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Abstract 

 

For both skilled and developing readers, reading unfamiliar words aloud requires 

knowledge about the correspondences between spelling and sound in their writing system. These 

correspondences may not be entirely consistent, making the writing system quasi-regular. This 

thesis explores how readers acquire such spelling-sound correspondences through text 

experience, and how they generalise this knowledge to words they have not encountered before.  

In the literature on word reading, debate about whether readers use categorical rules or 

statistical information to read words aloud is unresolved. To address this issue, I apply the 

Tolerance Principle (TP) (Yang, 2016), a recently-proposed theory of rule-productivity in spoken 

language acquisition, to the field of reading. The primary aim of the thesis is to assess whether 

the TP can predict which spelling-sound correspondences readers use productively. Experiment 1 

explores whether the TP can predict readers’ productive use of familiar spelling-sound 

correspondences. I conduct a nonword reading aloud task with adults and children (aged 8-9), 

using the TP to predict which spelling-sound correspondences in the English writing system 

readers use to pronounce novel words. Results show that the TP predicts adults’ and children’s 

pronunciations of letter sequences more successfully than three extant models of reading.  

This thesis also aims to contribute to the literature on statistical learning, and its 

relationship with reading. To explore the TP in this context, I conduct a series of artificial 

orthography learning experiments with adults and children (aged 9-10) to assess whether the TP 

can predict the acquisition and generalisation of novel spelling-sound correspondences. In 

Experiment 2, the TP is able to predict adult and child participants’ generalisation beyond the 

effect of token frequency distributions in the input. In Experiment 3, adults’ generalisation is 

moderated by increasing the relative frequency of irregular items during training. In Experiment 

4, the TP does not successfully predict the use of contextually-conditioned pronunciation sub-

rules for most adult learners. Overall, this thesis makes a novel contribution to our knowledge of 

skilled and developing reading, and to our understanding about how statistical information from 

the input is used during learning and generalisation. 
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Data and analysis scripts are available on the Open Science Framework at the following 

locations: 

Experiment 1: https://osf.io/t8c9x/?view_only=81d75621ae44479a95c8d912ca0ebd25 

Experiment 2: https://osf.io/pbjqu/?view_only=4a5601d01cc64ca59cb741aceb3990da 

Experiment 3: https://osf.io/z3y5q/?view_only=5f10575f9e1240588236381e4cff3952 

Experiment 4: https://osf.io/kn3db/?view_only=ef297b4ec23b41828a27c1dd977cbc64 
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Chapter 1: An introduction to word reading 

 

Productivity is a fundamental capacity of the human mind: we can make infinite use of 

finite means, even within quasi-regular systems such as those of spoken and written language. 

Learners are able to overcome exceptions to the regular patterns they see and hear in order to 

develop fully productive systems, enabling them to produce sentences they have not heard before 

and read words they have never seen. This ability to apply acquired knowledge to novel 

situations is known as generalisation. This thesis will investigate whether a theory recently 

posited to explain rule-learning and generalisation in spoken language, the Tolerance Principle 

(Yang, 2016), underlies our ability to generalise knowledge of spelling-sound correspondences 

in written language. As well as adding to our understanding of the processes underlying word 

reading, this investigation will be relevant to fundamental issues involving the nature of 

cognitive representations and processing more generally.  

 

1.1 Quasi-regularity in alphabetic writing systems 

Reading a word aloud requires converting its written (orthographic) form to its spoken 

(phonological) form. Writing systems vary in the ways in which written symbols represent 

spoken language. Alphabetic writing systems use a set of symbols that each represent individual 

sounds; small orthographic units (graphemes) correspond systematically to individual 

phonological units (phonemes). Whilst all alphabetic systems involve strong associations 

between spelling (orthography) and sound (phonology), they can differ in their orthographic 

depth, or the transparency with which symbols relate to sounds. For example, languages such as 

Greek and Serbian have shallow orthographies, as there is high consistency in the 

correspondences between graphemes and phonemes. English has a deep orthography, as there is 

some level of inconsistency in the correspondences between graphemes and phonemes. 

Quantitatively, the orthographic depth (i.e., the average number of pronunciations of a 

grapheme) of monosyllabic words in English is 1.7, whilst Serbo-Croat, for example, has an 

orthographic depth of 1.0 (Vousden, 2008). Because of the inconsistency that can be observed in 

its spelling-sound correspondences, English is an example of a quasi-regular alphabetic system 

(as will be laid out in detail below). The ways in which we learn, use and generalise 
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correspondences between spelling and sound in quasi-regular systems are not fully understood, 

and will be explored in this thesis. Whilst my investigation will focus on English, the method and 

conclusions reached could equally be applied to other quasi-regular alphabetic writing systems.  

 

1.1.1 Regularity and consistency in the English writing system 

As an alphabetic writing system, English uses predictable mappings between graphemes 

and phonemes. For example, the grapheme “d” corresponds to the phoneme /d/. Written words 

can be read aloud by blending the phonemes that correspond to the word’s orthographic form, for 

example “dog” - /d - ɒ - g/ - / dɒg /. This is a powerfully productive process: knowledge of 

spelling-sound correspondences can be generalised to pronounce unfamiliar written words, e.g. 

“dop” - /dɒp/. Once developing readers are able to assemble knowledge of individual graphemes 

and phonemes to generate the phonological form of a word (Castles et al., 2019), this 

generalisation ability also facilitates the reading acquisition process. In this way, knowledge 

about the pronunciation of familiar words can be used to pronounce other words as reading 

experience develops.  

The most frequent correspondences between graphemes and phonemes in English words 

(e.g. “d” - /d/) can be described as regular. Regularity is a binary notion: in terms of reading, a 

pronunciation is regular if it matches a pre-determined set of spelling-sound correspondences, 

such as the most frequently occurring correspondences in a given vocabulary. Pronunciation 

regularity can be applied to any orthographic unit (i.e., shorter or longer sequences of letters), but 

in the reading literature it tends to be applied to smaller orthographic units. Therefore, the 

regularity of a particular pronunciation is usually assessed according to the most frequent 

individual grapheme-phoneme correspondences (GPCs). Words which can be pronounced 

accurately using these GPCs are sometimes described as “regular” words. However, in English, 

not all words can be pronounced accurately using only GPCs; for example, “son” is pronounced 

/sʌn/, rather than - /sɒn/. Such words as these are sometimes described as “irregular” or 

“exception” words1. In fact, around 20% of English monosyllabic words cannot be pronounced 

 
1 Not all theories of word reading ascribe to the abstract notion of regularity, nor to the distinction between “regular” 

and “irregular” words, as will be discussed further below. However, it is worth noting how a regular or an irregular 

pronunciation of a word or letter string may be categorised.  
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using only regular GPCs (Coltheart et al., 2001). Indeed, graphemes in English orthography can 

often be pronounced in a variety of different ways, allowing a one-to-many mapping between 

graphemes and phonemes. For example, the grapheme “u” is pronounced differently in the words 

“push” - /pʊʃ/, “bun” - /b˄n/ and “truth” - /tru:θ/. This property makes the relationship between 

spelling and sound inconsistent, even within a writing system that is broadly predictable and 

fully productive.  

Unlike regularity, the consistency of spelling-sound relationships is a graded notion: if an 

orthographic unit is pronounced the same way in the majority of words, the spelling-sound 

relationship is more consistent; if it is pronounced in different ways in many words, it is less 

consistent. Further, consistency can apply to any orthographic unit (or grain size). For example, 

it can be used to describe the strength of the relationship between individual graphemes and 

phonemes, as described above. It can also be used to highlight very unusual spelling-sound 

relationships at the whole-word level, as in words such as “yacht” - /jɒt/. However, in the reading 

literature, consistency is often discussed in terms of multi-letter sequences. This is because in 

English, multi-letter sequences can sometimes offer additional pronunciation consistency to the 

apparent inconsistency of individual grapheme-phoneme relationships (Treiman et al. 1995). For 

instance, the grapheme “oo” is most frequently pronounced /u:/, as in “moon” - /mu:n/ and 

“boot” - /bu:t/, but can also have different pronunciations, such as in “blood” - /blʌd/, “look” - 

/lʊk/ and “brooch” - /brəʊtʃ/. Therefore, the pronunciation of this individual grapheme is 

inconsistent. However, when “oo” is followed by “k”, this longer letter sequence “ook” is almost 

always pronounced /ʊk/, as in the words “took” - /tʊk/ and “book” - /bʊk/. These types of 

pronunciation patterns are sometimes described as “context-sensitive” (e.g. Plaut et al., 1996), as 

the pronunciation of one grapheme is informed by the particular graphemes in the surrounding 

context.  

Glushko (1979) first highlighted the importance of spelling-sound consistency in reading 

beyond the binary regularity of individual grapheme-phoneme correspondences. Distinguishing 

between “regular” words that can be pronounced using GPCs, and “exception” words that 

cannot, he found that adults pronounced nonwords (i.e. novel pseudo-word items) derived from 

regular words (e.g. taze, derived from maze) more quickly than those derived from exception 

words (e.g. tave, derived from have). Further, these exception nonwords were sometimes 
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pronounced to rhyme with their corresponding real exception words, rather than by using GPCs. 

Glushko stated that these results could not be accounted for solely by an abstract system of 

pronunciation rules involving individual graphemes and phonemes (i.e. GPCs). Instead, he 

suggested that readers use existing knowledge of known words to inform pronunciations of new 

words by a process of analogy, or by use of multi-letter spelling patterns. Further, he argued that 

classifications of “regular” and “exception” words should be replaced by a system that can 

encode the consistency of orthography-phonology relationships.  

 

1.1.2 The word body 

Following Glushko’s suggestion that readers’ nonword pronunciations demonstrate 

orthography-phonology knowledge beyond the regularity of individual graphemes and 

phonemes, much research has investigated whether readers also use knowledge of spelling-sound 

consistency, particularly that involving larger orthographic units. These larger units can 

encompass the context-sensitive patterns described above involving multi-letter sequences. In 

particular, much attention has been paid to the orthographic unit combining the vowel and final 

consonant(s) of a monosyllabic word, termed the word body (including but not limited to Kay & 

Bishop, 1987; Jared et al., 1990; Treiman et al., 1995; Jared, 1997; Ziegler et al., 2001; Jared, 

2002). For instance, a series of word-reading experiments by Jared (2002) found that word body 

consistency predicted naming latencies more successfully than GPC regularity, providing 

evidence that adult readers make use of orthographic bodies and are sensitive to spelling-sound 

consistency. Therefore, it is possible that word bodies provide additional information to readers 

by offering increased spelling-sound consistency beyond simpler but less reliable GPCs. 

However, it should also be noted that word bodies can also have inconsistent pronunciations 

(Vousden, 2008), for example the pronunciation of the body “all” heard in the words “ball” - 

/bɔ:l/ and “shall” - /ʃ'æl/. 

Importantly, this is not to say that the orthographic unit of the word body in particular 

holds any abstract significance for readers per se. Instead, it is simply that inconsistent vowels 

are more strongly conditioned by the coda (i.e. the following consonant(s), which together with 

the vowel constitutes the word body) than by the onset (i.e. the preceding consonant(s)) in 

English words (Treiman et al., 1995; Kessler & Treiman, 2001). For instance, Treiman et al. 
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(2003) demonstrated that readers are in fact also sensitive to onset-vowel pronunciation 

contingencies, but only in localised and relatively rare situations, concluding that readers are able 

to take into account orthographic units beyond the body when pronouncing the vowel. The focus 

on the orthographic body in the reading literature is therefore likely to be the result of statistical 

patterns of pronunciation contingencies in English words, rather than because readers are unable 

to learn a wider variety of complex spelling-sound correspondences. 

 

1.2 Models of word reading  

Theoretical accounts of word reading have mapped out different ways of capturing the 

correspondences between spelling and sound, and subsequently how readers pronounce words 

which can be accurately read aloud using GPCs, words which cannot, and novel words. These 

accounts tend to stem from two camps. Rule-based approaches categorise the regularity of 

spelling-sound correspondences, by defining a set of pronunciation rules which capture the most 

frequent (i.e. regular) correspondences between orthographic and phonological units - typically 

between individual graphemes and phonemes. Regular pronunciations can be generated using 

these regular correspondences; irregular pronunciations (i.e. those not using GPCs) must be 

derived through a separate process (e.g. Coltheart et al., 2001).  

In contrast, statistical approaches do not categorically distinguish between regular and 

irregular pronunciations, but can encode the graded consistency of spelling-sound 

correspondences, i.e. how often a pronunciation is used for a particular spelling pattern. These 

spelling patterns can include longer sequences of letters (i.e. larger orthographic units such as the 

word body). These statistical approaches have been developed into full computational models, 

often using connectionist network architecture (e.g. Seidenberg & McClelland, 1989; Plaut et al., 

1996; Harm & Seidenberg, 2004). These networks allow for the context-sensitivity of spelling-

sound correspondences, as they maintain that readers are sensitive to the statistical probability of 

pronunciation patterns that are associated with particular orthographic contexts in their text 

input. For decades, research has investigated which approach (rule-based or statistical) most 

successfully captures human reading behaviour, and a variety of computational models working 

within these broad frameworks have been developed to this end.   
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The dominant computational model working from a rule-based approach is the Dual-

Route Cascaded model (Coltheart et al., 1993; Coltheart et al., 2001). According to this model, 

there are two possible routes involved in generating the pronunciation of a letter string. These are 

a rule-based, nonlexical route, and a lexical route that involves retrieving information about the 

whole word from the lexicon (see Figure 1.1). The nonlexical route uses a set of the most 

common grapheme-phoneme correspondences in English (GPCs) to read regular words and 

nonwords accurately. For example, the grapheme “a” most frequently corresponds to the 

phoneme /æ/ in English words, so this is considered the regular pronunciation and can be 

assembled with other GPCs to pronounce regular words such as “mat” - /mæt/. Words that are 

not pronounced using regular GPCs, such as “what” - /wɒt/, are categorised as exception words, 

and must be pronounced via a separate system. For this process, the DRC uses an associative, 

lexical route that runs parallel to the nonlexical route. The lexical route is based on architecture 

from the McClelland and Rumelhart (1981) interactive activation model, in which lexical items 

are represented as nodes within a network. As the nodes correspond to individual, higher-order 

units (i.e. words), it is classed as a localist network (McClelland & Rumelhart, 1981).  

 

  



  

7 

 

Figure 1.1  

The Basic Architecture of the Dual-Route Cascaded Model 

 

Note. Aadapted from Coltheart et al., 2001, p. 213. Note that the semantic system is 

unimplemented.  

 

An early statistical model was developed by Seidenberg and McClelland (1989), the first 

in a series of models using the “Triangle” framework (subsequent versions have been developed 

by Plaut et al., (1996) and Harm and Seidenberg (2004) amongst others). As a connectionist 

network, it is built on the assumption that knowledge, such as that of spelling-sound 

correspondences, is represented by weights on connections that link processing units. Because 

the representation of lexical information is spread over sets of individual, sublexical units (which 

can overlap with those used by other lexical items), the Triangle model is known as a parallel 
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distributed processing (PDP) model. This is in contrast to the localist representations of the 

DRC’s lexical route in which nodes correspond to individual words. 

The Triangle framework has two pathways by which to reach the pronunciation of a 

written form: a direct orthography-phonology pathway, and an indirect orthography-semantics-

phonology pathway (see Figure 1.2), although only the orthography-phonology pathway was 

implemented by Seidenberg and McClelland in the original version of the model. The 

orthography-phonology pathway has a three-layer neural network: connections between a layer 

of phonological units and a layer of orthographic units are mediated by a layer of hidden units. 

These hidden units allow the network to capture more complex spelling-sound mappings, such as 

body-rime correspondences, by developing a layer of abstracted information which emerges 

through the partial activation of units in the hidden layer shared by similar words (Plaut et al., 

1996).  
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Figure 1.2  

Seidenberg and McClelland’s Triangle Model (1989, p. 526) 

 

  

Note. Copyright 1989 by the American Psychological Association. Only the orthography-

phonology pathway (in bold) was implemented by Seidenberg and McClelland.  

 

Besner et al. (1990) identified issues with the Seidenberg and McClelland (1989) model 

regarding its ability to generalise to novel forms. These issues were addressed in subsequent 

versions of the model, including those of Plaut et al. (1996) and Harm and Seidenberg (2004), in 

which the second orthography-semantics-phonology pathway was fully implemented.  

Although the Triangle models implement separate orthography-phonology and 

orthography-semantics pathways, they are sometimes still categorised (somewhat counter-

intuitively) as single-route models through their use of a homogeneous processing mechanism 

for both pathways: namely, the spread of activation by weighted connections across distributed 

representations (Harm & Seidenberg 2004, p. 8). In other words, all orthographic, phonological 

and semantic knowledge is encoded in a single network, even though these types of knowledge 
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can involve separate pathways through the network. This approach stands in contrast to the dual-

route architecture of the DRC, where the pronunciation of a letter string is reached through two 

distinct types of processing mechanisms (i.e. the rule-based non-lexical route and the interactive-

activation lexical route, as described above).  

More recently, hybrid models of reading have been developed which use a dual-route 

processing system with separate lexical and non-lexical mechanisms, but which maintain aspects 

of distributed-connectionist processing architecture. These hybrid models include the 

Connectionist Dual Processing (CDP) model (Zorzi et al., 1998) and later the CDP+ model 

(Perry et al., 2007) and the CDP++ model (Perry et al., 2010), which was extended to include 

disyllabic words. The lexical system of the CDP+ model connects orthography and phonology in 

an interactive activation network based on the McClelland and Rumelhart (1981) architecture 

and similar to that of the DRC2. The non-lexical system maps orthography to phonology in a 

two-layer associative network (Ziegler et al., 2014). This non-lexical route is sensitive to 

sequences of graphemes which frequently occur together, meaning that it can capture the 

consistency of the spelling-sound relationship of multiple orthographic levels, or grain sizes, 

including the word body (Perry et al., 2010). Competing codes from these two routes interact in a 

phonological output buffer to produce the final pronunciation (see Figure 1.3).  

 

  

 
2 The lexical route of the CDP model (Zorzi et al., 1998) was not fully implemented but involved the activation of 

the phonological word form corresponding to a lexical entry and the spread of this activation to phoneme output 

nodes.  
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Figure 1.3  

Perry et al.’s (2007) Schematic Description of the CDP+ Model 

 

 

Note. O = onset; V = vowel; C = coda; TLA = two-layer assembly; IA = interactive activation, L 

= letter; F = feature (Perry et al., 2007, p. 280).  

 

1.2.1 Frequency  

An important distinction between rule-based and statistical accounts involves frequency 

counts. Rule-based models tend to use type frequency to determine the regular pronunciation of a 

grapheme: this means they use the absolute number of different word types in a corpus to 

measure which is the most frequent pronunciation of a grapheme. For this, the DRC’s sublexical 

route uses type frequencies from the CELEX corpus (Baayen et al., 1995), which is a database of 

7991 monosyllabic words. Meanwhile, statistical models also take the token frequency of words 

into account (Andrews & Scarratt, 1998), which means that the relative frequency of words in 
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the input can also affect the patterns that the models produce. Specifically, distributed-

connectionist architecture is based on the assumption that connection weights between units are 

strengthened through use, so the frequency of a word’s occurrence during training affects the 

weighting of spelling-sound correspondences. Harm and Seidenberg’s (2004) Triangle model is 

trained on a corpus of words presented to the model with the log frequency of the Francis and 

Kucera (1982) word norms. This determines the patterns of activation in the orthography-

phonology route. The CDP+ model (Perry et al., 2007) uses the CELEX database as the training 

corpus. The lexical route is similar to that of the DRC, although it uses phonological rather than 

orthographic frequencies. The sublexical route was pre-trained on GPCs to simulate explicit 

phonics instruction, before being trained on items from the word corpus using normalised 

logarithmic frequency values, thereby weighting the type frequency counts by tokens.  

 

1.2.2 Development of orthography-phonology knowledge  

It is worth noting that as connectionist models build their representations during a 

training phase, they can simulate a knowledge-building process potentially akin to that of human 

readers. For example, Powell et al. (2006) explored specific modifications that could be made to 

the Plaut et al. (1996) connectionist model to bring it closer in line with children’s literacy 

learning environment, which as a result improved the performance of the original network. These 

modifications included an incremental training regime and use of a training corpus based on 

words from children’s early reading materials (see further discussion in Chapter 3). More 

recently, Chang et al. (2020) investigated the effects of prior knowledge and training on the 

learning trajectory and performance of the Triangle model (the Chang & Monaghan, 2019 

version), with the aim of further understanding the links between pre-literate oral language and 

the specific focus of reading instruction on children’s reading development. They used a 

vocabulary of English monosyllabic words as the training set in order to approximate children’s 

literacy learning, and varied the initial oral language skills of the model by implementing 3 

different levels of exposure to training items. Following this, the model was trained to read items 

from the training set through either an orthography-phonology (OP) focused or orthography-

semantics (OS) focused regime. Results showed that the OP focused training model performed 

better on a reading aloud task than the OS focused training model. Further, there was an effect of 
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prior oral language skills on both the reading aloud task and a written comprehension task; the 

effect was greater for the OS than the OP focused training model. The authors therefore conclude 

that poor oral language impacts reading comprehension more than it does reading aloud. 

Studies such as these demonstrate the rich potential of the Triangle model to be adapted 

in line with children’s experience of reading development, and indeed the insights that can be 

gained through this process. Meanwhile, GPCs in the DRC’s nonlexical route are pre-set 

according to the corpus-based type frequency of pronunciations in English words. Therefore, this 

model cannot directly reflect a realistic learning process. 

 

1.3 Nonword reading aloud   

A common way to assess a computational model’s ability to capture word reading and 

generalisation of spelling-sound knowledge is by running simulations which generate their 

predicted pronunciations for nonwords, and comparing these predictions with pronunciations 

produced by human readers for these nonword items. Participants’ responses can also be 

analysed to reveal whether their pronunciation of each novel lexical item uses only individual 

GPCs (i.e., a “regular” pronunciation), or instead demonstrates knowledge of larger orthographic 

units (e.g. word bodies) or similar known words. These types of responses would suggest that 

readers are using the consistency of spelling-sound correspondences to inform their 

pronunciations rather than simply using the most frequent (or regular) pronunciation of each 

grapheme. Pronunciations of vowel graphemes in monosyllabic nonwords are particularly 

informative, as vowel graphemes can often be pronounced in a variety of ways in English 

orthography. Broadly speaking, support for a statistical account would be provided by a response 

that demonstrates an effect of word body consistency or consonantal context on the 

pronunciation of the vowel, for example pronouncing “pook” /pʊk/ to rhyme with “look”. 

Meanwhile, a rule-based account would be supported by a response which uses the most 

common pronunciation of the vowel grapheme in isolation, for example “pook” - /pu:k/.  

 A significant body of work has collected and analysed human readers’ nonword 

pronunciations in order to assess computational reading models in this way. For the purposes of 

the current investigation, these studies provide useful evidence about the way readers generalise 
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in a quasi-regular system, and how best to capture this behaviour. For instance, Seidenberg et al. 

(1994) compared adult nonword pronunciations with those generated by the DRC model 

(Coltheart et al., 1993) and the Triangle (PDP) model (Plaut et al., 1993). They found that the 

Triangle model was able to predict the pronunciation produced most often by participants 

slightly more closely than the DRC, but concluded that both models are able to produce plausible 

nonword pronunciations. They suggested that adding context-sensitive rules may increase the 

success of the DRC, particularly by incorporating assumptions such as relative strengths or 

conflicts between rules. However, Seidenberg et al. did not elucidate how this could be 

achieved3. Similar themes regarding a precise hierarchy of increasingly specific rules will be 

developed in the current thesis. Additionally, Seidenberg et al. noted that spelling-sound 

consistency is likely to be the locus of pronunciation variability observed between participants; 

greater inconsistency gives rise to higher participant variability. This result suggests that both 

consistency and variability are variables which should be explored in order to provide a 

comprehensive understanding of human reading behaviour.  

 Andrews and Scarratt (1998) also carried out a nonword reading study to evaluate the 

competing predictions of Coltheart et al.’s (1993) DRC model and Plaut et al.’s (1996) Triangle 

model. Adults’ nonword pronunciations were assessed according to their use of “regular” (GPC) 

or “analogy” (context-sensitive) strategies, and also their match against model predictions. 

Results revealed that participants used regular pronunciations for the majority of nonword 

responses, except for items with word bodies that are never pronounced regularly in English 

monosyllabic words, such as “beart” (i.e. they are consistently irregular). For these items, adults 

used context-sensitive pronunciations (by analogy to word neighbours with irregular bodies) 

approximately half of the time, and regular pronunciations less than a third of the time. Overall, 

the DRC model was better able to predict readers’ responses than the Triangle model, although it 

overestimated the number of regular pronunciations participants produced, and could not predict 

their irregular pronunciations of nonword items. In fact, the best predictor of a regular 

pronunciation response was the number of regular word neighbours counted by type rather than 

token (contradicting the Triangle model’s approach, which uses the token frequency of 

neighbours to determine the probability of an irregular pronunciation). This result suggests that 

 
3 Rastle and Coltheart (1999, Appendix B) later developed a set of context-sensitive rules for the DRC.  
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consistency is an important variable in the generalisation of spelling-sound correspondences, but 

that it should be based on type rather than token frequency counts. It is possible that a more 

successful account of reading will involve such an approach to consistency, and this will indeed 

be explored in the current thesis. In terms of the variability of pronunciations across participants, 

the authors found that items with inconsistent bodies produced more varied pronunciations than 

those with more consistent bodies, mirroring a similar finding by Seidenberg et al. (1994).  

 Treiman et al. (2003) examined the effect of consonantal context on vowel 

pronunciations in nonwords, comparing adults’ pronunciations with those produced by a variety 

of computational models. They selected vowel graphemes with inconsistent pronunciations, such 

as “ea” which has a GPC pronunciation in words such as cheap and a context-sensitive 

pronunciation in words such as head. These vowel graphemes were used in nonword items, in 

both a control consonantal context in which the GPC pronunciation would be expected (e.g. 

cleam, as in cheap) and a critical consonantal context, in which a context-sensitive pronunciation 

may be expected (e.g. clead, as in head). They found that participants produced more context-

sensitive pronunciations of the vowel in critical than control consonantal contexts, suggesting 

that adult readers were using knowledge of context-sensitive pronunciation patterns (involving 

the word body) in their responses. However, the authors noted that the context-sensitive 

pronunciations were used less often in critical contexts than would be predicted by the statistical 

frequency of these pronunciations in English words (see further discussion in Chapter 6). Their 

assessment of rule-based and connectionist models including those of Coltheart et al. (2001), 

Zorzi et al. (1998), Plaut et al. (1996), Plaut and McClelland (1993), Powell et al. (2001), Harm 

and Seidenberg (2002)4, and Norris (1994) found that none of the models matched adults’ 

pronunciations very well, particularly for nonwords with critical consonantal contexts. For 

instance, for critical nonwords such as squant (which may be pronounced to rhyme with font or 

rant), the most successful model (Norris, 1994) matched the participants’ most common 

pronunciation only 68% of the time; for the least successful model (Coltheart et al. 2001) this 

was 38%. Treiman et al. suggested that an approach which combines information about the 

frequency of orthography-phonology mappings in different contexts may result in a more 

 
4 Treiman et al. refer to the paper submitted for publication by Harm and Seidenberg (2002); see also the published 

model (Harm & Seidenberg, 2004).  
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successful account of human reading behaviour. They did not specify the details of how such an 

approach could be developed, but one possible account will be explored in the current thesis.  

Pritchard et al. (2012) compared nonword pronunciations produced by adult readers with 

those generated by the DRC (Coltheart et al., 2001) and CDP+ (Perry et al., 2007). Both of these 

models feature a dual-route architecture as discussed above, but use rule-based and connectionist 

non-lexical routes respectively, which can produce different nonword pronunciations. Results 

showed that adult participants used regular (GPC) pronunciations most often in their nonword 

responses, but that they did produce some alternative, irregular pronunciations (although not at 

the rate they occur statistically in English words). This discrepancy between the rate of 

alternative pronunciations produced by participants and their frequency in English vocabulary 

was also observed by Treiman et al. (2003). Together, these findings suggest that irrespective of 

whether we categorise possible pronunciations according to regularity (as did Pritchard et al.) or 

context-sensitivity (as did Treiman et al.), readers do not simply reproduce the statistical 

distributions of their input in their pronunciations.  

Pritchard et al. (2012) reported that the DRC was more successful than the CDP+ in 

matching the most frequent human pronunciation of each item, although neither model fared 

particularly well: the DRC predicted too many regular responses compared to the participants, 

and the CDP+, too many lexicalisations (i.e. pronouncing the nonword as an existing real word) 

and other irregular responses. The authors suggested that a rule-based model allowing multiple 

rules of different strengths to apply to a grapheme depending on the context, or a mechanism for 

rules involving larger units such as word bodies to override GPCs, could predict pronunciations 

more accurately. These suggestions were not developed further by the authors, but will be 

addressed in the current thesis. They also highlighted the wide variety of pronunciations 

produced by participants, noting that a successful model of reading should be able to account for 

such differences between individual readers. Again, these findings suggest that extant models do 

not successfully capture readers’ productive use of spelling-sound correspondences, and that a 

more specific mechanism for predicting use of alternative pronunciations in different contexts is 

required.  

 Beyond this body of work on monosyllabic nonword reading, Mousikou et al. (2017) 

conducted a mega-study of disyllabic nonword reading with adults, and evaluated two competing 
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models: the CDP++ model (Perry et al. 2010) and the rule-based disyllabic algorithm of Rastle 

and Coltheart (2000). Analysis of the similarity between each participant and the models - 

treating each model as an individual participant - revealed that neither model behaved typically, 

suggesting that neither a rule-based nor a statistical approach accounts well for the human 

reading data. Additionally, participants’ pronunciation variability was predicted by the spelling-

sound consistency of both the first and second syllables. The authors suggested this demonstrates 

that participants are sensitive to statistical patterns in the lexicon, and thereby concluded that 

their results lend more support to a statistical-learning approach overall. Again, these findings 

indicate that participants neither regularise all pronunciations, nor match predictions based on the 

statistical distribution of the input. Instead, a more nuanced account, which also allows 

variability between participants, is required and will be explored in the following chapters.  

This range of studies investigating nonword reading behaviour reveals similar patterns of 

findings, although these results can be construed in different ways. For instance, many of the 

studies found that to pronounce nonwords, adult readers use regular pronunciations of individual 

graphemes (GPCs) most often, a result which can be used as evidence in support of a rule-based 

account. However, most also report that readers make some use of alternative pronunciation 

patterns; behaviour which can be characterised as demonstrating context-sensitivity or 

knowledge of larger orthographic grain-sizes (such as the word body). These results suggest that 

readers are sensitive to the consistency of orthography-phonology mappings; this finding 

supports a statistical account and cannot easily be accounted for by a rule-based account such as 

the DRC. Further, numerous studies found that the variability in pronunciation responses 

between participants is predicted by spelling-sound consistency, which again suggests that 

readers demonstrate sensitivity to the consistency of certain patterns in their input. However, 

several researchers have also noted that readers do not simply reproduce the statistical 

distribution of pronunciation patterns in the lexicon; rather, their use of context-sensitive 

pronunciations is often notably lower than would be predicted by corpus statistics. Taking these 

results together, it seems clear that a successful account of word and nonword reading must be 

able to explain precisely how readers make use of the input statistics they have been exposed to 

in their generalisations, including the instances in which readers do maximise use of the most 

common GPCs.  
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It is worth noting that whilst researchers often highlight ways in which models fail to 

capture human reading behaviour and make suggestions for improvement (e.g. Seidenberg et al., 

1994; Treiman et al., 2003; Pritchard et al., 2012, Mousikou et al., 2017), they rarely develop a 

detailed account of precisely how this could be achieved. In this thesis, one possible solution that 

makes quantitative predictions on the basis of input statistics will be applied to this issue and 

explored in detail.  

 

1.4 Unresolved issues and the next steps  

Overall, the research discussed above suggests that extant models of reading are unable to 

fully or precisely capture human nonword reading behaviour: rule-based models are able to 

successfully predict the majority of pronunciations which use the most common grapheme-

phoneme mappings, but cannot account for those instances in which readers use alternative 

pronunciation patterns. Meanwhile, statistical models are to able predict context-sensitive 

pronunciations (e.g. those involving the word body), but often do so more frequently than human 

readers actually produce them. Therefore, there seems to exist a gap in these models’ capacity to 

capture readers’ behaviour, in which readers’ nonword responses are either less regular or less 

context-sensitive than each approach would predict. More broadly, important questions remain 

regarding the significance of graphemes versus word bodies, and the conflict between the use of 

rules or statistics to characterise generalisation of spelling-sound knowledge. What is required is 

an approach that can capture the effects of both regularity and consistency, perhaps by taking 

into account the statistical properties of orthography-phonology correspondences in English 

words. To be successful, it should also be able to predict when information from different 

orthographic grain sizes or contexts will be used productively by readers, and when 

pronunciations may vary across readers.  

In this thesis, I will investigate whether the Tolerance Principle (Yang, 2016) can be 

applied to reading in order to fulfil these requirements and to address the related long-standing 

questions in the word reading literature. As will be explored in the following chapters, the 

Tolerance Principle is a rule-based account which uses statistical information to form categorical 

predictions for generalisation. In this way, it is able to capture both the regularity and 

consistency of a pattern, and make predictions about its productivity. I will investigate whether 
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the Tolerance Principle can shed light on decades-old debate in the field of reading such as 

readers’ use of either graphemes or word bodies in nonword reading aloud; whether 

orthography-phonology knowledge is better characterised by rules or statistics; and precisely 

how readers make use of statistical information in their text input to form generalisations.  
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Chapter 2: Introducing the Tolerance Principle  

 

2.1 The power of productivity   

As introduced in Chapter 1, a central property of human cognition is productivity: we can 

generalise beyond knowledge gleaned from past experience to produce and understand an 

infinite array of structures. In the previous chapter, this property was discussed within the 

context of reading, specifically regarding a decades-old undertaking to understand the ways in 

which readers generalise spelling-sound correspondences to pronounce unfamiliar written items. 

Despite a large body of research, several outstanding issues remain. In what instances are readers 

either categorical or sensitive to graded consistency in their generalisations? When do readers 

use more general context-independent or more specific context-dependent spelling-sound 

correspondences productively? Does the type or token frequency of items in our reading 

experience determine the way we learn and use pronunciation patterns? What is the best way to 

characterise and model human reading behaviour overall?  

Meanwhile, productivity is also strikingly apparent in child spoken language acquisition: 

children do not simply memorise and reproduce the sentences they have been exposed to, but can 

produce novel linguistic structures by abstracting information from their input and applying the 

patterns they have identified to new situations.5 For example, after learning that many verbs in 

English form the past tense by adding –ed, by the age of three children can apply this pattern to 

other verbs that they have not heard in the past tense before (Marcus et al., 1992). 

Experimentally, Berko (1958) demonstrated that children aged five could apply the -ed past tense 

morpheme when presented with novel verbs, e.g. gling – glinged, suggesting that they are able to 

generalise this grammatical knowledge.  

Running parallel to the debate between rule-based vs. statistical models of reading 

discussed in the previous chapter, there have been similar developments in research setting out to 

capture generalisation in spoken language. Much of this research on productivity, particularly in 

formal linguistics, has focused on identifying abstract productive rules: a regular pattern that 

 
5 It should be noted that accounts of language acquisition differ in the stage at which they attribute combinatorial 

productivity to the language of developing speakers. For example, the usage-based account (Tomasello, 2000) 

emphasises the role of memorisation and maintains that children’s earliest multi-word utterances are instantiations 

of item-based schemas rather than systematic rules.  
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extends over a majority of forms and can be applied to novel items. Evidence of generalisation 

from studies such as Berko’s (1958), as well as the developmental trajectory of the English past 

tense (discussed further below), have traditionally been used to support such rule-based accounts 

(e.g. Pinker, 1999; Plunkett, 1991). Alternative accounts have subsequently been proposed which 

instead highlight the role of input statistics, including distributed-connectionist models (e.g. 

Rumelhart & McClelland,1986) which invoke domain-general, probabilistic learning 

mechanisms. They maintain that children learn to form the past tense of a verb, for example, 

through a pattern association mechanism using the statistical distributions of their input, rather 

than by forming and applying abstract rules.  

However, no matter how productivity is characterised, there remains an elephant in the 

room: whether we are dealing with spoken or written language systems, we find exceptions 

which do not conform to the majority pattern. To take another example from English past-tense 

morphology (which has been the subject of a large amount of research on productivity and rule-

learning), the past tense form of swim is swam, not swimmed. As seen in the field of reading, the 

presence of exceptions amongst regular patterns (i.e., a quasi-regular system) has prompted 

swathes of research asking how regular versus exceptional grammatical forms are learned, 

accessed and generalised. 

In the current chapter I will introduce the Tolerance Principle (Yang, 2016), a recently-

proposed account of generalisation in spoken language acquisition. This theory sets out to 

address long-standing issues including how learners extract useful information from their input, 

how they overcome exceptions to form productive patterns within quasi-regular systems, and 

why they restrict generalisation in certain instances. The TP is a rule-based approach which 

incorporates statistical information, enabling it to make categorical predictions about the use of 

productive rules on the basis of a type-based consistency metric. After examining the ways in 

which this novel approach claims to resolve the range of issues surrounding spoken language 

acquisition outlined above, I will consider its application to reading and lay out my intentions to 

explore its applicability for solving similar outstanding questions in this field. 
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2.2 Rules and exceptions 

2.2.1 Rule-based models 

Children’s novel generalisation of plural and past tense forms in Berko’s (1958) famous 

study has traditionally been employed to support the existence of productive grammatical rules. 

For instance, children’s ability to apply the past tense –ed pattern to unfamiliar verbs has been 

used as evidence that they operate an abstract rule-based mechanism, formalised as something 

like “add –(e)d”, in order to produce the past tense of a regular verb (e.g. Pinker, 1989). In some 

rule-based theories, irregulars are memorised in word pairs such as sleep-slept, whilst others 

exclusively use a system of rules to generate both regular and irregular forms.  

For example, according to Chomsky and Halle’s (1968) Sound Patterns of English, the 

past tense form of a verb is created by using either the –ed rule or a small selection of additional 

minor rules; in Halle and Marantz’s (1993) Distributed Morphology theory, the past tense form 

of a verb is generated according to either the regular allomorph or a set of “readjustment rules” 

(Halle, 1990). According to Kiparsky’s (1982) Lexical Phonology and Morphology, verb 

inflections are derived through a series of levels each associated with a set of phonological rules, 

whilst the Yip-Sussman model (Yip & Sussman, 1997) uses an inductive learning process which 

creates a default rule plus phonologically specified rules. However, the dominance of rule-based 

approaches such as these was challenged when a new, associative model of the past tense was 

developed using connectionist parallel distributed processing architecture.  

 

2.2.2 Connectionist models 

In distributed-connectionist models, knowledge is represented by patterns of activity 

across a network of processing units which represent the statistical structure of the input. These 

patterns are not distinguished according to regularity6; both the majority and alternative patterns 

are captured within a single network, without the need for separate mechanisms for rules and 

exceptions (Joanisse & McClelland, 2015). These patterns can also be used to generate novel 

forms. For example, Rumelhart and McClelland (1986) designed a revolutionary model which 

 
6 Connectionist models do not invoke abstract rules so a distinction between regular and irregular patterns is not 

applicable.  
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could learn the mapping between the present and past tense form of a verb using a learning 

algorithm which adjusts the patterns of activation according to exposure to those forms. The 

network demonstrated successful acquisition of both regular and irregular forms, and also 

produced generalisations to novel forms, all within a single architecture. However, as noted by 

Joanisse and McClelland, this generalisation does not always accurately match human behaviour; 

a common criticism of connectionist models is that they overgeneralise irregular forms (e.g. 

producing the past tense glang for the novel verb gling) much more often than children do 

(Marcus 1995; Yang, 2016; Schuler et al., 2021). For instance, the Rumelhart and McClelland 

model developed sensitivity to a subset of irregular verbs which end in word-final –d or –t and 

do not mark a change between present and past tense (e.g. cut – cut); the model incorrectly 

overgeneralised this no-change pattern to regular verbs and other irregulars ending in –d or –t 

(Marcus et al., 1992). Indeed, in contrast to the rule-based model that will form the basis of 

investigation in this thesis, connectionist theories maintain that “there is no dichotomous 

distinction between productive and unproductive phenomena; rather, there are only degrees of 

productivity” (McClelland & Bybee, 2007, p. 439). 

 

2.2.3 Dual-route models 

In response to the development of single-route connectionist models there emerged a new 

approach which incorporated elements of both previous sides of the past-tense debate: dual-route 

models (Pinker & Prince, 1988; Prasada & Pinker, 1993; Pinker & Ullman, 2002). These models 

proposed that regular inflections are generated using productive rules, whilst irregular forms are 

memorised and accessed through a separate associative system. In contrast to connectionist 

models, they maintain that a qualitative distinction between regular and irregular forms is 

necessary to account for a range of behavioural findings. For instance, Prasada and Pinker (1993) 

investigated adults’ willingness to generalise regular (walk-walked) and irregular (swing-swung) 

past tense patterns to novel verbs. They found that participants’ willingness to generalise from 

known irregular verbs to novel verbs (e.g. spling-splung) depended on the similarity between the 

verb forms. This was not the case for regular verbs, where the rating and production of 

generalisations was not associated with similarity between the existing and novel forms. These 

results replicated similar findings from Bybee and Moder (1983). In contrast, simulations from 
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Rulmelhart and McClelland’s (1986) connectionist model demonstrated generalisation of both 

regular and irregular patterns to novel forms as a function of similarity to trained forms. 

Therefore, Prasada and Pinker suggested that their results did not support a single-network 

theory such as Rumelhart and McClelland’s; neither did they support a rule-only theory which 

cannot account for the observed patterns of irregular generalisations. Instead, they proposed a 

hybrid model in which regular inflections are generated by abstract rule, and irregular forms are 

stored separately within an associative memory system and can be generalised by a process of 

analogy. 

 

2.2.4 A return to a rule-based approach? 

Dual-route models embrace aspects of both rule-based and associative approaches, and 

thus offer considerable explanatory power. For instance, they account for frequency and 

similarity effects in irregular but not regular past tense verb productions (Prasada & Pinker, 

1993), and for difficulty producing irregular but not regular forms in children with Specific 

Language Impairment (Gopnik, 1990). However, there is some evidence that dual-route models 

do not always capture behavioural findings. Instead, there has been a return by some researchers 

to rule-based approaches that involve a hierarchy of rules (e.g. Albright & Hayes, 2003; 

Ambridge, 2010). For instance, Ambridge (2010) carried out an acceptability judgement task of 

the English past tense with children aged 6-7 and 9-10. Participants rated the acceptability of 

novel verbs using either the regular or an irregular past tense form. The novel verbs differed in 

their phonological similarity to real regular and irregular past tense forms, for example nace 

(similar to an existing class of regulars inclduing race - raced); fleep (similar to an existing class 

of irregulars including sleep - slept); and gude (not similar to either an existing class of regulars 

or irregulars). Results found that the acceptability of novel irregulars increased with similarity to 

existing irregular forms, with no interaction with age of the participant. For novel regulars, 

acceptability increased with similarity to existing regular forms for the older but not the younger 

age group. Ambridge proposed that the developmental effect between age groups was observed 

for regulars but not irregulars because irregular forms are acquired early and would be known by 

all participants, whilst the younger children may still be acquiring knowledge of regular forms. 

Overall, Ambridge (2010) suggested that these findings support models which either allow 
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generalisation by analogy to operate across stored regulars, such as single-route models (Bybee 

& Moder 1983), or those that involve a hierarchy of increasingly specific rules, such as multiple-

rule models (Albright & Hayes, 2003). He argued that the findings do not support dual-route 

models (e.g. Prasada & Pinker 1993), unless the models allow for a substantial effect of 

analogical generalisation over stored regular forms. However, these results diverge from those of 

Prasada and Pinker’s (1993) study, where no function of similarity was observed for 

generalisation of the regular pattern. It is possible that acceptability judgement tasks are not 

reliable assessments of generalisation, and instead production tasks may be more valuable in 

order to discriminate between processing models.  

 

2.3 When does a rule become productive? 

Beyond this discussion of the most successful way to model processing of rules and 

exceptions is the additional (and perhaps more pertinent) consideration of precisely when a rule 

actually becomes productive. Not all linguistic patterns are productive; for example the sing – 

sang, ring – rang past tense forms do not extend beyond a restricted subset (Schuler et al., 2021). 

Such examples prompt the question of at what point should a pattern be generalised to novel 

instances, rather than being restricted only to items attested during linguistic experience.   

Looking at evidence from child language data, it is well-attested that children 

overgeneralise regular patterns during the course of language acquisition (Marcus et al., 1992; 

Pinker, 1999); for example, producing eated rather than ate. Notably, the acquisition of English 

past tense forms follows a U-shaped curve (Ervin & Miller, 1963; Cazden, 1968; Pinker & 

Prince, 1988; Marcus et al., 1992), in which young children produce irregular forms correctly 

before entering a stage in which overregularisations are common, then subsequently approach 

adult-like behaviour. Additionally, Berko’s (1958) Wug test demonstrated young children’s 

readiness to generalise regular grammatical patterns to novel items. However, it is uncommon 

for children to overgeneralise irregular forms (i.e. apply an irregular pattern productively), and 

the occurrence of such errors has sometimes been overestimated by both rule-based and 

connectionist theories (Marcus, 1995; Xu & Pinker, 1995; O’Donnell, 2015). In fact, Yang 

(2016, p. 33) claims that irregular analogical errors are “almost completely anecdotal”. This 

propensity to generalise regular but not irregular forms has in fact been demonstrated cross-
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linguistically (e.g. Clahsen & Penke, 1992; Allen, 1996, Caprin & Guasti, 2009, discussed 

further by Yang, 2016). Critically, if a categorical distinction between productive regular forms 

and unproductive irregular forms is a universal characteristic of children’s linguistic behaviour, 

then it is crucial to understand which patterns qualify as productive, and at what stage, during the 

language acquisition process.  

Some researchers do not go as far as setting out clear predictions about when a rule may 

become productive for a developing speaker. For instance, Marcus et al. (1992) rejected the 

possibility that children require a pattern to apply to the majority of tokens, or a relative or 

absolute number of types, in order for it to become productive. They did note the possibility that 

children perhaps require little input in order to establish a regular pattern, but the authors stated 

they “lack evidence that would allow us to identify which cues children actually use to acquire a 

regular rule” (1992, p. 133).  

 As highlighted by Schuler et al. (2021, p. 7), many approaches which do make 

predictions about productivity invoke the idea of “statistical dominance” to determine which 

patterns in the input will be extended. According to the individual approach, the majority form 

may be identified on the basis of type frequency (Bybee, 1995), the proportion of type frequency 

across a number of tokens (Baayen, 1989; Baayen & Lieber, 1991), or type counts weighted by 

token frequency (as in distributed-connectionist models, such as Rumelhart & McClelland, 

1986). Other accounts predict which pattern will be generalised according to measures of 

efficiency or data optimisation (Taatgen & Anderson, 2002, O’Donnell, 2011; 2015). But as 

Schuler et al. (2021) note, none offer a precise prediction of productivity involving input data 

and an evaluation metric in a way that children could be expected to undertake during language 

acquisition.  

 

2.3.1 Overcoming exceptions in other linguistic domains 

There is evidence that children can overcome exceptions to extend certain patterns on the 

basis of type frequency in domains beyond grammatical generalisation. This research highlights 

the need for productivity metrics that can apply beyond the grammatical patterns that are usually 

described in the literature on rule-learning and generalisation - most often the English past tense. 
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Further, there is evidence to suggest that type frequency may not be the only determiner of 

generalisation in these contexts. For instance, Lazaridou-Chatzigoga et al. (2019) investigated 

adults’ and 4-5-year-old children’s generalisation of properties about novel objects. Experiment 

1 found that both adults and children generalised striking properties (e.g. “play with fire”) about 

novel objects (e.g. “glippets”) less often than neutral properties (e.g. “play with toys”). This 

result suggests that generalisation of consistent patterns can be moderated by specific (and non-

linguistic) properties of the items involved. 

 In their Experiment 2, varying numbers of exceptions to the properties of the objects 

were made: after being introduced to two instances of a novel object with a common property 

(e.g. “These are glippets. Glippets like to play with toys/fire”), either one or three more objects 

of the same kind were introduced without this common property (e.g. “This/these glippet(s) 

don’t like to play with toys/fire”). Participants were then asked whether the property applied to 

new objects of the same kind. Both adults and children generalised properties to further objects 

at a lower rate than in Experiment 1, where there were no exceptions. Further, the greater the 

number of exceptions, the lower the rate of adults’ generalisation; for children, this was only the 

case for striking properties. The authors suggest that for neutral properties, children may need 

exposure to more exemplars in order to demonstrate sensitivity to the number of exceptions. 

Indeed, the total number of exemplars of each object was very small; more exemplars may have 

allowed further generalisation patterns to emerge. Nevertheless, this study highlights the 

potential for further research investigating the generalisation of non-grammatical patterns in 

quasi-regular systems. Additionally, it suggests an interaction between the type frequency of 

exceptions and property salience in children’s generalisations.  

 

2.4 Computational efficiency 

With many possible ways in which in the data in our input could be encoded to produce 

productive patterns, one possible factor steering this process is computational efficiency. 

Research in cognitive science has long explored how principles of efficiency may shape our 

behaviour, or even cognitive architecture. For example, Zipf’s (1949) Principle of Least Effort 

proposes that human behaviour will expend the least amount of effort to accomplish a task; 

behaviours that are useful will be performed frequently, and thus become still more efficient to 
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perform. The theory of Rational Analysis (Anderson, 1990) states that our cognition reflects the 

statistical structure of the input in a maximally efficient way. Other approaches emphasise the 

role of efficiency in the learning process, under the assumption that learning involves identifying 

patterns within data (Chater & Vityani, 2003). They maintain that in order to determine the 

optimal pattern that captures a dataset amongst an infinite number of possible patterns, the 

cognitive system will choose the simplest explanation of the data. Here, “simplicity” is defined 

according to the shortest description of the data (Mach, 1959; see also the Minimum Description 

Length principle (Rissanen, 1978) in the machine learning literature) and is even posited as a 

unifying principle across cognitive science (Chater & Vityani, 2003).  

The Simplicity Principle (Chater & Vityani, 2003) has been applied specifically to 

language (Chater et al., 2015), where it states that the briefest representation of the linguistic data 

will be sought by the cognitive system. Others have argued that language learners are guided by 

an overarching simplicity bias, but that additional competing biases may be at play (Culbertson 

& Kirby, 2016). Alternatively, some have explored how Bayesian frameworks can capture the 

efficiency of language learning (Xu & Tenenbaum, 2007). Meanwhile, according to a usage-

based, information theory view of language, communicative efficiency entails that messages be 

successfully transmitted between speakers with minimal effort (Gibson et al., 2019). Crucially, 

this definition acknowledges that language involves communication as well as computation; the 

efficiency of learners’ encoding must not compromise successful communication between 

speakers. Gibson et al. note that a breadth of work suggests that insights into how language is 

optimised for processing, learning and communication can be derived by bringing together 

findings from linguistics, cognitive psychology, and mathematical and computational theories of 

inference and learning (e.g. Clark, 2001; Christansen & Chater, 2008; Jaeger & Tily, 2011; 

Fedzechkina et al., 2012). In short, an efficient language system requires cognitive effort to be 

minimised without communication being hampered.  

 Some studies explore this process experimentally, investigating how cognitive biases 

influence the way learners acquire patterns from their input. This process can include 

regularisation, whereby learners reduce the variability observed in their input by adopting a 

general rule that captures the majority pattern. In an artificial language learning study, Ferdinand, 

Kirby and Smith (2019) manipulated cognitive load, variability and task domain (linguistic vs. 



  

29 

 

non-linguistic) to investigate adult learners’ regularisation, which was formalised as the 

reduction of entropy in the input dataset. They found that increased cognitive load for linguistic 

stimuli elicited regularisations in adults’ productions (naming objects they had previously 

observed with inconsistent labels), but not in their explicit encoding of the input data (estimating 

the ratios they had observed). The authors conclude that linguistic regularisation is a result of 

both domain-general and domain-specific biases on both learning and production.  

Considered within the context of the role computational efficiency plays in language, 

these findings indicate that there may be a distinction between the effect principles of efficiency 

have on either the learning or the generalisation of patterns in the input. For adults at least, whilst 

the most efficient learning of patterns from an exposure might involve reproducing variability in 

the input, generalising the information that has been gleaned to new instances might involve a 

more active process to be undertaken by the learner. This could include imposing structure on the 

input data by reducing variability (i.e. regularisation), which may take place under the pressure 

of both computational and communicatory constraints. Overall, it seems that our linguistic 

systems may be shaped in different ways by cognitive process that are driven by principles of 

efficiency, not only in terms of encoding the data to which we are exposed, but also in learning, 

producing and communicating this information.  

 

2.5 Introducing the Tolerance Principle 

A recent theory of language acquisition proposes a novel solution to a number of the 

issues raised above. Yang’s (2016) Tolerance Principle offers an account of linguistic 

generalisation that makes quantitative predictions about rule productivity on the basis of input 

data and according to measures of computational efficiency. Crucially, it is a rule-based 

approach that incorporates statistical information about the consistency of a pattern, thereby 

offering a new middle ground between previous rule-based and statistical approaches to 

productivity. 

As a theory of language acquisition and processing, the Tolerance Principle (TP) 

determines the productivity of a linguistic rules according to a quantitative balance between 

regulars and exceptions. By doing so, it aims to capture the way children are able to form 
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productive rules on the basis of their linguistic input, whilst dealing with exceptions that do not 

conform to regular patterns. Specifically, the TP states that the learner postulates a productive 

rule only if it results in more efficient organisation of the language than listing every item in 

lexical storage. Thus, the number of exceptions to a rule must fall below a critical threshold for 

the rule to be productive. According to Yang (2016, p. 8-9), this threshold is calculated as 

follows7 (see Section 2.5.1. for further details): 

 

If R is a productive rule applicable to N candidates, then the following relation holds 

between N and e, the number of exceptions that do not follow R: 

 

Effectively, this threshold provides a categorical assessment of consistency: a rule that is 

consistent enough to pass this tolerance threshold is valuable enough to be used as a productive 

rule for novel items. Indeed, Yang defines the process of language acquisition itself as a search 

for productive generalisations, arguing that learners follow the general learning strategy “pursue 

rules that maximise productivity”, termed the Maximise Productivity principle (2016, p. 72). This 

strategy characterises the TP as a mechanism by which learners are guided to extract productive 

rules from their linguistic input. Additionally, the TP allows for subtle differences between each 

individual’s system of productive rules developed throughout their learning trajectory, as “the 

execution of the TP should be based on an individual learner’s vocabulary” (2016, p. 70). This 

means that the balance between regular and irregular items for each learner is determined by the 

specific linguistic input they have directly received.  

 

2.5.1 Computational efficiency and motivation for the tolerance threshold  

The TP is motivated by computational efficiency in terms of real-time language 

processing. It provides a tipping point for productivity beyond which memorising every item, 

 
7 See Appendix A for the full derivation of the Tolerance Principle according to Yang (2016, p. 60 – 66).  
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including regular past tense forms like walked or irregular forms like ran, is a faster processing 

option than using a grammatical rule for the regular items, such as “add –(e)d to form the past 

tense of a verb”, and storing irregular items separately. Specifically, it identifies a precise 

balance between storing all regular and irregular lexical forms individually in a frequency-ranked 

list and searching the list every time a form (such as the past tense) is needed, versus forming a 

productive rule (“add –(e)d ”) for regular items (like walked) and storing only the exceptions 

(such as ran) in a frequency-ranked list. If the target is not among the list of exceptions, the 

learner applies the rule (2016, p. 9). This approach to the use and storage of rules and exceptions 

is based on the Elsewhere Condition (Anderson, 1969), according to which exceptions are 

handled by a more specific process than the general rule. The Elsewhere Condition is 

implemented here as a serial search procedure. When an item w is eligible for application of the 

rule, a frequency-ranked list of exceptions is first searched for a match to w. If a match is found 

amongst the exceptions, this form is used. If a match is not found, the rule is applied to item w 

(Yang 2016, p. 50). Critically, and as discussed at length by Yang (2016, p. 50-65), exceptions 

are searched prior to the application of the rule, and therefore a larger number of exceptions 

contributes to the rising cost of online processing.  

In this way, the serial search procedure is central to the TP theory and crucial for 

determining the tolerance threshold, as the threshold itself is the point at which two alternative 

routes to access a target item take an equal amount of processing time. If the number of 

frequency-ranked exceptions to be rejected before applying the rule pushes the access time for a 

target item beyond that involved for identifying the target amongst full lexical listing, then the 

threshold is breached and the rule is not productive. Yang formalises the processing time for the 

exceptions-plus-rule route as T(N,e). This represents the weighted average time for accessing the 

target when it is a regular item (which will take e search steps, as every exception must be 

assessed and rejected before applying the rule) and for accessing the target when it is an 

exception (which is determined by its position on the frequency-ranked list). Meanwhile, the 

expected time of access for the full-lexical-listing route is formalised as T(N,N), as all N items 

are stored in a frequency-ranked list. Therefore, the analytical solution to the equation T(N,N) = 

T(N,e) provides the number of exceptions that can be tolerated (see Appendix A for the closed-

form solution provided by Yang.) 
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As noted by Yang (2016, p. 61), a greater number of exceptions (which must be searched 

through before the rule is applied) increases the time required to access a rule-following item, 

which may mean that a high-frequency regular could incur a relatively slow processing time. At 

a certain point this exception-plus-rule route will become less efficient than using a full lexical 

listing; Yang claims that the TP identifies this specific tipping point.  

 

2.5.2 Type or token frequency?  

Frequency is a central variable in the TP theory. The tolerance algorithm itself uses the 

type frequencies of N and e (2016, p. 67); that is how many different types of items do not follow 

a majority pattern (e) out of a set of (N) items. This stems from the position that rules become 

productive after the accumulation of evidence from the input and must be supported by a 

sufficiently large number of distinct types (2016, p. 67). According to Yang, the number of times 

each item is encountered in the input (the token frequency) does not directly affect acquisition of 

productive rules. However, this token (or summed) frequency does feature in the calculation of 

expected online processing time required for accessing items which is used in the underlying 

derivation of the TP. This time complexity is approximated by Zipf’s law (1949), according to 

which the frequency of a word is inversely proportional to its rank, meaning that the most 

frequent word will occur about twice as often as the second most frequent word, and three times 

as often as the third most frequent word. Using this assessment of word frequency, the algorithm 

is able to approximate the probability of any item amongst N being the target item, and 

consequently compute its access time according to a frequency-ranked list in the serial search 

procedure.  

 

2.5.3 Smaller is better 

Another important facet of the Tolerance Principle is that the number of exceptions 

tolerated by a productive rule is relatively low (Yang, 2016, p. 66). It is certainly not simply the 

case that majority rules; according to Yang and his discussion of cross-linguistic evidence, only a 

critical number of exceptions can be tolerated, and this decreases as a proportion of N as N 

increases. For example, where N = 10, 4 exceptions can be tolerated by a productive rule (40%); 
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however, where N = 100, 23 exceptions can be tolerated (23%). The sublinear growth of θN  (the 

tolerance threshold) as a function of N is an outcome of the solution Yang provides to the 

equation T (N,N) = T (N,e) (see Appendix A for the full derivation). Yang argues that as a result 

of this feature of the TP, forming productive rules within smaller vocabularies is easier than 

within larger vocabularies, because a greater proportion of exceptions can be tolerated by a 

smaller than a larger set of items. He suggests this may in fact be the reason that children are 

superior language learners; it is an easier task for a child learner with a limited vocabulary to 

acquire the rules of a language than for an adult with a large vocabulary (2016, p. 67) because 

productive rules can be formed more easily over smaller sets of words.   

 Further, Yang suggests that at some point during the acquisition process, children freeze 

their productive rules on the basis of a small set of known items; they do not wait until they have 

acquired a full adult vocabulary. According to Yang, this is by necessity the only way to acquire 

productive rules, firstly because the data sparsity of the linguistic input means that many items 

will be encountered so infrequently that full integration into the rule-learning system would take 

too long, and secondly because the threshold for productivity is proportionally higher for smaller 

sets of items, as discussed above. In fact, Yang suggests it is possible that rules become fixed at 

quite an early stage, meaning that items encountered later are not entered into the data set (i.e. 

the effective vocabulary) involved in calculating the balance of productivity (2016, p. 106; 

2018a, p. 4). Yang’s discussion does not make explicit at precisely which point during the 

accumulation of evidence should children freeze the rules they have formed. However, this rule-

freezing should occur as an (undetermined) function of N, rather than the result of a 

developmental shift. Indeed, Yang proposes that the TP operates for adult learners as well as 

children (2018b, p. 801). 

