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Abstract

In this paper I propose and motivate a logic of the interdefined concepts
of making true and control, understood as intensional propositional operators
to be indexed to an agent. While bearing a resemblance to earlier logics in
the tradition, the motivations, semantics, and object language theory differ
on crucial points. Applying this logic to widespread formal theories of
agency, I use it as a framework to argue against the ubiquitous assumption
that the strongest actions or options available to a given agent must always
be pairwise incompatible. The conclusion is that this assumption conflicts
with failures of higher order control of agents over their degree or precision of
control, failures exhibited by such imperfect agents as ourselves. I discuss
models in this setting for understanding such imperfectly self-controlling
agents. In an appendix, I prove several relevant results about the logic
described, including soundness and completeness both for it and for certain
natural extensions.

Keywords

action; decision theory; logic of action; modal logic

Contents

1 Motivations 3
1.1 Conceptual Preliminaries . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Further Significance . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Logical Principles 4
2.1 Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 A Basic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Further Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Conv and STIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
*I would like to thank Andrew Bacon for extensive discussion and feedback on earlier drafts

of this paper, and an anonymous referee at this journal for pressing me on certain crucial points.
I would also like to thank Harvey Lederman, Taylor Friesen, and Douglas Vaaler for helpful
discussions on these topics.

1



3 Actions and Incompossibility 12
3.1 Action Propositions and Partitionality . . . . . . . . . . . . . . . 12
3.2 The Meaning of S . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 A Problem Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Modelling Clumsy Agency . . . . . . . . . . . . . . . . . . . . . 21

A Appendix 25
A.1 The Logic Conv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.4 The Logics Conv4, Conv5∗, and Conv45∗ . . . . . . . . . . . . . . 28
A.5 The Logic Conv+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Introduction

This paper proposes and motivates a logic of the concepts of control and making
so; that is to say, a general theory of their interaction with the familiar operators
of classical logic. The senses in which I intend these expressions is familiar
from everyday use: it is the sense in which, by placing a pot of water over a
lit stove, one (seemingly, under ordinary circumstances) makes it so that the
water boils, and controls whether it boils. This is not, of course, a new topic
in philosophical logic, but the avenues pursued in our discussion will differ in
measured but important respects from previous approaches.

The first section clarifies the target concept and scope of the paper, as well as
motivating an interest in it. The substantive section of the paper begins with an
investigation of the basic principles of our operator; while it shares a number of
motivations with extant treatments, the final theory is neither strictly stronger
nor strictly weaker than its prevailing rivals, and the discussion in the previous
section illuminates otherwise obscure aspects of old debates. The resulting
logic, as proved in the appendix, has an appealing semantics for which it is
sound and complete, even though the motivations given in the main body of
the paper are entirely non-semantic in nature, and there are natural extensions
of the logic we may consider corresponding to natural conditions on the frames
of the semantics. Finally, I take up the logic’s relation to the concept of an action
proposition in formal models of agency, using it as a framework in which to
argue against the partitionality of such propositions.

While I present the theory formally in the appendix, the bulk of the paper is
informal and glosses over many technical worries. The technical machinery is
intended to bolster and formulate arguments that are in spirit conceptual and
intuitive rather than mathematical.
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1 Motivations

1.1 Conceptual Preliminaries

Our point of departure is a pair of equivalences:

1. Necessarily, one controls whether p iff one either makes it so that p or
makes it so that not p

2. Necessarily, one makes it so that p iff p and one controls whether p

Together, these render control and making true interdefinable, and we will
treat formulations with one as equivalent to the corresponding formulations
with the other. As philosophical theses, the equivalences have great prima facie
plausibility, and I am inclined to endorse both. A full defence of (1) and (2) as
substantive claims, however, would take us too far afield; this leaves us with
the question of which between control and making true to take as the actual
primitive under discussion, and with which to formalise the principles we will
consider.

I opt for control and making true, respectively. For the latter, the non-
”interrogative” nature of the construction will make our formulations less te-
dious in their syntax, more easily visualised in their semantics, and readily
comparable in both respects to extant competitors. For the former, interroga-
tive uses of control are simply much more common in everyday speech than
propositional uses of make. This does not, of course, on its own demonstrate
the concept it expresses to be of greater philosophical significance, nor is this
paper an exercise in natural language semantics. But it does put us in a better
position to assess the pre-theoretical plausibility of various principles we will
consider, and to thus shed light on otherwise uncertain clashes of intuition.

In the ensuing discussion, therefore, we will treat the concept X makes it so
as a property of propositions denoted semi-formally by a sentential operator
□ (with sentences containing it to be ultimately understood, in accord with (1)
and (2), as abbreviations of sentences about control). We will also carelessly
conflate constructions like α makes it so that X is φ, α makes it true that X is φ,
and αmakes X φ; these are all to be analysed, again, in the natural way in terms
of control. Thus, where p stands for ”the water is boiling”, □p will stand for
the sentence ”X makes it so that the water is boiling” or, fundamentally, ”The
water is boiling and X controls whether it is”.

This framing is somewhat committal. It rejects a view of agency in which
actions as entities in their own right feature centrally for one treating it as a
relation between agents and propositions, against certain prominent grains in
action theory [1] [2]. This is, however, not intended to convey any funda-
mentality or ultimate perspicuity of the agency-as-operator perspective. It is
consistent with the arguments of this paper that this general framing be provi-
sional, or to be explained in other terms. What interests me is not the operator
perspective itself, but what principles we should accept when taking it.
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As a final point, nothing in this investigation hinges (or at least, is intended
to hinge) on substantive assumptions about the scope of one’s control, or the
precise relevant sense of making true (and controls). It may be, for example, that
one makes true such ”worldly” propositions as that the water in the pot boils; or
it may be the only things an agent ever makes true are ”internal” facts about
their will or mental state; or it may be that ”controls” and ”makes true” admit of
stricter and weaker readings, on some of which an agent can be truthfully said
to make true worldly propositions and on some of which she cannot. There
are, I take it, general questions about the logic of these expressions independent
of such ambiguities and substantive background views, and it is these more
general questions I intend to investigate.

1.2 Further Significance

These coordinate concepts of control and making so are of wide-ranging philo-
sophical significance. They are closely connected, for one, to the understanding
of an action present in both all versions of causal decision theory and Jeffrey-
style evidential decision theory [3] [4] [5]. Such versions of decision theory take
the objects they recommend to a rational agent (given her preferences and prior
doxastic state) to be propositions she is in a position to make true (as opposed to
lotteries one is in a position to gamble on, as in [6] [7]). This is commonly taken
to be an advantage of such theories: it renders these objects of recommendation
more familiar, and unifies them with the objects of credence and desire. It does,
however, raise the question of what is involved in making a proposition true, a
question with both more substantive aspects in the theory of action proper and
more abstract aspects, such as those discussed in this paper.

In less heavily technical areas, the concepts bear on debates in the study of
free will between compatibilists and incompatibilists, and on debates over the
scope of our moral responsibilities under the heading of ”moral luck” [8] [9]
[10] [11] [12] [13]. Debates in the former case centre precisely on the relation
of making true to nomological necessity, and debates in the latter case have
centered around the contentious principle that one is morally responsible for
a fact p only if one controls (or has control over) whether p, which if true will
mean that the logic of making true straightforwardly limits the logic of moral
responsibility. Getting clear on the logic of □, therefore, stands to illuminate a
number of disparate areas.

2 Logical Principles

2.1 Normality

For our operator □ to be a normal one, the following must be true of it (taking
some harmless liberties with use and mention):

Distributivity It must distribute across the material conditional, so that if one
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makes it so that, if p, q, then if one makes it so that p, one makes it so that
q. (□(p→ q)→ (□p→ □q))

Necessitation If one can prove in classical logic, together with the aforemen-
tioned principle and this additional current rule of inference, that p, then
one makes it the case that p (If ⊢ p, ⊢ □p)

Not only does common sense about what we can make so contradict these
principles, they each fall afoul of it separately. To begin, consider that, in the
presence of the Necessitation, Distributivity is equivalent to the following
(sometimes called, respectively, M and C):

Weakening If one makes it so that both p and q, one makes it so that p and one
makes it so that q

Agglomeration If one makes it so that p and one makes it so that q, one makes
it so that both p and q

The first of these is open to obvious counterexamples. Suppose that I am
handling a ball tethered to a pole by a robust 2m chain, which I freely place
within 1m of the pole. Then I seem to have made true that (controlled whether)
the ball is within 1m of the pole, but not to have controlled whether it is within
2m of the pole, contradicting Weakening. Note that this argument does not
appeal to any overt, linguistic conjunction, disjunction, or quantification, thus
sidestepping objections (such as those raised in [14] to similar arguments) that
it trades on syntactically introduced ambiguities and presuppositions.

Necessitation is even more facially absurd. One line of argument would
appeal to the common intuition that ordinary agents do not make true any facts
of logic (see [15] [16]), in a possible worlds setting understood as the trivial
proposition⊤. But this thinking is vulnerable to methodological objections: it is
a mainstay on formal theories of propositional attitudes that attitudes towards
the trivial proposition should be seen as themselves degenerate and trivial
instances of those attitudes, and our disinclination to report them explicable on
merely pragmatic grounds [17] [18] [19]. The defender of Necessitation is thus
free to extend similar reasoning to making true (see again [14]).

A better route appeals instead to intuitions about our control over necessities
of varying strictness. There are some very restricted and weak species of
necessity over which I exert control: I cannot (by reason of the ill-suited shoes I
happen to be wearing) run a six minute mile, and yet I plausibly control whether
I run a six minute mile, since the necessity involved is of a very weak kind.
As the species of necessity increase in strictness, my intuitions of non-control
grow increasingly stronger: I cannot (by reason of my overall build) run a four
minute mile, cannot (by reason of human physiology) run a two minute mile,
cannot (by reason of physical law) run a one nanosecond mile, and cannot (by
conceptual necessity) run a zero second mile. In each case, I am more certain
I do not control the relevant impossibility; failure to control ⊤ is a terminus
in a progressively stronger series of intuitions, not an outlier treatable as an
aberrant or degenerate case.

5



This is, obviously, a variant on the above argument against Weakening. It
appeals directly to intuitions about what we do and do not control, rather than
(as in [20]) a version of the principle of alternative possibilities, or any other
contentious general theses about control [21] [22] [23]. Nor does it tie failure of
control to any specific privileged species of necessity. These belong to a broader
range of entanglements with modality our theory will seek to avoid.

2.2 A Basic Logic

While our target concept plainly cannot be analysed as a normal operator,
it is illuminating to observe respects in which it does not violate normality.
Unlike with many representational attitudes, for one, whenever p is logically
equivalent to q it seems that one makes it so that p iff one makes it so that q: what
one has made happen seems, as it were, insensitive to any differences of logically
extraneous guise. Indeed, this seems true not just of logical equivalences, but
equivalence under various narrower species of necessity. It seems to be a law
of nature, for example, that a surface appears green (to ordinary humans in
ordinary conditions) iff it reflects light of wavelengths 495-570nm, even though
we can easily imagine the laws of nature requiring otherwise. And, for this
reason, it seems that if I make it so that a surface reflects light of of wavelengths
495-570 nm (by painting it, say), I have thereby made it to appear green, and
vice versa.

