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A manufacturing system characterized by its stochastic nature, is defined by both 

qualitative and quantitative variables. Often there exists a situation when a performance 

measure such as throughput, work-in-process or cycle time of the system needs to be 

optimized with respect to some decision variables. It is generally convenient to express a 

manufacturing system in the form of an analytical model, to get the solutions as quickly 

as possible. However, as the complexity of the system increases, it gets more and more 

difficult to accommodate that complexity into the analytical model due to the uncertainty 

involved. In such situations, we resort to simulation modeling as an effective alternative. 

Equipment selection forms a separate class of problems in the domain of 

manufacturing systems. It assumes a high significance for capital-intensive industry, 
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especially the semiconductor industry whose equipment cost comprises a significant 

amount of the total budget spent. For semiconductor wafer fabs that incorporate complex 

product flows of multiple product families, a reduction in the cycle time through the 

choice of appropriate equipment could result in significant profits.  

This thesis focuses on the equipment selection problem, which selects tools for 

the workstations with a choice of different tool types at each workstation. The objective 

is to minimize the average cycle time of a wafer lot in a semiconductor fab, subject to 

throughput and budget constraints. To solve the problem, we implement five simulation-

based algorithms and an analytical algorithm. The simulation-based algorithms include 

the hill climbing algorithm, two gradient-based algorithms – biggest leap and safer leap, 

and two versions of the nested partitions algorithm.  

We compare the performance of the simulation-based algorithms against that of 

the analytical algorithm and discuss the advantages of prior knowledge of the problem 

structure for the selection of a suitable algorithm. 
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1. INTRODUCTION 

 

This chapter provides an insight into the simulation-based optimization for 

discrete event manufacturing systems. We also define the research objective. In Section 

1.1, we discuss what the decision variables in a manufacturing system can be. In Section 

1.2, we discuss the complexity of a manufacturing system with respect to its stochastic 

nature. Section 1.3 provides examples of different objective functions we could optimize 

in such a system. In Section 1.4, we present a classification of simulation-based 

optimization techniques. Section 1.5 discusses the use of those techniques for optimizing 

a manufacturing system. Section 1.6 presents the equipment selection problem as a 

separate class of problems in the manufacturing system design. The objectives of this 

research are defined in Section 1.7, followed by a brief description about each of the 

subsequent chapters, in Section 1.8. Whenever we mention optimization problems, we 

will be referring to single objective problems. 

 

1.1 Decision variables in a manufacturing system 

A manufacturing system has a lot of decision variables that define it. There could 

be quantitative decision variables like the number of tools and operators at each 

workstation, number of forklifts or other vehicles used for transportation between 

workstations and buffer allocation at each workstation, to name a few. Or there could be 

qualitative decision variables like the dispatching, routing or scheduling policies, layout 

of the manufacturing system, maintenance schedule, and so on and so forth. Depending 

upon the kind of questions that a decision-maker would ask in order to design a 
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manufacturing system, the decision variables that play a key role to answer those 

questions would vary. Section 1.3 provides examples of such kind of questions. 

 

1.2 Complexity of a manufacturing system 

Absence of uncertainty would make the design of a manufacturing system utterly 

simple. If the arrival times, processing times, breakdown schedules of the machines, 

operator-handling time were deterministic, one could easily determine the values of the 

decision variables without much difficulty. Analytical solutions to the problems that a 

decision-maker would look for answers to would be quick and accurate. However, the 

real life scenario is very different. There exists uncertainty in the arrival times, 

processing times, tool breakdowns and machine set-up times for instance. The 

complexity of manufacturing systems arises due to this stochastic nature of the processes 

in the system and the continual changes that need to be made in the manufacturing line 

in the form of addition of new tools to increase capacity, scrapping of old product 

families to keep up pace with the market, automating the production line to decrease the 

cycle time and the like. Certain properties of the system related to the product or the 

process flow when coupled with this uncertainty could increase the complexity 

manifold. For instance, semiconductor wafer manufacturing requires repeated layers of 

via formation and metalization that necessitate a re-entrant flow routing. The lots of 

wafers being routed comprise different product families and yet go through the same 

manufacturing line. To add to the complexity, there are constraints on the system. We 

mention some of the constraints in the next section.  
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1.3 Optimization of a manufacturing system 

There could be several objectives one would like to meet while designing such a 

system. For instance, one could find an optimal allocation of resources such as buffers, 

to each workstation so as to maximize the throughput of the system. An important 

constraint here would be the limited quantity of buffers at each workstation. Another 

problem could be to design the layout of the manufacturing line in such a way, so as to 

minimize the travel times of the work-in-process (WIP) between workstations. The 

constraints could include the shape and the area available for the layout or the number of 

resources available to transport the WIP. Another interesting problem could be figuring 

out the number of times a defective job should be reworked to maximize the yield. The 

obvious constraint here would be that the overall cost of reworking, should never exceed 

or be equal to the benefit we reap out of the improved yield. The optimization problem 

that we study is the equipment selection problem, discussed in Section 1.6.  

 

1.4 Simulation optimization 

Simulation modeling is an effective tool to model, analyze and optimize systems. 

It is particularly useful in predicting the behavior of systems with an inherent stochastic 

nature, hence the term simulation-based stochastic optimization. Based on the nature of 

the decision space, such optimization problems could be categorized as continuous or 

discrete.  

The decision variables for continuous optimization problems are continuous in 

nature. Such problems are solved using techniques such as stochastic approximation 

methods, response surface methodology and sample path optimization, besides the 
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gradient estimation techniques that include finite difference estimation, perturbation 

analysis, likelihood ratio method and frequency domain analysis.  

The decision variables for discrete optimization problems are discrete in nature. 

Although the gradient estimation techniques mentioned above, have been applied to 

discrete optimization problems, there also exist discrete random and non-random search 

methods that are applicable to such problems. Stochastic comparison algorithm, 

simulated annealing algorithm, stochastic ruler method, multistart algorithm, ordinal 

optimization method, nested partitions algorithm, simulated entropy algorithm, 

screening, selection and multiple comparison procedures, genetic algorithm, generalized 

and ordinal hill climbing algorithms and Andradottir’s algorithms are techniques based 

on random search. There are non-random search methods too, like the branch and bound 

algorithm and the low dispersion point set method.  

We discuss these methodologies in Chapter 2.  

 

1.5 Simulation optimization of a manufacturing system 

Manufacturing systems are analyzed as queueing systems, where the entity being 

manufactured or processed is considered as a customer and the machine or the operator 

handling the entity is considered as the server. The most important characteristic of such 

systems is their event-based nature. The state of the system changes only at the 

occurrence of an event such as an arrival or departure of an entity, failure of a machine, 

completion of inspection by an operator, or other actions. Since the occurrence of such 

events takes place at separated points in time, we generally refer to manufacturing 

systems as discrete event manufacturing systems.  
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Though there do exist analytical models to analyze manufacturing systems given 

their inherent stochastic nature, it becomes increasingly difficult to adjust them or 

develop new analytical models to accommodate complex features and enhanced 

variability in the system. These could be in the form of a new routing policy or a 

preventive maintenance schedule based on uncertain breakdowns of machines. In such 

situations it becomes imperative to use simulation-based models with higher flexibility 

to get a more accurate picture.  

The decision variables in a manufacturing system discussed earlier in Section 

1.2, are generally discrete in nature (unless we are trying to optimize a particular process 

along the manufacturing line that is dependent on a continuous parameter such as 

temperature or the rate of deposition of a thin-film material). Hence the techniques used 

for optimizing a manufacturing system are based on simulation-based discrete stochastic 

optimization methodologies, due to the discrete solution space over which we try to 

optimize the performance of the system. 

 

1.6 Equipment selection problem 

Equipment selection and resource allocation problems form a separate class of 

problems in the domain of manufacturing systems design. They deal with the optimal 

allocation of machines to workstations in a manufacturing system. Allocation and 

selection of tools in manufacturing systems is a widespread problem in manufacturing 

plants, especially for sub-systems like Flexible Manufacturing Systems (FMS) and 

cellular manufacturing systems. These problems have been addressed using analytical 

models, queueing theory and deterministic programming techniques like integer 
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programming. The machine allocations were done with specific objectives like 

minimizing WIP, maximizing throughput and minimizing cost. The complexity of the 

models was not high enough to necessitate the use of simulation models. For instance, 

the servers to be allocated were assumed to be identical. Another classic example of such 

types of problems is the buffer allocation problem where a fixed number of buffers must 

be allocated over a fixed number of servers to optimize some performance metric. We 

discuss how these problems have been addressed in greater detail in Chapter 2. In 

semiconductor wafer fabrication plants, equipment selection is extremely important 

because of the high cost of purchasing and operating the equipment. In addition, 

reducing cycle time (and WIP) is an important objective that is affected by the 

equipment selection decision. Our problem deals with the selection of tools for the 

workstations in a manufacturing system given a choice of different tool types at each 

workstation. Our objective is to minimize the average cycle time subject to the 

constraints on the throughput and the budget available.  

 

1.7 Objectives of the research 

This research considers the equipment selection problem with our goal being the 

minimization of the average cycle time. We present five different simulation-based 

stochastic optimization algorithms and observe their behavior with respect to the quality 

of solution and the number of simulations each algorithm requires. Their performance is 

then compared with that of an analytical algorithm, which we developed as a benchmark. 

The first algorithm is similar to the generalized hill climbing (GHC) algorithm 

described by Sullivan and Jacobson [1]. We search the neighboring discrete space and 
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estimate the function value at the selected points. However, our approach enumerates all 

the neighboring points whereas GHC selects one neighboring point at random. Further, 

we do not accept any bad moves whereas GHC could.  

The next two algorithms are based on gradient-estimation methods. The gradient 

values are estimated using finite differences as in the Kiefer and Wolfowitz [2] 

approach. However, the perturbation size in our case is taken as one due to the discrete 

nature of the problem whereas Kiefer and Wolfowitz take it to be infinitesimally small.  

We also developed two simulation-based stochastic algorithms, which are 

different implementations of the nested partitions algorithm, proposed by Shi and 

Olafsson [3]. The difference in the two implementations lies in the way we partition the 

solution space, to narrow it down through the selection of the most promising region at 

the end of each iteration. 

The analytical algorithm that we developed is based on the queueing theory. It 

makes use of the M/M/m queueing model to find out the average cycle time value. We 

use the results of this algorithm as a benchmark to compare the performance of the 

simulation-based algorithms that we implemented. 

 

1.8 Outline of the thesis 

The thesis is organized as follows. Chapter 2 presents a literature survey and 

discusses the equipment selection problem and the simulation-based stochastic 

optimization algorithms, applied to discrete event manufacturing systems. Chapter 3 

formulates the equipment selection problem, specifying the objective function, 

constraints and the decision variables. A sample problem is also defined at the end of the 
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chapter to explain the implementation of our algorithms. Chapter 4 defines a heuristic 

(whose result is used as the starting point for the hill climbing, and the gradient-based 

algorithms) along with the simulation-based algorithms and the analytical algorithm. 

Their implementation is described through the sample problem defined in Chapter 3. 

Chapter 5 describes our simulation model and the set-up of our experiments. It defines 

the performance metrics based on which we compare the behavior of all the simulation-

based algorithms with the performance of the analytical algorithm. We discuss the 

results we obtained. Chapter 6 concludes the thesis, summarizing the results and 

discussing the contributions, limitations and the future work, pertaining to the research 

we conducted. 
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2. LITERATURE REVIEW 

 

This chapter reviews the research work that has been conducted so far, in the 

field of equipment selection and simulation optimization as applied to the discrete event 

manufacturing systems. Section 2.1 provides a general review of the equipment selection 

and other related problems. Section 2.2 reviews simulation optimization for both the 

continuous and discrete state space. We specifically mention the research that has been 

done, related to hill climbing, gradient-based and nested partitions methods. 

 

2.1 Equipment selection problem 

In the domain of discrete event manufacturing systems, many types of 

optimization problems have been discussed, where the performance measures generally 

include the mean cycle time, average work-in-process (WIP) at the tool groups, 

throughput and tool utilization levels. Equipment selection and resource allocation 

problems form a separate class under this domain.  

 

2.1.1 Methods for equipment selection 

Compared to the resource allocation class of problems, the problems related to 

equipment selection have received less attention. Bretthauer [4] addresses capacity 

planning in manufacturing systems by modeling them as a network of queues. Assuming 

a single server at each node, a branch-and-bound algorithm is presented to find a 

minimum cost selection of capacity levels from a discrete set of choices, given a 

constraint on the WIP. Swaminathan [5] provides an analytical model for procurement of 
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tools for a wafer fab incorporating uncertainties in the demand forecasts. The problem is 

modeled as a stochastic integer programming with recourse, and the objective is to 

minimize the expected stock-out costs due to lost sales across all demand scenarios. 

Considering only one tool type per workstation, the first stage variables - the number of 

tools procured, are decided before the demand occurs. The second stage variables 

determine the allocation of different wafer types to different tools in each demand 

scenario, after the demand is realized. Swaminathan [6] presents a more generalized 

model where one can model the allocations of each wafer type to the different tools. 

