.32)

Remark 2.2.4 A fractional Brownian motion with V arBH(1) = 1 is called stan-

dard fractional Brownian motion.

According to definitions 2.2.1 and 2.2.2, it is obvious that the fractional Brow-

nian motion is self-similar and has a stationary increment. The increment process

of fractional Brownian motion is called fractional Gaussian noise. In Chapter 3,

we introduce the properties of fractional Gaussian noise process and compare it

with our traffic model.

There are many estimation methods proposed to estimate the Hurst parameter

of a self-similar process such as R/S analysis, variance time-plots, periodogram

analysis, Whittle estimator [62], [67]. However, a self-similar process is strongly

autocorrelated and displays a long-range dependence. This long-range dependent

property results in a severe estimation bias and a difficulty in estimator conver-

gence. Wavelet analysis is able to avoid this problem by choosing the scaling

function (and the corresponding wavelet function) properly [68].

According to the wavelet construction [56], the mother wavelet ψ(t) is a band-

pass function between ω1 and ω2 in the frequency domain, where ω1 and ω2 are
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the lower and upper cut off frequency of ψ(t). Therefore, the detail coefficient dj,k

can be treated as the output process of the corresponding bandpass filter. The

square of the detail process d2
j,k roughly measures the amount of energy around

the time t = 2jk∆ and the frequency 2−jω0, where ∆ is the unit time interval and

ω0 :=
ω1+ω2

2
.

Proposition 2.2.5 [66] If a stationary finite-variance process Xi has long range

dependence with parameter α, then the corresponding detail coefficients dj,k have

the following property:

E[d2
j,·] ≈

∫
2−jω1<|ω|<2−jω2

S(ω)|F{2−j/2ψ(2−jt)}|2dω

=

∫
2−jω1<|ω|<2−jω2

S(ω)2j|Ψ(2jω)|2dω

=

∫
2−jω1<|ω|<2−jω2

Cf |ω|−α2j|Ψ(2jω)|2dω

= 2jαCf

∫
ω1<|ω|<ω2

|ω|−α|Ψ(ω)|2dω

= 2jαCfC(α, ψ). (2.33)

Note that CfC(α, ψ) is independent of the variable j.

This property suggests that the parameter α can be estimated by the slope

of the log2E[d
2
j,·] v.s. j plot. This plot is named the Logscale diagram. One

advantage of wavelet analysis is that even when the original process Xi has long

range dependence, its wavelet transform dj,k still has short range dependence if

the number of vanishing moments N of the mother wavelet ψ(t) is chosen large

enough (N > α/2).

Definition 2.2.6 [69] The number of vanishing moments N of the mother wavelet

ψ(t) is defined as: ∫
tkψ(t) ≡ 0, k = 0, 1, 2, ..., N − 1. (2.34)
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Proposition 2.2.7 [57] [66] If the number of vanishing moments N > α/2, then

dj,k is stationary and no longer exhibits long range dependence but only short range

dependence. i.e., dj,k is quasidecorrelated [70] to each other.

E[dj,kdj′,k′] ≈ |2jk − 2j
′
k′|α−1−2N , (2.35)

as |2jk − 2j
′
k′| → ∞, where j �= j′ and k �= k′. This implies the higher N is, the

smaller the correlation.

In order to estimate the parameter α of long range dependence, one may apply

linear regression to estimate the slope of the Logscale diagram.

Definition 2.2.8 Weighted Linear Regression [71]

Given a sequence of independent variables (xj , yj), j=1,2,..., the hypothesis of linear

regression is Eyj = bxj + a. The unbiased estimator (̂b, â) of (b, a) is

b̂ =

∑
yj(Sxj − Sx)/σ

2
j

SSxx − S2
x

â =

∑
yj(Sxx − Sxxj)/σ

2
j

SSxx − S2
x

(2.36)

where

S =
∑

1/σ2
j

Sx =
∑

xj/σ
2
j

Sxx =
∑

x2
j/σ

2
j

(2.37)

and σ2
j is an arbitrary weight.

If yj are mutually independent then the covariance matrix is
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Cov(b, a) =


 S

SSxx−S2
x

−Sx

SSxx−S2
x

−Sx

SSxx−S2
x

Sxx

SSxx−S2
x




and the correlation coefficient is r = −Sx√
SSxx

. Note that the minimum variance

unbiased estimator (MV UE) is achieved if we set σ2
j=V ar(yj).

Note that the Logscale diagram is a log-log plot and the logarithm is not a

linear operation

E log2(d̄
2
j) �= log2(Ed̄

2
j ) = jα+ log2(CfC(α, ψ)), (2.38)

where d̄2
j :=

1
nj

∑nj

k=1 d
2
j,k. We are not able to apply this linear regression directly.

Veitch and Abry [68] [51] [55] developed an asymptotically unbiased and efficient

joint estimator for the parameter α and C(α, ψ). They also provide a closed-form

expression for the covariance matrix of the estimator and show its accuracy. In

their work, yj is rewritten as

yj := log2(d̄2
j)− gj ,

where

gj := ψ(nj/2)/ ln 2− log2(nj/2)

The regression problem becomes Eyj = jα + log2 CfC(α, ψ). The estimator of

slope α is obtained by performing the above weighted linear regression problem

with xj = j and the weight σ2
j = V ar(yj).

Figure 2.3 is the Logscale diagram of a real traffic trace from the bottleneck

router of DirecPC system. The total length of this trace is about one hour with

minimum time resolution one millisecond. The slope at large time scales is a

constant which demonstrates that the real traffic is self-similar (monofractal) at
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large time scales. However, the slope at small time scales has severe different slope.

It indicates that the traffic is a multifractal process.

The Logscale diagram not only demonstrates the long range dependence of

traffic but also extracts the second statistics at every time scales. We will employ

this property of wavelet analysis to provide an efficient algorithm for predicting

queuing behaviors.
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Figure 2.3: Logscale diagram of a real Internet traffic trace
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2.3 Monofractal and Multifractal Processes

The basic idea of multifractal analysis is from the large deviation principle (LDP).

Theorem 2.3.1 Large Deviation Principle [25] [72] Let Z(n) be an arbitrary

sequence of random variables on a sequence of probability spaces with probability

Pn, and let an → ∞. Assume that the following limit exists

− 1

an
logEn[exp(qZ

(n))] → c(q) (2.39)

and c(q) is finite, concave and differentiable. Then

1

an
logPn[

−1
an

Z(n) ∈ A] → c∗(α) := inf
q
(qα− c(q)),

as A → {α}

where En is the expectation w.r.t. Pn.

Consider a normalized cumulative traffic Y (t), 0 ≤ t ≤ 1, with Y (0) = 0 and

Y (1) = 1. Let Xkn := Y ((kn + 1)2−n) − Y (kn2
−n), kn = 0, 1, ..., 2n − 1, denote

the normalized traffic increment in the interval [kn2
−n, (kn + 1)2−n). The LDP is

employed by defining Z
(n)
kn

:= logXkn and an := n log 2.

c(q) := lim
n→∞

−1
n log 2

logEn[exp(qZ
(n))]

≈ −1
n

log2{
1

2n

2n−1∑
kn=0

(exp(Z
(n)
kn

)q}

=
−1
n

log2{
1

2n

2n−1∑
kn=0

Xq
kn
}, (2.40)

as n → ∞. If the c(q) exists and is differentiable for all q ∈ R. According to the

LDP, we have

1

n log 2
log

#{kn = 0, 1, .., 2n − 1 : α− ε ≤ αkn ≤ α + ε}
2n
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≈ 1

n
log2 P [αi ∈ [α− ε, α+ ε]] → c∗(α)

as n → ∞, ε → 0,

where

αkn :=
−1
n

log2 Xkn. (2.41)

In other words, the probability of Xkn ≈ 2−nα is approximately equal to 2nc
∗(α).

Note that c∗(α) is a non-positive real function and the multifractal spectrum f(α)

is defined as:

f(α) := 1 + c∗(α), (2.42)

and 2nf(α) is interpreted as the “frequency” of a certain value of the Holder (or

called singularity) exponent α. The idea is easy to understand by the following

interpretation [50]. Define the Partition Function

T (q) := lim
n→∞

1

−n log2 E
2n−1∑
kn=0

Xq
kn

= −1 + c(q). (2.43)

We have

2n−1∑
kn=0

Xq
kn

≥
∑
αi≈α

Xq
kn

≈
∑
αi≈α

(2−nα)q

≈ 2nf(α)(2−qnα) = 2−n(qα−f(α)). (2.44)

Take the logarithm on both sides, T (q) ≤ qα− f(α) and f(α) ≤ qα− T (q). Since

this holds for all α and q, we have

T (q) ≤ inf
α
(qα− f(α)) (2.45)

f(α) ≤ inf
q
(qα− T (q)). (2.46)
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Thus the multifractal spectrum f(α) can be obtained by the Legendre transform

of T (q). This method is called “increment-based multifractal analysis”.

In order to have the numerical advantage of the wavelet analysis [27] [73],

one may define the “wavelet-based multifractal analysis” by analyzing the detail

process dj,k instead of the increment Xkn in (2.41). Define

α̃n(t) :=
1

−n log2(2
n/2|d−n,k|). (2.47)

It is shown [74] that under some mild conditions, this approach captures the same

behavior of the multifractal spectrum. Figure 3.6 shows the wavelet-based multi-

fractal spectrum of a real traffic trace. We will apply this powerful tool to evaluate

our model.
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Chapter 3

Multilevel ON/OFF Model

3.1 Motivation

According to wavelet analysis of real Internet traffic trace, the Logscale diagram in

Fig. 2.1 is shown to be monofractal (self-similar) at large time scales. However, the

traffic behavior at small time scales is more complicated and regarded as multifrac-

tal. The well known ON/OFF model proposed to model the connection duration

and user think time is unable to explain this multifractal behavior at small time

scales. Since the traffic behavior at small time scales plays an important role in

affecting connection performance such as packet loss and throughput, we are mo-

tivated to offer a physical model that can precisely capture the traffic behavior at

all time scales and explain the relationship between network parameters and con-

nection performance. However, one has to first understand the network dynamics

at small time scales.

There are many protocols designed and deployed on the Internet for various

purposes. Nevertheless, the traffic driven by TCP (Transmission Control Proto-

col) has already dominated the entire network for decades. TCP has a well known
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control mechanism for reliable communication and congestion avoidance [75]. In

order to avoid congestion at a bottleneck router, the burst size (size of pack-

ets) is limited by the current size of the congestion control window. TCP de-

termines the window size according to its current state and packet loss events.

The window size update algorithm depends on TCP versions such as Reno and

Tahoe. For example, the window size of TCP/Reno has a small initial value

(1MSS maximum segment size) and increases its size by one MSS after receiving

an acknowledgement from the receiver. This phase is called “slow start”. TCP

leaves the slow start phase and enters the congestion avoidance phase if TCP

encounters a packet loss or its windows size is greater than a parameter called

ssthresh. The default value of ssthresh is 64KBytes and its value is updated by

min(current congestion window size, receiver window size)/2. TCP interprets

a packet loss event as an indication of network congestion. In the congestion

avoidance phase, TCP slowly increases its window size by one packet with every

round-trip time and decreases its window size to a half when detecting a new

packet loss.

We consider a typical web traffic transported over the Internet. Since most

objects in a typical web page are small graphic and text files, the corresponding

TCP connection usually spends most of its life in the slow start phase and the

packet arrival pattern is much like an ON/OFF process. TCP sends a batch of

packets during the ON period. The OFF time is roughly equal to the network

round-trip time (RTT). Note that the original ON/OFF process [16] models the

TCP session life time and user think time. In order to model the traffic at small

time scales, we propose a multilevel ON/OFF model to mimic the operational

behavior of a typical Internet connection.

28



T10

T11

T20T21

Figure 3.1: Traffic model for one TCP session

3.2 Model Description

We propose a two level ON/OFF model for a single TCP connection as shown in

Figure 3.1. The upper level is an ON/OFF process that models the TCP session

life time (T11) and user think time (T10). In order to capture the behavior of the

TCP mechanism, there is another ON/OFF process inside the ON period T11 of

the upper level ON/OFF process. It imitates the burst arrival pattern by the

active time (duration of a burst T21) and inactive time (T20) within the same TCP

session. The packet rate B (bytes/∆) in T21 is assumed to be a constant. T11

and T21 have Pareto Type I distributions with parameters (K11, a11) and (K21,

a21) respectively.
1 The user think time T10 and inactive time T20 are chosen to be

Exponential random variables with mean 1/λ10 and 1/λ20 respectively. All these

1The Pareto Type I distribution function is as follows:

Pr[T > t] =




(K/t)a , if t ≥ K

1 , if t < K
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random variables are statistically independent to each other.

T10 := r.v. Exp (1/λ10)

T11 := r.v. Pareto (K11, a11)

T20 := r.v. Exp (1/λ20)

T21 := r.v. Pareto (K21, a21)

B := Data rate within the active period (bytes/∆)

N := Number of connections

The synthetic traffic will be generated by aggregating N independent multilevel

ON/OFF processes with burst rate B, which will be formulated in (3.1). It is

desired to generate synthetic Internet traffic traces that match the real Internet

traffic traces as measured by the degree of matching in the Logscale diagram and

in the multifractal spectrum.

3.3 Parameter Estimation and Model Fitting

3.3.1 Trace Format

Before discussing parameter estimation and model fitting, we briefly describe the

format of a real Internet trace observed in a bottleneck router. The raw trace

is recorded by tcpdump, which is a network monitoring tool developed by the

Department of Energy Lawrence Livermore Lab. To estimate the parameters of

the proposed traffic model, we need the following information:

• Timestamp: the arrival time of a packet

• Packet size: the length of a packet

• Source address: source host IP address
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• Destination address: destination host IP address

• Source port: source TCP port number

• Destination port: destination TCP port number

• TCP flag: indicate the SYN, SYN-ACK, and FIN packet

One can extract every TCP connection by the source-destination pair (Source

IP-address.port, Destination IP-address.port). The aggregate trafficXi is collected

by the time stamp and the corresponding packet size that belongs to the ith time

interval. The time interval between the SYN and FIN packets of a certain TCP

session is defined as the session life time. Similarly, the time interval between

SYN and SYN-ACK packets gives a measure of the round-trip time. From those

observations, we are able to estimate the following statistics:

• Mean traffic rate (EXi)

• Autocorrelation function R(k)

• Logscale diagram Lj

• Mean round-trip time (ET20)

• Mean session time (ET11)

Given a real Internet trace, our goal is to estimate the corresponding model pa-

rameters, generate a synthetic traffic trace from the model and demonstrate that

the synthetic traffic has similar statistical properties and queuing behaviors with

the real traffic trace.
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3.3.2 Parameter Estimation

According to the definition of the multilevel model, the aggregate traffic can be

written in terms of the sum of i.i.d indicator functions.