This suggests that the logic of action is, if not normal, at least congruent,
i.e. it is closed under the following rule of inference:

RE If p and q are provably equivalent in our logic, that one makes it so that
p and that one makes it so that q are provably equivalent (If ⊢ p ↔ q,
⊢ □p↔ □q)

Of course, RE requires not only that propositions equivalent modulo classi-
cal logic are made true when the other is, but that this holds of of propositions
equivalent modulo the whole logic being proposed (including the inference rule
RE). Nevertheless, I think the theory’s other principles are themselves suitably
necessary to permit equivalence of what is made true holding them fixed. This
assumption is ubiquitous among competitors for the reasons we have given.

As an obvious first entry in our list of axioms (indeed, one that follows from
our definition (2) of makes that in terms of control), making true is factive; what
one makes true is true:

Factivity If one makes it so that p, p (□p→ p)

Next, while Weakening on inspection turned out to be implausible, its sister
principle Agglomeration seems perfectly good: if I make my bread into a circle
and make it pink, I thereby make it into a pink circle. We will therefore add the
axiom to our logic.

On the subject of Weakening, with RE in place there is an additional dif-
ficulty posed by the principle unmentioned in the previous section. Together
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with RE, it implies that, when one makes it so that p, for any arbitrary q one
makes it so that either p or q; that is, when one has made any given disjunct of
a given disjunction true, one has made true the disjunction itself. Experience
and imagination are replete with counterexamples: for example, when making
it so that a chained ball is on the left side of the room (by pushing it, say), I need
not have made it so that the chained ball is somewhere or other in the room;
the chain strips me of any input on that matter. In other cases, the additional
disjunct may even be true, but still unrelated to my doings. Even though the
sun is shining as I turn on an overhead light, for example, it does not seem true
that I make it so that at least one of the sun or the overhead light shines.

In the first sort of counterexample, the agent determines one or another of
some (not necessarily mutually exclusive) outcomes, where the range of options
itself is fixed independent of the agent. In the second, among a range of such
options, one of them is beyond the control of the agent, even if it still obtains.
Such counterexamples cannot arise, however, when both disjuncts have been
made true by an agent; in such a scenario, her control over the disjunction
seems complete. I therefore propose the following axiom for our logic:

ModestWeakening If one makes it so that p and one makes it so that q, one
makes it so that at least one of p or q is true ((□p ∧ □q)→ □(p ∨ q))

There is another broad class of cases where weakening seems licit. Suppose
that I of my own volition choose to go walk, and moreover specifically to walk
quickly to the store. Then it seems, not only that I must have controlled whether
I walked or walked quickly to the store, but that I must have controlled whether
I walked quickly simpliciter. While there are circumstances where it might seem
reasonable to say I controlled whether I walked quickly to the store but deny
that I controlled whether I walked quickly, the additional supposition that I
controlled whether I walked at all seems to undermine this cotenability. This
case is indicative of a broader trend: when I make true both p and some weaker
q, I must also make true any r of intermediate strength. We can formulate this
principle in our logic straightforwardly.

Convexity If one makes it so that one of p, q, or r is true and one makes it so
that p is true, one makes it so that one of p or q is true (□(p∨q∨ r)→ □p→
□(p ∨ q))

The theory thus axiomatised, together with modus ponens and the theorems
of classical propositional logic, turns out to have an elegant semantics (which
we will call sandwich semantics), for which soundness and completeness can be
proved. The semantics is a possible worlds one, with sentences interpreted
by subsets of a domain of worlds, equipped with a (possibly partial) function
(Smin,Smax) (for short, S) from the domain to pairs of its subsets, where w ∈
Smin(w) ⊆ Smax(w). The domain and function together constitute a sandwich
frame. The classical connectives, as usual, are interpreted by their set theoretic
analogues, while our operator □ is interpreted so that, at any world w, the
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w

φ

Smax(w)

Smin(w)

Figure 1: An illustration of the inner and outer circles at w with w ∈ ⟦□φ⟧ and
the area ”between” the two circles shaded

propositions (if any) of which □ is true at w are those sandwiched between
(inclusively) Smin(w) and Smax(w), i.e. the X such that Smin(w) ⊆ X ⊆ Smax(w).

One may picture a model of the logic as a surface, with each pointed as-
sociated with two concentric circles containing it, together with a function
associating sentences of our language to regions of the surface. The circles
around w (joined with their respective interiors) represent the strongest and
weakest things the agent makes true at w, and the things one makes true are
those subregions of the larger circle that entirely contain the smaller circle (see
Figure 1).

Note that none of the principles here proffered prima facie require that one
ever make anything true. This is confirmed by the semantics, which transpar-
ently allow for models with widespread or even universal failures of defined-
ness for (Smin,Smax).

We call the logic generated by the axiom schemas and inference rules listed
Conv, for ”convexity logic”; the logic resulting from expanding that list of
axiom schemas by some others we denote by appending the names of those
additional schemas to the name Conv. The class of convexity logics is, clearly,
a generalisation of the class of factive normal logics, and the class of sandwich
frames a generalisation of the class of reflexive Kripke frames: any normal
logic is equivalent to a convexity logic with the axiom □⊤, and every reflexive
Kripke frame is equivalent to a sandwich frame ⟨W, (Smin,Smax)⟩ whose Smax is
the constant function to W. Convexity logics are, as a slogan, just like normal
logics with locally restricted domains of worlds.

We may thus think of Conv as standing to sandwich semantics frames as the
logic KT stands to reflexive Kripke frames. It serves as a minimal framework
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for theorising about a factive convex operator, just as KT with reflexive Kripke
frames serves as a minimal framework for theorising about a factive normal
operator.1

2.3 Further Axioms

There are two important extensions to our logic which, while we will not adopt
them, will become salient later.

Positive Introspection If one makes it so that p, one makes it so that one
makes it so that p (□p→ □□p)

Relative Negative Introspection If one makes it so that p but does not make
it so that q, one makes it so that both p and one does not make it so that q
(□p ∧ ¬□q)→ □(p ∧ ¬□q)

The first is, of course, the familiar axiom 4, which in normal logics corre-
sponds to transitive Kripke frames. In the sandwich semantics, it corresponds
instead to the condition of S not narrowing; that is, for any frame ⟨W, (Smin,Smax)⟩
on which 4 is valid, and for any w ∈W, for no v ∈ Smin(w) does Smax(v) lack some
u ∈ Smax(w) nor does Smin(v) contain some u < Smin(w) (see Figure 2). In line
with the picture given above, this means that, when moving to a point within
the smaller of the two concentric circles associated with w, the new circles only
differ (if at all) by strictly increasing the region between the two circles; either
the inner circle contracts, the outer circle expands, or both (or neither). Conv4
is sound and complete with respect to this class of frames.

Just as 4 prohibits ”narrowing,” so the latter (which we will call 5∗) prohibits
”widening:” when moving within some Smin(w) to another world (with defined
circles), the outer circle gains no worlds, and the inner circle loses none. Unlike
its analogue 5, however, it does not in the presence of Factivity entail 4; the
convex logic Conv45∗with both axioms, instead, corresponds to those sandwich
frames where no movement within the inner circle of w changes either inner or
outer circle (that is, prohibits both narrowing and widening).2

2.4 Conv and STIT

The question of the true logic of making so–sometimes called the logic of action
or of STIT (seeing to it that)–is not virgin philosophical territory. Early entries
in the investigation of this logic include [15] [25], and the debate was raised to

1Our models are, of course, a special case of neighbourhood or Scott-Montague models, and
thus stand in an intermediate position between Kripke/relational and neighbourhood semantics
for modal operators [24].

2Conv5∗ is equivalent to Conv45∗, however, as long as we consider only sandwich models where,
for all w with S(w) defined, S(w′) is defined for all w′ ∈ Smin(w) (Corollary A.14). That is, informally,
5∗ fails to entail 4 only under the perhaps strange circumstance that it might be consistent with all
one makes true that one makes nothing true. The plausibility of such a possibility, and how best to
approach it under the present framework, is an intriguing subject for future investigation.
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Figure 2: An illustration of the ”expansion” permitted by 4 of the ”sandwich”
as moving from w to w′ ∈ Smin(w)

its current level of formal semantic sophistication by [26] (for a comprehensive
historical overview see [27]). Subsequent formal research has been dominated
by the tradition of [16], and it is therefore worth noting where the current dis-
cussion agrees with and diverges from the main motivations and commitments
of this tradition. We will describe two classes of STIT model: the traditional
branching models and more minimalist atemporal models. While the latter are
simpler and more comparable to our own sandwich models, a review of the
branching semantics will be helpful in conveying the philosophical motivations
of the STIT project.

A branching STIT frame (with one agent) is a structure ⟨T,≤,Ch⟩, where T is
some non-empty set, ≤ a partial order on T which branches only ”upwards”
and which has some common lower bound for any two elements, and Ch is a
function from m ∈ T to partitions on maximal chains (or ”histories”) running
through m. Sentences are interpreted on such a frame not, as one might expect,
as subsets of T, but as sets of pairs ⟨m, h⟩ where m ∈ T and m is a history
with m ∈ h (an historical pair). A branching STIT model is, accordingly, a STIT
frame together with a base interpretation function associating each atomic
sentence with a set of historical pairs. Sometimes further structure is added to
the underlying frame, such as a set of multiple agents or a contemporaneity
relation on T, or further restrictions are imposed on the relation between the
parameters, but for our purposes this minimal structure will suffice.3

The vocabulary of the language interpreted on such a frame minimally

3For extensive technical development of this framework see [20] [28] [29] [30] [31].
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contains denumerably many atomic sentences, the classical connectives, and
the unary modal operator [dstit] (the analogue to our □). The first two are
interpreted as usual; an historical pair ⟨m, h⟩ will be in ⟦[dstit]φ⟧ just in case a)
for all h′ ∈ Ch(m)[h], ⟨m, h′⟩ ∈ ⟦φ⟧, and b) for some h′′ ∋ m, ⟨m, h′′⟩ < ⟦φ⟧. This is
not the only STIT operator studied, but it is both the best formally understood
and the closest to ours in both formal and informal interpretation, and so we
will restrict our attention to it.

Other operators sometimes included in the language are the tense operators
P,F (for the past and future tenses, respectively) and the ”historical necessity”
operator ■. We have ⟨m, h⟩ ∈ ⟦P(F)φ⟧ iff ⟨m′, h⟩ ∈ ⟦φ⟧ for some m′ < (>) m, and
⟨m, h⟩ ∈ ⟦■φ⟧ iff all ⟨m, h′⟩ ∈ ⟦φ⟧.