Further, a multi-period model is considered to capture changes in demand during the life 

of a product. Connors, Feigin and Yao [7] perform tool planning for a wafer fab using a 

queueing model, based on a marginal allocation procedure to determine the number of 

tools needed to achieve a target cycle time with the objective of minimizing overall 

equipment cost. Assuming identical tools at each tool group, their model incorporates 

detailed analysis of scrap and rework to capture the effects of variable job sizes on the 

workload and on the utilization of tool groups, and careful treatment of “incapacitation” 

events that disrupt the normal process at tools.  

In the equipment selection problem that we consider, there exist a number of tool 

types from which one could select the tools, for a particular workstation.  

 

2.1.2 Related applications 

We now review, some of the problems pertaining to the allocation of buffers and 

resources, and the methods applied to solve them.  
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Bulgak and Sanders [8] consider the buffer size allocation problem in an 

asynchronous assembly system (AAS). They use an extension of the simulated annealing 

algorithm to determine the buffer configuration that maximizes the number of 

assemblies produced by the last workstation of an AAS per unit time. Haddock and 

Mittenthal [9] apply simulated annealing to the problem of maximizing the total 

expected profit for an automated manufacturing system. The decision variables include 

the size of the arrival batches, the proportion of products within the arrival batches and 

the size of the output buffers at each machine. Ho, Sreenivas and Vakili [10] apply the 

ordinal optimization technique to the buffer allocation problem for a transfer line to 

maximize the steady state throughput, and to the cyclic server problem to find a service 

policy for a single cyclic server serving buffers in a round-robin fashion. Choon [11] 

designs a flexible manufacturing system (FMS) through an adaptive random search 

procedure coupled with discrete event simulation, by determining the number of 

machines of each type as well as the number of automated guided vehicles (AGVs), 

speed of AGVs and the capacity of buffers before and after each machine. The 

performance measure is the productivity of the system, defined as the ratio between the 

throughput and the cost. 

Cassandras and Panayiotou [12] propose an ordinal optimization algorithm for a 

resource allocation problem where no closed-form expression is available for the cost 

function. Lin [13] applies ordinal optimization to a resource allocation problem to decide 

whether all transportation should be done through continuous transportation system or 

via discrete transportation units. The performance is measured by the average delay of a 

test product. Cassandras and Gokbayrak [14] too, apply the ordinal optimization 
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technique for the resource allocation problem, to minimize the average cycle time. 

Hillier and So [15] address the server and work allocation problem for production line 

systems through the classical model for a system of finite queues in series, to maximize 

the throughput. Andradottir and Ayhan [16] determine the optimal dynamic server 

assignment policy for tandem systems with a generalized number of servers and stations, 

to obtain optimal long-run average throughput. Palmeri and Collins [17] address the 

minimum inventory variability policy as one alternative to optimizing resource 

scheduling, which focuses on line balancing to reduce the WIP variability resulting in a 

reduction in the mean cycle time. Dumbrava [18] attempts to emphasize the benefit of 

simulation in resource allocation and capacity design of FMS. The number of machines 

in each group is determined to minimize the capacity of the group buffers, minimize the 

WIP, and obtain a good compromise between the number of machines and the 

productivity obtained. Shanthikumar and Yao [19] address the problem of allocating a 

given number of identical servers among the work centers of a manufacturing system by 

formulating it as a non-linear integer program. The objective is to maximize the 

throughput. Frenk et al. [20] present improved versions of a greedy algorithm for the 

machine allocation problem, to achieve a minimum-cost configuration while minimizing 

the WIP. Bermon, Feigin and Hood [21] formulate the capacity allocation problem as a 

simple, linear programming based method to optimize product mix, subject to capacity 

constraints. The objective is to maximize the profit. Bhatnagar et al. [22] formulate fab-

level decision making as a Markov decision problem and address the issues as when to 

add additional capacity and when to convert from one production type to another based 

on the changing demand.  He, Fu and Marcus [23] apply a simulation-based approach to 
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that fab-level decision making problem to deal with the large state and control spaces. 

Liu, Makis and Jardine [24] determine the optimal maintenance time to minimize the 

average time spent by a job in an M/G/1-type production system. Govil and Fu [25] 

provide a comprehensive review of the design, production and control optimization 

problems in job shop systems, FMS, assembly/disassembly networks and manufacturing 

flow lines, modeled as queueing systems.  

The minimization of cycle time has also been addressed specifically, for 

semiconductor fabs. Geiger et al. [26] examine the effects of alternative facility layouts 

on the semiconductor fab cycle time through simulation experiments, with respect to 

machine breakdowns, utilization, transfer time between stations and set-up times. 

Sivakumar [27] designs and develops an on-line near-real-time dynamic scheduling and 

optimization system to optimize the cycle time and machine utilization for the 

semiconductor-manufacturing environment, by addressing the scheduling of constraint 

machines. Collins, Lakshman and Collins [28] present two dynamic tools called FAB 

Simulator and Capacity Planner to determine the optimal WIP based on the production 

mix, in order to maximize the throughput, while achieving shortest cycle times possible, 

dynamically. Hung and Leachman [29] introduce a production planning methodology for 

semiconductor manufacturing based on iterative linear programming optimization and 

discrete event simulation calculations to develop a production plan correctly 

characterizing future flow times as a function of factory load and product mix.  
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2.2 Simulation-based optimization techniques 

Detailed reviews on simulation optimization methodologies have been provided 

by Azadivar [30], Fu [31], Andradottir [32], Carson and Maria [33], Swisher et al. [34], 

Merkuryev, Rastrigin and Visipkov [35] and Merkuryev and Visipkov [36]. Much of the 

literature in the field of simulation-based optimization discusses the optimization 

problems involving continuous variables, while less describes those involving discrete 

variables. We discuss the continuous and discrete simulation-based optimization in the 

following subsections.  

 

2.2.1 Continuous state space 

Fu [31] reviews response surface methodology (RSM) and stochastic 

approximation as methods for solving optimization problems in the continuous state 

space. RSM attempts to fit a polynomial, generally quadratic, to the response of a 

system. It is a black-box approach and hence, it is difficult to perform factor screening to 

identify important parameters a priori. Metamodels provide one method to fit a “global” 

response curve to define a complete functional relationship between the performance 

measure and the parameters of interest. However, much simulation effort is required to 

characterize the response curve over the entire domain of feasibility. Sequential 

procedures provide the second method that has two phases. In the first phase, which is 

performed iteratively, first order experimental designs are used to obtain a least square 

fit. The steepest descent direction is chosen, and the new sub region is explored. In the 

second phase, which is performed only once, a quadratic response curve is fitted. The 

other technique, stochastic approximation, is a gradient-based algorithm where the “best 
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guess” of the optimal parameter is updated iteratively based on the estimate of the 

gradient of the performance measure, with respect to the parameter. When an unbiased 

estimator is used for gradient estimation, the algorithm is referred to as Robbins-Monro 

algorithm and when finite difference estimate is used, it is called Kiefer-Wolfowitz 

algorithm.  

Andradottir [32] focuses on the review of gradient-based techniques for 

continuous optimization. Perturbation analysis (PA) and the likelihood ratio (LR) 

methods require only a single simulation run to obtain an estimate of the gradient, unlike 

the finite difference technique. PA involves tracing the effects of small changes in the 

parameter on the sample path. Fu [31] states that wherever infinitesimal perturbation 

analysis (IPA, the best known variant of PA) fails, the LR method (also known as the 

score function method) works. Azadivar [30] reviews frequency domain analysis as 

another method for gradient estimation, where gradients are calculated by noting the 

effect of sinusoidal oscillations in the input, on the simulation output function. 

Andradottir [32] also reviews sample path optimization, where the expected value of the 

objective function is estimated by taking the average of lots of observations. The 

objective function is expressed as a deterministic function, based on the sample path 

observed on the simulation model, and then the IPA or the LR method is applied.  

Swisher et al. [34] classify the continuous parameter case into gradient and non-

gradient-based optimization procedures. The non-gradient-based procedures include the 

Nelder-Mead (simplex) method and the Hooke-Jeeves method. Merkuryev and Visipkov 

[36] review these two methods. In the Nelder-Mead method, if the objective function is 

dependent on k parameters, then k+1 points (a simplex) are generated and the function is 
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evaluated at those points. The simplex then moves towards the optimum by reflecting a 

point with the worst function value through the center of the remaining k points. The 

Hooke-Jeeves method involves the hill climbing strategy through a combination of 

exploratory searches and pattern moves. Merkuryev, Rastrigin and Visipkov [35] 

describe two stages for an optimization procedure. The first stage finds an initial point 

for the second stage through fast and simple optimization methods like steepest ascent 

and Gauss-Zaidel methods. The second stage finds the optimal solution by precise 

optimization methods like Hooke-Jeeves pattern search.   

 

2.2.2 Discrete state space  

Merkuryev and Visipkov [36] perform a survey of optimization methods in 

discrete systems simulation. They review the finite difference estimation as gradient-

based search technique and methods without derivatives including the Gauss-Zaidel, 

Hooke-Jeeves and Nelder-Mead methods, for discrete parameter case. Fu [31] classifies 

the discrete state space into finite and infinite parameter space and reviews the 

methodologies for both cases. For optimization over a finite set, a number of statistical 

procedures can be applied that fall into two groups: ranking and selection (R&S), and 

multiple comparison procedures (MCPs). R&S procedures include the indifference zone 

and subset selection procedures. When the decision involves selecting the best system 

design, technique of indifference-zone ranking is applied, where the objective function at 

the selected system configuration will be within δ of the optimal value of the objective 

function with a probability at least P*. Here δ represents the “indifference zone” and P* 

represents the user-specified probability. When the decision involves selecting a subset 
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of system designs that contain the best solution, the technique of subset selection is 

applied, where the selected subset of a specified number of system configurations, will 

contain at least one system configuration, such that the objective function at that 

configuration will be within δ of the optimal value of the objective function, with a 

probability at least P*. The second group of statistical procedures, MCPs, makes 

inferences on the performance measure of interest by way of confidence intervals. If the 

confidence intervals are not tight enough to make conclusive statements, then an 

estimate is made of the number of further replications that would be required so as to 

obtain confidence widths at the desired level. Swisher et al. [34] review three main 

classes of MCPs: all pairwise multiple comparisons, multiple comparisons with the best 

and multiple comparisons with a control. Nelson et al. [37] develop procedures by 

combining screening and indifference-zone selection procedures for problems where 

R&S would require too much computation to be practical. Such problems arise when the 

number of alternative designs is large. Goldsman and Nelson [38] review the screening, 

selection and MCPs. Goldsman and Nelson [39] also review various statistical 

procedures for selecting the best of a number of competing systems and comment on 

how to apply those procedures for use in simulations.  

For optimization over an infinite set, there exist random search algorithms. 

Carson and Maria [33] review the various heuristic methods, employed for the search. 

These include genetic algorithms (GA), evolutionary strategies (ES), simulated 

annealing (SA) and Tabu search (TS). Pardalos, Romeijn and Tuy [40] also review these 

methods while focusing on the recent developments and trends in global optimization. 

GA are noted for robustness in searching complex spaces and are best suited for 
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combinatorial problems. The search starts from an initial population and uses a mixture 

of reproduction, crossovers and mutations to create new and hopefully better population. 

ES are similar to GA, in that they imitate the principles of natural evolution as a method 

to solve parameter optimization problems. The strategy involves the mutation-selection 

scheme where one or more parents mutate to produce an offspring and the more 

promising candidate becomes the parent for the next iteration. SA is analogous to the 

physical annealing process where an alloy is cooled gradually so that a minimal energy 

state is achieved. This method can accept bad moves to avoid getting trapped in local 

optima. The probability of accepting such bad moves is high when the temperature is 

high, and decreases as the temperature reduces. To ensure convergence to a global 

optimum, the temperature must be decreased slowly. However, this results in the 

evaluation of the objective function at many points. Haddock and Mittenthal [9] deal 

with this issue. Gelfand and Mitter [41] modify the SA algorithm to allow for random or 

deterministic errors in measurements of the objective function values. Alrefaei and 

Andradottir [42] propose a new search algorithm that resembles SA. It uses constant 

temperature instead of the decreasing cooling temperature used by SA. Further, it uses 

the number of visits to the different states, as the criterion to estimate the optimal 

solution. Alrefaei and Andradottir [43] make another modification to SA by using 

constant temperature, and selecting the state with the best average estimated objective 

function value, obtained from all previous estimates of the objective function values, as 

the optimal. TS, also suited for combinatorial problems, maintains a fixed-length list of 

explored moves, which represents the Tabu moves. These moves are not allowed at the 
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present iteration, in order to exclude backtracking moves. On the addition of a move to 

the Tabu list, the oldest move is removed.  