 

2.5.4 Recursion 

An important feature of the TP’s formalisation is its recursive application. If the number 

of exceptions to a rule is too high for the rule to be productive (i.e. above the tolerance 

threshold), then a revised, more specific rule is sought and tested using new N and e values from 

a subset of the original items. Therefore the TP applies recursively, allowing it to detect 

productivity in smaller subclasses when the original test fails over a larger class of items. This is 
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motivated by the Maximise Productivity principle described above. According to Yang, this 

recursive procedure is able to capture the subset regularities we find regularly in natural 

language, such as German noun plural forms (2016, p. 123). Therefore, the recursive application 

of the TP provides a mechanism that children could use to acquire these hierarchical structures of 

regularity found in the world’s languages, offering a promising account of a complex learning 

problem.  

 

2.6 Alignment with extant theories of language acquisition  

 Together with collaborators, Yang aligns the TP with the theory of Universal Grammar 

(UG) in a recent integrated approach to language acquisition (Yang et al., 2017). Specifically, the 

TP is listed as an inductive general learning mechanism stemming from principles of efficient 

computation, which is said to interplay with both domain-specific principles of language and 

external experience to produce a child’s linguistic system. Indeed, in Yang’s original exposition 

of the TP (2016, p. 1-2), he sets out to “shift the explanatory burden” away from an innate 

language acquisition device as much as possible, whilst relying on UG’s recursive architecture of 

hierarchical structures (i.e. “Merge”; Chomsky, 1995) to at least partially explain how children 

acquire language on the basis of an underdetermined input.  

 

2.7 Critical reception of the TP theory 

A recent issue of Linguistic Approaches to Bilingualism features the keynote article “A 

formalist perspective on language acquisition” (Yang, 2018a), laying out the Tolerance Principle, 

followed by a series of commentaries in response to this keynote. Whilst lauding Yang’s aim to 

develop a mechanistic account of language acquisition based on a quantitative assessment of the 

input, these commentaries highlight a number of important considerations and criticisms of the 

TP theory. For instance, Kapatsinki (2018) argues that whilst the serial search mechanism is a 

crucial assumption for the calculation of time processing according to the TP, the model of serial 

search has not been widely accepted in the field of psychology. He suggests that this is largely 

due to its incompatibility with our current understanding of the distributed representations and 

parallel processing in the brain. Yang’s response (2018b) is that we should develop a neural 
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theory for the “parallel brain” that can accommodate serial behavioural effects, rather than 

disregard these findings.  

Similarly, Wittenberg and Jackendoff (2018) note the implausibility of serial search 

during lexical access. Additionally, they question the process whereby the output of a productive 

rule (e.g. walked) is not stored in the lexicon, yet at some point a number of rule outputs must 

have been listed in order to motivate the rule in the first place. However, this challenge is based 

on a mistaken notion: these initial exemplars are not rule outputs but individually stored lexical 

items. Indeed, it could be argued that this very process drives rule-learning according to the TP: 

when the cost of lexically listing individual forms becomes too great, a rule is created to reduce 

the processing burden. Therefore, there is a qualitative change in the way this information is 

stored and accessed. Furthermore, one could consider the well-attested U-shaped curve of 

English past tense development (Ervin & Miller, 1963; Cazden, 1968; Pinker & Prince, 1988; 

Marcus et al., 1992). During this developmental pattern, children reach a stage in which they are 

able to produce correct forms of irregular past tense verbs, but later begin to overregularise these 

verbs, producing incorrect regularisations such as goed. In this way, the suggestion that 

individually stored forms can subsequently be lost when a productive rule comes into play is not 

inconceivable.  

Meanwhile, De Cat (2018) asks why the number of items used in the calculation of the 

threshold is based on the learner’s own vocabulary size, rather than the frequencies they have 

been exposed to in the input. I will return to this particular issue in Chapter 5, and to further 

discussion of the themes raised above in Chapter 7.  

 

2.8 Experimental work on the Tolerance Principle  

 A small amount of published work has begun to investigate whether the TP’s theoretical 

predictions hold true in empirical settings. Schuler et al. (2021) present behavioural findings 

from a n artificial language learning study with children and adults that go some way to support 

the TP’s predictions for rule learning and generalisation. Participants were exposed to sentences 

with novel nouns that used inconsistent plural morphological markers. In a generalisation 

production test, children formed and used a productive rule using the plural marker when the 
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number of exception markers (by type) in their input did not cross the tolerance threshold. In 

contrast, when the number of exception markers exceeded the threshold during training, children 

did not generalise the most common plural marker to novel items, as the TP would predict. 

Moreover, the fact that the token frequency of the majority plural marker was approximately 

consistent across both conditions indicates that it is the number of types, rather than tokens, that 

forms the locus of children’s generalisation behaviour. Meanwhile, adults did not tend to extend 

one form consistently to all their generalisations in either condition, but instead used the majority 

marker with the same frequency it occurred in the input, known as probability matching. This 

and a series of further experiments are also reported in Schuler (2017, unpublished); this work 

will be reviewed in detail in Chapters 4 and 5, in relation to the artificial language learning 

experiments and assessment of the TP carried out for the current thesis.  

There is also evidence that infants generalise rules from inconsistent input in accordance 

with predictions of the Tolerance Principle. Koulaguina and Shi (2019) exposed 14-month-olds 

to an unfamiliar natural language (Russian) featuring an artificial word-order shift rule. The 

inconsistency in the training input took the form of non-applications rather than overt violations 

of this rule. When the rule applied to 50% of exemplars during training, with the remaining 50% 

being non-application cases where the shift did not take place, infants did not generalise the rule 

to new instances. If the non-application cases were considered by participants to be exceptions to 

the regular pattern, then the number of these exceptions exceeds the tolerance threshold 

according to Yang’s algorithm (2016, p. 8-9). Given participants’ failure to generalise in this 

task, the authors conclude that the non-application cases were indeed treated as exceptions and 

therefore did not support rule-learning, as predicted by the TP.  

A second experiment manipulated the frequency of the inconsistent rule. To investigate 

whether it was the type or token frequency of non-application items that impeded rule-learning, 

the relative type frequency of rule cases was increased to 80% in Experiment 2 (and non-

applications reduced to 20%), whilst maintaining the same overall frequency (i.e. type x token 

frequency) as Experiment 1. With this distribution, infants were now able to learn the word-order 

shift rule and generalise it to novel sentences. These results are also consistent with the TP: if 

infants considered the non-application cases to be exceptions (as they did in Experiment 1), then 

their number now falls below the tolerance threshold and therefore supports generalisation. 
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Furthermore, the results support the TP’s approach that rule productivity is calculated on the 

basis of type, rather than token, frequency. Overall, the authors suggest that their experiments 

provide evidence of abstract rule-learning on the basis of passive exposure in infancy, thereby 

demonstrating that this is an early and powerful process that can take place automatically. 

However, it should be noted that generalisation in these experiments was assessed according to 

looking times rather than productions (given the young age of the participants). 

 Together, these studies suggest that the generalisation behaviour of infants and young 

children in artificial or unfamiliar language learning experiments supports the categorical 

predictions made by the TP, as well as the underlying assumption that productivity operates on 

the basis of type frequency. More generally, they indicate that similar experimental paradigms 

could be fruitful methods with which to explore the TP in other domains. 

 

2.9 Applying the TP to reading 

In this thesis, I will investigate whether the mechanisms proposed by Yang (2016) for the 

generalisation of productive rules to novel items in spoken language could also apply to reading. 

Whilst Yang does not address generalisation in this domain, it is theoretically possible that these 

mechanisms could underlie the relationship between spelling and sound for readers within a 

quasi-regular alphabetic writing system. Specifically, I will examine whether the TP can predict 

which spelling-sound correspondences readers use productively when reading aloud. In doing so, 

I aim to address the wider issues surrounding the generalisation of orthography-phonology 

knowledge by skilled and developing readers raised in Chapter 1.  

Using the TP as a new approach to word reading, I suggest that the productivity of a 

pronunciation rule (i.e. a spelling-sound correspondence) is dependent on whether the number of 

exceptions (i.e. irregular pronunciations) in a set of words falls below the tolerance threshold. 

This means that if a spelling-sound correspondence is sufficiently consistent to pass the tolerance 

test, the correspondence should be applied productively during reading to pronounce novel items. 

In this instance, a productive rule has been formed. However, if a spelling-sound correspondence 

is not consistent enough to pass the tolerance test, it should not be generalised to pronounce new 

items.  
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The TP is applicable to any size of orthography-phonology correspondence. However, in 

accordance with the recursive application of the TP, I suggest that when readers assign a 

pronunciation to a letter sequence, a more general rule (e.g. between a vowel grapheme and 

phoneme) will be sought before a more specific subset rule (e.g. between a word body and a 

rime). Therefore, productive rules which use smaller orthographic grain sizes will be prioritised 

over rules using larger orthographic grain sizes. Only when the more general rule fails the 

tolerance test due to its inconsistency will a more specific rule be sought within a subset of items, 

such as items with a shared word body. This results from the recursive application of the TP in 

the search for productive rules and the Maximise Productivity principle (Yang, 2016, p. 72).  

In this way, the TP offers a parsimonious account of the conflicting results found in the 

skilled and developing nonword reading literature discussed in Chapter 1, in which 

pronunciations seem to use both smaller and larger orthographic grain sizes under different 

circumstances. It goes beyond previous accounts of word reading as it does not rely on a 

predetermined grain size, and can in fact accommodate multiple grain sizes. Further, it 

specifically predicts which grain size should be used productively, depending on the consistency 

of the spelling-sound correspondence in question. It also offers a novel and clearly defined line 

of consistency beyond which generalisation is not predicted. This line of consistency (the 

tolerance threshold) is determined by measures of computational efficiency, rather than a set of 

parameters specified by researchers. 

  Statistical models, including the Triangle and CDP+ models, also employ consistency in 

their accounts of word reading, but in a different way from the TP. In the Triangle model, 

consistency effects arise in the hidden layer of units between the orthographic input layer and the 

phonological output layer. In the CDP+ model, consistency effects arise in the sub-lexical 

phonological assembly route. In both cases, consistency is assumed to be a graded effect in word 

reading. In contrast, the TP’s role for consistency is categorical; although it involves the 

statistical properties of the input, this information is entered into the tolerance algorithm to 

provide a categorical threshold. The statistical information involved in this process is the type 

frequency counts of alternative pronunciations of orthographic units in the words that the reader 

has encountered. There is reason to expect that a definition of consistency which uses type 

frequency will be successful, as there is evidence that nonword pronunciations are better 
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predicted by type rather than token frequency measures – in particular by the proportion of 

irregular-body word neighbours (Andrews & Scarratt, 1998). Finally, the recursive application of 

the TP means that this measure of consistency is not restricted to a single level of representation, 

but allows consistency at multiple levels to form part of the generalisation process when 

required. Specifically, it can be used to predict an interaction between consistency of the vowel 

grapheme and of the word body in the context of word reading. However, it should be noted that 

the TP will be employed here only as a mathematical model, not as a mechanistic model of 

reading similar to the fully-developed DRC, Triangle or CDP+ models. 

 

2.9.1 Acquiring and applying rules  

 According to the TP, the acquisition of a rule takes place as a learner encounters word 

types in their linguistic experience and builds evidence of a pattern across these word types. This 

process occurs as a result of the learning strategy to “pursue rules that maximise productivity” 

(Yang, 2016, p. 72), which is in turn driven by the need to process linguistic knowledge in the 

most efficient (i.e., quickest) way. For example, a learner may encounter five words that use the 

grapheme “i”, such as “tin”, “fill”, “limp”, “mint” and “bit”. As the grapheme “i” is pronounced 

/ɪ/ in all of these words, they each provide evidence for a “i -> /ɪ/” pronunciation rule. According 

to the TP, the pronunciation of the grapheme in these items need not be stored separately, but can 

instead be captured more efficiently by a general rule. As a learner encounters more items, the 

collation of evidence will continue. For instance, if the next item to be encountered is “mind”, 

the pronunciation of this item would need to be stored separately as it does not follow the “i -> 

/ɪ/” pronunciation rule. This “exception” will be lexically listed but would not affect the status of 

the general rule. However, if the following items to be encountered also happened to be irregular, 

e.g. “pint”, “find” and “climb”, the number of exceptions observed by this point would equal 

four out of a total of nine items. This number of exceptions exceeds the tolerance threshold 

where N = 9, and thus negates use of the productive rule “i -> /ɪ/” rule. According to the TP, it 

would be more efficient to store all nine items in a frequency ranked list than to keep the “i -> 

/ɪ/” and store only the four exceptions. To summarise: as knowledge of each word type is 

acquired, it contributes to the balance between regulars and exceptions; this tipping point will 



  

40 

 

change as the total number of relevant items (N) increases. Whenever the number of exceptions 

falls below the tolerance threshold, use of a general rule is supported.  

In terms of the use of a pronunciation rule by a skilled reader, I propose that the steps 

undertaken to pronounce the written form of a regular word (i.e., a word that can be pronounced 

using GPCs) such as “bin” would be as follows: 

1) Start with the initial grapheme “b”, which follows the exception-plus rule route as the 

consistency of the b -> /b/ rule in English words passes the tolerance test. 

2) Search through a frequency-ranked list of exceptions in which “b” does not follow the 

productive rule b -> /b/, such as climb, tomb, etc. 

3) No match for the target word amongst the list of exceptions is found, so the productive 

rule b -> /b/ (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

4) Move next to the vowel grapheme “i”, which follows the exception-plus rule route as 

the consistency of the i -> /ɪ/ rule in English words passes the tolerance test. 

5) Search through a frequency-ranked list of exceptions in which “i” does not follow the 

productive rule i -> /ɪ/, such as pint, rind, etc. 

6) No match for the target word amongst the list of exceptions is found, so the productive 

rule i -> /ɪ/ (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

7) Move to the final grapheme “n”, which follows the exception-plus rule route as the 

consistency of the n -> /n/ rule in English words passes the tolerance test. 

8) Search through a frequency-ranked list of exceptions in which “n” does not follow the 

productive rule n -> /n/, such as hymn, damn, etc. 

9) No match for the target word amongst the list of exceptions is found, so the productive 

rule n -> /n/, (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

10) Finally, the pronunciation bin -> /b / + /ɪ/ + /n/ ->/bɪn/ can be assembled.  
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I propose that the steps undertaken by a skilled reader to pronounce the written form of 

an irregular word (i.e., a word that cannot be pronounced accurately using GPCs) such as “soup” 

would be as follows: 

1) Start with the initial grapheme “s”, which follows the exception-plus rule route as the 

consistency of the s -> /s/ rule in English words passes the tolerance test. 

2) Search through a frequency-ranked list of exceptions in which “s” does not follow the 

productive rule s -> /s/, such as aisle, isle, etc. 

3) No match for the target word amongst the list of exceptions is found, so the productive 

rule s -> /s/ (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

4) Move next to the vowel grapheme “ou”. This grapheme does not have a productive 

rule stored in the readers’ orthography-phonology knowledge system, as no 

pronunciation of this grapheme in English words is consistent enough to pass the 

tolerance test. Therefore, the reader does not follow an exception-plus-rule route for this 

grapheme. However, the grapheme forms part of a number of more specific 

pronunciation rules in the reader’s rule-system, triggering the reader to consider the 

consonantal context surrounding the vowel grapheme in the target item, in this instance 

the word body “oup”.  

5) The word body “oup” is associated with a productive pronunciation rule in the reader’s 

orthography-phonology rule system, so the reader can follow the exception-plus-rule 

route for this body.  

6) Search through a frequency-ranked list of exceptions that do not follow the “oup” -> 

/u:p/ rule, such as coup. 

7) No match for the target is found amongst the list of exceptions, so the “oup” -> /u:p/ 

rule can be applied. 

8) Finally, the pronunciation soup -> /s / + /u:p/ ->/su:p/ can be assembled. 
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I propose that the steps undertaken by a skilled reader to pronounce the written form of 

an unfamiliar nonword such as “bip” would be as follows: 

1) Start with the initial grapheme “b”, which follows the exception-plus rule route as the 

consistency of the b -> /b/ rule in English words passes the tolerance test. 

2) Search through a frequency-ranked list of exceptions in which “b” does not follow the 

productive rule b -> /b/, such as climb, tomb, etc. 

3) No match for the target word amongst the list of exceptions is found, so the productive 

rule b -> /b/ (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

4) Move next to the vowel grapheme “i”, which follows the exception-plus rule route as 

the consistency of the i -> /ɪ/ rule in English words passes the tolerance test. 

5) Search through a frequency-ranked list of exceptions in which “i” does not follow the 

productive rule i -> /ɪ/, such as pint, rind, etc. 

6) No match for the target word amongst the list of exceptions is found, so the productive 

rule i -> /ɪ/ (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

7) Move to the final grapheme “p”, which follows the exception-plus rule route as the 

consistency of the p -> /p/ rule in English words passes the tolerance test. 

8) Search through a frequency-ranked list of exceptions in which “p” does not follow the 

productive rule p -> /p/, such as coup, psalm, etc. 

9) No match for the target word amongst the list of exceptions is found, so the productive 

rule p -> /p/, (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

10) Finally, the pronunciation bip -> /b / + /ɪ/ + /p/ ->/bɪp/ can be assembled. 
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2.9.2 Similar approaches to reading  

A previous exploration of print-to-sound mappings in English orthography bears some 

similarities to the Tolerance Principle’s approach to reading introduced above. Specifically, 

Vousden et al. (2011) applied the Simplicity Principle (Chater & Vityani, 2003) to the English 

spelling system, with the aim of identifying which representational units specify the mappings 

from print to sound as simply as possible; information which could in turn be used to facilitate 

the reading acquisition process. As discussed above, the Simplicity Principle states that simpler 

explanations of data should be favoured over more complex ones. Like the TP, the underlying 

basis is one of computational efficiency, although here it is measured according to description 

length of the data rather than online processing time. 

Vousden et al.’s application of the Simplicity Principle to English orthography balances 

the simplicity (or length) of a hypothesis that describes spelling-sound correspondences against 

how accurately this hypothesis can recreate the data (i.e., produce target pronunciations). 

Specifically, they compare the total description length of alternative hypotheses, which is a 

combination of the description length of the current hypothesis (the number of spelling-sound 

mappings used), and the description length of the data under this hypothesis (the accuracy with 

which it offers the target pronunciation as the most probable outcome). The authors tested a 

range of hypotheses which make use of different representational units, including graphemes, 

onsets and bodies, and whole words. According to the Simplicity Principle, the preferred 

hypothesis will be that with the shortest total description length.  

Their initial analysis found that the shortest total description length was achieved by the 

grapheme-only hypothesis, followed by the head–coda and onset–body hypotheses, and finally 

the whole-word hypothesis. However, further analysis demonstrated that adding contextual 

information for some grapheme-phoneme mappings reduced ambiguity and the total description 

length associated with the grapheme-only hypothesis. Additionally, results varied according to 

the size of the vocabulary that was used; for example, the whole-word hypothesis offered the 

shortest total description length for very small vocabularies.  

Overall, the authors conclude that the shortest total description of the data was provided 

by a hypothesis composed mostly of grapheme-phoneme mappings, but which also included a 

range of other unit types. However, beyond knowing that this is the preferred hypothesis 
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according to the Simplicity Principle, it would be important to know in which particular 

orthographic instances larger unit types should be used to improve individual grapheme-

phoneme mappings. Further, we cannot assume that the simplest way to capture the input data 

will necessarily be used as basis for learners’ generalisations. The approach of the Tolerance 

Principle similarly involves a range of representational units, but further, can be used to 

explicitly specify when certain orthographic unit sizes (i.e., more specific rules) should be 

prioritised over others during generalisation. The success of the TP’s predictions regarding 

English orthography will be examined experimentally in Chapter 3. Additionally, Vousden et 

al.’s finding that strategy choice will depend on the size of the specific vocabulary highlights the 

importance of taking into account the nature of expanding vocabularies, and associated changes 

in the required cognitive resources, in our understanding of reading development. The particular 

issue of acquiring knowledge of spelling-sound mappings during reading development will be 

also explored in more detail in Chapter 3.  

 

2.10 Summary and thesis outline 

These introductory chapters have offered an overview of research on word reading and 

linguistic productivity, with a specific focus on how knowledge is acquired and generalised 

within a quasi-regular system. Similar questions surrounding how the consistency and frequency 

of patterns affect their productivity have fuelled research in both these fields, but it is clear that 

for word reading, a number of issues remain unexplained. For instance, readers do not simply 

reproduce the distributions of their input (Treiman et al., 2003; Treiman & Kessler, 2019), but 

neither do they categorically use the most frequent pattern (Andrews and Scarratt, 1998; 

Pritchard et al., 2012). Their use of different orthographic grain sizes is particularly difficult to 

predict (Brown & Deavers, 1999). Consequently, computational models of word reading have 

been unable to satisfactorily capture human reading behaviour (Treiman et al., 2003). 

Meanwhile, Yang’s (2016) Tolerance Principle has offered a novel account of linguistic 

productivity, in which categorical generalisation of a pattern is predicted according to whether 

the number of exceptions to the pattern crosses a critical threshold. The current thesis will apply 

this newly-proposed theory to word reading for the first time, in order to assess whether it can 

address outstanding issues in this field.  
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The following chapters present this investigation through four experiments. Experiment 1 

offers an initial, exploratory application of the TP to reading, investigating whether the TP 

algorithm can be used to predict adults’ and children’s generalisation of familiar spelling-sound 

correspondences in a nonword reading aloud study. Experiment 2 examines whether the TP can 

predict adults’ and children’s generalisation of novel, inconsistent spelling-sound 

correspondences in an artificial orthography learning paradigm. Experiment 3 expands this 

investigation by manipulating the token frequency of regular and irregular items during training. 

Finally, Experiment 4 explores whether the recursive application of the tolerance threshold can 

predict adults’ generalisation of novel, context-sensitive spelling-sound correspondences in an 

artificial orthography.  
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Chapter 3: Generalisation of orthography-phonology correspondences in nonword reading 

by adults and children  

 

3.1 Introduction 

Chapter 1 provided a comprehensive review of research on adult nonword reading aloud. 

This review highlighted a number of unresolved issues in the word reading literature including 

readers’ use of different orthographic grain sizes; the characterisation of categorical, rule-based 

versus continuous, statistics-based orthographic knowledge of skilled readers; and the 

shortcomings of extant models in predicting nonword reading behaviour. Chapter 2 introduced 

Yang’s (2016) Tolerance Principle as theory of linguistic productivity, and also laid out the 

potential application of the TP mechanism to word reading. In particular, I suggested that the 

TP’s novel account of the way learners extract and extend regularities from quasi-regular input 

could be used to assess the consistency of spelling-sound correspondences and predict readers’ 

productive use of these correspondences. The current chapter presents an exploratory study 

which uses the TP to predict orthography-phonology generalisation within a nonword reading 

paradigm for the first time. This experiment offers an initial opportunity to investigate whether 

Yang’s linguistic theory can be successfully applied to another domain to predict readers’ 

generalisation behaviour, and in so doing address some of the unresolved questions in reading 

research.  

In addition to skilled reading research, nonword studies are also often used to understand 

more about the reading development process, for instance by comparing responses made by 

children of different ages and adults. This methodology can help reveal what pronunciation 

strategies readers use at different stages throughout development. For this reason, the current 

study will also employ the TP to investigate the nonword reading behaviour of developing 

readers, setting out to address outstanding issues in this area of research as described below. 
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3.1.1 The acquisition of spelling-sound knowledge in children  

Results from studies of nonword reading by children suggest that whilst early readers are 

more likely to rely on GPCs than the body unit in nonword pronunciations (Marsh et al., 1981, 

Brown & Deavers, 1999), knowledge of the word body soon begins to emerge. Indeed, there is 

evidence that sensitivity to the word body is associated with reading ability: for example, Laxon 

et al. (1991) compared nonword pronunciations by children aged 6-13 who were either average 

or better-than-average readers for their age. The more skilled group demonstrated stronger 

consistency effects in their use of body-level pronunciations for nonwords, although both groups 

demonstrated some awareness of alternative pronunciations for inconsistent bodies. The authors 

suggest that knowledge of word bodies may develop as children become increasingly aware of 

patterns in high frequency words, and that sensitivity to regularity and consistency in general 

develops with increased exposure to printed words.  

Additional research suggests that this trend towards an awareness of consistency and 

larger orthographic units does continue throughout development towards levels of skilled 

reading. For instance, Coltheart and Leahy (1992) found that for adults and children (grades 1-3), 

the majority of nonword pronunciations used GPCs. However, all readers also produced some 

rime-based analogies (classed as “irregular” pronunciations). Notably, this varied with age: 

children in grade 1 gave fewer irregular responses than children in grades 2 and 3, whilst adults 

demonstrated the highest degree of sensitivity to rime-level consistency. The authors suggest that 

knowledge of rime-level units is acquired after GPCs, possibly as a result of increased text 

experience. Similarly, Treiman et al. (1990) reported that even early readers (aged 6-7) make 

some use of body-level units rather than relying solely on GPCs, and that this trend continues 

(and perhaps strengthens) throughout reading experience and into adulthood.  

Whilst this pattern of increasing sensitivity to the body unit through development is seen 

across the literature, it does not address under which circumstances readers use different levels of 

spelling-sound correspondence (i.e. smaller GPC units vs. larger body units). Indeed, Brown and 

Deavers (1999) suggested that the much-debated dichotomy between GPC or body strategies is a 

misplaced issue. Their results from a range of nonword reading tasks suggest that adults and 

children are flexible in their use of orthographic units, adapting their reading strategy as a 

function of task demands. Even the youngest readers demonstrated sensitivity to task demands in 
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their use of orthographic units: they used a higher proportion of rime-based analogical 

pronunciations in a “clue word” task than they did in a task which involved reading isolated 

unfamiliar items. Consequently, the authors proposed the Flexible Unit Hypothesis, which allows 

readers to vary their pronunciation strategy depending on the type of generalisation involved. 

 In a later nonword study, Steacy et al. (2019) also considered when competing strategies 

are used, rather than whether one is favoured over another overall. Following a suggestion by 

Treiman et al. (2003), they explore the possibility that choice of context-dependent (i.e., rime-

based) or context-independent (i.e., GPC) vowel pronunciation in nonwords is the result of a 

“trade-off between vowel GPC frequency and strength of context-dependent orthography-

phonology relationships in the rime unit [of English words]” (2019, p.51). They find that 

consistency of a context-dependent rime pronunciation in English words is negatively correlated 

with use of the context-independent vowel pronunciation by participants, and positively 

correlated with use of the context-dependent pronunciation. Further, these relationships were 

moderated by reading skill, with rime consistency having a greater effect on pronunciation for 

more proficient readers. They suggest this is the result of increasing support for the alternative 

vowel pronunciations in written texts as reading experience develops. Similarly, in a discussion 

of spelling development, Kessler (2009) suggests that children may pay more attention to 

contextual information when there is no clear spelling candidate for a phoneme in isolation. He 

posits that there may be a pay-off involved in learning a conditional rule whereby this additional 

cost is justified only when the pronunciation of a vowel alone is inconsistent.  

 Neither Kessler (2009) nor Steacy et al. explore how the “trade-off” between the strength 

of competing pronunciations at different orthographic levels could be measured or characterised. 

In this thesis, I also suggest vowel pronunciations in nonwords are determined by a balance 

between competing grapheme- and body-level correspondences, and that this is based upon 

reading experience. However, my approach goes further by characterising the precise terms of 

this balance and the implicit process behind it: namely, that the balance is determined precisely 

by a consistency threshold provided by the Tolerance Principle, according to principles of 

computational efficiency.  
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3.1.2 Application of the TP to reading in Experiment 1 

As described in detail in Chapter 2, Yang’s account of generalisation in language 

acquisition takes a rule-based approach but also incorporates statistical information. The TP 

assesses the productivity of a rule according to a numerical balance between regulars and 

exceptions. It states that in order for a learner to form a productive rule, the number of 

exceptions to the rule must fall below a critical threshold. The threshold is generated by an 

algorithm (Yang, 2016, p. 8-9) which uses the total number of items a rule can apply to and the 

number of exceptions which do not follow the rule. In this way, the TP offers a categorical 

metric of consistency: a rule that is consistent enough to pass the threshold can be generalised to 

new items. Importantly, this account of consistency is based on type frequencies (i.e. how many 

different item types follow the rule), rather than token frequencies (i.e. the relative frequency of 

these items in the input). Further, Yang suggests that learners are driven by computational 

efficiency to “pursue rules that maximise productivity”, (the Maximise Productivity principle 

(2016, p. 72)). This process leads to the recursive application of the TP: when the number of 

exceptions to a rule crosses the threshold, it triggers a search for more specific rules within 

subsets of the input. In this way, the TP can detect productivity within subclasses. This approach 

to generalisation is novel as it offers an account of consistency which can be applied to 

hierarchical (or nested) regularities.  

In this chapter, I will use the TP’s prediction for productive patterns, assessment of 

consistency in the input, and recursive search for sub-regularities, to address issues surrounding 

the generalisation of spelling-sound knowledge by skilled and developing readers. This 

investigation will assess the reading behaviour of adults and children using the English writing 

system. Specifically, I will explore whether the TP can predict which level (or grain size) of 

spelling-sound correspondence adult and child readers use when reading aloud. Using the TP 

algorithm, I will assess which orthography-phonology correspondences are sufficiently 

consistent across English words to pass the tolerance test; correspondences which pass the test 

should be used productively. More general pronunciation rules using smaller grain sizes (i.e. 

individual graphemes) should be prioritised over more specific pronunciation rules using larger 

grain sizes (i.e. the word body). Only when the more general rule does not pass the tolerance test 

should a recursive search for a more specific rule be triggered. This mechanism provides a 
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precise balance between the productive use of graphemes and bodies based on a categorical 

measure of consistency (see Section 2.9 for an introduction to this approach and Section 3.2 for a 

detailed exposition). To assess the TP’s predictions, Experiment 1 will examine which spelling-

sound correspondences readers use when presented with novel items (i.e. nonwords) to 

pronounce in English orthography.  

 

3.1.3 Comparing the TP with previous approaches to reading 

A comparison between the TP’s novel approach to reading and established computational 

models of word reading was introduced in Section 2.9. This theme will be developed in the 

current chapter, through a comparison of nonword pronunciations produced by adult and child 

participants, three extant models of reading, and the TP. Therefore, it is worth highlighting again 

some important differences between these contrasting approaches to generalisation of spelling-

sound correspondences. The DRC (Coltheart et al., 2001) is a rule-based model, according to 

which nonword pronunciations are generated using GPCs; there is no effect of consistency or 

longer letter sequences in these generalisations. The Triangle model (in this instance, the Chang 

et al., (2019) version of the Harm & Seidenberg (2004) model) is a distributed-connectionist 

model which is able to generalise more complex spelling-sound mappings such as body-rime 

correspondences. In this way it allows for graded consistency effects in nonword pronunciations. 

The hybrid CDP+ model (Perry et al., 2007) has an interactive activation lexical route and a 

distributed-connectionist non-lexical route which is sensitive to patterns of co-occurring 

graphemes. Therefore, its generalisation involves continuous consistency effects and multiple 

orthographic grain sizes. Both of the latter (statistical) accounts weight spelling-sound 

correspondences according to their token frequencies, whilst the DRC uses only type 

frequencies. The new TP account of orthography-phonology generalisation involves both smaller 

and larger grain sizes motivated by a recursive search for productive patterns. Although it is rule-

based, the TP uses statistical information (specifically, type frequencies) to produce a tolerance 

threshold. This threshold provides a categorical metric of consistency which guides the 

generalisation of spelling-sound correspondences by predicting an interaction between the 

consistency of smaller and larger orthographic units.  
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This novel approach to orthography-phonology generalisation is a promising addition to 

research on word reading. By filling the theoretical gap between extant rule-based and statistical 

models, it is possible that the TP will also be able to redress the gap in readers’ behaviour thus 

far unaccounted for by previous models. Namely, that readers make fewer regular GPC 

responses than rule-based models predict, but also fewer context-sensitive and lexicalisation 

responses than statistical models predict (e.g. Andrews & Scarratt, 1998; Pritchard et al., 2012). 

If successful, an account such as the TP, which predicts precisely when context-sensitive 

correspondences should and should not be used productively according to a consistency 

threshold, might offer a valuable development in our understanding of human reading behaviour.  

 

3.1.4 Using the TP to inform our understanding of reading acquisition  

There are three factors that I will consider when assessing the TP specifically within the 

context of reading development for the first time, particularly in the comparison of child and 

adult reading behaviour. These stem from the fact that spoken language acquisition and reading 

development are different challenges. The first involves reading instruction: children in UK 

primary schools learn to read through a systematic phonics instruction programme. This method 

emphasises the most frequent correspondences between graphemes and phonemes (GPCs) in 

written English. Currently, little is known about the relationship between instruction and the 

generation of productive rules using the TP, as it was developed as a theory of spoken language 

acquisition, which typically does not involve or require any explicit instruction. However, it is 

certainly possible that children who learnt to read using phonics are more likely to use GPCs 

when reading novel items than adults who may have learnt using other methods without this 

emphasis. Indeed, Thompson et al. (2009) found that adults who had learned to read using 

phonics demonstrated a “cognitive footprint” of their instruction in nonword pronunciations; 

they used more regular GPCs and fewer context-dependent pronunciations in their responses 

compared with adults who did not have childhood phonics instruction. This finding suggests that 

the type of reading instruction can have lasting influence over use of spelling-sound 

correspondences even after many years of reading experience.  

The second factor involves reading experience. This is related to instruction, but is based 

more generally on the TP’s central tenet that productive rules are built on an individual’s direct 
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experience. Yang’s theory states that “the execution of the TP should be based on an individual 

learner’s vocabulary” (2016, p. 70), as the balance between regular and irregular items for each 

learner is determined by the specific linguistic input they have received. Therefore, we may 

expect subtle differences between individuals’ use of productive rules. In the current nonword 

study, this may be particularly likely for adult participants who may have received very varied 

reading input and instruction methods in schools across the country during their reading 

acquisition process, as well as years of reading experience involving varying text types and 

specialist knowledge. Child participants, meanwhile, may differ from each other less in their 

reading experience. They have had fewer years of reading in which to diverge, are likely to have 

encountered similar primary school texts, and have all undergone phonics instruction in the first 

years of primary school. As noted above, Thompson et al. (2009) report evidence of the long-

lasting effect of reading instruction; adult readers who had learned to read using phonics 

produced significantly more regular nonword pronunciations than adults who had learned to read 

using a different method. For these reasons, we may expect nonword responses made by adult 

participants to be more variable than responses made by child participants.  

The third factor involves previous findings about reading acquisition. As discussed in 

Section 3.3.1, studies have reported that early readers are likely to rely on GPC strategies, with 

use of the body unit increasing gradually throughout development (March et al., 1981; Treiman 

et al., 1990; Bruck & Treiman, 1992; Brown & Deavers, 1999), potentially as the result of 

increased text experience (Laxon et al., 1991). Similarly, Vousden et al. (2011) note that the 

most efficient pronunciation strategy according to the Simplicity Principle changes as vocabulary 

size increases. Therefore, in our study we may expect child participants to use the body unit less 

than adult participants if their use of the body unit has not yet reached adult levels, and this may 

interact with the TP’s predicted use of the body pronunciation.  

 

3.1.5 Similar approaches to reading development  

Previous research has similarly sought to identify the most useful orthography-phonology 

correspondences for readers during development. For example, Vousden (2008) presents an 

exploration into how the statistical structure of English could inform teaching practice by 

measuring how well spelling-sound correspondences at different levels predict correct 
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pronunciations of English words, thus determining their potential utility during explicit reading 

instruction. This investigation follows the theory of Rational Analysis (Anderson 1990), which 

seeks to determine what can be learned from the statistical properties of the environment and 

states that an optimal solution to a problem should be solved in a maximally efficient way (as 

discussed in Section 2.4). Assuming that adult readers are sensitive to the statistical structure of 

the reading system, this line of reasoning suggests that analysing this structure will reveal the 

most useful information for a learner seeking regularities in the input they receive.  

Vousden (2008) highlights a notable feature of the statistical structure of the English 

language: that word frequency adheres to Zipf’s Law. As discussed in Section 2.5.3, this means 

that the most frequent words occur very frequently compared to less frequent words. Vousden 

notes that this has important implications when considering reading instruction materials, 

because the most frequent words will account for a large proportion of words that a reader 

encounters. Therefore, she examined how well frequency data at different orthographic levels 

relates to Zipf’s Law, in order to evaluate what proportion of text could be successfully read 

using knowledge of the most frequent sound-spelling mappings at these levels.  

For the analysis, monosyllabic word frequencies were obtained from the CELEX 

database (Baayen et al., 1993), from which the frequencies of spelling-sound mappings at three 

different levels were calculated, namely for whole words, onsets and rimes, and graphemes. 

Importantly, only the most frequent (or “regular”) spelling-sound mapping for inconsistent 

onsets/rimes and graphemes was selected for this analysis. This approach circumvented the issue 

of distinguishing between alternative pronunciations of orthographic units. Further, the 100 most 

frequent words were excluded from the onset/rime and grapheme analysis, as it was 

acknowledged that sublexical mappings may not predict the pronunciations for these words 

successfully (many of which have irregular pronunciations), and the aim of the investigation was 

to develop an optimal strategy for reading text beyond these words.  

Overall, the analysis presented quantitative evidence that the frequency of orthography-

phonology mappings at all three levels follows Zipf’s Law. Additionally, there was a clear 

benefit of learning a small sight vocabulary of high frequency words, for which whole word 

learning is most appropriate. As vocabulary increases beyond these words, knowledge of a small 

number of the most frequent grapheme-phoneme mappings enabled a large proportion of the 
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remaining text to be read successfully. Comparatively, knowledge of many more rime units must 

be acquired before these are more predictive than grapheme-phoneme mappings, suggesting that 

grapheme-phoneme mappings are more useful for early learners.  

However, I suggest that the value of body-rime mappings may be more evident when the 

relative consistency of specific mappings at different levels is taken into account (which this 

study did not do, using only the most frequent of any alternative mappings at each individual 

orthographic level). Indeed, Vousden (2008) notes that issues around inconsistency at the 

grapheme-phoneme level may be alleviated by taking contextual information from the body-rime 

level into consideration. Overall, she suggests that this investigation provides a useful starting 

point for exploring the utility of spelling-sound mappings at different levels in a quantitative 

way; a similar approach to that taken up in this chapter. 

 

3.2 Experiment 1 

Experiment 1 offers an initial, exploratory investigation of the TP in the context of 

reading, aiming to evaluate whether skilled and developing readers generalise spelling-sound 

correspondences in English orthography according to the predictions of the TP. This was 

investigated using a nonword reading aloud task in which adult and child participants read aloud 

198 nonword items written in English orthography. Using the tolerance algorithm provided by 

Yang (2016, p. 8), I calculated the tolerance thresholds of spelling-sound correspondences of 

vowel graphemes and word bodies in English monosyllabic words, using word frequencies from 

the CELEX database (Baayen et al., 1995). Identifying the productive spelling-sound rules in 

English according to this method produced the pronunciations for the nonword items that would 

be predicted by the TP. By comparing the TP predicted pronunciations with the nonword 

pronunciation responses of our participants, I could assess whether the TP is able to predict 

which spelling-sound correspondences adult and child participants use to pronounce novel items.  

Specifically, the TP predicts that the pronunciation of a vowel grapheme which passes the 

tolerance test should be used by participants to pronounce a nonword item, as this offers a 

pronunciation rule at a more general level. Only when no pronunciation of the vowel grapheme 

passes the tolerance test should a more specific rule at the level of the word body be used by 
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participants to pronounce a nonword item. This results from the Maximise Productivity principle 

(Yang, 2016, p. 72) and the TP’s recursive mechanism, according to which failure to find a 

productive rule over a complete set of items will trigger the recursive application of the TP in 

order to seek more specific rules within subsets of items. Thus, use of a productive body rule 

should be modulated by the availability of a productive vowel rule. Meanwhile, the TP provides 

no predicted pronunciation for items that have no single pronunciation that passes the tolerance 

test outright at either the vowel or body level. For these nonword items, an exploratory analysis 

investigated the range of pronunciations participants used when reading them aloud. The aim of 

this investigation was to assess whether participants demonstrate sensitivity to a range of 

statistical properties of English orthography in their use of possible pronunciations for these 

items.  

Following the analysis of nonword pronunciations in relation to the TP, I assessed the 

TP’s predictive success for nonword reading in comparison to three extant models of word 

reading. These were the connectionist Triangle model (using the Chang et al., (2019) version of 

the Harm & Seidenberg (2004) model), the dual-route connectionist CDP+ model (Perry et al., 

2007), and the rule-based DRC model (Coltheart et al., 2001). Finally, I explored whether the 

TP’s novel role for consistency is key to its ability to predict human nonword reading behaviour. 

Specifically, I compared the TP’s type-based, categorical metric of consistency which can apply 

to multiple orthographic grain sizes, with conventional, continuous measures of consistency 

based on type or token frequencies. Throughout these evaluations, I also considered how the TP 

may behave differently for adult and child participants, including the effect of systematic phonics 

instruction and reading experience on the use of certain spelling-sound correspondences, and the 

variability in participants’ nonword responses.  

 

3.3 Method  

3.3.1 Participants 

25 adult participants (age range: 18-40; 18 females and 7 males) were recruited from the 

student body of Royal Holloway, University of London. 29 child participants (age range: 8 years 

3 months – 9 years 5 months; mean age: 8 years 10 months; 16 females and 13 males) were 
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recruited from two primary schools in the south of England. Participants were monolingual, 

native English speakers, with a Southern British English accent and no known language or 

learning difficulties. Participants had normal or corrected-to-normal vision. Adult participants 

received £5 for their involvement in the study; the schools received redeemable vouchers. The 

data from one adult participant were discarded due to difficulty completing the task. Therefore, 

data from 24 adult and 29 child participants were included in our analysis. The study received 

ethical approval from the Royal Holloway Ethics Committee. 

 

3.3.2 Stimuli and design 

The stimuli were 198 monosyllabic nonwords, constructed from existing English onsets 

and bodies, and using legal bigrams (see Appendix B for the complete stimuli set). Items were 

either selected from the ARC nonword database (Rastle et al., 2002), or constructed by the 

experimenter. The mean orthographic neighbourhood (N) size was 3.80. The mean item length 

was 4.83 letters (range 3-7 letters).  

The consistency of each vowel grapheme and word body used in the nonword items was 

measured using the tolerance test. To do this, type frequencies of the occurrences of each vowel 

grapheme and word body in English words from the CELEX database (Bayyen et al., 1995) were 

entered into the tolerance algorithm (Yang 2016, p. 9, see discussion in Section 2.5): 

 

This process assessed whether the number of exceptions to any particular pronunciation of the 

relevant vowel grapheme and word body in English words fell below the tolerance threshold, 

meaning that the spelling-sound correspondence was consistent enough to pass the tolerance test 

and form a productive pronunciation rule.  

Sixty-six vowel grapheme/word body pairs (e.g. EA/EAT) were each used in three 

nonword items in the stimuli set (e.g. SMEAT, PREAT, THEAT). In most items, the vowel 

grapheme was shorter than the word body (e.g. IE/IEND in the nonword TIEND); however, the 

vowel grapheme and word body were the same length in a small number of items (e.g. OW/OW 
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in the nonword DOW). According to the outcome of the vowel grapheme/word body pair on the 

tolerance test, items were categorised into the following seven conditions: 

Condition 1: Vowel winner, body winner, no conflict (60 items) e.g. YOOT 

Condition 2: Vowel winner, body winner, conflict (30 items) e.g. SMEAD 

Condition 3: Vowel all fail, body winner (51 items) e.g. CHOWL 

Condition 4: Vowel all fail, body all fail (12 items) e.g. GLOWN 

Condition 5: Vowel winner, body all fail (3 items) e.g. TROOD 

Condition 6: Vowel all fail, body all pass (30 items) e.g. FOUTH 

Condition 7: Vowel winner, body all pass (12 items) e.g. GLEAF 

To exemplify, in the nonword YOOT, the vowel grapheme OO has a winning 

pronunciation /u:/ which passes the tolerance test. This is called the vowel winner pronunciation. 

The word body OOT also has a winning pronunciation /u:t/ which passes the tolerance test. This 

is called the body winner pronunciation. This body winner pronunciation does not conflict with 

the vowel winner pronunciation, so YOOT falls into condition 1 (vowel winner, body winner, no 

conflict). The nonword SMEAD has a vowel winner pronunciation (/i:/), and a body winner 

pronunciation (/ɛd/), but as these are different pronunciations, this item falls into condition 2 

(vowel winner, body winner, conflict). The vowel grapheme OW in the nonword item CHOWL 

is not consistent enough to have a vowel winner pronunciation that passes the tolerance test, but 

OWL does have a body winner pronunciation. Therefore, this item falls into condition 3 (vowel 

all fail, body winner). Neither the vowel grapheme nor the word body of the nonword GLOWN 

is consistent enough to pass the tolerance test, so this item falls into condition 4 (vowel all fail, 

body all fail). The nonword TROOD has a consistent vowel grapheme with a vowel winner 

pronunciation but an inconsistent body so falls into condition 5 (vowel winner, body all fail). 

The nonword FOUTH has no vowel winner, and the number of English words which use its 

body OUTH is so low that all possible pronunciations pass the tolerance test (no exceptions to 

any pronunciation are high enough to exceed the tolerance threshold). This means there is no 

outright body winner pronunciation, so this item falls into condition 6 (vowel all fail, body all 

pass). The nonword item GLEAF falls into condition 7 (vowel winner, body all pass) because the 

vowel grapheme EA has a vowel winner pronunciation, but all pronunciations of the body EAF 

pass the tolerance test. The size of each condition was restricted by the number of possible vowel 
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grapheme/word body pairs found in English monosyllabic words that fell into each category. 

Thus, the number of items in each category varied accordingly. 

 

3.3.3 Procedure 

Adult participants were tested individually in a language lab in the Department of 

Psychology at Royal Holloway, University of London. Participants were informed that they 

would be presented with 198 nonwords to read aloud. The nonword stimuli were presented one 

at a time in uppercase in white font on a black background, in the centre of a computer screen, 

using DMDX software (Forster & Forster, 2003). The stimuli were presented in a randomised 

order for each participant. Participants were asked to read each nonword aloud into a 

microphone, and their responses were recorded using the audio-capture capacity of DMDX 

(Forster & Forster, 2003). Participants were instructed to read each item as quickly and 

accurately as possible. The duration of each recording simultaneously with the presentation of 

each nonword on the screen was 2500 ms. In between the presentation of each nonword, a focus 

screen displaying  <            >  was presented for 2000 ms. Participants were provided with a set 

of 4 practice items before beginning the test phase. Midway through the experiment, after 99 

items, participants were given the opportunity to rest, and could choose when to resume the 

experiment by pressing the spacebar on the keyboard. The duration of the experiment was 

approximately 15 minutes.     

Child participants were tested individually on primary school sites. Children carried out 

the same testing procedure as adults except that participants were asked to read made-up words 

as carefully as possible; items were presented on the screen until the participant pressed the 

spacebar and for a minimum of 2500 ms; and participants were given the opportunity to rest and 

resume after every 33 items, with a total of six 33 item blocks presented in a randomised order.   

Additionally, child participants carried out the Test of Word Reading Efficiency – 

Second Edition (TOWRE-2; Torgesen, Wagner, & Rashotte, 2012), to assess individual’s ability 

to pronounce printed words and nonwords accurately. Participants carried out both the Sight 

Word Efficiency (SWE) and Phonemic Decoding Efficiency (PDE) subtests, in which they read 

aloud as many words (SWE) and nonwords (PDE) from a list as they could within 45 seconds.                         
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3.3.4 Transcription 

Recordings were transcribed into symbols representing the DRC’s phonemic vocabulary 

(Coltheart & Rastle, 1999: Appendix A). On occasion (0.01% of responses), multiple answers 

were recorded by a participant in response to a single stimulus, for example because the 

participant had attempted to repeat or correct themselves mid-way through or after their initial 

response. In these cases, the first complete pronunciation of the nonword was selected and 

transcribed by the experimenter. In 0.5% of cases either no response was recorded, or the 

recording of the participant’s pronunciation was cut short at the end of the recording duration 

and thus these responses were excluded.  

 

3.4 Results 

The analysis addressed three broad questions. Firstly, I investigated whether the TP can 

predict adult and child participants’ use of vowel grapheme and word body orthographic units in 

their nonword pronunciations, and also considered what pronunciations participants use for items 

which have no pronunciation predicted by the TP. Secondly, I compared the ability of the TP to 

predict adult and child nonword pronunciations with that of three computational models of 

reading, finding that the TP offers the most successful account. Thirdly, I investigated whether 

the TP’s categorical metric of consistency offers value beyond a continuous metric of 

consistency in predicting adult and child nonword reading behaviour. Together, results suggest 

that the TP offers a relatively successful account of adult and child nonword reading behaviour 

and provides a novel contribution to our understanding of both developing and skilled reading.  

Additionally, child participants were assessed on SWE and PDE background measures 

using the TOWRE-2 sub-tests. The mean raw score for SWE was 62.0 (SE = 1.1); the mean raw 

score for PDE was 32.9 (SE = 1.7). The mean age-scaled score for SWE was 99.2 (SE = 1.9); the 

mean age-scaled score for PDE was 101.5 (SE = 2.2). 
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3.4.1 Can the TP predict skilled and developing readers’ nonword pronunciations at the vowel 

grapheme and word body level?  

The analyses in this section addressed two predictions of the TP. The first was that 

participants should use the available vowel winner in their pronunciations irrespective of the 

status of the word body; use of the vowel winner should not be modulated by the body status. 

The second was that participants’ use of a body winner should be modulated by the presence of a 

vowel winner. Each of these predictions is addressed in turn using mixed-effects logistic 

regression models. An exploratory analysis then investigated the range of pronunciations 

participants use when reading aloud nonword items without vowel or body pronunciations 

predicted by the TP. 

3.4.1.1 Is the vowel winner pronunciation used regardless of body status? 

Pronunciations which pass the tolerance test outright at the level of the vowel grapheme 

and offer a productive rule are referred to as “vowel winners”. The TP predicts that when a 

nonword has a vowel winner pronunciation available, participants will use this pronunciation 

regardless of the nonword’s body status. Evaluating this prediction involved 105 items from the 

four conditions with vowel winner pronunciations, or “vowel winner conditions”: vowel winner, 

body winner, no conflict (1); vowel winner, body winner, conflict (2); vowel winner, body all 

fail (5); and vowel winner, body all pass (7). The vowel winner pronunciation was used in 

72.22% of responses by adult participants and 74.84% responses by child participants, 

suggesting that it is the favoured pronunciation for items with a vowel winner, as predicted by 

the TP.  

To evaluate this prediction statistically, I examined participants’ use of the vowel winner 

in each condition. Recall that the TP predicts the vowel winner will be the pronunciation used in 

all four vowel winner conditions, regardless of whether the body also passes the tolerance test. 

This is because the vowel offers a more general pronunciation rule which should be prioritised 

over a more specific body-level correspondence. Figure 3.1 shows use of the vowel winner 

pronunciation in vowel winner conditions by adults and children. Note that condition 5 contains 

only three items.  
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Figure 3.1 

Use of the Vowel Winner Pronunciation (%) by Adult and Child Participants in Vowel Winner 

Conditions 

 

 

Note. In this figure and subsequent similar figures (unless specified otherwise), the horizontal 

line represents the mean, the box around the mean represents standard error, data points represent 

individual nonword items, and the borders around data points are smoothed density curves. 

 

A logistic mixed-effects analysis was used to assess whether use of the vowel winner 

varied as a function of condition. For this and further analyses below, I used R (version 3.6.0; R 

Development Core Team, 2019) and the lme4 package (version 1.1-21; Bates et al., 2015). This 

approach is able to include predictors as fixed effects and participant and item as random effects 

simultaneously in the same models. The p-values reported are based on the Wald Z statistic for 

each effect (Jaeger 2008). A maximal random effects structure was sought in each model 

(following Barr et al., 2013). When a model failed to converge, the random effects structure was 

simplified until the model converged. 
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For the vowel winner analysis, adults and children were treated as separate participant 

age groups, as a mixed-effects model using a Condition x Age Group interaction explained 

significantly more data variance than a reduced model using Condition and Age Group as the 

fixed effects ((χ 2(3) = 33.849, p < .001). As a maximal mixed-effects logistic regression model 

failed to converge, I ran an intercepts-only model with the Condition x Age Group interaction as 

a fixed effect (rotating each condition and participant group as the reference levels), and item and 

subject random intercepts, with use of the vowel winner as the outcome measure. Table 3.1 

presents the output for the model using adult as the age group reference level and conditions 1, 2 

and 7 as the condition reference levels. The output of the model using condition 5 as the 

reference level is omitted as this failed to converge due to too few items.  Results suggest that 

adults’ use of the vowel winner pronunciation was lower in the vowel winner, body winner, 

conflict condition (2) than in the three other conditions. There were no significant differences 

between adults’ use of this pronunciation in the other vowel winner conditions. Table 3.2 

presents the output for the models using child as the age group reference level and conditions 1, 

2 and 7 as the condition reference levels. Results suggest that children’s use of the vowel winner 

pronunciation was lower in the vowel winner, body winner, conflict condition (2) than in 

conditions 1 and 7. There were no significant differences between children’s use of this 

pronunciation in the other vowel winner conditions. These results are inconsistent with the TP 

prediction that body status should be irrelevant for items with a vowel winner. Instead, data from 

adults and children showed that responses were less likely to use the vowel winner pronunciation 

when there was a conflicting body winner. 
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Table 3.1   

 

Output from mixed-effects model comparing use of the vowel winner pronunciation in vowel winner 

conditions, using Adult as the age group reference level   

glmer(Vowel Winner Score ~ Condition*Age + (1|Participant) + (1|Item))  

  

Fixed Effect  Est.  
St. 

Error  
z value   p value  

Inverse  

Logit 

Probability8  

  

(1) Vowel winner, body winner, no conflict vs. 

(2) Vowel winner, body winner, conflict (Adult)  

  

  

-1.527  

  

0.333  

  

-4.588  

  

<.001  

  

0.178  

(1) Vowel winner, body winner, no conflict vs. 

(5) Vowel winner, body all fail (Adult)  

  

1.580  1.010  1.564  0.118  0.829  

(1) Vowel winner, body winner, no conflict vs. 

(7) Vowel winner, body all pass (Adult)  

  

0.602  0.490  1.229  0.219  0.646  

(2) Vowel winner, body winner, conflict vs.   

(5) Vowel winner, body all fail (Adult)  

  

3.107  1.024  3.033  0.002  0.957  

(2) Vowel winner, body winner, conflict vs.   

(7) Vowel winner, body all pass (Adult)  

  

2.129  0.521  4.083  <.001  0.894  

(7) Vowel winner, body all pass vs.   

(5) Vowel winner, body all fail (Adult)   

 
 

0.978  1.086  0.900  0.368  0.727  

 

 
8 Logarithm of the odds back-transformed to a probability value, indicating probability of the modelled event. For 

example, the likelihood of adults using the vowel winner pronunciation more often in condition 2 than condition 1 is 

17.8% (i.e., it is quite unlikely that the vowel winner pronunciation will be used more often in condition 2 than in 

condition 1). 
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Table 3.2  

 

Output from mixed-effects model comparing use of the vowel winner pronunciation in vowel 

winner conditions, using Child as the age group reference level   

glmer(Vowel Winner Score ~ Condition*Age + (1|Participant) + (1|Item))  

  

Fixed Effect  Est.  
St. 

Error  
z value   p value  

Inverse   

Logit 

Probability  

  

(1) Vowel winner, body winner, no conflict 

vs. (2) Vowel winner, body winner, conflict 

(Child)  

  

  

-0.857  

  

0.330  

  

-2.596  

  

0.009  

  

0.298  

(1) Vowel winner, body winner, no conflict 

vs. (5) Vowel winner, body all fail (Child)  

  

0.135  0.880  0.154  0.878  0.534  

(1) Vowel winner, body winner, no conflict 

vs. (7) Vowel winner, body all pass (Child)  

  

0.202  0.476  0.426  0.670  0.550  

(2) Vowel winner, body winner, conflict vs.   

(5) Vowel winner, body all fail (Child)  

  

0.992  0.897  1.106  0.269  0.729  

(2) Vowel winner, body winner, conflict vs.   

(7) Vowel winner, body all pass (Child)  

  

1.060  0.508  2.085  0.037  0.743  

(7) Vowel winner, body all pass vs.   

(5) Vowel winner, body all fail (Child)  

  

-0.067  0.962  -0.070  0.944  0.483  
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Using the Condition x Age Group interaction as a fixed effect also allowed a comparison 

between adult and child participants’ use of the vowel winner in each condition. It was 

hypothesised that children may use the vowel winner pronunciation more often than adults as a 

result of their systematic phonics instruction. Table 3.3 presents output of the model comparing 

use of the vowel winner by adults and children in these conditions (condition 5 is omitted as 

above). Results showed that there was no significant difference between adults’ and children’s 

use of the vowel winner in conditions 1 and 7, but adults’ use of the vowel winner was 

significantly lower than children’s in condition 2 (vowel winner, body winner, conflict). Possible 

reasons for this pattern of results will be discussed in Section 3.5.1. 

 

Table 3.3   

  

Output from mixed-effects model comparing adult and child participants’ vowel winner use in   

conditions 1, 2 and 7  

glmer(Vowel Winner Score ~ Condition*Age + (1|Participant) + (1|Item))  

  

Fixed Effect  Estimate  St. Error  z value   p value  
Inverse Logit 

(Probability)  

  

  

(1) Vowel winner, body winner, 

no conflict (Adult vs. Child)  

  

  

-0.017  

  

  

0.180  

  

-0.092  

  

0.927  

  

0.496  

  

(2) Vowel winner, body winner, 

conflict (Adult vs. Child)  

  

0.653  0.185  3.528  <.001  0.658    

(7) Vowel winner, body all fail 

(Adult vs. Child)  

  

-0.416  0.281  -1.476  0.140  0.397    
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Previous results suggested that - contrary to the TP prediction – both adult and child 

participants used the vowel winner less often when nonwords contained a conflicting body 

winner (condition 2). Crucially, this condition provides the only opportunity to assess which 

pronunciation participants use for items that have conflicting vowel winner and body winner 

pronunciations. To analyse this behaviour, pronunciation responses in this condition were 

categorised according to whether participants used the vowel winner pronunciation, the body 

winner pronunciation, or any other pronunciation. Figure 3.2 displays the percentage of adults’ 

and children’s responses using each of these pronunciations.   

 

Figure 3.2 

Proportion of Responses Using the Vowel Winner Pronunciation, Body Winner Pronunciation 

and Other Pronunciations by Adults and Children in the Vowel Winner, Body Winner, Conflict 

Condition (2). 
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The TP predicts that participants’ choice of pronunciation (“vowel winner”, “body 

winner” or “other”) should not be evenly distributed across the three categories, as the vowel 

winner should be used more frequently than the body winner or other pronunciations. The results 

of chi-square goodness-of-fit tests were significant both for adults (χ2(2, n = 720) = 173.73), p < 

.001) and for children (χ2(2, n = 865) = 475.54), p < .001), suggesting an uneven distribution 

across the pronunciation categories. Paired-sample t-tests with a Bonferroni adjusted alpha level 

of .025(.05/2) confirmed that adults used the vowel winner more often than the body winner 

(t(29) = 3.219, p = .006) and other pronunciations (t(29) = 5.792, p < .001). Similarly, children 

used the vowel winner more often than the body winner (t(29) = 9.101, p < .001) and other 

pronunciations (t(29) = 18.075, p < .001). Whilst a substantial percentage of pronunciations in 

this condition do use the conflicting body winner, this analysis shows that the vowel winner is 

still the most frequent pronunciation for both adults and children.  