From these technical remarks, much about the underlying philosophical
picture should already be apparent. For STIT enthusiasts, time is a garden of
forking paths: each moment has only one linear past, but an array of various
possible future trajectories, of which only one will be taken. What is settled, or
historically necessary, at a given point is what is bound to occur along any path
thence is taken. At any given moment, these future trajectories are partitioned
into the choices open to our agent, of which she chooses one. What she makes
true are her choice and all of its consequences not already settled for her by her
position in, and the overall structure of, time’s branching garden path.4

While the branching time structure in the models is both traditional and
well illustrative of the theory’s guiding intuitions, atemporal axiomatisations
and semantic structures are both available and formally well-understood [28]
[32] [33]. In these Kripke-style models, historical pairs are replaced with struc-
tureless worlds as points of evaluation, which together form the domain W of a
model. An atemporal STIT frame ⟨W,Ch,H⟩ consists of a non-empty domain W
and two equivalence relations Ch ⊆ H, representing respectively one’s choice
at a world and historical necessity, while an atemporal STIT model is such a
frame plus a base valuation from atomic sentences to subsets of W. Atomic
sentences and classical connectives are interpreted as usual; w is in ⟦■φ⟧ just
when ⟦φ⟧ ⊇ H(w), w is in ⟦[dstit]φ⟧ just when ⟦φ⟧ ⊇ Ch(w),⊉ H(w). This
validates the same logic for these two operators as the old semantics; it is just
a branching STIT frame shorn of its branching.

There is a close resemblance between Conv45∗ and the logic of [dstit]. The
axiomatic theory of the latter includes all our own axioms besides Modest
Weakening, which plays the least significant role for us. The semantical picture
is similar, too: in both cases, the extension of the operator at an index i is uniquely
determined by two sets Smin(i),Smax(i) containing it, one a subset of the other, the
difference being that in the sandwich semantics its extension at i is all those sets
between Smin(i) and Smax(i), in STIT semantics all those greater than Smin(i) but
not greater than Smax(i). And while the STIT semantics bakes in the assumption
of Relative Negative Introspection (and Positive Introspection), these can
be eliminated fairly easily by replacing the co-domain of Ch(m) with reflexive

4Advocates of STIT thus typically accept a certain form of indeterminism, in that they generally
deny that all facts about the future are historically settled.
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relations on the histories through m (as is effectively done in [14]).5

The entanglements between [dstit] and historical necessity pose serious
problems. The effect of the second, ”negative” clause for [dstit] is to invalidate
Weakening in generality, but to only allow it to fail under specific circum-
stances: where one sees to it that p, one does not see to it that either p or q only if
it is historically necessary that either p or q. Under the analysis of making true
or seeing to it as controlled truths, this seems open to obvious counterexamples.
Suppose that I deliberately and freely place a die on my table to have six facing
upward. In an hour, when I am asleep and unable to affect it, my friend will
roll another, chancy die on the same table, which as it happens will land on
a six. Then I seem to have controlled whether my first die would have a six
face up on the table tonight, but not whether any die would have a six facing
up on the table tonight (since one was going to land independent of me). But
this latter fact, as I am making the first fact true, is unsettled and historically
contingent if anything is; Conv (or even Conv45∗), by contrast, does not impose
this untoward result. The semantic analysis here on offer is begotten of an
overly restrictive view of what it is we cannot make true, a view permitting
only one possible source (historical settledness) of such failures of control over
weak propositions.

3 Actions and Incompossibility

3.1 Action Propositions and Partitionality

A common feature of formal theories of agency that treat the actions open to an
agent as propositions is that these actions are treated as pairwise incompossible.
This is true, for example, of evidential decision theories in the style of Jeffrey
[3], of the various available versions of causal decision theory [5] [34] [4], and
of the aforementioned STIT models.6 Where propositions are interpreted as
subsets of a domain of worlds, this means that the set of actions available to an
agent forms a partition on some subset of the domain.7 In this section I will try
to raise doubts about this assumption of partitionality.

Before we can enter into any substantive discussion of partitionality, we
need something most of its major extant expositions lack: a more regimented
account of an agent’s action propositions at a world. The definition we adopt
will importantly take sides on an ambiguity in the literature, which it will be
illuminating to examine before proceeding.

5Or, in the atemporal semantics, letting Ch be merely reflexive rather than equivalent.
6For recent philosophical discussion of the nature of action propositions (or ”options”) in deci-

sion theory, see [35] [36] [37] [38]. None of these writers contest the pairwise incompossibility of
an agent’s action propositions at a world.

7In causal and Jeffrey-style decision theory, the actions are often assumed to form a partition on
the domain itself. This is feasible because such theories ignore distinctions between propositions
whose difference receives measure 0 in the agent’s credence function, allowing the theory to screen
offworlds at which, intuitively, the agent performs no action, since it is assumed the agent assigns
probability 1 to the proposition that he will perform some action or other.
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Our definition of an action proposition is: necessarily, p is an action propo-
sition for A iff it is practically possible p be the strongest proposition A makes
true. We will also sometimes speak of the action proposition of an agent at a
world w, where this is simply the strongest proposition it makes true at w; con-
text should disambiguate the two where necessary. Indulging in the ideology
of possible worlds, and letting SA denote the sandwich function for A, this can
be clarified as follows.

Definition 3.1. p is an action proposition for A at w iff there is some v practically
possible from w such that p = SA min(v)

Definition 3.2. p is the action proposition of A at w iff p = SA min(w)

Practical possibility is intended as the same modality generally denoted in
the literature by in a position to (as in, ”S is in a position to make p true”), and
strength is understood in a possible worlds setting as set containment. This
captures the spirit, I believe, of one prominent strain in the literature.8

The machinery of sandwich semantics gives us a straightforward means
of modelling the relation between practical possibility and actions. An ordi-
nary sandwich frame, as described above, consists of a non-empty domain W
equipped with a (possibly partial) function (Smin,Smax) taking a member w in
W to a pair of subsets in W, one containing the other and each with w as a
member. To represent practical possibility (whose dual, practical necessity, we
more formally denote by ⊡), we may add as a further parameter a reflexive
relation R on W (equivalently representable as a function from W to its power
set), to be interpreted standardly as in Kripke semantics for normal logics at
least as strong as KT. Under the construal of actions as the possibly strongest
propositions made true, for all w ∈W, the actions at w will be those V ⊆W such
that for some v ∈ R(w), Smin(v) = V. In pictorial terms, every world is associated
with a set (including itself) of worlds practically possible from it, and its action
propositions are the inner circles of that set; in Alex’s case, we might picture
them as open discs about his pen on the paper in each world.9

We will appeal, in the ensuing argument, to a further schematic principle
relating making true to practical possibility:

Practical Strengthening If it is not practically possible that not p, and one
makes true q, one makes true that p and q ((⊡p ∧ □q)→ □(p ∧ q))

As an axiom schema, this corresponds semantically (check the appendix for
details) to the constraint that Smin(w) ⊆ R(w).10 We call the logic resulting from

8See the passage from Lewis below, and see also our discussion above of STIT, in which the role
of practical necessity is played by historical settledness; in STIT frames, settledness also satisfies
the constraint of Practical Strengthening stated below.

9A natural question at this juncture is whether partitionality of a model is definable in our object
language. The answer is No(see Theorem A.19 in the appendix). For this reason, arguments about
partitionality are ineliminably arguments about models conducted in the metalanguage, rather
than arguments about control in and of itself conducted in the object language.

10We will not in the upcoming argument need to appeal to this constraint on S and R applying
universally in our model, just for one designated α ∈W, allaying possible worries about its modal
status.
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joining the axioms and inference rules of Conv for□with those of KT for⊡, plus
Practical Strengthening, Conv+, and it is provably sound and complete with
respect to just the class of models described (call them supplemented sandwich
models).

Practical Strengthening has considerable intuitive appeal. Suppose, for
example, that Riko makes her mother’s whistle squeal (by blowing it, say), and
that by dint of its resonance it is beyond her power for it to squeal at any tone
besides C♯; it seems to follow she has made it squeal in C♯, as that is the only
practical way for it to squeal at all. This is an instance of a broader pattern
noted earlier: when p and q are necessarily (for some sufficiently strong brand
of necessity) equivalent, one makes p true iff one makes q true. Practical
Strengthening simply says that practical necessity is such a necessity.11

This does require for plausibility a constraint on the joint interpretation of
making true and practical possibility: the weaker our action propositions, the
more things must be practically possible, lest the latter unduly strengthen the
former. But this constraint has an intuitive basis: we should not interpret the
practical modality more restrictively than need be, and naı̈vely the weaker the
strongest things we are in a position to make true, the easier it is to make them
true, and so the less restricted practical possibility has to be to accommodate
the practical possibility that we make them true.

A word here on our extended semantics’ relation to STIT semantics.12 Prac-
tical necessity (or its corresponding parameter R) plays much the same role in
our theory as historical necessity (and its corresponding accessibility relation)
does in the logic of STIT. Whereas it is a ubiquitous assumption in the STIT
literature that this is an S5 modality (i.e. its accessibility relation is equivalent),
however, our own theory has only stipulated that practical necessity is factive.
Why this weakening?

There are a couple of reasons not to assume at this juncture quite so strong a
logic for practical necessity. To begin, that logic has deep motivations within the
traditional STIT theory that do not extend to ours. In the traditional ”branching
time” version of the STIT semantics, it will be remembered, the points of eval-
uation are not moments in a branching time structure but historical pairs ⟨m, h⟩ of
such a moment plus a history (maximal chain) in the structure running through
that moment. In such a traditional presentation, historical necessity does not
even have its own distinctive model parameter: its accessibility relation is the
one obtaining between ⟨m, h⟩, ⟨m′, h′⟩ just in case m = m′, which of course must
be an equivalence. This fits with a committal philosophical interpretation of the
modality: for p to be historically necessary, at a moment m and given a history
h, is for p to be true at m given any other history h′, too; historical necessity (at
a historical pair) is, as it were, truth (at a moment) irrespective of any particular
history, just as metaphysical necessity is truth (at a time) irrespective of any par-
ticular world and eternality is truth (at a world) irrespective of the time. Even

11Suppose ⊡(p ↔ q) → (□p ↔ □q) for all p, q. Suppose, further, ⊡p0. Then (by normality of ⊡)
⊡(q↔ (p0 ∧ q)), so by the first supposition if □q then □(p0 ∧ q). Thus, if ⊡p0 and □q, then □(p0 ∧ q).

12Thanks to anonymous reviewer for raising this question.
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in the study of atemporal STIT models, the influence lingers of this guiding
vision. It is this metaphysical picture that inspires (indeed, when articulated
formally in terms of branching time structures, forces) the assumption of S5 for
the operator.

Our own theory does not come along with such a specific philosophical
motivation. It is agnostic about what this practical necessity (or, dually, prac-
tical possibility) fundamentally amounts to, and instead makes only the rela-
tively weak commitment that it satisfy Practical Strengthening and be factive
(which seems to be part and parcel of practical possibility being a species of
possibility in a more than merely technical sense).13 As long as there is some rel-
evant kind of possibility satisfying Practical Strengthening, our arguments
will be of interest concerning this modality. And there is no guarantee that this
modality will fit the picture described in the last paragraph.