Andradottir [44] proposes a new iterative method to solve discrete stochastic 

optimization. The proposed method generates a random walk over the set of feasible 

alternatives, and the point visited most often, is shown to be a local optimizer, almost 

surely. Yan and Mukai [45] describe the stochastic ruler (SR) method that is related to, 

but different from the SA method. While the objective value at a new solution candidate 

is compared with that of the current solution candidate in SA, the objective value at a 

new solution candidate is compared against a probabilistic ruler in the SR method, where 

the ruler’s range covers the range of the observed objective function values. The 

convergence is shown to be global. Alrefaei and Andradottir [46] propose another 

method based on a modification of the SR method. The new algorithm uses a finite 

number of observations for each iteration whereas the SR method uses an increasing 

sequence of observations per iteration. The method is shown to converge almost surely, 

to the global optimum. Gong, Ho and Zhai [47] propose a method called stochastic 

comparison (SC) method that overcomes the limitations of the SA and SR methods. For 

SA to work well, it needs a good neighborhood structure. For SR method, if the ruler is 

too big, it reduces the sensitivity of the algorithm, whereas if it is too small, it may not 

be able to distinguish best solutions from other good solutions. SC, with its roots in the 

R&S procedures, eliminates the use of the neighborhood structure and directly compares 

the current configuration to a candidate configuration. While comparing the SR and SC 

methods, they emphasize that when a good neighborhood structure is available, SR 

outperforms the SC algorithm. 
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Other recent developments in the field of discrete parameter simulation 

optimization include a new method based on the selection procedures by Futschik and 

Pflug [48], in which they construct confidence intervals based on statistical estimates to 

select promising subsets with a pre-specified probability of correct selection. Norkin, 

Ermoliev and Ruszczynski [49] propose a stochastic version of the branch-and-bound 

algorithm in which the search area is divided into subsets. Random upper and lower 

bounds for the subsets are calculated with an accuracy depending upon the size of the 

subset and the previous values of the objective function estimates. Based on the values 

of the bounds, the most promising subset is divided further, while others are neglected. 

Ho, Sreenivas and Vakili [10] aim towards finding the good, better or best designs 

instead of accurately estimating the performance values of the designs. In other words, 

they are interested in the ordinal optimization that is insensitive to noise, rather than the 

cardinal optimization. Garai, Ho and Sreenivas [50] propose a hybrid optimization 

algorithm that combines adaptive ordinal optimization using GA, with hill climbing. GA 

is used to choose the next set of search points from the current set of search points, 

which makes the ordinal optimization method adaptive. Hill climbing is used to locate 

the best point amongst the points not discarded by the adaptive ordinal optimization 

method. Shi and Olafsson [3] describe the nested partitions algorithm (NPA) for 

combinatorial problems. The method can be extended to problems where the feasible 

region is either countable infinite or uncountable and bounded. The algorithm 

concentrates on dividing the search space into sub regions and finding the most 

promising region at each iteration, which is then divided further. A nice property of the 

algorithm is the ability to backtrack to a larger region. The algorithm is shown to 
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converge globally, with probability one. Shi, Olafsson and Chen [51] propose a new 

hybrid optimization algorithm that combines the global perspective of NPA and the local 

search capabilities of the GA. It uses the GA search to be able to backtrack quickly from 

a region containing a solution better than most, but not all of the other solutions. The 

original NPA would take a much longer time to backtrack in such a case. Shi and Chen 

[52] combine NPA, ordinal optimization and an efficient simulation control technique 

called optimal computing budget allocation (OCBA) to produce a hybrid algorithm for 

discrete optimization. OCBA is a ranking and selection method that ensures a larger 

allocation of simulation effort amongst the potentially good designs. Sullivan and 

Jacobson [1] propose an ordinal hill climbing method based on ordinal optimization and 

the generalized hill climbing (GHC) algorithms. GHC seeks to find the optimal design 

by allowing the algorithm to visit inferior designs enroute to a globally optimal design. 

The ordinal hill climbing algorithm incorporates the design space reduction feature of 

ordinal optimization and the global optimization hill climbing feature of GHC 

algorithms. Abspoel et al. [53] develop an optimization strategy based on sequential 

linearization. In each cycle, a linear approximate sub problem is created and solved. If 

the design improves the objective function value, it forms the next cycle’s starting point. 

A D-optimal design is used to plan the simulation experiments so that the number of 

simulation experiments is kept at a manageable level for increasing number of design 

variables. Laguna and Marti [54] describe a training procedure wherein a neural network 

filters the solutions likely to perform poorly when the simulations are executed. In other 

words, a neural network acts as a prediction model for simulations just as a simulation 

acts as a prediction model for a stochastic system.  
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2.2.3 Applications of hill climbing, gradient-based and nested partitions algorithms 

We review below, the kind of problems to which hill climbing, gradient-based 

and nested partitions algorithms (NPAs) have been applied.  

Sullivan and Jacobson [1] apply the ordinal hill climbing to a discrete 

manufacturing process design for an integrated blade and rotor geometric shape 

component. It considers three manufacturing process design sequences, where each 

process has controllable and uncontrollable input parameters associated with it. The cost 

function includes the cost of manufacturing, cost penalties for violating process 

constraints and cost penalties for not meeting certain geometric and microstructural 

specifications. The objective is to identify the best process design sequence, along with 

the values of the controllable input parameters so as to minimize the total cost.  

Gerencser, Hill and Vago [55] apply a version of stochastic approximation 

method for optimizing over discrete sets. They consider the resource allocation problem. 

The objective function is the sum of the cost in the form of an expectation incurred by 

each user class that depends upon the resources that are allocated to each class. 

Cassandras and Gokbayrak [14] convert a discrete resource allocation problem into a 

continuous variable surrogate problem in order to be able to obtain sensitivity estimates 

via gradient information. The resulting solution after each iteration is mapped back to 

the discrete domain. Fu and Healy [56] address the (s,S) inventory control problem using 

different methods including a gradient-based algorithm. Whenever the inventory 

position falls below the level s, a quantity equal to the difference between S and the 

current inventory position is ordered. The objective is to minimize the long-run average 

cost per period, which includes the ordering, holding and shortage costs.  
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Shi and Chen [52] develop a new algorithm taking advantage of the global 

perspective of NPA and apply it to the buffer allocation problem. Shi, Olafsson and 

Chen [51] develop a new algorithm combining NPA and the genetic algorithm for the 

product design problem. They maximize the market share by determining the optimal 

levels of the attributes of a product. Shi, Chen and Yucesan [57] apply NPA to solve a 

buffer allocation problem in supply chain management. Shi, Olafsson and Sun [58] 

apply NPA to the traveling salesman problem and emphasize the “parallel” nature of 

NPA, suitable for the emerging parallel processing capabilities. 

 

2.3 Summary 

This chapter provided a detailed review of the simulation-based optimization 

techniques that are used for both continuous and discrete state space. We also provided a 

review of the equipment selection and the related problems that have been addressed, 

using either queueing models or simulation models for optimization. Law and McComas 

[59] mention that one of the disadvantages of simulation historically, is that it was not an 

optimization technique. Out of a small number of system configurations that were 

simulated, a decision-maker would choose the one that appeared to give the best 

performance. Based on the availability of faster computational environments and various 

optimization approaches, the situation has changed. Today, simulation software 

combined with optimization routines form a powerful tool for many applications. The 

goal of such packages is to orchestrate the simulation of a sequence of system 

configurations to reach a system configuration that provides an optimal or near optimal 

solution. 
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Although there exist many approaches to solve the simulation-based optimization 

problems in discrete event manufacturing systems, it is difficult at times to choose 

amongst the various available techniques. In other words, it is not easy to identify an 

algorithm in advance, with high confidence that it will be the best approach for the 

problem at hand. At times, a different implementation of the same algorithm provides 

better results. L’Ecuyer, Giroux and Glynn [60] apply different variants of the stochastic 

approximation technique to an analytical M/M/1 queueing model to compare them. They 

conclude that the gradient estimators through infinitesimal perturbation analysis and 

finite differences derivative estimation techniques perform better than likelihood ratio 

derivative estimators. Alrefaei and Andradottir [43] compare different variants of the 

simulated annealing algorithm through their application on M/M/1 queueing systems. 

Based on their choice of values for parameters such as the annealing sequence, the 

simulated annealing version they propose gives a better overall performance for a 

particular example considered, compared to other versions of the algorithm proposed by 

other authors. Sometimes, the structure of the problem might suggest the suitability of 

certain algorithms. Gong, Ho and Zhai [47] develop a numerical testbed system and 

show that the simulated annealing and stochastic ruler methods outperform the stochastic 

comparison method when the search space has a good neighborhood structure. Garai, Ho 

and Sreenivas [50] compare adaptive ordinal optimization using genetic algorithm 

against hill climbing using the gradient method, through their application on different 

queueing models. The comparison is based on the sensitivity to simulation noise. They 

show that the adaptive ordinal optimization works better than the pure gradient method 

due to its insensitivity to simulation noise. Laguna and Marti [54] compare their scatter 
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search implementation to train a neural network against various training procedures 

based on the simulated annealing algorithm. They find that their scatter search 

implementation provides solutions comparable to the best methods, but with much less 

computational effort.  Fu and Healy [56] compare gradient-based, retrospective and 

hybrid algorithms while addressing the (s,S) inventory control problem. Their hybrid 

algorithm combines the fast convergence of the pure retrospective approach with the low 

computational requirement for the gradient search scheme. 

This thesis addresses the problem of equipment selection, formulated in the next 

chapter, and compares the performance of hill climbing, gradient-based and the nested 

partitions algorithms. The suitability of the approaches is discussed at the end, with 

respect to the special structure the equipment selection problem has. 
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3. PROBLEM FORMULATION 

 

This chapter defines the equipment selection problem. In section 3.1, we 

mathematically formulate the optimization problem, specifying the objective function, 

the decision variables and the constraints involved. Section 3.2 proves that our 

equipment selection problem is NP-complete. In section 3.3, we define a sample 

problem, which is used to describe the heuristic and the algorithms in Chapter 4.  

 

3.1 Problem definition 

The problem studied here is one of vital importance, especially to the 

semiconductor industry, which invests a great deal of money in equipment. Selecting the 

proper set of tools is important for satisfying throughput and budget requirements, and 

minimizing average cycle time. We formulate the problem as follows. 

The objective is to minimize E[T], the average cycle time of a lot of wafers 

through the factory, which is measured using discrete event simulation runs. The 

uncertainty in the system lies in the inter-arrival time of the lots and the processing time 

of the tools. The factory is a flow shop. Each job (or lot) must visit each workstation in 

the same sequence. The travel times between workstations are constant regardless of tool 

selection.  

The factory has n workstations. Each workstation can have tools of one or more 

types. If at ith workstation there are zi types of tools available, then Xij, the number of 

tools of type j purchased at each workstation i where i = 1,..., n and j = 1,..., zi form the 
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decision variables. Xij must be a non-negative integer. The total number of decision 

variables is p where 

The cost of one tool of type j at workstation i is Cij (dollars) and the capacity of 

one such tool is µij (wafers per unit time). The decision-maker has a fixed budget of M 

(dollars) for purchasing the tools so that the total tool cost cannot exceed M. Also, the 

manufacturing system must achieve a throughput of λ (wafers per unit time). If µi is the 

capacity at workstation i, then       . The constraints can be written as 

follows. 

     for all i, and  

 

   

Note that for n = 1, our problem reduces to the integer knapsack problem, which we 

define later in this chapter.  

 

3.2 NP-complete nature of the problem 

Let the number of workstations be 1. We now define an instance of our problem. 

Consider a set of tools T at the workstation, comprising different tool types Tj with a cost 

Cj, and capacity µj, associated with each tool; a set X specifying the quantity of different 

tool types Xj ; a budget constraint M; and a throughput constraint λ. The decision 

problem ESP that would correspond to the feasibility of the instance can be stated as 

follows. 
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Is there a subset      such that  

       and  

In the following subsections we prove that ESP is NP-complete. Given an 

instance of the integer knapsack problem, we will reduce it to ESP so that a solution to 

ESP will exist if and only if there would exist a solution to the integer knapsack 

problem.  

 

3.2.1 ESP ∈  NP 

Given a solution to the problem ESP, we can easily verify in polynomial time 

whether the capacity of the system is greater than λ, and that the total money spent is 

less than M. If the solution given to us is             where z is the total 

number of tool types at the workstation, then the calculations     and   have a 

complexity of θ(z), which is polynomial time.  

Hence, ESP belongs to the NP class.  

 

3.2.2 Integer knapsack problem 

We pose an instance of the integer knapsack problem below. 

A thief robbing a store finds certain items denoted by U. An item u weighs s(u) pounds 

and is worth v(u)dollars and exists in multiple quantities. He wants to take at least K 

dollars worth of items, but can carry at most B pounds in his knapsack. Mathematically, 

it can be expressed as follows (Garey and Johnson [61]). 

Consider a finite set U, a “size”       and a “value”     for each          

(where Z denotes the set of integers), a size constraint       and a value goal     
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The decision problem can be stated in the following way.  

Is there an assignment of a non-negative integer c(u) to each  such that 

        and   

 

3.2.3 Transforming the integer knapsack problem to ESP 

Given an instance of the integer knapsack problem, we now create an instance of 

ESP. Let Cu = s(u) and µu = v(u), for each    Further, let M = B, and λ = K-1. Is there 

an assignment of a non-negative integer Xu to each tool of type            such that 

     and  

Therefore, we find a 1-1 correspondence between the integer knapsack problem 

and ESP. If there exists a solution to the integer knapsack problem, then clearly, there 

would exist a solution to ESP. And if there exists a solution to ESP, then clearly there 

would exist a solution to the integer knapsack problem. 