Definition 3.3.1 Assume the multilevel ON/OFF process is already in the steady

state before time 0. Let Uk(t) and Vk(t) denote the indicator functions defined as:

Uk(t) := 1{kth connection is in ON state at t}

Vk(t) := 1{kth connection is in Active state at t}.

The aggregate cumulative byte count of the multilevel ON/OFF process is

Y (t) = B

∫ t

0

N∑
k=1

Uk(u)Vk(u)du. (3.1)

The single ON/OFF process can be treated as a special case of the multilevel

ON/OFF process by setting B = 1 and Vk(t) = 1 for all t. Hence, the aggregate

cumulative byte count of a single level ON/OFF process in the interval [0, Tt) is

defined as:

Ŷ (Tt) =

∫ Tt

0

N∑
k=1

Uk(u)du. (3.2)

Taqqu, Willinger and Sherman proved the following theorem:

Theorem 3.3.2 [16] For large N and T, the aggregate cumulative process {Ŷ (Tt), t ≥

0} behaves statistically like

TN
ET11

ET11 + ET10
t+ TH

√
NσlimBH(t), (3.3)
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where the Hurst parameter H = (3 − a11)/2 and BH(t) is the standard fractional

Brownian motion.

In this theorem, the relationship between the Hurst parameter H (index of

self-similarity) and shape parameter a11 (index of Pareto distribution) had been

proved. This theorem explained that the self-similarity of Internet traffic is mainly

due to the heavy-tailed distribution of file sizes which are typically transmitted

over the Internet.

Since the lower level ON/OFF process only exists in the ON period of the upper

level process, one can easily have the following relationship between Y (t) and Ŷ (t):

Proposition 3.3.3 If max(ET21, ET20) << ET11, then

lim
t→∞

Y (t)

Ŷ (t)
=E[V ]B. (3.4)

As time t → ∞, the aggregate cumulative traffic of the multilevel ON/OFF

process Y (t) is statistically like the fractional Brownian motion.

In order to match the second order statistical properties of the real traffic,

we have to estimate the model parameters from the real trace. Instead of dealing

with the cumulative process Y (t), we define the increment process Xi of the traffic.

Definition 3.3.4 The increment process of Y (t) is defined as

Xi := Y ((i+ 1)∆)− Y (i∆), i = 0, 1, 2, 3, ... (3.5)

where ∆ is the minimum time resolution of interest. The increment process Xi is

interpreted as the total bytes that arrive in the interval [i∆, (i+ 1)∆).
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Remark 3.3.5 If BH(t) is a fractional Brownian motion (FBM), the increment

Gi := BH((i+ 1)∆)− BH(i∆) is a stationary sequence called fractional Gaussian

noise (fGn).

Proposition 3.3.6 [65] The fractional Gaussian noise Gi has the autocovariance

function

RG(k) =
σ2

0

2
(|k + 1|2H − 2|k|2H + |k − 1|2H), k ∈ Z

≈ σ2
0H(2H − 1)k2H−2, as k → ∞ (3.6)

where σ2
0 ≡ V ar[Gi].

From (A.1) and (3.5), it is obvious that the autocovariance function of Xi has

the same form as (3.6) as k → ∞. Recall that the introduction of wavelet analysis

and equation (2.30) suggest that the Logscale diagram of the process Xi has a

slope α = 2H−1 = 2−a11 at the large time scales. Veitch and Abry [68] provided

an asymptotically unbiased and efficient estimator for the slope α in the Logscale

diagram within a certain region. We will apply this method to estimate the model

parameter a11 through the estimation of slope α at large time scale region.

Similarly, we consider the traffic Xi at small time scale. Under the assumption

that T11 >> T21 and T20, the traffic behavior at small time scale is dominated by

the lower lever ON/OFF process V (t). When we observe the upper level ON/OFF

process Uk(t) with a small time scale, Uk(t) behaves like a constant. We may

rewrite limt→0 Y (t) as:

lim
t→0

Y (t) = lim
t→0

B

∫ t

0

N∑
k=1

Uk(u)Vk(u)du

≈ B
N∑
k=1

Uk(0) lim
t→0

∫ t

0

Vk(u)du. (3.7)
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It is another single (lower) level ON/OFF process from the point view of small

time scale. Based on the structure of the multilevel ON/OFF model, there is

another linear region in the Logscale diagram in the small time scale region. It

is contributed by the lower level ON/OFF processes. One might use the same

technique to estimate the model parameter a21 in the small time scale region.

The parameter K11 of T11 is estimated by matching the first moment of the

session life time.

K̂11 :=
a11 − 1

a11

ET11 (3.8)

Unlike estimating K11 by matching the mean of session life time T11, there

is no control packet in the real trace indicating the start and end of each active

period T21. As mentioned before, we assume that the upper ON/OFF process

always keeps its state when we observe the process with a small time scale. The

parameterK21 is estimated by the normalized autocorrelation function Rn(t) ofXi.

Definition 3.3.7 Let R(t) be the autocorrelation function of the multilevel ON/OFF

process. When t → 0, we assume that the function U(t) is a constant function and

have the following approximation:

R(t) ≈ N(∆B)2E[U2(0)]E[V (0)V (t)], as t → 0.

We also define π11(t) := Pr[V (t) = 1|V (0) = 1] and the normalized autocorrelation

function Rn(t):

Rn(t) :=
R(t)

R(0)
≈ E[V (0)V (t)]

E[V 2(0)]

=
Pr[V (t) = 1, V (0) = 1]

Pr[V (0) = 1]

= π11(t), as t → 0. (3.9)
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Theorem 3.3.8 [16] [76] Assume that the ON/OFF process V(t) is stationary,

the renewal equation for π11(t) is

π11(t) = G1c(t) +

∫ t

0

F1c(t− u)dH10(u), (3.10)

where G1c(t):= Pr[residual life of the first ON interval > t | at time 0 is ON],

F1c(t) := Pr[T21 > t] and H10(u) is the renewal function corresponding to the

inter-renewal distribution F1 @ F0. (H10 =
∑∞

k=1(F1 @ F0)
�k, where @ denotes the

convolution and Fi(t), i = 1 and 0, is the CDF of ON and OFF time respectively.)

Since we are interested in the behavior of Rn(t) around t = 0, we have the

approximation

Rn(t) ≈ G1c(t), as t → 0.

Given that the T21 has Pareto(K21, a21) distribution, we have

G1c(t) =
1

ET21

∫ ∞

t

(
K21

u
)a21du

=
Ka21−1

a21

t−a21+1.

The parameter K21 can be estimated by the following estimator:

K̂21 := ∆(a21R̂n(∆))
1/(a21−1), as ∆ → 0,

where

R̂n(∆) :=
∑
i

XiXi+1/
∑
i

X2
i .

The empirical results show that R̂n(t) and G1c(t) have a good match when t is

small.
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To estimate the parameter 1/λ20, or equivalently the mean inactive period, we

need to measure the network round-trip time from the trace. It can be extracted

from the real trace by the duration between the SYN packet and the SYN-ACK

packet at the beginning of each TCP session. In our model, the round-trip time is

equal to the lower level OFF time T20. We have the mean of T20:

1/λ20 = ET20.

The parameter B is the constant data rate in the active period T21. With the

assumption of independent connections, we have the following proposition:

Proposition 3.3.9 Let R1 :=
ET11

ET11+ET10
and R2 :=

ET21

ET21+ET20
, we have

EXi = N∆BR1R2 (3.11)

EX2
i = N(∆B)2R1R2. (3.12)

and

B =
EX2

i

∆EXi
.

Thus the estimator B̂ is defined as

B̂ :=

∑
iX

2
i

∆
∑

iXi
.

Equation (3.11) implies that there is one degree of freedom to choose N and

R1(or ET10 equivalently). In order to satisfy the assumption in the theorem 3.2,

one needs to select a large integer for N so that the mean OFF time 1/λ10 can

be determined by R1 in (3.11). Since T10 is an Exponential random variable and

ET10 >> ET11, the starting time of each TCP session can also be approximated

by a Poisson process as N → ∞.

37



Figure 3.2 shows the network topology and bottleneck router (Satellite Gate-

way) of the DirecPC system, of Hughes Network systems. We measure the model

parameters from the downlink traffic (from Internet to user) and generate a syn-

thetic traffic trace by our model and the corresponding model parameters. At

least ten very long traces (more than a hour) with a high time resolution (one mil-

lisecond) are analyzed and compared by our model. For example, one real trace

recorded on 17:00-18:00 Oct. 13 1999 is analyzed and compared by the corre-

sponding synthetic traffic trace. According to the previous parameter estimation

methods, we have the following results. The mean round-trip time and the mean

TCP session time are 0.130sec and 4.896sec respectively. The aggregate trace

has a mean rate 513.98bytes/msec and variance 9.8990 × 105bytes2/msec. The

normalized autocorrelation function R̂n(1msec) is 0.3519. The shape parameters

a11 and a21 are estimated by the slopes of the Logscale diagram in the regions of

small and large time scales as shown in Figure 2.3 and 3.3. Table 3.1 provides the

corresponding parameters of this model.

With our model and the estimated model parameters, we generate the synthetic

trace by the constant bit rate assumption within the lower level ON duration T21

of our model (within the period of T21, packets are generated every one millisecond

with packet size B bytes ), as shown in Figure 3.1. The aggregate synthetic trace

are generated by aggregating N independent such connections.

Table 3.1: Model Parameters

Para. K11 a11 1/λ10 B

Value 1.27sec 1.35 167.55sec 1926bytes/ms

Para. K21 a21 1/λ20 N

Value 0.54ms 1.77 128.75ms 1000
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Figure 3.2: Topology of DirecPC network and the bottleneck gateway

3.4 Second Order Statistics

We employ the discrete wavelet transform to analyze the real and synthetic traffic.

The second order analysis of the traffic is obtained by studying the detail process

of wavelet transforms dj,k. As mentioned previously, the Xi, i = 0, 1, 2, .. is the

time series of total bytes transmitted during the interval [i∆, (i + 1)∆). In order

to avoid the estimation error from the deterministic trend, the mother wavelet of

the discrete wavelet decomposition is chosen to be the Daubechies wavelet with

the number of vanishing moments N = 3. The Logscale diagram in Figure 3.4

is the energy of the detail process log2E[d
2
j,k] v.s. the octave j of the real traffic

and synthetic traffic. It is easily seen that the second order statistics of these two

traffic traces have almost the same values on every scale. This match also implies

their similar autocorrelation structures in time.

There is a breaking point around the scale j = 11 (211∆ = 2.048sec) related

to the minimum value of T11 (=K11 in the model). When the observing time scale

is smaller than 2 sec. in this trace, the traffic behavior is dominated by the lower

level ON/OFF process or equivalently by the TCP congestion control mechanism.
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The figure 3.4 shows that TCP dynamics can be modeled well in the second order

behavior by a multilevel ON/OFF process. On the right-hand side of the breaking

point, the behaviors of the real and synthetic traces are both monofractal with

the same Hurst parameter (H ≈ 0.823). Note that the slope α and the Hurst

parameter [66] have the relation α = 2H − 1.
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3.5 Higher Order Statistics

We employ wavelet-based multifractal analysis to analyze real and synthetic traf-

fic traces. Unlike the Logscale diagram which only considers the second order

statistics, this multifractal analysis method considers all moments of the stochas-

tic process in the wavelet domain. The higher order statistics are extracted by the

structure function S(q, j) and the partition function T (q) defined in [25] [77],

S(q, j) :=

2(L−j)∑
k=1

‖2−(L−j)/2dj,k‖q

where L := log2(Data Length). T (q) is approximated by the slope of log2S(q, j)

when j is small. The multifractal spectrum f(α) is the Legendre Transform of

T (q):

f(α) := inf
q
(qα− T (q)).

The multifractal spectrum f(α) provides a measure of “frequency” of the singu-

larity exponent α(t) at time t. It indicates the probability of a certain value of the

singularity exponent:

Pr[α(t) = α] ≈ 2−L(1−f(α))

For a monofractal process, like the fractional Gaussian noise (fGn, the increment

of fractional Brownian motion), its singularity exponent α(t) is a constant H for

every t. This might be considered as a degenerate case of multifractality. The

corresponding partition function T (q) = qH − 1 of fGn is a linear function of

q. Since the α(t) is equal to H for every t in fGn, its multifractal spectrum

should be a single point at (H ,1). We will employ the fGn as a pilot process

and compare the multifractal spectrum with the real and synthetic traffic. For
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a multifractal process, the partition function is a concave function of q and the

singularity exponent α(t) has a wide range of values. In other words, there is a

non-negligible probability that α(t) is equal to other values. Figure 3.5 shows the

partition functions of the real trace, of the synthetic trace and of the fGn. The

concave curves of the partition function show that the real traffic and synthetic

traffic are multifractal processes and the partition function of fGn is a linear

function due to its monofractal behavior. It is much clearer to see the difference in

their multifractal spectra in Figure 3.6. The spectrum of fGn shows the probability

Pr[α(t) = H ] ≈ 1. For the real and synthetic traffic, their spectra show a rich

variety of singularity exponents with a non-negligible probability. Moreover, the

spectrum of our model is not only multifractal but also has the same shape as that

of the real traffic.
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3.6 Queuing Behavior

After comparing the statistical properties of the real and synthetic traffic, we are

also interested in their queuing behaviors. Figure 3.2 shows network topology and

bottleneck router (Satellite Gateway) of the real DirecPC system. The arrival

traffic of bottleneck router is aggregated downlink traffic (from Internet to user),

which is modeled by our traffic model. In order to predict the queuing behavior of

the bottleneck router, we consider a simple first-come-first-serve queuing system

(FIFO) with a fixed service rate and an infinite buffer size as shown in Figure

3.7. Given the mean rate of arrival traffic, the queue length distributions under

different utilization are obtained by properly adjusting the service rate. Figure

3.8 shows the steady state queue length tail distributions Pr[Q > x] with various

values of utilization ρ = 0.6, 0.7, 0.8 and 0.9. When the traffic load is heavy (large

utilization), the real and synthetic traffic have almost the same distributions. With

the light traffic load, the synthetic traffic also provides a good prediction for the

queue length distribution when the queue length is less than 50K bytes. In the

region of large queue lengths, the tail queue length distribution is overestimated.