This leads into the second reason: the desirability of weak assumptions. One
reason for introducing talk of practical necessity at all in this paper, beyond just
its intrinsic interest, is to prove that there are no partitional supplemented
sandwich models validating certain natural assumptions about realistic cases
of agency (see below). It is therefore beneficial to give the weakest such assump-
tions possible, as this allows us to prove a stronger result. This non-existence
proof still goes through, a fortiori, if one imposes stronger constraints on the
models (such as a logic of S5 rather than KT for practical necessity). Even if
practical necessity does have the logic of S5, it is interesting to see that our
anti-partitional results do not hinge on this fact about it.

Another ubiquitous line of thinking about action propositions and practical
capacity, and its similarly ubiquitous conflation with the thought formalised in
Definition 3.1, finds especially clear expression in [5]. In a revealing passage,
Lewis defines the action partition for an agent like so:

Suppose we have a partition of propositions that distinguish worlds
where the agent acts differently. . . . Further, he can act at will so
as to make any one of these propositions hold; but he cannot act
at will so as to make any proposition hold that implies but is not
implied by (is properly included in) a proposition in the partition.
The partition gives the most detailed specifications of his present
action over which he has control. Then this is the partition of the
agents’ alternative options. (emphasis retained)

There are two thoughts going on here. Evidently, there is ours: the action
propositions are those the agent ”can act at will so as to make. . . hold” with no
stronger such propositions contained in them. But there is another, too; two
worlds will be distinguished by this partition when the agent acts differently in
them. Acting, I take it, should here be understood as making something true,
and an agent will then ”act differently” in w and v when it makes something

13Note that, as long as a modality satisfies Practical Strengthening, factivity comes along for
free, conditional on the agent making some p true: if it makes p true and q is necessary, p and q both
follow by Practical Strengthening and the factivity of making true.
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true in w it does not make true in v, or vice versa. So understood, partitionality
is immediate.14

These are not, from our perspective, the same proposal at all. For there is
nothing in our basic formalism of sandwich models to compel partitionality
when action propositions are understood in the first way, and yet it follows
trivially from the second. Why, then, does Lewis slide between them so readily?
And why, if the cells of his partition need not be controllable by the agent, are
they recommended to the agent in his decision theory? Why propose ”choices”
one cannot choose?

The most natural response I can give on his (and, by extension, the tradi-
tion’s) behalf, though he nowhere states it overtly, is that for him we control
what it is we make true. There is (besides the tautologous interpretation) a way
of reading this as saying the same as 4, which as we have seen merely requires
that one’s action proposition contract while moving within it and thus brings
us no closer to our solution. The intended reading is that at w the agent controls
(the big conjunction specifying) exactly which propositions it makes (and does
not make) true at w. Given this, the equivalence of the two definitions follows
immediately.

This assumption is in effect just to accept our logic Conv45∗, for the constraint
it imposes on a sandwich frame is the very same (see Fact A.16). Now accepting
Conv45∗ is not required for partitionality, since as formulated partitionality
unlike Conv45∗ places no constraints on Smax. But it is the best way I can see
to motivate the view from the understanding of action propositions we have
adopted, and as we will see our reasons for rejecting partitionality will hinge
on questioning it. But before passing to these reasons, an excursus on the
semantics.

3.2 The Meaning of S

One problem to present itself more clearly, with the notions of action proposi-
tion and practical possibility now in view, is the intuitive interpretation of our
semantics’ distinctive parameters, Smin and Smax. To what real analogues do
the sets they select at an index correspond? And given this, what further con-
straints should we impose on the interaction between S and R in supplemented
frames?15

One captivating proposal links all three parameters Smin, Smax, and R to-
gether with a type of actions. In such a framework, in addition to and more basic
than the (action) propositions an agent can make true, there is a type α of actions
(considered as events) an agent can perform. Indeed, at any given world w there

14There are hints at a similar conflation between enacting and enacted in other loci classici of
action partitions, though less clearly stated. Thus Joyce can, in summarising and endorsing Jeffrey,
identify actions ”with propositions that a decision maker can make true or false as she pleases”
even as both authors exclusively use sentences describing an agent making something true to denote
action propositions [4]. I take the Lewis passage as my main focus of interpretation because of both
the foundational role of the discussion containing it and its relevant explicitness.

15Thanks to an anonymous reviewer for pressing these issues.
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is some unique action αw the agent performs, and the proposition that an agent
performs αw (represented semantically by {w′ : αw′ = αw}) will be its action
proposition at w; partitionality, notably, falls out of this proposal directly, given
that = is an equivalence relation. Such a vision of action weds the Davidsonian
belief in the primacy of events with the STIT presentation of action as making
true, and is naturally captured by STIT logics directly involving act-names.16

This accounts for Smin; to get Smax we once again invoke practical possibility
and its corresponding accessibility relation R. Clearly, at any given w, there
will be some disjoint setAw of action propositions available to the agent at w,
corresponding to the members of α the agent can practically possibly perform
at w. Smax(w) is the join of Aw, representing the scope or limits of the agent’s
control at w; this guarantees it will always be a superset of the agent’s action
proposition, and if we assume additionally and plausibly that practical pos-
sibility is an equivalence (or even just transitive) relation we also guarantee
that the frames will validate Conv45∗, which as we saw above fits especially
cleanly with partitionality.17 Thus, we derive a neat hierarchy in the meta-
physics of action, in which α underlies Smin, and Smin in turn with R underlies
Smax, predicting the constraints desired.

Despite its tidiness, I reject this reading of the semantics. We will see in
the ensuing section reason to reject partitionality altogether, but even more
damningly it requires that ones Smax at a world be very strong, since it can
include no practically impossible worlds. I seem, currently, to be making my
knee rest by my shoulder, but this comes up against obvious counterexamples
if we assume that practical possibility has at least the logic of S4. After all, my
knee could (in a very weak sense) have rested by my shoulder had Corbyn won
the UK general election in 2019, which means Smax must include such worlds,
even as none are now practically possible for me.18 My joint conviction both
that I have no power over the 2019 election and that I make my knee rest by
my shoulder is stronger than any theoretical attractions of the above picture.

My preferred reading of the semantics rejects the original contention of
action-uniqueness. If we do countenance the type α of event-actions, we should
replace its corresponding function with a relation the agent bears at a given world
to (possibly) many event-actions. This sits better with our understanding of

16See e.g. [39] [40]; note that the use of action labels is in these papers developed in the context
of multi-agent and collective STIT logics, which introduce subtleties well beyond our scope.

17Suppose the agent performs αw at w. Clearly, for w′ ∈ Smin(w) = {w′ : αw′ = αw}, Smin(w′) =
Smin(w) by partitionality. Moreover, by transitivity of R and Smin(w) ⊆ R(w), there are no new
v ∈ R(w′),< R(w), so by construction of Smax(∗) as

⋃
A∗, Smax(w′) ⊆ Smax(w). Since Smin(w) =

Smin(w′) ⊆ R(w′), similarly by transitivity Smax(w′) ⊇ Smax(w). Thus, Smax(w′) = Smax(w) and
S(w) = S(w′).

Note that this validates a constraint like Practical Strengthening for Smax. For a given w and
w′ ∈ R(w), Smin(w′) ⊆ R(w′), so by transitivity of R we have R(w) ⊇ Smin(w′) for all w′ ∈ R(w),
meaning also R(w) ⊇ Aw. So, Smax(w) ⊆ R(w); in fact, if it is practically impossible at w the agent
perform no action, Smax(w) = R(w), since then u ∈ Smin(u) ⊆ Aw for each u ∈ R(w). This is, recall,
the same structure exhibited by the STIT analogues Ch,H of (Smin,Smax).

18Indeed, I think no Corbyn-victorious world is now practically possibly practically possible for
me (or, that it is historically settled that it is historically settled Corbyn lost), which would undercut
any need for S4 in this argument.
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realistic agents, like you or me. At any given world w, there are several actions
we will be performing at once (typing, sitting, moving ones eyes, etc.), and we
will in turn make true that these actions occur. Given our earlier axioms for Conv,
these enacted propositions (about the occurrence of event-actions) determine
further enacted propositions (closing under conjunctions, disjunctions, and
logical intermediates), which together constitute the convex sublattice (in the
Boolean lattice of propositions, i.e. (P(W),⊆)) of facts made true at w. A truly
single-minded agent, who performed only one action whatsoever, would make
true nothing beyond the fact of the action’s occurrence.

This picture upends the hierarchy of the last. Smin and Smax, rather than
playing any central role themselves, fall out as just the meet and join respectively
of the ”generating” action-occurrence propositions; this point is made vivid by
observing that, as long as this ”generating” set is infinite, the finitary closure
rules corresponding to our axioms for Conv need not determine any such
bound propositions, and indeed it is easy to see how our semantics might
be generalised without technical loss by replacing the codomain of S with
the (possibly unbounded) convex sublattices of (P(W),⊆) instead of the pairs
X1 ⊆ X2 in P(W)2. Generalised infinitary versions of these rules, which would
guarantee bounds on the sublattice at a given world, are indeed appealing
independently, but again it is the closure rules giving rise to the bounds and
not vice versa. This is a vision on which it is the axioms themselves explaining
the value of the semantics, not fundamentally semantic intuitions underwriting
the plausibility of the axioms.

3.3 A Problem Case

We can now proceed to the case against partitionality. As a warmup, here is
a toy case that intuitively conflicts with the principle. Suppose that Alex, a
man with typical human fine motor control and under ordinary circumstances,
places his pen idly somewhere on a 300cm-wide square sheet of paper, leaving
behind a spot of ink. Assuming for the example that the only propositions he
is practically in a position to make true are those about where the pen falls
on the sheet, partitionality is deeply counterintuitive here. There should be,
given some minimal assumptions, a smallest region (set of points on the sheet)
R of the paper such that Alex makes the pen fall centred somewhere in R.
And for every different way Alex could have acted, there will be some other,
counterfactual smallest region in which he makes the pen fall. These regions
are, in effect, his action propositions in the toy case.

What partitionality (as restricted, again, to propositions about where the
pen lands) requires is that these regions form a partition on (a subregion of) the
sheet’s surface. There is something deeply strange about this. Intuitively we
would think his ”action region” in a given practically possible world should
contain a buffer of ϵ cm around the point where the pen actually falls; ordinary
motor control is not good enough to forestall miniscule deviations from one’s
actual path in a certain direction. And yet this would require, under partition-
ality, that there be some points (namely those in a given action region less than ϵ
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cm from its border) on the sheet Alex simply cannot touch with the pen.19 What
force would prevent him from so placing it? And even absent these margin of
error considerations, whence comes this particular partition on the sheet? The
whole proposal smacks of arbitrariness.