Since the integer knapsack problem has been shown to be NP-complete (Garey 

and Johnson [61]), the arguments presented in section 3.2 prove that finding a solution to 

ESP is NP-complete too. Hence, we conclude that since the decision version of the 

equipment selection problem is NP-complete, the optimization version is at least as hard 

as the decision version. Hence our equipment selection problem is NP-complete.  

 

3.3 Sample problem definition 

Consider a manufacturing system with n = 2 workstations, with each workstation 

i, having zi = 3 types of tools available. The total number of decision variables is p, so 

that 
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The cost of one tool of type j for workstation i is Cij, and the capacity of one such 

tool is µij. Tables 3.1 and 3.2 list these costs and capacities respectively. The decision-

maker has a fixed budget of M = $18,000 for purchasing the tools. The manufacturing 

system must achieve a throughput of λ = 100 wafers per hour.  

 

 

 

 

 

 

 

 

 

 

 

 

The lot inter-arrival times and the lot processing times are exponentially 

distributed. The mean inter-arrival time for the lots that comprise 25 wafers each is 0.25 

hours. The mean lot processing time for tool Tij is 25/µij hours. The number of lots that 

visit each tool at a workstation is proportional to the tool’s capacity, irrespective of 

whether a tool with higher capacity at that workstation is idle or not. The travel times are 

ignored. 

 

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 $550 $750 
j = 2 $900 $900 
j = 3 $600 $600 

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 11.5 16 
j = 2 18 19.5 
j = 3 12.75 12 

Required throughput = 100 
All numbers in wafers/hour 

Table 3.1: Tool costs Cij 

Table 3.2: Tool capacities µij 
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3.4 Summary 

This chapter described the equipment selection problem. The next chapter 

describes the heuristic and the algorithms that are applied to the sample problem defined 

in this chapter.  
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4. SOLUTION APPROACH 

 

This chapter provides a detailed description of the heuristic and all the algorithms 

that we have implemented to tackle the problem defined in Chapter 3. Section 4.1 

provides an introduction to the heuristic and the algorithms, which are later described in 

Sections 4.2 - 4.8. Section 4.2 describes the heuristic. Sections 4.3 - 4.8 describe the hill 

climbing, biggest leap, safer leap, nested partitions-I, nested partitions-II and the 

analytical algorithms respectively. We also show how the heuristic and the algorithms 

are implemented on the sample problem defined in Chapter 3. Section 4.9 reports the 

results for that sample problem.   

 

4.1 Introduction to the heuristic and the algorithms 

The budget and throughput constraints bound the set of feasible solutions. 

Purchasing too few tools will give insufficient capacity. Purchasing too many tools will 

violate the budget constraint. Hence the tools must be selected carefully.  

For the gradient-based search algorithms, namely hill climbing, biggest leap and 

safer leap algorithms, a heuristic is employed as the first step to find a low-cost, feasible 

solution by meeting the throughput requirements. Then the gradient-based search 

procedure is applied to find better solutions. The gradient gives us the information about 

what tools to add in order to reduce the cycle time the most. The search algorithms that 

have been developed, use gradient information to direct the search through the discrete 

solution space, always moving to a nearby integer point that is feasible. The gradient 

provides the search direction.  
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The gradient estimation uses forward differences to avoid violating the 

throughput constraints. For example, if Xij represents the number of tools of type j at the 

ith workstation, and Xij = 0 at some point in the iteration, then central differences cannot 

be used as cycle time values will have to be estimated at Xij = -1 and Xij = 1. However, 

the gradient can always be estimated through forward differences, where cycle time 

values are estimated at Xij = x and Xij = x+1, x ≥ 0. The three algorithms proposed for this 

type of search are: 

Hill climbing algorithm: The search consists of taking very small steps, buying 

only one tool at a time, till such point that the average cycle time has been minimized or 

the budget has been exhausted. 

Biggest leap algorithm: The search consists of taking biggest possible leaps, 

buying lots of tools when feasible, till such point that the average cycle time has been 

minimized or the budget has been exhausted as in Mellacheruvu [62].  

Safer leap algorithm: This is a combination of the hill climbing and the biggest 

leap algorithms. The search consists of taking large, but cautious steps, till such point 

that the average cycle time has been minimized or the budget has been exhausted.   

In all cases, the algorithms consider the average cycle time to be minimized if no 

step improves it further, within the precision of the simulation tool.  
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Consider a manufacturing system with two workstations, having one tool type 

per workstation. Figure 4.1 describes one of the ways in which the three algorithms 

could behave if there was enough money to buy at least five more tools, having already 

bought 3 tools, assuming that there is enough scope for improvement in the cycle time. 

The hill climbing algorithm buys one tool at a time. The biggest leap algorithm buys all 

the tools in a single move. The safer leap algorithm takes big, but cautious steps. The 

solution in the end may differ as can be seen.  

The other kind of search procedure used is the nested partitions algorithm (NPA), 

which employs a random search. This procedure does not build up on the low-cost, 

feasible solution provided by the heuristic.  

Figure 4.1: Behavior of hill climbing, biggest leap and safer leap algorithms 
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The solution space is partitioned into several regions, and solution points are 

sampled from each region using a random sampling scheme. The best estimated 

objective function value forms the criterion for selecting the most promising region, 

which is then, partitioned further. Sampling from the region that surrounds the most 

promising region allows escaping local optimums by backtracking to a larger region that 

would include the current most promising region. Two versions of NPA (NPA-I and 

NPA-II) were developed for our problem. They differ in the way the solution space is 

partitioned. 

NPA-I: The search partitions the solution space based on the tool values of each 

and every existing tool type. Therefore the depth of partitioning (or the number of times 

the solution space will have to be partitioned) will be equal to the sum of the different 

tool types at each workstation. As we go deeper and deeper in the partitioning process, 

we keep on fixing the tool values for those tools that have been partitioned on. These 

tool values will be the final ones, unless the procedure backtracks at some later stage in 

the partitioning process.  

NPA-II: This search deals with a solution space that consists of only one tool 

type per workstation. It partitions the solution space in two steps. In the first phase of 

partitioning (primary phase), it fixes the tool type that is found to be the most promising, 

for each workstation. In the second phase of partitioning (secondary phase), it fixes the 

tool values for those chosen tool types. The secondary phase is similar to NPA-I, except 

that the input to NPA-I would consist of only one tool type for each workstation. The 

depth of partitioning in NPA-II equals twice the number of workstations (for each phase 

of partitioning, the depth equals the number of workstations). There could exist a 
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possibility of backtracking from a secondary depth level (secondary node) to a primary 

depth level (primary node). 

Consider the same manufacturing system with two workstations, having one tool 

type per workstation. Figure 4.2 describes the way NPA would work. To begin with, we 

would partition the solution space on the tool values for the first workstation. The lines 

L1, L2,…,L5 in Figure 4.2(a) represent the solution subspace for which the tool values 

for the first workstation are 1,2,…,5 respectively. The bold line L4 indicates the most 

promising region after the sampling has been done.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, with tool value at first workstation as 4, we partition on the tool values of 

the second workstation. The points on the line L4 in Figure 4.2(b) indicate the solution 

Figure 4.2(a): NPA – partitioning on tool values for workstation 1 
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subspace at the second depth level. All possible solutions that do not lie on the line L4 

form the surrounding region. If the best solution is found on the line L4, the procedure 

terminates, returning that solution as the final result, otherwise we backtrack and 

partition on the tool values for the first workstation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If the first workstation had two tool types, then NPA-I would partition on the tool 

values of both the tool types at first workstation, and on the tool type at the second 

workstation in a similar manner as shown above. NPA-II however, would first partition 

to select the most promising tool type, before partitioning to select the tool values. The 

partitioning for primary phase would look for the solution subspaces on the X and Y 

axes only, as shown in Figure 4.3 (solutions with single tool type per workstation).  

Figure 4.2(b): NPA – partitioning on tool values for workstation 2 
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Once the most promising tool type has been determined by sampling on the X 

and Y axes, we would start with the secondary phase of partitioning to determine the 

tool values, as explained earlier.  

 

4.2 Description of the heuristic 

4.2.1 Notation 

The following notation is used: 

λ desired throughput 

M budget available 

n  number of workstations 

Figure 4.3: Solution space for the NPA-II 
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zi total number of different  tool types at workstation i; i = 1, . . . ,n  

Tij tool of type j at workstation i; j = 1, . . . , zi 

µij capacity of Tij tool 

Cij cost of Tij tool 

Uij capacity per unit cost of Tij tool 

k iteration number 

Xij
k
 number of Tij tools at the kth iteration 

θk solution after the kth iteration:  

Bk budget available after the kth iteration 

 greatest integer less than or equal to x 

 smallest integer greater than or equal to x  

  

4.2.2 Description 

For each workstation i = 1,...,n: 

 For each tool type, calculate Uij = µij / Cij 

Let    

Let yi equal the number of Tij tools such that          

For these yi tool types, let Xij
0

 =                      

 

For the other zi – yi tool types, let Xij
0

 = 0 

Set 

If                             , then the heuristic solution is infeasible; stop 

Else perform the search 

*
iij UU =

∑∑
= =

>
n

i

z

j
ijij MCX

i

1 1

0

 x

 x













ijiy µ
λ

},...,{ 00
110 nnzXX=θ

111 1 1{ ,..., ;......; ,..., }
n

k k k k
k z n nzX X X Xθ =

*
1max{ ,..., }

ii i izU U U=
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Note that at the end of the heuristic, remaining budget is given as 

 

  

4.2.3 Heuristic applied to the sample problem 

First, the capacities per unit cost (Uij) are calculated for each tool. Table 4.1 lists 

these.  

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 8.36 8.53 
j = 2 8.00 8.67 
j = 3 8.50 8.00 

All numbers in 10-4 wafers/hour/dollar 
 

 

Table 4.2 lists the     s and the yis for the two workstations. 

 

Workstation 
 

i = 1 i = 2 
 U13 U22 

yi 1 1 
 

 

For the tools T13 and T22,  

 

    , and 

 

Table 4.3 lists the number of tools bought (Xij) so as to meet the throughput 

requirements. 

∑∑
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−=
n

i
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j
ijij
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00
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ijiy
X
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Table 4.1: Tool capacity per tool cost Uij 

Table 4.2: Ui
* and yi 
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Workstation 
Tool Type 

i = 1 i = 2 
j = 1 0 0 
j = 2 0 6 
j = 3 8 0 

 

 

Finally, we check whether the heuristic solution satisfies the budget constraint or not.  

 

 

Hence  

The average cycle time with this configuration of tools is estimated to be 21.09 

hours. Having met the throughput and the budget constraints, the search will be 

performed next in order to reduce the cycle time as much as possible, utilizing the 

remaining budget B0 where B0 = M – 10,200 = $7,800. 

  

4.3 Description of the hill climbing algorithm 

4.3.1 Notation 

The following notation is used in addition to that of the heuristic: 

N number of replications 

p total number of tool types =  

average cycle time at point Vij obtained by the rth simulation run at the kth  

iteration 

 

4.3.2 Description 

If there is no          , then return θ0 as the final solution  

)(ˆ k
ijr Vf

0BCij ≤

∑ =

n

i iz
1

∑∑
= =

=≤=+=
n

i

z

j
ijij

i

MCX
1 1

000,18200,10)900*6()600*8(

Table 4.3: Number of Tijs bought by the heuristic (Xij
0)  

0 0 0 0 0 0
0 11 12 13 21 22 23{ , , ; , , } {0,0,8;0,6,0}.X X X X X Xθ = =
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Else initialize k = 0; perform the search 

 

Step 1: Neighborhood Search (This step evaluates all the feasible neighbors of the 

current solution) 

  Step 1.1: Increment k by 1 

  Step 1.2: For each workstation i = 1,...,n: 

          For each tool type j = 1,...,zi: 

           Specify neighbor Vij
k as: 

 

      For each neighbor where                 , estimate the cycle time of Vij
k as  

     follows: 

 

      Note that this will require at most (Np) simulation runs. 

 

Step 2: If                                                      for all Tij, then return θk-1; stop 

 Else continue 

 

Step 3: Solution update 

  Step 3.1: Choose Vij
k that has the minimum                  

  Step 3.2: Update the values of Xij
ks 

  Step 3.3: Let θk = Vij
k  

  Step 3.4: Set                           

  Step 3.5: If there is no Tij that has                , then return θk; stop 

∑
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=
N

r
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           Else go to Step 1 

 

4.3.3 Hill climbing algorithm applied to the sample problem 

Since C11 = 550 < B0 = 7800, there is at least one Tij such that   .  Hence, 

perform the search. Initialize k = 0.  