However, this event happens with a small probability due to the light traffic load.

Aggregated downlink trafficTo end users

FIFO queue in gateway with fixed bandwidth

Figure 3.7: First-come-first-serve queue in satellite gateway
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3.7 Summary

In this chapter, we propose a multilevel ON/OFF model to capture the multifractal

behavior of Internet traffic. The idea of this model is to mimic the arrival pattern

of packets within a TCP section. The network parameters such as round-trip time

are involved in the model. In the next chapter, we address that this model can

be a useful tool to understand the impact of network parameters on connection

performance. We develop a simple algorithm to estimate the parameter from a

real traffic trace and generate a synthetic traffic. The second order and higher

order statistics comparisons were performed by Logscale diagram and multifrac-

tal spectrum. Finally, we compare their queuing behaviors such as steady state

distribution by simulations.
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Chapter 4

Performance Analysis of Queuing

Behaviors

4.1 Overview

In Chapter 3, we propose a multilevel ON/OFF model for Internet traffic. In

this chapter, we focus on theoretic results of traffic statistical properties and its

corresponding queuing behavior such as steady state queue length distribution,

mean packet delay and jitter.

Since the Logscale diagram comprises important statistical properties of the

traffic, we are looking for an explicit expression of Logscale diagram as a func-

tion of model parameters. Section 4.2 contains an approximation of the Logscale

diagram by considering the partial integral with power spectrum density and the

autocorrelation function of the traffic model. This explicit expression of Logscale

diagram will help us understand the relationship between network parameters and

performance of TCP connections.

Given the Logscale diagram and mean rate of traffic, we develop a recursive
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method in Section 4.3. In this method we apply the properties of wavelet analysis

to compute the variances of aggregate traffic workload. This simple transforma-

tion allows us to obtain the workload variance at every time scale from Logscale

diagram. Furthermore, assuming that the traffic workload has a Lognormal distri-

bution, one can easily predict the steady state queue length distribution by using

the same technique provided in [78].

For most of real time applications such as voice and video conference, packet

delay and jitter are important factors for connection performance. In Section

4.4, we discuss the delay and jitter of a CBR (Constant Bit Rate) connection in

the bottleneck queue with background traffic. The CBR connection has a fixed

packet interarrival time and fixed packet size. It is employed here as a probing

process. According to our prediction of steady state queue length distribution,

the mean CBR packet delay of a FIFO queue is obtained straightforward. We also

develop a method to provide a tight upper bound of jitter according to the Logscale

diagram of the background traffic. Both predictions of mean delay and jitter are

validated by ns2 simulations. This fast algorithm could provide useful information

for network management such as routing decision and resource allocation.

4.2 Analytical Solution of Logscale Diagram

We already demonstrated that the multilevel ON/OFF model has a good match

in their statistical properties and queuing behaviors in Chapter 3. A question

that arises naturally is whether one can find the relationship between network

parameters and connection performance. The first step of our approach is to find

an explicit expression of the Logscale diagram as a function of network parameters.

Recall the model definition in Chapter 3, the aggregate cumulative byte count
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of the multilevel ON/OFF process is given in Definition 3.3.1 as

Y (t) = B

∫ t

0

N∑
k=1

Uk(u)Vk(u)du. (4.1)

The real traffic is modeled by the increment process Xi of Y (t), which is defined

in 3.2.4:

Xi := Y ((i+ 1)∆)− Y ((i)∆)

= B

∫ (i+1)∆

i∆

N∑
k=1

Uk(u)Vk(u)du, i = 0, 1, 2, 3, ... (4.2)

Since Xi is the sum of N i.i.d process Zi,k,

Zi,k := B

∫ (i+1)∆

i∆

Uk(u)Vk(u)du, (4.3)

where k = 1, 2, ..., N . It is obvious that Xi and Zi have the same autocovariance

structure:

Cov(Xi, Xi+n) = NCov(Zi, Zi+n). (4.4)

Our goal here is to calculate the Logscale diagram ofXi, which can be treated as the

signal energy in a certain frequency range. In order to obtain the power spectrum

density of the process Xi, we have to calculate the corresponding autocovariance

Cov(Xi, Xi+n).

We consider the lower level ON/OFF process V (t). Let the random variables

T21 and T20 be the duration of ON and OFF with mean µ1 and µ0 respectively.

The ON/OFF process starts at t = −∞ and reaches the steady state before t = 0.

According to the Definition 3.3.7 and Theorem 3.3.8, the autocovariance func-

tion of V (t) in the steady state is

r(t) := E[V (0)V (t)]− (E[V (0)])2 =
µ1

µ1 + µ0
[π11(t)−

µ1

µ1 + µ0
] (4.5)
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and

π11(t) = G1c(t) +

∫ t

0

F1c(t− u)dH10(u). (4.6)

In order to obtain the power spectrum density function, we first consider its Laplace

transform r̂(s).

Proposition 4.2.1 [16] [76] The Laplace transform of π11(t) is :

π̂11(s) = Ĝ1c(s) + ĥ10(s)(1− f̂1(s))/s (4.7)

where

f̂i(s) := L {fi(t)} (4.8)

Ĝ1c(s) := L {
∫ ∞

t

F1c(u)

µ1
du}

=
1

µ1
L {µ1 −

∫ t

0

F1c(u)du}

=
1

µ1

L {µ1 −
∫ t

0

[1−
∫ u

0

f1(x)dx]du}

=
1

s
− 1− f̂1(s)

µ1s2
(4.9)

and

ĥ10(s) =
(1− f̂1(s))f̂0(s)

µ1s(1− f̂1(s)f̂0(s))
. (4.10)

Note that the fi(t), i = 0, 1 is the pdf of the ON and OFF duration respectively.

The Laplace transform of r(t) is

r̂v(s) =
µ1µ0

(µ1 + µ0)2s
− (1− f̂1(s))(1− f̂0(s))

(µ1 + µ0)s2(1− f̂1(s)f̂0(s))
. (4.11)

Case 1: Exponential distribution at ON duratoin

If the ON/OFF periods T21/T20 have the Exponential distributions with mean
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1/λ1 = µ1 and 1/λ0 = µ0 respectively, we have the density function and the

Laplace transform of the ON and OFF duration as follows:

fi(t) = λi exp(−λit) (4.12)

f̂i(s) =
λi

s+ λi
, (4.13)

where i = 1 and 0. The corresponding r̂(s), r(t) and the power spectrum density

S(ω) of this Exponential ON/OFF process are

r̂(s) =
µ1µ0

(µ1 + µ0)2
1

s + λ
(4.14)

r(t) =
1

λ(µ1 + µ0)
e−λt (4.15)

S(ω) =

∫ ∞

−∞
r(t)e−jωtdt =

2

(1/λ1 + 1/λ0)(ω2 + λ2)
, (4.16)

where λ = λ1 + λ0. With the Proposition 2.2.5, we have the approximation of

E[d2
j,k] by assuming that Ψ(ω) is an ideal bandpass function:

E[d2
j,k] ≈ 2

∫ π/2j−1

π/2j

S(ω)2j‖Ψ(2jω)‖2dω (4.17)

≈ 2j+2

λ(1/λ1 + 1/λ0)
(arctan

π/λ

2j−1
− arctan

π/λ

2j
). (4.18)

Take the logarithm on both sides, the Logscale diagram of single ON/OFF process

is

L̃j := log2E[d
2
j,k] ≈ log2{

2j+2

λ(1/λ1 + 1/λ0)
(arctan

π/λ

2j−1
− arctan

π/λ

2j
)} (4.19)

Recall that there are N independent connection with Burst rate B and the upper

level has a ON/OFF ratio R1. The Logscale diagram of the aggregate traffic at

small time scale region is approximated by

Lj ≈ L̃j + log2(N(BR1)
2). (4.20)
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Figure 4.1: Logscale diagram of Real Trace and Synthetic Traffic
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Since both ON and OFF duration have Exponential distributions, the auto-

covariance function r(t) at (4.15) also has an exponential form which indicates a

short-range dependence property. The Logscale diagram of this short range de-

pendent ON/OFF process is shown in Figure 4.1 with the same mean ON time

and OFF time estimated in Chapter 3. Note that the zero slope of the Logscale

diagram at large time scales demonstrates the absence of long range dependence

and obviously the Exponential distribution assumption of ON/OFF duration is not

valid for modeling a real traffic. The heavy-tailed type distribution such as Pareto

distribution is suggested as a candidate for modeling the long-range dependence

traffic [16] [1] [66]. However, there is no closed-form for the autocovariance function

of such ON/OFF process with Pareto distribution. We provide an approximation

for the Logscale diagram of the ON/OFF model.

Case 2: Pareto distribution at ON duration

The density function of Pareto(K, a) distribution fP (t) = aKat−a−1 can be approx-

imated (truncated tail) [79] by the weighted sum of N density functions of Expo-

nential distribution with mean γn/ν, n = 0, 1, ..., N−1. Define r.v. YN :=
∑N−1

n=0 Xn,

where r.v. Xn has an Exponential density function:

fXn :=
ν

γn
exp(− ν

γn
t). (4.21)

Then the pdf of YN is:

fYN
(t) = G(N)

N−1∑
n=0

θn
ν

γn
exp(− ν

γn
t), (4.22)

where parameter θ is the weighting factor. Note that
∫ ∞
0
fYN

(t) = 1 for probability

density function, we have the normalization factor G(N) = 1−θ
1−θN .

Recall that the αth moments of Pareto distribution is diverging when α is
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greater or equal to the shaping parameter a. i.e.

E[P α] =

∫ ∞

K

tαfP (t)dt

= aKa

∫ ∞

K

t−a−1+αdt (4.23)

diverges if α ≥ a. Hence, we consider the ath moments of r.v. YN :

E[Y a
N ] = G(N)

1− (θγa)N

1− θγa
E[Xa

0 ]. (4.24)

Let N → ∞, we have

lim
N→∞

E[Y a
N ] =

1− θ

1− θγa
E[Xa

0 ]. (4.25)

Since X0 has Exponential distribution, we have E[Xa
0 ] < ∞ for all a < ∞. How-

ever, if θγa ≥ 1, the limit in (4.25) diverges. We are free to choose the scaling

factor to be γ = 2, then the weighting factor θ = 2−a. The mean of the mixed

density function is E[YN ] = G(N)
∑N−1

n=0 θn γ
n

ν
. In order to match the mean of the

Pareto distribution aK/(a− 1), we have

ν = G(N)
1− (θγ)N

1− θγ

a− 1

aK
. (4.26)

The Pareto distribution approximation by sum of weighted Exponential distribu-

tions are shown in Figure 4.2.
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The Laplace transform of f̂YN
(s) is:

f̂YN
(s) = G(N)

N−1∑
n=0

θn
ν/γn

s+ ν/γn
. (4.27)

Substitute f̂0(s) := λ0

s+λ0
and f̂1(s) := f̂YN

(s) into equation (4.11), the Laplace

transform of the autocovariance function is in (4.28).

r̂v(s) =
µ1µ0

(µ1 + µ0)s
−

1−G(N)
∑N−1

n=0 θn ν/γn

s+ν/γn − λ0

s+λ0
+G(N)

∑N−1
n=0 θn λ0ν/γn

λ0−ν/γn (
1

s+ν/γn − 1
s+λ0

)

(µ1 + µ0)s2[1−G(N)
∑N−1

n=0 θn λ0ν/γn

λ0−ν/γn (
1

s+ν/γn − 1
s+λ0

)]
(4.28)

The power spectrum density of rv(t) can be calculated by the following relation:

Sv(ω) = r̂v(s)|s=−jω + r̂v(s)|s=jω. (4.29)

Assuming that the mother wavelet ψ is an idea bandpass function, the Logscale

diagram L̃j of a single connection at small time scales can be approximated as

follows:

L̂j = log2E[d
2
j,k]

≈ log2{
∫ π

−π
Sv(ω)2

j‖Ψ(2jω)‖2dω}}. (4.30)

Again, the Logscale diagram of the aggregate traffic is:

Lj ≈ L̂j + log2(N(BR1)
2). (4.31)

The dash and dot lines at Figure 4.1 compare the theoretical approximations

of Logscale diagram with Exponential (Case 1) and Pareto distribution (Case 2)

respectively. It shows that the equation 4.31 provides a good approximation for
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the Logscale diagram at small time scales. With this formula, we are able to un-

derstand the relationship between network parameters and the traffic statistical

properties. Figure 4.3 and 4.4 also show the Logscale diagrams of numerical ap-

proximation and synthetic traffic with different network parameters. Figure 4.3

shows the effect of increasing the burst size K21 by two times and four times. In

Figure 4.4 both ON(T21) and OFF (T20) time periods are increased in order to keep

the same mean rate. In those two figures both synthetic and theoretical results

predict the statistical properties of real traffic with different network parameters.

The second step of our approach is to find the queuing behaviors according to

the Logscale diagram of aggregate traffic. Given the Logscale diagram (numerically

estimated from the trace or theoretically computed from the model), we develop

an efficient algorithm in the next section to predict the queue length distribution

and the corresponding connection performance such as delay and jitter. With this

technique, one can employ the network parameters to predict the queuing behavior

of a bottleneck router. It builds up a relationship between the network parameter

and the connection performance, which is very helpful in protocol design. Fur-

thermore, based on the prediction of the queuing behavior, one may adjust control

parameters in a router such as the maximum threshold and the dropping probabil-

ity of the RED (Random Early Detection) scheme. We will discuss these problems

in the following chapters.
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4.3 Approximation of Steady State Queue Length

Distribution

As shown in the Chapter 2, the wavelet method has many advantages in param-

eter estimation and traffic analysis. Given the Logscale diagram (numerically or

theoretically) of the arrival traffic, we develop an efficient method to obtain an

upper bound of the overflow probability by using the properties of wavelet.