This is so far just a picture, not an argument. Alex makes many more facts
true than just ones about the location of his pen on the paper, and nothing
we have said precludes these stronger enacted propositions from ensuring his
action propositions satisfy partitionality. Thus, for example, while the interior
of the 1cm circle around a point x might be (in the world where he hits x) the
smallest region in which he makes his pen fall, perhaps at each such world he
chooses that it will fall inside the 1cm circle about the struck point (and thus makes
himself make the pen fall there); thus, at two worlds x1 and x2 within 1cm of one
another, while his action regions overlap, his action propositions at the two are
disjoint, for one entails, and the other precludes, that he makes the pen fall within
1cm of x1. This is particularly natural if we distinguish, as in the first proposal
from the last section, his event-action at a world from the proposition(s) it
determines; as, on this view, his event-action at a world is unique, his event-
actions at x1 and x2 must be distinct (and his action propositions disjoint) if his
action regions at both are not identical, since his action fixes what he makes
true. It thus remains to convert the above picture into a tighter argument.

The tip of Alex’s pen, we can stipulate, is centred on a point η near the
middle of the sheet. In such a case, the following all seem true:

3. It is practically necessary that, if the pen falls within 500,000 µm of η on
the sheet, Alex makes it appear somewhere on the sheet

⊡(q500,000 → □p)

4. Alex makes the pen fall on the sheet less than 500,000 µm from η
□(p ∧ q500,000)

5. Alex does not make the pen fall on the sheet less than 1 µm from η 20

¬□(p ∧ q1)

Plus the following family of premises indexed to 0 < i ≤ 500, 000:

Ci Alex does not make it so that he both makes the pen fall less than i µm from
η on the sheet and does not make it fall less than i − 1 µm from η on the
sheet21

¬□(□(p ∧ qi) ∧ ¬□(p ∧ qi−1))

19This framing is, of course, partly adapted from the discussion of ”luminosity” in [41]. We will
not in the main argument, however, need to appeal to the kinds of margin of error principles central
to that discussion.

20For the argument immediately at hand we could replace 1 with 0, leaving the uncontrolled
proposition contradictory, though this (slightly) stronger concession will be dialectically useful in
discussing the models of the next section.

21This assumption bears a close and nonaccidental resemblance to the gap principles known in
the theory of vagueness due to the late Graff Fara [42] [43].
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(4) and (5) require little comment. (5), in particular, simply follows from
the description of the case, plus a lack of superhuman precision. (3) is justified
by supposing that only Alex would put the pen on the sheet. The real work,
clearly, is to be done by (Ci), which imposes a limit on Alex’s higher order control,
his control over what he controls.

It is a trivial consequence of (4) and (5) that there is some i such that Alex
makes the pen fall less than i, but not less than i− 1, µm from η; assuming that,
for all j < k, if it falls less than j µm it falls less than k µm (which follows by
Convexity if their disjunction is equivalent to the second disjunct), this i will
indeed be unique. □(p ∧ qi) and ¬□(p ∧ qi−1) then are a (the) limit to Alex’s fine
motor control over where the pen falls on the paper, up to micrometres from
η. What (Ci) says is that the degree of Alex’s fine motor control thus expressed
is not itself something he controls, nor is it within his power to control it. This
claim, that ordinary humans like Alex do not and cannot fix the precise limits
of their own motor control in action, seems eminently plausible.

Note that (Ci), as an expression of higher order non-control, is (when con-
joined with Alex’s limit □(p ∧ qi) ∧ ¬□(p ∧ qi−1)) simply a negated instance of
5∗. This provides a deeper insight into Conv5∗: it is the logic of agents with
perfect higher-order control, and logics imposing 5∗ (like that of [dstit]) can only
describe such idealised agents.

These assumptions are collectively incompatible with partitionality:

Fact 3.3. There is no supplemented sandwich model in which (3 - 5) and all (Ci) are
true at a world w while the actions at w are pairwise disjoint.22

A simple proof of this fact is given in the appendix, but the thrust behind
it should be easy to see. Throughout the inner circle of w, p is made true, and
thus when propositions stronger than p contain this inner circle (assuming the
inner circle function is constant throughout the inner circle of w, which is forced
by partitionality), they are made true throughout the circle. This will include
both □(p∧ qi) and p∧¬□(p∧ qi−1), and so also their conjunction, which directly
conflicts with (Ci).

There is an obvious objection to this argument. Many philosophers who
appeal to the concept of an action proposition think that, in the relevant sense
of making true, we make true only much weaker, more ”internal” propositions,
about (say) the state of our volition and not what appears on sheets of paper.23

Thus the objector will not concede (3) or (4), undermining the argument.

22As to why the argument is formulated in the metalanguage in terms of models rather than
directly in our object language itself, see fn. 9.

23Saith Joyce: ”My inclination is to [. . . ] use the term act narrowly to denote pure, present exercises
of the will. Many things we ordinarily call acts do not count as such under this reading. Walking
to work, for example, is not really an act one can choose to perform because, unfortunately, one
cannot simply will it to be the case that one’s legs function properly, that one will not be shot by
a madman on the way out the front door, that a great chasm will not open in the earth to prevent
one from reaching one’s destination, or even that one’s ’future self’ will carry through on one’s
choice.” See also Ford’s discussion of ”volitionalism” in [44] and the discussion in [45] of ”tryings”
in decision theory.
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Model 1: Naı̈ve representation of Alex

W [0, 300]2
x,y ⊂ R

2

R {(w, v) : w, v ∈W}
Smin(w) {v : |wx − vx|

2 + |wy − vy|
2 < 1}

Smax(w) W
V(p ; qw

i ) W ; {v : |wx − vx|
2 + |wy − vy|

2 < i/10, 000}

But there is a simple fix. The volitionalist objector should at least grant, for
example, that Alex makes true that the pen would fall less than 500,000 µm from
η, were the ordinary and limited causal dependence between the state of the
paper and Alex’s will to hold. With these intuitions in mind, letting o stand
for the ordinary and limited causal dependence obtains and > for the subjunctive
conditional, replace (3), (4), (5), and (Ci) with

• ⊡((o > q500,000)→ □(o > p))

• □(o > (p ∧ q500,000))

• ¬□(o > (p ∧ q1))

• ¬□(□(o > (p ∧ qi)) ∧ ¬□(o > (p ∧ qi−1)))

respectively. Under minimal assumptions about the subjunctive conditional >
(in particular that o > is a normal operator), the argument will proceed just as
cleanly as before.

3.4 Modelling Clumsy Agency

Of course, this on its own is only half of an argument against partitionality; to
dispel worries about the assumptions going into it, we must provide an at least
somewhat realistic supplemented model validating those assumptions.

Our initial discussion of Alex suggests one such. Have the domain of the
model be the real coordinates on the sheet, the accessibility relation R the
universal relation, any point’s inner circle the points with 1cm of it, and the
outer circle the whole sheet.

The model then interprets worlds as coordinates on the sheet of paper on
which to place the pen, takes it to be practically possible to place the pen
anywhere, and has it that Alex’s action proposition at w is the disc of worlds
less than 1cm from w while he makes it true everywhere that the pen falls
somewhere.24 V gives our propositional constants p and qw

i (for w ∈ W, i ∈ N)
their natural interpretations, with qw

i standing for the analogue with respect to
w of qi for η.

24The choice of 1cm is of course simply for convenience; feel free to replace it with some more
plausible distance if desired.
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Model 2: Adding a degree-of-control parameter

W ([0, 300]2
x,y × (0, 300]d) ⊂ R3

R {(w, v) : w, v ∈W}
Smin(w) for some a, b ∈ (0, 300], a ≤ wd ≤ b: {v : |wx −

vx|
2 + |wy − vy|

2 < 1, a ≤ vd ≤ b}
Smax(w) W
V(p ; qw

i ) W ; {v : |wx − vx|
2 + |wy − vy|

2 < i/10, 000}

While this indeed validates all our assumptions, it suffers from serious
problems of unrealism. For while it does validate (C10,000) (the relevant such
premise) at η, it affirms his perfect higher order control in a deeper sense. In
this model, the disjunction

D10,000
∨

w∈W
(□(p ∧ qw

10,000) ∧ ¬□(p ∧ qw
9,999))

is true everywhere, and as Smax(w) = W for all w, Alex makes true this dis-
junction, effectively controlling his precise degree of motor control considered
independently of where he actually places the pen (his location-neutral such
degree of control). It is tempting to respond that, as a toy model, we should
expect such artificialities, but this would be to selfishly excuse the very flaw we
accused in the friends of partitionality. Denying (C10,000) is bad; this is worse.

An initial impulse might be to add a third parameter d of degree of control into
the indices in the domain, represented by (0, 300] ⊂ R as the radii of the action
propositions for each degree. Thinking of the domain as a 300cm3 cube with
the point-thick top layer shaved off, at a given point one’s action proposition
would be the interior of a cylinder of radius d centred about its vertical axis
(plus its top and bottom).

This would make good on the idea that Alex’s is but one possible degree
of motor control among many. But, however implemented, it introduces more
problems than it solves.

For one, it guarantees by the same reasoning Alex’s yet higher order control
over his control over his degrees of control itself, control even more dubious than the
higher order control the model was just revised to deny, thus simply kicking the
problem up one level. We could, of course, introduce higher levels of control
infinitely or indefinitely, but even barring the obvious problem of his control
over his infinitely higher order control, this method of amending the model
has the perverse quality of making yet more unreasonable claims of Alex at
each finitary step. It abandons the frying pan by way of an infinitely nested
worsening series of fires.

Second, implementing it usefully requires abandoning the very intuitions
supporting (Ci) in the first place. Our first suspicion about Alex is that his
practical possibilities are limited to ones with his current degree of control, that
he has no higher control over this degree, and that these facts are mutually
reinforcing rather than in tension. But here they are placed precisely in conflict.
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Model 3: Adding a paper-avoiding possibility

W [0, 300]2
x,y + 1

R {(w, v) : w, v ∈W}
S(1) ({1}, {1})

Smin(w ∈ [0, 300]2) {v : |wx − vx|
2 + |wy − vy|

2 < 1}
Smax(w ∈ [0, 300]2)) [0, 300]2

⊂ R2

V(p ; qw
i ) [0, 300]2

⊂ R2 ; {v : |wx − vx|
2 + |wy − vy|

2 <
i/10, 000}

If Alex’s practical possibilities all share his actual degree of motor control (that
is, wRv only if wd = vd), then by Practical Strengthening, Convexity, and
Smax(w) = W, Alex controls his exact degree of control (in sandwich speak,
Smin(w) ⊆ {v : vd = wd} ⊆ Smax(w); pictorially, his cylindrical action proposition
would be flattened to a disc). A less toyish model will of course require multiple
degrees of control available at a given coordinate of the page, but this crude
introduction of them does more harm than good.

A better, and simpler, approach instead starts by adding an additional world
representing the possibility of simply not placing the pen on the sheet at all.
We take crucial advantage of the convex non-normality of our operator: this
world’s singleton is its own inner and outer circle, while for the rest we have
Smax(w) = [0, 300]2 and Smin as before. When hitting the sheet, that is the least
he controls; when not hitting it, the same. R is, again, universal.