 

3.4.1.2 Is use of the body winner modulated by the vowel winner? 

When applied as an account of word reading, the TP can incorporate information from 

the orthographic level of the word body as well as the vowel grapheme, and predicts when 

readers will use this information in nonword pronunciations. Specifically, the TP predicts that 

use of the “body winner” (a single pronunciation of a word body that passes the tolerance test) 

should be modulated by the presence of a vowel winner: the body winner should only be used 

when a nonword has no vowel winner pronunciation available, as more specific rules should 

only be sought if a more general rule does not pass the tolerance test.  

Evaluating the TP’s predicted use of the body winner pronunciation involved the vowel 

winner, body winner, conflict condition (2) and the vowel all fail, body winner condition (3). 

The TP predicts use of the body winner to vary across these conditions, such that participants 

should use the body winner to pronounce items in condition 3, where all vowel pronunciations 

fail the tolerance test, and should not use the body winner to pronounce items in condition 2, 

where there is a competing vowel winner. Figure 3.3 displays adult and child participants’ use of 

the body winner for items in these conditions.  
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A mixed-effects model using a Condition x Age Group interaction did not explain 

significantly more data variance than a reduced model using Condition and Age Group as fixed 

effects ((χ 2(1) = 0.195, p = .659), suggesting that adults’ use of the body winner did not differ 

from children’s as a function of condition. A maximal mixed-effects logistic regression model 

failed to converge, but Table 3.4 presents the output of the reduced model using Condition and 

Age Group as fixed effects, random slopes and intercepts for participant, and random intercepts 

for item. Results suggest that adult and child participants’ use of the body winner pronunciation 

was significantly higher in the vowel all fail, body winner condition (3) than in the vowel 

winner, body winner, conflict condition (2). This accords with the TP prediction, as use of the 

body winner seems to be modulated by the presence of a vowel winner: if an item has no vowel 

winner then the body winner will be used, but if it does have a vowel winner then the body 

winner will not be used. A significant effect of participant group suggests that children’s use of 

the body winner across these conditions was significantly lower than adults’.  
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Figure 3.3 

Adult and Child Participants’ Use (%) of the Body Winner Pronunciation in the Vowel Winner, 

Body Winner, Conflict Condition (2) and the Vowel All fail, Body Winner Condition (3), by 

Item. 

 

 

Note. Data points represent individual nonword items.  
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Table 3.4  

 

Output from mixed-effects model comparing use of the body winner pronunciation in the vowel 

winner, body winner, conflict condition (2) and the vowel all fail, body winner condition (3) by 

adults and children  

glmer(Body Winner Score ~ Condition + Age + (1+Condition|Participant) + (1|Item)) 

 

Fixed Effect Est. 
St. 

Error 
z value p value 

Inverse Logit 

(Probability) 

 

(2) Vowel winner, body winner, conflict 

vs. (3) Vowel all fail, body winner 

 

 

2.558 

 

0.290 

 

8.828 

 

<.001 

 

0.928 

Participant Group (Adult vs. Child) -0.443 0.208 -2.129 0.033 0.391 

 

 

 

3.4.2 What do participants say when the TP provides no predicted pronunciation? 

42 nonword items from conditions 4 (vowel all fail, body all fail) and 6 (vowel all fail, body all 

pass) have no single predicted pronunciation provided by the TP. An exploratory analysis 

investigated the possible pronunciations participants could use to read these items aloud, based 

on different statistical properties of English words.  

Participants’ pronunciation responses were assessed by their match to possible 

pronunciations based on four different spelling-sound frequencies in English words: the most 

common pronunciation of the vowel grapheme by type; the most common pronunciation of the 

vowel grapheme by token; the most common pronunciation of the word body by type; and the 

most common pronunciation of the word body by token. The type and token frequencies of 

vowel graphemes and word bodies in English monosyllabic words were taken from the CELEX 

corpus (Baayen et al., 1995). It should be noted that it is possible for multiple frequency 
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measures to offer the same pronunciation for a letter sequence. For example, the most common 

pronunciation of the letter sequence OW is the same when measured by vowel type frequency, 

vowel token frequency, and body type frequency.   

Figure 3.4 displays the average match between adult and child participant responses and 

the pronunciations provided by the four corpus frequency-based measures for items in conditions 

4 and 6. This shows that participants do make use of information from all four frequency counts 

in their pronunciations, and that the most frequent pronunciation of the body by type seems to be 

the pronunciation most often used by participants. However, this should be interpreted with 

caution, as this frequency count can offer more than one pronunciation: for some letter sequences 

there are different pronunciations of the body that occur in the same number of word types in the 

corpus, thus inflating the likelihood that a participant’s response will match the pronunciation 

offered by this frequency measure.  
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Figure 3.4 

Adult and Child Participants’ Average Match between Pronunciation Response and Corpus 

Frequency-Based Pronunciation for 42 Nonword Items in Conditions 4 and 6  

 

 

Note. Data points represent individual nonword items. Box around mean represents 95% 

confidence interval.  

 

This descriptive analysis shows that participants used pronunciations based on all four 

corpus frequency-based measures for items without a TP prediction. However, this group-level 

analysis may mask the behaviour of individual participants. For example, an individual 

participant may use a combination of all frequency measures in their pronunciations, or they may 

favour some over others. To investigate this further, Figures 3.5 and 3.6 present the data 

according to the behaviour of individual adult and child participants. Here can be observed the 

average match between the response and pronunciation according to frequency measure by each 

participant, revealing that all participants used a combination of information from the four 

frequency measures in their pronunciations, following a relatively similar pattern of behaviour.  
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Figure 3.5 

Individual Adult Participants’ Average Match Between Pronunciation Response and Corpus 

Frequency-based Pronunciation for 42 Nonword Items in Conditions 4 (Vowel All Fail, Body 

All Fail) and 6 (Vowel All Fail, Body All Pass) 
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Figure 3.6 

Individual Child Participants’ Average Match Between Pronunciation Response and Corpus 

Frequency-based Pronunciation for 42 Nonword Items in Conditions 4 (Vowel All Fail, Body 

All Fail) and 6 (Vowel All Fail, Body All Pass) 

 

 

 

3.4.3 Can the TP predict nonword pronunciations more successfully than three computational 

models of reading? 

In addition to the TP, I analysed the predicted pronunciations of three computational 

models of reading: the DRC (Coltheart et al., 2001), the CDP+ (Perry et al., 2007) and the 

Triangle model (Chang et al., 2019). Mixed-effects logistic regression models were used to 
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compare the match between the model prediction and participant response firstly across all items, 

secondly for items with a vowel winner pronunciation (from conditions 1, 2, 5 and 7), and thirdly 

for items whose vowel grapheme fails the tolerance test (from condition 3).  

 

3.4.3.1 Model comparisons  

 Taking a participant-level approach, the model comparison began by investigating the 

similarity between participants’ responses and pronunciations predicted by the TP. This analysis 

involved 156 items with a TP prediction; the 42 items from conditions 4 and 6 were removed as 

they do not have a single pronunciation passing the tolerance test and therefore have no predicted 

pronunciation. In terms of the percentage of adult participants’ pronunciations that matched the 

TP predicted pronunciation, the lowest level of similarity between the TP and an individual 

participant was 56.41% and the highest was 87.01%; the median was 74.19% and the mean was 

72.85% (SE = 1.41%). For child participants, the lowest level of similarity was 47.01% and the 

highest was 85.51%; the median was 73.19% and the mean was 72.39% (SE = 1.76%).  

 Next, I examined the predictions made by the three established computational models of 

reading cited above, to place these results in the context of existing literature and assess the TP’s 

relative performance. The analysis used 138 nonword items. In addition to the 42 items removed 

from the original data set for which TP could provide no prediction (from conditions 4 and 6), 18 

items were removed because the Triangle model predicted use of a rhotic vowel in the 

pronunciation. This is because the version of the Triangle model used (Chang et al., 2019) uses 

US pronunciations in the training set, meaning that these rhotic predictions are incompatible with 

our participant responses and corpus frequencies, which use Southern British English 

pronunciations.  

Throughout the model comparison, the match between predicted pronunciation and 

participant response was scored according to the pronunciation of the vowel grapheme. Figure 

3.7 displays for adult and child participants the percentage of vowel pronunciations that matched 

the predictions made by the TP and the three reading models. The match between participants’ 

responses and the DRC prediction can also be interpreted as participants’ rate of vowel 

regularisation (i.e., use of the most common pronunciation of the vowel grapheme by type), as 
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the DRC prediction for nonword pronunciations is always a regular response. By observation, it 

seems that the behaviour of participants is closer to the predictions of the TP than to the DRC, 

CDP+ or Triangle models. This indication is supported by the results of a mixed-effects logistic 

regression model using a Model x Age Group interaction. This model was a significantly better 

fit to the data than a reduced model using Model and Age Group as fixed effects ((χ 2(3) = 

12.233, p = .007); thus, adult and child participant groups were treated separately. As a maximal 

mixed-effects logistic regression model failed to converge, I ran an intercepts-only model with 

the Model x Age Group interaction as the fixed effect (rotating models of reading and age groups 

as the reference levels), and item and subject random intercepts. Table 3.5 presents the output 

from the model using adult as the age group reference level. Results indicate that the TP is a 

significantly better match for adult participants’ responses than the three reading models, and the 

Triangle model performs significantly worse than all other models. There is no significant 

difference between performance of the CDP+ and DRC. The results of the mixed-effects model 

using child as the age group reference level is presented in Table 3.6. This analysis suggests that 

the TP is a significantly better match for child participants’ responses than the three reading 

models, the Triangle model is a worse match than the other models, and the DRC is a better 

match than the CDP+ model.  
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Figure 3.7 

The Percentage of Vowel Pronunciations Produced by 24 Adult Participants and 29 Child 

Participants that Matched the Predictions Made by Each Model of Reading 

 

Note. Data points represent individual participants.  
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Table 3.5     

Output from mixed-effects model comparing reading model performance, using adult as 

age group reference level  

glmer(Score ~ Model*Age + (1|Participant) + (1|Item), family =binomial)  

  

Comparison  Estimate  Std. Error  z value   p value  
Inverse Logit 

(Probability)  

  

TP vs. CDP+  

  

-0.516  

  

0.062  

  

-8.328  

  

<.001  

  

0.374  

  

TP vs. DRC  

  

-0.453  

  

0.062  

  

-7.291  

  

<.001  

  

0.389  

  

TP vs. Triangle  

  

-0.671  

  

0.062  

  

-10.873  

  

<.001  

  

0.338  

  

CDP+ vs. DRC  

  

0.064  

  

0.060  

  

1.094  

  

0.292  

  

0.516  

  

CDP+ vs. Triangle  

  

-0.155  

  

0.060  

  

-2.589  

  

0.010  

  

0.461  

  

Triangle vs. DRC  

  

0.219  

  

0.060  

  

3.642  

  

<.001  

  

  

0.555  
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Table 3.6   

 

Output from mixed-effects logistic regression comparing reading model performance, 

using child as age group reference level  

glmer(Score ~ Model*Age + (1|Participant) + (1|Item), family =binomial  

Comparison  Estimate  Std. Error  z value   p value  
Inverse Logit 

(Probability)  

  

TP vs. CDP+  

  

-0.635  

  

0.057  

  

-11.130  

  

<.001  

  

0.346  

  

TP vs. DRC  

  

-0.461  

  

0.057  

  

-8.035  

  

<.001  

  

0.387  

  

TP vs. Triangle  

  

-0.920  

  

0.058  

  

-16.182  

  

<.001  

  

0.285  

  

CDP+ vs. DRC  

  

0.174  

  

0.055  

  

3.145  

  

0.002  

  

0.543  

  

CDP+ vs. Triangle  

  

-0.284  

  

0.055  

  

-5.206  

  

<.001  

  

  

0.429  

Triangle vs. DRC  0.459  0.055  8.327  <.001  

  

0.613  

            

  

3.4.3.2 Where do the models differ in their performance? 

To understand more about why the TP outperforms the other models in predicting 

nonword reading behaviour, the following analysis separates “vowel winner” items in conditions 

with a vowel winner (1, 2, 5 and 7) from “vowel fail” items in condition 3 where the vowel fails 

the tolerance test. Analysing the models’ performance for items with consistent and inconsistent 

vowels separately offers an insight into each model’s strengths and weaknesses in respect of the 

consistency of spelling-sound correspondences. 



  

80 

 

Figure 3.8 displays each reading model’s average match between the predicted 

pronunciation and participants’ responses for the 90 vowel winner items. To compare the 

models’ performance on these items, I ran a mixed-effects logistic regression model with a 

Model of Reading x Age Group interaction, which explained significantly more variance in the 

data than a reduced model using Model of Reading and Age Group as fixed effects ((χ 2(3) = 

20.298, p < .001). Therefore adult and child age groups are treated separately. As a maximal 

mixed-effects structure failed to converge, I ran the model using the Model of Reading x Age 

Group interaction as a fixed effect (with TP as the model reference level and rotating the age 

group reference levels) with random intercepts for participant, and random slopes and intercepts 

for item. Tables 3.7 and 3.8 present the output of the model for adult and child age groups. For 

both adults and children, results indicated no significant difference between the performance of 

the TP and the DRC, which is expected as both models predict use of the most common vowel 

pronunciation type for these items. The CDP+ and Triangle models both perform significantly 

worse than the TP.  
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Figure 3.8 

Match (%) Between Adult and Child Participant Response and Model Prediction for 

Pronunciation of the Vowel Grapheme in 90 Vowel Winner Items 

 

Note. Data points represent individual nonword items. 
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Table 3.7  

  

  

Output from mixed-effects model comparing reading model performance for vowel winner 

items, using adult as the age group reference level and TP as the model reference level   

glmer(Score ~ Model*Age + (1|Participant) + (1+Age|Item), family =binomial)  

  

Comparison  Estimate  St. Error  z value   p value  
Inverse Logit 

(probability)  

  

TP vs. CDP+ (Adult)  

  

-0.489  

  

0.078  

  

-6.251  

  

<.001  

  

0.380  

  

TP vs. DRC (Adult)  

  

-0.077  

  

0.079  

  

-0.973  

  

.330  

  

0.481  

  

TP vs. Triangle (Adult)  

  

-0.807  

  

0.078  

  

-10.309  

  

<.001  

  

0.308  
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Table 3.8 

   

  

Output from mixed-effects model comparing reading model performance for vowel 

winner items, using child as the age group reference level and TP as the model 

reference level   

glmer(Score ~ Model*Age + (1|Participant) + (1+Age|Item), family =binomial)  

  

Comparison Estimate St. Error z value p value 

Inverse Logit 

(probability) 

  

TP vs. CDP+ (Child)  

  

-0.738  

  

0.073  

  

-10.117  

  

<.001  

  

0.323  

  

TP vs. DRC (Child)  

  

-0.137  

  

0.075  

  

-1.842  

  

0.066  

  

0.466  

  

TP vs. Triangle (Child)  

  

-1.233  

  

0.073  

  

-16.869  

  

<.001  

  

0.226  

            

                 

 

                Figure 3.9 displays each model’s average match between the predicted pronunciation 

and the participants’ responses for the 48 vowel fail items. A mixed-effects model using a Model 

of Reading x Age Group interaction did not explain significantly more variance in the data than a 

reduced model using Model of Reading and Age Group as fixed effects ((χ 2(3) = 0.937, p = 

.817). The maximal mixed-effects logistic regression model failed to converge; thus, Table 9 

presents the output of the reduced model using Model of Reading (with TP as the reference 

level) and Age Group as fixed effects, with random intercepts for participant, and random slopes 

and intercepts for item. Results suggest that for adult and child participants, the TP performs 

significantly better than all other models for vowel fail items. There was no significant main 

effect of age group. Together, this vowel winner vs. vowel fail analysis reveals that whilst the TP 

is no better than the DRC at predicting pronunciations for items with consistent vowels (i.e., 

vowel winner items), it is more successful than all other models at predicting pronunciations for 
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items with inconsistent vowels (i.e., vowel fail items), thus offering the strongest account overall. 

Possible reasons for the TP’s particular success in predicting inconsistent vowel pronunciations 

will be explored in Section 3.5.3.   

 

Figure 3.9 

Match (%) Between Adult and Child Participant Response and Model Prediction for 

Pronunciation of the Vowel Grapheme in 48 Vowel Fail Items. 

 

 

Note. Data points represent individual nonword items. 
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Table 3.9   
 

  

Output from mixed-effects model comparing reading model performance for vowel fail 

items by adults and children, using TP as the model reference level  

glmer(Score ~ Model + Age + (1|Participant) + (1+Age|Item), family =binomial)  

 
 

Comparison  Estimate  St. Error  z value   p value  
Inverse Logit 

(probability)  

  

Intercept  

  

1.660  

  

0.283  

  

5.857  

  

<.001  

  

0.840  

  

TP vs. CDP+   

  

-0.577  

  

0.072  

  

-7.973  

  

<.001  

  

0.360  

  

TP vs. DRC   

  

-1.098  

  

0.072  

  

-15.246  

  

<.001  

  

0.250  

  

TP vs. Triangle   

  

-0.480  

  

0.073  

  

-6.623  

  

<.001  

  

0.382  

            

Adult vs. Child  -0.364  0.225  1.615  0.106  0.410  

   

 

 

To complete the picture of each model’s performance, I identified items for which the 

models performed particularly poorly, revealing how the models deviate most dramatically from 

participants’ behaviour. Tables 3.10 and 3.11 present, for each model, the nonword items for 

which predicted pronunciations were used in less than 5% of adult and child participant 

responses. For the DRC, the majority of items with predicted pronunciations used rarely by 

participants are from the vowel fail, body winner condition (3). These items have an inconsistent 

vowel pronunciation (the vowel fails the tolerance test), yet the DRC predicts use of the most 

common grapheme-phoneme correspondence for the vowel (as for all nonword items). However, 

participants seem to avoid using this correspondence for these condition 3 items. 
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 The TP makes one predicted pronunciation which is not used by any adult participants 

and two that are not used by any child participants. These are use of the most frequent vowel 

grapheme-phoneme correspondence in the items THEIL, CREIL, and CHEIL from the vowel 

winner, body winner, no conflict condition (1).  

 The CDP+ model makes a number of unsuccessful GPC predictions for items from the 

vowel fail, body winner condition (3); like the DRC, it predicts use of this vowel pronunciation 

despite the inconsistency of the vowel grapheme. Both the CDP+ and the Triangle model predict 

body analogies for some items in vowel winner conditions (in which the vowel GPC is relatively 

consistent) which are not used by participants. Both connectionist models also predict 

lexicalisations of some nonwords which participants did not make. In addition, the Triangle 

model makes a number of erroneous predictions produced by no participants.  
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Table 3.10 

Pronunciations predicted by models which are used less than 5% of the time by adult 

participants. Predictions are transcribed using symbols representing the DRC’s 

phonemic vocabulary (see Appendix C).  

Model Nonword Condition  Prediction 
Use by 

Participants 
Description 

CDP+ THEIL 1 DEl 0.000 n/a 

CDP+ KAID 1 k{d 0.000 Lexicalisation 

CDP+ SMEAD 1 smEd 0.042 Body analogy 

CDP+ PRIELD 3 pr2ld 0.042 GPC 

CDP+ BOUP 3 b6p 0.042 GPC 

CDP+ FRIMB 7 frQm 0.000 Lexicalisation 

DRC YOOT 1 wt 0.000 n/a 

DRC THEIL 1 T1l 0.042 GPC 

DRC MIEF 3 mif 0.000 GPC 

DRC PRIEF 3 pr2f 0.000 GPC 

DRC ZIELD 3 z2ld 0.000 GPC 

DRC PRIELD 3 pr2ld 0.042 GPC 

DRC BOUP 3 b6p 0.042 GPC 

DRC FROUP 3 fr6p 0.042 GPC 

TP THEIL 1 T1l 0.042 GPC 

Triangle THEIL 1 T1l 0.042 GPC 

Triangle PLINT 1 pl2nt 0.000 Body analogy 

Triangle DRAUNCH 1 dr{nJ 0.000 n/a 

Triangle VAID 1 vEd 0.000 Body analogy 

Triangle THAID 1 TQd 0.000 n/a 

Triangle VEIGHT 1 vEt 0.000 Lexicalisation 

Triangle DREIGHT 1 drEt 0.000 n/a 

Triangle GEANT 2 _Int 0.042 n/a 

Triangle HIEF 3 hQf 0.000 n/a 



  

88 

 

Triangle JIEK 3 _Qk 0.000 Lexicalisation 

Triangle CHOUP 3 J{p 0.000 Lexicalisation 

Triangle FROUP 3 frIp 0.000 n/a 

Triangle SILD 7 s2ld 0.042 Body analogy 
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Table 3.11 

Pronunciations predicted by models which are used less than 5% of the time by child 

participants. Predictions are transcribed using symbols representing the DRC’s 

phonemic vocabulary (see Appendix C) 

Model Nonword Condition  Prediction 
Use by 

participants 
Description 

CDP+ FRIMB 7 frQm 0.000 Lexicalisation 

CDP+ KAID 1 k{d 0.000 Lexicalisation 

CDP+ NOVE 1 nVv 0.000 Body analogy 

CDP+ CHEIL 1 J1l 0.034 GPC 

CDP+ CREIL 1 kr1l 0.034 GPC 

CDP+ THEIL 1 DEl 0.034 n/a 

DRC YOOT 1 wt 0.000 n/a 

DRC 

DRC 

DRC 

BIELD 

HIEF 

ZIELD 

3 

3 

3 

b2ld 

h2f 

z2ld 

0.034 

0.034 

0.034 

GPC 

GPC 

GPC 

DRC 

DRC 

CHEIL 

CREIL 

1 

1 

J1l 

kr1l 

0.034 

0.034 

GPC 

GPC 

TP 

TP 

CHEIL 

CREIL 

1 

1 

J1l 

kr1l 

0.034 

0.034 

GPC 

GPC 

Triangle 

Triangle 

Triangle 

Triangle 

Triangle 

Triangle 

DREIGHT 

NOVE 

THAID 

VAID 

VEIGHT 

CHOUP 

1 

1 

1 

1 

1 

3 

drEt 

nVv 

TQd 

vEd 

vEt 

J{p 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

n/a 

Body analogy 

n/a 

Body analogy 

Lexicalisation 

Lexicalisation 

Triangle HIEF 3 hQf 0.000 n/a 

Triangle JIEK 3 _Qk 0.000 Lexicalisation 

Triangle CHEIL 1 J1l 0.034 GPC 

Triangle CREIL 1 kr1l 0.034 GPC 
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Triangle GEANT 2 _Int 0.034 n/a 

Triangle BOUP 3 bUp 0.034 n/a 

Triangle FROUP 3 frIp 0.034 n/a 

 

 

3.4.4 How is the TP’s performance related to corpus consistency and participant variability?  

These analyses suggest that the TP offers a more successful account of adult nonword 

reading aloud than three computational models, including those which use continuous, token 

frequency-weighted measures of spelling-sound consistency (i.e. the connectionist CDP+ and 

Triangle models). In contrast, the TP employs a type-based, categorical account of spelling-

sound consistency which can apply recursively to involve multiple orthographic levels, and 

which I suggest may lie behind its success. I explored this approach further by investigating the 

relationship between the TP, item-based consistency (i.e. the spelling-sound consistency of 

vowel graphemes in the CELEX corpus), and participant-based consistency (i.e. the variability of 

pronunciation responses between participants). The aim was to determine whether the TP’s type-

based, categorical metric of consistency offers an improved account of reading behaviour beyond 

continuous measures of consistency based on either type or token corpus frequencies. If the TP 

metric can predict participants’ pronunciations beyond these continuous measures, this result 

would indicate that the TP’s particular approach to consistency lies behind its ability to capture 

nonword reading behaviour more successfully than the models using continuous measures, 

examined above. 

Corpus type- and token-based spelling-sound consistency of the vowel grapheme and 

variability of participants’ responses was quantified using a measure of entropy known as the H 

statistic (Shannon, 1949). An H value of 0 denotes no variability across items or participants, 

with a single pronunciation used for each item, whereas a higher H value represents more 

variability in the pronunciation across items or participants. This measure of variability is 

modulated by two factors, as described by Andrews and Scarratt (1998, p. 1061). The first factor 

is the number of different pronunciations an item or letter pattern has; H is higher when an item 

has many different pronunciations. The second factor is the number of exemplars of each 

pronunciation; H is higher when the number of exemplars of each pronunciation is equal, 
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meaning that one pronunciation is not weighted more than another. The H value is calculated 

using the formula Σ[−pi × log2(pi)], where pi is the proportion of items or participants using a 

certain pronunciation (see also Andrews & Scarratt, 1998; Zevin & Seidenberg, 2006; Mousikou 

et al., 2017).  

Three sets of analyses were used to investigate the relationships between item-based 

consistency, participant-based consistency and the TP in explaining nonword reading behaviour. 

The first set of analyses investigated the role of item-based consistency in participants’ use of a 

particular pronunciation. It used mixed-effects logistic regression models to assess whether 

participants use the regular (most common) pronunciation of a vowel grapheme more often when 

the pronunciation of this grapheme is consistent in the corpus, and whether this relationship is 

modulated by the TP’s own prediction for regularisation (using the recursive application of the 

type-based, categorical metric of consistency). Here, the TP would predict that there is a 

categorical, rather than continuous, effect of item-based consistency on participants’ 

regularisation.  

The second set of analyses investigated the role of item-based consistency on the 

variability of responses produced by participants. It used linear regression models to assess 

whether participants’ responses are more variable if a nonword’s vowel grapheme is 

inconsistent, and whether this relationship is modulated by the TP’s categorical metric of 

consistency. The TP would predict that there is a categorical, rather than continuous, effect of 

item-based consistency on participants’ variability.  

The third set of analyses investigated the effect of age on the variability of responses 

produced by participants. It assessed whether the responses of child participants are less variable 

than those of adult participants as hypothesised according to the TP’s role for individual 

experience in generalisation behaviour.  
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3.4.4.1 Is the relationship between vowel regularisation and corpus consistency of the vowel 

modulated by the TP? 

Two continuous measures of consistency were considered in this analysis: the H value of 

the vowel grapheme calculated by type and by token. Type and token frequency values from the 

CELEX corpus (Baayen, et al. 1995) were used to produce H values representing the 

pronunciation consistency of each vowel grapheme and word body in the 156 items with a 

pronunciation predicted by the TP. 

 If participants pronounce nonwords according to a simple linear relationship between 

regularisation and consistency, then participants’ regularisation of a vowel grapheme (or use of 

the most common pronunciation type, i.e. the vowel GPC) should increase as corpus consistency 

of the vowel grapheme increases. Adults’ mean vowel regularisation for these items was 70.50% 

(SE = 2.26); children’s mean vowel regularisation was 71.43% (SE = 1.99). Figure 3.10 plots 

participants’ vowel regularisation by vowel type and token consistency (measured by H value) 

for 156 items. Note that a higher H value represents lower consistency. The figure shows that for 

both type and token consistency measures, there are low consistency items (high H values) that 

have high rates of regularisation, suggesting that there is not a simple linear relationship between 

consistency and regularisation. Additionally, each item is colour coded according to whether the 

TP predicts the regular vowel pronunciation (blue) or not (red), according to its own categorical 

measure of consistency (i.e., whether this particular pronunciation of the vowel is consistent 

enough to pass the tolerance test at either the vowel grapheme or body level). The coding shows 

that when participants regularised vowels with high corpus inconsistency, this corresponded with 

the TP’s predicted regularisation for these items: the TP may modulate the relationship between 

regularisation and consistency.  
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Figure 3.10  

Adult and Child Participants’ Use of the Regular Vowel Type Pronunciation by Corpus Vowel Type and 

Token Consistency (Measured by H Value) for 156 Items 

 

 

Note. Data points are colour coded by TP prediction for regularisation of the vowel and represent 

individual items. 

 

 The suggestion that the TP offers an improved account of vowel regularisation compared 

to continuous measures of consistency alone was supported by a series of mixed-effects logistic 

regression models. These investigated the effect of vowel consistency calculated by type and 

token on participants’ vowel regularisation (use of the most common vowel pronunciation by 
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type). A maximal mixed-effects model failed to converge, but Table 3.12 presents the output of a 

reduced model using vowel type consistency, vowel token consistency, and participant age (adult 

or child) as fixed effects, with random intercepts for participant. The results suggest that vowel 

type consistency but not vowel token consistency has a significant effect on participants’ vowel 

regularisation. There was no significant difference between adults’ and children’s vowel 

regularisation.9 

 

Table 3.12   

 

Output from mixed-effects model comparing the effects of vowel type consistency, vowel token 

consistency and age on participants’ vowel regularisation  

glmer(Vowel Regularisation ~ Vowel Type Consistency + Vowel Token Consistency + Age + 

(1|Participant), family =binomial)   

  

   Est.  St. error  z value   p value  
Inverse Logit 

(Probability)  

  

Intercept  2.538  0.305  8.321  <.001  0.927  

  

Vowel Type Consistency   -1.185  0.430  -2.756  .006  0.234  

  

Vowel Token Consistency   -0.386  0.364  -1.062  .288  0.405  

  

Age Group (Adult vs. Child)  0.079  0.152  0.515  .606  0.520  

            

 

 

 
9 An interaction between the consistency measures and participant age was not included in the model as VIF values 

above 5 suggested that there was multicollinearity between effects. 
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 A second model added the binary variable of the TP’s prediction for vowel regularisation 

as a fixed effect. Table 3.13 presents the model output, showing that the TP has a significant 

effect on vowel regularisation: participants are more likely to regularise the vowel in items which 

are predicted to be regularised by the TP. Meanwhile, vowel token consistency, but not vowel 

type consistency, also had a significant effect on participants’ vowel regularisation.  

 

Table 3.13  

Output from mixed-effects model comparing the effects of vowel type consistency, vowel token 

consistency, TP regularisation prediction and age on participants’ vowel regularisation 

glmer(Vowel Regularisation ~ Vowel Type Consistency + Vowel Token Consistency + Age + TP 

+ (1|Participant), family =binomial)  

 

 Estimate St. error z value p value 

Inverse 

Logit 

Probability 

 

Intercept 0.730 0.385 1.896 .058 0.675 

 

Vowel Type Consistency -0.079 0.411 -0.192 .848 0.480 

 

Vowel Token Consistency -0.667 0.321 -2.078 .038 0.339 

 

Age Group (Adult vs. Child) 0.079 0.153 0.518 .604 0.520 

 

TP Vowel Regularisation 2.843 0.441 6.446 <.001 0.945 

      

 

 

 A chi-square test comparing these two models found that adding the TP significantly 

improved the model’s fit to the data (χ 2(1) = 36.281, p < .001). This indicates that the TP’s type-
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based, categorical account of consistency based on multiple orthographic grain sizes is able to 

explain variance in participants’ vowel regularisation behaviour that vowel consistency measured 

continuously by type and token frequency cannot.  

 

3.4.4.2 Is the relationship between variability in participants’ vowel responses and corpus 

consistency of the vowel modulated by the TP? 

The second set of consistency analyses investigated whether participants’ vowel 

responses became more variable as the corpus type consistency of the vowel decreased, and 

whether this was modulated by the TP. The binary TP predictor used was whether or not the TP 

predicts a pronunciation for that nonword item (i.e., whether the nonword has a spelling-sound 

correspondence at the vowel grapheme or body level which is consistent enough to pass the 

tolerance test and should therefore be used productively by participants).  

 Figure 3.11 plots corpus vowel type and token consistency (measured by H value) by 

variability of adult and child participants’ vowel pronunciations in nonword items (measured by 

H value). Note that a higher H value denotes lower consistency and higher variability. Each item 

is colour coded according to whether the nonword has a TP prediction (blue) or not (red). Table 

3.14 presents the output of a linear regression model predicting variability of adult and child 

participants’ vowel pronunciations based on corpus type and token consistency of the vowel, and 

participant age. Results suggest that corpus vowel type consistency predicts variability in 

participants’ vowel pronunciations, but vowel token consistency does not. The effect of age on 

participants’ variability was also significant, such that children’s pronunciations of the vowel 

grapheme were more variable than adults’.  
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Figure 3.11 

Variability in Adult and Child Participants’ Vowel Pronunciations by Corpus Vowel Type and 

Token Consistency (Measured by H Value) for 198 Items. 

 

 

Note. Items are colour coded according to whether or not the TP predicts a pronunciation for the 

nonword item 
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Table 3.14  

Output from linear regression model comparing the effects of vowel type corpus 

consistency, vowel token corpus consistency and age on the variability of 

participants’ pronunciation of the vowel grapheme  

lm(Participant Vowel Variability ~ Vowel Type Consistency + Vowel Token 

Consistency + Age) 

 

  Estimate Standard error t value p value 

 

Intercept 0.360 0.091 3.959 <.001 

 

Vowel Type Consistency 0.903 0.106 8.524 <.001 

 

Vowel Token Consistency -0.126 0.095 -1.322 0.187 

 

Age Group (Adult vs. Child) 0.201 0.066 3.033 0.003 

     

 

 

I then considered whether an item having a pronunciation predicted by the TP (i.e. a 

pronunciation consistent enough to pass the tolerance test at either the vowel level, body level, or 

both) was also a predictor of participants’ variability beyond continuous measures of vowel 

consistency calculated by type and token frequency. Table 3.15 presents the output of a model 

using vowel type consistency, vowel token consistency, participant age and the TP as 

predictors10: results indicate that vowel type consistency is a significant predictor of variability in 

participants’ vowel pronunciations, but vowel token consistency and having a TP predicted 

pronunciation are not. The result of a chi-square test comparing the models confirmed that 

 
10 An interaction between the consistency measures and participant age was not included as VIF values above 5 

suggested that there was multicollinearity between effects. 
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adding the TP as a predictor did not significantly improve the model’s fit to the data ((χ 2(1) = 

0.218, p = .640). Together, these results indicated that as the corpus type consistency of the 

vowel increases, participants become less variable in their pronunciations of the vowel 

grapheme, and this relationship is not modulated by having a pronunciation predicted by the TP 

at the vowel or body level.  

 

Table 3.15  

Output from linear regression model comparing the effects of vowel type corpus 

consistency, vowel token corpus consistency, age, and having a TP predicted 

pronunciation on the variability of participants’ pronunciation of the vowel grapheme  

lm(Participant Vowel Variability ~ Vowel Type Consistency + Vowel Token 

Consistency + Age + TP) 

 

  Estimate Standard error z value p value 

 

Intercept 0.408 0.137 2.986 .003 

 

Vowel Type Consistency 0.887 0.112 7.955 <.001 

 

Vowel Token Consistency -0.127 0.096 -1.329 .185 

 

Age Group (Adult vs. Child) 0.201 0.066 3.030 .003 

 

TP Prediction -0.042 0.089 -0.468 .640 
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3.4.4.3 Are responses produced by children less variable than responses produced by adults? 

According to the TP, an individual’s productive rule system is based on the language 

input they have specifically received. It is likely that adult participants have received much more 

varied reading input and instruction than child participants, who have received only a few years’ 

reading experience in a primary school context. Therefore, I hypothesised that there may be a 

greater difference between adults’ individual rule systems than between children’s, giving rise to 

more varied responses to nonword items by adults than by children. Figure 3.12 displays the 

average H value of whole-word responses to 198 items by adults and children, with a higher H 

value indicating more varied responses by participants. A paired-sample t-test found that 

responses by children had a significantly higher H value than those by adults (t(197) = 9.506, p < 

.001), suggesting that, contrary to expectation, children provided more varied responses to the 

stimuli than adults. Possible reasons for this will be explored in Section 3.5.4.3. 
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Figure 3.12  

Average H Value of Responses for 198 Items by Adult and Child Participants 

 

 

Note. Error bands represent standard error.  

 

3.5 Discussion 

For decades, debate has questioned whether readers use categorical rules involving 

individual grapheme-phoneme correspondences, or graded information about the consistency of 

larger orthographic units, when reading words aloud. In particular, research has focused on how 

skilled and developing readers generalise this orthography-phonology knowledge to read new 

words they have not encountered before (e.g. Glushko, 1979; Marsh et al., 1981; Ryder and 

Pearson, 1980; Treiman et al., 1990; Coltheart & Leahy, 1992; Andrews & Scarratt, 1998; 

Brown & Deavers, 1999; Treiman et al., 2003; Steacy et al. 2019), but no firm conclusions have 

been reached. In Experiment 1, I investigated whether a new account of productivity could 

answer these longstanding questions and bridge the gap between previous, opposing approaches.  
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First developed as a theory of linguistic generalisation, here I applied the Tolerance 

Principle (Yang, 2016) to the field of reading. Twenty-four adults and twenty-nine children aged 

8-9 years read aloud 198 monosyllabic nonword items written in English orthography. I used the 

tolerance algorithm (2016, p. 9) to assess which spelling-sound correspondences were 

sufficiently consistent to pass the tolerance test, and thus predict which correspondences readers 

should use productively to pronounce the nonwords. By analysing participants’ responses, I was 

able to assess the TP’s ability to predict nonword pronunciations, as well as that of three models 

of reading: the DRC (Coltheart et al., 2001), the Triangle model (using the Chang et al., (2019) 

version of the Harm & Seidenberg (2004) model) and the CDP+ (Perry et al., 2007). Further, I 

investigated the role of consistency in the TP’s account of nonword reading and its relative 

success in comparison to the computational models.    

 

3.5.1 Can the TP predict skilled and developing readers’ nonword pronunciations at the vowel 

grapheme and word body level?  

The TP predicts that if the pronunciation of a vowel grapheme is sufficiently consistent to 

pass the tolerance test (a “vowel winner” pronunciation), participants should use this 

productively to read aloud a nonword item. This should be the case regardless of the consistency 

of the word body; a productive pronunciation for a vowel grapheme is a more general rule, so the 

search for a more specific pronunciation rule is redundant. Adult and child participants did use 

this pronunciation at a high rate for items with a vowel winner (72.22% and 74.84% 

respectively). However, contrary to the TP’s prediction, use of the vowel winner in these items 

was modulated by condition: vowel winner use was significantly lower in condition 2 (vowel 

winner, body winner, conflict) than in the other conditions. In this condition, items have both a 

consistent vowel pronunciation and a conflicting consistent body pronunciation that pass the 

tolerance test. Use of the body winner pronunciation by adults in 30.5% of these items and by 

children in 21.5% suggests that there is some interference from orthographic information at the 

level of the word body, and that generalisation behaviour is not as categorical as the TP predicts. 

Nevertheless, the vowel winner remained the most commonly used pronunciation for items in 

this condition by both children and adults, as predicted by the TP.   
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Children’s use of the vowel winner was significantly higher than that of adults in these 

items. One explanation for this is that the explicit instruction of vowel GPCs that children 

receive within the synthetic phonics programme helps to override interference from a conflicting 

signal from the word body unit. Indeed, Thompson et al. (2009) found long-lasting effects of 

phonics instruction in adults who used more GPCs in nonword pronunciations than adults who 

had not been taught to read using this method. It is also possible that the body unit gives less 

interference for developing learners regardless of instruction, given earlier findings that early 

readers rely primarily on GPCs (Treiman et al., 1990) and that use of the body increases 

throughout development (Laxon et al., 1991). It is notable that children’s use of the vowel 

winner was not significantly different from adults’ in other vowel winner conditions, despite 

their rigorous instruction in phonics.   

 Beyond the vowel grapheme, the TP is also able to predict when the spelling-sound 

correspondences at the word body level should inform nonword pronunciation. The TP theory 

states that a more specific rule should only be sought if a more general rule does not pass the 

tolerance test, employing the TP’s recursive mechanism that seeks to find a productive rule 

amongst a subset of items when the initial test is unsuccessful. Therefore, it was expected that if 

an item has an inconsistent vowel grapheme which does not pass the test, this should trigger the 

search for a more specific pronunciation rule at the level of the body (a “body winner”). In this 

way, use of the body winner should be modulated by the presence of a vowel winner; a body 

winner pronunciation should be used only when a nonword has no vowel winner pronunciation. 

Results supported this prediction, with adults’ and children’s use of the body winner 

pronunciation significantly higher in condition 3 (vowel all fail, body winner) than in condition 2 

(vowel winner, body winner, conflict).  

 This evidence that adult and child readers demonstrate knowledge of body-rime 

correspondences in nonword pronunciations is consistent with similar findings from a range of 

earlier research from Glushko (1979), Ryder and Pearson (1980), Treiman et al. (1990), Andrews 

and Scarratt (1998), and Treiman et al. (2003). More specifically, the finding that information 

from the body level is used more often when the vowel grapheme is inconsistent lends weight to 

the suggestion by Steacy et al. (2019) that nonword pronunciations are determined by a trade-off 

between the strength of competing pronunciations at the vowel and body orthographic levels. 



  

104 

 

However, the current results go further, by supporting the TP’s use of a categorical threshold of 

consistency and its recursive application to predict a specific interaction between vowel and 

body consistency. Importantly, the use of information from multiple orthographic grain sizes is 

not pre-determined arbitrarily by a modeller. Instead, it is based on principles of computational 

efficiency (Yang, 2016, p. 49), according to which productive rules are postulated if they offer 

the most efficient way to process the data, beginning at the most general level and becoming 

more specific when required.  

Additionally, results suggested that children’s use of the body winner across these two 

conditions was lower than adults’, which is in line with previous literature suggesting that 

children make less use of the body unit than adults when reading aloud (March et al., 1981, 

Treiman et al., 1990, Bruck & Treiman, 1992, Coltheart & Leahy, 1992, Brown & Deavers, 

1999). This is likely because use of more complex contextual information in orthography-

phonology mappings is more difficult than use of simpler grapheme-phoneme mappings. 

Increased use of these context-sensitive mappings may be supported through extensive 

experience (Treiman and Kessler, 2019), in which readers gain cumulative exposure to these 

patterns in print (Laxon et al., 1991).  

 

3.5.2 What do participants say when the TP provides no predicted pronunciation? 

Items in conditions 4 (vowel all fail, body all fail) and 6 (vowel all fail, body all pass) do 

not have a single winning pronunciation predicted by the TP at either the vowel or body level, as 

the pronunciations of these letter patterns are highly inconsistent in English words. Nevertheless, 

participants do, of course, provide responses for these items. An exploratory analysis found that 

both adult and child participants make use of a variety of sources of statistical information from 

their input in their responses, including the type and token frequency of vowel and body 

pronunciations in English monosyllabic words according to the CELEX corpus (Baayen et al., 

1995). Although individual participants sometimes differed in their relative use of these 

frequencies in their pronunciations, all participants demonstrated use of all four frequency-based 

measures, with the most frequent pronunciation of the body by type being the most common 

match, and the most frequent pronunciation of the body by token the least frequent match. 
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However, confounds within these frequency counts mean that these findings should be 

interpreted with caution.   

 

3.5.3 Comparing the TP with three computational models of reading  

In addition to assessing the TP’s success at predicting nonword reading behaviour, I 

compared it to three computational models of reading. To do so, I analysed the pronunciations of 

the nonword items generated by a rule-based model (the DRC (Coltheart et al., 2001)), and two 

statistical models (the Triangle model (Chang et al., 2019) and the CDP+ (Perry et al., 2007)). 

This approach allowed me to place the TP’s rule-based, statistical account of nonword reading 

within the context of models from opposing theoretical standpoints. For the 138 items included 

in the analysis, the TP predicted adult and child vowel pronunciations more successfully than the 

three other models; the Triangle model was the least successful model for both age groups. For 

adults, there was no difference between the performance of the DRC and CDP+. For children, 

the DRC was a significantly better match than the CDP+, perhaps because of younger readers’ 

increased reliance on GPCs (Marsh et al., 1981; Brown & Deavers, 1999), which are the 

pronunciations predicted by the DRC. 

 In order to understand why the TP is most successful overall, I first considered where the 

TP matches participant behaviour particularly well in comparison to the computational models. 

For items with a vowel winner pronunciation (in which pronunciation of the vowel grapheme is 

consistent enough to pass the tolerance test), the two statistical models perform less well than the 

TP. However, there is no difference between performance of the TP and DRC, as both predict 

use of the most common vowel pronunciation by type for these items, which seems to capture 

adults’ and children’s behaviour relatively well. Meanwhile, the statistical models may allow 

more interference from the level of the word body, which does not necessarily reflect human 

reading behaviour for these items which have consistent vowel pronunciations in English words. 

For vowel fail items (in which pronunciation of the vowel grapheme is not consistent enough to 

pass the tolerance test), the TP is a better predictor of adults’ and children’s vowel 

pronunciations than all three models. For these items, the TP deviates from the DRC predictions 

(which are always based on the most common pronunciation of the vowel grapheme); instead, it 

uses contextual information about the word body to predict the vowel pronunciation. This is 
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achieved through recursive application of the TP: if the pronunciation of the vowel grapheme is 

too inconsistent to pass the tolerance test, then a more specific productive pattern is sought using 

the word body. In this way, the categorical threshold of consistency and its recursive application 

to multiple orthographic levels predicts the precise way in which pronunciation of the vowel 

grapheme should be informed by adjacent letters. Even though the statistical models are also able 

to take information about consistency and multiple orthographic grain sizes into account, their 

predictions are not as successful as those of the TP for these items. A potential reason for this 

highlighted by Pritchard et al. (2012) is their oversensitivity to token-based statistics. Further, 

Treiman et al.’s (2003) assessment of a wide range of both rule-based and statistical models 

found that none successfully accounted for readers’ pronunciations of contextually-conditioned 

vowels.  

Looking at predictions from all four accounts that were matched by very few participants 

provides a fine-grained analysis of how the models deviate dramatically from readers’ behaviour, 

which in turn offers valuable insight into skilled and developing reading. For the rule-based 

DRC, the majority of pronunciations that were not used by participants were from condition 3, 

where the vowel grapheme fails the tolerance test. As noted above, the DRC predicts the most 

common pronunciation of the vowel grapheme for these items, despite the inconsistency of these 

grapheme-phoneme correspondences in English words. Indeed, participants do not use this level 

of correspondence to pronounce these condition 3 items, perhaps because it does not offer a 

pronunciation rule that is strong enough to be generalised in nonword pronunciation. This 

suggests that a model predicting categorical use of the most common pronunciation for 

inconsistent vowel graphemes may diverge from human reading behaviour in certain instances.   

Turning to the statistical models, both the CDP+ and Triangle models predict some vowel 

pronunciations according to consonantal context (i.e. body analogies) for items in vowel winner 

conditions. However, participants do not use these pronunciations for some items in these 

conditions, perhaps because they have a sufficiently consistent vowel pronunciation (passing the 

tolerance test), meaning that contextual information from the level of the word body is not 

required. Therefore, a successful computational model of reading should avoid making body 

analogies in instances where pronunciation of the vowel grapheme in isolation is relatively 

consistent, as this can deviate from human reading behaviour. Further, both statistical models 
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predict lexicalisations for some items that are not made by any participants. Whilst individual 

participants may produce occasional lexicalisations, this type of response does not accurately 

capture nonword reading behaviour across adult and child participants.  

All models fare badly in their predicted pronunciations of the EI/EIL letter sequences. 

Despite the fact that these items are in condition 1, meaning that one pronunciation of both the 

vowel grapheme and the body pass the tolerance test without conflict, participants are notably 

low in their use of this pronunciation. It seems that this letter sequence in particular generates 

unpredicted pronunciations by both child and adult readers. With the exception of these items, 

the TP does not predict any pronunciations which are used by no participants, suggesting that its 

use of a categorical, type-based threshold of consistency and the recursive application to multiple 

orthographic levels avoids unnatural generalisations of spelling-sound correspondences. Indeed, 

the TP’s approach seems to avoid the pitfalls of other models which result in some 

pronunciations rarely produced by readers, namely predicting use of a vowel GPC when this 

pronunciation is inconsistent; allowing interference from the body level when the vowel GPC is 

relatively consistent; and predicting lexicalisations.   

 

3.5.4 Understanding the TP’s performance: the importance of corpus consistency and 

participant variability 

As detailed above, the TP’s ability to predict nonword reading behaviour compared 

favourably with that of three computational models of word reading, including two statistical 

models that use continuous, token frequency-weighted measures of consistency. Considering that 

results discussed above indicated the key to the TP’s relative success lay in its use of a type-

based, categorical metric of consistency that can be applied recursively, a more detailed 

investigation of the role of consistency in the TP’s account of nonword reading was warranted. 

The aim of this investigation was to assess whether the TP’s novel role for consistency captured 

reading behaviour more successfully than the standard, continuous measure of consistency (the 

H value, Shannon, 1949), using either type or token frequency.  
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3.5.4.1 The relationship between corpus consistency and participant regularisation  

The investigation began by considering whether the relationship between corpus 

consistency of a vowel grapheme and participants’ vowel regularisation (use of the most 

common vowel pronunciation by type) was modulated by the TP’s own prediction for 

regularisation. This prediction is based on the pronunciation which passes the tolerance test at 

either the vowel or body level according to the categorical, type-based threshold which can be 

applied recursively. Results found that the TP could explain variance in participants’ vowel 

regularisation beyond the effects of continuous consistency measured by type and token. Firstly, 

this suggests that it is not simply the use of type-based consistency which underlies the TP’s 

ability to predict regularisation, as the TP was an improvement on the simple type-based 

measure. Instead, I propose that this ability is driven by use of a categorical threshold which 

provides the trigger to use information from the next orthographic level. In this way, the TP not 

only captures information from multiple grain sizes, but also integrates this information in a 

specific way, by predicting an interaction between the effects of vowel and body consistency on 

reading behaviour.  

 

3.5.4.2 The relationship between corpus consistency and participant variability  

Participants reading aloud nonword items do not all respond with the same 

pronunciations. Therefore, an important part of understanding reading behaviour involves 

capturing when participants are more or less varied in their responses. Previous research has 

found that greater inconsistency of spelling-sound mappings gives rise to greater pronunciation 

variability by participants (Mousikou et al., 2017). Therefore, I investigated the relationship 

between corpus vowel consistency and variability in participants’ vowel responses, and whether 

it is modulated by the TP. Specifically, I considered whether the participant variability increases 

with corpus consistency in a linear manner, or whether it is captured more successfully by a 

binary predictor, namely whether or not there is a spelling-sound correspondence (at either the 

vowel or body level) which passes the tolerance test. The TP would predict this pronunciation to 

be used productively by readers, resulting in less variability in participant responses.  
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Results from this analysis suggested that as corpus type consistency of the vowel 

increases, participants become less variable in their pronunciations of the vowel grapheme, 

which is consistent with findings by Mousikou et al. (2017). However, the analysis also indicted 

that this relationship between type-based consistency and participant variability is not modulated 

by having a pronunciation which passes the tolerance test. This does not support the suggestion 

that the TP’s categorical metric of consistency (and its recursive application) is able to capture 

pronunciation variability beyond the effect of a continuous measure of consistency. Whilst 

analyses above suggested that participants’ use of a particular pronunciation is predicted more 

successfully by the TP than by continuous measures of consistency, these results suggest that this 

success does not extend to capturing variability across participants.  

 

3.5.4.3 The relationship between participant variability and age  

An important aspect of the TP theory is that an individuals’ productive rule system is 

determined by the specific language input to which they have been exposed (Yang, 2016, p. 69). 

Research has found that text exposure predicts unique variance in orthographic knowledge 

during reading acquisition (Cunningham and Stanovich, 1992). The 8-9 year-old child 

participants would have had just a few years’ reading experience and exposure to a relatively 

narrow range of text types compared to adult participants. Moreover, they would all have learned 

to read through systematic training in synthetic phonics, meaning that their instruction would be 

very similar across schools, and would have highlighted the most common mappings between 

phonemes and graphemes. This instruction may have long-lasting effects on participants’ use of 

alternative pronunciations of nonwords, as found in adult readers by Thompson et al., (2009). 

Meanwhile, adult participants had learned to read before the introduction of compulsory phonics, 

and would also have had an increased opportunity over many years to become much more varied 

in their reading experience. For these reasons, I hypothesised that child participants may have 

formed more similar pronunciation rule systems to each other than adult participants may have, 

with the result that responses across child participants would be less variable than across adult 

participants.  

However, results indicated that children’s responses were in fact more variable than 

adults’, contrary to this prediction. I suggest that this could be due to the fact that at this age, 



  

110 

 

children are still undergoing development in their reading ability which can progress at different 

rates for different children for a variety of reasons (Powell et al., 2014), despite their similar 

instruction. Their productive rule systems may reflect these differences, and give rise to a greater 

variability in responses. Adult readers, meanwhile, may have reached a point at which the rule 

systems they have developed are actually more stable and similar to each other’s, as individual 

differences in text exposure (at least in terms of the frequency of exposure to certain spelling-

sound correspondences) become less pronounced over years of broad, cumulative reading 

experience.  

 

3.5.5 Summary: what can the TP capture about nonword reading behaviour?  

 This initial investigation of the TP within the field of reading suggests that Yang’s (2016) 

theory is able to offer a novel stance within the existing literature on nonword reading behaviour. 

Namely, it is a rule-based approach which uses statistical information about consistency, thus 

providing a bridge between previous rule-based models of word reading (such as the DRC) and 

statistical models (such as the Triangle and CDP+ models). Results from the current study 

suggest that this approach can indeed account for adults’ and children’s nonword reading aloud 

more effectively than these models, which have previously been found wanting (Treiman et al., 

2003).  

Overall, the TP’s role for consistency seems to underlie its success in predicting nonword 

pronunciations. This approach to consistency is novel in a number of ways: firstly, it is based on 

type frequency counts alone; the number of alternative pronunciations is not weighted by token 

frequency within the algorithm. According to Yang, “the empirical frequencies of words are 

ignored entirely” (2016, p. 76) when determining productivity, which is instead calculated on the 

basis of the number of regular and irregular items. Secondly, it provides a categorical metric of 

consistency; the threshold produced by the algorithm determines the specific level of 

inconsistency (i.e., the number of exceptions) that can be tolerated by a productive pattern. The 

particular consistency of a pattern is immaterial until it reaches this threshold. Thirdly, the TP 

applies recursively: when a productive pattern is not found across a total set of items (i.e. the 

pattern “fails the tolerance test”), the TP applies to smaller subsets in order to find more specific, 

productive patterns.  For reading, not only does this mean that the TP can capture information at 
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different orthographic levels (such as the grapheme and the word body) but that it can predict a 

precise interaction between them. For example, it predicts that information from the word body 

is only used when the inconsistency of a vowel grapheme goes beyond the threshold.  Whilst 

earlier work has suggested that there may be an interaction between the consistency of context-

dependent and context-sensitive pronunciations (Treiman et al., 2003; Kessler, 2009; Steacy et 

al., 2019), the TP is the first account to predict explicitly when this interaction should occur. 

Furthermore, this prediction is borne out by the findings that it can capture nonword reading 

behaviour more successfully than the three models of reading considered here. 

Together, these facets of the TP’s account of consistency enable a precise prediction 

about which spelling-sound mappings will be used productively by readers, in a way that is more 

successful than other models of word reading or type- and token-based measures of consistency. 

However, it was not able to account for variability in responses across participants, which 

perhaps hints at the importance of taking into account the role of an individual’s reading 

experience in order to understand human reading behaviour.   

This study has also informed our understanding of skilled and developing nonword 

reading behaviour beyond the TP. Whilst the TP’s type-based consistency metric captures 

reading behaviour most successfully, findings have also suggested that readers may also pay 

attention to other statistical properties of text. In particular, an analysis of items without 

pronunciations predicted by the TP provided preliminary evidence that token frequency 

information from the grapheme and body level can inform nonword pronunciations by adults and 

children. The analysis of the relationship between corpus consistency and regularisation for 

items with a TP prediction also found that a token-frequency based measure of consistency had 

an effect on regularisation alongside the effect of the TP. Further investigation into the role of 

token frequency may shed light on the finding that in general, nonword reading behaviour is not 

as categorical as TP predicts.  

Building on earlier findings, this study has provided additional evidence that both adult 

and child readers use contextual information from larger orthographic grain sizes than the 

grapheme in nonword reading. Further, children used the word body to inform their vowel 

grapheme pronunciations less often than adults, in line with previous research (March et al., 

1981; Treiman et al., 1990; Bruck & Treiman, 1992; Brown & Deavers, 1999). Despite their 
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more similar reading instruction and experience, children were more varied in their responses 

than adults, suggesting that their productive systems of orthography-phonology mappings are 

still undergoing development. Together, these results suggest that younger readers continue to 

gather information from their reading experience over many years, including knowledge of more 

complex body-rime pronunciation patterns.  
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Chapter 4: Testing the Tolerance Principle in adults and children learning an artificial 

orthography  

 

4.1 Introduction  

The aim of Experiment 2 was to examine whether the Tolerance Principle (Yang, 2016) 

could predict adult and child learners’ generalisation of novel spelling-sound correspondences. 

Using an artificial orthography paradigm, participants were first trained to read aloud nonword 

items using novel vowel symbols, and then asked to pronounce untrained items in order to 

capture their generalisation of the novel spelling-sound correspondences. This experiment 

manipulated whether the consistency of the spelling-sound correspondence for each novel vowel 

symbol passed the tolerance test or not according to the tolerance algorithm (Yang, 2016, p. 8-9). 

 This chapter begins by reviewing existing research that explores the TP experimentally; 

this work is then placed in the context of findings from other artificial language learning studies 

and the wider statistical learning literature. I then review existing research using artificial 

orthography learning paradigms, before demonstrating how this methodology can be used to 

explore the TP, address wider issues in statistical learning, and inform the debates surrounding 

models of word reading.  

 

4.1.1 Previous experimental work on the TP  

There have been no previous studies exploring the TP using artificial orthography 

paradigms. However, a series of studies (Schuler et al., 2021; Schuler, 2017) used an artificial 

language paradigm to investigate whether the TP could predict adult and child participants’ 

generalisation of morphological patterns. Artificial language learning paradigms are a valuable 

tool for research on language learning and generalisation, as they allow precise control over both 

the design of the input language and exposure to the language in the learning environment 

(Taylor et al., 2011; Taylor et al., 2017).  

 Schuler’s (2017) artificial language was formed of 9 nonsense nouns paired with novel 

plural morphemes. Twenty adults and fifteen children (aged 6-8 years) were exposed to one of 
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two language conditions: one in which 5 of the 9 nouns used a regular plural maker, and the 

other in which 3 of the 9 nouns used the regular plural marker. In the 5 Regular/4 Exceptions 

(5R4E) condition, the number of exceptions did not cross the tolerance threshold for a set of 9 

items (4 exceptions), so the TP predicts that a productive rule should be formed. In the 3 

Regular/6 Exceptions (3R6E) condition, the number of exceptions exceeded the tolerance 

threshold, so the TP predicts that a productive rule should not be formed.  

In Experiment 1, noun frequency during exposure to the language varied along a Zipfian 

distribution (Zipf, 1949), with nouns that used the regular marker appearing most frequently in 

both conditions. Following the exposure, participants’ use of a productive rule was assessed by 

producing plural markers for untrained novel nouns. It was hypothesised that participants who 

formed a productive rule as predicted by the TP would use the regular marker 100% of the time 

during generalisation; participants who did not form a rule should use this marker significantly 

less often than 100% of the time. Indeed, child participants’ use of the regular marker did not 

differ significantly from 100% in the 5R4E condition, whilst regularisation was much lower in 

the 3R6E condition at 16.9%. It thus appears that children behave categorically as predicted by 

the TP: they used a productive rule in the 5R4E condition but not the 3R6E condition. 

Meanwhile, adults displayed a different pattern of results. Their use of the regular marker in the 

5R4E condition was at 65.0%, significantly lower than the predicted 100%. Furthermore, this 

rate of regularisation was not significantly different from the rate of 51.7% in the 3R6E 

condition. Therefore, adults did not obey the TP as children do in their generalisation behaviour. 

Instead, Schuler found that adults’ use of the regular marker matched the token frequency with 

which it occurred in the linguistic input, a strategy known as probability matching (Hudson Kam 

& Newport 2004, 2005).  

 The author notes that the children’s generalisation behaviour here could be explained by 

a simpler evaluation metric than the TP: it is possible that learners only required a majority of 

forms to follow the regular pattern in order to support productivity. The TP employs a stricter 

threshold for productivity: a substantial majority is required, with the number of tolerated 

exceptions decreasing proportionally as the overall number of items increases. To investigate this 

further, Experiment 3 involved a more rigorous test of the TP, using a new artificial language 

that consisted of 10 regular nouns and 6 irregular nouns. Here, the number of exceptions 
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exceeded the tolerance threshold (5), so if learners are using the TP then a productive rule should 

not be formed. However, if learners are using a simple Majority of Forms metric, then a 

productive rule should be formed. Results suggest that children aged 5-7 followed the TP, as 

their use of the regular marker (39.9%) was significantly lower than 100% and not significantly 

different from chance. Meanwhile, adults’ use of the regular marker was not significantly lower 

than 100%, as predicted by a Majority of Forms approach. However, this rate of regularisation 

also did not differ from the high token frequency of the regular form in the input, meaning that 

their behaviour could also be explained by probability matching. Moreover, the low number of 

participants in this experiment (ten children and seven adults) means that it is difficult to form 

any firm conclusions.  