Step 1: 

  Step 1.1: Increment k; k = 1 

  Step 1.2: Table 4.4 lists the cycle times      of the corresponding Vij
1 

 

Tool 
 θ0 θ1 

T11 5.77 0 0 
T12 4.86 0 1 
T13 5.42 8 8 
T21 20.42 0 0 
T22 20.34 6 6 
T23 20.56 0 0 

Cycle Time values in hours 
 

 

 

Step 2: Since there is at least one Tij such that        , we 

continue with the search 

 

Step 3: 

  Step 3.1: V12
1 has the minimum              

  Step 3.2: Table 4.6 shows the updated values of Xij
1  

  Step 3.3: θ1 = V12
1 = {0,1,8;0,6,0} 

0BCij ≤

)(ˆ 1
ijVf

NijVf ))(( 1
^

NijNij VfVf ))(())(( 0
^

1
^

<

NijVf ))(( 1
^

Table 4.4: Hill climbing algorithm: cycle time values and the 
tool configuration before and after the iteration 
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  Step 3.4:  

  Step 3.5: Since C11 = 550 < B1 = 6900, there is at least one Tij such that                ;  

     hence go to Step 1 

 

4.4 Description of the biggest leap algorithm 

4.4.1 Notation 

The following notation is used in addition to that of the heuristic: 

N number of replications 

p total number of tool types =  

c size of the perturbation = 1 

 average cycle time at point θk obtained by the rth simulation run 

eij unit vector in direction ij 

 gradient vector at point θk normal to the direction ij 

ak step size at iteration k 

 

4.4.2 Description 

If there is no            , then return θ0 as the final solution  

Else initialize k = 0; perform the search 

 

Step 1: Gradient estimation 

  Step 1.1: Increment k by 1 

  Step 1.2: For each workstation i = 1,...,n: 

          For each tool type j = 1,...,zi:   

∑
=

n

i
iz

1
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6900900780012
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                      Let  

             Estimate            as follows: 

     

           

 

     Note that this will require N(p+1) simulation runs. 

 

Step 2: Solution update 

  Step 2.1: For each workstation i = 1,...,n: 

          For each tool type j = 1,...,zi: 

          Let dij
k =             

            If dij
k > 0, then set dij

k = 0; this avoids reducing any Xij
k 

If Cij > Bk-1, then set dij
k = 0; this avoids buying any tools that are too 

expensive 

  Step 2.2: If dij
k = 0 for all Tij, then return θk-1; stop 

      Else continue 

  Step 2.3: Let 

 

  Step 2.4: If all                = 0, then  

Set Xij
k = Xij

k-1 + 1  for Tij where dij
k is the smallest (most negative) 

            = Xij
k-1  otherwise;   

         Bk = Bk-1 - Cij 

      Else 
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         Set Xij
k = Xij

k-1 +               

   

 

Step 3: Let 

θk is feasible with respect to the constraints since 

 

 

where all         and all     

 

Step 4: If there is no              , then return θk; stop 

  Else go to Step 1 

 

4.4.3 Biggest leap algorithm applied to the sample problem 

Since C11 = 550 < B0 = 7800, there is at least one Tij such that   . Hence, 

continue with the search. Initialize k = 0.  

 

Step 1: 

  Step 1.1: Increment k; k = 1 

  Step 1.2: Table 4.5 lists the gradients  of the corresponding Vij
1 
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Tool    

T11 5.77 21.09 -15.32 
T12 4.86 21.09 -16.23 
T13 5.42 21.09 -15.67 
T21 20.42 21.09 -0.67 
T22 20.34 21.09 -0.75 
T23 20.56 21.09 -0.53 

All numbers in hours 
 

 

 

Step 2: 

  Step 2.1: Values of dij
1 are shown in Table 4.6 

  Step 2.2: Since at least one dij
1 is < 0, we continue with the search 

  Step 2.3: Calculate a1 as:  

 

 

 

 

   Step 2.4: Table 4.6 shows the values for            .  Since at least one such value is > 0,  

   Xij
1 are updated as shown in Table 4.6 

Tool  dij
1 -a1dij

1  θ0 θ1 

T11 -15.32 -15.32 3.51 3 0 3 
T12 -16.23 -16.23 3.72 3 0 3 
T13 -15.67 -15.67 3.59 3 8 11 
T21 -0.67 -0.67 0.15 0 0 0 
T22 -0.75 -0.75 0.17 0 6 6 
T23 -0.53 -0.53 0.12 0 0 0 

Cycle Time gradients in hours 
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Table 4.5: Biggest leap algorithm: cycle time and the 
corresponding gradient values for the first iteration 

Table 4.6: Biggest leap algorithm: data for calculating the new tool configuration 
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 B1 = B0 – (3*550 + 3*900 + 3*600) = 7800 – 6150 = 1650 

 

Step 3:  

 

Step 4: Since C11 = 550 < B1 = 1650, there is at least one Tij such that                ; hence 

go to Step 1 

 

4.5 Description of the safer leap algorithm 

4.5.1 Notation 

The following notation is used in addition to that of the heuristic: 

N number of replications 

p total number of tool types =      

c size of the perturbation = 1 

 average cycle time at point θk obtained by the rth simulation run 

eij unit vector in direction ij 

 gradient vector at point θk normal to the direction ij 

ak step size at iteration k 

Dk amount spent at the kth iteration 

 

4.5.2 Description 

If there is no           , then return θ0 as the final solution  

Else initialize k = 0; perform the search 
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Step 1: Gradient estimation 

  Step 1.1: Increment k by 1 

  Step 1.2: For each workstation i = 1,...,n: 

          For each tool type j = 1,...,zi:   

                      Let  

             Estimate             as follows: 

     

           

 

 

      Note that this will require N(p+1) simulation runs. 

 

Step 2: Solution update 

  Step 2.1: For each workstation i = 1,...,n: 

          For each tool type j = 1,...,zi: 

          Let dij
k =              

            If dij
k > 0, then set dij

k = 0; this avoids reducing any Xij
k 

If Cij > Bk-1, then set dij
k = 0; this avoids buying any tools that are too 

expensive 

  Step 2.2: If dij
k = 0 for all Tij, then return θk-1; stop 

      Else continue 

  Step 2.3: Let 
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  Step 2.4: If all                = 0, then  

        Set Xij
k =  Xij

k-1 + 1 for Tij where dij
k is the smallest (most negative) 

                  = Xij
k-1  otherwise; 

        Bk = Bk-1 - Cij 

      Else    

        Initialize Dk = 0 

               For each workstation i = 1,...,n:   

Compare dij
k for those Tij where               > 0 

  Let   Xij
k = Xij

k-1 + 1  for Tij where dij
k is the smallest (most negative) 

     = Xij
k-1 for the rest of the Tij at workstation i; 

             Dk = Dk + Cij where Cij is the cost of the Tij that is bought 

             Bk = Bk-1 – Dk 

 

Step 3: Let 

θk is feasible with respect to the constraints since 

 

         

where all         and all     

 

Step 4: If there is no              , then return θk; stop 

         Else go to Step 1 
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4.5.3 Safer leap algorithm applied to the sample problem 

Since C11 = 550 < B0 = 7800, there is at least one Tij such that   . Hence, 

continue with the search. Initialize k = 0. 

Step 1: 

  Step 1.1: Increment k; k = 1 

  Step 1.2: Table 4.7 lists the gradients  of the corresponding Vij
1 

 

Tool    

T11 5.77 21.09 -15.32 
T12 4.86 21.09 -16.23 
T13 5.42 21.09 -15.67 
T21 20.42 21.09 -0.67 
T22 20.34 21.09 -0.75 
T23 20.56 21.09 -0.53 

All numbers in hours 
 

 

 

Step 2: 

  Step 2.1: Values of dij
1 are shown in table 4.8 

  Step 2.2: Since at least one dij
1 is < 0, we continue with the search  

  Step 2.3: Calculate a1 as:  
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Table 4.7: Safer leap algorithm: cycle time and the 
corresponding gradient values for the first iteration 
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  Step 2.4: Table 4.8 shows the values for             .  Since at least one such value is > 0,  

  Xij
1 are updated as shown in table 4.8. Note that d12

1 is the most negative. 

 

Tool  dij
1 -a1dij

1  θ0 θ1 

T11 -15.32 -15.32 3.51 3 0 0 
T12 -16.23 -16.23 3.72 3 0 1 
T13 -15.67 -15.67 3.59 3 8 8 
T21 -0.67 -0.67 0.15 0 0 0 
T22 -0.75 -0.75 0.17 0 6 6 
T23 -0.53 -0.53 0.12 0 0 0 

Cycle Time gradients in hours 
 

 

 B1 = B0 – C12 = 7800 – 900 = 6900 

 

Step 3:          . Note that no tool is added to the second 

workstation because all         = 0 

 

Step 4: Since C11 = 550 < B1 = 6900, there is at least one Tij such that                ; hence,  

go to Step 1 

 

4.6 Description of NPA-I 

4.6.1 Notation 

The following notation is used in addition to that of the heuristic: 

Bl remaining budget at the lth partition depth   

µi capacity of workstation i, at the current partition depth 

F set of those Tij whose Xij are fixed at the current partition depth 
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Table 4.8: Safer leap algorithm: information for calculating the new tool configuration 
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N set of those Tij whose Xij are not fixed at the current partition depth 

Ui    for Tij     N at workstation i 

 

Ui
'
    for all Tij at workstation i 

jth highest capacity out of the n workstations 

χ   

 

4.6.2 Description 

Renumber Tij at each workstation i so that     .  

Initialize F  = { }; N  = {(1,1) (2,1) … (n,1) (1,2) (2,2) …… (n,zn)} where (i,j) denotes 

the tool Tij. 

 

Step 1: Partitioning 

   We will assume z1 = z2 =…= zn = z 

The depth in the partitioning scheme is governed by the following order:    

 

  

Calculate              ;   

 

The lower and upper bounds on the width at each level of depth are given as: 

    Xhp
L = 0 if ∃  j>p : (h,j)     N 

 

      =               otherwise;  

min{ }ij

ij

C

µ

jxµ

11 21 1 12 22 2 1 2, ,..., , , ,..., ,......, , ,...,n n z z nzT T T T T T T T T

∈

1 2 ...
ii i izµ µ µ≥ ≥ ≥

( , )

l
ij ij

i j

B M X C
∈

= − ∑
F

h

hp

λ µ
µ

 −
 
  

111 1 1{ ,..., ;......; ,..., }
nz n nzX X X X

∈

( , )
i ij ij

i j

Xµ µ
∈

= ∑
F

min{ }ij

ij

C

µ



 54

 

Xhp
U  = 

 

Add (h,p) to F  

 

Step 2: Random Sampling 

Let Xij = 0, ∀  (i,j)    N  

For Xhp = Xhp
L,…, Xhp

U : 

     Perform steps 2.1 and 2.2 

  Step 2.1: Check feasibility:           

     For each workstation i = 1,...,n: 

       While (µi ≤ λ), repeat the following loop:     

          From those (i,j)    N , pick a random (i,j) and increment its Xij                      

          Set  Bl = Bl - Cij ;  µi = µi + µij            

If Bl < 0, repeat this step again, choosing different random (i,j)s. If after repeating 

a number of times, feasibility is still not obtained, skip the current partition 

(represented by the current value of Xhp) as well as the subsequent remaining 

partitions (represented by the remaining values of Xhp) at the current depth l. 

  Step 2.2: Sample a point in the partitioned space: 

      Pick a uniformly distributed random number R between 0 and Bl 

      Let P(R) = {(i,j) : (i,j)    N , Cij ≤ R} 
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      While P(R) is not empty, repeat the following loop:    

       Consider those q workstations that have at least one (i,j)     P(R) 

Arrange these q workstations according to their capacity, such that 

   

Pick a workstation i at rank j, with probability      ; let k be the 

selected workstation 

 

However, for special cases where capacities of some workstations are 

equal, the probability of picking any of these workstations would be the 

same. For ex., if         , then the probability of 

picking  workstations   

   x2, x3 or x4 =  

    Note that this scheme makes the workstation with lower capacity, more  

likely to be selected. 

    

  From those (k,j)    P(R), randomly pick a (k,j) 

Set  Xkj = Xkj + 1; R = R - Ckj ;  µk = µk + µkj 

 

  Step 2.3: Sample a point in the surrounding space: 

Let Yij be the number of Tij tools for the surrounding region 

     Initialize Yij = 0 ∀  (i,j)  

Pick a uniformly distributed random number R between         and M 

Let Q(R) = {(i,j) : Cij ≤ R} 
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While Q(R) is not empty, repeat the following loop:   

Consider those q workstations that have at least one (i,j)    Q(R) 

Arrange these q workstations according to their capacity, such that  

  

  Pick a workstation i at rank j, with probability      ; let k be the 

selected workstation   

From those (k,j) in Q(R), randomly pick a (k,j) 

Set  Xkj = Xkj + 1; R = R- Ckj ; µk = µk + µkj 

If, for any workstation i, µi < λ, then discard the sample 

Further, if ∀  (i,j)    F , Xij = Yij, discard the sample because it does not 

  belong to the surrounding region  

     Note that at depth level = 1, there exists no surrounding region. 

 

Step 3: Calculating the promising index 

For each sample point in every partitioned region, the value of the objective 

function is estimated. The promising index           for region r (=1,…,# of partitions) is 

given by         ,             

where     is the average cycle time at the ith sample point χ  belonging to region r. 

The most promising region is taken as the one that has the minimum  . 