We still have, of course, Alex controlling (D10,000) as long as he hits the
sheet, but in this setting we should take pains to distinguish (D10,000) from the
conditional claim (for some appropriate kind of conditional, be it material or
counterfactual or strict) that if he hits the sheet, (D10,000) holds. In our earlier
model, these were both simply the trivial proposition, but here only the latter
is trivial, and only the former is made true (a distinction made possible by the
pecularities of our logic for □).

It is this conditional, I think, that represents in this setting the location-
neutral degree of Alex’s motor control considered as a fixed capacity of his, the
sense in which his controlling it strikes us as absurd. He of course controls the
degree of control he exercises in placing the pen on the sheet (in the sense of
making true (D10,000)), but this is simply because for an agent with his particular
limited motor capacities to place a pen on the sheet is just to place it while
exercising exactly those limited capacities; for a helplessly clumsy thrower, in
the same vein, to toss a ball just is to toss it clumsily, and indeed to toss it
with their exact kind of clumsiness. Over his background musculature and
neurology, over the dispositional sensitivity of his pen to mild pressure and
sudden movements, Alex thereby need exercise no control at all.

If the claim that Alex controls his exercised degree of control down to the
micrometre still bothers you, we can introduce still more relevant verisimilitude
by rejecting its constancy across the sheet. We could instead have, say, the inner
circle of w be all points within a random f (w) between 1cm and 1.5cm. f (w)
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Model 4: Degrees of control varying by location

W [0, 300]2
x,y + 1

R {(w, v) : w, v ∈W}
S(1) ({1}, {1})

Smin(w ∈ [0, 300]2) {v : |wx − vx|
2 + |wy − vy|

2 < f (w)} for f :
[0, 300]2

⊂ R2
→ [1, 1.5] ⊂ R

Smax(w ∈ [0, 300]2)) [0, 300]2
⊂ R2

V(p ; qw
i ) [0, 300]2

⊂ R2 ; {v : |wx − vx|
2 + |wy − vy|

2 <
i/10, 000}

represents the motor control Alex would exercise at w specifically.25

This respects the intuition that the degree of motor control Alex would
exhibit in placing his pen down somewhere on the paper is, to some extent,
itself variable; we in our bodily motions like placing down a pen leave up to
chance, not just where the pen lands, but how much control we exert over this.
This leaves, of course, him controlling the more varied disjunction

D′10,000
∨

w∈W
(□(p ∧ qw

10000 f (w)) ∧ ¬□(p ∧ qw
10000 f (w)−1))

but there is something less strikingly impressive about this feat. He controls
his (location-neutral, exercised) control down to the micrometre, but not to a
consistent micrometre.

Do these remarks undermine the plausibility of (Ci)? No. For what renders
unthreatening Alex’s control over (D10,000) is its practical equivalence with an
obviously easy proposition for him to make true, namely that he hits the paper
at all. For him to make true the exact boundary of his control in hitting η (that is,
for the relevant instance of (Ci) to be false), however, would correspondingly
be for him in hitting η to possibly control down to a micrometre’s variation
where exactly he actually hits the paper, which has little pre-theoretic intuitive
plausibility (whence our conviction in (5)).

Model 3 straightforwardly satisfies for each candidate for η all our earlier
assumptions. For Model 4, for an evenly distributed finite set X of points within
Smin(w) the probability that, for all x ∈ X, Smin(x) ⊆ Smin(w) approaches zero as
|X| → ∞ given natural assumptions about the probability distribution on the
values of f (w), so that almost certainly our assumptions from the last section
are true almost everywhere.

25This assumes a restricted version of counterfactual excluded middle. For detractors who take
it the counterfactual degree of control exercised at a given coordinate is indeterminate, add to the
domain for each relevant counterfactual possibility a copy w of that coordinate with the appropriate
Smin(w).
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Conclusion

In the foregoing I have attempted to justify, both on its own terms and against
its most prominent rivals, a basic modal logic of control and making so. It has, I
argue, not merely an independent plausibility, but a flexibility and naturalness-
–semantic as well as syntactic–suited for framing fundamental questions about
the concept it formalises. As a proposal it is open-ended: it is offered only
as a lower limit on the strength of the ”true” logic of the operator, including
its interactions with other modalities of note. It is my hope that as a starting
point it can aid in resolving outstanding questions, and illuminating new such
questions of interest, concerning the phenomenon it seeks to formalise.

A Appendix

We here prove relevant results for the logics discussed above. Proofs are largely
adapted from analogous ones in [46] and [24].

A.1 The Logic Conv

Our language L (or equivalently, its set of wff’s) is as usual that generated by
a countable set At of sentential variables p, q, r, . . . and

At | ¬φ | φ ∨ ψ | φ ∧ ψ | φ→ ψ | □φ

Our logic itself, Conv ⊂ L, i.e. the φ such that ⊢Conv φ, is the set of wff’s
generated by all instances of the following axiom schemas

All classical tautologies

T □φ→ φ

M (□φ ∧ □ψ)→ □(φ ∧ ψ)

O (□φ ∧ □ψ)→ □(φ ∨ ψ)

Conv □(φ ∨ ψ ∨ χ)→ □φ→ □(φ ∨ ψ)

with the following inference rules

MP if ⊢Conv φ and ⊢Conv φ→ ψ, ⊢Conv ψ

RE if ⊢Conv ψ↔ ϕ, ⊢Conv □ψ↔ □ϕ

A modelM of our logic is a triple ⟨W,V, (Smin,Smax)⟩, with W some nonempty
set, V : At → P(W), and the possibly partial (Smin,Smax) : W ↪→ P(W) × P(W)
(or just S) such that (where defined) {w} ⊆ Smin(w) ⊆ Smax(w). The clauses of
the interpretation function ⟦ ⟧ for the atoms and Boolean clauses are as usual,
while ⟦□φ⟧ = {w ∈ W : Smin(w) ⊆ ⟦φ⟧ ⊆ Smax(w)}. (Note that w < ⟦□φ⟧ when
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S is undefined on w, and that as components of a single function from W into
the cartesian square of P(W) Smin and Smax are each defined iff the other is.)
φ is valid in a model M, i.e. ⊨M φ, iff ⟦φ⟧M = WM, and is valid simpliciter,
i.e. ⊨Conv φ, iff for all modelsM, ⊨M φ.

We now prove a lemma that will be useful in proving completeness.

Lemma A.1. If ⊢Conv (φ∧ψ)→ χ and ⊢Conv (¬φ∧¬ψ)→ ¬χ, ⊢Conv (□φ∧□ψ)→
□χ.

Proof. Suppose the antecedent. Then by classical reasoning, we have ⊢Conv
(φ ∧ ψ) → χ and ⊢Conv χ → (φ ∨ ψ). Now assume □φ ∧ □ψ. By M this gives
us □(φ ∧ ψ), and by O □(φ ∨ ψ). But then by Conv and RE we have □χ, and
discharging we have ⊢Conv (□φ ∧ □ψ)→ □χ. □

Corollary A.2. For any finite {φ1, . . . , φn, ψ}, if ⊢Conv (φ1 ∧ . . . ∧ φn) → ψ and
⊢Conv (¬φ1 ∧ . . . ∧ ¬φn)→ ¬ψ, ⊢Conv (□φ1 ∧ . . . ∧ □φn)→ □ψ.

A.2 Soundness

It is easy to see that our semantics is sound.

Theorem A.3. If ⊢Conv φ, ⊨Conv φ

Proof. We omit as routine the proofs of the validity of classical tautologies
and MP. The validity of T is straightforward from the stipulation that (when
defined) {w} ⊆ Smin(w). The validity of M is straightforward from the fact that
for X,Y ⊇ Smin(w), X ∩ Y ⊇ Smin(w). The validity of O is straightforward from
the fact that for X,Y ⊆ Smax(w), X ∪ Y ⊆ Smax(w). The validity of Conv is
straightforward from the fact that, for any X,Y,Z, X ⊆ (X∪Y) ⊆ (X∪Y∪Z). By
induction, for any φ,ψ provably equivalent and for which our theorem holds,
in allM, ⟦φ⟧ = ⟦ψ⟧, validating RE by the intensionality of the clause for □. □

A.3 Completeness

Let a consistent set Γ be a set of wff’s in L such that for no φ1 . . . φn ∈ L (for
finite n) do we have ⊢Conv ¬(φ1 ∧ . . . ∧ φn). Let a maximal consistent set Γ be a
consistent set such that for all φ ∈ L either φ ∈ Γ or ¬φ ∈ Γ. The proof that for
any consistent set Γ there is a maximal consistent set Γ′ such that Γ ⊆ Γ′ is as
usual. We denote the set of maximal consistent sets in P(L) as LM.

We define the canonical modelMcanon, as per the above, as the triple ⟨W,V, (Smin,Smax)⟩
such that

• WMcanon = LM

• For p ∈ At, VMcanon (p) = {w ∈WMcanon : p ∈ w}

• SminMcanon (w′) = {w ∈ WMcanon : for all □φ ∈ w′, φ ∈ w} unless no □φ ∈ w′,
in which case undefined
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• SmaxMcanon (w′) = {w ∈WMcanon : for some□φ ∈ w′, φ ∈ w}unless no□φ ∈ w′,
in which case undefined

Lemma A.4. Let Γ be some consistent set of wff’s of the form □φ, Γ−□ be the set
obtained by exchanging φ for each □φ ∈ Γ, and ¬Γ−□ the set obtained by negating each
member of Γ−□. Then if, for arbitrary ¬□ψ, we have Γ ∪ {¬□ψ} consistent, we have
either Γ−□ ∪ {¬ψ} consistent or ¬Γ−□ ∪ {ψ} consistent.

Proof. Suppose that Γ ∪ {¬□ψ} is but neither Γ−□ ∪ {¬ψ} nor ¬Γ−□ ∪ {ψ} also is
consistent. Then there must be some finite {γ1, . . . , γn} ⊆ Γ−□ where ⊢Conv ¬(γ1∧

. . . ∧ γn ∧ ¬ψ) and some (not necessarily disjoint) {γn+1, . . . , γm} ⊆ Γ−□ where
⊢Conv ¬(¬γn+1 ∧ . . . ∧ ¬γm ∧ ψ). Indeed, by the monotonocity of inconsistency,
we may simplify by saying we have both ⊢Conv ¬(γ1 ∧ . . . ∧ γm ∧ ¬ψ) and
⊢Conv ¬(¬γ1 ∧ . . . ∧ ¬γm ∧ ψ).

By classical reasoning and the first conjunct, we have ⊢Conv (γ1∧ . . .∧γm)→
ψ. By classical reasoning and the second conjunct, we have ⊢Conv (¬γ1 ∧ . . . ∧
¬γm) → ¬ψ. But since by supposition Γ ∪ {¬□ψ} is consistent, we have ⊬Conv
(□γ1 ∧ . . . ∧ □γm)→ □ψ. But by Corollary A.2, this is impossible. □

Theorem A.5. w ∈ ⟦φ⟧Mcanon iff φ ∈ w

Proof. The proof proceeds by induction. It is straightforward to see that it holds
in the base step for all p ∈ At, as the interpretation function ⟦⟧ in that case simply
reduces to the assignment function V, which in turn by construction reduces in
Mcanon to ∈. We omit as routine the induction steps for the Boolean connectives,
leaving only our operator □.