Schuler’s (2017) finding that children regularised inconsistent grammatical markers in 

accordance with the TP’s categorical predictions, whilst adults used an alternative probability 

matching strategy, opens the possibility that the TP will also have differential effects on adults’ 

and children’s generalisation behaviour in the current artificial orthography learning study. There 

is a theoretical basis for predicting that, in general, children rather than adults will follow the TP. 

Yang (2016, p. 66-67) suggests that children are superior language learners to adults because 

their vocabularies are smaller, and as the TP tolerates a larger proportion of exceptions for 

smaller groups of items, this allows children (with smaller vocabularies) to form productive rules 

more easily than adults (with larger vocabularies). However, this is unlikely to be a relevant 

motivation in an artificial language or orthography experiment where all participants are exposed 

to the same stimuli in the same way.  

Instead, Schuler (2017, p. 79-91) proposes that the TP applies uniquely to children as a 

result of cognitive differences between children and adults which result in an early maturational 

state optimally suited to the TP. Building on Newport’s (1990) “Less is More” hypothesis, she 

proposes that these differences involve memory and cognitive constraints during development 

which allow the TP to operate as a low-level competition, rule-forming mechanism for children 

(2017, p. 90). Adults, with fully-developed cognitive capacity, can override this low-level 

mechanism and use more complicated strategies such as probability matching, thereby failing to 

acquire productive rules in the way that children do. Indeed, it is effectively children’s cognitive 

limitations which enable them to acquire these rules so successfully. The current study allows an 
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expanded investigation of this hypothesis to compare children and adults’ rule-learning 

behaviour in the field of reading, specifically of spelling-sound correspondences.  

Additional experiments from Schuler (2017) will also be reviewed in Chapter 5, as part 

of a more detailed discussion about the importance of type and token frequency input statistics 

for learning. In summary, the results described above suggest that children, but not adults, follow 

the TP predictions of generalisation behaviour in a strikingly categorical way. It must be noted 

that the small number of participants in these experiments (together with use of a between-

subjects design in Experiment 1) means that the results should be interpreted with caution. 

Nevertheless, this research demonstrates that an artificial language training-generalisation 

procedure can be used as an effective method for testing the TP experimentally.  

 

4.1.2 Statistical learning 

The results obtained by Schuler (2017) have interesting implications in the context of 

previous literature on statistical learning, both regarding the extraction of statistical information 

to form regularities, and the differences between adults and children. Statistical learning is an 

approach to language acquisition which maintains that learners use general learning mechanisms 

to extract information about statistical distributions in the linguistic input. These mechanisms are 

shaped by memory and processing constraints, with the result that underlying similarities 

between languages are not necessarily the result of innate linguistic knowledge, but rather the 

nature of the learning process (Saffran, 2003).  

Early statistical learning studies demonstrated that learners are able to track basic 

statistical properties of the input. Saffran et al. (1996) found that adults presented with an 

artificial language were able to segment a speech stream into syllables, and acquire syllable 

order, according to the distributional characteristics of the continuous input. Saffran et al. (1997) 

demonstrated that children aged 5-7 were also able to do so, noting that this seemed to be an 

implicit process without any direction of participants’ attention at the speech stream.  

Exploring possible constraints on statistical learning, Saffran et al. (1996) found that 8-

month-old infants could discriminate between “words” and “nonwords” after a two minute 
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exposure to a simplified corpus of trisyllabic nonsense words, by using information about 

transitional probabilities in the input. Aslin et al. (1998) found that 8-month-olds could go further 

by discriminating words from part-words, and demonstrated that this was indeed due to syllabic 

conditional probabilities rather than syllable frequencies. The authors concluded that infants of 

this age are performing an analysis of the statistical distributions in the input involving a large 

number of different conditional probabilities rapidly and simultaneously, and without explicit 

direction of attention. Saffran et al. (1999) conducted a similar study with infants the same age 

but using a non-linguistic tone stream rather than a speech stream as input. Again, the infants 

were able to differentiate between “tone words” and “tone part-words”, suggesting that the 

statistical mechanism participants had used in the linguistic studies was capable of performing 

similar computations on non-linguistic input. Together, these early statistical learning studies 

demonstrate that infants, children and adults are able to extract distributional information from 

the input, and that this capability may not solely be based on language-specific learning 

mechanisms.  

According to Thiessen et al.’s (2013) Two-Process Account, this kind of statistical 

learning process should be categorised as extraction, whereby discrete units are extracted from a 

continuous input using conditional statistical information such as transitional or conditional 

probabilities (as described in the studies above). In contrast, the subsequent process of 

integration involves combining information across these extracted units to reveal the central 

tendencies of a set of items. According to Thiessen et al., this process involves distributional 

statistical information such as frequency and variability (Maye et al., 2002; Thiessen & Pavlik 

2012). It is this second process of statistical learning which is particularly relevant to our 

investigations, and which has been the focus of a line of research preceding Schuler’s work, 

asking: how do learners use statistical distributions in the input to identify patterns, and is the 

outcome of this process probabilistic or all-or-none?   

Hudson Kam and Newport (2005) explored these questions, investigating what patterns 

learners are able to acquire from inconsistent linguistic input using an artificial language learning 

paradigm. Specifically, they asked whether participants learn and reproduce the statistical 

distributions they are exposed to, or whether they make the language more consistent through 

regularisation, i.e. reducing variability by maximising one pattern from the input or imposing a 
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new pattern, and using this consistently. Experiment 1 manipulated the consistency of 

determiners during exposure by varying their frequency of occurrence with nouns across 

different input conditions. During a production test, adult learners generally reproduced the level 

of variation in the input by using the determiners at the rate they had heard them during training. 

This pattern of results suggests that participants had learned veridically rather than by adopting a 

general rule to characterise the language (i.e., regularising the inconsistencies). In Experiment 2, 

they compared the behaviour of adults and children (aged six) using a simpler version of the 

language, but again manipulated frequency of the determiner across input conditions. 

Examination of individual participant productions found that children used the determiners 

systematically even in the inconsistent conditions, which suggests they impose regular structure 

on inconsistent input. Meanwhile, adults varied their use of the determiner when the input was 

inconsistent, and demonstrated systematic use of determiners only when their input was 

consistent. The authors suggest this reveals dramatic differences between the outcomes of 

learning at different ages, with children showing a strong tendency to regularise the language 

whilst adults match the variation they are exposed to, known as probability matching. However, 

it is worth noting that despite these contrasting patterns of behaviour, Experiment 2 did not 

reveal significant differences between children and adults, perhaps as a result of the small sample 

sizes. 

In another series of artificial language learning experiments, Hudson Kam and Newport 

(2009) again investigated whether learners reproduce or regularise variation from the linguistic 

input. In Experiment 1, adults were presented with different levels of “scattered inconsistency” 

during training: one “main” and multiple “noise” determiners occurred with nouns at varying 

frequency across input conditions. In a production test, participants who had received more 

“scattered” or complex input used more main determiner forms than participants with less 

scattered input. Therefore, it seems that increasingly complex and inconsistent input induces 

higher rates of regularisation in adults. Results from Experiment 2 suggested that when 

determiners had the same complex range of variation (or “scatter”) and low level of frequency, 

but occurred in consistent rather than inconsistent noun contexts, adults no longer regularised 

their use of determiners. Instead, they learned the patterns veridically and reproduced the 

variation present in the input. Using a simplified version of Experiment 1, Experiment 3 

compared adult and child learners aged 5-7 years. They found that during production, children 
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almost always regularised their determiner use, regardless of their input condition. In contrast, 

adults only displayed systematic use of the determiner in the most consistent condition; 

otherwise, they used determiners in a variable way, as in their input. This suggests that adults, 

unlike children, reflected the inconsistency of the determiners in the input. As the scattered 

inconsistency here was not as complex as that found in Experiment 1, adults did not regularise 

their determiner use as they did in the earlier experiment. 

In a similar study, Wonnacott et al. (2017) investigated adults’ and six-year-old 

children’s ability to track distributional statistics in a semi-artificial language learning paradigm, 

specifically looking at the learning of co-occurrence relationships between particles and nouns. 

Learners were exposed to either a “skewed” language in which five nouns used the same particle 

and one noun used a second particle, or an “unskewed” language, in which three nouns used one 

particle, and three nouns used a second particle. Both children and adults demonstrated better 

accuracy when producing particles for trained input nouns from the skewed than unskewed 

language. Importantly, this was true for both majority and minority noun-particle pairings in the 

skewed language. Children also demonstrated better accuracy for “minimal exposure” nouns 

(introduced after initial training) in the skewed language; results from adults were inconclusive 

for these items. The authors suggest these results reveal stronger lexical learning and less 

generalisation in the skewed than unskewed language. However, this study did not explicitly 

assess generalisation to novel items; the only opportunity to assess (over-)generalisation was in 

incorrect particle productions for trained or minimal exposure items that had not been 

successfully learned. Due to this design, it is impossible to tease apart productive generalisation 

behaviour from learning success or failure. Moreover, it is also possible that learners in the 

skewed condition are actually demonstrating more refined generalisation than those in the 

unskewed condition; that learning a majority pattern (perhaps as a productive rule) could make it 

easier for a small number of exceptions to be learned individually, stored separately, and thus not 

over-generalised. Indeed, this is consistent with a TP approach to generalisation and rule-

learning. 

Together, results from these artificial language learning studies suggest that learners are 

able to track statistical or probabilistic information in the input, as maintained by a statistical 

learning account of language acquisition. The outcome of the process can be veridical (i.e., 
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reflecting distributions from the input), or it can result in regularisation of the language (i.e., 

imposing additional structure that goes beyond the input statistics by removing inconsistent or 

probabilistic patterns). Children in particular appear to regularise systematically, ironing out 

inconsistencies in the input, whereas adults may only regularise in instances where the 

inconsistencies or complexities of the input are too difficult to track. Otherwise, the outcome of 

their learning seems to reproduce the statistical patterns and inconsistencies they were exposed 

to. These results are largely in line with Schuler’s recent work, which also found that children are 

likely to regularise their input whilst adults reproduce the variation from the input. However, this 

work also revealed limits on children’s regularisation, namely a level of inconsistency in the 

input that crosses the tolerance threshold (in the 3R6E condition). These findings will be 

explored further in the current experiment, using an artificial orthography paradigm.  

 

4.1.3 Artificial orthography studies  

Early artificial orthography studies focused on whether participants could learn individual 

sound to symbol mappings for novel letters, without using whole-word items. For instance, 

Byrne (1984) and Byrne and Carroll (1989) found that adults could learn associations between 

sounds and novel symbols, but could not acquire or generalise knowledge of the mappings 

between phonetic features and orthographic elements that were embedded in the novel symbols. 

More recently, artificial orthography studies have begun to examine extraction of sub-word 

spelling-sound mappings from word-level items.  

For example, Bitan and Karni (2003) investigated adults’ learning of spelling-sound 

patterns using novel words written in an artificial script, in which each phoneme was represented 

by a sequence of two or three symbols. Using three different sets of stimuli, participants 

completed explicit, implicit and arbitrary (pictographic) training conditions, with the order of 

training counterbalanced across participants. The authors found that only after explicit training 

involving letter decoding instruction could participants segment word items into specific symbol 

strings and transfer this letter knowledge from the trained to novel items. This suggests that 

adults require explicit instruction in order to extract individual spelling-sound correspondences 

from whole words and to generalise this knowledge (see also Rastle et al. (2021) for evidence of 

the dramatic impact of direct instruction on learners’ generalisation of novel spelling-sound 
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regularities). However, certain aspects of the methodology mean that these results should be 

interpreted with caution. Firstly, (as noted by Taylor et al., 2011) use of a sequence of two or 

three symbols to represent each phoneme – a feature designed to reduce interference from 

alphabetic knowledge – may increase the difficulty of extracting individual spelling-sound 

correspondences. Secondly, within each stimulus set, combinations of only three different 

symbols were used to create the “letter” sequences, which may compound this extraction 

difficulty by impeding differentiation between the symbol sequences. Indeed, Bitan and Karni 

note that the complexity of the segmentation rules may have hindered extraction of the letter 

sequences. Thirdly, there were only six words in each training set, which would likely reduce 

learners’ ability to extract patterns without instruction due to an insufficient number of 

exemplars, given that variability is necessary for generalisation (Tamminen et al., 2015). Finally, 

only a small number of participants (nine) took part in the study.  

Subsequent studies have, in contrast, found that adult learners are able to extract spelling-

sound correspondences from exposure to word-level items written in a novel orthography, 

without explicit instruction. The first to do so was by Taylor et al. (2011), who also explored 

whether adults’ learning and generalisation of spelling-sound correspondences was influenced by 

their consistency and frequency during training. Four novel vowel characters were used in the 

artificial orthography: two were consistent with a one-to-one grapheme-phoneme mapping, and 

two were inconsistent, pronounced in one way when preceded by a particular consonant 

character and in a different way when preceded by any other consonant character. Type 

frequency of the characters during training was also manipulated, with certain spelling-sound 

correspondences either “high” or “low” frequency. Results showed that learners were sensitive to 

the frequency, consistency and consonantal context of spelling-sound mappings during learning 

and generalisation, indicating that they were sensitive to the statistics of the learning 

environment. Specifically, spelling-sound mappings were learned and generalised more 

accurately if they were highly frequent or highly consistent. In learning, there was an interaction 

between frequency and consistency, such that consistency only affected items with low-

frequency vowels, and the advantage of items with high over low frequency vowels was found 

only when vowels were inconsistent. In generalisation, this interaction did not reach significance 

but the data followed a similar trend to that seen during the learning phase.  



  

122 

 

Using an artificial orthography based on Chinese phonograms, Zhao et al. (2018) also 

found an effect of consistency on learning. For both orthography-phonology and orthography-

semantics mappings, higher consistency during training gave rise to more successful learning of 

both types of correspondences by adults. Furthermore, they demonstrated that learners could 

develop knowledge of sub-lexical regularities after exposure to the language, without any 

explicit training of these regularities. Taylor et al. (2017) also used an artificial orthography that 

included phonological and semantic mappings, and found that training which emphasised 

orthography-phonology correspondences rather than orthography-semantics correspondences 

was more effective for adult learners. The benefits included faster and more accurate reading 

aloud of trained items, faster generalisation of novel items, and higher accuracy in 

comprehension of written words earlier in learning. Furthermore, their fMRI neuroimaging 

results found that there is large overlap between neural activity when reading aloud English 

words, pseudowords, and the items written in the artificial orthography. This supports use of 

artificial orthographies as an effective way to reveal insights about the systems underlying 

reading. Additional neuroimaging evidence that these paradigms are not general problem-solving 

tasks but instead tap specific reading mechanisms is presented by Taylor et al. (2019): two 

weeks’ training on an artificial orthography yielded a hierarchy of neural representations for 

orthographic, phonological, and semantic information along the ventral stream in adult learners.  

In contrast to this recent research with adult participants, very few artificial orthography 

studies have investigated learning by children; those that did involve children have tended to 

examine the effects of dyslexia on learning (e.g. Law et al., 2018; Tong et al., 2020). Some work 

has been carried out with typically developing children investigating whether statistical learning 

processes – similar to those observed in spoken language acquisition – underlie the development 

of knowledge between spelling and sound. For example, Samara et al. (2019) explored whether 

learners could generalise novel graphotactic rules (i.e. permissible letter combinations) without 

explicit instruction in two different linguistic contexts (Turkish and English). Turkish and 

English children aged 6-7 were exposed to CVC nonwords in their respective orthographies 

which contained contingencies between the medial vowel and either word-initial or word-final 

consonants. Following exposure, children were able to discriminate between permissible and 

impermissible novel items, which suggests they could learn and generalise graphotactic 

constraints using information about statistical distributions in the input rather than through 
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instruction. Beyond these findings that children seem to make use of statistical information as 

they acquire knowledge of spelling-sound patterns, the current study is one of the first to explore 

what input characteristics support children’s learning and generalisation of unfamiliar spelling-

sound patterns using an artificial orthography. 

In summary, the body of research described above has demonstrated that adult learners 

are able to extract spelling-sound correspondences from whole-word items written in artificial 

orthographies, and that their learning and generalisation of this knowledge is sensitive to the 

consistency, frequency and training of the stimuli. I therefore consider an artificial orthography 

paradigm to be an appropriate methodology to investigate a number of broad research questions. 

Firstly, it can assess whether learners acquire and generalise spelling-sound correspondences 

according to the numerical predictions of the TP by manipulating type frequency, token 

frequency and consistency of spelling-sound mappings during training in a precise way. This 

allows greater control over the input statistics than is possible in natural language research. 

Secondly, it can be used to address wider issues in statistical learning such as which statistical 

properties of the input are most important for learning and generalisation, and whether 

participants’ learning reflects distribution of the input or imposes increased regularity. Thirdly, 

the results will be informative in the debates surrounding models of word reading. Different 

computational models (including the DRC, CDP+ and Triangle models) place varying weight on 

input variables including type frequency, token frequency and consistency. Using a methodology 

that allows complete control over these variables in order to examine their effects on learning 

and generalisation can therefore be useful to assess the merits of extant reading models. Finally, 

by training adults and children in the same paradigm, we are able to investigate potential age-

related differences in the generalisation of spelling-sound knowledge. These may be parallel to 

the differences between adults’ and children’s generalisation of grammatical knowledge found in 

the artificial language learning studies above.    
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4.2 Experiment 2 

Experiment 2 investigated whether the Tolerance Principle (Yang, 2016) could predict 

adult and child learners’ generalisation of novel spelling-sound correspondences. The TP states 

that there is there is a categorical distinction between productive rules that can be generalised 

(applied to unseen items), and rules which are lexically-specific and unproductive as the number 

of exceptions to the rule exceeds the tolerance threshold (Yang, 2016, p. 9; p. 34; see Section 2.5 

for detailed discussion). Yang provides a tolerance algorithm (Yang 2016, p. 8-9) which 

numerically predicts the tolerance threshold for a set of N items. The TP can therefore be used to 

predict which spelling-sound correspondences or “pronunciation rules” pass the tolerance test 

and should be used productively by learners.   

Using an artificial orthography paradigm, participants were trained to read aloud 

nonword items which used three novel vowel symbols. The novel vowel symbols varied in the 

consistency of their relationship to spoken forms, such that they either passed the tolerance test 

or did not. Participants were then tested on trained items to assess the orthography-phonology 

knowledge they had learned from this artificial orthography, and critically were also tested on 

untrained items to assess their generalisation of this knowledge. Additionally, an old-new test of 

trained and untrained items was used to assess learners’ recognition memory of trained items.  

 The consistency of the three novel spelling-sound correspondences during training was 

manipulated by condition. Each condition had 10 nonword items using one novel vowel symbol. 

The TP states that for a set of 10 items, the number of exceptions a productive rule can tolerate is 

4. In the 8 Regular/ 2 Irregular condition (8R2I), the vowel symbol had a regular pronunciation 

in 8 items and irregular pronunciations in 2 items. In the 6 Regular/ 4 Irregular condition (6R4I), 

the vowel symbol had a regular pronunciation in 6 items and irregular pronunciations in 4 items. 

Following the TP, participants should form a productive pronunciation rule in both the 8R2I and 

the 6R4I conditions as the number of irregular pronunciations does not exceed the tolerance 

threshold of 4. However, in the 4R6I condition, the vowel symbol had a regular pronunciation in 

4 items and irregular pronunciations in 6 items. In this condition, the TP predicts that participants 

should not form a productive pronunciation rule for the vowel symbol.   

During the Generalisation task in the testing phase, participants read aloud a set of 30 

untrained items using the three novel vowel symbols learned during the training phase. Analysis 
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of these pronunciations allowed us to assess whether participants had formed a productive rule 

for each novel vowel symbol on the basis of exposure to these vowels during training. The TP 

predicts that learners will regularise their pronunciation of the vowel (i.e., productively use the 

most common type of vowel pronunciation from the training phase) for 100% of generalisation 

items from the 8R2I and 6R4I conditions, where a productive rule is predicted. Critically, the TP 

predicts there should be no difference in participants’ regularisation in these two conditions. In 

contrast, the TP predicts learners will use the regular pronunciation at no more than chance level 

(25%) for items from the 4R6I condition, where a productive rule is not predicted. Although the 

TP predicts the same pattern of regularisation for both adults and children, Schuler et al. (2021) 

found that the TP successfully predicted children’s generalisation but not adults’ in an artificial 

grammar paradigm. Therefore, we may expect the TP to have a greater effect on children’s 

vowel regularisation than adults’ in the Generalisation task. 

The TP prediction for regularisation in each condition differs from that of an established 

rule-based model of reading: the DRC (Coltheart et al., 2001) would expect learners to use the 

regular pronunciation for generalisation items in all conditions, as it stipulates that the most 

frequent pronunciation of a grapheme (by type) should be used productively.  

 In contrast to the rule-based approaches of the TP and DRC, statistical learning 

frameworks predict that generalisation behaviour is sometimes (particularly for adults) based on 

the statistical distributions from the learning environment in a continuous way. This could 

involve matching the type or token frequency of forms in the input (e.g. probability matching 

(Hudson Kam and Newport 2004, 2005)). Therefore, this approach would predict type and token 

frequency of the regular vowel during training to have an effect on vowel regularisation. Indeed, 

Schuler (2017) found the token frequency of regular plural-markers during training to be the 

basis of adults’ regularisation behaviour in an artificial grammar paradigm. In the current study, 

the token frequency of regular items varied across all participants, as items from the artificial 

language were assigned a rank on the Zipfian distribution at random for each participant. 

Meanwhile, the type frequency of the regular pronunciation remains at a constant 80% in the 

8R2I condition, 60% in the 6R4I condition, and 40% in the 4R6I conditions, for all participants.  

Finally, I considered the relationship between successful learning of trained regular items 

assessed in the Final Reading Aloud test and the rates of vowel regularisation for untrained items 
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in the Generalisation Task, in order to explore the relationship between learning and 

generalisation of the regular pattern.  

 

4.3 Method  

4.3.1 Participants  

Twenty-seven adult participants (mean age 21; 20 females and 7 males) were recruited 

from the student body of Royal Holloway, University of London. Twenty-six child participants 

(mean age: 10 years 4 months, range: 9 years 10 months; 10 years 9 months; 11 females and 15 

males) were recruited from a primary school in Somerset, UK. Participants were monolingual, 

native English speakers, with a Southern British English accent and no known language or 

learning difficulties. Participants had normal or corrected-to-normal vision. Each adult 

participant received £10 for their involvement in the study. Each child participant received a 

certificate and stickers for their involvement in the study; the school received redeemable 

vouchers. Three adult participants were excluded, due to technical error (n = 1) and not fulfilling 

eligibility requirements (n = 2). Two child participants were excluded due to poor performance, 

by scoring below 20% accuracy in the final Reading Aloud test of the 30 exposure items. 

Therefore, data from twenty-four adult participants and twenty-four child participants were 

included in our analysis. The study received approval from the procedures of the Ethics 

Committee at Royal Holloway, University of London.  

 

4.3.2 Stimuli and design 

To assess whether participants who learn to read aloud an artificial orthography follow 

the predictions of the Tolerance Principle (TP), I designed an artificial language consisting of 30 

nonword items. Each item had a consonant-vowel-consonant (CVC) structure. In the 

orthography of this artificial language, the consonant graphemes were 11 familiar letters from the 

English alphabet (d, t, p, b, k, g, m, n, v, f, l) which corresponded to their most frequent 

pronunciations (/d/, /t/, /p/, /b/, /k/, /g/, /m/, /n/, /v/, /f/, /l/ respectively). The vowel graphemes 

were three “novel” letters: “ʕ” “ƍ” “Ϸ”, the forms of which were borrowed from the Semitic, 

Greek and Bactrian alphabets respectively. In this artificial orthography, these three graphemes 
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had inconsistent vowel pronunciations, with a one-to-many grapheme-phoneme mapping. The 

consistency of the pronunciations of the three vowel graphemes were manipulated to form three 

conditions: two conditions in which the TP predicts that learners should form a productive rule 

for pronunciation of the vowel grapheme, and one condition in which the TP predicts learners 

should not form a productive rule for pronunciation of the vowel grapheme.  

 Each of the three conditions consisted of 10 nonword items. Each vowel grapheme was 

used in only one condition, appearing in the medial position of all 10 items for that condition. 

Yang's TP algorithm (2016, p. 8-9) was used to calculate the number of exceptions a productive 

rule can tolerate for a set of 10 items; the predicted threshold of tolerated exceptions is 4 items. 

This threshold was used to form two conditions in which, according to the TP, the pronunciation 

of the vowel grapheme is sufficiently consistent to form a productive rule (passing the tolerance 

test), and one condition in which the pronunciation of the vowel grapheme is not sufficiently 

consistent to form a productive rule (failing the tolerance test). The first condition had 8 regular 

items following a pronunciation rule and 2 irregular pronunciations (8R2I). In this condition, the 

TP would predict learners to form a productive rule as the number of irregular items (2) falls 

below the tolerance threshold (4). The second condition had 6 items following a regular 

pronunciation and 4 irregular pronunciations (6R4I). In this condition, the TP would again 

predict learners to form a productive pronunciation rule for the vowel grapheme, as the number 

of irregular items does not exceed the tolerance threshold of 4. However, this condition provides 

a more rigorous test of the TP as the number of irregular items reaches, but does not breach, the 

tolerance threshold for a set of 10 items. Critically, the TP predicts no difference in 

regularisation behaviour for these two conditions that pass the tolerance test. The third condition 

had 4 regular items following a pronunciation rule and 6 irregular items (4R6I). In this condition, 

the TP would predict that learners do not form a productive rule for the pronunciation of the 

vowel grapheme as the number of exceptions (6) exceeds the tolerance threshold of 4 irregular 

items.    

   The regular pronunciation of the vowel grapheme corresponded to the phoneme /ɪ/ in 

the 8R2I condition, the phoneme /ɒ/ in the 6R4I condition, and the phoneme /i:/ in the 4R6I 

condition. The phonemes /e/, /u:/ and /æ/ were used as irregular pronunciations for the vowel 

graphemes, each appearing in a total of four nonword items each across all three conditions. The 
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use of three vowel graphemes in each condition was rotated so that three mappings (A, B and C) 

were counterbalanced across participants, as seen in Table 4.1. 

 

Table 4.1 

Rotated vowel grapheme mappings in three conditions  

 Mapping A Mapping B Mapping C 

8R2I vowel ƍ Ϸ ʕ 

6R4I vowel Ϸ ʕ ƍ 

4R6I vowel ʕ ƍ Ϸ 

 

 

The full artificial language consisting of three conditions and 30 nonword items, with 

pronunciations and orthographic representations using Mapping A, is shown in Table 4.2. 
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Table 4.2 

The condition, orthographic form, pronunciation and regularity of 30 nonword training 

items 

Condition  
Orthographic 

Representation 
Pronunciation Mapping Regularity 

8R2I pƍb /pɪb/ Regular 

8R2I  bƍp /bɪp/ Regular 

8R2I  kƍg /kɪɡ/ Regular 

8R2I  gƍn /ɡɪn/ Regular 

8R2I  tƍv /tɪv/ Regular 

8R2I  lƍf /lɪf/ Regular 

8R2I  fƍd /fɪd/ Regular 

8R2I  vƍk /vɪk/ Regular 

8R2I  mƍl /mel/ Irregular 

8R2I  nƍm /nuːm/ Irregular 

6R4I lϷn /lɒn/ Regular 

6R4I nϷp /nɒp/ Regular 

6R4I vϷk /vɒk/ Regular 

6R4I fϷd /fɒd/ Regular 

6R4I mϷt /mɒt/ Regular 

6R4I dϷm /dɒm/ Regular 

6R4I tϷb /teb/ Irregular 

6R4I gϷv /ɡæv/ Irregular 

6R4I kϷf /kæf/ Irregular 

6R4I pϷg /puːɡ/ Irregular 

4R6I pʕb /pi:b/ Regular 

4R6I mʕg /mi:ɡ/ Regular 

4R6I gʕl /ɡi:l/ Regular 

4R6I tʕf /ti:f/ Regular 

4R6I kʕk /kek/ Irregular 
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4R6I vʕd /ved/ Irregular 

4R6I lʕt /læt/ Irregular 

4R6I dʕv /dæv/ Irregular 

4R6I fʕn /fuːn/ Irregular 

4R6I bʕp /buːp/ Irregular 

 

 

Frequency of the consonant graphemes, as well as word position and co-occurrence with 

the vowel graphemes, was counterbalanced both within conditions and across the entire exposure 

set. This ensured that pronunciation of any vowel grapheme could not be associated with or 

predicted by use of the consonant graphemes.  

 Participants were exposed to this set of exposure items from the artificial language 

throughout the training phase (discussed in further detail under Procedure below). During 

training, the nonword items varied approximately along a Zipfian frequency distribution (Zipf 

1949), according to which the frequency of a word is inversely proportional to its rank. This 

means that the most frequent word occurs about twice as often as the second most frequent word, 

and three times as often as the third most frequent word. This design was chosen as word 

frequency in natural language follows an approximately Zipfian distribution, and the derivation 

of Yang’s TP also assumes this is the case (Yang, 2016). The training phase consisted of 131 

total presentations of the 30 unique nonword items; the most frequent item appearing 24 times 

and the least frequent items appearing 3 times each. Items were randomly assigned a rank on the 

Zipfian distribution for each participant, meaning that items were encountered a different number 

of times by each participant. This ensured that the token frequency of regular and irregular items 

to which individual participants were exposed could be examined, whilst avoiding the 

application of a consistent, arbitrary assignment of items to frequencies for the entire language 

across all participants. The token frequencies of exposure to items for all participants during the 

training phase are available here: 

https://osf.io/wsc24/?view_only=10e04739627b4a27861154c5edafdaf6. 

 

https://osf.io/wsc24/?view_only=10e04739627b4a27861154c5edafdaf6.
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4.3.3 Procedure 

Participants were briefed on the nature of the task by being informed that they would be 

trained to read items from an artificial language using an artificial script. They were informed 

that some letters from the script would be familiar, English letters and others would be novel 

symbols for them to learn. They were informed that they would be trained to read the artificial 

script by carrying out reading aloud and spelling activities on the computer. The procedure was 

run using E-Prime software.  

The training phase began with an exposure to the set of 30 trained items. Participants 

were presented with the written form of each item one at a time on the computer screen for a 

duration of 6 seconds, and also heard a pre-recorded pronunciation of the item commencing after 

2 seconds of the visual presentation. Participants were asked to try to remember the 

pronunciation of the items. Each item was presented once and items were presented in a 

randomised order.  

After completing the exposure to each of the 30 items, participants carried out a Reading 

Aloud task. During this task, the written form of each item was presented to the participant on 

the screen and the participant was asked to say aloud the pronunciation of each item. Each item 

was presented one at a time on the screen for a maximum of 9 seconds, or until the participant 

had made their response and pressed the spacebar. Following the participant’s response, which 

was audio recorded by the E-Prime software, the participant heard a pre-recorded correct 

pronunciation of the item.  The 30 items were presented in a random order and their frequency 

followed a Zipfian distribution (as described in Section 4.3.2).  

Following the Reading Aloud task, participants carried out a Spelling task. During this 

task, each participant was presented with the auditory form of each exposure item and was asked 

to spell the written form of the item by using mouse clicks to select letters from a matrix on the 

screen. The matrix contained all letters from the artificial language (11 consonants and 3 

vowels). Selected letters appeared at the top of the screen, and after three letters had been 

selected for the spelling of each item, the correct written form of the item was presented. 

Feedback on whether the participant’s selected letters were correct or not was also presented on 

the screen. The 30 exposure items were presented in a random order and their frequency 

followed a Zipfian distribution. This task concluded the training phase of the experiment.  
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The testing phase of the experiment immediately followed the training. This phase began 

with a Generalisation reading aloud task. During this task, the participant was presented with the 

written form of 30 untrained items and asked to say aloud the pronunciation of each item. Each 

item was presented one at a time on the screen for a maximum of 9 seconds, or until the 

participant had made their response and pressed the spacebar in order to proceed to the next item. 

Participants failed to respond within 9 seconds in 0.3% of trials overall. The 30 new items were 

also three-letter nonwords with a CVC structure, using the 11 consonants and 3 vowels of the 

artificial language. Each vowel letter appeared in 10 items. The 30 items were presented one at a 

time in a random order. No feedback was given to participants during the task. This task tested 

the participants’ ability to generalise their newly-acquired knowledge of the novel vowel letter 

pronunciations to untrained items, offering an opportunity to assess their rule-learning ability.   

Following the Generalisation task, adult participants carried out an Old/New task. In this 

task, participants were presented with the written form of the 30 original exposure items and 30 

novel items that they had not previously encountered during the experiment, but which were 

composed from the same set of consonants and vowel symbols. Each item was presented one at a 

time on the screen in a randomised order. Participants were asked to indicate using a keyboard 

response whether each item had been encountered previously in training (Old) or was a novel 

item (New). Participants were asked to press the Z key on the keyboard when they considered 

the item to be Old and the M key when they considered the item to be New. Each item was 

presented one at a time on the screen for a maximum of 9 seconds, or until the participant had 

made their response. In no experimental trials throughout this task did a participant fail to 

respond in time. No feedback was given to participants during the task. This task assessed 

participants’ recognition memory of the 30 original trained items. Child participants did not 

complete the Old/New task, progressing directly from the Generalisation task to the final 

Reading Aloud task.  

The testing phase concluded with a final Reading Aloud test of the 30 original trained 

items. Participants were presented with the written form of all 30 items and asked to read aloud 

the correct pronunciation of each item. Items were presented on the screen one at a time for a 

maximum of 9 seconds, or until the participant had made their response and pressed the spacebar 

to proceed to the next item. In only one experimental trial throughout this task did a participant 
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fail to respond in time. No feedback was given to participants during the task. This task assessed 

how accurately each participant had learned the pronunciation of each of the 30 original 

exposure items.   

 

4.4 Results  

Results from adult and child participants are analysed separately, as adults and children 

demonstrated significantly different regularisation behaviour in the Generalisation task (see 

Section 4.4.6 below) and significantly different levels of accuracy in the Reading Aloud task (see 

Section 4.4.7 below). Results from adult participants are presented first, followed by results from 

child participants, including a comparison of adults’ and children’s behaviour in the 

Generalisation task and final Reading Aloud task.  

 

4.4.1 Vowel regularisation by adults in the Generalisation task 

In the Generalisation task, each participant read aloud 30 untrained items. Figure 4.1 

presents participants’ regularisation of the vowel symbol (use of the most common vowel 

phoneme by type) in pronunciations of these untrained items, by condition. Adults’ mean vowel 

regularisation for untrained items across all conditions was 51.98% (SE = 4.34). Analysis of 

participants’ vowel regularisation involved a series of mixed-effects logistic regression models. 

For this and further analyses below, I used R (version 3.6.0; R Development Core Team, 2019) 

and the lme4 package (version 1.1-21; Bates et al., 2015). This approach allows predictors as 

fixed effects and participant as a random effect to be included simultaneously in the same 

models. The p-values reported are based on the Wald Z statistic for each effect (Jaeger 2008). A 

maximal random effects structure was sought in each model (following Barr et al., 2013). When 

a model failed to converge, the random effects structure was simplified until the model 

converged.  
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Figure 4.1  

Adult and Child Participants’ Vowel Regularisation (%) in Untrained Items by Condition in the 

Generalisation Task 

 

 

Note. In this figure and subsequent figures, the horizontal line represents the mean, the box 

around the mean represents standard error, data points represent individual participants, and the 

borders around data points are smoothed density curves. 

 

 For this analysis, regularisation of the vowel in the pronunciation of each untrained 

nonword item was treated as the binary outcome variable, coded as 1 if the vowel was 

regularised and 0 for any other response. To compare regularisation by condition, I used a model 

with condition as the fixed effect (rotating each condition as the reference level) and participant 

as a random effect. Item was not added as a random effect as it resulted in a model with singular 

fit, due to an overly complex random effects structure. Table 4.3 presents the results from this 

model. Adults’ regularisation was lower in the 6R4I condition than the 8R2I condition, although 
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the related p value approached the threshold of significance set at .05. Therefore, it is difficult to 

conclude whether adults’ behaviour contradicts the TP prediction that regularisation in these 

conditions (which both pass the tolerance test) should be similar. Meanwhile, regularisation in 

the 4R6I condition was significantly lower than both the 8R2I and 6R4I conditions. These results 

are in line with the TP prediction, according to which regularisation should be lower in the 

condition that does not pass the tolerance test than in the two conditions which do.  

Results from one-sample t-tests suggest adults’ percentage vowel regularisation does not 

reach 100% in the 8R2I condition (t(23) = -4.31, p < .001) or the 6R4I condition (t(23) = -5.87, p 

< .001). This is contrary to the TP prediction that regularisation will be categorical with 

participants using a productive rule 100% of the time for items in these conditions, and suggests 

that regularisation behaviour is not directly based on the TP alone. As the TP predicts, 

regularisation in the 4R6I condition was significantly lower than 100% (t(23) = -10.27, p < .001). 

These results do not provide evidence in support of the rule-based DRC model of word reading, 

which would predict that the most frequent, regular pronunciation type should be used at the 

same rate of 100% in all conditions.  

 

Table 4.3   

Output from mixed-effects model comparing the effect of condition on adults’ vowel 

regularisation in the Generalisation task   

glmer(Regularisation ~ Condition + (1|Participant), family = binomial)  

  

   Estimate  Standard error  z value  p value  
Inverse logit 

(probability)  

8R2I vs 6R4I  -0.432  0.211  -2.042  .041  0.394  

8R2I vs 4R6I  -2.087  0.230  -9.086  <.001  0.110  

6R4I vs 4R6I  -1.656  0.221  -7.477  <.001  0.160  
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4.4.1.1 The effect of token frequency and the TP on vowel regularisation   

Although the results above do not display the categorical generalisation behaviour 

predicted by the TP, it is difficult to conclude whether the TP may play an underlying role in 

participants’ regularisation during generalisation. Additionally, this initial analysis did not 

involve the distribution of token frequencies in the input. The following analysis explored the 

effect of token frequency of regular pronunciations during training, and addressed whether the 

TP is able to explain regularisation behaviour beyond this input frequency variable; specifically, 

whether a regularised response is more likely when a spelling-sound correspondence passes the 

tolerance test.11 

I used a series of mixed effects models to examine the effect of token frequency and the 

TP on vowel regularisation. Table 4.4 presents results from a model using token frequency of the 

regular vowel pronunciation during training as a fixed effect, and participant as random effect. 

This analysis shows that increased token frequency is associated with a greater likelihood of a 

regularised response.  

 

Table 4.4   

Output from mixed-effects model investigating the effect of token frequency or 

regular vowel pronunciations on adult participants’ vowel regularisation    

glmer(Regularisation ~ Token + (1|Participant), family = binomial)  

  

   Estimate  Standard error  z value   p value  
Inverse logit 

(probability)  

  

Intercept  -2.390  0.360  -6.641  <.001  0.084  

  

Token  4.141  0.480  8.628  <.001  0.984  

          
 

 
11 Type frequency of the regular pronunciation during training was not included as an independent variable in this 

analysis, as a VIF value above 5 indicated that this variable has high collinearity with passing the TP. Therefore, a 

direct comparison between the categorical TP measure and a conventional type frequency measure as predictors of 

regularisation was not possible as part of this analysis.  
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A second model examined whether passing the tolerance test had an effect on 

regularisation above the effect of token frequency. This model used passing the tolerance test 

(coded as 1 for pass and 0 for fail) as a fixed effect. Item was not added as a random effect as it 

resulted in a model with singular fit, due to a too complex random effects structure. Table 4.5 

presents the output from the model. This analysis shows that the TP has a significant effect on 

regularisation, meaning that items using vowel symbols from conditions which pass the tolerance 

test are significantly more likely to be regularised by participants. Token frequency also had a 

significant effect on regularisation.  

 

Table 4.5   

Output from mixed-effects model investigating the effect of token frequency of regular 

vowel pronunciations and passing the TP on adult participants’ vowel regularisation  

glmer(Regularisation ~ Token + TP + (1|Participant), family = binomial)  

  

   Estimate  Standard error  z value   p value  
Inverse logit 

(probability)  

  

Intercept  -1.097  0.469  -2.338  0.019  0.250  

  

Token  1.589  0.748  2.123  0.034  0.830  

  

TP  1.342  0.310  4.331  <.001  0.793  

            

  

A chi-square test compared the two models to assess whether the model including the TP 

offers a better fit to the data than the model using only token frequency as a predictor. The result 

suggests that including the TP as a predictor significantly improved the model (χ 2 (1) = 19.705, p 

< .001), thereby indicating that the TP is able to explain variance in participants’ regularisation 

behaviour that token frequency alone cannot.  



  

138 

 

4.4.2 Adults’ recognition memory in the Old/New task  

In the Old/New task, participants’ mean recognition accuracy for trained (“old”) items 

was 72.1% (SE = 2.87) and for untrained (“new”) items, 56.4% (SE = 2.72). Following Merkx et 

al. (2011), Tamminen et al. (2012) and Tamminen et al. (2015), I also analysed this data by 

calculating signal detection measures (d’) to allow for response bias. Recognition accuracy was 

measured by calculating the difference between the z-transformed proportion of correct “old” 

responses to trained items (hits) and incorrect “old” responses to untrained items (false alarms). 

The mean d’ value for adult participants’ recognition accuracy across all items was 0.783 (SD = 

0.073). There were no significant differences between participants’ d’ values for items in the 

8R2I condition (M = 0.880, SD = 0.661) and the 6R4I condition (M = 0.815, SD = 0.118), (t(23) 

= 0.374, p = .712), the 6R4I condition and the 4R6I condition (M = 0.655, SD = 0.127), (t(23) = 

1.003, p = .326), or the 8R2I condition and the 4R6I condition (t(23) = 1.234, p = .230).  

 

4.4.3 Adults’ performance in final Reading Aloud task 

Figure 4.2 presents adult participants’ percentage accuracy of trained items by condition 

in the final reading aloud test. Mean accuracy for trained items across all conditions was 49.58% 

(SE = 3.03). I used a mixed-effects logistic regression model to explore the effect of condition on 

participants’ accuracy. Accuracy of the vowel pronunciation in each trained item was treated as 

the binary outcome variable, coded as 1 if the vowel was pronounced correctly and 0 if the vowel 

was pronounced incorrectly. Condition was used as a fixed effect (rotating each condition as the 

reference level) with random intercepts for item, and random slopes and intercepts for 

participant. This analysis suggests that participants’ accuracy was not significantly different in 

the 8R2I and 6R4I conditions, or in the 6R4I and 4R6I conditions. However, accuracy in the 

8R2I condition was significantly higher than the 4R6I condition.  

 

A further mixed-effects model was used to examine the effect of vowel regularity on 

accuracy. Table 4.6 presents the results of a model with accuracy as the binary outcome variable, 

regularity as the fixed effect (using irregular as the reference level), random intercepts for item, 

and random slopes and intercepts for participant. The results suggest that across conditions, adult 

participants’ accuracy was significantly higher for regular items than for irregular items. 
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Figure 4.2 

Adult Participants’ Accuracy (%) for Trained Items by Condition in the Final Reading Aloud 

Task 
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Table 4.6   

Output from mixed-effects model comparing the effect of condition on adults’ accuracy 

in the Reading Aloud task   

glmer(Accuracy ~ Condition + (1+Condition|Participant) + (1|Item), family = 

binomial)  

  

   Estimate  Standard error  z value   p value  
Inverse logit 

(probability)  

8R2I vs 6R4I  -0.915  0.528  -1.733  0.083  0.286  

8R2I vs 4R6I  -1.932  0.519  -3.724  <.001  0.127  

6R4I vs 4R6I  -1.017  0.526  -1.934  0.053  0.266  

 

 

Table 4.7   

Output from mixed-effects model comparing the effect of regularity on adults’ accuracy 

in the Reading Aloud task   

glmer(Accuracy ~ Regularity + (1+Condition|Participant) + (1|Item), family = 

binomial)  

  

   Estimate  St. error  z value   p value  
Inverse logit 

(probability)  

Intercept  -1.035  0.281  -3.678  <.001  0.262  

Irregular vs Regular  1.684  0.332  5.066  <.001  0.843  
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4.4.4 Relationship between adults’ accuracy of regular trained items in the final Reading Aloud 

task and regularisation in the Generalisation Task  

 

To study the relationship between successful learning of trained regular items and vowel 

regularisation, Figure 4.3 displays participants’ accuracy of trained regular items in the final 

Reading Aloud task by vowel regularisation in the Generalisation task. Results of a Pearson 

correlation suggest that there is a high correlation between acquisition of regular items and 

regularisation during generalisation in the 8R2I condition (r (22) = 0.87, p <. 001), the 6R4I 

condition (r (22) = 0.69, p <. 001), and the 4R6I condition (r (22) = 0.76, p <. 001). 

 

Figure 4.3 

Adult Participants’ Accurate Pronunciation of Trained Regular Items (%) in the Final Reading 

Aloud Task by Vowel Regularisation (%) in Untrained Items in the Generalisation Task, by 

Condition 

 

 

 

 

4.4.5 Vowel regularisation by children in the Generalisation task 

Turning next to results from child participants, children’s mean regularisation of the 

vowel symbol pronunciation for untrained items across all conditions in the Generalisation task 



  

142 

 

was 44.85% (SE = 3.24). Children’s percentage regularisation of the vowel symbol 

pronunciation by condition is shown in Figure 4.1 above. Table 4.8 presents results from a model 

using condition as the fixed effect (rotating each condition as the reference level) and participant 

as a random effect. Item was not added as a random effect as it resulted in a model with singular 

fit, due to an overly complex random effects structure. Children’s regularisation was 

significantly lower in the 6R4I condition than the 8R2I condition, contrary to the TP’s prediction 

that regularisation should not differ here as the vowel passes the tolerance test in both conditions. 

As predicted, regularisation was significantly lower in the 4R6I condition than the 6R4I 

condition and the 8R2I condition. Children did not display the categorical behaviour predicted by 

the TP: their percentage vowel regularisation was significantly lower than 100% in the 8R2I 

condition (t(23) = -4.48, p < .001) or the 6R4I condition (t(23) = -7.55, p < .001), but as 

expected, regularisation in the 4R6I condition was lower than 100% (t(23) = -17.43, p < .001).  

 

Table 4.8   

Output from mixed-effects model comparing the effect of condition on children’s vowel 

regularisation in the Generalisation task   

glmer(Regularisation ~ Condition + (1|Participant), family = binomial)  

  

   Estimate  St. Error  z value  p value  
Inverse Logit 

(Probability)  

8R2I vs 6R4I  -0.940  0.220  -4.596  <.001  0.281  

8R2I vs 4R6I  -2.966  0.258  -11.512  <.001  0.049  

6R4I vs 4R6I  -2.026  0.244  -8.288  <.001  0.117  
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4.4.5.1 The effect of token frequency and the TP on children’s vowel regularisation 

The results above do not display the categorical generalisation behaviour predicted by the 

TP. The following analysis examined whether the TP plays an underlying role in children’s 

regularisation beyond the effect of token frequency of the regular vowel during training. Recall 

that the token frequency of regular items in the training phase varied across all participants, with 

items randomly assigned a position on the Zipfian distribution.  

A series of mixed-effects logistic regression models investigated the effects of token 

frequency and passing the TP on children’s regularisation in the Generalisation task. A maximal 

mixed-effect model did not converge, but Table 4.9 presents the output from a model using token 

frequency of the regular vowel during training a fixed effect and participant as a random effect. 

This analysis shows that increased token frequency is associated with a greater likelihood of a 

regularised response.  

 

Table 4.9   

Output from mixed-effects model comparing the effect of type frequency on 

children’s regularisation in the Generalisation task   

glmer(Regularisation ~ Token + (1|Participant), family = binomial)   

  

   Estimate  St. Error  z value  p value  
Inverse Logit 

(Probability)  

Intercept  -3.782  0.392  -9.657  <.001  0.022  

Token  5.792  0.523  11.079  <.001  0.997  

 

A second model examined whether passing the tolerance test had an effect on vowel 

regularisation above the effect of token frequency. This model used passing the tolerance test 

(coded as 1 for pass and 0 for fail) and token frequency of the regular vowel pronunciation as 

fixed effects and participant as a random effect. Item was not included as a random effect as it 

resulted in a model with singular fit, due to a too complex random effects structure. Table 4.10 
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presents the output from this model. This analysis shows that the TP does have a significant 

effect on children’s regularisation, meaning that they are significantly more likely to regularise 

the vowel symbol in items from the conditions that pass the tolerance test. Increased token 

frequency is also associated with a greater likelihood of a regularised response.  

 

Table 4.10     

Output from mixed-effects model comparing the effect of token frequency and the TP 

on children’s regularisation in the Generalisation task  

glmer(Regularisation ~ Token + TP + (1|Participant), family = binomial)  

  

   Estimate  St. Error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -2.580  0.454  -5.678  <.001  0.070  

Token  3.304  0.724  4.563  <.001  0.965  

TP  1.441  0.313  4.606  <.001  0.809  

 

A chi-square test compared the two models to assess whether the model including the TP 

offered a better fit to the data than the model using only token frequency as a predictor. The 

result suggests that including the TP as a predictor significantly improved the model (χ 2(1) = 

21.775, p < .001), thereby indicating that the TP is able to explain variance in child participants’ 

regularisation behaviour that token frequency alone cannot. 

 

4.4.6 Comparing adults’ and children’s vowel regularisation in the Generalisation task  

The percentage of vowel regularisation in the Generalisation task by adults and children 

is provided in Figure 4.1. A mixed-effects model compared adult and child participants’ vowel 

regularisation and the relative effect of the vowel pronunciation passing the TP (coded as 1 for 

pass and 0 for fail) in the Generalisation task. A maximal mixed-effects model did not converge, 

but Table 4.11 presents the output of the model using an Age x TP interaction as the fixed effect 
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with age group rotated as the reference level, fail as the TP reference level, and item and 

participant included as random effects. This analysis shows that adults’ rate of vowel 

regularisation was higher than children’s for items with vowels that failed the TP, but not for 

items that passed the TP. For both adults and children, regularisation was higher for items with 

vowels that passed the TP than for items with vowels that did not. Additionally, the difference 

between regularisation in vowel pass items and vowel fail items was greater for children than 

adults; in other words, passing the tolerance test (or not) had a greater effect on children’s vowel 

regularisation than on adults’.  

 

Table 4.11   

Output from mixed-effects model comparing the effect of age group and the TP on 

participants’ vowel regularisation in the Generalisation task, with age group and 

passing the TP rotated as reference levels  

glmer(Regularisation ~ Age*TP + (1|Item) + (1|Participant), family = binomial)  

  

  Est. St. Error z value  p value 
Inverse Logit 

(Probability) 

Intercept  -0.960  0.211  -4.548  <.001  0.277  

Age (fail)  -0.887  0.250  -3.551  <.001  0.292  

Age (pass)  -0.148  0.142  -1.037  0.300  0.463  

TP (adult)   1.675  0.200  8.390  <.001  0.842  

TP (child)  2.141  0.234  10.299  <.001  0.895  

TP (pass)*Age (child)  0.739  0.282  2.620  0.009  0.677  

 

 

4.4.7 Children’s accuracy in the final Reading Aloud task 

Figure 4.4 presents child participants’ percentage accuracy by condition in the final 

Reading Aloud task. Mean accuracy across all conditions was 41.67% (SE = 3.15). I used a 
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mixed-effects logistic regression model to examine the effect of condition on participants’ 

accuracy. Accuracy of the vowel pronunciation in each trained item was treated as the binary 

outcome variable, coded as 1 if the vowel was pronounced correctly and 0 if the vowel was 

pronounced incorrectly. Condition was used as a fixed effect (rotating each condition as the 

reference level), with participant and item as random effects. Table 4.12 presents the results from 

this model. The analysis suggests that children's accuracy was significantly higher in the 8R2I 

condition than the 6R4I and 4R6I conditions, and significantly higher in the 6R4I condition than 

the 4R6I condition.  

A further mixed-effects model was used to examine the effect of vowel regularity on 

children's accuracy. Table 4.13 presents the results of a model with accuracy as the binary 

outcome variable, regularity as the fixed effect (with irregular as the reference level), random 

intercepts for item, and random slopes and intercepts for participant. The results suggest that 

across conditions, child participants’ accuracy was significantly higher for regular items than for 

irregular items. A final mixed-effects model was used to examine the effect of age group on 

participants’ overall accuracy. A maximal mixed-effects model did not converge, but Table 4.14 

presents the results of a model with accuracy as the binary outcome variable, age as the fixed 

effect (with adult as the reference level), and item and participant as random effects. This 

analysis suggests that adults’ overall accuracy was significantly higher than children’s.  
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Figure 4.4  

Child Participants’ Accuracy (%) for Trained Items by Condition in the Final Reading Aloud 

Task 

 

 

 

Table 4.12   

Output from mixed-effects model comparing the effect of condition on children’s 

accuracy in the Reading Aloud task   

glmer(Accuracy ~ Condition + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  Standard Error  z value   p value  
Inverse Logit 

(Probability)  

8R2I vs 6R4I  -1.298  0.518  2.046  0.012  0.215  

8R2I vs 4R6I  -2.447  0.527  -4.644  <.001  0.080  

6R4I vs 4R6I  -1.149  0.521  -2.204  0.028  0.241  
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Table 4.13   

Output from mixed-effects model comparing the effect of regularity on children’s 

accuracy in the Reading Aloud task   

glmer(Accuracy ~ Condition + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  St. Error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -1.809  0.359  -5.044  <.001  0.141  

Irregular vs. Regular  2.168  0.442  4.911  <.001  0.897  

 

 

Table 4.14   

Output from mixed-effects model comparing the effect of age on participants’ accuracy in 

the Reading Aloud task   

glmer(Accuracy ~ Age + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  St. Error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -0.018  0.269  -0.066  0.947  0.496  

Adult vs. Child  -0.451  0.189  -2.382  0.017  0.389  

 

 

4.4.8 Relationship between children’s accuracy of regular trained items in the final Reading 

Aloud task and regularisation in the Generalisation task  

Figure 4.5 displays child participants’ accuracy of trained regular items in the final 

Reading Aloud task by vowel regularisation in the Generalisation task. Results of a Pearson 

correlation suggest that there is a high correlation between acquisition of regular items and 
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regularisation during generalisation in the 8R2I condition (r (22) = 0.759, p <. 001), the 6R4I 

condition (r (22) = 0.816, p <. 001), and the 4R6I condition (r (22) = 0.780, p <. 001). 

 

Figure 4.5  

Child Participants’ Accurate Pronunciation of Trained Regular items (%) in the final Reading 

Aloud Task by Vowel Regularisation (%) in Untrained Items in the Generalisation Task, by 

Condition 

 

 

 

4.5 Discussion 

 

The Tolerance Principle (Yang, 2016) states that leaners should form a productive rule 

for a particular pattern if the number of exceptions to the rule falls below a critical threshold. 

This rule can then be applied to novel items, allowing information gathered from the learning 

environment to be extended beyond a learners’ direct experience. If the number of exceptions 

exceeds the threshold, all items should be memorised individually and no productive rule is 

formed that can be applied to novel items. Experimental work on the TP thus far has focused on 
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spoken language within an artificial grammar paradigm (Schuler, 2017). Here, I ask for the first 

time whether the TP can capture rule-learning and generalisation of novel spelling-sound 

correspondences using an artificial orthography paradigm. Previous studies have found that 

learners in such paradigms are able to extract sub-word regularities from whole-word forms 

without explicit instruction and generalise this knowledge to new forms (Taylor et al. 2011; 

Taylor et al. 2017).  

 

The aim of Experiment 2 was to determine whether the Tolerance Principle could predict 

when adult and child learners would and would not form a productive pronunciation rule for 

novel vowel symbols. Further, this experiment aimed to assess whether the TP has a different 

effect on generalisation for children and adults, in line with findings from a series of artificial 

grammar studies (Schuler, 2017). As part of the wider investigation into the statistical features of 

the input which are important for generalisation, I also considered the effects of type and token 

frequency of the regular vowel pronunciation on participants’ vowel regularisation. 

In this artificial orthography, three novel vowel symbols were used in 10 nonword items 

each. For a set of 10 items, the TP predicts that a productive rule can tolerate 4 exceptions. For 

two of the vowel symbols (in the 8R2I and 6R4I conditions), the number of irregular 

pronunciations falls below this tolerance threshold, meaning that a productive pronunciation rule 

using the most common symbol-phoneme mapping is predicted. However, for the third vowel 

symbol (in the 4R6I condition), the number of irregular pronunciations exceeds the threshold, 

and therefore the TP predicts that no productive pronunciation rule should be formed. Adult and 

child learners were trained to read aloud these 30 nonword items using these novel vowel 

symbols and were then assessed on their generalisation and learning of the spelling-sound 

correspondences during the testing phase. 

 

 

4.5.1 Adults’ generalisation 

 

The Generalisation task allowed an assessment of whether adults and children had 

formed productive pronunciation rules for these three vowel symbols through analysis of their 

use of the regular (most common) pronunciation of the vowels in untrained items. Whilst adults’ 
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vowel regularisation did not reach the level of 100% in the 8R2I or 6R4I conditions predicted by 

the TP, regularisation was higher in these conditions than the 4R6I condition, as predicted. The 

TP also predicts that regularisation should be similar in the 8R2I and 6R4I conditions, as they 

both pass the tolerance test. However, it is difficult to conclude whether adults' regularisation 

was significantly different in these conditions. Therefore, whilst generalisation behaviour was 

not categorical as predicted, it is possible that the TP may still play an underlying role in 

generalisation. In future investigations, a power analysis would improve confidence that critical 

null findings are not due to an underpowered study. Meanwhile, these results do not support the 

DRC’s type-based approach in which the most common pronunciation of each vowel symbol 

should always be used productively during generalisation.  

An analysis exploring the effects of token frequency and passing the TP on vowel 

regularisation offered support for an underlying influence of the TP on adults’ generalisation. A 

statistical learning account (specifically, one involving probability matching) would predict that 

the distribution of token frequencies in the input would be the basis for generalisation: learners 

should produce a range of pronunciations matching the token frequency with which they were 

encountered during training. Indeed, Schuler (2017) found that adults closely matched the token 

frequency of grammatical markers from the training phase during generalisation. Therefore, I 

investigated whether token frequency had an effect on learners’ regularisation, and whether the 

TP had an effect beyond this. 

This analysis found that both token frequency and the TP (passing the tolerance test or 

not) had a significant effect on vowel regularisation. Additionally, the TP was able to explain 

variance in adults’ regularisation beyond that of token frequency. This finding suggests that 

whilst adults may be using information about token frequency in some way, they are not simply 

reproducing this frequency distribution in their generalisation. Therefore, these results do not 

support a statistical learning account in which adults’ generalisation is simply based on token 

frequency (i.e. probability matching). They suggest that adult learners are not learning 

veridically as previous studies in which the outcome of learning reflected the range of input 

variation have found (Hudson Kam & Newport, 2005, 2009; Schuler, 2017). Neither do they 

support established statistical models of word reading such as the Triangle and CDP+, which 

would again expect token frequencies during training to affect grapheme pronunciations.  
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 In contrast, these results offer some support to the TP approach, as the TP had a 

significant effect on regularisation and crucially, was able to capture variance in adult 

participants’ regularisation behaviour that token frequency cannot. This is striking evidence that 

the TP may be underlying adult participants’ generalisation: there seems to be a shift in learner’s 

behaviour once the consistency of a pattern crosses the tolerance threshold. In accordance with 

the TP approach to rule-learning and generalisation, this is a categorical rather than continuous 

effect. Further, this pattern of results provides new evidence that adults are able to impose some 

additional structure on the input during learning and generalisation: their regularisation of vowel 

grapheme pronunciations extended beyond the token frequencies of regular pronunciations 

during training, as predicted by the TP but generally not seen in adult artificial language learning 

studies (Hudson Kam & Newport, 2005, 2009; Schuler 2017).  

 

4.5.2 Children’s generalisation  

Contrary to the predictions of the TP, children’s vowel regularisation did not reach the 

level of 100% in the 8R2I or 6R4I conditions, and there was a significant difference in 

regularisation between the 8R2I and 6R4I conditions. Although regularisation was significantly 

lower in the 4R6I condition than the other conditions as predicted, these results do not provide 

evidence that there is a categorical shift in children’s regularisation behaviour at the point where 

consistency of the pronunciation pattern crosses the tolerance threshold. Further, they do not 

support the DRC’s type frequency rule-based approach in which the most common pronunciation 

of each vowel symbol should always be used productively during generalisation.  