Proposition 4.3.1 Let aj,k and dj,k be the approximation coefficient and the detail

coefficient of the Haar wavelet, we have the following relations according to Remark

2.1.7

aj,2k =
aj+1,k + dj+1,k√

2
(4.32)

aj,2k+1 =
aj+1,k − dj+1,k√

2
. (4.33)

With the uncorrelated assumption between aj+1,k and dj+1,k for each j, we have

V ar[aj ] =
V ar[aj+1] + V ar[dj+1]

2
. (4.34)

Note that the plot log2 V ar[dj] v.s j is the Logscale diagram. On the other hand,

let the workload Aj to be the total arrival bytes in the interval [0, 2j∆). From the

definition of Haar wavelet, we have

Aj = aj2
j/2. (4.35)

Thus, by using the Logscale diagram and the variance of workload at the finest

scale V ar[A0] as the initial values, the variance of workload V ar[Aj] can be com-

puted recursively for all j.
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Proposition 4.3.2 Given the Logscale diagram Lj := log2V ar[dj] and the vari-

ance of A0, the variance of Aj, j = 1, 2, ... is

V ar[Aj ] = 2jV ar[aj ]

V ar[aj ] = 2V ar[aj−1]− V ar[dj].

Since the workload Aj is contributed by many independent connections which

are active in the the interval [0, 2j∆), The Central Limit Theory suggests that the

candidate distribution of workload should be Normal distribution with parameters

(EAj , V ar[Aj]). Figure 4.6 shows that the Normal distribution works well at large

time scales in fitting the empirical distribution. However, the packet arrival pattern

is very bursty and spare at small time scales. There are few connections have

packets arriving in a small interval. The assumption of large number aggregation

of independent connections is invalid. On the other hand, the Normal distribution

always has a positive probability for negative values. This property is not suitable

for modeling a positive random variable such as traffic workload. We are looking

for a distribution of positive random variable which can best fit the empirical

distribution of real traffic at all time scale. We applyied the Kolmogorov-Smirnov

Goodness-of-Fit test [80] [81] [82] to most well-known distributions of positive

random variables and found the Lognormal distribution is a good choice.

Assuming that the workload Aj has the Lognormal distribution for all j with

mean Mj and variance Vj, the probability density function of the Lognormal dis-

tribution is:

fAj
(x) :=

1

xσj
√
2π

exp[−(ln x− µj)
2

2σ2
j

], x > 0 (4.36)

Since the rth moment of the Lognormal distribution has a closed-form:

EArj = exp(rµj +
r2σ2

j

2
). (4.37)
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The parameters µj and σj can be easily obtained:

σ2
j = ln(

M2
j + Vj

M2
j

) (4.38)

µj = ln(Mj)−
σ2
j

2
. (4.39)

Figure 4.5 and Figure 4.6 are the complement CDF of the real workload with

scale j = 1, 2, .., 14 and the corresponding Normal and Lognormal distribution

fitted by the estimated mean and variance. It is obvious that the prediction of

Normal distribution is severely underestimated at small time scales.
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Consider a simple FIFO queue with a finite buffer size B (bytes) and capacity C

(bytes/∆). Assuming that the distribution of workload Aj is known for all j, Riedi

[78] proposes a simple upper bound for the overflow probability P [Q > B], where

r.v. Q is the queue length in the steady state. Let the event Ej := {Aj < B+C2j∆}

be assumed to be independent of each other. According to the lemma proved by

Riedi:

Lemma 4.3.3 [78] Assume that the event Ej = {Sj < bj}, where Sj = R0 +

... +Rj−1 for 1 ≤ j ≤ n and where R0,...,Rn are independent, otherwise arbitrary

random variables. Then, for 1 ≤ j ≤ n, we have

P [Ej|Ej−1, ..., E0] ≥ P [Ej ]. (4.40)

With Lemma 4.3.3, we have the upper bound of the overflow probability:

Proposition 4.3.4 Let Ej := {Aj < B+C2j∆}. An upper bound of the overflow

probability of a FIFO queue is

p[Q > B] = 1− P [Q ≤ B] ≈ 1− P [∩Kj=1Ej ]

= 1− P [E0]

K∏
j=1

P [Ej|Ej−1, ..., E0]

≤ 1−
K∏
j=0

P [Ej] = 1−
K∏
j=0

P [Aj < B + C2j∆], (4.41)

where K is the maximum octave and 2K∆ is the maximum time scale.
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Figure 4.7 shows this upper bound with different bandwidth utilization ρ =

0.1, 0.2, ..., 0.9. Figure 4.8 to 4.11 are the comparisons of this upper bound with

the queue length distribution of the real network traffic and the synthetic traffic.

These results suggest that the upper bound of overflow probability may provide a

good approximation of the queue length distribution. In the next section, we will

use this approximation to predict the mean queuing delay and choose the RED

parameter properly to satisfy the given mean delay requirement.

70



10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

Queue Length  x (KBytes)

P
r[

Q
 >

 x
]

ρ=0.6

Figure 4.8: The queue length distribution with utilization ρ = 0.6, upper
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Figure 4.10: The queue length distribution with utilization ρ = 0.8, upper
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When we calculate the upper bound of the overflow probability, we find that

only one workload Aj at certain time scale j dominates the overflow probability.

Figure 4.12 shows that in the light traffic condition (ρ = 0.3), the traffic perturba-

tion at small time scales mainly causes the overflow events. Figure 4.13, 4.14 and

4.15 show that when the traffic load is increasing, the overflow probability of the

queue will be mainly dominated by traffic behavior at larger time scales. On the

other hand, with a fixed utilization, the dominating time scale is related to the

buffer size. The smaller buffer size has a smaller dominating time scale. It implies

that the short range dependence in the traffic dominates the queuing behavior

when the buffer size is small. Note that most of dominating time scales are less

than 1 sec. The statistical properties of the traffic at small time scale is directly

related to the protocol behavior. It suggests that, for the small buffer queue, the

protocol behavior plays a more important role than the file size distribution does

at the upper level. It also suggests that the monofractal or single level ON/OFF

model is not quite suitable for predicting the behavior of a small buffer queue.

The selection of maximum octave K also determines the upper bound. Riedi

[78] suggested that the maximum time scale 2K∆ should be large enough to con-

tain an empty event. Figure 4.12 to 4.15 show that the upper bound will converge

as K goes to infinite. In practice, the maximum octave K can be chosen large

enough so that the probability P [Ej] converges to 1.
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Figure 4.12: The Pr[Aj < B + 2jC∆] v.s. octave j, buffer size B =

10K, 20K, ..., 400K (bytes) with utilization ρ=0.3
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Figure 4.13: The Pr[Aj < B + 2jC∆] v.s. octave j, buffer size B =

10K, 20K, ..., 400K (bytes) with utilization ρ=0.5
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Figure 4.14: The Pr[Aj < B + 2jC∆] v.s. octave j, buffer size B =

10K, 20K, ..., 400K (bytes) with utilization ρ=0.7
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10K, 20K, ..., 400K (bytes) with utilization ρ=0.9
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4.4 Queuing Delay and Jitter Analysis

With the prediction of steady state queue length distribution, it is straightforward

to predict the average queuing delay by calculating the ratio of mean queue length

and service rate. We consider a constant-bit rate traffic as our probing process.

As shown in Figure 4.16, the CBR process sends out a small packet every 2n∆sec

persistently and shares the bandwidth with the background traffic. Assume that

the packet size of the CBR process is set to be small enough such that mean

rate of CBR traffic is negligible. According to the approximation of steady state

queue length distribution at , the average queuing delay D̄ of CBR packet can be

predicted by the following proposition.

CB

Background Traffic

CBR

2^n∆ I i+1 I i

Figure 4.16: The target process and the background traffic

Proposition 4.4.1 Assume a FIFO queue is in the steady state with (time aver-

age) distribution Pr[Q > b]. The average queuing delay of CBR packets is:

D̄ =
1

C

∑
b>0

Pr[Q > b], (4.42)

where
∑

b>0 Pr[Q > b] is equal to the mean (time average) queue length of the

FIFO queue with infinite buffer size.

Sketch of Proof. Since the CBR packets arrive at the queue every 2n∆sec, the

average queue length seen by the CBR packets is equal to the time average of
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queue length. The average packet delay at a FIFO queue:

D̄ = S̄ + W̄ (4.43)

=
1

C

∑
b>0

Pr[Q > b], (4.44)

where W̄ and S̄ mean waiting time and mean service time respectively. Note that

the CBR packet size is assumed to be small and negligible, we assume S̄ = 0.

�

Figure 4.17 to 4.23 demonstrate the queue length distribution which is seen

by CBR packets. These figures also show that the analysis approximation indeed

provide an accurate prediction for delay distribution of CBR packets. Figure 4.24

shows the prediction of mean packet delay with different utilization.
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Figure 4.17: Queue length distribution seen by CBR packet ρ = 0.191
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Figure 4.18: Queue length distribution seen by CBR packet ρ = 0.293
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Figure 4.19: Queue length distribution seen by CBR packet ρ = 0.383
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Figure 4.20: Queue length distribution seen by CBR packet ρ = 0.468
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Figure 4.21: Queue length distribution seen by CBR packet ρ = 0.573
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Figure 4.22: Queue length distribution seen by CBR packet ρ = 0.661
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Figure 4.23: Queue length distribution seen by CBR packet ρ = 0.771
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Figure 4.24: Mean CBR packet delay
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For real time applications such as video/voice conference/stream and voice over

IP, the delay jitter plays an more important role in the connection quality. The

jitter is mainly caused by the perturbation of background traffic in the bottleneck

queue. Fulton and Li [83] provided analytical approximations for the first-order

and second-order statistics of the delay jitter. However, like other the jitter analysis

methods [84] [85] [86], their works are based on the Markovian model of background

traffic, which is not suitable for the long range dependent process such as Internet

traffic. The Markovian approach also requires a lot of computational efforts and

memory space for conditional probabilities and matrices . We develop an efficient

method to predict the variance of jitter based on the the Logscale diagram of the

traffic.

We consider the CBR traffic in the previous scenario of Figure 4.16. The CBR

process is employed here to estimate the delay jitter of the bottleneck queue. The

Logscale diagram of the background traffic is given as Lj . The delay jitter is

defined as follows:

Definition 4.4.2 Let the random sequence Ii be the interdeparture time of the tar-

get process, the jitter is defined as the difference of two consecutive interdeparture

times:

Ji := Ii+1 − Ii. (4.45)

We also define An,i as the total arrival bytes of the background traffic in the

ith time slots. The duration of each time slot is T := 2n∆ sec.

Proposition 4.4.3 Let the current time be t=iT and b=2n+1∆(C−m). Assuming
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Figure 4.25: The arrival and departure time of CBR traffic

that the current queue length is q(t) ≥ b. The conditional variance of jitter is

V ar[J |q(t) ≥ b] =
1

C2
V ar[(An,i+1 −An,i)]. (4.46)

Proof Without loss of generality, let the CBR packets arrive at time 0, T , and 2T ,

which have queuing delay d0, d1 and d2, respectively. As shown in Figure 4.25, the

total arrival bytes of the background traffic in the ith time slots (t ∈ [iT, (i+1)T ))

is An,i. Since the current length q(0) ≥ b is quite large, it is reasonable to say that

the output link is always busy during the 0th and 1th time slots. Moreover, the

buffer size is infinite so that there is no packet loss event. The Lindley equation:

q(t) = max0≤s≤t[A(t)− A(s)− C(t− s)], ∀t ≥ 0 (4.47)

can be simplified as

q((i+ 1)T ) = q(iT ) + An,i − CT. (4.48)

Hence, the packet delay di = q(iT )/C and the interdeparture time is

Ii = T + di+1 − di
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= T +
q((i+ 1)T )− q(iT )

C

=
An,i
C

. (4.49)

The jitter variance under this condition is

V ar[J |q(t) ≥ b] = V ar(Ii+1 − Ii)

=
V ar[(An,i+1 −An,i)]

C2
. (4.50)

�

According to the definition of Haar wavelet, one may easily obtain the value of

V ar[(An,1 −An,0)] from the Logscale diagram Lj

2Lj+1 = E[d2
j+1,k] =

E[(Aj,2k+1 − Aj,2k)
2]

2j+1
, (4.51)

for every j and k.

Hence, the conditional jitter variance of the CBR process is

V ar[J |q(t) ≥ b] =
2n+1+Ln+1

C2
. (4.52)

On the other hand, if the current queue length is small (q(t) < b), we assume

that there is at least one idle server event happening in the next two time slots.

The simple relationship of equation (4.48) and (4.49) does not hold. Since there

is at least one idle event (queue empty event) in this period, the sequence of

interdeparture times Ii and the sequence of packet delays di can be treated as

uncorrelated random sequences respectively. We have the following upper bound:

V ar[J |q(t) < b] = V ar[Ii+1 − Ii] ≈ 2V ar[Ii]

= 2V ar[di+1 − di] ≈ 4V ar[di]

≤ 4

C2
max
0≤j≤n

V ar[(Aj − C2j∆)+].

(4.53)
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Proposition 4.4.4 Let A be the Lognormal random variable with parameter (µ, σ)

and d > 0 be any real number, we have

E[(A− d)+] =
eµ+σ2/2

2
erfc(

ln d− µ− σ2

√
2σ

)− dF̄ (d) (4.54)

E[((A− d)+)2] =
e2µ+2σ2

2
erfc(

ln d− µ− 2σ2

√
2σ

)

− deµ+σ2/2erfc(
ln d− µ− σ2

√
2σ

)

+ d2F̄ (d), (4.55)

where F̄ (d) := Pr[A > d].

The probability of Pr[q(t) ≥ b] is based on the prediction of the steady state

queue length distribution. We apply the previous results of queue length distribu-

tion in section 4.3 to estimate the probability Pr[Q < b].

Proposition 4.4.5 Let the r.v. Q be the queue length in steady state. From (4.52)

(4.53) and (4.4), there is an upper bound of the jitter variance of the CBR traffic

at the bottleneck router:

V ar(J) ≤ V ar(J |Q ≥ b)Pr[Q ≥ b]

+V ar(J |Q < b))Pr[Q < b]. (4.56)

Given the Logscale diagram of the traffic, we are able to predict the jitter vari-

ance immediately via (4.56). We validate this efficient approach by ns2 simulation

in the next section.
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4.5 Simulation results

The network topology in this experiment is the simple dumbbell network with a

single bottleneck link. One side of the bottleneck link consists of 800 web clients.