We first prove right to left. Suppose □φ ∈ w. Now by hypothesis we have
w′ ∈ ⟦φ⟧Mcanon iff φ ∈ w′; by construction we then have for all w′ ∈ SminMcanon (w)
that φ ∈ w′, and thus ⟦φ⟧Mcanon ⊇ SminMcanon (w). Moreover, by construction of
SmaxMcanon and by the inductive hypothesis, ⟦φ⟧Mcanon ⊆ SmaxMcanon (w). So by
construction of ⟦⟧we have w ∈ ⟦□φ⟧Mcanon .

Now suppose □φ < w, i.e. (by maximality) ¬□φ ∈ w. Either SMcanon (w) is
defined or not. If not, then by stipulation w < ⟦□φ⟧Mcanon . Now let Γ be {□ψ :
□ψ ∈ w}; then, if SMcanon (w) is defined, by Lemma A.4 and consistency of w ⊃
Γ∪{¬□φ}we have either Γ−□∪{¬φ} consistent or¬Γ−□∪{φ} consistent. But then
(as the domain LM includes all maximal consistent sets, and all consistent sets
can be extended to some v ∈ LM) there must exist either some w′ ⊃ Γ−□∪{¬φ} or
w′′ ⊃ ¬Γ−□∪{φ}. If the former, then by the inductive hypothesis, the consistency
of w′, and construction of SminMcanon we have w′ ∈ (SminMcanon (w) \ ⟦φ⟧), and thus
w < ⟦□φ⟧Mcanon . If the latter, then by the inductive hypothesis, the consistency
of w′′, and construction of SmaxMcanon we have w′′ ∈ (⟦φ⟧ \ SmaxMcanon (w)), and
thus w < ⟦□φ⟧Mcanon . □

Corollary A.6. ⊨Mcanon φ iff ⊢Conv φ

Proof. Suppose ⊢Conv φ. Then we have {¬φ} inconsistent, and thus by maxi-
mality of w ∈ WMcanon each such w must contain φ, which by the above means
⊨Mcanon φ.
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Suppose ⊬Conv φ. Then we have {¬φ} consistent, meaning some w ∈

WMcanon = LM must extend it, so by the consistency of w ∈ WMcanon this w
must not contain φ, which by the above means ⊭Mcanon φ. □

By familiar reasoning, proving completeness for our logic now only requires,
in light of Corollary A.6, that the frame ⟨WMcanon , (SminMcanon ,SmaxMcanon )⟩ satisfies
the requirements for a model frame given in the first section. (That it satisfies
the requirements for its base valuation function VMcanon is immediate.)

Corollary A.7. If ⊨Conv φ, ⊢Conv φ

Proof. The conditions for a frame are just that, for all w with S(w) defined, a)
w ∈ Smin(w) and b) Smin(w) ⊆ Smax(w).

SMcanon (w), by construction, is defined only for w with some □φ ∈ w. Let w
be such a world. Now by T and maximality, for all □φ ∈ w, also φ ∈ w, and so
by construction of SminMcanon (w) we have w ∈ SminMcanon (w).

Since SMcanon (w) is defined only when there exists such a □φ ∈ w, the set
of w′ ∈ WMcanon with some ψ ∈ w′ such that □ψ ∈ w extends the set of those
containing all such ψ, i.e. SminMcanon (w) ⊆ Smax.Mcanon (w). □

Corollary A.8. ⊨Conv φ iff ⊢Conv φ

A.4 The Logics Conv4, Conv5∗, and Conv45∗

The logics Conv4,Conv5∗,Conv45∗ ⊂ L are those generated by the inference
rules and axiom schemas of Conv (mutatis mutandis) plus each of the following
and both, respectively.

4 □φ→ □□φ

5∗ (□φ ∧ ¬□ψ)→ □(φ ∧ ¬□ψ)

The models of Conv4 and Conv5∗ are just like those of Conv, with the
added stipulation that, for the first, Smin(w′) ⊆ Smin(w) and Smax(w′) ⊇ Smax(w)
for all w′ ∈ Smin(w) where S(w) is defined; for the second, Smin(w′) ⊇ Smin(w)
and Smax(w′) ⊆ Smax(w) for all w′ ∈ Smin(w) where S(w),S(w′) are defined.
Their canonical models are constructed just like that of Conv, save for maximal
consistency in the respective logics replacing maximal ⊢Conv-consistency.

Soundness is routine.

Theorem A.9. If ⊢Conv4 φ, ⊨Conv4 φ

Proof. To extend our soundness proof for Conv, observe first that w ∈ ⟦□□φ⟧
iff for each w′ ∈ Smin(w), w′ ∈ ⟦□φ⟧, and for no w′′ < Smax(w) is w′′ ∈ ⟦□φ⟧.
Now clearly, if w ∈ ⟦□φ⟧, by the at most restriction of Smin(w′) and at most
expansion of Smax(w′) for w′ ∈ Smin(w), Smin(w′) ⊆ ⟦φ⟧ ⊆ Smax(w′) (i.e. w′ ∈
⟦□φ⟧). Moreover, if w ∈ ⟦□φ⟧, Smin(w) ⊆ ⟦φ⟧ ⊆ Smax(w), so for no w′′ < Smax(w)
do we have w′′ ∈ ⟦φ⟧, much less w′′ ∈ ⟦□φ⟧. So we have w ∈ ⟦□□φ⟧ if
w ∈ ⟦□φ⟧, i.e. we have 4 valid. □
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Theorem A.10. If ⊢Conv5∗ φ, ⊨Conv5∗ φ

Proof. To see that 5∗ is valid, we will show that, whenever w ∈ ⟦□φ ∧ ¬□ψ⟧,
w ∈ ⟦□(φ∧¬□ψ)⟧. Consider that w ∈ ⟦□(φ∧¬□ψ)⟧ iff for all w′ ∈ Smin, w′ ∈ ⟦φ⟧
but not w′ ∈ ⟦□ψ⟧ (i.e. not Smin(w′) ⊆ ⟦ψ⟧ ⊆ Smax(w′)), and for all w′′ < Smax(w),
either w′′ < ⟦φ⟧ or w′′ ∈ ⟦□ψ⟧. But since for such w′ ∈ Smin, Smin(w′) ⊇ Smin(w)
and Smax(w′) ⊆ Smax(w) (where S(w′) is defined), if we have Smin(w) ⊆ ⟦φ⟧ ⊆
Smax(w) but not Smin(w) ⊆ ⟦ψ⟧ ⊆ Smax(w) (i.e. if w ∈ ⟦□φ ∧ ¬□ψ⟧), we have the
latter also for (defined) S(w′) (so that w′ < ⟦□ψ⟧) and we have w′ ∈ ⟦φ⟧ trivially,
as w′ ∈ Smin(w) ⊆ ⟦φ⟧. (Where S is not defined, w′ < ⟦□ψ⟧ trivially.) And, since
if w ∈ ⟦□φ ∧ ¬□ψ⟧ we have ⟦φ⟧ ⊆ Smax(w), for no such w′′ < Smax do we have
w′′ ∈ ⟦φ⟧. □

Completeness is similarly routine.

Theorem A.11. If ⊨Conv4 φ, ⊢Conv4 φ

Proof. By our earlier result, it will suffice to show, whereM′
canon is the canonical

model of Conv4, that for w ∈ WM′canon
with SM′canon

(w) defined, SminM′canon
(w′) ⊆

SminM′canon
(w) and SmaxM′canon

(w′) ⊇ SmaxM′canon
(w) for all w′ ∈ SminM′canon

(w).
Suppose there is some w′ ∈ SminM′canon

(w) and v ∈ SminM′canon
(w′),< SminM′canon

(w)
(i.e. SminM′canon

(w′) ⊈ SminM′canon
(w)). Then by construction, there is some □φ ∈

w,< w′. But by 4 this is impossible, since for any □φ ∈ w, □□φ ∈ w, and so
□φ ∈ w′. (For this same reason, SM′canon

(w′) is always defined when SM′canon
(w) is

defined and w′ ∈ SminM′canon
(w).)

Suppose next there is some w′ ∈ SminM′canon
(w) and v ∈ SmaxM′canon

(w),<
SminM′canon

(w′) (i.e. SmaxM′canon
(w′) ⊉ SmaxM′canon

(w)). Then again by construction,
there is some □φ ∈ w,< w′, which we have just seen to be impossible. □

Theorem A.12. If ⊨Conv5∗ φ, ⊢Conv5∗ φ

Proof. Again it will suffice to prove that for w ∈ WM′canon
with SM′canon

(w) de-
fined, SminM′canon

(w′) ⊇ SminM′canon
(w) and SmaxM′canon

(w′) ⊆ SmaxM′canon
(w) for all

w′ ∈ SminM′canon
(w) with some □ψ ∈ w′ (where M′

canon is now the canonical
model of Conv5∗).

Suppose there is some w′ ∈ SminM′canon
(w) (with SM′canon

(w′) defined) and
v ∈ SminM′canon

(w),< SminM′canon
(w′) (i.e. SminM′canon

(w′) ⊉ SminM′canon
(w)). Then by

construction (and definedness of SM′canon
(w′)), there is some □φ ∈ w′,< w. Now

since SM′canon
(w) is defined, there exists □ψ ∈ w, with ψ , φ. We then by maxi-

mality have □ψ ∧ ¬□φ ∈ w. But then we have by 5∗ that □(ψ ∧ ¬□φ) ∈ w, and
so by construction and maximality ψ∧¬□φ,¬□φ ∈ w′, which is by consistency
of w′ impossible.

Suppose next there is some w′ ∈ SminM′canon
(w) and v ∈ SmaxM′canon

(w′),<
SminM′canon

(w) (i.e. SmaxM′canon
(w′) ⊈ SmaxM′canon

(w)). Then again by construction,
there is some □φ ∈ w′,< w, which we have just seen to be impossible. □

Corollary A.13. Conv4 and Conv5∗ are independent.
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Proof. For a model of Conv5∗ invalidating 4, let W = {0, 1}, Smin(0) = Smax(0) =
W, S(1) be undefined. For a model of Conv4 invalidating 5∗, let W = {0, 1},
Smin(0) = Smax(0) = Smax(1) = W, Smin(1) = {1}. For one satisfying both let
W = {0}, Smin(0) = Smax(0) =W. □

Corollary A.14. Conv45∗ is sound and complete on the class of frames where for any
w with S(w) defined, S(v) = S(u) where v,u ∈ Smin(w).

Proof. This is straightforward from the preceding proofs. □

Corollary A.15. Among models in which, for all w with S(w) defined, S(w′) is defined
for all w′ ∈ Smin(w), the Conv5∗ models are the Conv45∗ models.