Following the findings that the TP does not directly predict children’s vowel 

regularisation, I investigated whether the TP has an underlying effect on generalisation 

behaviour, in addition to any possible effect of token frequency. A statistical learning account 

may expect token frequency to be the basis for generalisation behaviour, as discussed above. 

This analysis found that both token frequency and passing the TP had a significant effect on 

children’s regularisation. Additionally, the TP was able to explain variance in children’s 

regularisation beyond that of token frequency. These results suggest that children’s 

generalisation does not directly reflect the statistical distributions of the input. This pattern of 

results is in line with previous artificial language learning studies, which found that children tend 
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to impose regular structure on the variability they are exposed to (Hudson Kam & Newport 2005, 

2009; Schuler 2017). Indeed, results from this experiment support the hypothesis that children’s 

generalisation behaviour goes beyond input statistics in a way that is consistent with the TP. Like 

Schuler, I also found a limit to children’s regularisation, namely the level of inconsistency found 

in the spelling-sound correspondence that does not pass the tolerance test from the 4R6I 

condition. Overall, these findings support the possibility that the TP is a mechanism children use 

to guide the regularisation process: as for adults, there is evidence that it may play an underlying 

role in their generalisation. However, participants’ regularisation behaviour was not completely 

categorical as the theory would predict.  

 

4.5.3 Generalisation by children and adults 

A comparison of children’s and adults’ behaviour in the Generalisation task revealed that 

adults were more likely than children to regularise pronunciations of the vowel grapheme for 

items with vowels that failed the tolerance test. This evidence of higher regularisation in adults 

may seem surprising given previous findings that children are more likely to regularise patterns 

from the input than adults (Hudson Kam & Newport 2005, 2009). However, this finding is a 

result of children’s particularly low level of regularisation in the 4R6I condition, a pattern which 

the TP would predict as this spelling-sound correspondence does not pass the tolerance test. 

Indeed, the TP was found to have a greater effect on children’s regularisation than adults’. This 

is in accordance with Schuler’s (2017) findings, as well as theoretical discussion of the TP 

(Yang, 2016) which suggests that children are more likely to generalise using the TP than adults. 

Further, it gives weight to the TP approach to generalisation, which predicts precisely when input 

patterns should and should not be regularised, rather than the less specific prediction that 

children will regularise more often than adults, as previous statistical learning studies have 

reported (Hudson Kam & Newport 2005, 2009).  

Although these results do reveal a difference between adults’ and children’s 

generalisation, we do not see the stark categorical difference in behaviour reported in Schuler’s 

(2017) studies. This may be due to the older age of child participants in the current study (9 – 10 

years) compared to those in Schuler’s studies (6 – 8 years). There may also be an effect of 

modality, given that the current artificial orthography study investigated learning of written 
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language (spelling-sound knowledge) rather than spoken language (morphological knowledge), 

as in previous artificial language studies (Hudson Kam & Newport, 2005; 2009).  

 

4.5.4 Adults’ and children’s accuracy of trained items  

 

In the final Reading Aloud test, participants were presented with the 30 original exposure 

items and were asked to pronounce each one individually. This task assessed whether 

participants had successfully learned the pronunciations of trained items. Adults’ accuracy was 

higher in the 8R2I condition than in the 4R6I condition, with no significant differences between 

the other conditions. Children’s accuracy was higher in the 6R4I than the 4R6I condition, and 

higher still in the 8R2I condition. These findings suggest that a higher number of exceptions to 

the most common symbol-sound mapping makes pronunciations more difficult to learn. Indeed, 

both adults and children demonstrated more accurate learning of regular pronunciations than 

irregular pronunciations across conditions, indicating again that spelling-sound correspondences 

for irregular items are more difficult to acquire than those for regular items. This in accordance 

with previous findings that systematic mappings are easier to learn (Rueckl & Dror, 1994).  

 

4.5.5 Relationship between vowel regularisation and accuracy of trained regular items by adults 

and children  

Adult and child learners demonstrated a high correlation between their rate of vowel 

regularisation in the Generalisation task and accuracy of regular trained items in the final 

Reading Aloud task. This pattern may be because successful acquisition of trained items is 

required for rule-learning and subsequent generalisation, or conversely that extraction of a 

pronunciation rule during training supports accurate learning of regular (but not irregular) trained 

items. The relationship between acquisition and generalisation will be considered further in 

Chapters 5 and 6.  

 

4.6 Summary 

Experiment 2 explored whether Yangs’s (2016) Tolerance Principle could predict adults’ 

and children’s regularisation in an artificial orthography learning paradigm. Results from the 
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Generalisation task found that adults and children both produce a pattern of regularisation which 

is not as categorical as the TP theory would predict. However, the results did offer some support 

for the TP: firstly, passing the tolerance test was associated with a greater likelihood of 

regularisation for both adults and children. Secondly, passing the tolerance test had an effect on 

regularisation beyond that of the token frequency of the regular pronunciation in the input. 

Therefore, it seems that participants are not simply reproducing the token frequency distribution 

of pronunciations, but that the TP’s threshold of consistency may guide participants’ 

generalisation behaviour in a categorical way. Indeed, Yang’s theory predicts that generalisation 

should not be based directly on token frequency, but instead reflect the TP’s categorical 

threshold which uses type frequency counts. Experiment 3 in Chapter 5 will explore further the 

relationship between the TP and token frequency.  
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Chapter 5: Testing the Tolerance Principle in adults learning an artificial orthography 

with high frequency irregulars   

 

5.1 Introduction 

 

Results from Experiment 2 revealed that the Tolerance Principle (Yang, 2016) has an 

effect on adults’ and children’s generalisation of novel spelling-sound correspondences beyond 

that of token frequency input statistics. These findings suggested that there is a categorical effect 

on learners’ generalisation behaviour when the consistency of the novel vowel grapheme crosses 

the tolerance threshold, which would not be expected if learners were simply reproducing the 

token frequency distribution of regular and irregular pronunciations from the input. However, in 

this first artificial orthography experiment, the token frequencies of regular and irregular items in 

the input were randomly allocated across a Zipfian distribution (Zipf, 1949). Experiment 3 

investigates whether a high frequency of irregular items during training moderates the effect of 

the TP on participants’ pattern of generalisation observed in Experiment 2.  

 

5.1.1 High frequency of irregular forms 

It is often noted that irregular forms tend to be highly frequent in natural language 

(Schuler, 2017), an observation supported by the widely-studied case of English past tense verbs. 

High frequency of use may protect irregular forms against regularisation or analogical levelling 

(Bybee & Slobin, 1982); indeed, word frequency predicts the rate of regularisation of exceptions 

in language evolution (Leiberman et al., 2007). The path of language acquisition may drive this 

pattern: for the English past tense, irregular forms that are highly frequent tend to be acquired 

more accurately by children than lower frequency irregulars (Yang, 2016) suggesting that in 

general, irregular forms must be heard often in the input in order to be learned robustly (Hooper, 

1976). This view is supported by Bybee and Slobin’s (1982) empirical study of English irregular 

past tense verbs: children (aged 1–5 years and 8-10 years) demonstrated that low-frequency 

irregulars are over-regularised during acquisition, whilst adults also over-regularised low 

frequency irregulars during production when under time pressure. The authors concluded that 

frequency was an important variable for both learning and maintaining irregular forms.  
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In written English, a similar trend between frequency and irregularity can be observed: 

many words with irregular pronunciations are highly frequent. Indeed, Solity and Vousden 

(2009) reported that 39 of the 100 most frequent word types in the Early Reading Research 

programme (Solity et al., 2000; Solity & Shapiro, 2008) could not be pronounced accurately 

using regular GPCs (i.e., had irregular pronunciations). Solity and Vousden found that these 100 

highest frequency words were the same word types as the most frequent items in an adult 

database, and that in fact, the 39 irregularly pronounced words accounted for 50% of all word 

tokens in the adult database and 59% of word tokens in the children’s books database.12 This 

supports the impression that irregular words are highly frequent in natural language, although 

that is not to say that all irregular words are highly frequent, nor that all of the most frequent 

words are irregular. 

 

5.1.2 Token frequency, rule productivity and the TP 

 Can this typological tendency for irregular items to be highly frequent disrupt the 

productivity of a rule generating a regular pattern? According to Yang’s Tolerance Principle, the 

answer is no. The algorithm that computes the threshold for the number of exceptions that can be 

tolerated uses only type counts of regular and irregular forms in the input. Yang (2016, p. 67) 

notes that a productive rule must be supported by accumulation of evidence over a “sufficient 

number of distinct word types”; a learner would not generalise a grammatical pattern after 

hearing it many times in a single context.  

It should be noted that the TP theory does take into account token frequencies of words in 

a number of ways. Firstly, the tolerance algorithm presupposes that word frequencies follow a 

Zipfian distribution and uses this to determine the probability of encountering a target item. 

From this approximation, the time taken to access a target form either through searching a full 

lexical listing or by searching a list of exceptions before applying a productive rule can be 

compared; items which are lexically listed are ranked according to token frequency. However, as 

a high token frequency of irregulars would affect both access routes, the competition between 

 
12 The adult database was extracted from the MRC Psycholinguistic Database (Coltheart, 1981) of adult fiction and 

non-fiction (Kucera & Francis, 1967), with the restriction that they had a Kucera-Francis frequency of at least 1. The 

children’s books database was constructed from the content of 66 children’s books (Solity & Vousden 2009, p. 477).  
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their relative access times would be largely unaffected. Furthermore, Yang (2016, p. 65) notes in 

relation to an example of high-frequency irregulars: “because the frequencies of words drop off 

precipitously due to Zipf’s law, most of the computational complexity will be allocated to the top 

half of the lexical items anyway, such that a few exceptions located in the bottom half hardly 

make any difference”. Indeed, he later states: “I now believe that during the courses [sic] of rule 

learning, the empirical frequencies of words are ignored entirely and children only keep track of 

the effectiveness of a rule [the number of exceptions, the number of total items, and the 

threshold], and nothing more” (Yang, 2016, p. 76). Thus, it is strictly type, and not token, 

frequency which determines the balance of productivity. However, token frequency may affect 

which items are learned first, and thus which items children base early rule-productivity on. As a 

child’s vocabulary grows cumulatively with time, the pattern of productivity may change 

according to the number of regular and irregular items that have been acquired (as lower 

frequency items are gradually added to the “tabulation of productivity” (2016, p. 70)).  

 Some experimental work has also considered the effect of token frequency of exemplars 

on generalisation and rule-formation, and the relationship with the TP. In the first of a series of 

experiments (discussed in Chapter 4), Schuler (2017) investigated whether children form 

productive rules according to the most frequent form in the input counted by type (as the TP 

would predict) or by token. During training, the regular plural marker had high token frequency 

in both the 5 Regular, 4 Exceptions (5R4E) condition and the 3 Regular, 6 Exceptions (3R6E) 

condition, as the regular marker had been assigned to the top of the Zipfian frequency 

distribution. Therefore, learners who used token counts to form productive rules would regularise 

the plural marker (i.e. productively use the regular marker) in the 5R4E and 3R6E conditions, as 

it is the most frequent marker in both input conditions. However, learners who used type counts 

to form productive rules according to the TP would only regularise the plural marker in the 5R4E 

condition, where the regular marker occurs in enough item types to pass the TP. They would not 

regularise the plural marker in the 3R6E condition, where the regular marker does not pass the 

TP and a productive rule is not supported. In this way, the experimental design pitted type and 

token frequency against each other. Results from a generalisation test revealed that children 

regularise the regular plural marker in the 5R4E condition, but use it at chance level in the 3R6E 

condition – even though this marker appears in a high number of tokens. This finding suggests 

that children use type frequencies to form productive rules as predicted by the TP, rather than 
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forming productive rules according to token frequency, or using a range of markers matching the 

token frequency of the input as adult participants did.  

In Experiment 2, Schuler investigated the effect of increasing the token frequency of 

irregular plural markers during training on learners’ generalisation and use of the TP. In the 

original artificial language from Experiment 1, the most highly frequent items all took the 

regular form. Noting that a more typologically and ecologically valid artificial language will 

have some high frequency irregular forms, Schuler modified the original language such that 

exceptions were evenly distributed with regular forms across the Zipfian distribution. This 

ensured that some (but not all) exceptions and some regular forms were highly frequent during 

training. This modification does not alter the TP prediction that learners will form a productive 

rule in the 5R4E condition but will not do so in the 3R6E condition, as the TP algorithm uses 

type rather than token counts (as discussed above).  

As in Schuler’s Experiment 1, adult learners’ generalisation did not follow the TP’s 

predictions; instead, they seemed to match the token frequency of the regular form they had been 

exposed to during training, in both conditions. In the 3R6E condition, children behaved as 

predicted by the TP and seen in Experiment 1, using the regular marker at chance level. 

However, in the 5R4E condition, children no longer followed the TP as they had in Experiment 

1. The average use of the regular marker across participants was significantly lower than 100%, 

which also seemed to suggest that children’s behaviour was no longer categorical. However, an 

inspection of individual data revealed that most children were in fact still behaving categorically; 

either using the regular marker 100% of the time, or no more than by chance. To investigate this 

split in behaviour, Schuler calculated each participants’ individual tolerance threshold based on 

the number of trained items they had accurately learned. This follows from the reasoning that the 

TP is intended to apply to an individual learners’ vocabulary. Most children used the regular 

marker in accordance with their individual tolerance threshold, which Schuler argues provides 

evidence that the TP is a “very robust metric of productivity” (2017, p. 67) based on type rather 

token counts. However, it should be noted that only a subset of participants completed the rating 

task which measured accuracy of trained items, and the small number of children whose 

behaviour was not categorical were also removed from this analysis. Therefore, these results are 

based on data from only a small group of child participants.  



  

160 

 

5.1.3 The role of type frequency and token frequency in generalisation  

Other studies have also investigated the relative effects of type and token frequency on 

generalisation and rule-learning. Although they did not set out to explore the TP directly, their 

results can be considered in light of the TP’s predictions. For example, Endress and Hauser 

(2011) carried out a series of experiments examining the effect of type and token frequency on 

the acquisition of morphological patterns and exceptions. They found that type frequency was 

the basis of participants’ generalisation of a regular pattern, whilst the learning of exceptions was 

supported by token frequency. This pattern of results supports the TP account of productivity, as 

discussed further below. Their artificial language paradigm trained adults on one of two 

counterbalanced inflectional patterns: either regular prefixation with some irregular suffixation 

or vice versa. Participants were then asked to judge whether trained regular stems, trained 

irregular stems, and untrained stems were more likely to take a prefix or suffix. Each of the 8 

experiment versions manipulated the type or token frequency of regular and irregular affixation 

during training. 

Experiment 1 showed that participants could successfully learn the affixation patterns 

when there were no exceptions. In Experiment 2, participants failed to learn the four exceptions 

to the affixation pattern and their learning of the regular pattern also decreased. Experiments 2-4 

demonstrated that participants learned the exceptions more successfully as the token frequency 

of exceptions increased, but their use of the regular pattern decreased. In Experiment 5, the type 

frequency of exceptions was reduced but their token frequency was increased: here, participants 

were able to learn both the exceptions and the regular pattern. Experiment 6 suggested that this 

success was likely due more to the low type frequency of exceptions than their high token 

frequency. Experiments 7-8 revealed that high token frequency supports learning of exceptions 

because it provides a high absolute number of occurrences of these items (which is important for 

memorisation), rather than because exceptions were more frequent relative to regular items. The 

authors suggest that this work reveals different roles for type and token frequency in the learning 

of regular patterns and exceptions: type frequency seems to determine the productivity of a 

pattern, whilst token frequency determines how well exceptions are learned. These results accord 

with the TP, which predicts productivity to be based on type frequency, whilst token frequency 

may determine which items are learned first. Yang notes both that “generally speaking, words 
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with higher frequencies tend to be acquired earlier” (2016, p. 70) and that “exceptions tend to be 

clustered at the high-frequency region of words” (2016, p. 65), which suggests that token 

frequency will support learning of individual items, particularly irregulars.  

More widely, other research has also found little direct effect of token frequency on 

generalisation, as the TP would predict. Schuler et al. (2017) investigated whether lexical 

frequency and range of sentential contexts affects adults’ abilities to categorise novel words in an 

artificial language learning paradigm. They found that learners use the conditional probabilities 

that words will occur in certain contexts rather than the absolute (token) frequency of words and 

their contexts to determine generalisation of categories. Perfors et al. (2014) investigated the 

effect of type and token frequency on adults’ generalisation in linguistic and non-linguistic 

contexts, specifically whether participants update their generalisations when they encounter more 

tokens of familiar types. When types were kept constant but token frequency was increased 

tenfold, generalisation behaviour was not updated by participants in linguistic or non-linguistic 

contexts. The authors concluded that learners are insensitive to token frequency when extending 

generalisations to new items and instead base their generalisations about grammaticality on the 

distribution of types.   

It should be noted that token frequency is important in language acquisition even if it 

does not affect generalisation directly. For example, Kurumada et al. (2013) examined the effects 

of Zipfian frequency distributions on word segmentation in an artificial language paradigm. They 

found that adults’ word segmentation in context – specifically, accurate learning of adjacent 

dependencies – was supported by a high token frequency of words in the input. They claim that a 

Zipfian distribution facilitates this process, as items from the top of the distribution are 

encountered more frequently, learned more accurately, and thus provide an efficient entry to 

word segmentation. I suggest this finding supports the role of token frequency found by Endress 

and Hauser (2011), where token frequency was important for successful learning of individual 

items. According to this view, (and in line with the TP), token frequency may influence which 

item types are learned earliest and most accurately, and early generalisation and rule-formation 

may be largely based on these high frequency items. However, once items have been acquired 

successfully, the types are not weighted by tokens in order to determine productivity of a rule.  
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Results from some artificial language learning studies (e.g. Hudson Kam & Newport, 

2005, 2009; Schuler, 2017) also suggest that token frequency may also be important in instances 

where learners (particularly adults) do not form productive rules after exposure to linguistic 

input. As discussed in Chapter 4, these studies found that when patterns in the input were not 

overly complex, adult learners did not adopt general rules that regularised the inconsistencies 

they were exposed to. Instead, adults may perform “probability matching” (Hudson Kam & 

Newport, 2005) in which their learning and generalisation reflects the token frequency 

distribution of a range of forms in the input. It is worth noting that the paradigms used by 

Hudson Kam and Newport (2005, 2009) involved probabilistic, or inconsistent, marking of 

items, in which one item may sometimes take one marker and at other times take a different one. 

This is in contrast to the current experiment, in which mappings for individual items are always 

consistent: items are always pronounced the same way throughout training. However, this type 

of consistency was also used in Schuler’s (2017) experiments, where adults were also found to 

perform probability matching.  

To summarise, irregular forms can be highly frequent in spoken and written language but 

this does not necessarily disrupt the productivity of rules. A successful account of rule-learning 

and generalisation must be able to accommodate this typological phenomenon, whilst allowing 

for findings that suggest rule-formation is relatively unaffected by token frequency. One 

possibility is that token frequency affects which item types are learned first and most accurately, 

but once acquired, these types are not weighted by token frequency in terms of their influence on 

rule productivity. The TP is based on such an account of productivity, according to which rules 

are determined by types rather than tokens, and therefore high token frequency irregular forms 

will not directly affect patterns of generalisation.  

 

5.3 Experiment 3 

The current experiment explores whether highly frequent irregular items affect rule-

formation for novel spelling-sound correspondences and consequently whether the TP is able to 

predict generalisation in this context. In Experiment 2, regular and irregular items from an 

artificial language were randomly positioned along a Zipfian distribution (Zipf, 1949) to 

determine their frequency of occurrence during the training phase. Using the same artificial 
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orthography paradigm, here token frequency is manipulated during training such that irregular 

items are assigned to the highest positions on the distribution. Therefore, the highest frequency 

items are always irregular. Meanwhile, the type frequency of regular and irregular items from 

Experiment 2 are kept constant using the same 8 Regular/2 Irregular (8R2I), 6 Regular/4 

Irregular (6R4I) and 4 Regular/6 Irregular (4R6I) conditions. The TP predicts the same patterns 

of generalisation in both Experiment 2 and Experiment 3, as described below. Analysis of 

participants’ generalisation of spelling-sound correspondences to untrained items will test 

whether these predictions are met, or whether a high token frequency of irregular items can 

affect generalisation. This experiment tested adult participants only, firstly because adults and 

children demonstrated broadly similar generalisation behaviour in Experiment 2, and secondly 

because it was anticipated that the high frequency irregular version of the task may be 

challenging for children in this age group.  

 

5.3.1 Predictions 

Yang’s Tolerance Principle (2016) states that the productivity of a rule is determined by 

the number of regular and irregular items in the input; the token frequency of these items will not 

directly affect rule productivity. Thus, according to the TP, increasing the token frequency of 

irregular items in the input will not affect learners’ generalisation of a rule.  

In this experiment, the token frequency of irregular items was increased during training, 

by assigning these items to the top of the Zipfian frequency distribution. Therefore, irregular 

items were highly frequent in the input. During the Generalisation task, adult participants read 

aloud a set of 30 untrained items to reveal whether they had formed a productive rule for each 

novel vowel symbol. If a participant responded using the most common pronunciation of the 

vowel grapheme by type (i.e., they “regularised” the vowel) then it suggests they had formed a 

productive pronunciation rule for that novel symbol.  

As the number of regular and irregular item types in each condition was identical to 

Experiment 2, the TP makes the same predictions as the previous study. Namely, learners will 

regularise their pronunciation of the vowel for 100% of generalisation items from the two 

conditions in which a productive rule should be formed as the vowel grapheme passes the 
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tolerance test (8R2I and 6R4I), and will use the regular pronunciation no more than chance level 

(25%) for items from the condition in which a productive rule should not be formed as the vowel 

grapheme does not pass the tolerance test (4R6I). The TP is predicted to have the same effect on 

vowel regularisation across the two studies, and token frequency is not predicted to have an 

effect on vowel regularisation.  

In contrast, a probability matching account from statistical learning frameworks (Hudson 

Kam & Newport, 2004, 2005) expects learners to reproduce the statistical distributions from 

their learning environment, matching the token frequency of regular and irregular pronunciations 

from their input during generalisation. Therefore, this approach would predict token frequency of 

the regular vowel during training to have an effect on vowel regularisation.  

Finally, to explore the importance of successful acquisition for rule-learning, the 

relationship between accurate learning of trained regular items assessed in the Final Reading 

Aloud test and the rates of vowel regularisation for untrained items in the Generalisation task is 

considered.  

 

5.4 Method 

5.4.1 Participants 

25 adult participants (mean age 20; 19 females) were recruited from the student body of 

Royal Holloway, University of London. Participants were monolingual, native English speakers, 

with a Southern British accent and no known language or learning difficulties. Participants had 

normal or corrected-to-normal vision. Each participant received £10 for their involvement in the 

study. One participant was excluded due to not fulfilling eligibility requirements. Therefore, data 

from 24 participants were included in our analysis. The study received approval from the 

procedures of the Ethics Committee at Royal Holloway, University of London.  

 

5.4.2 Stimuli and design 

The stimuli and design replicated that of Experiment 2, except that items were not 

randomly assigned a position on the Zipfian distribution (Zipf, 1949) to determine their 

frequency of occurrence during training. Instead, irregular items (from all conditions) were 
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assigned to the six positions at the top of the frequency distribution. In a Zipfian distribution, 

frequency is inversely proportional to rank, meaning that a small number of items occur with 

high token frequency and a large number of items occur with low token frequency. Allocating 

irregular items to the top of this distribution ensured that the high frequency items were always 

irregular. The allocation of 6 out of the 12 irregular items to the top six positions on our Zipfian 

distribution was varied for each participant, such that the allocation of the highest token 

frequency (24 repetitions during training) was evenly distributed across irregular items from all 

three conditions. This minimised an uneven weighting of extremely high token frequencies in 

any particular condition across participants. Allocation of irregular items to the remaining five 

highest token frequencies in our distribution (12, 8, 6, 5 and 4 repetitions) was randomised for 

each participant. All regular items and the remaining six irregular items were allocated to 

positions at the bottom of the distribution, and thus occurred three times each during the training 

phase (once each during the Exposure, Reading Aloud and Spelling tasks). An example of one 

participant’s token frequency of exposure to each item during training is shown in Table 5.1. The 

token frequencies of exposure to items for all participants during the training phase are available 

here: https://osf.io/7xe4f/view_only=32f5e1d0b3fd437997c78990cf676566. 

 

  

https://osf.io/7xe4f/view_only=32f5e1d0b3fd437997c78990cf676566
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Table 5.1 

The orthography, pronunciation, regularity, condition and token frequency of 

trained items for one participant. Top six frequencies in bold. 

 

Orthography Pronunciation Regularity Condition Token Frequency 

mƍl /mel/ Irregular 8R2I 24 

bʕp /buːp/ Irregular 4R6I 12 

vʕd /ved/ Irregular 4R6I 8 

tϷb /teb/ Irregular 6R4I 6 

nƍm /nuːm/ Irregular 8R2I 5 

dʕv /dæv/ Irregular 4R6I 4 

gϷv /ɡæv/ Irregular 6R4I 3 

kϷf /kæf/ Irregular 6R4I 3 

pϷg /puːɡ/ Irregular 6R4I 3 

kʕk /kek/ Irregular 4R6I 3 

lʕt /læt/ Irregular 4R6I 3 

fʕn /fuːn/ Irregular 4R6I 3 

pƍb /pɪb/ Regular 8R2I 3 

bƍp /bɪp/ Regular 8R2I 3 

kƍg /kɪɡ/ Regular 8R2I 3 

gƍn /ɡɪn/ Regular 8R2I 3 

tƍv /tɪv/ Regular 8R2I 3 

lƍf /lɪf/ Regular 8R2I 3 

fƍd /fɪd/ Regular 8R2I 3 

vƍk /vɪk/ Regular 8R2I 3 

lϷn /lɒn/ Regular 6R4I 3 

nϷp /nɒp/ Regular 6R4I 3 

vϷk /vɒk/ Regular 6R4I 3 

fϷd /fɒd/ Regular 6R4I 3 

mϷt /mɒt/ Regular 6R4I 3 



  

167 

 

dϷm /dɒm/ Regular 6R4I 3 

pʕb /pi:b/ Regular 4R6I 3 

mʕg /mi:ɡ/ Regular 4R6I 3 

gʕl /ɡi:l/ Regular 4R6I 3 

tʕf /ti:f/ Regular 4R6I 3 

     

 

5.4.3 Procedure 

The procedure replicated that of Experiment 2 (with adults) detailed under Section 4.3.3. 

The training phase began with an exposure to the set of 30 items, in which participants were 

presented with the written form of each item one at a time on a screen, and simultaneously heard 

a pre-recorded pronunciation of the item. Participants then carried out a Reading Aloud task and 

a Spelling task, during which they received feedback on their responses. The token frequency of 

items in these tasks followed a Zipfian distribution (as described above).  

The testing phase immediately followed the training phase. In the Generalisation task, 

participants were asked to read aloud 30 novel untrained items. This task assessed participants’ 

generalisation of the novel spelling-sound correspondences encountered during training. Next, 

participants carried out an Old/New task in which they were presented with the written form of 

30 trained items and 30 novel untrained items that they had not previously encountered. The 

novel untrained items were formed using the same consonant and vowel characters used for the 

trained items, and using the same CVC structure. Participants were asked to indicate whether or 

not each item had been encountered previously during training. This task assessed participants’ 

recognition memory of the 30 original trained items. The testing phase concluded with a final 

Reading Aloud test of the original 30 trained items. This task assessed how accurately 

participants had learned the pronunciation of each of the 30 trained items. No feedback was 

given to participants during the testing phase.  
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5.5 Results 

5.5.1 Vowel regularisation in the Generalisation task 

In the Generalisation task, each participant read aloud 30 untrained items. Figure 5.1 

presents participants’ percentage regularisation of the vowel symbol (use of the most common 

vowel phoneme by type) in pronunciations of these untrained items, by condition. Participants’ 

mean vowel regularisation for untrained items across all conditions was 47.42% (SE = 3.77). For 

the analysis of participants’ vowel regularisation, a series of mixed-effects logistic regression 

models was used. Regularisation of the vowel in the pronunciation of each item was used as the 

binary outcome variable, coded as 1 if the vowel was regularised and 0 for any other response. 

To compare regularisation by condition, I used a model with condition as the fixed effect 

(rotating each condition as the reference level) and participant as a random effect. Item was not 

added as a random effect as it resulted in a model with singular fit, due to an overly complex 

random effects structure. Table 5.2 presents the results from this model. This analysis suggests 

that regularisation was significantly lower in the 4R6I condition than the 8R2I condition, but was 

also significantly lower in the 6R4I condition than the 8R2I condition. There was no significant 

difference in regularisation between the 6R4I and 4R6I conditions. These results are not in line 

with the TP prediction that participants’ regularisation will not differ in the 8R2I and 6R4I 

conditions which both pass the tolerance test, and will be significantly lower in the 4R6I 

condition which does not. Further, participants’ regularisation is not categorical as the TP would 

predict: regularisation was significantly lower than 100% in the 8R2I condition (t(23) = -4.60, p 

< .001), the 6R4I condition (t(23) = -8.74,  p <. 001) and the 4R6I condition (t(23) = -9.93, p < 

.001); this is only predicted for the 4R6I condition.  
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Figure 5.1 

Participants’ Vowel Regularisation (%) in Untrained Items by Condition in the Generalisation 

Task 

 

 

Note. In this figure and subsequent figures, the horizontal line represents the mean, the box 

around the mean represents standard error, data points represent individual participants, and the 

borders around data points are smoothed density curves. 
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Table 5.2   

Output from mixed-effects model comparing the effect of condition on vowel 

regularisation in the Generalisation task                  

glmer(Regularisation ~ Condition + (1|Participant), family = binomial)  

  

   Estimate  Standard Error  z value   p value  
Inverse Logit 

(Probability)  

8R2I vs 6R4I  -1.364  0.207  -6.596  <.001  0.204  

8R2I vs 4R6I  -1.351  0.206  -6.546  <.001  0.206  

6R4I vs 4R6I  0.013  0.200  0.066  0.948  0.503  

 

 

5.5.1.1 The effect of token frequency and the TP on vowel regularisation   

The analysis above suggests that the TP does not guide participants’ vowel regularisation 

during generalisation when irregular items are highly frequent in the input. Further, the finding 

that there is no significant difference between regularisation in the 6R4I condition and the 4R6I 

condition suggests that participants are also not simply matching the type frequency of the 

regular form in each condition. To explore what statistical information from the input 

participants might instead be using to inform their generalisation, the following analysis 

investigated the effect of token frequency of regular pronunciations during training on 

participants’ regularisation, plus the effect of the TP beyond this input frequency variable.  

For this analysis, I ran series of mixed-effects logistic regression models using 

regularisation of the vowel as the binary outcome variable. Table 5.3 presents the output from a 

model using token frequency of the regular vowel pronunciation during training as the fixed 

effect, and participant and item as random effects. This analysis shows that increased token 

frequency is associated with a greater likelihood of a regularised response.  
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Table 5.3   

Output from mixed-effects model examining the effect of token frequency on vowel 

regularisation  

glmer(Regularisation ~ Token + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  Standard Error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -1.612  0.313  -5.159  <.001  0.166  

Token  3.310  0.535  6.187  <.001  0.965  

 

A second model examined whether passing the tolerance test had an effect on 

regularisation above the effect of token frequency. This model used passing the tolerance test 

(treated as a factor with two levels) and token frequency as fixed effects, and participant and 

item as random effects. Table 5.4 presents the output from this model. This analysis suggests that 

the TP does not have a significant effect on regularisation, whilst an increase in token frequency 

is associated with a greater likelihood of regularisation.  
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Table 5.4   

Output from mixed-effects model comparing the effects of token frequency and passing 

the TP on regularisation   

glmer(Regularisation ~ Token + TP + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  Standard Error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -1.912  0.361  -5.298  <.001  0.129  

Token  4.150  0.745  5.569  <.001  0.984  

TP  -0.439  0.268  -1.643  0.100  0.312  

 

 

5.5.1.2 Comparing adults’ vowel regularisation in the Generalisation task in Experiment 2 and 

Experiment 3 

 

To compare adult participants’ behaviour in Experiments 2 and 3, Figure 5.2 presents 

participants’ percentage of vowel regularisation responses by condition in both versions of the 

study. The analysis above showed that the TP was not associated with an increased likelihood of 

regularisation in Experiment 3 as it was in Experiment 2.  
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Figure 5.2  

Participants’ Vowel Regularisation (%) in Untrained Items by Condition in the Generalisation 

Task in Experiments 2 and 3 

 

 

 To explore this further, a mixed-effects logistic regression model examined whether there 

was an interaction between the effect of the TP and the version of the experiment on vowel 

regularisation. A maximal mixed-effects model did not converge, but Table 5.5 presents a model 

using a TP x Experiment interaction as the fixed effect (with reference levels rotated), with 

participant and item as random effects. The results suggest that passing the TP had a significant 

effect on regularisation in both experiments. Regularisation was significantly higher in 

Experiment 2 than Experiment 3 for items that pass the tolerance test, but there was no 

significant difference in regularisation between Experiments for items that fail the tolerance test. 

Further, the difference between regularisation for items that pass the tolerance test and items that 

fail the tolerance test was significantly greater in Experiment 2 than Experiment 3. In other 

words, passing the TP had a significantly larger effect on regularisation in Experiment 2 than 

Experiment 3.  
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Table 5.5   

Output from mixed-effects model investigating the interaction between the TP and 

Experiment on participants’ vowel regularisation  

glmer(Regularisation ~ TP*Experiment + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  St. Error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -0.227  0.226  -1.006  0.314  0.443  

TP (fail vs. pass) in Exp 2  1.880  0.245  7.670  <.001  0.868  

TP (fail vs. pass) in Exp 3  0.673  0.227  2.973  0.003  0.662  

Exp 2 vs. Exp 3 (TP fail)  0.578  0.345  1.674  0.094  0.641  

Exp 2 vs. Exp 3 (TP pass)  -0.623  0.308  -2.041  0.041  0.349  

TP (pass)*Exp (2)  1.207  0.262  4.604  <.001  0.770  

 

 

5.6 Interim Discussion 

5.6.1 Investigating the reduced effect of the TP in Experiment 3: the role of token frequency 

The analyses above suggests that the TP has a significantly different effect on 

regularisation across the two experiments: regularisation was higher for items that pass the 

tolerance test in Experiment 2 than in Experiment 3, and passing the TP had a greater effect on 

regularisation in Experiment 2 than Experiment 3. This contradicts the TP theory, as the only 

difference between the two experiments was an increase in token frequency of irregular items 

during training, and token frequency is expected to have no direct bearing on regularisation. 

Nevertheless, this manipulation of token frequency reduced the predicted effect of the TP on 

vowel regularisation in Experiment 3 compared to Experiment 2; and, after controlling for token 

frequency in Experiment 3, the TP was not found to predict regularisation at all.  

There are (at least) two possible ways in which token frequency may be playing a role in 

the disruption of the TP effect on regularisation. Firstly, it is possible that information about 
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token frequency in the input is used specifically in the middle 6R4I condition where the number 

of exceptions reaches – but does not cross – the tolerance threshold of 4 exceptions. It is possible 

that the balance between regular and irregular items is more susceptible to influence from token 

frequency as the number of irregular items approaches the tolerance threshold, where calculating 

productivity according to type could be less clear-cut. In Experiment 3, participants’ 

regularisation in this 6R4I condition was not significantly different from the 4R6I condition, 

even though the spelling-sound correspondence crosses the tolerance threshold in the latter but 

not the former. If token frequency affects regularisation when using type counts to calculate 

productivity becomes less informative, it is possible that a distribution of token frequencies in 

which irregular items occur very frequently results in an unpredicted pattern of regularisation in 

this middle condition, as observed in Experiment 2. This disruption of rule-productivity by token 

frequency is not predicted by the TP theory as it contradicts the characterisation of generalisation 

as a categorical process which is governed by a specific point of consistency, beyond which use 

of a productive rule becomes computationally inefficient. Further, token frequency is not 

predicted to have any effect on rule productivity or learners’ generalisation, as discussed above.  

A second possibility allows a less direct role of token frequency on regularisation. 

Instead, token frequency during exposure may determine which items are successfully acquired 

by participants, as items with high token frequency are encountered repeatedly during training. 

Generalisations may subsequently be made on the basis of these highly-frequent, successfully-

learned items. In Experiment 3, the most frequent items were always irregular. Although 

irregular items are harder to learn (Rueckl & Dror, 1994), their acquisition may be boosted 

through repetition during training, as reported by Endress and Hauser (2011). The token 

frequency manipulation in Experiment 3 may therefore affect an individuals’ pattern of learning. 

This is important to note, as the TP predictions for regularisation in each condition were 

calculated by inputting the total number of trained items to the tolerance algorithm, under the 

assumption that learners will generalise using of knowledge of the full training set. However, as 

results from the final Reading Aloud task demonstrate, participants did not successfully acquire 

spelling-sound knowledge of all items. 

As discussed in Section 5.2.1, Schuler (2017) found that regularisation by children did 

not follow the original predictions of the TP in Experiment 2, where the token frequency of 
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irregular plural markers was increased during training. These predictions were also calculated 

assuming knowledge of the full training set. However, noting that individual children were still 

using the regular marker in a categorical way (i.e. either all of the time, or at chance), she 

hypothesised that children were not following the original TP prediction because they had not 

successfully learned all of the noun-marker pairings in the category of nouns. Depending on 

which pairings they had learned, each participant may or may not form a productive rule. 

Therefore, she calculated a personal tolerance threshold for each child, using the number of 

trained regular and irregular items they had successfully acquired. This individual threshold 

successfully predicted children’s generalisation behaviour, and is in accordance with the notion 

that the TP should apply to an individual learner’s vocabulary.  

In the following Further results section 5.6, I will explore these two hypotheses for the 

role of token frequency in adults’ regularisation in Experiment 3, namely whether it directly 

influences participants’ regularisation behaviour at the tolerance boundary in the 6R4I condition, 

or whether it plays a more indirect role by influencing which items from the training set are 

learned most successfully and provide the specific basis of generalisation for each participant. To 

investigate this, I will use a revised TP variable by calculating an individual threshold for each 

participant, and use this to predict whether they should form a productive pronunciation rule for 

each vowel symbol. If the first hypothesis is correct (that token frequency directly affects 

regularisation), this personalised TP variable will not have a significant effect on regularisation, 

but token frequency will. If the second hypothesis is correct (that token frequency affects 

learning which provides the basis for generalisation), then the personalised TP variable will have 

a significant effect on regularisation, but token frequency will not. Further, this personalised TP 

variable will predict vowel regularisation more successfully than the original TP variable.  

 

5.6.2 Calculating individual tolerance thresholds 

The original tolerance threshold and predictions for productivity were calculated using 

the total number of items and the number of irregular items in each condition, according to the 

tolerance algorithm. This approach assumes full knowledge of all trained items in all conditions. 

In order to calculate a new, individual tolerance threshold for each participant for each of the 
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three novel vowel symbols based specifically on their own acquired knowledge of trained items, 

I used data from the final Reading Aloud test. In this task, participants were asked to read aloud 

each trained item; responses were scored correct if their pronunciation of the vowel symbol 

matched the trained pronunciation. An accurate response was used to assume successful 

acquisition of that item. The total number of accurate responses by the participant in each 

condition was used as the value for N in the tolerance algorithm (θN ≤ N/ln(N)), which provided 

every participant with an individual tolerance threshold for each of the three vowel symbols. 

This threshold is the number of exceptions the TP predicts a productive rule should tolerate. 

Next, I counted how many of a participant’s correct responses to each symbol were for irregular 

items, which provided the number of exceptions (e) the participant had acquired for each vowel 

symbol. This value (e) could then be compared with the participant’s own tolerance threshold 

(θN) for that vowel symbol. If the number of acquired exceptions (e) exceeded the threshold 

(θN), then the participant was not predicted to form a productive rule for the pronunciation of 

that vowel symbol. If (e) did not exceed the threshold, then the participant is predicted to form a 

productive rule.  

For example, if a participant successfully acquired 6 out of the 10 trained items which use 

one vowel symbol, their individual tolerance threshold for this symbol is 3.25 (6/ln(6)). This 

means that 3 exceptions can be tolerated by a productive rule. If 2 out of their 6 acquired items 

were irregular, the number of exceptions does not exceed the threshold and the participant is 

predicted to form a productive pronunciation rule for this vowel symbol. In this way, I could 

calculate for each participant an individual TP prediction (form a productive pronunciation rule 

or not) for each of the three vowel symbols.  

 

5.7 Further Results 

5.7.1 The effect of token frequency and the individual TP on vowel regularisation in the 

Generalisation task in Experiment 3 

I ran a mixed-effects logistic regression model to investigate the effects of the individual 

TP variable and token frequency on adults’ regularisation in the Generalisation task in 

Experiment 3. The model used the individual TP variable (treated as a factor with two levels) 
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and token frequency of the regular vowel pronunciation during training as fixed effects, with 

participant and item as random effects; a maximal mixed-effects model did not converge. 

Regularisation of the vowel in the pronunciation of each untrained nonword item was used as the 

binary outcome variable. For this analysis, I removed data from one participant whose 

performance on the final reading aloud test (13.3% accuracy) suggested that they should not 

form a productive pronunciation rule for any vowel symbol.  

Table 5.6 presents the results from this model, suggesting that the individual TP variable 

has a significant effect on regularisation. This means that participants are more likely to use the 

regular pronunciation of a vowel symbol when the pronunciation passes the tolerance test 

according to the number of items in their acquired vocabulary. Meanwhile, token frequency was 

not associated with an increased likelihood of regularisation in this model.  

    

Table 5.6   

Output from mixed-effects model comparing the effects of token frequency and the 

individual TP on vowel regularisation   

glmer(Regularisation ~ Token + Individual TP + (1|Participant) + (1|Item), family 

= binomial)  

  

   Est.  Standard Error  z value   p value  
Inverse logit 

(probability)  

Intercept  -1.779  0.352  -5.054  <.001  0.144  

Token  0.280  0.729  0.384  0.701  0.570  

Individual TP  2.380  0.294  8.101  <.001  0.915  

 

5.7.2 Comparing the effects of the original and individual TP on vowel regularisation 

 Following the results suggesting that the individual TP successfully predicts participants’ 

vowel regularisation, a final series of mixed-effects models investigated the effects of both the 

original and individual TP variables on vowel regularisation. Table 5.7 presents the results of a 
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model using the original TP as a fixed effect (treated as a factor with two levels), with participant 

and item as random effects. Results suggest that the original TP does have a significant effect on 

regularisation in this model. Table 5.8 presents the results of a model using both the original TP 

and the individual TP as fixed effects (each treated as a factor with two levels), with participant 

and item as random effects. Results from this model suggest that the individual TP, but not the 

original TP, has a significant effect on regularisation. A chi-square test compared the two models 

to assess whether including the individual TP offers a better fit to the data. The result suggests 

that adding the individual TP significantly improved the model (χ2 (1) = 113.18, p < .001), 

indicating that the individual TP is able to explain variance in participants’ regularisation 

behaviour that the original TP cannot.  

  
  

Table 5.7   

Output from mixed-effects model examining the effect of the original TP on vowel 

regularisation   

glmer(Regularisation ~ Original TP + (1|Participant) + (1|Item), family = binomial)  

  

   Estimate  Standard error  z value   p value  
Inverse Logit 

(Probability)  

Intercept  -0.496  0.259  -1.911  0.056  0.378  

Original TP  0.705  0.274  2.573  0.010  0.669  
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Table 5.8   

Output from mixed-effects model comparing the effects of the original TP and individual 

TP on vowel regularisation   

glmer (Regularisation ~ Original TP + Individual TP + (1|Participant) + (1|Item), family 

= binomial)  

  

   
Estimate  Standard Error  z value   p value  

Inverse Logit 

(Probability)  

Intercept  -1.547  0.299  -5.165  0.049  0.176  

Original TP  -0.344  0.287  -1.196  0.232  0.415  

Individual TP  2.555  0.274  9.329  <.001  0.928  

 

 

5.7.3 Recognition memory in the Old/New task  

 

In the Old/New task, participants’ mean recognition accuracy for trained (“old”) items 

was 72.92% (SE = 2.48) and for untrained (“new”) items, 55.00% (SE = 2.77). The mean d’ 

value for participants’ recognition accuracy across all items was 0.73 (SD = 0.08). There were no 

significant differences between participants’ d’ values for items in the 8R2I condition (M = 

0.637, SD = 0.139) and the 6R4I condition (M = 0.758, SD = 0.118), (t(23) = -0.798, p = .433), 

the 6R4I condition and the 4R6I condition (M = 0.801, SD = 0.146), (t(23) = -0.347, p = .732), 

or the 8R2I condition and the 4R6I condition (t(23) = -1.285, p = .211).  

 

5.7.4 Performance in the final Reading Aloud task 

Figure 5.3 presents participants’ percentage accuracy for pronunciation of trained items 

by condition in the final Reading Aloud test. Responses were scored correct if the pronunciation 

of the vowel symbol matched the trained pronunciation for that item. Mean accuracy for trained 

items across all conditions was 49.58% (SE = 2.84). I used a mixed-effects logistic regression 
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model to examine the effect of condition on participants’ accuracy. Accuracy of the vowel 

pronunciation in each trained item was treated as the binary outcome variable, coded as 1 if the 

vowel was pronounced correctly and 0 if the vowel was pronounced incorrectly. Condition was 

used as a fixed effect (rotating each condition as the reference level), with participant and item as 

random effects. Table 5.9 presents the results from this model. The analysis suggests that 

accuracy in the 8R2I condition was higher than the 6R4I condition, but this difference 

approached the significance threshold of 0.05. Accuracy in 8R2I condition was significantly 

higher than the 4R6I condition, whilst accuracy in the 6R4I condition and the 4R6I condition 

was not significantly different. A further mixed-effects model was used to examine the effect of 

vowel regularity on adults’ accuracy across conditions. Table 5.10 presents the results of a model 

with accuracy as the binary outcome variable, regularity as the fixed effect (with irregular as the 

reference level), and participant and item as random effects. The results suggest that across 

conditions, participants’ accuracy was significantly higher for regular items than for irregular 

items.  

 

Figure 5.3 

Participants’ Accuracy (%) for Trained Items by Condition in the Final Reading Aloud Task 
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Table 5.9  

Output from mixed-effects model comparing the effect of condition on adults’ 

accuracy in the Reading Aloud task  

glmer(Accuracy ~ Condition + (1|Participant) + (1|Item), family = binomial) 

  Estimate St. Error z value p value 
Inverse Logit 

(Probability) 

8R2I vs 6R4I -0.584 0.296 -1.971 0.049 0.358 

8R2I vs 4R6I -0.999 0.298 -3.350 <.001 0.475 

6R4I vs 4R6I -0.416 0.296 -1.406 0.160 0.397 

 

 

Table 5.10  

Output from mixed-effects model examining the effect of regularity on adults’ accuracy 

in the Reading Aloud task  

glmer(Accuracy ~ Regularisation + (1|Participant) + (1|Item), family = binomial) 

  Estimate St. Error z value p value 
Inverse Logit 

(Probability) 

Intercept -0.701 0.192 -3.658 <.001 0.332 

Irregular vs. Regular 1.128 0.205 5.507 <.001 0.755 

 

 

5.7.5 Comparing accuracy in the final Reading Aloud task in Experiments 2 and 3 

 A mixed-effects model was used to examine the effect of experiment on adults’ accuracy 

across conditions in the final Reading Aloud task. A maximal mixed-effects model did not 

converge, but Table 5.11 presents the results of a model with accuracy as the binary outcome 
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variable, experiment as the fixed effect (with Experiment 2 as the reference level), and item and 

participant as random effects. This analysis suggests that there was no significant difference 

between participants’ accuracy of trained items in Experiment 2 and Experiment 3.  

 

Table 5.11  

Output from mixed-effects model examining the effect of experiment on participants’ 

accuracy in the Reading Aloud task  

glmer (Accuracy ~ Experiment + (1|Participant) + (1|Item), family = binomial) 

  Estimate St. Error z value p value 
Inverse Logit 

(Probability) 

Intercept -0.018 0.213 -0.083 0.934 0.496 

Exp.2 vs. Exp.3 -0.004 0.194 -0.020 0.984 0.499 

 

A final mixed-effects model examined the effect of experiment on adults’ accuracy of 

regular and irregular trained items. Table 5.12 presents the results of a model with accuracy as 

the binary outcome variable, an Experiment x Regularity interaction as the fixed effect (with 

Experiment 2 as the experiment reference level, and regular and irregular rotated as the 

regularity reference level), and item and participant as random effects. This analysis suggests 

there was no significant difference between Experiment 2 and Experiment 3 in adults’ accuracy 

of trained regular items or trained irregular items.  
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Table 5.12  

Output from mixed-effects model examining the effect of Experiment x Regularity on 

participants’ accuracy in the Reading Aloud task  

glmer (Accuracy ~ Experiment + (1|Participant) + (1|Item), family = binomial) 

 Est. St. Error z value p value 
Inverse Logit 

(Probability) 

Regular (Exp. 2 vs Exp. 3) -0.178 0.215 -0.828 0.408 0.456 

Irregular (Exp.2 vs. Exp.3) 0.279 0.245 1.136 0.256 0.569 

 

 

5.7.6 Relationship between accuracy of regular trained items and regularisation in the 

Generalisation task  

To observe the relationship between successful learning of trained regular items and 

vowel regularisation, Figure 5.4 displays participants’ accuracy for trained regular items in the 

final Reading Aloud task by vowel regularisation in the Generalisation task. Results of a Pearson 

correlation suggest that there is a high correlation between acquisition of regular items and 

regularisation during generalisation in the 8R2I condition (r (22) = 0.888, p < .001), the 6R4I 

condition (r (22) = 0.737, p <. 001), and the 4R6I condition (r (22) = 0.686, p <. 001).  
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Figure 5.4  

Participants’ Accuracy (%) for Trained Regular Items in the Final Reading Aloud Task by 

Vowel Regularisation (%) in Untrained Items in the Generalisation Task 

 

 

Note. Data points represent individual participants. 

 

5.8 Discussion 

The Tolerance Principle (Yang, 2016) states that learners should form a productive rule 

for a particular pattern if the number of exceptions to a rule falls below a critical threshold. The 

token frequency (frequency of occurrence) of these items in the input should not affect the 

productivity of a rule; the tolerance algorithm uses only type frequencies of regular and irregular 

items to determine the threshold. Nevertheless, it is important to consider the role of token 

frequency when investigating how learners extract information from the learning environment, as 

word frequency in natural languages follows a characteristic Zipfian distribution (Zipf, 1949): 

relatively few words are very frequent, whilst a large number of words occur rarely. Further, 

irregular words (i.e., those which do not follow a majority pattern) can be highly frequent in both 

the grammatical systems of spoken languages (Schuler, 2017; Bybee & Slobin, 1982) and the 

orthographic systems of written languages (Solity & Vousden, 2009).   
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Previous experimental work on the TP using an artificial grammar paradigm suggests that 

children do make use of type rather than token frequencies in their patterns of generalisation, 

(Schuler, 2017). Endress and Hauser (2011) found that adults also use type frequencies to 

determine productivity, whilst token frequency seems to be important for the learning of 

individual (and irregular) items. Meanwhile, other artificial language learning studies suggest 

that adult learners rarely form productive rules that impose structure beyond input frequencies at 

all; instead, they reproduce the pattern of variation they were exposed to during training (Hudson 

Kam & Newport, 2005, 2009; Schuler, 2017).  

The aim of Experiment 3 was to investigate the effect of high token frequency of 

irregular pronunciations during training on adult learners’ generalisation of novel spelling-sound 

correspondences in an artificial orthography. In Experiment 2, the TP’s prediction for rule-

productivity was found to have a significant effect on adult and child learners’ vowel 

regularisation (use of the most common vowel pronunciation) beyond the effect of token 

frequency when regular and irregular items were randomised across the Zipfian distribution. 

Here, I considered whether the effect of the TP on adult participants’ vowel regularisation 

revealed in Experiment 3 was maintained when irregular items were assigned to the highest 

positions in the Zipfian distribution, rather than being randomly distributed amongst regular 

items.  

The TP theory predicts that the token frequency of regular and irregular items should 

have no direct bearing on rule productivity, which should instead be determined simply by the 

number of regular and irregular items as described above. As the type frequencies of regular and 

irregular items in each of the three conditions did not vary across Experiments 2 and 3, the TP 

predicts the same pattern of generalisation in the second experiment as in the first. For the two 

vowel symbols used in items from the 8R2I and 6R4I conditions, participants should form a 

productive pronunciation rule using the most common symbol-phoneme mapping. However, for 

the third vowel symbol used in items from the 4R6I condition, a productive pronunciation rule 

should not be formed as the number of irregular pronunciations exceeds the tolerance threshold. 

Adult learners were trained to read aloud 30 nonword items (10 from each condition) and were 

then assessed on their generalisation and learning of spelling-sound correspondences during the 

testing phase. 
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5.8.1 Generalisation of spelling-sound knowledge to untrained items  

The Generalisation task assessed whether adults had formed productive pronunciation 

rules for the three vowel symbols through analysis of their use of the regular (most common) 

pronunciation of the vowels in untrained items. My initial analysis of the data from this task 

showed that vowel regularisation in the 8R2I condition was high, but did not reach the predicted 

level of 100%, suggesting that participants’ behaviour is not categorical as the TP predicts. In the 

4R6I condition, vowel regularisation was significantly lower than the 8R2I condition, as 

predicted by the TP. However, vowel regularisation in the 6R4I condition was significantly 

lower than the 8R2I condition, and not significantly different from the 4R6I condition, contrary 

to the TP prediction. Therefore, it seems that participants’ generalisation behaviour in this 

middle condition does not follow the TP prediction when irregular items have high token 

frequency: even though the number of irregular item types does not cross the critical threshold, 

learners do not form a productive rule. This pattern contrasts with results in Experiment 2, where 

regularisation in the 4R6I condition was significantly lower than in the 6R4I condition. 

However, a power analysis in future investigations would improve confidence that critical null 

findings are not due to an underpowered study. More broadly, the finding that regularisation in 

line with the TP is disrupted by high token frequency irregulars mirrors that of Schuler’s (2017) 

initial analysis of Experiment 2.  

 

5.8.2 The effect of token frequency and the original TP on vowel regularisation  

The suggestion that learners do not form productive rules as predicted by the original TP 

variable in Experiment 3 following a manipulation of token frequency during training was 

supported by the analysis exploring the effects of token frequency and passing the TP on 

regularisation. Whilst the TP does not predict an effect of token frequency, a statistical learning 

framework would predict that frequency variables from the input will have an effect on 

generalisation. Results from the Generalisation task suggested that token frequency did have a 

significant effect on regularisation, whereas passing the TP did not (after controlling for token 

frequency of the regular form). Critically, a comparison across Experiments 2 and 3 found a 

significant interaction between the effect of the TP and Experiment on vowel regularisation, with 

the TP having a smaller effect on regularisation in Experiment 3.  



  

188 

 

 This result suggests that the manipulation of token frequency in Experiment 3 reduced 

the predicted effect of the TP on regularisation and triggered a change to adult learners’ 

generalisation behaviour seen in Experiment 2, particularly in the middle 6R4I condition where 

the number of exceptions reaches – but does not cross – the tolerance threshold of 4 exceptions. 

In the Interim Discussion, I hypothesised two ways in which token frequency could be playing a 

role: the distribution of token frequencies could directly affect regularisation, particularly when 

the number of irregular types approached the tolerance threshold (as in the 6R4I condition) and 

productivity based on type counts is less clear-cut. Alternatively, token frequency could play a 

more indirect role by determining which items are acquired successfully during training, with 

these items then forming the basis of generalisation. By calculating an individual tolerance 

threshold for each participant according to the number of regular and irregular items trained 

items they had successfully acquired, I used the TP to predict whether each participant should 

form a productive pronunciation rule for each vowel symbol according to their individual 

vocabulary knowledge. My analysis showed that this personalised TP had a significant effect on 

regularisation beyond that of the original TP, whilst token frequency no longer had a significant 

effect.  

This finding accords with Schuler’s (2017) analysis of child generalisation data in 

Experiment 2: the TP can predict regularisation behaviour based on type counts when an 

individual learners’ acquired vocabulary is taken into account. It is also consistent with the 

theoretical assumptions of the TP: according to Yang, “productivity is determined by two integer 

values [the total number of items and the number of exceptions], which are obviously matters of 

individual vocabulary variation” (2016, p.70); “children’s productivity calculation depends on 

their effective vocabulary, which would be a particular subset of the input” (2016, p. 87). 

Therefore, it follows that the best predictor of regularisation in Experiment 3 is the application of 

the TP to an individual learner’s vocabulary.  

My analysis suggests an underlying role of token frequency in regularisation, whereby it 

supports learning of particular items on which generalisation is based, but does not determine 

productivity per se. This account is also consistent with Yang’s theory, albeit here in relation to 

learning and generalisation of orthographic knowledge by adults rather than the development of 

spoken language by children. He notes that during language acquisition, children will use a 
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relatively small vocabulary of high frequency items to determine rule productivity (2016, p. 70). 

As a child’s vocabulary grows accumulatively, their tolerance thresholds will be updated and the 

pattern of productivity can change accordingly. The suggestion that token frequency is important 

for learning individual items, particularly exceptions, but does not directly affect the productivity 

of a pattern, is consistent with this approach. It is also consistent with Endress and Hauser’s 

(2011) finding that token frequency supported learning of individual items, whilst type frequency 

supported rule productivity. However, the indirect role of token frequency outlined above does 

not align with a statistical learning approach in which adult learners probability match during 

generalisation, i.e. reproduce the distribution of token frequencies they are exposed to (Hudson 

Kam & Newport, 2005, 2009).  

Overall, these results reveal that learning is an important part of the generalisation 

process; learners generalise beyond their input statistics, but critically they do this using 

information about the forms they have successfully acquired, not simply the forms they are 

exposed to. The statistical distributions in this input – such as token frequency - are important, 

but generalisation is not simply a mirror of them. Instead, they play a role in determining the 

patterns we are able to learn. According to the analysis above, the TP offers a successful account 

of the way in which learners use these patterns productively, on the basis of the specific forms 

they have acquired.  

 

5.8.3 Accuracy of trained items  

In the final Reading Aloud test, participants were presented with the 30 original trained 

items and were asked to pronounce each one individually. This task allowed an assessment of 

whether participants had successfully learned the pronunciations of the exposure items they had 

encountered during the training phase. Accuracy in the 8R2I condition was significantly higher 

than the 4R6I condition; the difference between the 8R2I and 6R4I conditions fell just within the 

significance threshold; and there was also no significant difference between accuracy in the 6R4I 

condition and the 4R6I condition. Across conditions, accuracy for regular items was higher than 

for irregular items despite the high frequency of irregular items during training, indicating that 

spelling-sound correspondences for irregular items are more difficult to acquire than those for 

regular items even when irregular items occur more frequently (although it should be noted that 
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not all irregular items had a higher token frequency than regular items due to the number of 

positions available at the top of the Zipfian distribution.) These results are in accordance with 

previous findings showing that systematic mappings are easier to learn than mappings without a 

systematic relationship (Rueckl & Dror, 1994). Further, accuracy for regular and irregular items 

was not significantly different across Experiments 2 and 3. These results suggest that in general, 

the high token frequency of irregular items did not affect overall learning of all items, nor 

learning of irregular items, compared to Experiment 2. However, as discussed above in relation 

to results from the generalisation task, it is possible that individual participants’ pattern of 

learning was affected by the specific token frequencies they were exposed to during training.  

 

5.8.4 Relationship between vowel regularisation and accuracy of trained regular items 

 Adult learners demonstrated a high correlation between their rate of vowel regularisation 

in the Generalisation task and accurate pronunciation of regular trained items during the final 

Reading Aloud task in all three conditions. Despite the fact that regularisation followed a 

different pattern in Experiment 3 compared to Experiment 2, this result suggests that use of a 

productive rule still corresponds with successful acquisition of trained regular items in this 

context. It also adds additional support to the claim that successful learning of rule-following 

items is important in order to form productive rules, as discussed above.    