 

Step 4: Further partitioning or backtracking 

If one of the subregions has the best promising index value, that subregion is 

partitioned further using the same scheme. However, if the surrounding region looks to 

( . .)rP I

ˆ( . .) m in{ ( )}
ir rP I f χ=

ˆ ( )
ir

f χ

( . .)rP I

2

( 1)

j

q q+

1 2
...

qx x xµ µ µ≥ ≥ ≥

∈

∈
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be the most promising region, then we backtrack to a larger region, using the scheme 

described by Shi and Chen [52].  

If the fixed components of the best design at the current depth level l are denoted as: 

 

and the fixed components of the best design at the previous depth level l-1 are denoted 

as:       when  p = 1,  

   otherwise, 

then we backtrack to the level that θfixed and θ*
fixed have the same components at that 

level and above. Hence after backtracking, the fixed components would have the form: 

 

where v < q, or, v = q and u ≤ p-1 

Note that in the implementation of NPAs, the best solution at each iteration 

always forms a candidate solution for the next iteration, even if we backtrack.  

The flow of NPA-I can be described as follows: 

 

While at least one tool     N , repeat the following loop:   

For width (at each level of depth) = Xhp
L,…,Xhp

U : 

      For desired number of samples (= 5, in our implementation): 

         Randomly sample a point (as described in Steps 2.1 and 2.2) 

         Estimate the objective function value for the sampled point 

  For desired number of samples (= 50, in our implementation): 

Randomly sample a point in the surrounding region (as described in Step 

2.3) 

11 21 1 1 2{ , ,..., ,......, , ,..., }, ( 1) 1fixed n q q pqX X X X X X l n q pθ = = − + +

11 21 1 1( 1) 2( 1) ( 1)

* * * * * * *{ , ,..., ,......, , ,..., }
n q q n qfixed X X X X X Xθ

− − −
=

11 21 1 1 2
{ , ,..., ,......, , ,..., }

n v v uvfixed X X X X X Xθ+ + + + + + +=

11 21 1 1 2 ( 1)

* * * * * *{ , ,..., ,......, , ,..., }
n q q p q

X X X X X X
−

=

∈
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      Estimate the objective function value for the sampled point 

If the sample point having minimum objective function value is not in the 

surrounding region, then  

  Remove a tool from N, add it to F, and continue 

 Else 

  Backtrack, adjusting the sets F and N accordingly (as described in 

Step 4) 

 

4.6.3 NPA-I applied to the sample problem 

 

 

 

 

 

 

 

 

 

 

 

Tables 4.9 and 4.10 are obtained after renumbering the tools, according to their 

capacities. The depth in the partitioning scheme will be governed by the following order: 

 

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 $900 $900 
j = 2 $600 $750 
j = 3 $550 $600 

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 18 19.5 
j = 2 12.75 16 
j = 3 11.5 12 

Required throughput = 100 
All numbers in wafers/hour 

11 21 12 22 13 23, , , , ,T T T T T T

Table 4.9: Tool costs Cij 

Table 4.10: Tool capacities µij 
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Step 1: 

Let F  =         and N  =    ; and say X11 = 4, X21 = 5 and X12 = 5 

The current partition depth, l = 4; the total budget available, M = 18000 

      ;  hence B4 = 6900 

 

The range of width at this level of depth is given by 

       where               (as T23    N ) and 

 

 

F  =                and N  =          

 

Step 2: Random sampling for X22 = 0 

  Step 2.1: We find that  ; however,      . The only choice that can be made, is to  

    pick T23. Hence X23 = 1; B4 = B4 – 600 = 6300;  

  Step 2.2: Suppose R = 1157 

P(R) = {(1,3) (2,3)} 

 The workstation 1 has a higher capacity than workstation 2. Hence workstation 1  

will be picked with a probability 1/3 and workstation 2 with a probability 2/3. 

Say T23 is picked first. 

 X23 = 2; R = R – C23 = 557;            

P(R) = {(1,3)}. The only tool that can be picked is T13 

X13 = 1; R = R – C13 = 7;               

P(R) = {}; therefore, the sampled point is χ =  

{ }11 21 12, ,T T T { }22 13 23, ,T T T

22 22 22,...,L UX X X=

{ }11 21 12 22, , ,T T T T { }13 23,T T

1µ λ> 2µ λ<

4

( , )
ij ij

i j

B M X C
∈

= − ∑
F

2 97.5 12µ λ= + >

2 109.5 12 121.5µ = + =

1 135.75 11.5 147.25µ = + =

{ } {4,5,1;5,0,2}ijX =

22

6900 95.6
min( , ) 5

750 16
UX

   = =      

22 0LX = ∈
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We stop here, and continue this procedure to get more samples for this partition. 

Thereafter, random sampling for subsequent partitions is performed. 

  Step 2.3:  Surrounding region for the current depth is sampled as follows: 

         and M = 18000; Suppose R = 12700 

  Q(R) = {(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)} 

Table 4.11 gives the sequence of random selection for this sample 

 

Capacity 
(wafers / hr) 

Prob. of Selection Resulting Choice Seq. 
# 

WS 1 WS 2 WS 1 WS 2 WS Tool 

Remaining 
Budget (R) 

1 0 0 0.5 0.5 2 T21 11800 
2 0 19.5 0.667 0.333 2 T21 10900 
3 0 39 0.667 0.333 1 T11 10000 
4 18 39 0.667 0.333 1 T12 9400 
5 30.75 39 0.667 0.333 1 T11 8500 
6 48.75 39 0.333 0.667 1 T11 7600 
7 66.75 39 0.333 0.667 2 T21 6700 
8 66.75 58.5 0.333 0.667 2 T23 6100 
9 66.75 70.5 0.667 0.333 1 T12 5500 
10 79.5 70.5 0.333 0.667 1 T11 4600 
11 97.5 70.5 0.333 0.667 2 T21 3700 
12 97.5 90 0.333 0.667 2 T21 2800 
13 97.5 109.5 0.667 0.333 1 T12 2200 
14 110.25 109.5 0.333 0.667 1 T12 1600 
15 123 109.5 0.333 0.667 1 T12 1000 
16 135.75 109.5 0.333 0.667 2 T22 250 
17 135.75 125.5 0.333 0.667    

 

  

The set Q(R) does not change till the seq. # 16, after which it becomes empty. 

 The sampled point γ =       . From the table, we can see that  

'

1

9321.27
n

k
k

Uλ
=

=∑

{ } {4,5,0;5,1,1}ijY =

Table 4.11: NPA-I: sequence in which the tools are bought 
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capacity-feasible solution is obtained. However, the corresponding values of Xij 

and Yij ∀  (i,j)     F  are found to be the same. Therefore this sampled point does 

not belong to the surrounding region, and hence is discarded.  

 

Step 3: The cycle time values are calculated for each point sampled in Step 2. 

 

Step 4: Let us say, the best sampled point (with least estimated cycle time value) is 

found in the surrounding region: γ =                 .We find that 

                 and 

Therefore, after backtracking, we get     ; the partition depth is now set to  

2, and the procedure is repeated. 

 

4.7 Description of NPA-II 

The tree structure in our NPA-II implementation consists of two kinds of nodes: 

primary and secondary. The primary nodes occupy the first few levels of depth of the 

tree, and are associated with the identification of the most promising tool types at each 

workstation. Secondary nodes are associated with searching for the optimal quantities of 

those tool types identified through primary nodes.  

The tree structure in the NPA-I implementation involved only the secondary 

nodes (the number of such nodes was (nz), the total number of tool types). 

 

4.7.1 Notation 

The following notation is used in addition to that of the heuristic: 

{4,8,0;4,3,4}

11 21 12 22{ , , , } {4,4,8,3}fixed X X X Xθ = = * * * *
11 21 12{ , , } {4,5,5}fixed X X Xθ = =

11
{ } {4}fixed Xθ+ += =

∈
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Ti selected tool type at workstation i   

Xi number of tools for workstation i 

Ti and Xi are the decision variables, whose properties Ci and µi can be defined as: 

Ci = Cij if Ti = j;  

µi = µij if Ti = j; 

Zi capacity of the workstation i; Zi = Xi*µi 

jth highest workstation capacity, amongst those under consideration 

ℑ  set of most promising tools that have been estimated so far:  

 

Ui     at workstation i   

θ set of the values of the number of tools corresponding to Ti  

 

χ   

R Uniformly distributed random number between      and M 

 

4.7.2 Description 

Renumber Tij at each workstation i so that             . Initialize ℑ  = { }; θ = { }.  

 

Step 1: Partitioning  

  Step 1.1: Partitioning a primary node: At depth p, p ≤ n, ℑ  =           . The 

partitioning is done over zp tool types to identify Tp. Note that there are n levels 

of depth for primary nodes.  

  Step 1.2: Partitioning a secondary node: At depth level n+p, the sets ℑ  =                

1,...,
min { }

i

ij

j z
ij

C

µ=

1 2{ , ,..., },kX X X k n≤

1 2{ , ,..., },kT T T k n≤

1 2 1{ , ,..., }pT T T −

1 2{ , ,..., }nT T T

1

n

i
i

Uλ
=
∑

jxZ

1 2 ...
ii i izµ µ µ≥ ≥ ≥

111 1 1{ ,..., ;......; ,..., }
nz n nzX X X X
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and θ =      have been identified. The partitioning is done over the 

values of Xp in the range:  

 

    Xp
L =            and 

  

 

Xp
U  = 

 

 

Step 2: Random sampling   

  Step 2.1: Sampling a sub region at primary node (at depth level p):    

     For i = p+1,...,n,  

      Randomly select Ti from the set {1,…,zi} 

        Set Cj = Cij and µi = µij if Ti = j  

     Set Tp = 1; Cp = Cp1; µp = µp1 

      Step 2.1.1: Check feasibility:     

For i = 1,...,n,      

         Set  

          Set 

If B < 0, start Step 2 again by picking a new set of Tis      

      Step 2.1.2: Sample a point in the partitioned space:   

  Pick a uniformly distributed random number R between 0 and B 

Let     

1

1 1

1

min{ , }

p n

i i i
i i p i

n
ip

p
i i

M X C C
M

CC

λ
µ

µ
µ

−

= = +

=

    − −        
   
      

∑ ∑

∑

p

λ
µ
 
 
  

1 2 1{ , ,..., }pX X X −

i
i

X
λ
µ
 

=  
 

( ) { : }iP R i C R= ≤

1

n

i i
i

B M X C
=

= −∑
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      While P(R)  is not empty, repeat the following loop:           

Consider those q workstations that belong to P(R) 

          Arrange these q workstations according to their capacity, such that 

              

Pick a workstation i at rank j, with probability             ; let k be the 

selected workstation 

          

However, for special cases where capacities of some workstations 

are equal, the probability of picking any of these workstations 

would be the same. For ex., if           , 

then the probability of picking  workstations  x2, x3 or x4 equals 

 

Note that this scheme makes the workstation with lower capacity, 

more likely to be selected. 

    

Set Xk = Xk+1; R = R – Ck; Zi = Zi + µi 

 Let X* = Xp; C
* = Cp 

      For i = 2,...,zp:     

         Set Tp = i; Cp = Cpi; µp = µpi    

   Set        

Hence we get zp samples whose Ti and Xi are the same for all i≠p, but Xp may be 

different as Tp are different. 

  Step 2.2: Sampling a sub region at secondary node (at depth level n+p): 

1 2
...

qx x xZ Z Z≥ ≥ ≥

2

( 1)

j

q q+

1 2 3 4 5
...

qx x x x x xZ Z Z Z Z Z> = = > > >

2*(2 3 4) 1
*

( 1) 3q q

+ +
+

* *

( )p
p

X C
X Round

C
=
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 At the depth level n+p, we have:  

      ℑ  =  

      θ  =    

 For Xp = Xp
L,…, Xp

U : 

       Perform steps 2.2.1 and 2.2.2 

      Step 2.2.1: Check feasibility:      

      For i = p+1,...,n:       

         Set  

 

  Set  

If B < 0, skip the current partition (represented by the current value of Xp) 

as well as the subsequent remaining partitions (represented by the 

remaining values of Xp) at the current depth n+p. 

      Step 2.2.2: Sample a point in the partitioned space: 

  Pick a uniformly distributed random number R between 0 and B   

      Let  

 

      While P(R) is not empty, repeat the following loop:    

Consider those q workstations that belong to P(R) 

          Arrange these q workstations according to their capacity, such that 

 

Pick a workstation i at rank j, with probability              ; let k be 

the selected workstation          

1 2 1{ , ,..., }pX X X −

1 2{ , ,..., }nT T T

1 2
...

qx x xZ Z Z≥ ≥ ≥

2

( 1)

j

q q+

( ) { : , }iP R i i p C R= > ≤

i
i

X
λ
µ
 

=  
 

1

n

i i
i

B M X C
=

= −∑
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Set Xk = Xk+1; R = R – Ck; Zi = Zi + µi 

 

  Step 2.3: Surrounding region is sampled as follows:     

      Step 2.3.1: Check feasibility: 

      For i = 1,...,n: 

          Randomly select Ti from the set {1,…,zi} 

          Set Ci = Cij and µi = µij if Ti = j       

         Set        

 

         Set 

If B < 0, start again by picking a new set of Tis     

      Step 2.3.2: Sample a point in the surrounding space:   

  Pick a uniformly distributed random number R between 0 and B   

      Let  

 

      While P(R) is not empty, repeat the following loop:            

Consider those q workstations that belong to P(R) 

          Arrange these q workstations according to their capacity, such that

  

          Pick a workstation i at rank j, with probability             ; let k be the  

selected workstation           

Set Xk = Xk+1; R = R – Ck; Zk = Zk + µk 

 

i
i

X
λ
µ
 

=  
 

( ) { : }iP R i C R= ≤

1 2
...

qx x xZ Z Z≥ ≥ ≥

2

( 1)

j

q q+

1

n

i i
i

B M X C
=

= −∑
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      Step 2.3.3: Check whether sample belongs to the surrounding region: 

For primary region at depth level p, if Ti, for all i < p, are the same as in ℑ , 

discard the sample because it does not belong to the surrounding region. 