The clients send request to web serve, wait response, receive data and close the

session. The interval between the end of session and next web request is called

user think time. In this simulation the user think time of clients has an Exponen-

tial distribution with mean 50sec, which is related to the human behavior in the

Internet [9].

The other side has 800 web servers. The server is running HTTP 1.1 protocol

and has a Pareto file size distribution with parameters (K=2.3Kbytes, α=1.3).

The propagation delay of each server link is uniformly distributed in the interval

(16ms, 240ms) and the mean round-trip time is about 128ms. The aggregated

traffic requested by web client and generated by web servers has a mean rate

about 1.2Mbps. It is treated as the background traffic in the previous analysis.

The unique CBR source at the server side has a permanent connection cross the

bottleneck link. The CBR packets are sent periodically every T sec. and received

at the client end. Since the link propagation delay of CBR connection is known,

the queuing delay and jitter of CBR packet is estimated straightforwardly. We

consider both FIFO and RED as the buffer management policy at the bottleneck

link respectively.

Case 1: Jitter at a FIFO Queue

Figure 4.26 compares the predicted standard deviation of jitter with the simula-

tion results. The target CBR process has fixed interarrival time T = 2nms and

n = 3, 4, .., 8. As a probing connection, the CBR has a small packet size so that

the average mean rate of CBR traffic is negligible. Since the mean rate of the
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background traffic is about 1.2Mbps, the link utilization is about 0.4, 0.6 and 0.8

with the corresponding bandwidth C = 3.0, 2.0 and 1.5Mbps respectively.

Case 2: Jitter at a RED Queue

We replace the FIFO queue by an adaptive RED queue at the bottleneck router.

The adaptive RED queue [87] [88] will keep the average queue length located in a

desired region by randomly dropping the TCP packets. Since the queue length is

in the desired region, the link has a 100% utilization and no idle event happened.

Hence, the jitter variance is bounded by equation (4.52). Figure 4.27 shows that the

prediction method also provides tight bound for the jitter variance with different

queuing policy such as RED is employed.

Since the interarrival time of most time-sensitive applications is located in the

range of (8ms, 256ms). Both simulation results show that our prediction method

indeed provides a tight upper bound of jitter within this range.
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4.6 Summary

In this chapter we first analyze the multilevel ON/OFF model and provide a the-

oretical approximation of Logscale diagram. According to the property of wavelet

analysis, the second order statistics of traffic can be immediately extracted from

the corresponding Logscale diagram. Given the mean and variance of traffic work-

load at every time scale, we are looking for a mathematical distribution which

can best fit the empirical distribution of real workload. After we employed the

Kolmogorov-Smirnov goodness-of-fit test, the Lognormal distribution is chosen

as the best candidate. The steady state queue length distribution is approximated

according to the workload distribution at every time scale.

The queuing delay and jitter are also investigated on the basis of the approxi-

mation of queue length distribution. The mean delay is directly predicted by the

mean queue length and the link bandwidth. An upper bound of jitter variance

is developed according to the property of wavelet analysis and a simple condition

probability. All theoretical results such as queue length distribution, mean delay

and jitter variance are validated by simulation.

The proposed traffic model and the analysis in statistical property and queu-

ing behavior provide a simple but efficient platform to understand the network

engineering. It explains how the network parameters such as the active time,

round-trip time, session life time and user think time affect the traffic statistic

at different time scales. Furthermore, it also helps us understand the impacts

of network parameters on connection performance such as packet loss, delay and

jitter.

In the next chapter we focus on the active queue management (AQM) policy

at the bottleneck router. A parallel structure and a new idea of flow control are
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proposed for providing a better quality of service.
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Chapter 5

Parallel Queue Structure for

Active Queue Management

5.1 Overview

For small queuing delay, the buffer size in a router is not large. However, a router

with small buffer size often has a high packet dropping rate since the Internet

traffic is bursty. When packets are lost, the TCP protocol dramatically reduces

the flow rate during the congestion avoidance phase [89]. Therefore, after a buffer

overflow event in a drop-tail queue, all connections sense packet loss and slow down

the transfer rate simultaneously. In order to prevent this global synchronization

phenomenon and increase link utilization, many active queue management schemes

such as RED (Random Early Detection) [41] have been proposed and received

increasing attention.

The basic idea of RED is to randomly drop packets to prevent buffer over-

flow and the global synchronization problem. The dropping probability is a non-

decreasing function of the queue length. A TCP connection with a higher flow
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Figure 5.1: The dropping probability function of original RED.

rate has a better chance to get packets dropped and reduce its rate more rapidly.

By dropping packets actively, RED keeps the queue length within a desired region.

However, some simulation and analysis results [90] [39] [91] [92] have demonstrated

that the performance of RED is very sensitive to parameter settings. Based on

the original idea of RED, there have been some modifications such as Stabilized

RED (SRED) [93], Flow RED (FRED) [94], Weighted RED [95], Random Early

Marking (REM) [38], BLUE [40] and Adaptive RED [88] [87]. The Adaptive RED

scheme dynamically updates the maximum dropping probability according to the

exponentially weighted moving average (EWMA) of the queue length, and makes

itself more robust with respect to the congestion level.

The Adaptive RED policy provides good rate control for TCP connections

operating in the congestion avoidance phase [75] [87]. However, a great portion of

Internet traffic is web and UDP traffic. Since most web connections involve transfer

of several small files, these connections have a short life and are mostly operated
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in the TCP slow start phase with a small congestion window. Dropping web

packets in this phase is not an effective way to control the traffic rate and alleviate

the congestion at the bottleneck router. Furthermore, from the viewpoint of a

web user, one or several packet losses in the slow start phase would lead to extra

delay for retransmission or even TCP timeout. It would also force TCP to enter

the congestion avoidance phase prematurely with a small congestion window and

result in a low throughput. The delay and low throughput would severely degrade

the performance of delivering short messages such as web pages, and web browsers

experience long waiting times even with a high speed network. On the other hand,

the Adaptive RED fails to maintain the queue length within the desired region

due to the bursty nature of web traffic.

To address these problems, we propose a parallel virtual queue structure for

active queue management in this paper. In this structure, real time (web, UDP)

and non-real time (FTP) traffic are separated into two different virtual queues

which share the same physical buffer memory. The drop-tail policy is applied at

the first virtual queue to serve real time applications. In order to have a small

mean delay, the service rate of this drop-tail queue is dynamically determined

by its virtual queue length. The remaining non-real time traffic is directed to

an Adaptive RED virtual queue. Simulation shows that this parallel virtual queue

structure not only has the advantages of Adaptive RED such as high link utilization

and small delay, but also greatly reduces the total packet loss rate at the router.

Despite that the bandwidth is shared with the bursty drop-tail virtual queue, the

Adaptive RED queue has a small length variation.

The original Adaptive RED dynamically changes the maximum dropping prob-

ability Pmax to keep the queue length within the thresholds. However, for some
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non-real time applications, high goodput (low packet dropping rate) is more impor-

tant than short packet delay. Hence we explore a modified Adaptive RED policy

for the non-real time applications at the second virtual queue, where the queue

length thresholds are dynamically adjusted to maintain the dropping probability

of Adaptive RED algorithm in a desired range.

The remainder of the dissertation is organized as follows. In Section 5.2, we

demonstrate the vulnerability of the Adaptive RED in the presence of web and

UDP traffic. The parallel virtual queue structure is described in Section 5.3. Com-

parison of this approach with the original Adaptive RED scheme is given through

simulation in Section 5.4. In Section 5.5, we present the modified Adaptive RED

policy with dynamic queue length thresholds. Performance and stability analysis

is provided for this parallel structure with the drop-tail and the modified Adaptive

RED queue in Chapter 6. Finally, we conclude our work in Chapter 7.

5.2 Vulnerability of Adaptive RED to Web-mice

In this section we consider a scenario containing short-life TCP (WEB), UDP

(CBR) and long-life TCP (FTP) traffic. The purpose is to demonstrate that the

performance of the Adaptive RED scheme is severely degraded by the short-life

web traffic. The network in our ns2 experiment is the same scenario of delay

and jitter analysis in Chapter 4 except the FTP traffic. It has a simple dumb-

bell topology with the bottleneck link bandwidth C=3.0Mbps. One side of the

bottleneck consists of 800 web clients. Each client sends a web request and has a

think time of Exponential distribution with mean 50s after the end of each session.

The other side contains 800 web servers, running HTTP 1.1 protocol and having a

Pareto [16] file size distribution with parameters (Kp=2.3Kbytes, α=1.3) (mean
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10Kbytes). The round-trip propagation delay of HTTP connections is uniformly

distributed in (16, 240)ms. Note that the mean rate of the aggregate web traffic

is around 1.2Mbps. There is one CBR traffic source which periodically gener-

ates a 1Kbytes UDP packet every 50ms. Besides these short web connections

and UDP traffic, there are 10 persistent FTP connections sharing the bottleneck

link with round-trip propagation delay of 64ms. Figure 5.2 shows that the Adap-

tive RED works well with those FTP connections before the web traffic comes in.

However, after the CBR source and web servers begin to share the bandwidth at

time t=100s, the queue length of Adaptive RED deviates dramatically from the

desired region. Since the Adaptive RED scheme relies on average queue length

to determine the dropping probability and control the TCP flow rate, the extra

queue length perturbation contributed by the bursty web traffic makes the Adap-

tive RED increase/decrease its dropping probability rapidly. This over-reaction

causes a great queue length variation and poor performance in packet delay and

loss.

Since most web pages contain one or several very small files, these TCP con-

nections are mostly operated in their slow start phase during the session life. Ac-

cording to the TCP protocol, the congestion control window is just beginning to

increase its size from the initial value and the flow rate is low. Dropping packets in

the slow start phase cannot efficiently alleviate the congestion level at the bottle-

neck router. In other words, any random dropping/marking policy such as RED

is unable to effectively control the congestion level without considering short-life

TCP (and UDP) traffic. Furthermore, losing one or two packets in the slow start

phase not only causes a very low throughput and extra delay, but also leads to a

high probability of connection timeout. This is further illustrated below.
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Figure 5.2: Queue length of the Adaptive RED: 10 FTP starting at t=0 and 800

WEBs and 1 CBR coming in at t=100s.
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From the viewpoint of a web browser, a short-life TCP session may only

need several round-trip times (RTT) to finish the whole transmission. When the

sender senses a packet loss, the slow start threshold ssthresh will be reduced to

min(cwnd, rcv window)/2 [89] and the new congestion window size cwnd is also

decreased depending on different TCP versions (For TCP Reno, the new cwnd =

ssthresh and TCP enters the fast recovery phase. For TCP Tahoe, cwnd = MSS

(maximum segment size) and TCP begins a new slow start phase). Since original

cwnd is just beginning to increase its size from its initial value MSS in the first

slow start phase, one packet loss during the initial several round-trip times leads

TCP to enter the congestion avoidance phase with a very small ssthresh and cwnd.

In the congestion avoidance phase, TCP slowly increases cwnd (the increment is

about one MSS per round-trip time) from the current ssthresh. Therefore, losing

one packet in the slow start phase (as shown in Figure 5.3) takes TCP a long time

to complete a short message. In addition, since the web traffic is short but bursty,

these web connections usually experience a higher packet loss rate (see the web

packet loss rates of the Adaptive RED and the drop-tail policies in Table 5.3).

The default initial value of ssthresh is 64KB and the packet size is 1KB in

this paper. Assuming a typical packet dropping probability Pd=0.04 when using

the Adaptive RED, the probability of losing one or more packets in the slow start

phase is equal to 1− (1−Pd)
64 = 0.9267 (assuming that packets are dropped inde-

pendently). Therefore, most TCP connections have at least one packet dropped in

their first slow start phase. For example, assuming that the 15th packet is dropped

by the Adaptive RED, ssthresh decreases from 64KB to 4KB and the new con-

gestion window cwnd is decreased from 8KB to 1KB (Tahoe). The situation gets

worse if one packet is dropped earlier (in the first 3 round-trip times). The con-
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Figure 5.3: Congestion window size of TCP Reno: One packet loss in the Slow

Start phase (left) and One packet loss in the Congestion Avoidance phace (right).

gestion window at this moment is so small that the sender may not have enough

data packets to trigger the receiver to generate three duplicate acknowledgements.

If packets cannot be recovered by this fast recovery scheme, TCP has to depend

on the protocol timer for error recovery. The default value of the protocol timer

is usually large and the delivery delay could be increased dramatically by timeout

events. Moreover, the probability of losing two or more packets of the same con-

gestion window in the slow start phase also cannot be ignored. These events lead

to a high probability of TCP timeout and connection reset.

For illustration we conduct simulation of transferring a small web file in a stand

alone and one hop environment. There is no other traffic sharing the bandwidth

and packets are dropped intentionally. Figure 5.4 shows the mean delivery delay

v.s. the dropping probability for file sizes 30KB-210KB, and Table 5.1 lists the

mean and standard deviation of the delay. For example, TCP takes about 4.81s
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to complete transmission of a 90KB file if Pd = 0.04; in comparison, in the loss

free case, the file can be delivered in 1.18s. Since most web pages have sizes in

the above range, a web browser will experience a long response time when the

dropping probability of the Adaptive RED is high.

Table 5.1: Delivery delay of small file: mean and standard deviation

Pd 0.00 0.02 0.04 0.08

30KB 0.88(.0006) 1.60(1.88) 2.74(4.27) 5.88(7.79)

90KB 1.18(.0008) 2.79(2.39) 4.81(3.91) 9.24(6.30)

150KB 1.34 (0.0008) 3.51(1.90) 6.51(4.60) 13.38(8.87)
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Figure 5.4: Mean delivery delay of small file v.s. dropping probability Pd with file

sizes 30, 60, ..., 210Kbytes, bandwidth 3Mbps and round-trip time 128ms.
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5.3 A Parallel Virtual Queues Structure

To solve the problem discussed in Section II, we propose a parallel virtual queue

structure in the router. The first virtual queue deals with the short-life real-

time traffic (web, UDP). Since dropping these packets cannot effectively alleviate

the congestion level, but severely increases delivery delay, it would be good to

keep them in the queue unless the total buffer (shared with the other queue) has

overflowed. Hence, the queuing policy of the first virtual queue is chosen to be

drop-tail to minimize the packet loss rate. In order to have a short delivery delay for

web browsers and UDP connections, the service rate C1(t) is changed dynamically

according to its virtual queue length q1(t).