 

5.9 Summary  

Experiment 3 set out to explore the effect of high token frequency of irregular items 

during training on learners’ generalisation, and in particular whether this frequency distribution 

moderates the effect of the TP reported in Experiment 2. Initial analysis suggested that the effect 

of the TP was reduced in Experiment 3, in contrast to the TP prediction that token frequency 

should not determine generalisation. However, subsequent analysis (following Schuler, 2017) 

found that an individual tolerance threshold based on each learners’ successfully-acquired items 

offered a better predictor of generalisation than either the original TP or the token frequency of 

the regular form during training. This result indicated two important findings: firstly, that token 

frequency may indirectly affect patterns of generalisation by determining which items are 
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learned accurately and thus used as the basis for generalisation. Secondly, that to understand an 

individual learner’s pattern of generalisation, we must consider what that individual has gleaned 

from their input, rather than simply considering the distributions they have been exposed to. 

These findings offer support to the TP theory, where productivity is predicted according to an 

individual’s vocabulary. They also have important implications for statistical learning research, 

which has previously found a more direct role for token frequency in adults’ generalisation 

(Hudson Kam & Newport, 2005, 2009). Overall, Experiment 3 has highlighted the importance of 

understanding the relationship between the acquisition and generalisation of quasi-regular 

patterns.  
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Chapter 6: Testing the recursive application of the Tolerance Principle in adults learning 

an artificial orthography 

 

6.1 Introduction  

The aim of Experiment 4 was to examine whether the recursive application of the 

Tolerance Principle (Yang, 2016) could predict adults’ generalisation of unfamiliar context-

sensitive spelling-sound “sub-rules”. I used an artificial orthography paradigm in which 

participants were first trained to read aloud nonword items using novel vowel symbols, and then 

asked to pronounce untrained items in order to capture their generalisation of the novel spelling-

sound correspondences. This experiment manipulated whether the spelling-sound consistency of 

the vowel symbols passed the tolerance test in any consonantal context, or only in the context of 

a specific word-final consonant. Therefore, I could investigate whether adults follow the 

recursive application of the TP to form more specific “sub-rules” when predicted to do so. 

 

6.1.1 Context sensitivity of orthography-phonology correspondences   

Written English uses an alphabetic writing system in which there are systematic 

correspondences between letters and sounds. However, it is a deep orthography which does not 

just have simple one-to-one mappings between phonemes and graphemes. Instead, many 

graphemes can be pronounced in a number of ways. Some of this variation is associated with the 

co-occurrence of adjacent letters, such that the pronunciations of some graphemes can be 

characterised as “context-sensitive”. For example, the most common pronunciation of the 

grapheme “oo” in English words is /u:/, however when this grapheme is followed by “k”, the 

letter sequence is almost always pronounced /ʊk/ as in “book” and “look”. Although these 

context-sensitive patterns are often characterised in terms of graded consistency (Seidenberg & 

McClelland, 1989; Plaut et al., 1996; Harm & Seidenberg, 2004), it may also be possible to 

categorise single grapheme-phoneme correspondences (GPCs) as the most general pronunciation 

rules, and these context-sensitive pronunciations as more specific “sub-rules”.  

 Both adults and children seem to generalise knowledge of context-sensitive spelling-

sound correspondences when reading aloud unfamiliar or nonword items (Glushko, 1979; Ryder 



  

193 

 

& Pearson, 1980; Treiman et al., 1990; Coltheart & Leahy, 1992; Andrews & Scarratt, 1998). 

For example, participants may pronounce the nonword “clead” to rhyme with “head” rather than 

“bead”, even though the most common pronunciation of “ea” in English monosyllabic words is 

/i:/. Further, readers may not have been explicitly taught these context-sensitive patterns during 

instruction at school, but instead acquire this knowledge implicitly during their reading 

experience (Laxon et al., 1991).  

 

6.1.2 The role of statistical learning in acquiring knowledge of context-sensitive orthography-

phonology correspondences  

The range of evidence demonstrating adults’ and children’s acquisition and use of 

context-sensitive pronunciation patterns without explicit instruction prompts questions about 

how readers use information from their text experience to pronounce unknown words. Many 

researchers suggest that readers are sensitive to statistical distributions in text. For instance, 

Taylor et al. (2011) trained adults in an artificial orthography paradigm. The consistency of the 

four novel vowel characters in the orthography varied: two were consistent, using a one-to-one 

grapheme-phoneme mapping; whilst two were inconsistent, pronounced in one way when 

preceded by a particular consonant character (inconsistent-conditioned) and in a different way 

when preceded by any other consonant character (inconsistent-unconditioned). After training, 

learners demonstrated higher accuracy for items with consistent vowels than inconsistent-

conditioned vowels, and lowest accuracy for items with inconsistent-unconditioned vowels. This 

finding offers evidence that adults are able to extract context-sensitive sub-word regularities 

from exposure to whole-word items, and that learners are sensitive to the consistency of such 

mappings; inconsistent mappings are more difficult to acquire. Overall, the authors noted that 

learners have an impressive ability to track the statistical distributions of their input.  

Further, some researchers have suggested that readers use statistical learning mechanisms 

to extract letter-sound patterns. For example, Apfelbaum et al. (2013) investigated which 

principles of statistical learning may support the development of phonics knowledge (i.e., 

knowledge of GPCs), and found that variability of consonant frames around a target vowel 

during training of GPCs was beneficial for children’s learning. The authors suggest that this 

variability helps learners to identify the relevant elements and patterns in their input as part of a 
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statistical learning process. Similarly, Samara et al. (2019) explored whether statistical learning 

processes are involved in spelling development. They found that children aged 6-7 were sensitive 

to graphotactic constraints in nonwords (i.e. contingencies between a medial vowel and word-

initial or word-final consonants) following exposure without explicit instruction. They suggest 

that children are able to learn and generalise these constraints using information about statistical 

distributions in the input rather than through instruction.  

Arcuili and Simpson (2012) explored the relationship between statistical learning and 

reading more broadly, finding that performance on a visual statistical learning task predicted 

word reading ability for adults and children aged 6-12, beyond the effects of age and attention. 

This result prompted them to highlight a potential role for statistical learning in reading 

development: some mappings between letters and sounds may be learned implicitly as readers 

develop sensitivity to contextual cues such as the co-occurrence of letters. Although their study 

did not explore this possibility directly, the authors suggest that this is one way in which 

statistical learning may support readers to acquire knowledge of the regularities between letters 

and sounds, which is in line with results from Apfelbaum et al. (2013) and Samara et al. (2019).  

Other researchers have considered more specifically how readers use statistical learning 

mechanisms to extract context-sensitive spelling-sound patterns from text input, and further, how 

these patterns are used productively in nonword pronunciations. In a discussion of spelling 

development, Kessler (2009) suggests that children may pay more attention to contextual 

information about individual letters when there is no clear orthography-phonology 

correspondence that is salient across contexts. Thus, there may be a pay-off in which learning a 

context-sensitive rule is only motivated when a grapheme has several inconsistent 

pronunciations. Similarly, Steacy et al. (2019) suggest that during reading development, 

pronunciations of vowel graphemes are determined by a trade-off between the frequency of a 

context-free GPC and the strength of a context-dependent pronunciation. Therefore, it seems that 

readers are not simply reproducing the range of variation or the most common mappings that 

appear in their input. Instead, they are undertaking a process in which use of a particular 

pronunciation is determined by an interaction between multiple sources of statistical information.  

This suggestion that readers do not simply reproduce the input statistics in their 

pronunciations is consistent with a finding by Treiman and Kessler (2019), who demonstrated 
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that both child and adult readers make less use of contextual information in their pronunciation 

of initial consonants than would be expected given the consistency of certain patterns in the 

English spelling system. Their investigation focused on pronunciations of word-initial “c” and 

“g” which are often influenced by an adjacent “i” or “e” in English words, for example in 

“centre” and “generate”. They examined the pronunciation of nonwords with these initial letters 

by participants aged 6 to 23 years. Participants’ use of context-sensitive front pronunciations of 

these consonants when followed by “i” and “e” increased gradually with reading skill, which the 

authors suggest may be supported by the increased token frequency of these spelling-sound 

correspondences in words seen by older readers. The results support the view that contextual 

information is useful to readers, but that it takes many years of reading experience for this to 

approach a level that would be anticipated given the contextual effects of surrounding letters on 

pronunciations in written English. Furthermore, readers do not seem to be ideal statistical 

learners who optimally match their reading behaviour to the structure of the input, but explicit 

instruction may allow them to take advantage of these more complex consistencies when 

decoding words. Similarly, Treiman et al. (2003) note that adult participants do not use 

consonantal context in their pronunciations of vowels in nonwords as much as one might expect 

given the frequency of these patterns in real English words. Further, they found that none of the 

ten computational models of word reading they considered (including dual-route, single-route, 

rule-based and connectionist models) provided a successful account of human performance on 

nonwords with contextual conditioning.  

Overall, research on context-sensitive grapheme pronunciations suggests that whilst 

readers may make use of statistical learning mechanisms to acquire these patterns through text 

experience, use of the context-sensitive pronunciations in nonword reading does not simply 

reflect the statistical distributions in the input, and is not successfully predicted by computational 

models of word reading (as discussed in detail in Chapter 3).  

 

6.1.3 Beyond reading: can learners acquire sub-categories and nested structures?  

 Limited experimental work has investigated whether learners are able to acquire 

structurally-embedded rules or sub-categories in artificial language learning studies, akin to the 

context-specific pronunciation rules discussed above in the domain of word reading. Reeder et 
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al. (2017) investigated whether adults are able to use distributional information to form sub-

categories of items in an artificial grammar learning paradigm. The distributional cues were word 

co-occurrences, without any correlated semantic or phonological cues. The design of their 

Experiment 1 had perfect subcategory boundaries which had complete overlap of distributional 

contexts across words within a subcategory, and no overlap of distributional contexts for words 

across subcategory boundaries. Results showed that adults were able to form sub-categories 

under these conditions: they generalised appropriately to novel, grammatical word strings within 

a sub-category. Further, they were able to restrict generalisation across sub-categories by 

rejecting novel strings that crossed the sub-category boundary. In their Experiment 2, one 

exception was added to the artificial grammar in the form of a single string that crossed the 

subcategory boundary. Here, learners were again able to successfully form sub-categories and 

maintain the sub-category boundaries; the unique string was treated as an exception which did 

not affect learners’ generalisation when compared to Experiment 1. The authors suggest that 

learners were able to interpret the absence of certain strings across sub-categories as purposeful 

omissions (due to their ungrammaticality), whilst interpreting less systematic gaps within 

subcategories as accidental sampling absences. Overall, they suggest that their results reveal 

adults’ ability to use distributional information in a sophisticated way to create and generalise 

sub-categories, even when an exception is presented.   

Udden et al. (2009) investigated adults’ implicit learning of recursive sequence structures 

in an artificial grammar learning paradigm. Learners were exposed to letter sequences which 

featured recursively embedded structures (i.e. A₁A₂A₃B₃B₂B₁, a “nested structure”) and recursive 

structures with cross-dependencies (i.e. A₁A₂A₃B₁B₂B₃, a “crossed structure”). They found that 

over 9 days of learning, adults were able to demonstrate learning of long-distance dependencies 

in both nested and crossed structures. Together, these studies offer some evidence that adult 

learners are able to learn more complex rules such as sub-categories and embedded structures 

without explicit instruction in artificial language learning paradigms.  

 

6.1.4 The recursive application of the TP 

 If hierarchical structures of nested rules exist in spoken and written language systems – 

which they do – and learners are able to implicitly acquire knowledge of them, then any 
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successful theory of the language acquisition process must be able to account for how learners 

form these complex, productive rule systems that go beyond the simple input statistics. Yang’s 

theory offers one possibility: that using the TP in a recursive fashion allows learners to acquire 

“nested” rules. These are the sub-regularities that are a common feature of natural language and 

perhaps of opaque orthographic systems such as written English. By following the Maximise 

Productivity strategy to “pursue rules that maximise productivity” (2016, p. 72), Yang suggests 

failure to find a productive rule for a set of items will prompt learners to search for productivity 

within subsets of the items. The tolerance threshold could then apply to the number of regular 

and exception items within each subset. Indeed, in his discussion of spoken language acquisition, 

Yang supposes that learners become attuned to specific features of rules precisely because 

productivity will not arise without doing so.  

 

6.1.5 Can the TP explain how learners use statistical information to form context-sensitive 

pronunciation sub-rules? 

 As discussed above, readers are sensitive to context-specific letter-sound mappings, but 

their productive use of these pronunciation patterns in nonwords does not necessarily match the 

frequency of these mappings in English words (Treiman et al. 2003; Treiman & Kessler, 2019). 

However, neither do readers simply use the most frequent GPCs in all instances (Glushko, 1979; 

Ryder & Pearson, 1980; Treiman et al., 1990; Coltheart & Leahy, 1992; Andrews & Scarratt, 

1998). It is possible that there is a balance to be struck between using the most frequent, context-

free individual grapheme-phoneme mappings and less frequent (but potentially more consistent) 

context-dependent pronunciations (Kessler, 2009; Steacy et al., 2019). Considering the evidence 

which suggests that some form of statistical learning is used to acquire more complex spelling-

sound mappings (e.g. Arcuili & Simpson, 2013; Steacy et al., 2019; Treiman & Kessler, 2019), 

perhaps there is mechanism by which learners use statistical information from their text input to 

form a productive system of more general, context-free pronunciation rules, and more specific, 

context-dependent pronunciation rules. The Tolerance Principle offers one account of this 

process: that learners will search for the most general pronunciation rule (i.e. a context-free GPC, 

such as “ea” - /i:/), but if the level of inconsistency for this pronunciation breaches the tolerance 

threshold, the TP will be applied recursively and a more specific pronunciation rule (i.e. a 
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context-sensitive mapping, such as “ead” – /ɛd/) will be sought within subsets of items (e.g. all 

items which have the letter sequence “-ead”).  

 In this way, readers are making use of statistical information about the frequency and 

consistency of alternative pronunciations in their text experience, and using this information to 

determine which pronunciations should be used productively when presented with unknown 

items to read aloud. According to Yang’s theory, this process is motivated by computational 

efficiency; the system of productive rules a learner develops will be the most efficient way to 

access and apply the patterns they have gleaned from their input. In the current Experiment, I test 

the recursive application of the TP in the field of reading by using an artificial orthography 

paradigm.   

 

6.2 Experiment 4 

Experiment 4 explored the recursive application of the TP in reading acquisition and 

generalisation. This was investigated using an artificial orthography paradigm in which context-

free and context-sensitive spelling-sound correspondences offered learners either productive 

pronunciation “rules” or “sub-rules”. Adult participants learned to read a set of nonword items 

which used novel vowel symbols. The spelling-sound consistency of these symbols and the 

conditioning of their pronunciation by consonantal context was manipulated. Following training, 

participants were tested on trained items to assess the spelling-sound knowledge they had 

acquired from this artificial orthography, and critically were also tested on untrained items which 

used the trained vowel symbols to assess their generalisation of this knowledge.  

 This artificial orthography used two novel vowel symbols with inconsistent 

pronunciations. The consistency of these pronunciations in trained items was manipulated by 

condition. In the Vowel Rule condition, the consistency of the vowel grapheme pronunciation 

passed the tolerance test, such that the TP predicts learners should form a productive 

pronunciation rule for the vowel in any consonantal context. In the Body Rule condition, the 

consistency of the vowel grapheme pronunciation across all items did not pass the tolerance test, 

such that the TP predicts learners should not form a context-free productive pronunciation rule 

for the vowel symbol. However, the consistency of the vowel symbol pronunciation in a specific 
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final consonantal context did pass the tolerance test, such that the TP predicts a productive 

context-sensitive pronunciation “sub-rule” for the vowel when it occurs in this particular word 

body (i.e., the orthographic unit containing a medial vowel and word-final consonant). If learners 

apply the TP recursively to subsets of items when a more general pronunciation does not pass the 

tolerance test, then they should form a productive pronunciation for this word body.  

 

6.2.1 Hypotheses 

The TP makes the following four hypotheses for participants’ generalisation behaviour in 

the Vowel Rule and Body Rule conditions. Predictions for generalisation in each condition made 

by the rule-based DRC model of word reading (Coltheart et al., 2001) are also included.13 Firstly, 

participants should use the phoneme /i:/ to pronounce the vowel symbol in 100% of 

generalisation items in the Vowel Rule condition, as this pronunciation passes the tolerance test 

in trained items and therefore should be used as a productive rule in any consonantal context. 

Similarly, the DRC predicts that participants will use this pronunciation in 100% of these items, 

as this approach maintains that the most common pronunciation of a grapheme (by type) will 

always be used productively.  

Secondly, participants should use the phoneme /u:/ to pronounce the vowel symbol in less 

than 100% of generalisation items in the Body Rule condition, as this pronunciation does not 

pass the tolerance test in trained items and therefore should not be used as a productive rule 

across all consonantal contexts. Further, this pronunciation should be used less often than the 

most common pronunciation /i:/ used in the Vowel Rule condition, where a productive rule is 

predicted.  

Thirdly, participants should use the phoneme /ɛ/ to pronounce the vowel symbol in 100% 

of a subset of generalisation items from the Body Rule condition which end in word-final –v. 

This pronunciation passes the tolerance test in this specific consonantal context when the TP is 

applied recursively, and therefore forms a productive body sub-rule.  

 
13 Predictions for generalisation made by the Triangle and CDP+ models of word reading are not assessed in 

Experiment 4, as such predictions are not easily available for the stimuli set used. 
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Finally, participants should use the sub-rule /ɛ/ pronunciation in generalisation items 

from the Body Rule condition which have any other final consonant less often than they do in for 

items in the word-final –v subset, as this pronunciation does not pass the tolerance test in any 

other consonantal context.  

In contrast, the DRC predicts that participants should use the phoneme /u:/ in 100% of 

generalisation items in the Body Rule condition, as it is the most common pronunciation of this 

symbol in the training set. There should be no difference between use of this pronunciation in 

subset or non-subset items.  

Three further questions are explored as part of our wider investigation of adult readers’ 

learning and use of spelling-sound mappings: i) whether participants display sensitivity to the 

statistical properties of the learning environment (e.g. type frequency) by matching these 

statistics in their generalisation or ii) whether their individual generalisation behaviour is instead 

categorical, and iii) to what extent generalisation is supported by accurate learning of items from 

the training set.  

 

6.3 Method  

6.3.1 Participants 

27 adult participants aged 18-35 (14 females) were recruited from the online participant 

platform Prolific.14 Participants were monolingual, native English speakers, with a Southern 

British English accent and no known language or learning disorders. Each participant received 

£6 for their involvement in the study. Three participants were excluded due to online recording 

technical difficulties. Therefore, data from 24 participants were included in our analysis. The 

study received approval from the Ethics Committee at Royal Holloway, University of London.  

 

6.3.2 Stimuli and design 

To assess whether participants learning to read aloud an artificial orthography follow the 

predictions of the TP, a novel artificial language consisting of 26 three-letter nonword items was 

 
14 Data collection was carried out online rather than in person due to the COVID-19 pandemic restrictions.  
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designed. Each item had a consonant-vowel-consonant (CVC) structure. In the orthography of 

this artificial language, the consonant graphemes were 11 familiar letters from the English 

alphabet (D, T, P, B, K, G, M, N, V, F, L, S, Z) which corresponded consistently to their regular 

English phonemes (/d/, /t/, /p/, /b/, /k/, /g/, /m/, /n/, /v/, /f/, /l/, /s/, /z/ respectively). The vowel 

graphemes were two “novel” letters: “δ” and “Ը”, the forms of which were borrowed from the 

Greek and Armenian alphabets respectively. In our artificial orthography, these two graphemes 

had inconsistent vowel pronunciations, with a one-to-many grapheme-phoneme mapping. The 

consistency of the pronunciations of the two vowel graphemes was manipulated to form two 

conditions: one condition in which the TP predicts that learners should form a productive rule for 

the pronunciation of the vowel grapheme in any context, and one condition in which the TP 

predicts that learners should not form a productive rule for the pronunciation of the vowel in any 

context. Instead, learners should apply the TP recursively, and form a productive rule for the 

pronunciation of this vowel grapheme only in the context of a specific final consonant, i.e. 

forming a productive rule for the pronunciation of a specific word body.  

 Both conditions consisted of 13 nonword items. Each vowel grapheme was used in only 

one condition, appearing in the medial position of all 13 items in that condition. We used the TP 

algorithm to calculate the number of exceptions a productive rule can tolerate for a set of 13 

items; the predicted threshold of tolerated exceptions is 5 items. This allowed us to form one 

condition in which, according to the TP, the pronunciation of the vowel grapheme is sufficiently 

consistent to form a productive rule (passing the tolerance test), and one condition in which the 

pronunciation of the vowel grapheme is not sufficiently consistent to form a productive rule 

(failing the tolerance test).  

In the Vowel Rule condition, the vowel grapheme was pronounced using the phoneme /i:/ 

in 10 items, /æ/ in two items, and /u:/ in one item. As the number of exceptions to the most 

common /i:/ pronunciation (three) falls below the tolerance threshold (five), the TP predicts that 

learners form a productive rule for this pronunciation of the vowel grapheme.  

In the Body Rule condition, the vowel grapheme was pronounced /u:/ in six items, /ɛ/ in 

five items, /æ/ in one item and /ɪ/ in one item. Here, the number of exceptions to any of these 

pronunciations exceeds the tolerance threshold, meaning that the TP predicts that learners will 

not form a categorical productive rule for the pronunciation of this vowel grapheme. However, 
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the TP predicts that this will trigger a recursive search for more specific rules within subsets of 

the items (see Chapter 2, Section 2.5.4 for discussion of the recursive application of the TP). In 

this condition, six of the 13 items use “v” in word-final position, creating a six item word body 

subset. Of this six item subset, the vowel grapheme is pronounced /ɛ/ in five items and as /ɪ/ in 

one item. As the number of exceptions tolerated by a set of six items is three, the most common 

pronunciation /ɛ/ passes the tolerance test within this subset. Therefore, the TP predicts learners 

will form a productive pronunciation rule for the vowel grapheme in the context of word-final -v 

(i.e. a productive body rule).  

Frequency of the word-initial consonant graphemes was balanced across conditions, such 

that each of the 13 consonant items was used in word-initial position once in each condition. In 

contrast, word-final consonants could be duplicated within conditions, such as word-final “-g” in 

the Vowel Rule condition. This ensured that word-final “-v” in the Body Rule condition subset 

was not the only duplicated final consonant in the exposure set. Use of the two vowel graphemes 

in each condition was rotated so that two mappings (A and B) were counterbalanced across 

participants (see Table 6.1).  

 

Table 6.1  

Counterbalanced mappings of the two novel vowel graphemes across two conditions 

Condition Mapping A Mapping B 

Vowel Rule Ը δ 

Body Rule δ Ը 

 

The full artificial language composed of two conditions and 26 nonword items, with 

pronunciations and orthographic representations using Mapping A, is presented in Table 6.2. 

 

  



  

203 

 

Table 6.2 

The orthographic and phonological form of 26 items from the exposure set of the artificial 

language, using vowel Mapping A 

Orthography  Phonology  Condition  

TԸG  

ZԸG  

FԸG  

NԸG  

KԸG  

PԸB  

SԸF  

LԸT  

DԸK  

VԸN  

GԸG  

BԸZ  

MԸZ  

/ti:g/  

/zi:g/   

/fi:g/  

/ni:g/   

/ki:g/  

/pi:b/  

/si:f/   

/li:t/  

/di:k/   

/vi:n/  

/gu:g/   

/bӕz/   

/mӕz/  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

Vowel Rule  

SδV  

ZδV  

BδV  

GδV  

MδV  

NδV  

LδD  

VδN  

DδL  

PδB  

FδG  

KδS  

TδS  

/sev/   

/zev/   

/bev/   

/gev/   

/mev/   

/nɪv/   

/lu:d/   

/vu:n/  

/du:l/   

/pu:b/   

/fu:g/   

/ku:s/   

/tӕs/   

Body Rule  

Body Rule  

Body Rule  

Body Rule  

Body Rule   

Body Rule   

Body Rule   

Body Rule   

Body Rule   

Body Rule   

Body Rule   

Body Rule  

Body Rule  
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 Participants were exposed to this set of items from the artificial language throughout the 

training phase (discussed further in Procedure below). During training, the frequency of 

nonword items varied approximately along a Zipfian distribution (Zipf, 1949), according to 

which the frequency of a word is inversely proportional to its rank. The training phase consisted 

of 119 total presentations of the 26 unique nonword items; the most frequent item appearing 24 

times and the least frequent items appearing 3 times each. Items were randomly assigned a 

position on the Zipfian distribution for each participant, meaning that items were encountered a 

different number of times by each participant. This avoided the application of a consistent but 

arbitrary assignment of items to frequencies for the entire language across all participants. The 

token frequencies of exposure to items for all participants during the training phase are available 

here: https://osf.io/3bhrx/?view_only=493351a77f0e4bee92977b81ad8e2526. 

A set of 20 new, untrained nonword items was used during the Generalisation Task in the 

testing phase (discussed under Section 6.3.3). These items were also three-letter nonwords with a 

CVC structure, using the 13 consonants and 2 vowels of the artificial language. Each vowel 

symbol appeared in 10 items, thus corresponding to either the Vowel Rule or Body Rule 

conditions from the exposure set. The generalisation items used some duplicate bodies 

corresponding to those used in the exposure set: 5 out of 10 generalisation items corresponding 

to the Vowel Rule condition used word-final “-g”, and 5 out of 10 generalisation items 

corresponding to the Body Rule condition used word-final “-v”. This ensured that the 

distribution of repeated word bodies in the generalisation items was similar to that used in the 

exposure items, and further allowed us to assess generalisation behaviour in these specific 

consonantal contexts. Table 6.3 presents the full set of 20 generalisation items.  

 

  

https://osf.io/3bhrx/?view_only=493351a77f0e4bee92977b81ad8e2526.
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Table 6.3 

Orthographic form of the generalisation stimuli and corresponding condition from the exposure 

set 

Item (Orthography) Condition 

SԸG 

MԸG 

DԸG 

BԸG 

VԸG 

KԸB 

GԸD 

NԸM 

TԸP 

LԸL 

KδV 

PδV 

LδV 

FδV 

TδV 

DδT 

GδM 

NδM 

VδK 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Vowel Rule 

Body Rule 

Body Rule 

Body Rule 

Body Rule 

Body Rule 

Body Rule 

Body Rule 

Body Rule 

Body Rule 

ZδN Body Rule 

 

6.3.3 Procedure 

Participants were briefed on the nature of the task by being informed that they would be 

trained to read items from an artificial language using an artificial script. They were informed 

that some letters from the script would be familiar, English letters and others would be novel 
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symbols for them to learn. They were informed that they would be trained to read this artificial 

script by carrying out reading aloud and spelling activities on their computer. Participants then 

completed speaker and microphone checks. The procedure was run online using Gorilla 

software.  

The training phase began with an exposure to the set of 26 exposure items. Participants 

were presented with the written form of each item one at a time on their computer screen for a 

duration of 6 seconds, and also heard a pre-recorded pronunciation of the item commencing after 

2 seconds of the visual presentation. Participants were asked to try to remember the 

pronunciation of the items. Each item was presented once and items were presented in a 

randomised order.  

After completing the exposure to each of the 26 items, participants carried out a reading 

aloud task. During this task, the written form of each item was presented to the participant on the 

screen and the participant was asked to say aloud the pronunciation of each item. Each item was 

presented one at a time on the screen for a maximum of 9 seconds, or until the participant had 

made their response and selected “continue”. Following the participant’s response, which was 

audio recorded by the Gorilla software, the participant heard a pre-recorded correct 

pronunciation of the item.  The 26 items were presented in a random order and their frequency 

followed a Zipfian distribution (as described in 6.3.2 Stimuli and design).  

Following the reading aloud task, participants carried out a spelling task. During this task, 

each participant was presented with a pre-recorded pronunciation of each exposure item and was 

asked to spell the written form of the item by using mouse clicks to select letters from a matrix 

on the screen. The matrix contained all letters from the artificial language (13 consonants and 2 

vowels). There was no time limit for entering the response. Selected letters appeared at the top of 

the screen, and after three letters had been selected for the spelling of each item, the correct 

written form of the item was presented. Feedback on whether the selected letters were correct or 

not was also presented on the screen. The 26 exposure items were presented in a random order 

and their frequency followed a Zipfian distribution. This task concluded the training phase of the 

experiment.  

The testing phase of the experiment immediately followed the training phase. This phase 

began with a Generalisation Reading Aloud task. During this task, the participant was presented 
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with the written form of 20 novel, untrained items and asked to say aloud the pronunciation of 

each item. Each item was presented one at a time on the screen for a maximum of 9 seconds, or 

until the participant had made their response and pressed the spacebar in order to proceed to the 

next item. The items were presented in a random order. No feedback was given to participants 

during the task. This task tested the participants’ ability to generalise their newly-acquired 

knowledge of the novel vowel letter pronunciations to untrained items, offering an opportunity to 

assess their rule-learning.  

The testing phase concluded with a final Reading Aloud test of the 26 trained items. 

Participants were presented with the written form of each item and asked to read aloud the 

correct pronunciation. Items were presented on the screen one at a time for a maximum of 9 

seconds, or until the participant had made their response and clicked “continue” in order to 

proceed to the next item. No feedback was given to participants during the task. This task 

assessed how accurately each participant had learned the pronunciation of each of the trained 

items.   

 

6.4 Results 

6.4.1 Generalisation 

6.4.1.1 Use of the most common vowel pronunciation  

In the Generalisation task, each participant read aloud 20 untrained items. Participants 

failed to provide a response in 0.4% of trials; these trials were excluded from the analysis. Figure 

6.1 displays participants’ percentage vowel regularisation (i.e. use of the most common vowel 

pronunciation from the training set) in their pronunciations of untrained generalisation items 

from the Vowel Rule and Body Rule conditions. Participants’ mean vowel regularisation for all 

untrained items across both conditions was 55.32% (SE = 5.18). In the Vowel Rule condition, 

participants’ use of the most common pronunciation (/i:/) was significantly less than 100% (t(23) 

= -4.643, p < .001), contrary to the first hypothesis of the TP and also the prediction of the DRC. 

In the Body Rule condition, participants’ use of the most common pronunciation (/u:/) was less 

than 100% (t(23) = -8.241, p < .001), and also significantly lower than for generalisation items in 

the Vowel Rule condition (t(23) = -3.204, p = .004). These results support the TP’s second 
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hypothesis regarding use of this pronunciation, and contradicts the DRC’s prediction that use of 

the most common vowel pronunciation should be high in both conditions.15 

 

Figure 6.1 

Participants’ Percentage Vowel Regularisation in Untrained Items During the Generalisation 

Task 

 

 

Note. Vowel regularisation is use of the most common pronunciation of the vowel grapheme 

from the training phase. Dashed lines represent type frequency of exposure to this phoneme 

during training.  

 

Across conditions, these results indicate that participants are not producing the 

categorical behaviour predicted by either the TP or the DRC in this task. In fact, participants’ 

average use of the most common pronunciation of the vowel graphemes during generalisation 

 
15 An analysis comparing the effect of type and token frequency on generalisation was not included due to the high 

collinearity of these variables. 
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did not differ significantly from the type frequency of exposure to these pronunciations during 

the training phase, both for the grapheme in the Vowel Rule condition (t(23) = -1.343, p = 0.192) 

and in the Body Rule condition (t(23) = -0.442, p = 0.662).  

However, Figure 6.2 presents the proportion of phonemes each participant used in their 

responses to generalisation items from the Vowel Rule condition. This presentation of the data 

suggests that some participants are in fact behaving more categorically than analysis of the group 

data would suggest, and are not matching the distribution of pronunciations during training 

according to type frequency. For example, 11 participants used the regular vowel pronunciation 

in at least 90% of generalisation items. Further analysis of pronunciations of items from the 

Body Rule condition is presented below.  
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Figure 6.2  

Proportion of Pronunciation Responses to Items from the Vowel Rule Condition in the 

Generalisation Task Using Each Vowel Phoneme by 24 Participants 

 

 

Note. Participants are ranked by proportion of responses using the regular /i:/ pronunciation 

(decreasing left to right). The percentage in parenthesis for each phoneme in the figure legend 

represents the type frequency of this pronunciation across trained items from the Vowel Rule 

condition.  

 

6.4.1.2 Use of a body pronunciation sub-rule in the Body Rule condition 

  Five out of ten untrained generalisation items from the Body Rule condition used a 

word-final –v, forming a body subset. Figure 6.3 presents the proportion of participants’ 

responses using each vowel phoneme in the body subset (five items with word-final –v) and 

other untrained items (five items with other word-final consonants) during the Generalisation 

task. Participants’ use of the sub-rule vowel phoneme /ɛ/ to pronounce items from the body 

subset during this task was significantly less than 100% (t(23) = -9.161, p < .001), contrary to the 
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TP’s third hypothesis. Use of the most common pronunciation across all trained items from this 

condition (/u:/) for these generalisation subset items was also lower than 100% (t(23) = -8.250,  p 

< .001), in contrast to the DRC prediction. Participants’ deviance from the TP prediction and 

from the DRC prediction for pronunciations of these items was not significantly different (t(23) 

= 0.813, p = .424). These results suggest that participants are not behaving in the categorical 

ways that either the TP or the DRC predict for these subset items. Instead, participants’ average 

use of the /ɛ/ phoneme for subset items did not differ from the type frequency of exposure to this 

phoneme across all items in this condition during training (i.e. the proportion of trained items 

which used this pronunciation) (t(23)= -1.637, p = 0.115). Similarly, use of the /u:/ phoneme for 

subset items did not differ from the type frequency of exposure to this phoneme across all items 

in this condition during training (t(23)= -1.242, p = 0.227). 

 Participants’ use of the sub-rule pronunciation /ɛ/ in other generalisation items (5 items 

without word-final –v) is not significantly different from use of this pronunciation in subset 

items (t(23) = 2.024, p = 0.055), contrary to the TP’s fourth hypothesis that this pronunciation 

should be reserved for subset items only. Participants’ use of the most common vowel 

pronunciation /u:/ for these items was less than 100% (t(23) = -7.092, p < .001) contrary to the 

DRC prediction, although this was not significantly different from use of this pronunciation for 

subset items (t(23) = -1.567, p = 0.131), as the DRC would predict.  
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Figure 6.3  

Proportion of Responses Using Each Vowel Phoneme in The Subset and Items with Other Word-

final Consonants from the Body Rule Condition in the Generalisation Task 

 

 

Note. Five items in each group (Subset and Other). The percentage in parenthesis for each 

phoneme in the figure legend represents the type frequency of this pronunciation across all 

trained items from the Body Rule condition. “Regular” denotes the most common pronunciation 

across training items by type; “Sub-rule” denotes the pronunciation predicted by the TP for 

subset generalisation items.  

 

6.4.1.3 Individual differences in generalisation of subset items 

The group-based analysis above seems to suggest that in pronunciations of generalisation 

items, including subset items, participants use a range of vowel phonemes at a rate close to the 

type frequency of these phonemes in the training set. Turning to investigate individual 

participant’s generalisation behaviour in the Body Rule subset, Figure 6.4 presents each 

participant’s use of the phonemes /a/, /ɪ/, /ɛ/, /u:/ (each of which was heard as a pronunciation of 
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this vowel symbol in trained items from the Body Rule condition) and “other” in their 

pronunciations of these generalisation items. In this figure, participants are ranked by their 

number of accurate responses to trained subset items in the final reading aloud test (increasing 

accuracy from left to right). This presentation of the data reveals that, in fact, participants behave 

more categorically than the group-based analysis would suggest, with four participants using the 

sub-rule /ɛ/ pronunciation for all subset items, indicating formation of a categorical sub-rule as 

predicted by the TP. The accuracy ranking of participants indicates an association between 

accuracy of trained subset items and use of the sub-rule: these four participants scored in the top 

30% of participants for accuracy of trained subset items. Further, every use of the sub-rule /ɛ/ 

pronunciation for subset items in the Generalisation task was made by participants scoring in the 

top 50% for accuracy on trained subset items.  
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Figure 6.4  

Proportion of Pronunciation Responses to Subset Items in the Generalisation Task Using Each 

Vowel Phoneme by 24 Participants. 

 

 

Note. Participants are ranked by number of accurate responses to trained subset items in the final 

reading aloud test (increasing in accuracy from left to right). The percentage in parenthesis for 

each phoneme in the figure legend represents the type frequency of this pronunciation across all 

trained items from the Body Rule condition (both subset and other items). “Regular” denotes the 

most common pronunciation across training by type; “Sub-rule” denotes the pronunciation 

predicted by the TP for subset items.  

 

6.4.2 Accuracy of trained items 

6.4.2.1 Performance in the final reading aloud task 

Figure 6.5 presents participants’ percentage accuracy in the final reading aloud task for 

the 26 trained items from the two conditions in the training set. Responses were scored as correct 
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if pronunciation of the vowel symbol matched the trained pronunciation for the vowel in that 

item. Participants failed to provide a response in 0.4% of trials; these trials were excluded from 

the analysis. Participants’ accuracy in the Body Rule condition was significantly lower than in 

the Vowel Rule condition (t(23) = 3.264, p = .003); the average overall accuracy across both 

conditions was 54.0% (SE = 3.99). 

 

Figure 6.5 

Participants’ Accuracy (%) for Trained Items by Condition in the Final Reading Aloud Task 

 

 

 

6.4.2.2 The relationship between accuracy of trained items and generalisation of untrained items 

in the body subset  

Analysis of the generalisation task above revealed that four participants formed a 

categorical body subset rule which they used to pronounce 100% of generalisation items ending 

in word-final –v (the five-item body subset). Exploring what factors may support these 
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participants’ extraction and use of this sub-rule, I considered the relationship between accuracy 

of trained subset items and use of the sub-rule during generalisation. Figure 6.6 displays all 

participants’ percentage use of the sub-rule for subset items in the Generalisation task as a 

function of their pronunciation accuracy on trained subset items during the final reading aloud 

task, with the four participants who formed a categorical sub-rule coded in blue. This 

presentation of the data suggests that the four participants who formed the sub-rule were 

successful learners with high levels of accuracy on these trained items. However, some other 

participants also had high levels of accuracy on these items but did not form a productive sub-

rule, suggesting that even successful learning of subset items is not necessarily sufficient for 

forming a productive pronunciation sub-rule.  
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Figure 6.6 

24 Participants’ Use (%) of the /ɛ/ Sub-rule Pronunciation for Subset Items in the Generalisation 

Task by Accuracy (%) on Trained Subset Items in the Final Reading Aloud Task 

 

 

Note. Participants are coded according to whether they used the /ɛ/ sub-rule pronunciation in 

100% of subset item responses (blue) or less than 100% of items (red).  
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6.5 Discussion 

Yang’s Maximise Productivity principle states that learners should pursue a search for 

productive rules in their input; when the consistency of a rule crosses the tolerance threshold, the 

TP should apply recursively to find productive regularities within smaller subsets. This, he 

argues, is necessary in order for children to acquire the nested structures of grammatical patterns 

in natural language. Some experimental work has found that adults too are able to acquire 

knowledge of nested structures in artificial grammar learning studies (Reeder et al., 2017; Udden 

et al., 2009). Meanwhile, a body of research has investigated how readers of English use 

information from their text experience to develop sensitivity to context-specific pronunciation 

patterns. This knowledge goes beyond the most common but often inconsistent mappings 

between graphemes and phonemes, as demonstrated by their pronunciations of nonwords 

(Glushko, 1979; Ryder & Pearson, 1980; Treiman et al. 1990; Coltheart & Leahy, 1992; 

Andrews & Scarratt, 1998). Some researchers have highlighted the role of statistical learning 

mechanisms in readers’ ability to acquire this complex knowledge without explicit instruction 

(Arcuili & Simpson, 2013; Steacy et al., 2019), although it has also been noted that readers do 

not simply reproduce the distribution of different pronunciations that occur in English words 

(Treiman et al., 2003; Steacy et al., 2019; Treiman & Kessler, 2019). 

 In Experiment 4, I explored whether the TP could account for the way in which readers 

use certain pronunciation patterns more or less often than one might expect from the statistical 

distribution of the input, and specifically readers’ ability to extract and use context-specific 

pronunciation patterns without explicit instruction. The TP offers a promising approach to these 

questions as it is a rule-based theory which makes categorical predictions on the basis of 

statistical information. Using the recursive application of the algorithm, Experiment 4 assessed 

whether the TP can predict learners’ acquisition and generalisation of both a context-free “vowel 

rule” and a context-specific “body rule” to pronounce novel symbols in an artificial orthography. 

As context-specific spelling-sound mappings can be characterised as “sub-rules” applying to a 

subset of items in the input, the experiment investigated whether a highly inconsistent, context-

free pronunciation pattern would trigger the search for a more consistent context-specific 

pronunciation rule that could be used productively, as the TP would predict. Specifically, I 

hypothesised that learners would form a context-specific pronunciation rule for a vowel symbol 
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in a subset of items when the pronunciation of this symbol across all items did not pass the 

tolerance test.  

 In this artificial orthography, two novel vowel symbols were used in nonword items from 

two conditions. In the Vowel Rule condition, the pronunciation of the novel vowel symbol 

passed the tolerance test, so the TP predicts that a context-free pronunciation rule for this symbol 

should be formed. In the Body Rule condition, the pronunciation of the novel vowel symbol did 

not pass the tolerance test so a context-free pronunciation rule is not predicted. However, 

pronunciation of the vowel symbol in a subset of items ending in –v did pass the tolerance test, 

meaning that the TP predicts a productive body rule for pronunciation of the vowel symbol in 

this body context. Adult learners were trained to read aloud 26 items (13 in each condition) and 

were then assessed on their generalisation and learning of spelling-sound correspondences during 

the testing phase.  

 

6.5.1 Generalisation to untrained items 

6.5.1.1 Use of the most common pronunciation of the vowel symbol 

 The Generalisation task assessed whether adults had formed pronunciation rules for the 

two vowel symbols through analysis of their pronunciations of these symbols in 20 untrained 

items. Contrary to the categorical predictions of both the TP and DRC, participants’ use of the 

most common pronunciation of the vowel symbol during training counted by type (i.e., vowel 

regularisation) in generalisation items from the Vowel Rule condition was significantly lower 

than 100%. However, use of the most common pronunciation of the vowel symbol in the Body 

Rule condition was significantly lower than the Vowel Rule condition; this is predicted by the 

TP as this pronunciation does not pass the tolerance test and thus should not be used 

productively, but does not support the DRC which would predict regularisation to be high in both 

conditions. These results suggest that participants are more likely to regularise the pronunciation 

of the vowel when the consistency of this pronunciation passes the tolerance test, which is in 

accordance with results from Experiment 2 and Schuler (2017) where regularisation was also 

found to be higher in conditions which pass the tolerance test.  
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Group-level analysis suggested that participants may be matching the type frequency of 

the most common pronunciation from training in their generalisation in both conditions. 

However, examination of the distribution of pronunciation responses by individual participants 

in the Vowel Rule condition suggests that generalisation may be more categorical than group-

level analysis would suggest; for instance, 11 participants used the regular vowel pronunciation 

in at least 90% of their generalisations. Firstly, this hints at the importance of considering 

individuals’ behaviour that may be obscured by group-level patterns when assessing participants’ 

generalisation. Further, it suggests that individual learners’ generalisation behaviour may be 

more categorical than the statistical distribution of forms they were exposed to. For example, 

some participants regularised the most common pronunciation rather than producing the range 

that they heard during training, in line with the TP and a similar pattern of results from 

Experiment 2. Similarly, Treiman and Kessler (2019) found that readers are not ideal statistical 

learners who precisely match the distributions of their input.  

 

6.5.1.2 Use of a body pronunciation sub-rule 

In the Generalisation task, five untrained items from the Body Rule condition used a 

word-final –v, forming a body subset. The TP predicts that learners should form a body sub-rule 

for the pronunciation of the vowel symbol in this consonantal context, rather than use the most 

common pronunciation of the vowel across all items from this condition as the DRC would 

predict. However, group-level analysis of participants’ use of both the subset pronunciation and 

the regular pronunciation for these items was significantly lower than 100%, suggesting that they 

follow the categorical predictions of neither the TP nor the DRC. Further, participants’ use of 

both pronunciations during generalisation did not differ significantly from their type frequency 

during training, and use of the subset pronunciation in non-subset items did not differ from that 

in subset items; a power analysis would improve confidence that these critical null findings are 

not due to an underpowered study. Although the use of a range of pronunciations is consistent 

with earlier findings that readers do not simply generalise the most common grapheme-phoneme 

correspondences in their input (e.g. Glushko 1979; Andrews & Scarratt 1998), these results do 

not offer evidence that participants formed a context-specific sub-rule as predicted by the TP. 
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Instead, they suggest that learners match the type frequency of pronunciation distributions in the 

input. 

However, as in the Vowel Rule condition, examination of individual participants’ 

generalisation for subset items revealed that participants were again behaving more categorically 

than the group-level analysis would suggest. Individual participants largely did not use a range of 

pronunciations matching the distribution of the trained items. However, they also do not all 

behave in the same way. For instance, four participants used the context-sensitive pronunciation 

to pronounce all untrained subset items, suggesting that they did form the predicted sub-rule. 

This behaviour matches the predictions of the TP, and is in line with the suggestion by Steacy et 

al. (2019) that the pronunciation of a vowel grapheme with possible alternative pronunciations is 

determined by a trade-off between the strength of context-free and context-dependent 

pronunciations. Additionally, these participants all scored in the top 30% when participants were 

ranked in order of accuracy on reading aloud trained subset items. Further discussion of the 

relationship between productive pronunciation rules and successful learning of trained items is 

detailed below.  

 

6.5.2 Accuracy of trained items 

In the final Reading Aloud test, participants were presented with the 26 original trained 

items and were asked to pronounce each one individually. This task allowed assessment of 

whether participants had successfully learned the pronunciations of the exposure items they had 

encountered during the training phase. Accuracy in the Vowel Rule condition was significantly 

higher than the Body Rule condition, suggesting that spelling-sound mappings with higher 

inconsistency are more difficult to learn, even if there are embedded sub-regularities. This result 

is in line with similar findings by Taylor et al. (2011): adult learners in an artificial orthography 

learning paradigm demonstrated highest accuracy for consistent vowel characters, followed by 

inconsistent-conditioned characters which had contextual sub-regularities, and lowest accuracy 

for inconsistent-unconditioned characters without such sub-regularities.  
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6.5.3 Relationship between pronunciation rules and accuracy of trained items  

As outlined above, only four participants formed the predicted pronunciation sub-rule, 

but those that did had relatively high accuracy on trained subset items compared to other 

participants, and scored at least 50% accuracy on these items in the final Reading Aloud task. 

This suggests that using a productive sub-rule for untrained items is specifically associated with 

knowledge of trained items that use the sub-rule, highlighting that producing the predicted 

pattern of generalisation is supported by successful learning of relevant items. At a general level, 

this finding is consistent with results from Experiment 3, which demonstrated the importance of 

taking into account an individual learners’ knowledge of the forms they have acquired in order to 

understand their patterns of generalisation, rather than simply considering the forms they have 

been exposed to.  

Regarding the acquisition and generalisation of context-sensitive spelling-sound 

mappings more specifically, these results are also consistent with findings from Treiman and 

Kessler (2019). Firstly, most participants do not make extensive use of the contextual 

information that is available in the input; less than one might expect given the distribution or 

consistency of the patterns they have been exposed to. Critically, Treiman and Kessler found that 

participants who did use the contextual information in nonword pronunciations were more 

skilled readers, offering evidence that use of contextual information increases throughout 

development of reading ability. This is akin to our finding that participants who were able to use 

contextual information to form a sub-rule had relatively high levels of accuracy on the trained 

subset items. As noted by Treiman and Kessler, productive use of more complex contextual 

information in orthography-phonology mappings is likely to be difficult, and may only be 

possible when this knowledge has been secured through extensive experience or explicit 

instruction. However, knowledge of the subset items may be a necessary but not sufficient 

condition for use of a sub-rule, as some other participants in the current experiment learned the 

subset items well but did not use the sub-rule productively. It is therefore possible that explicit 

knowledge and instruction is required to enable some readers to use more complex spelling-

sound mappings.  

In summary, during generalisation in Experiment 4, individual participants did not use 

the range of pronunciations matching the statistical distributions they were exposed to, as the 
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group-level behaviour would suggest. Instead, they seem to behave more categorically, although 

they did not all do so in the same way. Most participants did not provide evidence that they had 

applied the tolerance threshold recursively to form a context-sensitive pronunciation sub-rule as 

predicted by the TP, but those that did had acquired some knowledge of the trained subset items. 

This finding highlights the importance of taking into account which items a learner has 

successfully acquired, which they may then use as the basis for generalisation.  

Given that overall accuracy for all trained items was 54.0%, it is possible that more 

participants would have developed the sub-rule given further training that increased their 

accuracy on trained items. This would be consistent with findings from Treiman and Kessler 

(2019), who found that use of contextual information in nonword pronunciations written in 

English orthography increased gradually with reading skill. It also runs parallel to earlier work 

on reading development which also demonstrated that knowledge of more complex spelling-

sound mappings increases with reading ability, potentially through text experience (Treiman et 

al., 1990; Laxon et al., 1991; Coltheart & Leahy, 1992). The current findings extend this research 

by suggesting that adult learners in an artificial orthography paradigm may follow a similar 

trajectory to younger readers of English as they develop the ability to use context-sensitive 

information in their pronunciations. In particular, secure knowledge of items that use these 

complex mappings may be required in order to use these patterns productively.  
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Chapter 7: Discussion 

 

7.1 Summary of the thesis  

This thesis set out to investigate whether a newly-proposed theory of rule-learning in 

language acquisition, the Tolerance Principle (Yang, 2016), could account for the acquisition and 

generalisation of spelling-sound correspondences in reading. Specifically, it examined how the 

presence of exceptions affects the acquisition and use of productive spelling-sound patterns by 

adults and children. It presented a series of nonword reading aloud and artificial orthography 

learning studies which assessed the TP’s predictions for generalisation of such inconsistent 

spelling-sound mappings in unfamiliar word items. This research provides a novel contribution 

to the literature on word reading, as the TP offers a rule-based approach which incorporates 

statistical information, thus offering a middle ground between previous rule-based and statistical 

accounts. In doing so, it addresses long-standing questions in this field of research regarding the 

nature of orthographic-phonological knowledge and readers’ use of different orthographic grain 

sizes. Additionally, it contributes to the wider literature on reading development and statistical 

learning by demonstrating what information from the input is extracted and used productively by 

learners.   

In Chapter 3, Experiment 1 presented an initial, exploratory investigation of whether the 

TP could be applied to reading in an empirical setting. Specifically, it addressed whether the TP 

could predict the generalisation of spelling-sound correspondences from the English writing 

system in the pronunciations of nonword items by adults and children aged 8-9. The results 

found that the TP could predict participants’ use of vowel- and body-level correspondences in 

nonword pronunciations relatively well, although participants’ reading behaviour was less 

categorical than predicted. Additionally, results showed that the TP could predict participants’ 

pronunciations of vowel graphemes in these nonword items more successfully than could three 

computational models of word reading. Further analysis suggested that the role of consistency in 

the TP theory underlies the TP’s relative success in predicting nonword pronunciations within a 

quasi-regular writing system. Notably, the TP offers a type- frequency-based, categorical metric 

of consistency which can be applied recursively to multiple grain sizes.  
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In Chapter 4, Experiment 2 examined whether the TP could predict adults’ and children’s 

(aged 9-10) generalisation of novel, inconsistent spelling-sound correspondences in an artificial 

orthography learning paradigm. The TP had an effect on adults’ and children’s vowel 

regularisation beyond that of token frequency. This result suggests that during generalisation, 

learners are able to impose some additional structure on the input statistics in a way that is 

predicted by the TP. Overall, the effect of the TP on children’s regularisation was greater than 

for adults. Although participants’ generalisation was not completely categorical, this experiment 

provides evidence that the TP underlies adults’ and children’s generalisation during reading in 

some way.  

In Chapter 5, I investigated whether token frequency can moderate the effect of the TP on 

the pattern of adult participants’ generalisation observed in Experiment 2. Experiment 3 

manipulated the token frequency of items during training, such that irregular items were highly 

frequent in the input. Initial analysis suggested that under these conditions, the TP no longer had 

an effect on adults’ vowel regularisation. However, when individual participants’ acquired 

vocabulary was taken into account, the TP did have an effect on regularisation, whilst token 

frequency did not. These results support the TP, and further suggest that although token 

frequency does not affect regularisation directly, it has an important role to play: highly frequent 

items may be acquired most successfully, and subsequently form the basis of generalisation. This 

finding highlights the importance of considering an individual’s pattern of acquisition in order to 

understand their generalisation behaviour, offering an important contribution to the statistical 

learning literature.  

Finally, the aim of Chapter 6 was to explore the recursive application of the TP. To do so, 

Experiment 4 asked whether the TP could predict adults’ generalisation of novel, context-

sensitive orthography-phonology correspondences in an artificial orthography. According to the 

TP, learners should apply the tolerance threshold recursively to find more specific sub-rules 

when a general rule does not pass the tolerance test. The results suggested that only four out of 

twenty-four participants demonstrated evidence of forming a categorical sub-rule for the symbol 

in a particular word body as predicted by the TP. Importantly, those that did form a context-

sensitive pronunciation rule had acquired some knowledge of the relevant trained subset items. 

These findings support earlier research indicating that learning complex spelling-sound 
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mappings is difficult, and they are consistent with suggestions that this process progresses 

throughout development. The results also highlight the importance of considering individual 

learners’ trajectory of acquisition and generalisation, rather than relying on group-level data. 

This brief summary offers an overview of the intentions and findings of the four 

experiments conducted here. Together, these experiments addressed a number overarching 

research aims, including: assessing the applicability of the TP to word reading; increasing our 

understanding of skilled and developing readers’ orthography-phonology knowledge; and 

identifying which statistical distributions of the input are important for acquisition and 

generalisation. In the following section, a comprehensive evaluation of the TP in the context of 

word reading will be presented. This discussion will be followed by details of specific 

contributions from the current findings to the study of word reading, reading development and 

instruction, and statistical learning. 

 

7.2 Evaluation of the Tolerance Principle in the context of word reading  

The primary motivation for this thesis was to explore whether a theory of spoken 

language acquisition, the Tolerance Principle (Yang, 2016), applies more generally to other 

quasi-regular domains such as spelling-sound mappings in reading. To do so, I examined 

whether the TP could predict readers’ generalisation of inconsistent spelling-sound 

correspondences. Whilst parallels between the quasi-regularity of morphological systems in 

spoken language and alphabetic systems in written language make this an area ripe for 

investigation, there are important factors to consider when applying the TP to a different 

modality from the one for which it was developed.  

 

7.2.1 The issue of serial search  

One previously-raised criticism of the TP involves the centrality of the serial search 

mechanism to the theory (see Section 2.5.1 for an initial description of this mechanism). For 

instance, Kapatinkski (2018) suggests that serial search is not compatible with the current 

understanding in psychology regarding distributed representations and parallel processing; 
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Wittenberg and Jackendoff (2018) similarly highlight the implausibility of using this mechanism 

during lexical access. Whilst Yang (2018) refutes these arguments in the context of 

morphological processing (“is a parallel brain really incompatible with serial behavioural 

effects?” (2018, p.797)), the following discussion lays out how they might not be so easily 

dismissed in a discussion of word reading.  

Serial search models have been developed previously in the study of visual word 

recognition (e.g. Forster, 1976; Murray & Forster, 2004). In Forster’s original (1976) model, 

lexical access is conceived as a two-stage process involving the serial search of a single access 

file, which subsequently provides a point of access to an entry in the lexicon. Specifically, there 

are three alternative types of access file - orthographic, phonological and semantic - with 

information about a written word reached using the orthographic access file. The access file is 

organised into “bins”, each containing orthographic representations of a subset of the lexicon. 

The input word is mapped to a specific bin using a hash-code, which provides an abstract 

representation of the word’s features. Within the bin is a list of similar words that all share a 

hash-code with the input word, ranked by their frequency. A search procedure then commences 

through the list of words in the bin, setting out to find a match between the input word and a bin 

entry. After a match is found, a corresponding entry in the master file (i.e., in the lexicon) can be 

located and accessed, providing full lexical detail about the input word. This model accounts 

neatly for frequency effects found in lexical decision tasks (Yelland, 1994), whereby reaction 

times to more frequent words are shorter than for less frequent words (e.g. Rubenstein et al., 

1970), as a match will be located faster for a more frequent word nearer the top of the list. 

Indeed, it has been argued that rank-order offers a better fit to lexical access data than log 

frequency (Murray & Forster, 2004), in line with the specific predictions of a serial search 

model.  

Yang (2016) notes that this model accommodates the lack of age effects found in skilled 

lexical processing, whereby older adults do not display faster reaction times than younger adults 

in word-naming tasks (e.g. Cerella & Fozard, 1984).16 Yang concludes that the model’s use of 

rank frequency can account for that fact that cumulative experience with words over time does 

 
16 In fact, Balota and Duchek (1988) found that older adults were slower than younger adults to initiate their 

productions during pronunciation tasks. 
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not increase processing speeds during adulthood, because the relative rank of words stays 

constant even though cumulative frequency continues to grow.17  

However, serial search models have faced several points of criticism. For instance, they 

cannot account for error responses being made faster than correct responses (Ratcliff et al., 

2004). Neither can they explain instances in which responses are faster for nonwords than real 

words, as according to the model, nonword responses are produced when no match is found in 

the corresponding bin. Findings that neighbourhood size affects latencies for nonwords but not 

real words in lexical decision tasks (e.g. Coltheart et al., 1977) pose a similar problem. Further, 

Adelman and Brown (2008) question Murray and Forster’s (2004) analysis of lexical decision 

data which claimed to demonstrate that rank order was a better prediction of decision times than 

logarithmic frequency transformations. Instead, Adelman and Brown present analysis suggesting 

that the picture is in fact more complicated; that there is variability in lexical decision times 

which is systematically related to frequency but is not accounted for by a linear function of rank 

frequency. They propose the factor of contextual diversity, which is confounded with word 

frequency, could be a plausible explanation for the observed frequency effect.    

Critically for the current discussion, most of the assessments of the serial search model 

have involved lexical decision tasks and masked-unmasked priming, rather than production tasks 

such as nonword reading aloud tasks which involve generalisation. Indeed, it is not clear in 

Forster’s serial search model how orthography-phonology knowledge (which is stored only at the 

lexical level in the model) would be generalised in order to produce pronunciations for 

unfamiliar written items as I have investigated in this thesis.  

Setting aside previous serial search models to focus on Yang’s (2016) theory, one thing is 

clear: productivity is the TP’s raison d'être and the serial search mechanism is its cornerstone; if 

the TP is to offer a successful account of generalisation then in some way the two must be 

reconciled. Certainly in its current instantiation, the TP is bound to the serial search mechanism 

 
17 Zevin and Seidenberg (2004) found an effect of cumulative frequency on naming latency in skilled readers, with 

high frequency words named faster than low frequency words. However, cumulative frequency was treated as a two-

level factor (early vs. late), and an effect of rank frequency was not investigated. Further, the cumulative frequency 

values were log frequencies from Zeno (1995), summed across all grades from kindergarten to college. Additionally, 

participants were all undergraduate students. Therefore, we cannot draw conclusions from this study about whether 

reading speed over the lifespan continues to be affected by cumulative experience, as participants were likely all 

young adults, and frequency values were summed over years in education rather than measured across a lifetime of 

reading experience. 
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because it uses the time of lexical access using this procedure to assess the growing cost of 

exceptions to a productive rule, and thus to determine the tolerance threshold. Unlike Forster’s 

model in which all orthographic, phonological and semantic knowledge is lexically listed and 

serially searched, Yang’s theory uses this mechanism for only part of the access procedure. 

Specifically, Yang implements the Elsewhere Condition using the serial search mechanism, 

according to which exceptions to a rule are stored in a frequency-ranked lexical list, and searched 

for a match with the target. If a match is not found, then the productive rule is applied. When the 

number of exceptions to a productive rule exceeds the tolerance threshold, all items are lexically 

listed and will be subject to the serial search procedure. The TP states that a learner will use the 

route that is the fastest to carry out during online processing (either exceptions-plus-rule or 

everything-listed).  

The reason why the serial search mechanism in particular plays a vital role in the 

derivation of the TP is that it is used to approximate the time of lexical access according to each 

route, and thus provide the point at which they are equal (i.e., the tolerance threshold). Yang 

describes the expected time of rule access to be T(N,e) and the time of access when all items are 

listed to be T (N,N); according to the TP, a rule is productive if T(N,e) < T (N,N) (Yang, 2016 p. 