 

For secondary region at depth level n+p, if Ti, for all i ≤ n, are the same as in ℑ , 

and Xi, for all i < p, are the same as in θ, discard the sample because it does not 

belong to the surrounding region. 

 

Step 3: Calculating the promising index 

For each sample point in every partitioned region, the value of the objective 

function is estimated. The promising index           for region r (r =1,…,# of partitions) is 

given by         ,                 

where    is the average cycle time at the ith sample point    belonging to region r. 

The most promising region is taken as the one that contains the sample point with the 

minimum     . 

 

Step 4: Further partitioning or backtracking 

If one of the sub regions of a node has the best promising index value, that sub 

region is partitioned further using the same scheme. However, if the surrounding region 

looks to be the most promising region, then we backtrack to a larger region using the 

scheme described by Shi and Chen [52]:   

  Step 4.1: Backtracking for the primary node: 

 At the depth level p (where p ≤ n), we have: 

( . .)rP I

ˆ( . .) m in{ ( )}
ir rP I f χ=

ˆ ( )
ir

f χ

( . .)rP I

χ
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     ℑ  = 

Let the tool types for the workstations 1,…,p for the best sample in the surrounding 

region be represented as: 

 ℑ * =  

     If ℑ * ≠ ℑ , then we backtrack to the level k where ℑ * and ℑ  would have the same  

     components at that level and above. After backtracking, we would have  

     ℑ + =            .    

     Note that for all j ≤ k,          

  Step 4.2: Backtracking for the secondary node: 

 At depth level n+p (where p ≤ n), we have: 

 ℑ  = 

 θ  =   

Let the best sample in the surrounding region be represented as: 

 ℑ * =  

 θ*  =   

If ℑ * ≠ ℑ , we backtrack using the same scheme as in Step 4.1. 

Else if ℑ * = ℑ , then we backtrack to the level where θ* and θ have the same components 

at that level and above. After backtracking, we would have  

θ+=                   

     Note that for all j ≤ k,            

 

 

 

1 2
{ , ,..., }, 1

k
T T T k p+ + + < −

1 2
{ , ,..., }, 1kX X X k p+ + + < −

*
j j jT T T+= =

*
j j jX X X+= =

1 2 1{ , ,..., }pT T T −

1 2 1

* * *{ , ,..., }
p

T T T
−

1 2{ , ,..., }nT T T

1 2 1{ , ,..., }pX X X −

1 2

* * *{ , ,..., }
n

T T T

1 2 1

* * *{ , ,..., }
p

X X X
−
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The flow of NPA-II can be described as follows: 

While the set θ is incomplete, repeat the following loop: 

 If the node is primary, then 

  For the desired number of samples (= 5, in our implementation): 

   Randomly sample a point (as described in Step 2.1) 

   Estimate the objective function value for the sampled point 

  

  For the desired number of samples (= 50, in our implementation):  

Randomly sample a point in the surrounding region (as described 

in Step 2.3) 

Estimate the objective function value for the sampled point 

If the sample point having minimum objective function value is not in the 

surrounding region, then 

Add the chosen tool for the workstation that is being partitioned 

on, to ℑ  

  Else 

Backtrack, adjusting the set ℑ  accordingly (as described in Step 4) 

 Else if the node is secondary, then   

  For width (at each level of depth) = Xp
L  to Xp

U :   

  For the desired number of samples (= 5, in our implementation):  

   Randomly sample a point (as described in Step 2.2) 

Estimate the objective function value for the sampled point 

For the desired number of samples (= 50, in our implementation):  
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Randomly sample a point in the surrounding region (as described 

in Step 2.3) 

Estimate the objective function value for the sampled point 

If the sample point having minimum objective function value is not in the 

surrounding region, then 

Add Xp (tool value corresponding to the tool Tp, for the best 

sample found) to θ 

  Else 

Backtrack, adjusting the sets ℑ  and θ accordingly (as described in 

Step 4) 

Adjust the type of node depending on the new depth level 

 

4.7.3 NPA-II applied to the sample problem 

 
 

 

 

 

 

 

 

 

 

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 18 19.5 
j = 2 12.75 16 
j = 3 11.5 12 

Required throughput = 100 
All numbers in wafers/hour 

Table 4.12: Tool costs Cij 
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Tables 4.12 and 4.13 are obtained after renumbering the tools, according to their 

capacities. There will be two primary nodes, and two secondary nodes as there are two 

workstations. 

Consider a primary node first. 

Let ℑ  = {T11} (equivalent to saying ℑ  = {T1} where T1 = 1) and θ = {}. The current 

partition depth is p = 2. The total budget available, M = 18000. 

 

Step 1:  

The partitioning will be done over the three tool types at workstation 2, namely T21, T22 

and T23.  

 

Step 2: Random sampling for the most promising tool type at the 2nd workstation: 

  Step 2.1: Since there are no more than 2 workstations, we go on to set T2 = 1, C2 = C21  

and µ2 = µ21 

    Step 2.1.1:  Set      , and             

   

  

    Step 2.1.2: Suppose R = 2010. Hence, P(R) = {1,2} 

Workstation 
Tool Type 

i = 1 i = 2 
j = 1 $900 $900 
j = 2 $600 $750 
j = 3 $550 $600 

1

100
6

18
X

 = =  
2

100
6

19.5
X

 = =  

2

1

7200i i
i

B M X C
=

= − =∑

Table 4.13: Tool capacities µij 
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  The workstation 2 has a higher capacity than workstation 1. Hence,  

workstation 1 will be picked with a probability 2/3 and workstation 2 

with a probability 1/3. Say T2 is picked first.  

X2 = 7; R = R – C2 = 1110; Z2 = Z2 + 19.5 = 136.5 

  P(R) = {1,2}; The probabilities remain the same; Say T1 is picked next; 

X1 = 7; R = R – C1 = 210; Z1 = Z1 + 18 = 126 

P(R) = {}; Therefore, the sampled point is χ =  

X* = X1 = 7; C* = C1 = 900 

At i = 2, T2 = 2, C2 = C22, µ2 = µ22 and hence,  

 

Hence the next sample is χ =         

At i = 3, T2 = 3, C2 = C23, µ2 = µ23 and hence,  

 

Hence the next sample is χ =           

 

  Step 2.3: Surrounding region is sampled as follows:   

    Step 2.3.1:  Say the selected tools are T1 = 2 and T2 = 3    

Set         and       

   

 

    Step 2.3.2:  Suppose R = 4005; Hence, P(R) = {1,2}; 

Table 4.14 gives the sequence of random selection for this sample. 

{ } {7,0,0;7,0,0}ijX =

2

6300
( ) 8

750
X Round= =

{ } {7,0,0;0,8,0}ijX =

{7,0,0;0,0,11}

2

6300
( ) 11

600
X Round= =

2

1

5700 0i i
i

M X C
=

− = >∑

2

1

5100 0i i
i

M X C
=

− = >∑

1

100
8

12.75
X

 = =  
2

100
9

12
X

 = =  
2

1

7800i i
i

B M X C
=

= − =∑
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The set P(R) does not change till the seq. # 6, after which it becomes empty. 

 The sampled point χ =             .  

    Step 2.3.3:  Since for the sampled point, T1 = 2, it is different from the T1 in ℑ .  

  Hence the sample qualifies as a surrounding sample.  

 

Step 3: The cycle time values are calculated for each point sampled in Step 2. 

 

Step 4: Let us say, the best sampled point (with least estimated cycle time value) is 

found in one of the sub-partitions: χ =          . ℑ  is set to {T11,T21}, and θ to {}. 

Now we start with the secondary nodes. 

 

Consider a secondary node at depth n+p = 4 (where p = 2); ℑ  = {T11,T21}, and θ = {10}. 

 

Step 1:  

The partitioning will be done on the values of X21. The range of width is given by 

   where  

Capacity 
(wafers / hr) 

Prob. of Selection Resulting Choice Seq. 
# 

WS 1 WS 2 WS 1 WS 2 WS Tool 

Remaining 
Budget (R) 

1 102 108 0.667 0.333 1 T12 3405 
2 114.75 108 0.333 0.667 2 T23 2805 
3 114.75 120 0.667 0.333 1 T12 2205 
4 127.5 120 0.333 0.667 1 T12 1605 
5 140.25 120 0.333 0.667 2 T23 1005 
6 140.25 132 0.333 0.667 2 T23 405 
7 140.25 144 0.667 0.333    

{0,11,0;0,0,12}

{9,0,0;9,0,0}

2 21 21,...,L UX X X=

Table 4.14: NPA-II: sequence in which the tools are bought 



 74

          

 and     

 

Step 2: Random sampling for X2 = 6: 

  Step 2.2.1: Since there are only 2 workstations, we go on and calculate B: 

 

  Step 2.2.2: We find that P(R) = {} as there are only 2 workstations. Therefore, the  

sampled point is χ =   

  Step 2.3: Surrounding region is sampled as follows: 

    Step 2.3.1:  Say the selected tools are T1 = 1 and T2 = 3    

Set         and       

 

   

    Step 2.3.2:  Suppose R = 1100; Hence, P(R) = {1,2} 

Both workstations 1 and 2 have the same capacity (108 wafers/hr). Hence,  

both workstations will be picked with a probability of 0.5. Say T1 is picked first.  

X1 = 7; R = R – C1 = 200; Z1 = Z1 + 18 = 126 

P(R) = {}; Therefore the sampled point is χ =  

    Step 2.3.3:  Since for the sampled point, T2 = 3, it is different from the T2 in ℑ .  

  Hence the sample qualifies as a surrounding sample.  

 

Step 3: The cycle time values are calculated for each point sampled in Step 2. 

 

21

100
6

19.5
LX

 = =  
21

9000 18000
min( , ) 9

900 1875
UX

   = =      

2

1

3600 0i i
i

B M X C
=

= − = >∑

{9,0,0;6,0,0}

1

100
6

18
X

 = =  
2

100
9

12
X

 = =  

2

1

7200i i
i

B M X C
=

= − =∑

{7,0,0;0,0,9}
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Step 4: Let us say, the best sampled point (with least estimated cycle time value) is 

found in the surrounding region: χ =            .            We find that  

  ℑ * =  ≠ ℑ  =             

Therefore, after backtracking, we get ℑ + =         and θ+= {}; the partition depth is now set 

to 2, (the node type is primary now) and the procedure is repeated.  

 

4.8 Description of the analytical algorithm 

This algorithm deals with a solution space that consists of only one tool type per 

workstation, as in NPA-II. Like NPAs, it does not build up on the low-cost, feasible 

solution provided by the heuristic. We implemented two analytical algorithms and the 

one that was chosen as the benchmark, is described below. The comparison of results for 

the two analytical algorithms is given in the appendix. 

 

4.8.1 Notation 

The following notation is used in addition to that of the heuristic: 

Ti selected tool type at workstation i   

Xi number of tools for workstation i 

Ti and Xi are the decision variables, whose properties Ci and µi can be defined as: 

Ci = Cij if Ti = j;  

µi = µij if Ti = j; 

Zi capacity of the workstation i; (Zi = Xi*µi) 

jth highest workstation capacity, amongst those under consideration 

θ set of the values of the number of tools corresponding to Ti:             

{0,15,0;10,0,0}.

11{ }T

11 23{ , }T T 11 21{ , }T T

1 2{ , ,..., }nX X X

jxZ



 76

f(θc)     cycle time evaluated using the analytical formula for M/M/m queues, at the 

current iteration 

f(θp)     cycle time evaluated using the analytical formula for M/M/m queues, at the  

previous iteration 

χ   

 

4.8.2 Description 

Let Ti = j, such that µij > µik for all k ≤ zi and k ≠ j. If µij = µik, then choose the less 

expensive tool type. Set Ci = Cij; µi = µij. 