The second virtual queue serves long-life TCP connections such as FTP with

large file sizes, where the Adaptive RED is used. Although the available band-

width of this queue is determined by C2(t)=C-C1(t), the Adaptive RED scheme is

expected (and will be verified by simulation in Section 5.4 to keep its virtual queue

length q2(t) in a desired region for the following reason. When there is a heavy

workload at the drop-tail queue, C2(t) decreases quickly. FTP receivers experience

slower packet arrival rates and send acknowledgement packets (ACK) back more

slowly. Without increasing the dropping probability at the Adaptive RED queue,

the slower ACK arrival rates from the receivers make FTP senders reduce flow

rates automatically without shrinking their congestion window sizes. On the other

hand, when the congestion level is alleviated, the Adaptive RED queue receives

more bandwidth. Since the congestion window sizes

are still large in the FTP servers, the throughputs of FTP is quickly recovered

by faster arrival rates of ACK packets from the receivers.

With this parallel virtual queue structure (which will be called RED+Tail pol-
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icy in this paper), we can keep the benefits of Adaptive RED such as high (100%)

link utilization. Furthermore, the packet loss rate of the short-life TCP and UDP

connections is greatly reduced by the drop-tail policy and a shared buffer. The

packet loss rate of long-life TCP traffic is also reduced due to the suppressed

bandwidth, larger thresholds (longer RTT ) and more stable average virtual queue

length for the Adaptive RED queue.

We now discuss how to implement the RED+Tail policy. The first problem is

how to split the long-life traffic from other short-life web traffic at the router. To

this end, the router has to know the age or elapsed time of each TCP connection.

Unfortunately, this information is hidden in the TCP header which is not available

to the IP router. However, one may roughly estimate the elapsed time by using

the following approach:

• When a packet arrives with a new source-destination pair which has not been

seen by the router in the past T sec, we treat it as a new TCP connection

and identify this connection as a short-life connection;

• Send the new connection packets to the drop-tail queue;

• Set a counter for the number of packets of this connection;

• If the cumulative packets number is greater than a threshold N , we assume

that the file size is large enough and this TCP connection has already left

its slow start phase. We redirect the subsequent packets of this connection

to the Adaptive RED queue;

• Remove the counter if there is no packet arrival in the last T sec.

Preliminary simulation results show that this approach successfully prevents small

web traffic from entering the RED queue. The probability of false alarm is less
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than 0.02 in our scenario. Since the web traffic has small file sizes and short session

times, there is no harm if the short-life connection packets are misdirected to the

RED queue after time T .

Router

Short−life TCP & UDP 

Long−life TCP

Drop−Tail

Adaptive RED 

maxth

maxth minth

minth2 2

1 1

maxP C2(t)

C1(t)

Figure 5.5: The parallel virtual queue structure for active queue management.

Figure 5.5 shows the RED+Tail parallel queue structure in the router. Recall

that C1(t) and C2(t) denote the service rates of the drop-tail queue and the Adap-

tive RED queue at time t respectively. In order to allocate bandwidth dynamically

to both queues and assign a desired region of queue length for the Adaptive RED

queue, we define the maximum threshold maxthi and minimum threshold minthi

for i = 1, 2. The service rates C1(t) and C2(t) are given by the following algorithm:

• if q1 = 0, then C1(t) := 0.

• if 0 < q1 < minth1, then C1(t):=C1min.

• if minth1 ≤ q1, then C1(t):=min(C q1
maxth1

, C1max).

• C2(t) := C − C1(t),

where C is the link bandwidth. The variable q1 denotes the queue length of the
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drop-tail queue. The constant C1max preserves the minimum available bandwidth

C − C1max for the RED queue to prevent FTP connections from timeout.

5.4 Simulation and Comparison

In this section, we compare the RED+Tail scheme with the Adaptive RED on typ-

ical TCP performance metrics. For the Adaptive RED, we use the parameter set-

tings suggested by Floyd et al [87] (α and β of the AIMD algorithm). Both schemes

were implemented in the ns2 simulator. The network topology and scenario are as

described in Section II. Table 5.2 lists the parameters for the RED+Tail policy and

the Adaptive RED policy. Note that the virtual queues of the RED+Tail scheme

share the total physical buffer size, i.e., the packets in the drop-tail virtual queue

will not be dropped unless the physical memory is full. The Adaptive RED is

set in a “gentle” mode meaning that the dropping probability between (maxth2,

2maxth2) is linear in (Pmax, 1).

Table 5.2: Experiment Settings

Virtual Qu. i Buffer Size minthi maxthi α β

i = 1 160KB 2KB 30KB - -

i = 2 shared 20KB 80KB 0.01 0.9

Adapt. RED 160KB 20KB 80KB 0.01 0.9

The performance for a connection is evaluated by the packet loss rate, delay and

throughput. However, we are more concerned about packet loss rate and delay

for web (short-TCP) and CBR (UDP) connections, and more concerned about
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Table 5.3: Performance Metrics

Policy Loss % Delay Sec. Rate KB/s

RED+Tail:FTP 2.747 0.184 209.465

RED+Tail:WEB 1.278 0.114 144.455

RED+Tail:CBR 0.300 0.109 19.867

AdaptRED:FTP 4.149 0.143 217.531

AdaptRED:WEB 4.514 0.143 137.124

AdaptRED:CBR 3.950 0.141 19.140

DropTail:FTP 1.916 0.349 215.243

DropTail:WEB 4.234 0.340 138.983

DropTail:CBR 1.550 0.342 19.601

throughput for FTP (long-TCP). We replaced the Adaptive RED with RED+Tail

scheme at the router and repeated the experiment of Section II. For comparison,

an experiment with the drop-tail policy was also conducted. The random seed

of the simulator was fixed so that the processes of web requests and file sizes

had the same sample paths in all experiments. Table 5.3 lists the performance

metrics under RED+Tail, the Adaptive RED and the traditional drop-tail scheme

respectively.

Figure 5.6 shows the queue lengths of the RED+Tail scheme, which demon-

strates that the virtual queue length q2 is quite stable and stays in the desired

region even after the web and CBR traffic begins to share the bandwidth at time

t=100s. The actual dropping probability for the FTP traffic is reduced from 4.15%

to 2.75% by a longer queuing delay (184ms, see Table III). This scheme prevents

the over-reaction behavior of RED in the original Adaptive RED case and keeps
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the mean queue length q2 in a desired region (Compare to Figure 5.2).

Figure 5.7 shows the packet loss rates of FTP, web and CBR connections under

the Adaptive RED and RED+Tail schemes. We see that RED+Tail provides great

improvement in packet loss for web and CBR connections. The web packet loss

rate is reduced from 4.51% to 1.28% and CBR packet loss rate is reduced from

3.95% to 0.30%.

Figure 5.8 compares the packet delays. The mean queuing delay of web and

CBR packets in the RED+Tail scheme is shortened at the cost of the FTP pack-

ets delay. The web and CBR packet delay depends on how much bandwidth is

allocated to the drop-tail queue. One can satisfy a mean delay requirement for

the web and CBR connections by properly adjusting the parameter maxth1. For

example, the maxth1 of the RED+Tail scheme is set to be 30Kbytes so that the

estimate of mean delay at the drop-tail queue is about 80ms. However, the service

rate C1 reaches its maximum C1max when q1 > maxth1. The actual mean delay

should be larger than expected. For our simulation the mean delay of web and

CBR traffic is around 110ms (refer to analysis in Section 6.1).

Figures 5.9 and 5.10 show the throughputs of FTP, web and CBR traffic. Both

schemes achieve 100% utilization of the link bandwidth. Due to the bandwidth

allocation scheme in the RED+Tail scheme, FTP has a slightly smaller throughput.

However, the saved bandwidth allows web burst to pass through the bottleneck

link faster.

Figure 5.11 compares the small web file delivery time under different schemes.

Since the RED+Tail policy has a small packet loss rate, its delivery time is almost

equal to the loss free case in Table 5.1. On the other hand, the Adaptive RED has a

loss rate 4.5%, its delivery time is three times longer. Note that the drop-tail queue
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has a similar loss rate (4.2%) as Adaptive RED for web packets. However, the file

delivery time of the drop-tail scheme is about 2.5 times longer than Adaptive

RED’s. This is mainly due to the long queuing delay (0.340sec) of the drop-tail

policy.
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Figure 5.6: Queue lengths of RED+Tail virtual queues: 10 FTPs starting at t=0

go to virtual queue 2, and 800 WEBs + 1 CBR starting at t=100 go to virtual

queue 1.
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5.5 Dynamic Thresholds for Adaptive RED

The original Adaptive RED dynamically adjust the maximum dropping probability

Pmax (or equivalently, the slope of dropping function) to control the flow rates of

TCP connections and keep the average queue length in a desired region. However,

for those applications with large file sizes, the goodput is more important than the

packet delay. The packet loss rate is a key factor in determining the connection

goodput. Since the minimum and maximum thresholds of the original Adaptive

RED scheme are fixed, the dropping probability of Adaptive RED could be very

high when a congestion happens. This high dropping probability causes frequent

re-transmissions, small average congestion window size and low goodput. In other

words, the congestion in bottleneck router causes another bottleneck at the TCP

sender end. Considering that the Adaptive RED queue is designed for serving time

insensitive connections, we propose to control the TCP flow rate by adjusting its

queuing delay instead of dropping packets.

To maintain a low packet loss rate (and a large average congestion window size

at the TCP sender), the following modified Adaptive RED scheme for the Adaptive

RED queue is proposed, where minth2 and maxth2 are dynamically adjusted while

D=maxth2 −minth2 is maintained constant:

• Pick 0 < γ < 1 (γ=0.05 in this paper).

• If P̄d > PU , then minth2 := minth2(1 + γ), maxth2 := minth2 +D.

• If P̄d < PL, then minth2 := minth2(1− γ), maxth2 := minth2 +D,

where P̄d is the average dropping probability obtained by the EWMA algorithm

and (PL, PU) is the desired region of dropping probability. Note that if we set

PU < Pmax, the floating thresholds do not change the current slope of dropping
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probability function dramatically, since the distance between the thresholds is

fixed.

The rationale behind the above scheme is that, by increasing the thresholds

(when P̄d > PU), the queuing delay is increased and the flow rates are reduced.

Since the average TCP throughput [96] [97] is proportional to 1
RTT

√
Pd
, we achieve

the same throughput without raising the packet loss rate. Figures 5.12 and 5.13

compare the Adaptive RED schemes with fixed and dynamic thresholds respec-

tively. There are 20 persistent FTP servers sharing a 6Mbps bottleneck link.

Another 20 FTP servers arrive at time 100s and leave at time 300s. It can be

seen that the fixed threshold scheme has a small queue length variation and a

large dropping probability (0.05). In contrast, the dynamic threshold scheme has

a much lower average dropping probability (0.014 with PL=0.01, PU=0.02), but

a higher packet delay. Note that both schemes achieve 100% link utilization so

that each FTP connection has the same throughput. However, with a much lower

packet loss rate, the dynamic threshold scheme achieves a higher goodput. This

dynamic threshold scheme allows us to consider the trade-off between packet loss

and queuing delay in an Adaptive RED queue.

Dynamically varying the thresholds may also have implications in achieving

throughput fairness among multiple Adaptive RED queues. Since the flow rates of

TCP connections are determined by the corresponding dropping probabilities and

queuing delays at different queues, connections with shorter link propagation delays

and higher throughputs can be suppressed by raising the queue length thresholds

at the router.
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Figure 5.12: Average queue length with fixed and dynamic thresholds: 20 FTP

starting at t=0, and another 20 FTP starting at t=100s and leaving at t=300s,

C=6Mbps, dk=64ms.
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Table 5.4: Performance Metrics:Red+Tail with Dynamic threshold scheme

Policy Loss % Delay Sec. Rate KB/s

Dyn. Thres.:FTP 0.899 0.318 209.455

Dyn. Thres.:WEB 2.306 0.093 144.505

Dyn. Thres.:CBR 0.519 0.091 19.827

The ns2 simulation in Section 5.4 is conducted again with the modified Adap-

tive RED serving the second virtual queue. Parameters (except minth2 and

maxth2, which are dynamically adjusted) used are as listed in Table 5.2. The

desired region of dropping probability for the Adaptive RED queue is set to be

(PL,PU)=(0.005,0.010). Figure 5.14 shows the lengths of both virtual queues and

the dropping probability at the Adaptive RED queue. The dropping probability

stays in the desired region most of the time as expected. Note that the flow rate

of FTP connections are reduced without increasing the queue length q2(t) and the

dropping probability dramatically when the bursty web traffic arrives at t=100.

This is because that the available bandwidth for FTP connections is reduced and

FTP senders see a longer round-trip time (longer packet delay at q2, see Figure

5.16).

Figures 5.15 and 5.16 show the packet losses and delays for FTP, web and

CBR connections respectively. Table 5.4 collects the corresponding performance

metrics. Comparing to Figure 5.7, 5.8 and Table 5.3, the packet loss rate of FTP

connection is reduced from 2.747% to 0.988% at the cost of packet delay (increased

from 0.184s to 0.318s). Since the average queue length at the Adaptive RED queue

is about 80KBytes instead of 60KBytes in the fixed threshold scheme, web and

UDP packets see a smaller shared buffer at the drop-tail queue and experience a

higher loss rate from 1.278% to 2.306% and from 0.300% to 0.519%, respectively.
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This situation can be improved by increasing the total buffer size despite that this

approach is general useless or even harmful in a single RED queue or a single drop-

tail queue. On the other hand, the average delays of web and UDP packets are

slightly shorter for a smaller shared buffer space at the drop-tail queue. Finally,

Tables 5.3 and 5.4 also show that the throughputs for the fixed threshold scheme

and the dynamic threshold scheme are almost the same.
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Figure 5.14: Dynamic threshold scheme: Virtual queue lengths of RED+Tail and

dropping probability of the Adaptive RED queue, 10 FTPs starting at t=0 and

800 WEBs + 1 CBR starting at t=100.
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Figure 5.15: Dynamic threshold scheme: Packet losses (packets/sec.) of

RED+Tail.
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Figure 5.16: Dynamic threshold scheme: Packet delays (sec.) of RED+Tail.
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5.6 Summary

In this chapter, we first demonstrated the vulnerability of Adaptive RED scheme

to bursty traffic and then proposed a parallel virtual queue structure to eliminate

unnecessary packet loss. A simple detection algorithm is employed to separate

the short-life and long-life TCP connections into different virtual queues. The

packet loss rate and mean delay can be greatly reduced by dynamic bandwidth

allocation and active queue management with a parallel queue structure. This

scheme combines the advantages of drop-tail and Adaptive RED policies. The

simulation results in the study show that this scheme achieves a shorter mean

delay for real time applications and keeps a high throughput for the best effort

connections as well as greatly reduces the packet loss rate in both queues.