61). The closed form solution to the equation T(N,e) = T (N,N) to find e (the number of 

exceptions) involves a calculation of the probability of occurrence of a target item in a Zipfian 

frequency distribution (using the Nth harmonic number). This calculation is used to approximate 

the time it would take to access the target using a serial search of a frequency-ranked list within 

each route: either for all items in T (N,N), or for only exceptions before rule application in T(N,e) 

(2016, p. 63 – 64; see also Appendix A). Without the serial search mechanism, the threshold that 

is derived (i.e. e¸ when T(N,e) = T (N,N)) becomes meaningless.  

It is in fact the Elsewhere Condition that protects the serial search mechanism from 

immediately negating use of the TP for reading. As the experiments in this thesis have 

demonstrated, a successful theory of reading must be able to capture generalisable knowledge; 

specifically, it must include an abstract representation of spelling-sound correspondences that 

can be applied to read aloud unfamiliar words. A theory which used a serial search of lexical 

items alone would not provide this, as highlighted above. However, under the Elsewhere 

Condition there is an abstract productive rule system that operates separately (and subsequently) 
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to the serial search of lexical items. Therefore, not all knowledge is stored lexically; there are 

also generalisable rules, which we have seen to be required for reading unfamiliar lexical items. 

The rules themselves do not involve serial search, and therefore offer a process whereby readers 

can read aloud unknown items by using generalisable knowledge. Beyond this, the TP offers a 

novel solution to the question of how a learner decides which patterns should be used 

productively, and which should not be generalised beyond items attested in the input, but instead 

stored in a list. In doing so, the TP can incorporate both distributed and lexical information, 

offering a method of justification according to which orthography-phonology knowledge is 

deemed valuable enough to achieve a distributed, abstract structure. Namely, once a spelling-

sound correspondence attested in the input is sufficiently consistent to pass the tolerance test, this 

information can be stored as a productive rule involving individual orthographic units such as 

graphemes and bodies, rather than being stored at the lexical level.  

The use of a serial search mechanism under the Elsewhere Condition makes specific 

predictions about frequency effects: not only should rank frequency predict processing speed 

more accurately than absolute frequency, but all else being equal, irregular forms should be 

accessed faster than regulars (as they are searched before the rule is applied). Yang reports an 

analysis of reaction times in a lexical decision task from the English Lexicon Project (Balota et 

al., 2007) which is in line with this prediction; rank frequency was a “slightly” better fit for 

reaction time data of irregular past tense verbs than the logarithm of lexical frequency (2016 p. 

51). Additionally, Yang offers a detailed discussion of cross-linguistic evidence demonstrating 

why the “puzzlingly cumbersome” Elsewhere Condition is a “fundamental principle of linguistic 

organisation where specificity and generality come into conflict” (2016 p. 52 – 60). 

This corollary that exceptions are accessed before the application of a rule, presents a 

potential hurdle for the application of the TP to reading, as it would seemingly predict that 

irregular words are read faster than exception words. Such a prediction would be problematic as 

the regularity effect on word naming (and its interaction with word frequency) is well established 

(e.g. Seidenberg et al., 1984; Paap & Noel, 1991; Coltheart & Rastle, 1994). As such, words 

pronounced using regular GPCs are in fact faster to read aloud than irregular words, although 

this effect is stronger for low frequency than high frequency words.  
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However, this fact about reading behaviour is not necessarily an issue in the current 

conception of the TP for reading aloud, as the TP does not necessarily predict that irregular 

words will always be read faster than regular words. The reason for this is that the TP 

mechanism described here applies to individual orthographic units rather than to whole words. 

Specifically, the process to pronounce a written item using the TP (whether it be a regular word, 

an irregular word, or a nonword) takes place using a serial, left-to-right process starting with the 

smallest individual unit18. For example, when presented with the word “bull” to read aloud, the 

first step is not to search through a frequency-ranked list of all exception words for an entry 

corresponding to the pronunciation of that entire word. Instead, the first step is to search through 

a list of words in which “b” does not follow the regular pronunciation rule (such as climb, tomb 

etc). As the target is not amongst the list, and “b” has a pronunciation that passes the tolerance 

test, the productive rule “b” -> /b/ can be applied. The next step is to produce a pronunciation of 

the grapheme “u”, and so on (see Section 7.3.2 below for a full exemplification of the process to 

produce a pronunciation for an entire lexical item). Crucially, assembling the pronunciation for a 

word in this way involves identifying productive rules for individual orthographic units in turn. 

Therefore, it is not irregular words that will be accessed before regular words, but irregular 

pronunciations of orthographic units before regular pronunciations of orthographic units. The 

overall naming latency of a word will thereby depend on the regularity and frequency of its 

constituent orthographic units, not whether it is a regular or exception word per se. 

 

7.2.2 Using the TP mechanism for word reading   

Whilst there may be theoretical motivation for applying the TP to reading, how feasible is 

the use of the TP mechanism (including serial search, the Elsewhere Condition, and the recursive 

rule structure) for online processing of orthographic knowledge during skilled reading? To 

exemplify this process, consider the steps that would be undertaken by a reader to pronounce the 

nonword boup: 

 
18 This reasoning follows Yang’s Maximise Productivity principle, which states that learners pursue rules that 

maximise productivity (2016, p. 72). Therefore, the most general rule that passes the tolerance test - using the 

smallest orthographic unit available – will be prioritised. 
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1) Start with the initial grapheme “b”, which follows the exception-plus rule route as the 

consistency of the b -> /b/ rule in English words passes the tolerance test. 

2) Search through a frequency-ranked list of exceptions in which “b” does not follow the 

productive rule b -> /b/, such as climb, tomb, etc. 

3) No match for the target word amongst the list of exceptions is found, so the productive 

rule b -> /b/ (which is stored in the reader’s orthography-phonology rule system) can be 

applied. 

4) Move next to the vowel grapheme “ou”. This grapheme does not have a productive 

rule stored in the readers’ orthography-phonology knowledge system, as no 

pronunciation of this grapheme in English words is consistent enough to pass the 

tolerance test. Therefore, the reader does not follow an exception-plus-rule route for this 

grapheme. However, the grapheme forms part of a number of more specific 

pronunciation rules in the reader’s rule-system, triggering the reader to consider the 

consonantal context surrounding the vowel grapheme in the target item, in this instance 

the word body “oup”.  

5) The word body “oup” is associated with a productive pronunciation rule in the reader’s 

orthography-phonology rule system, so the reader can follow the exception-plus-rule 

route for this body.  

6) Search through a frequency-ranked list of exceptions that do not follow the “oup” -> 

/u:p/ rule, such as coup. 

7) No match for the target is found amongst the list of exceptions, so the “oup” -> /u:p/ 

rule can be applied. 

8) Finally, the pronunciation boup -> /b / + /u:p/ ->/bu:p/ can be assembled. 

It would be reasonable to argue that this multi-step process involving lexical listing, the 

serial search procedure, and a hierarchical structure of rules, is simply not a feasible account of 

online processing for skilled readers. Nevertheless, results from Experiment 1 suggested that the 

TP was a better predictor of both adult and child participants’ nonword pronunciations than the 

three computational models of word reading also assessed. I argued that the reason why the TP 
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performed more successfully than the extant rule-based or statistical approaches was that it uses 

a type frequency-based categorical threshold of consistency that applies recursively to capture 

orthography-phonology correspondences at different grain sizes. Even if we are to discount the 

TP in its current instantiation as a realistic online processing mechanism for skilled word 

reading, we need not dismiss everything that has been gleaned from this investigation at once.  

In its original instantiation, the TP mechanism is used both to acquire productive rules, 

and to apply them during online skilled processing. During the acquisition process, learners 

encounter items in their input which are learned individually. Throughout cumulative experience, 

productive rules will emerge (or, indeed, disappear) over time, depending on the items in the 

linguistic evidence a learner has received. Rules are formed when the number of items which are 

exceptions to a majority pattern falls below the tolerance threshold; otherwise, all items are 

stored lexically in a frequency-ranked list. The balance between the number of regulars and 

exceptions is updated as a learner’s experience grows. The underlying motivation for this process 

is to identify the most computationally efficient (i.e., quickest) route of access during online 

processing, as this same system of rules and frequency-ranked exceptions developed during 

acquisition is later employed by the skilled language user in their real-time productions. In this 

way, the TP sets out to offer a full and homogeneous account of the way linguistic knowledge is 

acquired, stored and processed.  

However, one possibility for word reading is that the full TP mechanism (involving the 

Elsewhere Condition and serial search) is used only for the acquisition of orthography-

phonology correspondences, and not as an online process during skilled reading. In this way, it 

could be employed by learners to assess which pronunciation patterns should be abstracted to 

form generalisable rules; a mechanism by which to extract useful information from the input. 

Those rules that are formed during development according to the TP’s consistency metric 

(motivated by computational efficiency) may then become frozen within a separate, skilled 

reading system. Therefore, a serial search of a frequency-ranked list of exceptions would not 

need to be undertaken before application of a productive rule during online, skilled reading, and 

instead readers would use a hierarchical structure of productive pronunciation rules that has been 

left as an artefact of the acquisition process.  
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The concept of rule-freezing may seem incompatible with the TP’s underlying motivation 

to determine the most computationally efficient route of access during real-time, online 

processing. However, rule-freezing is included in Yang’s original theory, which states that 

learners “stop looking” and “freeze the rules in place at a value of N no more than a few 

hundred” (Yang 2018b, p. 803). This rule-freezing enables decisions about productivity to be 

made when a learner’s vocabulary is relatively small. Yang’s theory does not address why 

exception items acquired after rule-freezing – which presumably must still be stored lexically, 

increasing the serial search time during online processing – would not disrupt the carefully 

measured balance between the real-time processing speeds of alternative access routes. After all, 

the TP theory was intended to offer an account of online lexical access. Nevertheless, if this 

seemingly counterintuitive feature is permitted by Yang’s theory, perhaps it is reasonable here to 

go further and propose that - for reading at least - the TP offers a suitable mechanism for 

extracting productive rules from the input during development, but not a model of online skilled 

reading.  

Certainly, there is evidence of a close relationship between what is learned from the input 

and what can be generalised to novel items, in favour of an approach according to which patterns 

acquired during development form the basis of a skilled, fully productive system. This evidence 

includes results from Experiment 3 in Chapter 5, in which the high token frequency of irregular 

items during training disrupted the pattern of generalisation observed in Experiment 2. In 

particular, I argued that the distribution of regular and irregular items that a learner has actually 

been able to acquire (with those occurring in the input at higher token frequency being easier to 

learn) goes on to determine which patterns are used productively. Taking these results together 

with the current discussion suggests that future research must look more closely at the 

overarching process whereby knowledge of individual items is acquired by learners, the 

consistency of the patterns those items fall into is assessed, and qualifying patterns are 

subsequently generalised using productive rules. These stages certainly seem to be closely 

related and their inter-relationship should be understood further. However, perhaps a theory 

which uses a single mechanism to capture in one fell swoop the acquisition of items by learners, 

the forming of productive rules, and the storage and access of knowledge by skilled users, is too 

ambitious. Instead, a more discrete, multi-stage process, whereby evidence is accumulated 
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during development to form productive patterns, which are subsequently frozen to create a 

skilled productive rule system, may be more appropriate for reading.  

I suggest that the concept of the freezing point demands further consideration. Yang’s 

discussion of rule-freezing remains relatively vague: “it is plausible to conjecture that language 

acquisition never uses N’s beyond a certain value, probably just a few hundred. It is doubtful that 

anyone can keep track of large values of N and e; perhaps learners will simply freeze the rule 

once they have seen enough data, i.e., a sufficiently large value of N” (2021, p. 5). It is 

conceivable that rule-freezing could emerge as an organic property of the acquisition process; 

that once sufficient evidence to support a rule has been encountered, any items acquired 

subsequently are unlikely to disrupt the balance. In this way, the rule would be effectively frozen 

as consequence of the distribution of the input, rather than by a shift in the nature of the learning 

process.  

However, Yang’s argument (2016) states that in some cases, a productive rule (such as 

the stress rule in English, or the noun-determiner rule in English) is only learnable with a small 

vocabulary. Were a larger vocabulary to be used, the number of exceptions would breach the 

threshold and a productive rule would not be supported (particularly given that the tolerance 

threshold becomes proportionally lower as N increases). Therefore, rule-freezing in these 

instances cannot be explained by the distribution of the input alone, because later acquired items 

would disrupt the balance. Yang (2016, p.225) indicates that this (sometimes surprisingly) early 

rule-freezing may unfold alongside developmental changes in children’s processing capacity, 

such as those described under the “Less is More” hypothesis (Elman, 1993; Newport, 1990). 

However, he suggests elsewhere that the TP operates for both child and adult learners (2018b, p. 

801), leaving rule-freezing by adults unexplained. In summary, it is conceivable that some type 

of rule-freezing takes place, but the exact reason for this process, and the precise point at which 

it occurs, requires further investigation. 

There is also second possible conclusion that could be drawn for word reading in 

response to the work presented here. The application of the TP to reading is novel because it 

offers a threshold of consistency that determines when a grapheme-phoneme rule should be used 

productively, and when a more specific word body rule should be sought instead. Results from 

Experiment 1 suggested that this threshold, based on type frequency counts, predicted 
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participants’ nonword pronunciations more successfully than computational models of reading 

that use alternative processing mechanisms. However, just because the threshold provided by the 

TP was a better predictor of nonword pronunciations than extant models, it is not necessarily the 

best or only threshold that could be used. Indeed, participants did not display the categorical 

behaviour that was predicted by the TP in any experiment reported here; there is variability in 

readers’ behaviour that remains to be explained. This second possibility circumvents any long-

standing issues with the serial search mechanism that may remain, as an alternative consistency 

threshold may not involve serial search at all. Further, it opens the door for future research to 

investigate alternative tipping points of consistency between productive and unproductive rules 

which can also predict use of grapheme vs. word body correspondences. Importantly, as will be 

discussed in Section 7.3., what is clear from the current investigation is that an approach to word 

reading which predicts use of a variety of grain sizes according to a threshold of consistency 

appears to be a valuable extension beyond extant models. 

To summarise the applicability of the TP to word reading at a broad level, the theory 

offers a promising account of the way in which readers generalise spelling-sound 

correspondences as demonstrated in the experiments presented here. However, there remain 

mechanistic issues raised above which suggest that in its original implementation, the TP may 

not be an optimal account of skilled word reading. Nevertheless, I have proposed ways in which 

these could potentially be overcome or expanded from in future.  

 

7.3 Contributions to wider literature 

The experiments reported in this thesis addressed a number of wider research aims 

beyond an examination of the TP itself, and their findings contribute to multiple fields of study. 

These include research on skilled word reading, reading development and instruction, and 

statistical learning. The following sections present the ways in which the current findings inform 

this broader range of research. 
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7.3.1 Aims of the thesis 

7.3.1.1 Aims of the thesis related to word reading   

The word reading literature has been dominated by debate over the most appropriate 

ways to characterise readers’ spelling-sound knowledge, and how to predict generalisation of this 

knowledge in nonword pronunciations. Specifically, there is a dichotomy between rule-based 

models such as the DRC (Coltheart et al., 2001) which predict use of the most common GPCs for 

nonword pronunciations, and statistical models such as the Triangle model (Seidenberg & 

McClelland, 1989; Harm & Seidenberg, 2004) and the CDP+ model (Perry et al., 2007) which 

allow the graded consistency of multi-letter sequences to inform nonword pronunciations. These 

approaches also differ in how they use frequency: the DRC uses type frequency to count the most 

frequent GPCs, whilst the statistical models also use token frequency to weight the strengths of 

connections between units.  

Nonword reading aloud studies have been widely used to adjudicate between 

computational models, and to gain insight into readers’ orthography-phonology knowledge more 

generally (including Seidenberg et al., 1994; Andrews & Scarratt, 1998; Treiman et al., 2003; 

Pritchard et al., 2012; and Mousikou et al., 2017). Results from these studies can be construed in 

different ways, largely because reading behaviour is not categorical. However, these overall 

trends seem clear: adult readers use GPCs to pronounce nonwords most often, but also make use 

of alternative pronunciation patterns, suggesting sensitivity to the consistency of larger 

orthographic units beyond the individual grapheme. Such responses cannot easily be accounted 

for by the DRC, but neither is reading behaviour captured sufficiently well by statistical models, 

which tend to predict context-sensitive pronunciations and lexicalisations at a higher rate than 

used by participants. Indeed, readers’ use of context-sensitive pronunciations tends to fall below 

the rate expected by corpus statistics (Treiman et al., 2003; Treiman & Kessler, 2019), 

suggesting that readers do not simply reproduce the distributions of pronunciations they are 

exposed to. Overall, there exists a gap in our understanding of readers’ orthography-phonology 

knowledge and its generalisation, which is not well accounted for by extant models.  

Some researchers have indicated possible ways to address these issues, such as 

determining a trade-off between the frequency or consistency of an individual grapheme and the 

cost of learning a context-sensitive pronunciation (Kessler, 2009; Steacey et al., 2019), or by 
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assessing the utility of different spelling-sound correspondences in a quantitative way (Vousden, 

2008). Thus far, however, no fully-developed account has been proposed. Therefore, one aim of 

this thesis was to investigate whether a theory of spoken language acquisition and generalisation, 

the Tolerance Principle (Yang, 2016), could aid our understanding of these outstanding matters 

in the field of reading and bridge the gap between existing computational models.  

Indeed, the TP offers a promising set of tools with which to investigate these long-

standing questions. The TP’s type-frequency based metric of consistency makes specific 

predictions on the basis of a quantitative assessment of spelling-sound correspondences in the 

input. This metric determines a categorical threshold of inconsistency beyond which a more 

general spelling-sound correspondence (e.g. at the grapheme-phoneme level) should not be 

generalised. Crossing this tolerance threshold triggers the recursive application of the TP, in a 

search for a more specific productive pattern within a subset of the input (e.g. at the body-rime 

level). In these ways, the TP offers potential to resolve previous debates; the experiments 

reported in this thesis set out to assess its success in doing so.  

Importantly, the current application of the TP to reading set out to provide an initial 

investigation into whether the algorithm supplied by Yang (2016, p. 9) offers suitable predictions 

for readers’ generalisation behaviour. The theory itself deals only with numbers: a type-based 

tally of regulars and irregulars used to generate a numeric threshold of productivity. Therefore, 

the TP has been employed here simply as a mathematical model, not a mechanistic model of 

reading akin to the fully-developed DRC, Triangle or CDP+ models. Yang’s theory has nothing 

to offer regarding the process of reading per se, and therefore the TP cannot be directly 

compared with these established computational models of word reading in terms of their ability 

to capture all aspects of the reading system. Instead, I set out to assess whether the predictions of 

the TP algorithm offered a more successful account of readers’ nonword pronunciations than the 

outcomes of three computational models. Potential integration of the TP mechanism within a 

more established framework, such as development into the non-lexical route of a dual-route 

model of reading, lies outside the remit of this thesis but could be taken up in future work. 
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7.3.1.2 Aims of the thesis related to reading development and instruction  

Research on reading acquisition reveals a consistent trend whereby the earliest readers 

rely on the most frequent GPCs in novel word pronunciations, but make increasing use of 

alternative (i.e. context-sensitive) mappings throughout reading development (Marsh et al., 1981; 

Treiman et al., 1990; Laxon et al., 1991; Coltheart & Leahy, 1992; Brown & Deavers, 1999). 

However, pinpointing precisely when readers make use of different correspondences according 

to orthographic context or reading skill level has been difficult to achieve (Brown & Deavers, 

1999; Treiman et al., 2003; Kessler, 2009; Steacy et al., 2019). Accordingly, one aim of this 

thesis was to improve our understanding of the trajectory towards skilled reading by comparing 

adults’ and children’s use of spelling-sound correspondences at different orthographic levels 

with the TP’s specific predictions. 

Further, I set out to investigate the specific process by which learners extract and use 

more complex (i.e. context-specific) spelling-sound mappings without explicit instruction. Adult 

learners in an artificial orthography paradigm have demonstrated sensitivity to context-sensitive 

spelling-sound mappings during learning and generalisation without instruction (Taylor et al. 

2011). However, research using English orthography has highlighted that both developing and 

skilled readers generalise context-sensitive correspondences less often than would be predicted 

by their consistency in English words (Treiman et al., 2003). Participants’ use of these context-

sensitive correspondences increased gradually with reading skill. Here, I considered under which 

orthographic conditions learners are able to extract and generalise such patterns from the input.  

The quantitative approach used here to examine which spelling-sound correspondences 

are most useful (or most difficult) for developing readers may have additional value when 

considering whether particular mappings should be highlighted during reading instruction. For 

instance, there may be correspondences which efficiently capture the statistical distributions of 

text according to the TP, but which take time for developing readers to be able to generalise and 

could thus benefit from targeted instruction.19 Previous research has similarly applied a 

quantitative analysis to the statistical distributions of text, aiming to identify the most efficient 

ways to capture spelling-sound correspondences in English, and thereby inform reading 

 
19 After all, the TP was developed as a theory of spoken language acquisition, whilst learning to read is a 

substantively different process that requires explicit teaching. 
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instruction (e.g. Vousden, 2008; Vousden et al., 2011). The current work aimed to extend this 

type of research by using a quantitative analysis of text input to predict the productive use of 

specific correspondences based on an interaction between the consistency of mappings at 

different orthographic levels. 

My investigation into reading development involved two additional considerations. 

Firstly, to bear in mind the role of an individual reader’s text experience as they build a system 

of spelling-sound knowledge, particularly as the TP theory is built on the assumption a learner’s 

productive rule system is the product of their specific input. Therefore, we might expect readers 

with similar reading experience to behave more closely, and readers with more disparate 

experience to behave more variably. Secondly, children learning to read English in UK schools 

undergo a systematic phonics instruction programme. As this method explicitly teaches the most 

frequent GPCs, it was unknown how it may interact with the TP predictions for readers’ use of 

grapheme- or body-level correspondences. 

 

7.3.1.3 Aims of the thesis related to statistical learning  

At a broad level, this thesis set out to explore how readers make use of the statistical 

distributions in their input to build productive knowledge of spelling-sound correspondences. 

Examining the TP’s predictions could offer new insights into learners’ use of the patterns they 

are exposed to, by assessing the importance of different statistical properties during this process. 

This line of enquiry has specific relevance for the study of statistical learning - both within and 

beyond reading - by building on previous literature to address a number of research aims.  

Principally, the research presented here aimed to refine our understanding of 

generalisation within a quasi-regular system. Learners are exposed to patterns which vary in 

consistency, but are nonetheless able to build productive systems on the basis of this input. 

Precisely how consistency of the input affects the outcome of generalisation has been a matter of 

ongoing investigation. Statistical learning research has found that following exposure to 

inconsistent patterns, children are more categorical in their generalisation, whilst adults tend to 

reproduce the variation they are exposed to (Hudson Kam & Newport, 2005, 2009; Schuler 

2017). Meanwhile, research on reading has considered the applicability of statistical learning 
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mechanisms and the importance of input distributions in this domain (e.g. Taylor et al., 2011; 

Arcuili & Simpson, 2012). The current studies aimed to build on this body of research by using a 

quantitative measure of consistency to examine the nature of adults’ and children’s 

generalisation of inconsistent familiar and novel spelling-sound patterns. 

Beyond consistency, these studies also investigated the effect of other input variables on 

generalisation, namely the type and token frequency of regular and irregular items during 

training. Previous research has suggested that type rather than token frequency of input items 

affects rule productivity directly (Endress & Hauser, 2011; Perfors, et al., 2014; Schuler, 2017); 

the TP also maintains that the calculation of productivity should involve only type frequencies. 

However, token frequency may be more informative in instances where productive rules are not 

formed (Hudson Kam & Newport, 2005, 2009; Schuler, 2017), or could play an alternative role 

by determining which items are learned most quickly and accurately (Endress & Hauser; 2011; 

Kurumada et al., 2013). The contribution of this investigation therefore is two-fold: both 

informing our understanding of input frequencies for acquisition and generalisation, and 

allowing a rigorous test of the TP theory. 

As discussed above, readers are able to make use of more complex spelling-sound 

mappings, but do so less often than predicted by the distribution of these mappings in text 

(Treiman et al., 2003; Treiman & Kessler, 2019). From a statistical learning perspective, this 

finding suggests there is some process readers undertake in order to extract and use these 

patterns, rather than simply reproducing the input distributions. I set out to assess whether this 

process is successfully captured by the TP mechanism. In so doing, I could examine whether the 

TP provides a missing link not only for research on reading, but also for statistical learning. 

Finally, drawing together results from the experiments reported here may contribute to 

our understanding of the relationship between acquisition and generalisation. For instance, early-

acquired items may subsequently form the basis of generalisation (Yang, 2016).  

 

7.3.2 Key findings  

Experiment 1 investigated participants’ pronunciations of nonwords written in English 

orthography. To pronounce items in vowel winner conditions, participants used the vowel winner 
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pronunciation (the most common pronunciation of the vowel grapheme which passed the 

tolerance test) the majority of the time. This result supports the TP’s prediction that the most 

general spelling-sound correspondence which is sufficiently consistent to pass the tolerance test 

(i.e., at the level of the grapheme) should be used productively. The rule-based DRC performed 

as well as the TP in vowel winner conditions, as both accounts predict use of the most common 

pronunciation for these items. Meanwhile, the statistical models performed less well, as they 

overpredicted interference from the level of the word body for items which have a relatively 

consistent vowel grapheme.  

However, use of the vowel winner pronunciation was notably lower for one group of 

vowel winner items. These were from the vowel winner, body winner, conflict condition, where 

items have an alternative, consistent pronunciation of the body that conflicts with the vowel 

winner pronunciation. In participants’ responses for these items, the alternative body 

pronunciation seems to interfere with the vowel winner pronunciation to some extent; this 

interference is not predicted by the TP. In this way, the TP cannot precisely capture the way that 

readers resolve the conflict between alternative pronunciations for items with a relatively 

consistent vowel grapheme, and this remains to be explained by future research. Nevertheless, 

the vowel winner pronunciation remained the most common response for these items overall.  

Items from the vowel fail, body winner condition have inconsistent vowel graphemes but 

a consistent pronunciation of the word body which passes the tolerance test. Here, the TP 

predicts that this body winner pronunciation should be used, according to the recursive 

application of the tolerance threshold. As predicted, participants used the body winner 

pronunciation more often in this condition than in the vowel winner, body winner, conflict 

condition, and further, the TP was a closer match to participants’ responses for these items than 

any of the three computational models. In this way, the TP seems to capture something that 

previous research has not been able to: namely, the way in which readers use contextual 

information (or larger orthographic units) to inform their pronunciations when an individual 

grapheme is inconsistent. Therefore, Experiment 1 provided evidence that the TP is able to 

predict readers’ use of familiar body-level correspondences using the recursive application of a 

categorical threshold of consistency. 



  

243 

 

Comparison of adults’ and children’s pronunciations in this experiment revealed that 

children’s use of the vowel winner pronunciation was higher than adults’ in the vowel winner, 

body winner, conflict condition. This finding is in line with previous research suggesting that 

younger readers rely more on GPCs than skilled readers (Marsh et al., 1981; Coltheart & Leahy 

1992; Brown & Deavers, 1999), although it is notable that this difference was not observed in the 

other vowel winner conditions. It is possible that the explicit phonics training the children 

received at school boosts their use of these pronunciations in their responses compared to adults’, 

and specifically helps them to override a conflicting body pronunciation. Importantly, children’s 

behaviour in this condition is more closely aligned with the TP prediction than adults’, although 

it is unknown whether this could also be a result of their instruction or their reading experience. 

Alternatively, it could be the case that adults are less categorical in their reading behaviour, and 

more likely to diverge from TP predictions – perhaps due to their more varied text experience.  

Adults’ and children’s nonword reading behaviour also diverged in the body winner 

conditions, in which a pronunciation of the word body is consistent enough to pass the tolerance 

test. Across these conditions, child participants used the body winner pronunciation less often 

than adult participants, which supports previous evidence that children make less use of the body 

unit than adults when reading aloud (Marsh et al., 1981; Treiman et al., 1990; Bruck & Treiman, 

1992; Coltheart & Leahy, 1992; Brown & Deavers, 1999). This result is also consistent with the 

suggestion that extensive text experience is required to use these more complex orthography-

phonology mappings (Treiman et al, 2003; Treiman and Kessler, 2019) particularly in the 

absence of explicit instruction of these correspondences.  

Experiment 2 used an artificial orthography to investigate the generalisation of novel 

vowel symbols with inconsistent pronunciations. A rule-based approach would predict that the 

most frequent pronunciation of each vowel symbol should be used productively to pronounce 

untrained items (i.e. “regularisation”), whilst a statistical approach predicts that generalisation 

should be based on the frequency distribution of pronunciations in the input (e.g. matching the 

type or token frequency of alternative pronunciations during training). Meanwhile, the TP 

predicts that participants should regularise their pronunciations of the two vowel symbols that 

pass the tolerance test, but should not regularise the pronunciation of the third vowel symbol 

which does not. Results from the Generalisation task did not support a rule-based approach, as 
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the rate of participants’ regularisation was not high in all three conditions. Whilst token 

frequency did have an effect on regularisation as a statistical account would predict, passing the 

TP had an effect beyond this for both adults and children. Therefore, it seems that the TP is able 

to account for variance in participants’ regularisation that token frequency cannot. Overall, these 

findings suggest there is a categorical effect of consistency on learners’ generalisation of novel 

spelling-sound correspondences which is in line with the predictions of the Tolerance Principle, 

but not existing rule-based or statistical models of reading.  

Similarly, results from Experiments 1 and 3 suggest that the categorical metric of 

consistency provided by the TP offers a novel contribution to our understanding of the 

relationship between the consistency and generalisation of a pattern. In Experiment 1, 

participants often regularised the pronunciation of vowel graphemes that had relatively high 

inconsistency in the corpus, yet were predicted to be regularised by the TP. This effect was 

additional to that of a continuous, type-based consistency measure, whilst a continuous, token-

based consistency measure did not predict regularisation. This result is striking, as it suggests 

that the TP modulates the relationship between consistency and regularisation. When irregular 

items occurred with high token frequency in Experiment 3, the TP was better able to predict 

vowel regularisation after a revised threshold was calculated on the basis of the items each 

participant had successfully acquired. However, participants’ behaviour across all experiments 

was not as categorical as the TP predicts.  

This research also offered insights regarding participants’ use of token frequencies from 

their input. In Experiment 1, participants’ pronunciations of nonword items without a TP 

prediction offered an indication that token frequency information from the grapheme and body 

level can inform nonword pronunciations by adults and children. In Experiment 2, token 

frequency of trained regular items had an effect on adults’ and children’s regularisation, 

suggesting that this statistical property is used in generalisation. However, the TP had an effect 

above token frequency, which indicates that during generalisation, participants are imposing 

some additional structure on their input beyond the frequency distributions they were exposed to. 

Experiment 3 manipulated the token frequency of trained items, with irregular items assigned to 

the top of the frequency distribution during training. An initial analysis suggested that token 

frequency still had a significant effect on regularisation. However, analysis using a recalculated 
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tolerance threshold for each participant revealed a different pattern of results: whilst this 

individual TP predicted participants’ regularisation, token frequency did not. This finding 

indicates that token frequency has an indirect role to play in the generalisation process; items that 

are highly frequent in the input may be learned most successfully; these items may subsequently 

form the basis of generalisation. 

Experiment 4 investigated the recursive application of the tolerance threshold for novel 

vowel symbols. This experiment offered an opportunity to explore whether the TP could predict 

when learners use contextual information to inform the pronunciation of an inconsistent 

grapheme within an artificial orthography paradigm. Results from this Generalisation task 

suggested that adults had difficulty in extracting and generalising context-dependent spelling-

sound correspondences; only four participants were able to extract the context-sensitive sub-

regularity that was available for the vowel symbol which did not pass the tolerance test at the 

individual grapheme level. Those participants that did use the sub-rule categorically scored 

relatively well on accuracy of trained items, lending weight to previous findings which suggest 

that learning such context-sensitive correspondences is difficult and takes time to achieve. 

Moreover, participants regularised the vowel pronunciation less often for this symbol than for the 

symbol that did pass the tolerance test at the grapheme level, indicating that more broadly, 

participants are sensitive to the consistency of spelling-sound correspondences as the TP would 

predict.  

There are parallels to be drawn between the difference in adults’ and children’s use of the 

body winner pronunciation in Experiment 1, and the behaviour of adult participants in 

Experiment 4 developing orthography-phonology knowledge within an artificial orthography 

paradigm. As only a few participants formed a productive, context-sensitive sub-rule, the adult 

readers in this learning paradigm could be mirroring the behaviour of younger readers of English 

who made less use of context-sensitive information than might be expected given the 

distributions of their input. These results highlight the challenge of extracting and generalising 

more complex spelling-sound mappings, even when they offer increased consistency compared 

to simpler grapheme-phoneme mappings.  

The participants who did form the sub-rule were ranked in the top 30% of participants 

according to their accurate pronunciation of all trained items, and were at least 50% correct on 



  

246 

 

trained subset items (which featured the critical word body). This result supports previous 

findings that more skilled readers are able to make increasing use of context-sensitive 

information (Treiman et al., 1990; Laxon et al., 1991; Coltheart & Leahy, 1992; Treiman et al., 

2003). Further work is needed to specify the precise accumulation of this knowledge at different 

stages of reading development, but broadly speaking, these results hint that secure knowledge of 

items that involve more complex mappings may be necessary to use these patterns productively. 

The importance of acquiring secure knowledge to support generalisation was also highlighted in 

Experiment 3, where an individual tolerance threshold, based on the specific trained items each 

participant had accurately learned, successfully predicted generalisation behaviour.   

Nevertheless, understanding an individual’s text experience may provide some additional 

insight into the trajectory of their reading development. For instance, the TP was not able to 

account for variability across participants in Experiment 1, and contrary to my predictions based 

on the TP theory, children’s nonword pronunciation responses were more variable than adults’ 

despite their more similar reading experience and instruction. It is possible that differences 

between the orthography-phonology knowledge of developing readers are more pronounced due 

to their individual levels of progress, but that with cumulative years of reading experience and 

increased reading skill, readers' rule systems may begin to converge and thus produce more 

similar responses. 

 

7.3.3 Implications for wider literature 

7.3.3.1 Implications for word reading  

Taken together, these findings provide a range of insights into skilled and developing 

reading behaviour, which can also be used to assess the TP in the context of extant models of 

word reading and address the outstanding questions laid out in Section 7.3.1.1. Indeed, they 

suggest that the TP offers valuable advances in our understanding of this area of research. In 

particular, there is a categorical effect of consistency on readers’ generalisation that is not 

accounted for by models of reading, whereby readers are more likely to use a spelling-sound 

correspondence productively when the consistency of this correspondence falls beneath the 

tolerance threshold. In a familiar orthography, the TP is also able to predict more successfully 
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than extant models the way in which readers use context-sensitive information to inform the 

pronunciation of an inconsistent grapheme. However, the TP was less successful in predicting 

learners’ ability to extract and generalise context-sensitive information for inconsistent 

graphemes in a novel artificial orthography. Further research is needed to explore whether 

participants’ behaviour in this setting would align more closely with the TP predictions given 

further training on the artificial orthography. Additionally, readers in Experiment 1 demonstrated 

some level of interference from the word body in their pronunciations of nonword items with a 

consistent vowel grapheme pronunciation and a consistent, conflicting body pronunciation. In 

this way, readers’ behaviour was less categorical than the TP predicted; even when a vowel 

grapheme is sufficiently consistent to pass the tolerance test, readers will use a consistent 

conflicting body pronunciation some of the time. The current findings have highlighted that 

readers’ behaviour is not categorical in this context, but future research should address why this 

is the case, and precisely how readers construct pronunciations in such instances.  

Overall, I propose that the TP’s novel role for consistency may lie behind the progress it 

has made in predicting readers’ generalisation of spelling-sound correspondences more 

successfully than computational models of reading. Specifically, its use of type frequency counts 

in a quantitative assessment of consistency to provide a tipping point of productivity, along with 

its recursive application, enables precise predictions to be made on the basis of input statistics. 

These predictions include which spelling-sound correspondences should be generalised, when 

information from different orthographic grain sizes should be used, and how readers extract 

productive patterns from a quasi-regular input. This role for consistency allows the TP to bridge 

the gap between established rule-based and statistical models and goes some way towards 

addressing their shortcomings in accounting for readers’ behaviour. Future approaches to word 

reading that seek to improve upon the TP should also be able to capture the categorical effect of 

consistency described above; to predict the use of smaller versus larger orthographic grain sizes; 

and additionally, to account for those specific instances in which readers use context-sensitive 

information more or less often than is warranted by the consistency of an individual grapheme.  
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7.3.3.2 Implications for reading development and instruction  

The investigation of the TP presented here has a number of implications for the study of 

reading development and instruction. Firstly, it is striking that even through use of an adult 

corpus, the TP was able to predict 9-10 year-old children’s nonword pronunciations to a good 

level (72%), and more successfully than extant models. The TP was also able to predict 

children’s generalisation in an artificial orthography beyond frequency effects. These findings 

suggests that the TP does add to our understanding of reading development by demonstrating 

that younger readers are sensitive to consistency at different orthographic levels according to a 

categorical threshold. This effect is not predicted by extant models of word reading. 

Additionally, the findings open the possibility that use of the TP with corpora that reflect 

different stages of literacy development would be a valuable undertaking in order to understand 

this trajectory further.  

It is clear that the acquisition and generalisation of context-sensitive spelling-sound 

patterns or sub-regularities is not a trivial task for developing readers. Consequently, the current 

findings lend support to previous research suggesting that explicit teaching might be required for 

some learners to use these patterns productively (Treiman & Kessler, 2019). However, the 

approach used here could be particularly valuable by helping to identify precisely which 

correspondences should be taught. Results from this investigation suggest that spelling-sound 

correspondences involving larger orthographic units are sometimes more reliable than those 

involving smaller orthographic units. This finding is in line with results from other quantitative 

approaches which also aimed to capture the most efficient correspondences between spelling and 

sound (Vousden, 2008; Vousden et al., 2011). However, the current work extends this previous 

research in a profitable way by offering an assessment of consistency for individual mappings at 

different levels and predicting generalisation accordingly. Armed with the knowledge that 

specific spelling-sound correspondences are sufficiently consistent to be efficient for 

generalisation, and yet that they may be difficult to acquire implicitly, we could perhaps inform 

reading instruction by explicitly targeting these correspondences. 

Certainly, this is not necessarily to say that the earliest stages of reading instruction 

should involve the teaching of complex spelling-sound mappings. In a longitudinal study, 

Shapiro and Solity (2016) compared the progress of children learning to read through two 
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different phonics programmes: Letters and Sounds, which teaches alternative letter-sound 

mappings, and Early Reading Research, which teaches the most consistent letter-sound mappings 

and a set of frequent words by sight. Whilst there was no overall difference between the efficacy 

of the programmes according to later reading attainments, children with poor phonological 

awareness at school entry gained higher reading scores at the end of the first year under Early 

Reading Research than Letters and Sounds. Therefore, the authors suggest that simplifying 

phonics programmes to include only the most consistent correspondences (plus a set of sight 

words) may be beneficial. However, this study does not address the possibility that introducing 

alternative, context-sensitive mappings at later stages of the instruction programme could be of 

additional benefit, and might not interact with early phonological awareness in the way that 

Letters and Sounds was found to do. After all, there were no long-term differences in levels of 

reading attainment under each programme, which suggests that a phonics programme which 

includes more complex mappings is effective overall.  

In a similar vein, Bruck and Treiman (1992) found that explicit teaching of body-level 

analogies to early readers did not result in successful generalisation of these correspondences, 

although this method did convey early learning benefits above the teaching of word-initial CV- 

or grapheme-level analogies. Whilst this finding may indicate that teaching more complex 

correspondences involving larger orthographic units is not advantageous for the development of 

productive knowledge of spelling-sound correspondences, I would highlight that this study 

specifically involved beginning level readers. Therefore, I suggest that it may be worth 

investigating further whether targeted instruction of certain context-sensitive spelling-sound 

correspondences during later stages of reading instruction offers improved reading outcomes. 

For children with reading disability, Steacy et al., (2016) investigated the effect of 

reading instruction programme on transfer of decoding skill. They compared Phonics for 

Reading (a synthetic phonics programme which teaches phonological awareness and GPCs) with 

Phonological and Strategy Training (a programme which teaches variable vowel pronunciations, 

sight words, and morphological strategies, in addition to phonological awareness and simple 

GPCs). Whilst there was no overall difference in effectiveness of the two instruction 

programmes, children under Phonological and Strategy Training performed better at decoding 

words with variable (i.e. non-GPC) vowel pronunciations, whilst children under Phonics for 
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Reading performed better at decoding words without variable vowels (i.e. those that use GPCs). 

Overall, the study indicates that the sub-lexical emphasis of an instruction programme can affect 

specific transfer gains for word reading. Additionally, the authors highlight the benefit of 

teaching less able readers flexibility with vowels through a variety of strategies, particularly 

considering the difficulties these readers may have with vowel representations (e.g., Ehri & 

Saltmarsh, 1995; Shankweiler & Liberman, 1972). This research demonstrates the value of 

comparing specific instruction dimensions that vary across teaching programmes. However, a 

more extensive comparison of a range of programmes with typically developing readers is still 

required. 

This endeavour should include a comparison of instruction programmes which vary in 

their teaching of graphemes with multiple pronunciations and context-sensitive units at different 

stages of reading acquisition. For instance, Solity (2020) reports that the Letters and Sounds 

programme teaches 34 graphemes with multiple pronunciations; Read Write Inc. teaches 13; 

Jolly Phonics teaches 5; and Optima Reading teaches none. The specific benefits of these 

different instructional approaches are not known. Nor do we fully understand the ways in which 

readers’ development might be affected by the inclusion of context-specific cues for alternative 

pronunciations, or when these more complex correspondences should be introduced. A 

systematic comparison of existing programmes would help us to determine the optimum number 

of spelling-sound correspondences and the order in which to deliver them, given the limited 

amount of research in this area. Furthermore, the TP offers a potential framework within which 

these questions could be explored, and an objective measure against which to compare 

alternative schemes. By determining whether a spelling-sound correspondence is sufficiently 

consistent to pass the tolerance test given the size of a learner’s vocabulary and the properties of 

the items within that vocabulary, the TP can thereby indicate which correspondences should be 

targeted during instruction at different stages. An assessment of the correspondences taught by 

different phonics programmes could be carried out in this way, to reveal which programmes 

offer the optimum delivery of spelling-sound correspondences according to the TP.  

Beyond a comparison of existing phonics schemes, this method could also inform the 

development of new approaches towards reading instruction. For instance, Compton et al.’s 

(2014) proposed connectionist approach involves the use of carefully constructed corpora and the 
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instruction of spelling-sound correspondences at multiple levels alongside word-specific 

representations. As words are systematically added to the lexicon, probabilistic learning of 

constraints between orthographic and phonological units is expected to take place. In this 

context, the TP could again be used to identify which correspondences should be taught at which 

stage, according to the size and properties of the training corpus. 

Given the limited amount of research in this area, Castles et al. (2018) called for a 

systematic investigation into the efficacy of teaching single-letter or multiple-letter grapheme-

phoneme mappings and their consistency in certain contexts. Following the results presented 

here, I echo this call, and suggest that the TP’s quantitative approach offers a valuable tool with 

which to carry out this inquiry. The current research offers an initial advancement towards this 

aim by identifying a set of productive spelling-sound correspondences at different orthographic 

levels. The next step would be to assess whether teaching this range of mappings at different 

stages of reading instruction (as discussed above) offers an additional benefit to young readers 

compared to the use of an individual, regular grapheme-phoneme correspondence approach. At a 

broader level, Treiman (2018) also questioned whether phonics instruction could be improved, 

whilst highlighting the difficulty phonics advocates face in suggesting adjustments lest they are 

seen to weaken their stance. I suggest that the most effective way to approach this challenge is by 

building the body of empirical findings which highlight the potential benefits of an increasingly 

nuanced instruction programme.   

Overall, the findings presented in this thesis suggest that an understanding of reading 

development requires close attention both to the text experience a child has received, and the 

items they have managed to acquire; particularly as their pattern of acquisition and generalisation 

of spelling-sound knowledge may be shaped to some extent by the distributions of their own 

specific input. Most pertinently, an individual leaner’s trajectory towards skilled reading will be 

precisely that – individual – and may additionally require explicit instruction in order to take 

advantage of more complex correspondences between spelling and sound. 
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7.3.3.3 Implications for the study of statistical learning  

The findings described above offer some important insights for the statistical learning 

literature which must be accounted for in future work. Most strikingly, we now have a greater 

understanding of the process whereby learners generalise from the statistical distributions in their 

input. Specifically, if the consistency of a pattern falls within a critical threshold of tolerated 

exceptions, learners are able to use this pattern productively in a way that goes beyond the 

statistical distributions of the input. The observed shift in generalisation behaviour as the 

consistency crosses this threshold lends support to recent evidence of a limit to the level of 

inconsistency from which learners can base generalisation (Schuler, 2017; Schuler et al., 2021). 

However, the current results go further by demonstrating that this type-based categorical effect 

of consistency on generalisation may be additional to any effects of token frequency, and also to 

the effects of continuous type- or token-based consistency measures.  

Whilst we have seen across these experiments that there may be a categorical effect of 

consistency on participants’ generalisation, it is also clear that participants’ generalisation was 

not categorical - in contrast to Yang’s (2016) claim. However, it is not known whether learners’ 

generalisation in the context of artificial orthography learning would become more categorical 

with improved knowledge of trained items. We also did not observe a distinction between 

children’s categorical generalisation and adults’ more probabilistic behaviour, as found in some 

previous research (Hudson Kam & Newport, 2005; Schuler et al., 2021).   

Another significant contribution is the evidence from Experiment 3 that token frequency 

may play an underlying role in the path to generalisation: token frequency might be important for 

secure learning of individual items, but does not necessarily disrupt productivity directly. Rather, 

it may determine which items are used as the basis for generalisation. This role for token 

frequency is consistent with the TP account, whereby the earliest balance of productivity will be 

based on a small number of high frequency items, and may be adjusted as vocabulary knowledge 

grows. However, it is less easily accounted for by a statistical learning approach that predicts a 

direct effect of token frequency on generalisation (at least for adults). 

More broadly, it seems that there is a close relationship between learning and 

generalisation. This conclusion was indicated by participants’ generalisation in Experiment 3 

which demonstrated an effect of a tolerance threshold based on individuals’ successfully-
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acquired trained items beyond the effect of a threshold based on all input items. A similar 

suggestion was made in Experiment 4, where only learners with knowledge of relevant trained 

items demonstrated categorical use of a sub-rule. Accordingly, understanding which items are 

easier to acquire may help define the path towards productivity, as generalisation may be based 

on the forms a learner has acquired rather than those they are exposed to. However, it is also 

possible that a consistent pattern observed across items may support learning of these individual 

items; future work should aim to further uncover this potentially bi-directional relationship 

between the acquisition and generalisation of productive patterns.  

Overall, this thesis offers a more fine-grained account of the way learners use input 

statistics to form general rules that can be applied to unfamiliar items. Namely, it is has provided 

evidence of a categorical effect of consistency on generalisation beyond other input statistics, 

whilst suggesting how such input statistics may be important for the acquisition of individual 

items, and subsequently the generalisation of patterns across these items. 

 

7.4 Limitations of this thesis and future directions 

A potential limitation of Experiment 1 is that nonword pronunciations predicted by the 

TP were generated using word frequencies from an adult corpus, against which pronunciations 

from both adults and children were assessed. If a suitable children’s corpus were available then a 

separate set of thresholds could be calculated to generate specific predicted pronunciations, and 

then compared with children’s responses. This approach may be more appropriate for the 

investigation of child reading behaviour. For instance, it may allow more specific insights to be 

gained into the applicability of the TP for the development of spelling-sound knowledge, 

particularly if the corpus reflected the growth of children’s text experience at different stages. 

For instance, it would allow a closer investigation into the relationship between accumulating 

knowledge of more complex spelling-sound correspondences and the generalisation of such 

patterns.  

A further limitation of this thesis is that the recursive application of the TP to acquire and 

generalise context-specific spelling-sound correspondences was not assessed with children in an 
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artificial orthography paradigm.20 Conducting this research would not only allow a closer 

investigation of the recursive application of the TP in younger learners, but may also be 

informative more generally for our understanding of the effect of age-related differences and 

maturational constraints on extracting complex patterns from input distributions. Another age 

limitation involves the age group of children participating in Experiments 1 and 2. Whilst adult 

and child participants (aged 8-10) did not display vastly different patterns of behaviour in these 

experiments, it is possible that more distinctive developmental effects may be revealed by 

examining the generalisation behaviour of younger-aged children. In this way, an investigation 

of the TP in word reading with early-stage readers could be informative for both our 

understanding of the TP theory and the trajectory of reading acquisition.  

Additionally, the context-specific spelling-sound correspondences used in Experiment 4 

involved only contingencies between the word-medial vowel and the word-final consonant. This 

methodological decision allowed a comparison with parallel research involving the word body in 

English orthography. However, it is possible that adult participants’ previous experience of 

body-rime correspondences in English could have interfered with their extraction of 

correspondences involving these orthographic units within a novel orthography. Future 

investigations which explore dependencies between word-initial consonants and word-medial 

vowels (which are less common in the English writing system (Treiman et al., 1995)) would 

allay such concerns. 

Although the TP was found to successfully predict generalisation a number of times 

across the studies reported here, generalisation was also not as categorical as the TP account 

would expect. For instance, few participants demonstrated the recursive application of the TP in 

an artificial orthography learning context in Experiment 4. This current research is not able to 

address whether participants’ behaviour would become increasingly categorical - and potentially 

more aligned with the TP - after additional training which would allow knowledge of trained 

items to become secure. In Experiment 4 specifically, participants’ successful acquisition of the 

artificial language may have been negatively affected by carrying out the study online rather than 

in person. Therefore, the research reported here could be informatively expanded by using a 

 
20 Conduct of this experiment with child participants was cancelled due to the restrictions introduced during the 

Covid-19 pandemic. 
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more intensive and prolonged training phase (preferably carried out in person) which allows 

learners to develop more secure knowledge of the artificial language before generalisation is 

elicited. Certainly, future research should ensure that close attention is also paid to the specific 

trajectory of individual learners’ patterns of acquisition and generalisation. 

Further insights may also be gained by looking more specifically at the interaction 

between direct instruction and the effect of the TP on generalisation. The current research 

focused on the acquisition and generalisation of spelling-sound correspondences without direct 

instruction of these mappings. However, there is a range of possibilities for future research 

involving explicit instruction. For instance, research could address whether direct training of 

correspondences which pass the tolerance threshold is beneficial, particularly where these 

mappings are more complex. One possible outcome is that introducing targeted instruction of 

such mappings during later stages of literacy teaching enables learners to take advantage of the 

underlying statistical regularities of text. As described in Section 7.3.3.2, a detailed investigation 

of the optimal number, level and order of taught spelling-sound mappings would be an important 

contribution to reading instruction policy and practice. The TP’s assessment of consistency could 

be a valuable tool in this process, and the current findings offer a starting foundation on which to 

build.  

Relatedly, the effect of the TP on reading behaviour during an extended teaching 

programme that builds spelling-sound knowledge in a gradual, cumulative fashion could be 

explored. This approach could be valuable as it would be more akin to children’s experience of 

reading instruction delivered over time in the classroom. Thus, it could inform our understanding 

of the way in which children build a detailed system of orthography-phonology knowledge in 

real time.  

Finally – and importantly – future research should examine other possible thresholds that 

predict an interaction between consistency at different orthographic levels. Even if it transpires 

that the TP is not the optimal account of word reading, this initial investigation has opened a new 

door for research on reading whereby a categorical threshold of consistency can be used to 

predict the productive use of smaller or larger orthographic units. Indeed, the approach applied 

here offers a powerful investigative mechanism: experimentally examining theoretical 
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predictions which are generated according to a learner’s specific input. Future research may be 

fruitful by developing new frameworks on a similar basis. 

 

7.5 Conclusions  

This thesis has presented research on generalisation within a quasi-regular domain which 

adds to our understanding of word reading, reading development and statistical learning. 

Namely, readers’ generalisation of spelling-sound correspondences demonstrates a categorical 

effect of consistency which is predicted by Yang’s (2016) tolerance threshold. Support for the 

recursive application of this threshold was offered by skilled readers using a familiar 

orthography, but less so from learners within an artificial orthography paradigm. Overall, the 

investigation revealed that readers’ patterns of generalisation extend beyond the statistical 

distributions they have been exposed to during text experience. Therefore, it seems that readers 

carry out an active process to extract certain patterns from their input and use them productively 

to read aloud novel items, thereby adding structure to the variation in the input they have 

received. Additionally, this research provides the first evidence that the Tolerance Principle 

(Yang, 2016) can be usefully applied to domains beyond spoken language for which it was 

proposed. A notable consequence of these findings is that the Tolerance Principle may offer 

important insights about how humans extract and generalise information from their input that are 

applicable across cognitive domains. 
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Appendix A 

Derivation of the Tolerance Principle 

This overview summarises the derivation of the Tolerance Principle as laid out by Yang (2016, 

p. 60 – 66). See Schuler (unpublished, 2017) for a similar summary, Yang (2016) for a full 

elucidation and Yang (2018 p. 8 (a User’s Guide)) for further details.  