Proof. Take any such model of Conv5∗ and any w with S(w) defined. For
any w′ ∈ Smin(w), Smin(w′) (which we know to be defined) must contain w,
as w ∈ Smin(w) ⊆ Smin(w′). So, by the defining property of Conv5∗ models,
Smin(w) ⊆ Smin(w′) (as w′ ∈ Smin(w)) and Smin(w′) ⊆ Smin(w) (as w ∈ Smin(w′)),
i.e. Smin(w) = Smin(w′); similarly, Smax(w) ⊇ Smax(w′) and Smax(w′) ⊇ Smax(w),
i.e. Smax(w) = Smin(w′). Thus, for all w′ ∈ Smin(w), S(w) = S(w′).

The reverse direction is trivial. □

We can now prove the correspondence between Conv45∗ and the principle
attributed to Lewis in Section 3.1.

Fact A.16. Take an arbitrary sandwich frame ⟨W,S⟩. Let N(p ⊆ W) be {w ∈ W :
Smin(w) ⊆ p ⊆ Smax(w)}. Let Ow be the intersection of all p ∋ w such that for some
q ⊆W either p = N(q) or p =W \ N(q).

If for all w (with S(w) defined), Smin(w) ⊆ Ow ⊆ Smax(w), then for all v and
u ∈ Smin(v), S(v) = S(u), and vice versa.

Proof. Left to right: Clearly, given the antecedent, for all w (with S(w) defined),
Ow = Smin(w), as by definition Ow ⊆ N(Smin(w)) ⊆ Smin(w). It is now easy to
see that for any v ∈ Ow, neither is there u ∈ Ov,< Ow nor u′ ∈ Ow,< Ov. For if
the former, then N(Smin(w)) ∋ w,= v, which is prohibited by construction of O
as long as v ∈ Ow = Smin(w); and if the latter, either N(Smin(v)) ∋ v,= w or no
N(p) ∋ v at all, both of which are prohibited by construction of O as long as
v ∈ Ow = Smin(w), since w < N(p) iff w ∈ (W \ N(p)). Therefore Ow = Ov, and
thus Smin(w) = Smin(v).

Moreover, whenever Ow = Smin(w) = Ov = Smin(v), Smax(w) = Smax(v), as
otherwise w, v will be distinguished by some p in that w ∈, v < N(p) (or vice
versa). But again by definition of O, this is impossible. So S(w) = S(v).

Right to left: Suppose for all w (with S(w) defined) and v ∈ Smin(w), S(w) =
S(v). Then w ∈ N(p) iff v ∈ N(p), so Ow = Ov. So by v ∈ Ov for all v ∈ Smin(w),
Smin(w) ⊆ Ow. But Ow ⊆ N(Smax(w)) ⊆ Smax(w). So Smin(w) ⊆ Ow ⊆ Smax(w). □
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A.5 The Logic Conv+

Let the language L⊡ be L closed under the introduction of formulas ⌜⊡φ⌝. Let
the logic Conv+ ⊂ L⊡ be that generated by the axiom schemas and inference
rules of Conv (mutatis mutandis), together with the additional axiom schemas

K⊡ ⊡(φ→ ψ)→ (⊡φ→ ⊡ψ)

T⊡ ⊡φ→ φ

PS (⊡φ ∧ □ψ)→ □(φ ∧ ψ)

and the additional inference rule

Nec if ⊢Conv+ φ, ⊢Conv+ ⊡φ

A modelM+ of Conv+ is just like a model of Conv, together with an extra
parameter R : W → P(W); R obeys the further constraints that for all w ∈ W,
Smin(w) ⊆ R(w) (where defined), and w ∈ R(w). As usual, ⟦⊡φ⟧M+ = {w ∈ W :
R(w) ⊆ ⟦φ⟧M+ }. The canonical model M+

canon of Conv+ is constructed as for
Conv, with the obvious extensions for RM+canon

(particularly that w′ ∈ RM+canon
(w)

iff φ ∈ w′ for all □φ ∈ w).
It is easy to see the logic is sound.

Theorem A.17. If ⊢Conv+ φ, ⊨Conv+ φ

Proof. The only distinctive case to show is for PS. By the stated constraint
on R and Smin, whenever w ∈ ⟦⊡φ⟧,∈ ⟦□ψ⟧, Smin(w) ⊆ ⟦ψ⟧ ⊆ Smax(w) (by
construction of ⟦□ψ⟧) and Smin(w) ⊆ ⟦φ⟧ (by the above constraint), and thus
Smin(w) ⊆ ⟦φ⟧ ∩ ⟦ψ⟧ = ⟦φ ∧ ψ⟧ ⊆ ⟦ψ⟧ ⊆ Smax(w), and so by construction of
⟦□(φ ∧ ψ)⟧, w ∈ ⟦□(φ ∧ ψ)⟧. Whence the conclusion follows trivially. □

The bulk of the completeness proof can rely on those given above.

Theorem A.18. If ⊨Conv+ φ, ⊢Conv+ φ

Proof. It is easy to check that the proofs for Theorem A.5 and Corollary A.6 can
be extended to proofs of their analogues for Conv+. Thus all that is required is
a proof that our canonical modelM+

canon satisfies the criteria for a model.
For the constraints on R by itself the proofs are well known. We thus need

only demonstrate that, when defined, SminM+canon
(w) ⊆ RM+canon

(w). Suppose there
is some w′ ∈ SminM+canon

(w),< RM+canon
(w) (where these are defined). Then by

construction there are φ ∈ w′, ψ < w′ (that is, by maximality, φ,¬ψ ∈ w′) such
that □φ,⊡ψ ∈ w. But then we do not have (by consistency of w′) φ∧ψ ∈ w′, and
so by construction of SminM+canon

we do not have □(φ∧ψ) ∈ w, which contradicts
the hypothesis given PS (and maximality). □

Say that a model is partitional just in case, for all w, for all v, v′ ∈ R(w), Smin(v)
and Smin(v′) are (when defined) either identical or pairwise disjoint.
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Theorem A.19. No formulas define the partitional models.

Proof. It will suffice to show that, for two models M,M′ with M partitional
but notM′, the φ valid onM are just those valid onM′.

Let WM = {w0,w1}; SminM(w0) = SmaxM(w0) = {w0}; SM(w1) undefined; and
for all atomic p, VM(p) = {w0}. Let WM′ = {v0, v1, v2}; SminM′ (v0) = SmaxM′ (v0) =
{v0, v1}, SM′ (v1) = ({v1}, {v0, v1}); SM′ (v2) undefined; and for all p, VM′ (p) =
{v0, v1}. For both, R is the universal relation (the constant function to W).
Clearly,M but notM′ is partitional, so it remains to show ⊨M φ iff ⊨M′ φ.

First we prove by induction on complexity that w1 ∈ ⟦φ⟧ iff v2 ∈ ⟦φ⟧. For
the atomic base case, this is given. For the Boolean connectives, this follows by
classicality of the logic. Moreover, as S(w1) and S(v2) are undefined, the step
for □φ is likewise trivial.

Next, w0 ∈ ⟦φ⟧ iff v1 ∈ ⟦φ⟧. Again, the base step and Boolean inductive
step are trivial. For □φ, if w0 < ⟦φ⟧ and v1 < ⟦φ⟧, it follows by T that v1 < ⟦□φ⟧
and w0 < ⟦□φ⟧; if w0 ∈ ⟦φ⟧ and v1 ∈ ⟦φ⟧, either v2 ∈ ⟦φ⟧ and (thus, by the
above) w1 ∈ ⟦φ⟧ or not. If so, v1 < ⟦□φ⟧ and w0 < ⟦□φ⟧, since v2 < Smax(v1) and
w1 < Smax(w0). If not, then Smin(v1) ⊆ ⟦φ⟧ ⊆ Smax(v1) (meaning v1 ∈ ⟦□φ⟧) and
Smin(w0) = ⟦φ⟧ = Smax(w0) (meaning w0 ∈ ⟦□φ⟧).

Finally, w0 ∈ ⟦φ⟧ iff v0 ∈ ⟦φ⟧. Base and Boolean steps are trivial. For □φ,
by the inductive hypothesis we have w0 ∈ ⟦φ⟧ iff v0 ∈ ⟦φ⟧. As (by T) the result
is trivial if v0 < ⟦φ⟧ and w0 < ⟦φ⟧, suppose v0 ∈ ⟦φ⟧ and w0 ∈ ⟦φ⟧. Again,
either v2 ∈ ⟦φ⟧ (and thus w1 ∈ ⟦φ⟧) or not. In the former case, the conclusion
follows as before. Otherwise, by the preceding paragraph, we have w0 ∈ ⟦φ⟧
and v1 ∈ ⟦φ⟧, so v0 ∈ ⟦φ⟧ and v1 ∈ ⟦φ⟧, and thus, as Smin(v0) = Smax(v0) = {v0, v1}

and v2 < ⟦φ⟧, v0 ∈ ⟦□φ⟧. But (since we are assuming w1 < ⟦φ⟧), as Smin(w0) =
Smax(w0) = {w0} = ⟦φ⟧, also w0 ∈ ⟦□φ⟧.

So the φ ∈ L true at w0 are just those true at v0, v1, and the φ ∈ L true at
w1 are just those true at v2 (extending this to φ ∈ L⊡ is straightforward). The
desired result–⊨M φ iff ⊨M′ φ–is now immediate. □

We now prove Fact 3.3.

Proof. Suppose our model is partitional and that (3 - 5) and (Ci) are true (at
w ∈W), where i is the least number such that □(p∧ qi) and ¬□(p∧ qi−1) are true.
As (by (4)) Smin(w) ⊆ ⟦q500,000⟧ and Smin(w) ⊆ R(w), so (by (3) and PS) for all
w′ ∈ Smin(w), Smin(w′) is defined and Smin(w′) ⊆ ⟦p⟧ ⊆ Smax(w′). By partitionality,
Smin(w) = Smin(w′). We thus have for all □(φ ∧ p) true at w (i.e. such that
Smin(w) ⊆ ⟦φ⟧ ∩ ⟦p⟧ ⊆ ⟦p⟧ ⊆ Smax(w), with Smin defined and fixed throughout
Smin(w)) that ⟦□(φ∧p)⟧ ⊇ Smin(w), and thus Smin(w) ⊆ ⟦□(p∧qi)⟧ ⊆ ⟦p⟧ ⊆ Smax(w),
and therefore we have □□(p ∧ qi) true (at w).

Since we also have ¬□(p ∧ qi−1) true (at w), we by similar reasoning have
□(p ∧ qi−1) true at no w′ ∈ Smin(w), and thus Smin(w) ⊆ ⟦p⟧ ∩ ⟦¬□(p ∧ qi−1)⟧ ⊆
⟦p⟧ ⊆ Smax(w), and thus □(p ∧ ¬□(p ∧ qi−1)) true (at w).

We by these and M therefore have□(□(p∧qi)∧p∧¬□(p∧qi−1)), or equivalently
□(□(p ∧ qi) ∧ ¬□(p ∧ qi−1)), true (at w), which contradicts (Ci). □
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