This parallel queue structure also provides more degree of freedom to con-

trol the router by considering different bandwidth allocation policies and dynamic

thresholds for Adaptive RED. Here, the bandwidth allocation policy is a simple

function of the current virtual queue length. However, it is well-known that web

traffic is strongly correlated and has a long range dependency property. Based on

observations of the ”recent past” traffic, the future bandwidth demand of the web

traffic was shown to be predictable. In future work, we will consider the optimal

bandwidth allocation policy based on the prediction of congestion level.
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Chapter 6

Performance Analysis of Active

Queue Management in a Parallel

Queue Structure
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Joint analysis of the parallel queue is involved. Instead the queues are analyzed

separately in Section 6.1 and 6.2, respectively. For the drop-tail queue, the empha-

sis is put on packet delay; for the Adaptive RED queue (with dynamic thresholds),

the stability of queue length is the primary concern.

6.1 Drop-Tail Queue with Adaptive Service Rate

First, we investigate the queuing delay of CBR and web traffic at the drop-tail

queue. Note that the service rate C1(t) of this queue is a function of minth1,

maxth1 and the current length of drop-tail queue q1(t) (Figure 6.1). For ease

of presentation, we let minth1 = 0 and C1max = C. When a packet enters the

drop-tail queue at time t, it sees an instant queue length q1(t) and a service rate

C1(t)
�
= min(

q1(t)C

maxth1
, C). (6.1)

General analysis of mean packet delay is difficult. However, the dynamic band-

width C1(t) is updated periodically in both practice and simulation. If we assume

that the update period is S = maxth1

C
and the packets belonging to the same slot

have uniformly distributed arriving times, there exists a simple lower bound for the

mean packet delay. The impulse at t = iS in Figure 6.2 denotes the new packets

that arrive uniformly in the time period [(i − 1), iS). The absolute value of the

slope indicates the bandwidth C1(iS), which is dependent on q1(iS). If q1(iS) is

less than maxth1, C1(iS) =
q1(iS)C
maxth1

. It is evident that each packet in this slot has

a constant delay maxth1/C. If q1(iS) ≥ maxth1, C1(iS) = C and the average

packet delay in this slot is larger than maxth1/C. Although the bound maxth1

C
is

derived based on special assumptions, it appears to provide a good approximation

to the lower bound of mean packet delay for general cases (refer to Figure 6.3).
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Figure 6.1: Dynamic bandwidth allocation at the drop-tail queue:

C1(t)=max( C1min, min(
q1(t)C
maxth1

, C1max)).

The experiment in Section 5.4 is re-conducted with parameters listed in Table

5.2 except maxth1 being varied from 10KB to 80KB. Figure 6.3 shows the mean

packet delay of CBR and web traffic at the drop-tail queue and that of FTP

traffic at the Adaptive RED queue as maxth1 is varied. Note that the packet

delay at the Adaptive RED queue with fixed thresholds is almost a constant even

when maxth1 is decreasing. That is because the Adaptive RED queue has fixed

thresholds (minth2, maxth2) and the average queue length of RED queue is around

q̄2=(minth2+maxth2)/2. Let C̄1 denote the average bandwidth for the first queue.

Then the mean delay at the Adaptive RED queue is around q̄2
C−C̄1

.

For some real time applications such as video conference and voice, small delay

jitter is very important for the connection quality. Figure 6.3 also shows that the

drop-tail queue has a very small delay variance. Note that the delay variance at
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Figure 6.2: Drop-tail queue length with a time varying bandwidth C1(t).

the Adaptive RED queue is slightly increased when a smaller value of maxth1 at

the drop-tail queue is applied. According to these results, the mean packet delay

requirements at both queues can be satisfied by properly designing the values of

(minth1, maxth1) and (minth2, maxth2).
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6.2 Adaptive RED Queue with Dynamic Thresh-

olds

In Chapter 5 we proposed the modified Adaptive RED scheme with dynamic

thresholds in the parallel queue structure for controlling the flow rate of non-

real time applications. The maximum threshold maxth2 and minimum threshold

minth2 are changed dynamically to keep the packet dropping probability Pd within

a desired small region (PL, PU) at the cost of packet delay variation. In this sec-

tion we analyze issues related to the stability of this virtual queue. For ease of

analysis, it is assumed that the dropping probability Pd of the Adaptive RED at

the bottleneck router is fixed so that the average flow rate of each TCP connection

can be approximated by a simple function of its round-trip time. Note that this

assumption is not very restrictive considering the interval (PL, PU) is small.

Consider N persistent TCP flows. To simplify analysis, it is assumed that the

service rate C2 of the Adaptive RED queue is constant, C2 = C − C̄1, where C̄1

is the average bandwidth for the drop-tail queue. Define T nk as the average flow

rate of the kth TCP connection during time slot n. Let d′k be the link round-

trip propagation delay of connection k. At the beginning of time slot n the kth

connection sees a round-trip time Rn
k , which is equal to the sum of link propagation

delay and the average queuing delay in the forward direction qn/C2 and in the

backward direction qnb /C2:

Rn
k = d′k +

qn

C2
+

qnb
C2

, (6.2)

where qn and qnb are the forward queue length and the backward queue length (of

this Adaptive RED queue) at the beginning of time slot n, respectively. We assume

that congestion only happens in the forward direction and the queuing delay qnb /C2
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in the backward direction is a constant. Hence we can write Rn
k = dk+ qn/C2 with

dk = d′k + qnb /C2.

Based on the assumption of fixed dropping probability at the router, each TCP

connection experiences a fixed packet loss rate Pd and the corresponding average

congestion window size is assumed to be a constant W̄ . Hence, the average flow

rate T nk of the kth TCP connection at slot n is

T nk =
W̄

Rn
k

+ En
k (6.3)

where En
k is a white Gaussian process with zero mean and variance σ2 modeling

the flow rate perturbation of the kth connection at slot n.

Given the arrival rate of each TCP connection, the dynamics of queue length

qn follows the Lindley equation:

qn+1 = min{B,max[0, qn + (
N∑
k=1

T nk − C2)S]}, (6.4)

where B is the buffer size and S is the duration of one time slot. We list the

parameter definitions as follows:

• T nk : average flow rate of TCP connection k at time slot n

• En
k : perturbation of flow rate (modeled by a white Gaussian process N (0, σ2)

• W̄ : average congestion window size

• C2 : link bandwidth

• dk : link round-trip propagation delay d′k + backward queuing delay qb/C2

• qn: forward link queue length at the beginning of time slot n

• S : duration of one time slot

139



• B : buffer size

• N : number of TCP connections

Since the queue length of Adaptive RED is mostly operated in a region far

from the boundary, we first ignore the max and min operations in (6.4) and have

a simplified nonlinear dynamic system:

qn+1 = f(qn) + ξn, (6.5)

where

f(qn)
�
= qn + S{(

N∑
k=1

W̄C2

qn + dkC2
)− C2}, (6.6)

and

ξn
�
= S

N∑
k=1

En
k . (6.7)

To avoid the trivial case q ≡ 0, we assume that the sum of possible peak rates

of all connections is greater than the link bandwidth at the bottleneck router:

N∑
k=1

W̄

dk
≥ C2. (6.8)
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Figure 6.4: Queue length and TCP throughput (of a single connection) with

C2=6Mbps, dk=64ms, W̄=6.02×104 bits. Compare with simulation in Fig.5.12.
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Figure 6.4 shows the queue length dynamics (and the throughput of a persistent

TCP connection) based on the model (6.5), where the flow rate deviations σ =

77021, 128490 (bits/s) for N=20, 40 are measured from the simulation in Chapter

5, respectively. For both N = 20 and N = 40, Figure 6.4 shows consistent steady

state behavior with simulation results in Figure 5.12. The mapping f(·) is plotted

in Figure 6.5 for N = 20 and N = 40.

We first analyze the stability of the equilibrium of the model (6.5) when there

is no flow disturbance., i.e., En
k = 0. An equilibrium qe of q

n+1 = f(qn) should

satisfy

N∑
k=1

W̄

dk + qne /C2
= C2. (6.9)

Now, we show the mapping function f is strictly convex and qe is the unique

solution. According to (6.6), we have the first and second derivatives of f :

f
′
(q) = 1 + SW̄C2

∑N
k=1

−1
(q+dkC2)2

< 1, ∀ 0 < q < ∞ (6.10)

f
′′
(q) = 2SW̄C2

∑N
k=1

1
(q+dkC2)3

> 0, ∀ 0 < q < ∞. (6.11)

Note that f , f
′
and f

′′
are continuous and differentiable for all 0 < q < ∞.

Lemma 6.2.1 f is strictly convex for all q > 0.

Proof Since dk > 0, according to (6.11) we have f
′′
> 0 for all 0 < q < ∞, which

indicates that f is a strictly convex function.

Equation (6.10) indicates that the slope of f is less than 1 for all 0 < q < ∞.

Lemma 6.2.2 qe is unique in the region (0,∞).

Proof Since
∑N

k=1
W̄
dk

≥ C2 by assumption, (6.9) has a solution qe in [0,∞). qe

is located at the intersection of the graph of f with the 45o line (see Figure 6.5).
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Furthermore, f ′ < 1 implies there is no other intersection in (qe,∞) and shows qe

is unique in the region (0,∞).

It is well known that qe is locally asymptotically stable if |f ′(qe)| < 1. In the

following we give conditions for qe to be globally asymptotically stable.

Proposition 6.2.3 If the rate update interval S satisfies

S <
2C2

W̄ (
∑N

k=1 d
−2
k )

, (6.12)

the equilibrium qe is globally asymptotically stable. Furthermore, |qn−qe| < ρn|q0−

qe| for some ρ ∈ (0, 1) dependent on q0.

Proof First we observe that the function f is convex since

f ′′(q) =
N∑
k=1

2SW̄C2

(q + dkC2)3
> 0, ∀q ∈ [0,∞). (6.13)

For any B0 such that B0 > qe and

B0 ≥ f(0) = (

N∑
k=1

W̄

dk
− C2)S, (6.14)

one can verify that f maps [0, B0] to [0, B0] due to convexity of f and

f ′(q) = 1− S

N∑
k=1

W̄C2

(q + dkC2)2
< 1, ∀q ∈ [0,∞). (6.15)

When restricted to [0, B0], f
′(q) ≤ ρ1 with ρ1 ∈ (0, 1). If (6.12) is satisfied, f ′(q) >

−1, ∀q ∈ [0,∞], and f ′(q) ≥ −ρ2, ∀q ∈ [0, B0], with ρ2 ∈ (0, 1).

Hence |f ′(q)| ≤ ρ
�
= max(ρ1, ρ2) < 1 ∀q ∈ [0, B0], which implies that f is a

contraction mapping on [0, B0]. By the Contraction Mapping Principle [98],

|qn − qe| < ρn|q0 − qe|, if q0 ∈ [0, B0]. (6.16)
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Since B0 can be arbitrarily large (as long as B0 < ∞), qe is globally asymptotically

stable. Note that the contraction constant ρ depends on B0 and thus on q0. �

From Proposition 6.2.3, when rate update is frequent enough, the equilibrium

will be asymptotically stable (the equilibrium itself does not depend on S). An-

other sufficient condition for asymptotic stability is the following:

Proposition 6.2.4 If f ′(qe) ≥ 0, then qe is a globally asymptotically stable.

Proof As shown in the proof of Lemma 6.2.1, f is strictly convex. If f ′(qe) ≥ 0,

graphical analysis revels that

|qn+1 − qe| ≤ |qn − qe|,

where the equality holds if and only if qn = qe. The claim thus follows. �

For the homogeneous case dk = d, we have qe = NW̄ −dC2. And the condition

f ′(qe) ≥ 0 is equivalent to S ≤ NW̄
C2

= qe/C2+d. In other words, qe is asymptotically

stable if the rate update interval S is no larger than the round-trip time (RTT).

Figure 6.10 shows the mapping f and the equilibrium qe for different S. Figure

6.7 shows the queue length dynamics (noise is included) for S=RTT and 2RTT ,

respectively. We can see that in the case S=RTT , the queue length stays around

qe with small variation, while in the case S=2RTT , the queue length dynamics is

much more chaotic.

For the heterogeneous case, a sufficient condition S ≤ (C2

W̄
− N(N−1)

(qe+Dm)2
)−1 for

stability can be derived as follows:

Proposition 6.2.5 For any dk > 0, the system is stable if S ≤ (C2

W̄
− N(N−1)

(qe+Dm)2
)−1.