The derivation of the Tolerance Principle assumes that word frequency follows a Zipfian 

distribution (Zipf, 1949). Specifically, in a sample of N individual word types {w₁, w₂,…wN}, the 

rank (ri) of a word (wi) is inversely proportional to its frequency (fi). Therefore, it is the case that 

ri and fi multiply to a constant C. This can be used to approximate the probability (pi) with which 

(wi) will occur, and can be expressed as: 

 

According to the serial search mechanism, accessing the rth-ranked word in a list of N 

items will take r search steps. Therefore, the expected time to access a word that has been stored 

in a frequency-ranked list, T(N,N), can be captured as: 

 

Meanwhile, T (N,e) is the expected time to access the productive rule following a search 

of e exceptions ranked by frequency. This is the weighted average of the time it would take to 

search for an exception, and the time it would take to apply the rule, over the probability of 

occurrence of these two types of items. Specifically, the expected time to access an exception is 

T(e,e) or e/He (which is determined by the rank of the exception word in the list). The expected 

time to apply the rule to other, non-exception (N – e) items is e, i.e., the number of exceptions (as 

(the Nth harmonic number) 
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they must all be evaluated and rejected before the application of the rule). The overall average, T 

(N,e), is given as:   

 

 

             

Together with Sam Gutmann, Yang derives the closed-form solution to the equation  T 

(N,N) = T (N,e). They begin by approximating the Nth harmonic number, HN, (which is found in 

the Zipfian assumption of word frequencies, as above) with the natural log of N (logN):  

HN ≈ ln N 

To find x = e / N: 

 

Dividing both sides of the equation by N:  

 

 

To allow: 

 

  



  

259 

 

Observing: 

 

                                                         

                

 

 Thus deriving the tolerance threshold of exceptions for a productive rule:  
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Appendix B 

Nonword Stimuli Used in Experiment 1 

 

Nonword Item Condition 

DRAVE 1. Vowel winner, body winner, no conflict 

TAVE 1. Vowel winner, body winner, no conflict 

SCAVE 1. Vowel winner, body winner, no conflict 

SMOOT 1. Vowel winner, body winner, no conflict 

PROOT 1. Vowel winner, body winner, no conflict 

YOOT 1. Vowel winner, body winner, no conflict 

CREIL 1. Vowel winner, body winner, no conflict 

CHEIL 1. Vowel winner, body winner, no conflict 

THEIL 1. Vowel winner, body winner, no conflict 

SMEAT  1. Vowel winner, body winner, no conflict 

THEAT 1. Vowel winner, body winner, no conflict 

PREAT 1. Vowel winner, body winner, no conflict 

PLINT  1. Vowel winner, body winner, no conflict 

TRINT 1. Vowel winner, body winner, no conflict 

CHINT 1. Vowel winner, body winner, no conflict 

SLEAM 1. Vowel winner, body winner, no conflict 

YEAM 1. Vowel winner, body winner, no conflict 

FREAM 1. Vowel winner, body winner, no conflict 

FOVE 1. Vowel winner, body winner, no conflict 

BROVE 1. Vowel winner, body winner, no conflict 

NOVE 1. Vowel winner, body winner, no conflict 

BROOL 1. Vowel winner, body winner, no conflict 

VOOL 1. Vowel winner, body winner, no conflict 

MOOL 1. Vowel winner, body winner, no conflict 
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RULL 1. Vowel winner, body winner, no conflict 

SULL 1. Vowel winner, body winner, no conflict 

TRULL 1. Vowel winner, body winner, no conflict 

DRUSH 1. Vowel winner, body winner, no conflict 

GLUSH 1. Vowel winner, body winner, no conflict 

NUSH 1. Vowel winner, body winner, no conflict 

TRINK 1. Vowel winner, body winner, no conflict 

DINK 1. Vowel winner, body winner, no conflict 

HINK 1. Vowel winner, body winner, no conflict 

YAUNCH 1. Vowel winner, body winner, no conflict 

DRAUNCH 1. Vowel winner, body winner, no conflict 

MAUNCH 1. Vowel winner, body winner, no conflict 

KAID 1. Vowel winner, body winner, no conflict 

VAID 1. Vowel winner, body winner, no conflict 

THAID 1. Vowel winner, body winner, no conflict 

LOAP 1. Vowel winner, body winner, no conflict 

FROAP 1. Vowel winner, body winner, no conflict 

BOAP 1. Vowel winner, body winner, no conflict 

VORN 1. Vowel winner, body winner, no conflict 

JORN 1. Vowel winner, body winner, no conflict 

ZORN 1. Vowel winner, body winner, no conflict 

SHORM 1. Vowel winner, body winner, no conflict 

ZORM 1. Vowel winner, body winner, no conflict 

BORM 1. Vowel winner, body winner, no conflict 

YEIN 1. Vowel winner, body winner, no conflict 

GLEIN 1. Vowel winner, body winner, no conflict 

FLEIN 1. Vowel winner, body winner, no conflict 

PEIGHT  1. Vowel winner, body winner, no conflict 
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VEIGHT 1. Vowel winner, body winner, no conflict 

DREIGHT 1. Vowel winner, body winner, no conflict 

VARN 1. Vowel winner, body winner, no conflict 

PARN 1. Vowel winner, body winner, no conflict 

BLARN 1. Vowel winner, body winner, no conflict 

YAUT 1. Vowel winner, body winner, no conflict 

JAUT 1. Vowel winner, body winner, no conflict 

PRAUT 1. Vowel winner, body winner, no conflict 

LIND 2. Vowel winner, body winner, conflict 

YIND 2. Vowel winner, body winner, conflict 

TRIND 2. Vowel winner, body winner, conflict 

GLEAD 2. Vowel winner, body winner, conflict 

SMEAD 2. Vowel winner, body winner, conflict 

VEAD 2. Vowel winner, body winner, conflict 

MOOK 2. Vowel winner, body winner, conflict 

DOOK 2. Vowel winner, body winner, conflict 

PLOOK 2. Vowel winner, body winner, conflict 

BREALT 2. Vowel winner, body winner, conflict 

CHEALT 2. Vowel winner, body winner, conflict 

GREALT 2. Vowel winner, body winner, conflict 

GREAMT 2. Vowel winner, body winner, conflict 

BLEAMT 2. Vowel winner, body winner, conflict 

PEAMT 2. Vowel winner, body winner, conflict 

DEAPT 2. Vowel winner, body winner, conflict 

VEAPT 2. Vowel winner, body winner, conflict 

FREAPT 2. Vowel winner, body winner, conflict 

PLUTH 2. Vowel winner, body winner, conflict 

NUTH 2. Vowel winner, body winner, conflict 
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GUTH 2. Vowel winner, body winner, conflict 

PLEANT 2. Vowel winner, body winner, conflict 

GEANT 2. Vowel winner, body winner, conflict 

HEANT 2. Vowel winner, body winner, conflict 

FEALM 2. Vowel winner, body winner, conflict 

PEALM 2. Vowel winner, body winner, conflict 

TREALM  2. Vowel winner, body winner, conflict 

SHEALTH 2. Vowel winner, body winner, conflict 

PEALTH 2. Vowel winner, body winner, conflict 

TREALTH 2. Vowel winner, body winner, conflict 

NOUCH 3. Vowel all fail, body winner 

SOUCH 3. Vowel all fail, body winner 

FOUCH 3. Vowel all fail, body winner 

LOUNT 3. Vowel all fail, body winner 

BROUNT 3. Vowel all fail, body winner 

PLOUNT 3. Vowel all fail, body winner 

VOUST 3. Vowel all fail, body winner 

NOUST 3. Vowel all fail, body winner 

TROUST 3. Vowel all fail, body winner 

NOWL 3. Vowel all fail, body winner 

BROWL 3. Vowel all fail, body winner 

CHOWL 3. Vowel all fail, body winner 

MIEF 3. Vowel all fail, body winner 

HIEF 3. Vowel all fail, body winner 

PRIEF 3. Vowel all fail, body winner 

FIEK 3. Vowel all fail, body winner 

JIEK 3. Vowel all fail, body winner 

DRIEK 3. Vowel all fail, body winner 
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BIELD 3. Vowel all fail, body winner 

ZIELD 3. Vowel all fail, body winner 

PRIELD 3. Vowel all fail, body winner 

PLOUND 3. Vowel all fail, body winner 

NOUND 3. Vowel all fail, body winner 

VOUND 3. Vowel all fail, body winner 

ZOWD 3. Vowel all fail, body winner 

FOWD 3. Vowel all fail, body winner 

TROWD 3. Vowel all fail, body winner 

JOUT 3. Vowel all fail, body winner 

PROUT 3. Vowel all fail, body winner 

ZOUT 3. Vowel all fail, body winner 

NUILD 3. Vowel all fail, body winner 

ZUILD 3. Vowel all fail, body winner 

TUILD 3. Vowel all fail, body winner 

THOCK 3. Vowel all fail, body winner 

PLOCK 3. Vowel all fail, body winner 

GROCK 3. Vowel all fail, body winner 

NOTH 3. Vowel all fail, body winner 

JOTH 3. Vowel all fail, body winner 

FLOTH 3. Vowel all fail, body winner 

CROLD 3. Vowel all fail, body winner 

VOLD 3. Vowel all fail, body winner 

BROLD 3. Vowel all fail, body winner 

DRON 3. Vowel all fail, body winner 

PON 3. Vowel all fail, body winner 

BLON 3. Vowel all fail, body winner 

JEART 3. Vowel all fail, body winner 
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VEART 3. Vowel all fail, body winner 

ZEART 3. Vowel all fail, body winner 

BOUP 3. Vowel all fail, body winner 

CHOUP 3. Vowel all fail, body winner 

FROUP 3. Vowel all fail, body winner 

TROW 4. Vowel all fail, body all fail 

DOW 4. Vowel all fail, body all fail 

FROW 4. Vowel all fail, body all fail 

GLOWN 4. Vowel all fail, body all fail 

KOWN 4. Vowel all fail, body all fail 

YOWN 4. Vowel all fail, body all fail 

JOUGH 4. Vowel all fail, body all fail 

PROUGH 4. Vowel all fail, body all fail 

DROUGH 4. Vowel all fail, body all fail 

JOLL 4. Vowel all fail, body all fail 

CHOLL 4. Vowel all fail, body all fail 

GROLL 4. Vowel all fail, body all fail 

TROOD 5. Vowel winner, body all fail 

NOOD 5. Vowel winner, body all fail 

GROOD 5. Vowel winner, body all fail 

PLEARD 6. Vowel all fail, body all pass 

MEARD 6. Vowel all fail, body all pass 

ZEARD 6. Vowel all fail, body all pass 

TIEND 6. Vowel all fail, body all pass 

VIEND 6. Vowel all fail, body all pass 

JIEND 6. Vowel all fail, body all pass 

SHOUTH 6. Vowel all fail, body all pass 

HOUTH 6. Vowel all fail, body all pass 
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FOUTH 6. Vowel all fail, body all pass 

NOULD 6. Vowel all fail, body all pass 

VOULD 6. Vowel all fail, body all pass 

JOULD 6. Vowel all fail, body all pass 

BROUL 6. Vowel all fail, body all pass 

CHOUL 6. Vowel all fail, body all pass 

MOUL 6. Vowel all fail, body all pass 

LEARTH 6. Vowel all fail, body all pass 

KEARTH 6. Vowel all fail, body all pass 

NEARTH 6. Vowel all fail, body all pass 

SONT 6. Vowel all fail, body all pass 

BONT 6. Vowel all fail, body all pass 

RONT 6. Vowel all fail, body all pass 

THOMB 6. Vowel all fail, body all pass 

POMB 6. Vowel all fail, body all pass 

CHOMB 6. Vowel all fail, body all pass 

TROLF 6. Vowel all fail, body all pass 

HOLF 6. Vowel all fail, body all pass 

VOLF 6. Vowel all fail, body all pass 

CLOST 6. Vowel all fail, body all pass 

FOST 6. Vowel all fail, body all pass 

SOST 6. Vowel all fail, body all pass 

KIMB 7. Vowel winner, body all pass 

NIMB 7. Vowel winner, body all pass 

FRIMB 7. Vowel winner, body all pass 

SARCE 7. Vowel winner, body all pass 

FLARCE 7. Vowel winner, body all pass 

DARCE 7. Vowel winner, body all pass 
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PEAF 7. Vowel winner, body all pass 

SEAF 7. Vowel winner, body all pass 

GLEAF 7. Vowel winner, body all pass 

THILD 7. Vowel winner, body all pass 

SILD 7. Vowel winner, body all pass 

PRILD 7. Vowel winner, body all pass 
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Appendix C 

The Phonemic Vocabulary of the Dual-Route Cascaded Model  

(Coltheart & Rastle, 1999, p. 498) 
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Appendix D 

 

R Studio Output for Mixed-Effects Models by Chapter 

 

 

Chapter 3: Generalisation of orthography-phonology correspondences in nonword reading 

by adults and children  

 

 

Vowel_winner$Group <- factor(Vowel_winner$Group, levels=c("adult", "child")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_Winner_score ~ Condition * Group + (1 | Participant) +      (1 | Item) 

   Data: Vowel_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4992.6   5058.8  -2486.3   4972.6     5517  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.7025 -0.3308  0.2849  0.4890  4.1974  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.9220   1.3864   

 Participant (Intercept) 0.2796   0.5288   

Number of obs: 5527, groups:  Item, 105; Participant, 53 

 

Fixed effects: 

                      Estimate Std. Error z value Pr(>|z|)     

(Intercept)            1.77397    0.22688   7.819 5.33e-15 *** 

Condition2            -1.52688    0.33272  -4.589 4.45e-06 *** 

Condition5             1.57982    1.00872   1.566   0.1173     

Condition7             0.60199    0.48984   1.229   0.2191     

Groupchild            -0.01651    0.18036  -0.092   0.9271     

Condition2:Groupchild  0.66963    0.15533   4.311 1.62e-05 *** 

Condition5:Groupchild -1.44475    0.66037  -2.188   0.0287 *   

Condition7:Groupchild -0.39953    0.26258  -1.522   0.1281     
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_Winner_score ~ Condition * Group + (1 | Participant) +      (1 | Item) 

   Data: Vowel_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4992.6   5058.8  -2486.3   4972.6     5517  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.7026 -0.3308  0.2849  0.4890  4.1975  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.9221   1.3864   

 Participant (Intercept) 0.2796   0.5288   

Number of obs: 5527, groups:  Item, 105; Participant, 53 

 

Fixed effects: 

                      Estimate Std. Error z value Pr(>|z|)     

(Intercept)             0.2471     0.2874   0.860  0.38992     

Condition1              1.5269     0.3328   4.588 4.47e-06 *** 

Condition5              3.1067     1.0257   3.029  0.00246 **  

Condition7              2.1289     0.5215   4.083 4.45e-05 *** 

Groupchild              0.6531     0.1851   3.527  0.00042 *** 

Condition1:Groupchild  -0.6696     0.1553  -4.311 1.63e-05 *** 

Condition5:Groupchild  -2.1144     0.6622  -3.193  0.00141 **  

Condition7:Groupchild  -1.0692     0.2665  -4.013 6.01e-05 *** 
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_Winner_score ~ Condition * Group + (1 | Participant) +      (1 | Item) 

   Data: Vowel_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4992.6   5058.8  -2486.3   4972.6     5517  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.7026 -0.3308  0.2849  0.4890  4.1975  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.9221   1.3864   

 Participant (Intercept) 0.2796   0.5288   

Number of obs: 5527, groups:  Item, 105; Participant, 53 

 

Fixed effects: 

                      Estimate Std. Error z value Pr(>|z|)     

(Intercept)             2.3760     0.4610   5.154 2.55e-07 *** 

Condition2             -2.1289     0.5213  -4.084 4.43e-05 *** 

Condition1             -0.6020     0.4897  -1.229    0.219     

Condition5              0.9778     1.0846   0.902    0.367     

Groupchild             -0.4161     0.2818  -1.477    0.140     

Condition2:Groupchild   1.0692     0.2664   4.013 5.99e-05 *** 

Condition1:Groupchild   0.3995     0.2625   1.522    0.128     

Condition5:Groupchild  -1.0452     0.6942  -1.506    0.132     
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Vowel_winner$Group <- factor(Vowel_winner$Group, levels=c("child", "adult")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_Winner_score ~ Condition * Group + (1 | Participant) +      (1 | Item) 

   Data: Vowel_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4992.6   5058.8  -2486.3   4972.6     5517  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.7026 -0.3308  0.2849  0.4890  4.1975  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.9220   1.3864   

 Participant (Intercept) 0.2796   0.5288   

Number of obs: 5527, groups:  Item, 105; Participant, 53 

 

Fixed effects: 

                      Estimate Std. Error z value Pr(>|z|)     

(Intercept)             1.7574     0.2199   7.991 1.34e-15 *** 

Condition2             -0.8572     0.3302  -2.596  0.00943 **  

Condition5              0.1352     0.8800   0.154  0.87793     

Condition7              0.2025     0.4754   0.426  0.67007     

Groupadult              0.0165     0.1803   0.092  0.92708     

Condition2:Groupadult  -0.6696     0.1553  -4.312 1.62e-05 *** 

Condition5:Groupadult   1.4448     0.6598   2.190  0.02855 *   

Condition7:Groupadult   0.3996     0.2625   1.522  0.12803     
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_Winner_score ~ Condition * Group + (1 | Participant) +      (1 | Item) 

   Data: Vowel_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4992.6   5058.8  -2486.3   4972.6     5517  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.7027 -0.3308  0.2849  0.4890  4.1975  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.9219   1.3863   

 Participant (Intercept) 0.2796   0.5288   

Number of obs: 5527, groups:  Item, 105; Participant, 53 

 

Fixed effects: 

                      Estimate Std. Error z value Pr(>|z|)     

(Intercept)             0.9003     0.2833   3.178 0.001485 **  

Condition1              0.8573     0.3303   2.595 0.009452 **  

Condition5              0.9924     0.8986   1.104 0.269421     

Condition7              1.0599     0.5086   2.084 0.037151 *   

Groupadult             -0.6531     0.1851  -3.528 0.000419 *** 

Condition1:Groupadult   0.6695     0.1553   4.311 1.63e-05 *** 

Condition5:Groupadult   2.1145     0.6618   3.195 0.001398 **  

Condition7:Groupadult   1.0692     0.2664   4.013 6.00e-05 *** 
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_Winner_score ~ Condition * Group + (1 | Participant) +      (1 | Item) 

   Data: Vowel_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4992.6   5058.8  -2486.3   4972.6     5517  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.7026 -0.3308  0.2849  0.4890  4.1975  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.9220   1.3864   

 Participant (Intercept) 0.2796   0.5288   

Number of obs: 5527, groups:  Item, 105; Participant, 53 

 

Fixed effects: 

                      Estimate Std. Error z value Pr(>|z|)     

(Intercept)            1.95994    0.44475   4.407 1.05e-05 *** 

Condition2            -1.05968    0.50844  -2.084   0.0371 *   

Condition1            -0.20247    0.47556  -0.426   0.6703     

Condition5            -0.06727    0.96117  -0.070   0.9442     

Groupadult             0.41605    0.28183   1.476   0.1399     

Condition2:Groupadult -1.06916    0.26647  -4.012 6.01e-05 *** 

Condition1:Groupadult -0.39954    0.26259  -1.522   0.1281     

Condition5:Groupadult  1.04530    0.69492   1.504   0.1325     
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Body_winner$Group <- factor(Body_winner$Group, levels=c("adult", "child")) 

 

Body_winner$Condition <- factor(Body_winner$Condition, levels=c("2", "3")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Body_Winner_score ~ Condition + Group + (1 + Condition | Participant) +      (1 | 

Item) 

   Data: Body_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4380.1   4424.6  -2183.1   4366.1     4257  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.2738 -0.5520  0.2081  0.5600  5.5109  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Item        (Intercept) 1.0707   1.0348         

 Participant (Intercept) 1.0233   1.0116         

             Condition3  0.9798   0.9898   -0.73 

Number of obs: 4264, groups:  Item, 81; Participant, 53 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.2111     0.2708  -4.472 7.73e-06 *** 

Condition3    2.5575     0.2897   8.828  < 2e-16 *** 

Groupchild   -0.4430     0.2080  -2.130   0.0332 *   
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Body_winner$Condition <- factor(Body_winner$Condition, levels=c("3", "2")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Body_Winner_score ~ Condition + Group + (1 + Condition | Participant) +      (1 | 

Item) 

   Data: Body_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4380.1   4424.6  -2183.1   4366.1     4257  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.2738 -0.5520  0.2081  0.5600  5.5109  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Item        (Intercept) 1.0708   1.0348         

 Participant (Intercept) 0.5432   0.7370         

             Condition2  0.9798   0.9899   -0.34 

Number of obs: 4264, groups:  Item, 81; Participant, 53 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   1.3463     0.2181   6.172 6.73e-10 *** 

Condition2   -2.5575     0.2897  -8.828  < 2e-16 *** 

Groupchild   -0.4429     0.2080  -2.129   0.0332 *   
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Body_winner$Group <- factor(Body_winner$Group, levels=c("child", "adult")) 

Body_winner$Condition <- factor(Body_winner$Condition, levels=c("2", "3")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Body_Winner_score ~ Condition + Group + (1 + Condition | Participant) +      (1 | 

Item) 

   Data: Body_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4380.1   4424.6  -2183.1   4366.1     4257  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.2738 -0.5520  0.2081  0.5600  5.5109  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Item        (Intercept) 1.0707   1.0348         

 Participant (Intercept) 1.0233   1.0116         

             Condition3  0.9798   0.9898   -0.73 

Number of obs: 4264, groups:  Item, 81; Participant, 53 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.6541     0.2641  -6.264 3.76e-10 *** 

Condition3    2.5575     0.2897   8.828  < 2e-16 *** 

Groupadult    0.4430     0.2080   2.130   0.0332 *   
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Body_winner$Condition <- factor(Body_winner$Condition, levels=c("3", "2")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Body_Winner_score ~ Condition + Group + (1 + Condition | Participant) +      (1 | 

Item) 

   Data: Body_winner 

 

     AIC      BIC   logLik deviance df.resid  

  4380.1   4424.6  -2183.1   4366.1     4257  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.2738 -0.5520  0.2081  0.5600  5.5109  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Item        (Intercept) 1.0707   1.0348         

 Participant (Intercept) 0.5432   0.7370         

             Condition2  0.9798   0.9899   -0.34 

Number of obs: 4264, groups:  Item, 81; Participant, 53 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.9034     0.2067   4.370 1.24e-05 *** 

Condition2   -2.5575     0.2897  -8.829  < 2e-16 *** 

Groupadult    0.4430     0.2080   2.130   0.0332 *   
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Ad_ch_models$Group <- factor(Ad_ch_models$Group, levels=c("Adult", "Child")) 

Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("TP", "CDP", "DRC", 

"Triangle")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1219  -0.6759   0.2867   0.6041   5.9411  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                          Estimate Std. Error z value Pr(>|z|)     

(Intercept)               1.369011   0.165414   8.276  < 2e-16 *** 

ModelCDP                 -0.516212   0.061985  -8.328  < 2e-16 *** 

ModelDRC                 -0.452589   0.062074  -7.291 3.08e-13 *** 

ModelTriangle            -0.671401   0.061751 -10.873  < 2e-16 *** 

GroupChild                0.086926   0.131160   0.663    0.507     

ModelCDP:GroupChild      -0.119097   0.084137  -1.416    0.157     

ModelDRC:GroupChild      -0.008476   0.084456  -0.100    0.920     

ModelTriangle:GroupChild -0.248362   0.083681  -2.968    0.003 **  
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Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("CDP", "TP", "DRC", 

"Triangle")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1219  -0.6759   0.2867   0.6041   5.9411  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4499   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                         Estimate Std. Error z value Pr(>|z|)     

(Intercept)               0.85279    0.16460   5.181 2.21e-07 *** 

ModelTP                   0.51621    0.06198   8.329  < 2e-16 *** 

ModelDRC                  0.06363    0.06034   1.054  0.29169     

ModelTriangle            -0.15518    0.05994  -2.589  0.00963 **  

GroupChild               -0.03217    0.12948  -0.248  0.80379     

ModelTP:GroupChild        0.11910    0.08413   1.416  0.15686     

ModelDRC:GroupChild       0.11062    0.08192   1.350  0.17695     

ModelTriangle:GroupChild -0.12928    0.08110  -1.594  0.11092     
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Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("DRC", "CDP", "TP", 

"Triangle")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1220  -0.6759   0.2867   0.6041   5.9411  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                          Estimate Std. Error z value Pr(>|z|)     

(Intercept)               0.916424   0.164799   5.561 2.68e-08 *** 

ModelCDP                 -0.063620   0.060356  -1.054  0.29185     

ModelTP                   0.452585   0.062078   7.291 3.09e-13 *** 

ModelTriangle            -0.218812   0.060074  -3.642  0.00027 *** 

GroupChild                0.078439   0.129740   0.605  0.54546     

ModelCDP:GroupChild      -0.110621   0.081938  -1.350  0.17700     

ModelTP:GroupChild        0.008482   0.084458   0.100  0.92000     

ModelTriangle:GroupChild -0.239887   0.081465  -2.945  0.00323 **  
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Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("Triangle", "CDP", "DRC", 

"TP")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1219  -0.6759   0.2867   0.6041   5.9412  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)          0.69762    0.16455   4.240 2.24e-05 *** 

ModelCDP             0.15519    0.05994   2.589 0.009624 **  

ModelDRC             0.21880    0.06006   3.643 0.000269 *** 

ModelTP              0.67140    0.06175  10.873  < 2e-16 *** 

GroupChild          -0.16145    0.12919  -1.250 0.211417     

ModelCDP:GroupChild  0.12927    0.08109   1.594 0.110934     

ModelDRC:GroupChild  0.23991    0.08144   2.946 0.003223 **  

ModelTP:GroupChild   0.24837    0.08367   2.968 0.002995 **  
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Ad_ch_models$Group <- factor(Ad_ch_models$Group, levels=c("Child", "Adult")) 

Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("TP", "CDP", "DRC", 

"Triangle")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1220  -0.6759   0.2867   0.6041   5.9411  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                          Estimate Std. Error z value Pr(>|z|)     

(Intercept)               1.455926   0.160728   9.058  < 2e-16 *** 

ModelCDP                 -0.635305   0.057087 -11.129  < 2e-16 *** 

ModelDRC                 -0.461066   0.057387  -8.034 9.41e-16 *** 

ModelTriangle            -0.919765   0.056845 -16.180  < 2e-16 *** 

GroupAdult               -0.086940   0.131154  -0.663    0.507     

ModelCDP:GroupAdult       0.119101   0.084143   1.415    0.157     

ModelDRC:GroupAdult       0.008479   0.084456   0.100    0.920     

ModelTriangle:GroupAdult  0.248369   0.083684   2.968    0.003 **  
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Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("CDP", "TP", "DRC", 

"Triangle")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1220  -0.6759   0.2867   0.6041   5.9412  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                         Estimate Std. Error z value Pr(>|z|)     

(Intercept)               0.82056    0.15984   5.134 2.84e-07 *** 

ModelTP                   0.63530    0.05708  11.130  < 2e-16 *** 

ModelDRC                  0.17424    0.05542   3.144  0.00167 **  

ModelTriangle            -0.28446    0.05465  -5.205 1.94e-07 *** 

GroupAdult                0.03227    0.12950   0.249  0.80319     

ModelTP:GroupAdult       -0.11911    0.08412  -1.416  0.15680     

ModelDRC:GroupAdult      -0.11065    0.08193  -1.351  0.17683     

ModelTriangle:GroupAdult  0.12923    0.08109   1.594  0.11103     
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Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("DRC", "CDP", "TP", 

"Triangle")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1219  -0.6759   0.2867   0.6041   5.9411  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                          Estimate Std. Error z value Pr(>|z|)     

(Intercept)               0.994870   0.159930   6.221 4.95e-10 *** 

ModelCDP                 -0.174240   0.055419  -3.144  0.00167 **  

ModelTP                   0.461066   0.057382   8.035 9.36e-16 *** 

ModelTriangle            -0.458698   0.055079  -8.328  < 2e-16 *** 

GroupAdult               -0.078457   0.129710  -0.605  0.54527     

ModelCDP:GroupAdult       0.110625   0.081931   1.350  0.17694     

ModelTP:GroupAdult       -0.008471   0.084449  -0.100  0.92010     

ModelTriangle:GroupAdult  0.239892   0.081451   2.945  0.00323 **  
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Ad_ch_models$Model <- factor(Ad_ch_models$Model, levels=c("Triangle", "CDP", "DRC", 

"TP")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 | Item) 

   Data: Ad_ch_models 

 

     AIC      BIC   logLik deviance df.resid  

 29033.9  29116.6 -14506.9  29013.9    29044  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-10.1220  -0.6759   0.2867   0.6041   5.9412  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.4500   1.5652   

 Participant (Intercept) 0.1765   0.4201   

Number of obs: 29054, groups:  Item, 138; Participant, 53 

 

Fixed effects: 

                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)          0.53616    0.15950   3.361 0.000775 *** 

ModelCDP             0.28446    0.05464   5.206 1.93e-07 *** 

ModelDRC             0.45870    0.05507   8.329  < 2e-16 *** 

ModelTP              0.91977    0.05683  16.185  < 2e-16 *** 

GroupAdult           0.16144    0.12913   1.250 0.211242     

ModelCDP:GroupAdult -0.12927    0.08108  -1.594 0.110840     

ModelDRC:GroupAdult -0.23989    0.08143  -2.946 0.003219 **  

ModelTP:GroupAdult  -0.24837    0.08365  -2.969 0.002986 **  
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Models_vpass$Group <- factor(Models_vpass$Group, levels=c("Adult", "Child")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 + Group | Item) 

   Data: Models_vpass 

 

     AIC      BIC   logLik deviance df.resid  

 18017.5  18111.7  -8996.8  17993.5    18947  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-8.6906 -0.6278  0.2343  0.5611  6.8578  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Item        (Intercept) 3.4940   1.8692         

             GroupChild  0.6477   0.8048   -0.38 

 Participant (Intercept) 0.1705   0.4129         

Number of obs: 18959, groups:  Item, 90; Participant, 53 

 

Fixed effects: 

                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)          0.57611    0.22274   2.587 0.009695 **  

ModelCDP             0.31873    0.07660   4.161 3.17e-05 *** 

ModelDRC             0.73078    0.07793   9.378  < 2e-16 *** 

ModelTP              0.80759    0.07833  10.310  < 2e-16 *** 

GroupChild          -0.19732    0.16213  -1.217 0.223590     

ModelCDP:GroupChild  0.17605    0.10323   1.705 0.088117 .   

ModelDRC:GroupChild  0.36469    0.10617   3.435 0.000592 *** 

ModelTP:GroupChild   0.42540    0.10712   3.971 7.15e-05 *** 
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Models_vpass$Group <- factor(Models_vpass$Group, levels=c("Child", "Adult")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model * Group + (1 | Participant) + (1 + Group | Item) 

   Data: Models_vpass 

 

     AIC      BIC   logLik deviance df.resid  

 18017.5  18111.7  -8996.8  17993.5    18947  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-8.6898 -0.6278  0.2343  0.5612  6.8577  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Item        (Intercept) 2.9997   1.7320         

             GroupAdult  0.6478   0.8049   -0.06 

 Participant (Intercept) 0.1705   0.4130         

Number of obs: 18959, groups:  Item, 90; Participant, 53 

 

Fixed effects: 

                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)          0.37915    0.20479   1.851  0.06412 .   

ModelCDP             0.49474    0.06920   7.149 8.71e-13 *** 

ModelDRC             1.09553    0.07212  15.189  < 2e-16 *** 

ModelTP              1.23279    0.07309  16.866  < 2e-16 *** 

GroupAdult           0.19707    0.16214   1.215  0.22420     

ModelCDP:GroupAdult -0.17608    0.10323  -1.706  0.08805 .   

ModelDRC:GroupAdult -0.36480    0.10617  -3.436  0.00059 *** 

ModelTP:GroupAdult  -0.42536    0.10712  -3.971 7.17e-05 *** 
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Models_vfail$Group <- factor(Models_vfail$Group, levels=c("Adult", "Child")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model + Group + (1 | Participant) + (1 + Group | Item) 

   Data: Models_vfail 

 

     AIC      BIC   logLik deviance df.resid  

 10129.4  10194.4  -5055.7  10111.4    10086  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-8.0087 -0.6221  0.2918  0.5844  5.3573  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr  

 Participant (Intercept) 0.4926   0.7019         

 Item        (Intercept) 2.6254   1.6203         

             GroupChild  0.4510   0.6715   -0.48 

Number of obs: 10095, groups:  Participant, 53; Item, 48 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  1.18055    0.28240   4.180 2.91e-05 *** 

ModelCDP    -0.09633    0.06998  -1.377    0.169     

ModelDRC    -0.61778    0.06926  -8.920  < 2e-16 *** 

ModelTP      0.48038    0.07254   6.622 3.53e-11 *** 

GroupChild  -0.36388    0.22520  -1.616    0.106     
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Models_vfail$Group <- factor(Models_vfail$Group, levels=c("Child", "Adult")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Model + Group + (1 | Participant) + (1 + Group | Item) 

   Data: Models_vfail 

 

     AIC      BIC   logLik deviance df.resid  

 10129.4  10194.4  -5055.7  10111.4    10086  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-8.0086 -0.6221  0.2918  0.5844  5.3573  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr 

 Participant (Intercept) 0.4927   0.7019        

 Item        (Intercept) 2.0415   1.4288        

             GroupAdult  0.4510   0.6715   0.07 

Number of obs: 10095, groups:  Participant, 53; Item, 48 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  0.81667    0.25090   3.255  0.00113 **  

ModelCDP    -0.09633    0.06998  -1.376  0.16869     

ModelDRC    -0.61778    0.06926  -8.920  < 2e-16 *** 

ModelTP      0.48038    0.07254   6.622 3.54e-11 *** 

GroupAdult   0.36385    0.22528   1.615  0.10628     
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Ad_ch_consistency$Group <- factor(Ad_ch_consistency$Group, levels=c("Adult", "Child")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_reg_score ~ Vowel_H_type + Vowel_H_token + Group + (1 |      Participant) + 

(1 | Item) 

   Data: Ad_ch_consistency 

 

     AIC      BIC   logLik deviance df.resid  

  7668.0   7710.1  -3828.0   7656.0     8200  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.8264 -0.4255  0.2956  0.5132  4.4454  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.0679   1.4380   

 Participant (Intercept) 0.2597   0.5096   

Number of obs: 8206, groups:  Item, 156; Participant, 53 

 

Fixed effects: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)    2.53798    0.30513   8.318  < 2e-16 *** 

Vowel_H_type  -1.18527    0.43045  -2.754  0.00589 **  

Vowel_H_token -0.38625    0.36393  -1.061  0.28854     

GroupChild     0.07855    0.15249   0.515  0.60647     
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_reg_score ~ Vowel_H_type + Vowel_H_token + Group + TP_vowel_reg +   

    (1 | Participant) + (1 | Item) 

   Data: Ad_ch_consistency 

 

     AIC      BIC   logLik deviance df.resid  

  7633.7   7682.8  -3809.9   7619.7     8199  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.3561 -0.4114  0.2988  0.5093  4.8129  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.5398   1.2409   

 Participant (Intercept) 0.2598   0.5097   

Number of obs: 8206, groups:  Item, 156; Participant, 53 

 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)      0.72955    0.38471   1.896   0.0579 .   

Vowel_H_type    -0.07893    0.41123  -0.192   0.8478     

Vowel_H_token   -0.66709    0.32097  -2.078   0.0377 *   

GroupChild       0.07909    0.15253   0.519   0.6041     

TP_vowel_reg2-1  2.84272    0.44123   6.443 1.17e-10 *** 
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Ad_ch_consistency$Group <- factor(Ad_ch_consistency$Group, levels=c("Child", "Adult")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_reg_score ~ Vowel_H_type + Vowel_H_token + Group + (1 |      Participant) + 

(1 | Item) 

   Data: Ad_ch_consistency 

 

     AIC      BIC   logLik deviance df.resid  

  7668.0   7710.1  -3828.0   7656.0     8200  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.8264 -0.4255  0.2956  0.5132  4.4454  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 2.0680   1.4380   

 Participant (Intercept) 0.2597   0.5096   

Number of obs: 8206, groups:  Item, 156; Participant, 53 

 

Fixed effects: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)    2.61652    0.30172   8.672  < 2e-16 *** 

Vowel_H_type  -1.18523    0.43034  -2.754  0.00588 **  

Vowel_H_token -0.38628    0.36393  -1.061  0.28850     

GroupAdult    -0.07854    0.15249  -0.515  0.60651     
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Vowel_reg_score ~ Vowel_H_type + Vowel_H_token + Group + TP_vowel_reg +   

    (1 | Participant) + (1 | Item) 

   Data: Ad_ch_consistency 

 

     AIC      BIC   logLik deviance df.resid  

  7633.7   7682.8  -3809.9   7619.7     8199  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-6.3561 -0.4114  0.2988  0.5093  4.8129  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.5398   1.2409   

 Participant (Intercept) 0.2597   0.5097   

Number of obs: 8206, groups:  Item, 156; Participant, 53 

 

Fixed effects: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)      0.80865    0.38166   2.119   0.0341 *   

Vowel_H_type    -0.07894    0.41121  -0.192   0.8478     

Vowel_H_token   -0.66709    0.32099  -2.078   0.0377 *   

GroupAdult      -0.07907    0.15252  -0.518   0.6042     

TP_vowel_reg2-1  2.84267    0.44099   6.446 1.15e-10 *** 
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Call: 

lm(formula = Part_Vowel_H ~ Vowel_H_type + Vowel_H_token + Group,  

    data = Adult_child_H_data) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-1.6871 -0.5014 -0.0525  0.4283  3.1844  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)    0.36024    0.09099   3.959 8.94e-05 *** 

Vowel_H_type   0.90345    0.10599   8.524 3.37e-16 *** 

Vowel_H_token -0.12619    0.09546  -1.322  0.18698     

GroupChild     0.20059    0.06614   3.033  0.00258 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.6581 on 392 degrees of freedom 

Multiple R-squared:  0.2317, Adjusted R-squared:  0.2259  

F-statistic: 39.41 on 3 and 392 DF,  p-value: < 2.2e-16 
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Call: 

lm(formula = Part_Vowel_H ~ Vowel_H_type + Vowel_H_token + Group +  

    TP, data = Adult_child_H_data) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-1.7078 -0.5264 -0.0659  0.4272  3.1895  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)    0.40785    0.13660   2.986  0.00301 **  

Vowel_H_type   0.88735    0.11154   7.955 1.95e-14 *** 

Vowel_H_token -0.12698    0.09557  -1.329  0.18475     

GroupChild     0.20059    0.06621   3.030  0.00261 **  

TP            -0.04163    0.08903  -0.468  0.64031     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.6587 on 391 degrees of freedom 

Multiple R-squared:  0.2322, Adjusted R-squared:  0.2243  

F-statistic: 29.56 on 4 and 391 DF,  p-value: < 2.2e-16 
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Chapter 4: Testing the Tolerance Principle in adults and children learning an artificial 

orthography 

 

 

Adult_child_reg$Age <- factor(Adult_child_reg$Age, levels=c("Adult", "Child")) 

Adult_child_reg$Condition <- factor(Adult_child_reg$Condition, levels=c("82","64", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: Adult_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   829.1    847.4   -410.5    821.1      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.3077 -0.7213  0.3023  0.6812  3.0010  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 1.117    1.057    

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.9251     0.2663   3.474 0.000513 *** 

Condition64  -0.4316     0.2113  -2.042 0.041103 *   

Condition46  -2.0873     0.2297  -9.087  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.420        

Condition46 -0.415  0.498 

>  
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Adult_child_reg$Condition <- factor(Adult_child_reg$Condition, levels=c("64","82", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: Adult_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   829.1    847.4   -410.5    821.1      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.3077 -0.7213  0.3023  0.6812  3.0010  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 1.117    1.057    

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.4935     0.2614   1.888   0.0590 .   

Condition82   0.4316     0.2113   2.042   0.0411 *   

Condition46  -1.6557     0.2214  -7.477 7.59e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt82 

Condition82 -0.381        

Condition46 -0.384  0.437 
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Adult_child_reg$Condition <- factor(Adult_child_reg$Condition, levels=c("46","64", "82")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: Adult_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   829.1    847.4   -410.5    821.1      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.3077 -0.7213  0.3023  0.6812  3.0010  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 1.117    1.057    

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.1622     0.2700  -4.304 1.68e-05 *** 

Condition64   1.6557     0.2214   7.477 7.60e-14 *** 

Condition82   2.0873     0.2297   9.086  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.448        

Condition82 -0.441  0.562 
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + (1 | Participant) 

   Data: Adult_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   846.5    860.3   -420.3    840.5      716  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.0433 -0.6984  0.2473  0.6901  2.8952  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.95     0.9747   

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -2.390      0.360  -6.641 3.13e-11 *** 

Token          4.141      0.480   8.627  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) 

Token -0.797 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + TP + (1 | Participant) 

   Data: Adult_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   828.8    847.1   -410.4    820.8      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.4105 -0.6874  0.2932  0.6961  3.1170  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 1.042    1.021    

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.0969     0.4690  -2.339   0.0194 *   

Token         1.5891     0.7483   2.123   0.0337 *   

TP2-1         1.3423     0.3099   4.332 1.48e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) Token  

Token -0.872        

TP2-1  0.618 -0.766 
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AO1_Pron_ad$Condition <- factor(AO1_Pron_ad$Condition, levels=c("82","64", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Condition + (1 + Condition | Participant) + (1 | Item) 

   Data: AO1_Pron_ad 

 

     AIC      BIC   logLik deviance df.resid  

   868.8    914.6   -424.4    848.8      709  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.0670 -0.6490 -0.2331  0.6159  2.9205  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr        

 Item        (Intercept) 0.8498   0.9218               

 Participant (Intercept) 1.0410   1.0203               

             Condition64 1.3546   1.1639   -0.55       

             Condition46 1.1041   1.0508   -0.87  0.44 

Number of obs: 719, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.9649     0.3959   2.437 0.014804 *   

Condition64  -0.9149     0.5280  -1.733 0.083160 .   

Condition46  -1.9318     0.5187  -3.724 0.000196 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.672        

Condition46 -0.741  0.496 

>  
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AO1_Pron_ad$Condition <- factor(AO1_Pron_ad$Condition, levels=c("64","82", "46")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Condition + (1 + Condition | Participant) + (1 | Item) 

   Data: AO1_Pron_ad 

 

     AIC      BIC   logLik deviance df.resid  

   868.8    914.6   -424.4    848.8      709  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.0671 -0.6490 -0.2330  0.6159  2.9205  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr        

 Item        (Intercept) 0.8499   0.9219               

 Participant (Intercept) 1.0978   1.0478               

             Condition82 1.3548   1.1640   -0.58       

             Condition46 1.3918   1.1797   -0.89  0.60 

Number of obs: 719, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)  0.04997    0.39325   0.127   0.8989   

Condition82  0.91492    0.52805   1.733   0.0832 . 

Condition46 -1.01680    0.52560  -1.935   0.0530 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt82 

Condition82 -0.666        

Condition46 -0.748  0.515 

>  
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AO1_Pron_ad$Condition <- factor(AO1_Pron_ad$Condition, levels=c("46","64", "82")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Condition + (1 + Condition | Participant) + (1 | Item) 

   Data: AO1_Pron_ad 

 

     AIC      BIC   logLik deviance df.resid  

   868.8    914.6   -424.4    848.8      709  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.0669 -0.6490 -0.2331  0.6159  2.9209  

 

Random effects: 

 Groups      Name        Variance Std.Dev. Corr        

 Item        (Intercept) 0.8498   0.9218               

 Participant (Intercept) 0.2894   0.5380               

             Condition64 1.3925   1.1800   -0.46       

             Condition82 1.1038   1.0506   -0.31  0.46 

Number of obs: 719, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.9667     0.3485  -2.774 0.005544 **  

Condition64   1.0168     0.5256   1.934 0.053068 .   

Condition82   1.9313     0.5187   3.723 0.000197 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.663        

Condition82 -0.647  0.489 

>  
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Child_AO1_reg <- Adult_child_reg[ which(Adult_child_reg$Age=='Child'), ] 

 

Child_AO1_reg$Condition <- factor(Child_AO1_reg$Condition, levels=c("82","64", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: Child_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   789.3    807.6   -390.7    781.3      713  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5777 -0.6875 -0.2697  0.6685  4.0050  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.6054   0.7781   

Number of obs: 717, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.9612     0.2195   4.379 1.19e-05 *** 

Condition64  -0.9403     0.2046  -4.596 4.31e-06 *** 

Condition46  -2.9660     0.2577 -11.512  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.508        

Condition46 -0.435  0.460 

>  
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Child_AO1_reg$Condition <- factor(Child_AO1_reg$Condition, levels=c("64","82", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: Child_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   789.3    807.6   -390.7    781.3      713  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5777 -0.6875 -0.2697  0.6685  4.0051  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.6055   0.7781   

Number of obs: 717, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  0.02087    0.21070   0.099    0.921     

Condition82  0.94030    0.20459   4.596 4.31e-06 *** 

Condition46 -2.02572    0.24443  -8.288  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt82 

Condition82 -0.442        

Condition46 -0.376  0.352 

>  
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Child_AO1_reg$Condition <- factor(Child_AO1_reg$Condition, levels=c("46","64", "82")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: Child_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   789.3    807.6   -390.7    781.3      713  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5777 -0.6875 -0.2697  0.6685  4.0050  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.6054   0.7781   

Number of obs: 717, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -2.0048     0.2558  -7.838 4.56e-15 *** 

Condition64   2.0257     0.2444   8.288  < 2e-16 *** 

Condition82   2.9660     0.2577  11.512  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.646        

Condition82 -0.634  0.669 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + (1 | Participant) 

   Data: Child_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   808.8    822.6   -401.4    802.8      714  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.3268 -0.6740 -0.2962  0.6480  3.5491  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.8955   0.9463   

Number of obs: 717, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -3.7822     0.3917  -9.657   <2e-16 *** 

Token         5.7916     0.5228  11.078   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) 

Token -0.839 

> 
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + TP + (1 | Participant) 

   Data: Child_AO1_reg 

 

     AIC      BIC   logLik deviance df.resid  

   789.1    807.4   -390.5    781.1      713  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.1254 -0.6041 -0.2460  0.6918  4.3579  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.7618   0.8728   

Number of obs: 717, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -2.5800     0.4544  -5.678 1.36e-08 *** 

Token         3.3042     0.7241   4.563 5.03e-06 *** 

TP2-1         1.4414     0.3129   4.606 4.11e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) Token  

Token -0.887        

TP2-1  0.491 -0.675 

>  
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Adult_child_reg$TP <- factor(Adult_child_reg$TP, levels=c("0","1")) 

 

Adult_child_reg$Age <- factor(Adult_child_reg$Age, levels=c("Adult","Child")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Age * TP + (1 | Participant) + (1 | Item) 

   Data: Adult_child_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1701.8   1733.4   -844.9   1689.8     1430  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5994 -0.8414 -0.2779  0.8023  2.9675  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.0429   0.2071   

 Participant (Intercept) 0.4560   0.6753   

Number of obs: 1436, groups:  Item, 30; Participant, 27 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -0.9602     0.2111  -4.548 5.42e-06 *** 

AgeChild      -0.8869     0.2498  -3.551 0.000384 *** 

TP1            1.6747     0.1996   8.390  < 2e-16 *** 

AgeChild:TP1   0.7394     0.2822   2.620 0.008798 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) AgChld TP1    

AgeChild    -0.451               

TP1         -0.646  0.455        

AgeChld:TP1  0.387 -0.864 -0.573 

>  
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Adult_child_reg$TP <- factor(Adult_child_reg$TP, levels=c("1","0")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Age * TP + (1 | Participant) + (1 | Item) 

   Data: Adult_child_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1701.8   1733.4   -844.9   1689.8     1430  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5994 -0.8414 -0.2779  0.8023  2.9675  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.0429   0.2071   

 Participant (Intercept) 0.4560   0.6753   

Number of obs: 1436, groups:  Item, 30; Participant, 27 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)    0.7145     0.1730   4.130 3.63e-05 *** 

AgeChild      -0.1475     0.1423  -1.037   0.2998     

TP0           -1.6747     0.1996  -8.390  < 2e-16 *** 

AgeChild:TP0  -0.7394     0.2822  -2.620   0.0088 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) AgChld TP0    

AgeChild    -0.418               

TP0         -0.365  0.337        

AgeChld:TP0  0.189 -0.467 -0.573 

>  
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Adult_child_reg$Age <- factor(Adult_child_reg$Age, levels=c("Child","Adult")) 

 

Adult_child_reg$TP <- factor(Adult_child_reg$TP, levels=c("0","1")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Age * TP + (1 | Participant) + (1 | Item) 

   Data: Adult_child_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1701.8   1733.4   -844.9   1689.8     1430  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5994 -0.8414 -0.2779  0.8023  2.9676  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.0429   0.2071   

 Participant (Intercept) 0.4560   0.6753   

Number of obs: 1436, groups:  Item, 30; Participant, 27 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -1.8471     0.2437  -7.580 3.47e-14 *** 

AgeAdult       0.8870     0.2498   3.551 0.000383 *** 

TP1            2.4141     0.2344  10.300  < 2e-16 *** 

AgeAdult:TP1  -0.7394     0.2822  -2.620 0.008795 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) AgAdlt TP1    

AgeAdult    -0.634               

TP1         -0.742  0.652        

AgeAdlt:TP1  0.550 -0.864 -0.716 

>  
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Adult_child_reg$TP <- factor(Adult_child_reg$TP, levels=c("1","0")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Age * TP + (1 | Participant) + (1 | Item) 

   Data: Adult_child_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1701.8   1733.4   -844.9   1689.8     1430  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5994 -0.8414 -0.2779  0.8022  2.9675  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.0429   0.2071   

 Participant (Intercept) 0.4560   0.6753   

Number of obs: 1436, groups:  Item, 30; Participant, 27 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)    0.5670     0.1721   3.295 0.000984 *** 

AgeAdult       0.1475     0.1423   1.037 0.299787     

TP0           -2.4141     0.2344 -10.299  < 2e-16 *** 

AgeAdult:TP0   0.7394     0.2822   2.620 0.008799 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) AgAdlt TP0    

AgeAdult    -0.407               

TP0         -0.312  0.275        

AgeAdlt:TP0  0.197 -0.467 -0.716 

>  
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AO1_Pron_ch$Condition <- factor(AO1_Pron_ch$Condition, levels=c("82","64", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Acc ~ Condition + (1 | Participant) + (1 | Item) 

   Data: AO1_Pron_ch 

 

     AIC      BIC   logLik deviance df.resid  

   789.8    812.7   -389.9    779.8      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.1720 -0.5061 -0.3561  0.5475  3.1321  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.0879   1.0430   

 Participant (Intercept) 0.1642   0.4052   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.7732     0.3779   2.046   0.0408 *   

Condition64  -1.2975     0.5176  -2.507   0.0122 *   

Condition46  -2.4467     0.5269  -4.643 3.43e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.695        

Condition46 -0.684  0.502 

>  
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AO1_Pron_ch$Condition <- factor(AO1_Pron_ch$Condition, levels=c("64","82", "46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Acc ~ Condition + (1 | Participant) + (1 | Item) 

   Data: AO1_Pron_ch 

 

     AIC      BIC   logLik deviance df.resid  

   789.8    812.7   -389.9    779.8      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.1720 -0.5061 -0.3561  0.5475  3.1321  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.0879   1.0430   

 Participant (Intercept) 0.1642   0.4052   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)  -0.5243     0.3725  -1.408   0.1592   

Condition82   1.2975     0.5176   2.507   0.0122 * 

Condition46  -1.1492     0.5214  -2.204   0.0275 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt82 

Condition82 -0.684        

Condition46 -0.676  0.486 

>  
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AO1_Pron_ch$Condition <- factor(AO1_Pron_ch$Condition, levels=c("46","64", "82")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Acc ~ Condition + (1 | Participant) + (1 | Item) 

   Data: AO1_Pron_ch 

 

     AIC      BIC   logLik deviance df.resid  

   789.8    812.7   -389.9    779.8      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.1720 -0.5061 -0.3561  0.5475  3.1321  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.0879   1.0430   

 Participant (Intercept) 0.1642   0.4052   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.6735     0.3845  -4.352 1.35e-05 *** 

Condition64   1.1492     0.5214   2.204   0.0275 *   

Condition82   2.4467     0.5269   4.643 3.43e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.701        

Condition82 -0.698  0.512 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Acc ~ Reg + (1 | Participant) + (1 | Item) 

   Data: AO1_Pron_ch 

 

     AIC      BIC   logLik deviance df.resid  

   785.1    803.5   -388.6    777.1      716  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.0738 -0.5488 -0.3260  0.5684  3.7297  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 1.0801   1.0393   

 Participant (Intercept) 0.1646   0.4057   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.8085     0.3585  -5.044 4.55e-07 *** 

RegR          2.1684     0.4415   4.912 9.03e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

     (Intr) 

RegR -0.770 
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Age + (1 | Participant) + (1 | Item) 

   Data: AO1_ad_ch_pron 

 

     AIC      BIC   logLik deviance df.resid  

  1645.9   1667.0   -819.0   1637.9     1435  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.0943 -0.5945 -0.3432  0.6415  3.9897  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.2424   0.4923   

 Item        (Intercept) 1.6267   1.2754   

Number of obs: 1439, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept) -0.01784    0.26876  -0.066   0.9471   

AgeChild    -0.45132    0.18947  -2.382   0.0172 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

         (Intr) 

AgeChild -0.350 
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Chapter 5: Testing the Tolerance Principle in adults learning an artificial orthography 

with high frequency irregulars 

 

 

AO1_reg <- AO1_AO2_reg[ which(AO1_AO2_reg$Study=='1'), ] 

AO2_reg <- AO1_AO2_reg[ which(AO1_AO2_reg$Study=='2'), ] 

 

AO2_reg$Condition <- factor(AO2_reg$Condition, levels=c("82","64","46")) 

 

Model1 <- glmer(Reg ~ Condition + (1|Participant), data = AO2_reg, family =binomial) 

summary(Model1) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

   900.2    918.5   -446.1    892.2      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.9697 -0.7494 -0.2873  0.8163  3.4810  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.6553   0.8095   

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.7774     0.2214   3.511 0.000446 *** 

Condition64  -1.3640     0.2068  -6.596 4.22e-11 *** 

Condition46  -1.3508     0.2064  -6.546 5.92e-11 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.480        

Condition46 -0.480  0.532 

>  
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AO2_reg$Condition <- factor(AO2_reg$Condition, levels=c("64","82","46")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

   900.2    918.5   -446.1    892.2      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.9697 -0.7494 -0.2873  0.8163  3.4810  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.6553   0.8095   

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -0.58657    0.21878  -2.681  0.00734 **  

Condition82  1.36400    0.20679   6.596 4.22e-11 *** 

Condition46  0.01315    0.19980   0.066  0.94754     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt82 

Condition82 -0.460        

Condition46 -0.458  0.485 

>  
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AO2_reg$Condition <- factor(AO2_reg$Condition, levels=c("46","64","82")) 

 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Condition + (1 | Participant) 

   Data: AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

   900.2    918.5   -446.1    892.2      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.9697 -0.7494 -0.2873  0.8163  3.4810  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.6553   0.8095   

Number of obs: 719, groups:  Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -0.57343    0.21843  -2.625  0.00866 **  

Condition64 -0.01314    0.19980  -0.066  0.94755     

Condition82  1.35085    0.20637   6.546 5.92e-11 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.456        

Condition82 -0.458  0.482 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + (1 | Participant) + (1 | Item) 

   Data: AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

   906.2    924.6   -449.1    898.2      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5600 -0.8107 -0.3725  0.8409  4.6705  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.06963  0.2639   

 Participant (Intercept) 0.73795  0.8590   

Number of obs: 719, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.6123     0.3125  -5.159 2.48e-07 *** 

Token         3.3103     0.5350   6.188 6.11e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) 

Token -0.768 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + TP + (1 | Participant) + (1 | Item) 

   Data: AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

   905.8    928.7   -447.9    895.8      714  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.8143 -0.8372 -0.3715  0.8545  4.7743  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.02248  0.1499   

 Participant (Intercept) 0.75031  0.8662   

Number of obs: 719, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.9124     0.3610  -5.298 1.17e-07 *** 

Token         4.1503     0.7453   5.569 2.56e-08 *** 

TP2-1        -0.4394     0.2675  -1.643      0.1     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) Token  

Token -0.832        

TP2-1  0.536 -0.718 

>  
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AO1_AO2_reg$Study <- as.factor(AO1_AO2_reg$Study) 

 

AO1_AO2_reg$Study <- factor(AO1_AO2_reg$Study, levels=c("1","2")) 

 

AO1_AO2_reg$TP <- factor(AO1_AO2_reg$TP, levels=c("0","1")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Study * TP + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1763.5   1795.1   -875.7   1751.5     1432  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.4867 -0.7657 -0.1914  0.7730  3.4090  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.8766   0.9363   

 Item        (Intercept) 0.1405   0.3749   

Number of obs: 1438, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.1644     0.2767  -4.209 2.57e-05 *** 

Study2        0.5780     0.3453   1.674   0.0942 .   

TP1           1.8802     0.2451   7.670 1.72e-14 *** 

Study2:TP1   -1.2068     0.2621  -4.604 4.15e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

           (Intr) Study2 TP1    

Study2     -0.652               

TP1        -0.599  0.310        

Study2:TP1  0.364 -0.514 -0.603 

>  
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AO1_AO2_reg$TP <- factor(AO1_AO2_reg$TP, levels=c("1","0")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Study * TP + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1763.5   1795.1   -875.7   1751.5     1432  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.4867 -0.7657 -0.1914  0.7730  3.4090  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.8766   0.9363   

 Item        (Intercept) 0.1405   0.3749   

Number of obs: 1438, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.7158     0.2353   3.041  0.00235 **  

Study2       -0.6288     0.3081  -2.041  0.04123 *   

TP0          -1.8802     0.2451  -7.670 1.72e-14 *** 

Study2:TP0    1.2068     0.2621   4.604 4.15e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

           (Intr) Study2 TP0    

Study2     -0.667               

TP0        -0.337  0.165        

Study2:TP0  0.200 -0.275 -0.603 

>  
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AO1_AO2_reg$Study <- factor(AO1_AO2_reg$Study, levels=c("2","1")) 

 

AO1_AO2_reg$TP <- factor(AO1_AO2_reg$TP, levels=c("0","1")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Study * TP + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1763.5   1795.1   -875.7   1751.5     1432  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.4867 -0.7657 -0.1914  0.7730  3.4090  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.8766   0.9363   

 Item        (Intercept) 0.1405   0.3748   

Number of obs: 1438, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.5864     0.2668  -2.198  0.02793 *   

Study1       -0.5779     0.3453  -1.674  0.09417 .   

TP1           0.6734     0.2265   2.973  0.00295 **  

Study1:TP1    1.2068     0.2621   4.604 4.15e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

           (Intr) Study1 TP1    

Study1     -0.618               

TP1        -0.570  0.259        

Study1:TP1  0.287 -0.514 -0.505 

>  
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AO1_AO2_reg$TP <- factor(AO1_AO2_reg$TP, levels=c("1","0")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Study * TP + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_reg 

 

     AIC      BIC   logLik deviance df.resid  

  1763.5   1795.1   -875.7   1751.5     1432  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.4867 -0.7657 -0.1914  0.7730  3.4090  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.8766   0.9363   

 Item        (Intercept) 0.1405   0.3749   

Number of obs: 1438, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.0869     0.2314   0.375  0.70730     

Study1        0.6289     0.3081   2.041  0.04122 *   

TP0          -0.6733     0.2265  -2.973  0.00295 **  

Study1:TP0   -1.2068     0.2621  -4.604 4.15e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

           (Intr) Study1 TP0    

Study1     -0.653               

TP0        -0.321  0.139        

Study1:TP0  0.163 -0.275 -0.505 

>  
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AO2_reg_excl$Ind <- factor(AO2_reg_excl$Ind, levels=c("0","1")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ Token + Ind + (1 | Participant) + (1 | Item) 

   Data: AO2_reg_excl 

 

     AIC      BIC   logLik deviance df.resid  

   799.5    822.2   -394.8    789.5      684  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.3578 -0.6317 -0.2430  0.6429  3.5086  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.2204   0.4695   

 Participant (Intercept) 0.6419   0.8012   

Number of obs: 689, groups:  Item, 30; Participant, 23 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -1.7787     0.3520  -5.054 4.34e-07 *** 

Token         0.2800     0.7294   0.384    0.701     

Ind1          2.3800     0.2938   8.101 5.43e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) Token  

Token -0.627        

Ind1  -0.115 -0.511 
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AO2_reg_excl$TP <- factor(AO2_reg_excl$TP, levels=c("0","1")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ TP + (1 | Participant) + (1 | Item) 

   Data: AO2_reg_excl 

 

     AIC      BIC   logLik deviance df.resid  

   909.4    927.6   -450.7    901.4      685  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.1628 -0.8321 -0.4679  0.8406  2.3228  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.2948   0.5429   

 Participant (Intercept) 0.3964   0.6296   

Number of obs: 689, groups:  Item, 30; Participant, 23 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)  -0.4955     0.2592  -1.911   0.0560 . 

TP1           0.7050     0.2740   2.573   0.0101 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

    (Intr) 

TP1 -0.704 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Reg ~ TP + Ind + (1 | Participant) + (1 | Item) 

   Data: AO2_reg_excl 

 

     AIC      BIC   logLik deviance df.resid  

   798.2    820.9   -394.1    788.2      684  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5815 -0.6424 -0.2218  0.6538  3.6820  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.2112   0.4596   

 Participant (Intercept) 0.6761   0.8223   

Number of obs: 689, groups:  Item, 30; Participant, 23 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   1.0085     0.3169   3.182  0.00146 **  

TP1          -0.3435     0.2873  -1.196  0.23186     

Ind0         -2.5551     0.2739  -9.329  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

     (Intr) TP1    

TP1  -0.708        

Ind0 -0.494  0.397 

>  
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AO1_AO2_ad_pron$Condition <- factor(AO1_AO2_ad_pron$Condition, levels=c("82","64", 

"46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Condition + (1 | Participant) + (1 | Item) 

   Data: AO2_Accuracy 

 

     AIC      BIC   logLik deviance df.resid  

   956.9    979.8   -473.5    946.9      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.7682 -0.8681 -0.4042  0.8383  2.1327  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.2469   0.4969   

 Participant (Intercept) 0.2732   0.5227   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.5087     0.2363   2.152 0.031368 *   

Condition64  -0.5838     0.2962  -1.971 0.048747 *   

Condition46  -0.9994     0.2983  -3.350 0.000807 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.635        

Condition46 -0.633  0.505 

>  
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AO1_AO2_ad_pron$Condition <- factor(AO1_AO2_ad_pron$Condition, levels=c("64","82", 

"46")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Condition + (1 | Participant) + (1 | Item) 

   Data: AO2_Accuracy 

 

     AIC      BIC   logLik deviance df.resid  

   956.9    979.8   -473.5    946.9      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.7682 -0.8681 -0.4042  0.8383  2.1327  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.2469   0.4969   

 Participant (Intercept) 0.2732   0.5227   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept) -0.07509    0.23375  -0.321   0.7480   

Condition82  0.58377    0.29621   1.971   0.0487 * 

Condition46 -0.41566    0.29567  -1.406   0.1598   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt82 

Condition82 -0.625        

Condition46 -0.625  0.492 

>  
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AO1_AO2_ad_pron$Condition <- factor(AO1_AO2_ad_pron$Condition, levels=c("46","64", 

"82")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Condition + (1 | Participant) + (1 | Item) 

   Data: AO2_Accuracy 

 

     AIC      BIC   logLik deviance df.resid  

   956.9    979.8   -473.5    946.9      715  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.7682 -0.8681 -0.4042  0.8383  2.1327  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.2469   0.4969   

 Participant (Intercept) 0.2732   0.5227   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.4907     0.2359  -2.080 0.037485 *   

Condition64   0.4156     0.2957   1.406 0.159788     

Condition82   0.9994     0.2983   3.350 0.000807 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Cndt64 

Condition64 -0.634        

Condition82 -0.631  0.503 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Reg + (1 | Participant) + (1 | Item) 

   Data: AO2_Accuracy 

 

     AIC      BIC   logLik deviance df.resid  

   942.9    961.2   -467.4    934.9      716  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.6633 -0.8332 -0.3902  0.8212  2.4370  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Item        (Intercept) 0.1021   0.3196   

 Participant (Intercept) 0.2717   0.5212   

Number of obs: 720, groups:  Item, 30; Participant, 24 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.7010     0.1916  -3.658 0.000254 *** 

RegR          1.1276     0.2048   5.507 3.65e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

     (Intr) 

RegR -0.652 

>  
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Study + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_ad_pron 

 

     AIC      BIC   logLik deviance df.resid  

  1819.5   1840.6   -905.8   1811.5     1435  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.3579 -0.7829 -0.3281  0.7460  2.8878  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.2888   0.5374   

 Item        (Intercept) 0.7952   0.8917   

Number of obs: 1439, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.017716   0.213065  -0.083    0.934 

Study2      -0.003929   0.194175  -0.020    0.984 

 

Correlation of Fixed Effects: 

       (Intr) 

Study2 -0.455 

>  
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AO1_AO2_ad_pron$Study <- factor(AO1_AO2_ad_pron$Study, levels=c("1","2")) 

 

AO1_AO2_ad_pron$Reg <- factor(AO1_AO2_ad_pron$Reg, levels=c("R","I")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Study * Reg + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_ad_pron 

 

     AIC      BIC   logLik deviance df.resid  

  1797.6   1829.2   -892.8   1785.6     1433  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.4293 -0.7905 -0.3418  0.7487  3.1960  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.2886   0.5372   

 Item        (Intercept) 0.3269   0.5717   

Number of obs: 1439, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   0.6243     0.2041   3.059  0.00222 **  

Study2       -0.1782     0.2152  -0.828  0.40766     

RegI         -1.6270     0.2764  -5.886 3.96e-09 *** 

Study2:RegI   0.4567     0.2419   1.888  0.05905 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Study2 RegI   

Study2      -0.532               

RegI        -0.529  0.193        

Study2:RegI  0.232 -0.430 -0.456 

>  
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AO1_AO2_ad_pron$Reg <- factor(AO1_AO2_ad_pron$Reg, levels=c("I","R")) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Score ~ Study * Reg + (1 | Participant) + (1 | Item) 

   Data: AO1_AO2_ad_pron 

 

     AIC      BIC   logLik deviance df.resid  

  1797.6   1829.2   -892.8   1785.6     1433  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.4293 -0.7905 -0.3418  0.7487  3.1960  

 

Random effects: 

 Groups      Name        Variance Std.Dev. 

 Participant (Intercept) 0.2886   0.5372   

 Item        (Intercept) 0.3269   0.5718   

Number of obs: 1439, groups:  Participant, 48; Item, 30 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -0.7242     0.2380  -3.042  0.00235 **  

Study1       -0.2785     0.2451  -1.136  0.25589     

RegR          1.1703     0.2720   4.302 1.69e-05 *** 

Study1:RegR   0.4567     0.2419   1.888  0.05905 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) Study1 RegR   

Study1      -0.500               

RegR        -0.691  0.257        

Study1:RegR  0.298 -0.610 -0.426 

>  
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