Proof According to Proposition 6.2.4, we want to find the condition of S so that

145



f
′
(qe) ≥ 0 is satisfied. Let Dk := dkC2 and G := W̄C2, from (6.9) we have:

N∑
k=1

1

qe +Dk

=
C2

G
. (6.17)

from (6.10), we want to show f
′
(qe) ≥ 0 by showing that

N∑
k=1

1

(qe +Dk)2
≤ 1

SG
. (6.18)

Substitute (6.17) in (6.18), we have

C2
2

G2
−

∑
i=j

1

qe +Di

1

qe +Dj

≤ 1

SG
. (6.19)

Since qe > 0 and Dk > 0, a sufficient condition of the above inequality is:

C2
2

G2
− N(N − 1)

(qe +Dm)2
≤ 1

SG
(6.20)

⇔ S ≤ (
C2

W̄
− N(N − 1)

(qe +Dm)2
)−1, (6.21)

where Dm := minDk. Hence S < (C2

W̄
− N(N−1)

(qe+Dm)2
)−1 is a sufficient condition for

stability. �

Similar to the homogeneous case, if the rate update interval S is short enough,

we can guarantee the stability in the heterogeneous case.
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Figure 6.6: Mapping function and equilibrium point when N=40 with S=0.5RTT,
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Figure 6.7: Queue length with N=40, S=RTT and 2RTT.
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Next we consider the Lindley equation with finite random perturbation ξn =

S
∑N

k=1 E
n
k :

qn+1 �
= g(qn, ξn) = min{B,max[0, f(qn) + ξn]} (6.22)

Note that since {En
k } is white and stationary, so is {ξn}. It turns out that stability

of the equilibrium of the deterministic system qn+1 = f(qn) is closely related to

stochastic stability of the system (6.22).

Define a compact set X:=[0, B] and the transformation g:X×W → X of (6.22)

is called regular stochastic dynamic system in [99], if the following assumptions

hold.

(a) The random vectors ξ0, ξ1, ..., have value inW and have the same distribution.

(b) g is defined on the subset X×W of Rd×Rk. The set X ⊂ Rd is closed and

W ⊂ Rk is Borel measurable. For every fixed y∈W the function g(x, y) is

continuous in x and for every fixed x∈X it is measurable in y.

(c) The initial random vector x0 has initial value in Xand the vectors x0, ξ0, ξ1, ...,

are independent.

Definition 6.2.6 [99] (Foias operator) Let a function g:X×W satisfies condi-

tion (b) and a probabilistic measure (supported on W ) be given. Then the operator

P : Mfin → Mfin given by

Pµ(A) =

∫
X

{
∫
W

1A(g(x, y))ν(dy)}µ(dx) (6.23)

will be called the Foias operator corresponding to the dynamic system. Mfin

denotes the subspace of finite measures. �
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Theorem 6.2.7 [99] Krylov-Bogolubov Theorem Let P be the Faias operator

to a regular stochastic dynamical system. Assume that there is a µ0 ∈ M1 having

the following property. For every ε > 0 there is a bounded set B ∈ B(X) such that

µn(B) = P nµ0(B) ≥ 1− ε for n = 0, 1, 2, .... (6.24)

Then P has an invariant distribution. �

Proposition 6.2.8 The stochastic system (6.22) admits an invariant probability

measure µ∗ for the queue length qn. Furthermore, if the condition (6.12) on Propo-

sition 6.2.3 is satisfied, this system is weakly asymptotically stable, i.e., the queue

length distribution µn for qn converges to µ∗ weakly.

Sketch of Proof. Since f is continuous and {ξn} is identically and independently

distributed, the system (6.22) is a regular stochastic dynamic system.

Since [0, B] is compact, the system admits an invariant probability measure µ∗

by the Krylov-Bogolubov Theorem. When condition (6.12) is satisfied, g is a

contraction mapping with respect to its first argument, i.e.,

|g(x, ξ)− g(y, ξ)| < ρ|x− y|, ∀x, y ∈ [0, B], ∀ξ, (6.25)

where ρ ∈ (0, 1). Hence the system is weakly asymptotically stable by Theorem

12.6.1 of [99]. �

The invariant probability measure µ∗ has probability masses at q = 0 and

q = B, and has probability density on (0, B). An approximation to µ∗ can be

obtained by numerically advancing the probability distribution µn for the queue

length qn. We have discretized the queue length and consequently obtained a

Markov chain for the dynamics of the queue length distribution.

Let the packet size have a fixed length L (bits), zn:=ceil(qn/L) be the number

of packets in the queue at time n and πn = [Pr(zn = 0), ..., P r(zn = B)] denote
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the corresponding probability vector. We have

πn+1 = πnT , (6.26)

π∗ = π∗T , (6.27)

where π∗ = limn→∞ πn is the steady state distribution and

T (i, j) := Pr[zn+1 = j|zn = i] (6.28)

is the corresponding transition matrix of the Markov chain. The conditional prob-

ability Pr[zn+1 = j|zn = i] is obtained as

Pr[j ≤ (min{B,max[0, f(iL) + ξ]})/L < (j + 1)]. (6.29)

On the other hand, when the buffer size B is far greater than the equilibrium

queue length and the perturbation magnitude is small, the transformation g(q, ξ)

can be linearized around the equilibrium point qe. Let Q
n �
= qn − qe. Then

Qn+1 �
= f

′
(qe)Q

n + ξn. (6.30)

Since {ξn} is white Gaussian process with zero mean and variance NSσ2, {Qn}

will be a Gaussian process with zero mean and normalized variance

V ar[Qn/S] =
Nσ2

1− |f ′(qe)|2
. (6.31)

From (6.31) the normalized queue length variation will be minimal if f
′
(qe) = 0,

which corresponds to S = RTT for the homogeneous case.

Figure 6.8 and 6.9 show the queue length distributions obtained through empir-

ical estimation from ns2 simulation, numerical computation based on (6.26), and

linear approximation based on (6.31), repectively. Three distributions agree well,
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which verifies that our nonlinear model (6.22) captures the queue length dynamics

under the Adaptive RED scheme with dynamic thresholds.

Figure 6.10 6.11 and 6.12 illustrate the Mapping functions, equilibrium points,

queue length dynamics from N = 20, 40 to 8.
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Figure 6.8: Steady state queue length distributions for N=20, S=RTT.
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Figure 6.9: Steady state queue length distributions for N=40, S=RTT.
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Figure 6.12: Queue length with N = 20 → 40 → 8.

157



6.3 Summary

In Chapter 5 and 6 we have first demonstrated the vulnerability of Adaptive RED

scheme to bursty web traffic, and then proposed a parallel virtual queue structure

for active queue management at the router. A simple detection algorithm is em-

ployed to separate the short-life and long-life TCP connections into different virtual

queues. The packet loss rate and mean delay for short-life traffic can be greatly

reduced by dynamic bandwidth allocation with this parallel queue structure. This

scheme combines the advantages of drop-tail and Adaptive RED policies. The

simulation results in the study show that this scheme achieves a shorter mean

delay for real time applications and keeps a high throughput for the best effort

connections as well as greatly reduces the packet loss rate in both queues.

This parallel virtual queue structure also offers more degrees of freedom for

AQM due to its flexibility in accommodating variants of the Adaptive RED scheme

and different dynamic bandwidth allocation algorithms. We have explored a mod-

ified Adaptive RED scheme with sliding queue length thresholds. This scheme

is able to maintain the dropping probability within a small interval and improve

the goodput of non-real time connections. The queue length variation under this

policy has been analyzed and conditions for its stability have been given. The

dynamic threshold Adaptive RED might also be useful for achieving throughput

fairness among multiple RED queues.

As to the dynamic bandwidth allocation policy for the drop-tail queue, we only

used the current virtual queue length information. However, it is well-known that

web traffic is strongly correlated and has a long range dependency property. Based

on observations of the “recent past” traffic, the future bandwidth demand of the

web traffic is predictable. In future work optimal bandwidth allocation based on
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prediction of the congestion level will be explored.
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Chapter 7

Conclusions

In this dissertation, we first reviewed the theory of wavelet analysis for network

traffic. We also discussed the monofractal and multifractal behaviors of Internet

traffic at large and small time scales. In order to capture these mono/multi-fractal

properties at all time scales, we proposed a multilevel ON/OFF model for the

Internet traffic and developed an algorithm to estimate the model parameters from

a real trace. The idea of this model is to imitate the TCP packet arrival pattern at

the lower level and the connection arrival pattern at the upper level. A synthetic

traffic was generated by the proposed model with the parameters estimated from

a real trace. The wavelet analysis showed that this new model can successfully

capture the statistical properties in second order (Logscale diagram) and higher

orders (multifractal spectrum). The simulation results also showed that these two

traffic share the same queuing behavior.

Since the Logscale diagram carries important statistical properties of the traf-

fic at all time scales, we developed an approximation of Logscale diagram of the

Internet traffic. The goal is to compute the Logscale diagram directly from the

network parameters of the model instead of analyzing a long trace. Given the
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Logscale diagram of the input traffic, one can immediately transfer the Logscale

diagram to the traffic workload distribution at all time scales and predict the cor-

responding queuing behavior and network performance. Furthermore, our analysis

results show that the queuing behavior with a small buffer size is dominated by the

traffic behaviors at small time scales. It indicates that the traditional monofractal

(self-similar) traffic model is not suitable for predicting the performance in real

networks.

For some real time applications such as Constant Bit Rate (CBR) connections

are sensitive to the mean and variance of packet delay. By applying our predicted

results of queue length distribution and the properties of wavelet analysis, we

developed a fast algorithm to estimate the mean and variance of packet delay

in real time. This tool could help the network resource providers decide how

much bandwidth should be allocated to guarantee the quality of service for certain

applications.

In the second part of this thesis, we are focusing on the policy of buffer manage-

ment. Many Active Queue management schemes such as RED were proposed to

improve the TCP throughput and link utilization. The basic assumption of these

policies is assuming that the TCP is operated in the Congestion Avoidance phase.

However, the current Internet traffic is dominated by web traffic and most web

connections are operated in the slow start phase. We indicated that these AQM

policies implemented in a shared queue is not suitable for the current Internet traf-

fic. The simulation results demonstrated that the web traffic severely degrades the

performance of those AQM schemes. Thus, we proposed a parallel queue structure

for a better solution of buffer management. Since TCP connection is untamed in

the slow start phase, we invented a detection algorithm to prevent the untamed
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TCP from entering into the AQM queue. In addition, the parallel structure also

gives us more freedom to control the AQM scheme. A typical AQM scheme such

as RED relies on dropping packets actively to control the TCP flow rate. This

method wastes bandwidth resources and caused unnecessary re-transmissions. For

non-real time application such as transmitting a large data file by FTP, packet

delay is not an important issue. Under this structure, we have the freedom to

control the flow rate of non-real time application by increasing the queuing delay

instead of dropping the packet.
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Appendix A

Appendix

A.0.1

Proposition:3.3.3

lim
t→∞

Y (t)

Ŷ (t)
=E[V ]B.

Proof: Since there are N independent user connections, we let N = 1 without loss

of generality.

lim
t→∞

Y (t)

Ŷ (t)
= lim

t→∞
B

∫ t
0
Uk(u)Vk(u)du∫ t
0
Uk(u)du

= B lim
t→∞

∑m
i=1

∫ ti
ti−1

Uk(u)Vk(u)du+
∫ t
tm
Uk(u)Vk(u)du∑m

i=1

∫ ti
ti−1

Uk(u)du+
∫ t
tm
Uk(u)du

= B lim
t→∞

∑m
i=1

∫ ti
ti−1

Vk(u)du+
∫ t
tm
Vk(u)du∑m

i=1(ti − ti−1) + t− tm

= B lim
t′→∞

∫ t′
0
V ′
k(u)du

t′

= B
ET21

ET21 + ET20

= BE[V ] (A.1)
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where ti−1 and ti are the beginning and end points of the ON state, tm is the

maximal end point which is less than t, and V ′(t) is a shifted version of V (t).

A.0.2

Proposition 3.3.6:

Without loss of generality, let ∆ = 1 and σ2
0 = EG2

i = 1. From (2.32),

RG(k) = EG0EGk

= E(BH(1)−BH(0))(BH(K + 1)−BH(k))

= Cov(BH(1)BH(k + 1))− Cov(BH(1)BH(k))

=
1

2
(|k + 1|2H − 2|k|2H + |k − 1|2H) (A.2)

and

lim
k→∞

RG(k)

= lim
k→∞

1

2
(|k + 1|2H − 2|k|2H + |k − 1|2H)

= lim
k→∞

1

2
k2H−2[k2(|1 + 1

k
|2H − 2 + |1− 1

k
|2H)]

Note that

lim
x→0

(1 + x)2H − 2 + (1− x)2H

x2

= lim
x→0

2H(1 + x)2H−1 − 2H(1− x)2H−1

2x

= lim
x→0

2H(2H − 1)(1 + x)2H−2 + 2H(2H − 1)(1− x)2H−2

2

= 2H(2H − 1)
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A.0.3

Show equations (4.54) and (4.55) with a Lognormal distribution fA(x):

fA(x) :=
1

xσ
√
2π

exp[−(ln x− µ)2

2σ2
], x > 0 (A.3)

and

erfc(x) :=
2√
π

∫ ∞

x

e−t
2

dt (A.4)

E[(A− d)+] =

∫ ∞

d

(x− d)f(x)dx

=

∫ ∞

d

xf(x)dx− dF̄ (d) (A.5)

where

∫ ∞

d

xf(x)dx =
1

σ
√
2π

∫ ∞

d

exp(−(ln x− µ)2

2σ2
)dx

=
1

σ
√
2π

∫ ∞

ln d−µ

σ
√

2

exp(−y2) exp(µ)
√
2σ exp(

√
2σy)dy

=
exp(µ+ σ2/2)√

π

∫ ∞

ln d−µ

σ
√

2

exp(−y2 −
√
2σy +

σ2

2
)dy

=
exp(µ+ σ2/2)√

π

∫ ∞

ln d−µ

σ
√

2

exp(−(y − σ√
2
)2)dy

=
exp(µ+ σ2/2)√

π

∫ ∞

ln d−µ−σ2

σ
√

2

e−t
2

dt

=
eµ+σ2/2

2
erfc(

ln d− µ− σ2

σ
√
2

) (A.6)

E[{(A− d)+}2] =

∫ ∞

d

(x− d)2f(x)dx

=

∫ ∞

d

x2f(x)dx− 2d

∫ ∞

d

xf(x)dx+ d2F̄ (x). (A.7)
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where

∫ ∞

d

x2f(x)dx =
1

σ
√
2π

∫ ∞

d

x exp(−(ln x− µ)2

2σ2
)dx

=
e2µ+2σ2

√
π

∫ ∞

lnd−µ

σ
√

2

exp(−(y −
√
2σ)2)dy

=
e2µ+2σ2

√
π

∫ ∞

lnd−µ−2σ2

σ
√

2

e−t
2

dt

=
e2µ+2σ2

2
erfc(

ln d− µ− 2σ2

σ
√
2

) (A.8)
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