 

Step 1: Check feasibility     

For i = 1,...,n: 

        Set         

 

Set 

If B < 0, then  

Return the solution as infeasible (even though the heuristic solution  

might be feasible for the problem instance) 

 Else 

  Perform Step 2 

   

Step 2: Return the solution 

Initialize f(θp) = ∞ 

111 12 1 1 2{ , ,..., ;......; , ,..., }
nz n n nzX X X X X X

i
i

X
λ
µ
 

=  
 

1

n

i i
i

B M X C
=

= −∑
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Set θc as 

 

Calculate f(θc) as: 

            , where 

  

                and   (Hall [63]) 

 

Let  

While P(B) is not empty, and f(θc) < f(θp), repeat the following loop: 

 Consider those q workstations that belong to P(B) 

        Arrange these q workstations according to their capacity, such that 

             

Let i be the workstation with the capacity 

Set θp = θc; f(θp) = f(θc) 

Set Xi = Xi +1; B = B – Ci; Zi = Zi + µi  

Update θc 

 Calculate f(θc)   

If f(θc) < f(θp), then 

 Return χc as the final solution 

Else 

 Return χp as the final solution 

 

( ) { : }iP B i C B= ≤

1 2
...

qx x xZ Z Z≥ ≥ ≥

qxZ

1 2{ , ,..., }nX X X

2
1

( )1 1
( ) ( )

! (1 )

iXn
i i i

c
i i i i i i

X
f

X X

ρ πθ
µ µ ρ=

= +
−∑

1
1

1

( ) ( )
(1 )

! !(1 )

ii XX k
i i i i

i
k i i

X X

k X

ρ ρπ
ρ

−
−
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i iX
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4.8.3 Analytical algorithm applied to the sample problem 

Set T1 = 2, C1 = C12 = 900, µ1 = µ12 = 18; and 

T2 = 2, C2 = C22 = 900, µ2 = µ22 = 19.5 

Step 1: Set      , and             

   

  

Step 2: P(B) = {1,2}; θc = {6,6} 

Table 4.15 gives the sequence in which we buy the tools: 

 

Capacity 
(wafers/hour) Seq 

# 
WS1 WS2 

Tool 
Bought 

Budget 
Remaining 

P(B) θp θc f(θp) f(θc) 

1 108 117 T1 6300 {1,2} {6,6} {7,6} 6.12 4.06 

2 126 117 T2 5400 {1,2} {7,6} {7,7} 4.06 3.37 

3 126 136.5 T1 4500 {1,2} {7,7} {8,7} 3.37 3.06 

4 144 136.5 T2 3600 {1,2} {8,7} {8,8} 3.06 2.90 

5 144 156 T1 2700 {1,2} {8,8} {9,8} 2.90 2.81 

6 162 156 T2 1800 {1,2} {9,8} {9,9} 2.81 2.76 

7 162 175.5 T1 900 {1,2} {9,9} {10,9} 2.76 2.72 

8 180 175.5 T2 0 {} {10,9) {10,10} 2.72 2.70 

9 180 195        

 

 

The final solution returned is χc =  

 

2

1

7200 0i i
i

B M X C
=

= − = >∑

1

100
6

18
X

 = =   2

100
6

19.5
X

 = =  

{0,10,0;0,10,0}.

Table 4.15: Analytical algorithm: sequence in which the tools are bought 
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4.9 Results for the sample problem 

The final values of the tool types, given by our implementation for the heuristic and the 

simulation-based algorithms, are shown in Table 4.16. 

 

 

Tool values for 
Tool types 

Heuristic 
Hill 

climbing 
Biggest 

Leap 
Safer 
Leap 

NPA-I NPA-II 

T11 0 0 3 0 0 0 
T12 0 5 3 5 9 10 
T13 8 8 11 8 0 0 
T21 0 0 1 0 0 0 
T22 6 9 7 9 9 9 
T23 0 0 0 0 0 0 

Cycle 
Time (hrs) 

21.09 3.02 3.27 3.02 2.76 2.72 

 

 

 

4.10 Summary 

This chapter provided the description of the heuristic and the algorithms that we 

implement to solve the equipment selection problem. They were explained with the help 

of a sample problem we defined in Chapter 3. The next chapter describes the set-up of 

the experiments we conducted, to compare the performances of these algorithms. 

Table 4.16: Results of the heuristic and the simulation-based algorithms applied  
to the sample problem 
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5. RESULTS AND DISCUSSION 

 

This chapter reports and discusses the results that we obtained by conducting 

experiments for the equipment selection problem, and compares the hill climbing, 

biggest leap, safer leap and nested partitions algorithms against the analytical algorithm. 

Section 5.1 describes the experimental set-up comprising the administrator, the problem 

sets, the simulation model and the output metrics based on which we compare the 

algorithms. Section 5.2 lists the results we obtained for the problem sets when the cost 

and capacity are not correlated, and when they are correlated respectively. In Section 

5.3, we summarize those results. 

 

5.1 Experimental design 

The administrator (designed in Delphi 5®1), the input template files (Microsoft 

Excel®2), the simulation engine (Factory Explorer 2.5®3) along with the simulation 

model file (Microsoft Excel) that it interacts with, and the output file (Microsoft Excel), 

are the four components of the experimental architecture. The administrator controls all 

other components. The purpose of these experiments is to compare the performance of 

the algorithms over a range of problem sets and determine how the characteristics of the 

problem instances affect the algorithms’ performance. The instances are not based on 

any specific problems from industrial applications. The input template files contain the 

input data for the simulation models. The administrator reads the input data from these 

                                                 
1 Registered trademark of Borland Software Corporation 
2 Registered trademark of Microsoft Inc. 
3 Registered trademark of Wright, Williams and Kelley Inc. 
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files and runs the heuristic to find the initial feasible solution. Then it populates the 

simulation model file that the simulation engine interacts with and runs one of the search 

algorithms under consideration. During the run, it updates the simulation model file, 

executes the simulation engine and at the end of the search, records the output data in the 

output file. 

 

5.1.1 Input template files 

There are two input template files, each containing a different problem set. Each 

problem set contains 16 data sets with 10 data instances per data set. Hence there are a 

total of 160 problem instances in one input template file. The difference between the two 

problem sets is the correlation between the cost and capacity. Ideally, the cost of a tool 

would increase with an increase in its capacity. In Problem Set 1, the cost and capacity 

are not correlated, while in Problem Set 2, they are. 

The input for the Problem Set 1 is as follows. 

 P = cost factor for tool types = $1000 

 λ = desired throughput = 100 wafers per hour 

 n = number of workstations = 5 

 r = expected number of tools per workstation = 2 or 10 

 zi = number of tool types per workstation = 2 or 5 

α = lower bound of cost range = 0.5 or 0.8 

β = multiplier for budget = 1 or 3 

µij = capacity of the jth tool at the ith workstation 

Cij = cost of the jth tool at the ith workstation 
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The parameters r, zi, α, and β can take two values. Each combination of the 

parametric values forms a data set and 10 instances for each data set are generated as 

follows: 

 For i = 1 to n 

For j = 1 to zi 

Choose aij ∈  [0,2] (uniform distribution) 

Let µij = aij(λ/r) 

Choose bij ∈  [α,1] (uniform distribution) 

Let Cij = bijP 

M = βnrP 

The input for Problem Set 2 is as follows: 

 P = cost factor for tool types = $1000 

 λ = desired throughput = 100 wafers per hour 

 n = number of workstations = 5 

 r = expected number of tools per workstation = 2 or 10 

 zi = number of tool types per workstation = 2 or 5 

 e = shape of correlation = 0.5 or 1 

α = lower bound of cost range = 0.5 

β = multiplier for budget = 1 or 3 

µij = capacity of the jth tool at the ith workstation 

Cij = cost of the jth tool at the ith workstation 



 83

The parameters r, zi, e, and β can each take two values. Each combination of the 

parametric values forms a data set and 10 instances for every data set are generated as 

follows: 

For i = 1 to n 

For j = 1 to zi 

Choose bij ∈  [α,1] (uniform distribution) 

Let aij = 2(bij)
e 

Let µij = aij(λ/r) 

Let Cij = bijP 

M = βnrP 

The link to the data sets can be found at the following website: 

http://www.isr.umd.edu/Labs/CIM/projects/mfgsys/index.html   

 

5.1.2 Simulation model 

There is one product, Wafer, which enters the system as one lot of 25 wafers 

every 0.25 hours. The lot inter-arrival times and the lot processing times are 

exponentially distributed. The mean processing time on a tool of type j at workstation i 

is 25/µij. The factory is a flow shop. Each lot must visit each workstation in the same 

sequence. The number of lots that visit each tool type at a workstation is proportional to 

the tool’s capacity. In other words, even if a high capacity tool is idle at a workstation, 

the lot coming out of the queue might get routed to another idle tool at the same 

workstation with a much lower capacity. It is assumed that there are no travel times for 

the lots, from one workstation to the next. Therefore, the layout of the factory is not 
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taken into consideration. Further, re-entrant flow and rework are not considered, and 

none of the tools breaks down during operation or otherwise.  

µij and Cij are obtained from the input template files. While the initial number of 

tools at each workstation is obtained from the heuristic (for the hill climbing and 

gradient-based algorithms), the updated number of tools is obtained from the search 

algorithm. Each lot will visit each workstation starting with workstation 1 and ending 

with workstation 5. Each replication in a simulation run is conducted for one year, which 

means that approximately 35,000 lots are processed in every replication. In all cases, 2 

replications are performed. The warm-up period is taken as zero.  

 

5.1.3 Output file 

The output file records four metrics after the administrator solves each data 

instance. The statistics gathered after the heuristic constructs an initial solution, are Costx 

and Capacityx. The statistics gathered after the search algorithm constructs the final 

solution, are Costy, Capacityy, CycleTimey and Simulationsy. From these statistics the 

following performance metrics are calculated to estimate the performance of the various 

algorithms: 

  Cost Metric =      

 

  Capacity Metric =      

 

Simulation Metric = Simulationsy 

 

M

CostCost xy −

λ
xy CapacityCapacity −



 85

For Problem Set 1 where capacity and cost are not related,  

 

   Cycle Time Metric =   when r = 2 

            

               =    when r = 10 

 

The denominators for the cycle time metric calculation are the expected total 

mean lot processing times for the corresponding data sets. 

For Problem Set 2, where capacity and cost are related, 

   Cycle Time Metric = 
1.450

yCycleTime
 when e = 0.5 and r = 2 

          = 
7.246

yCycleTime
 when e = 0.5 and r = 10 

          = 
1.667

yCycleTime
 when e = 1.0 and r = 2 

                =  
8.333

yCycleTime
 when e = 1.0 and r = 10 

Note that if b has a uniform distribution over [l,u], then the expected value of b0.5 can be 

calculated as follows:  

1.5 1.5
0.5 2

[ ] ( )
3

u l
E b

u l

−=
−

 

 

 

 

5.2
yCycleTime

5.12
yCycleTime
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5.2 Results 

The results for the output metrics for the algorithms we implemented are shown 

in Tables 5.1 and 5.2, in subsections 5.2.1 and 5.2.2 respectively. Table 5.1 corresponds 

to the case when the cost and capacity of the tools are not correlated. Table 5.2 

corresponds to the case when the cost and capacity are correlated.  

The nested partitions algorithm-I (NPA-I) was first applied to data set 16, for the 

case when the cost and capacity are correlated. It was found that it required unreasonable 

computational effort compared to the hill climbing and the gradient-based algorithms, 

without producing much improvement in the output metrics. Hence, we discontinued its 

application to the other data sets and developed another implementation of the nested 

partitions algorithm, that we called NPA-II. Note that NPA-I and NPA-II were used only 

once to solve each data instance.  

The number of feasible data instances for a particular data set indicates the 

number of data instances in that data set for which all the algorithms generated results. 

The output metrics were averaged over the number of feasible data instances. All the 

data instances for all data sets are found to be feasible when the cost and capacity are 

correlated. However, it is not so in the other case. From the data instances that we 

declared infeasible, the following deserve a special mention: 

• 4th data instance in the 1st data set: only NPA-II generated a solution 

• 4th data instance in the 9th data set: only the hill climbing and the gradient-based 

algorithms generated a solution 

• 1st and 6th data instances in the 11th data set: only the hill climbing, gradient-based 

and analytical algorithms generated a solution 
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5.2.1 Cost and capacity are not correlated 

Based on Table 5.1, we plotted the results for the output metrics for all the 

algorithms, which we discuss next.   
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Figure 5.1 shows the comparison of the cost metric. When the budget is low (β = 

1), we find that for data sets 3 and 11 (α = 0.8), the cost metric for all algorithms is very 

low. For these data sets, the cost of each tool is very high. Hence, the heuristic itself 

requires a major chunk of the budget, not leaving enough money for further purchase of 

tools. The argument is also supported by the fact that the number of feasible instances 

for these data sets is 3 and 8 respectively. The cost metric for data sets 13 and 15 (z = 5) 

is very high. With a large number of tools available at each workstation for these data 

sets, and no correlation between the cost and capacity, it is more likely that a high 

capacity tool is available at a low price. Hence at the end of the heuristic, more money is 

available for further purchase. At low budget, it can be seen that on an average all the 

algorithms behave in a similar manner, except for the biggest leap algorithm (BLA) that 

spends more money after the heuristic due to its inherent greedy nature. 

When the budget is high (β = 3), we find that the trend for BLA is opposite to 

that for the other algorithms. For data sets 6, 8, 14 and 16 (r = 10), the budget available 

is the highest. Hence at each iteration, BLA spends a lot of money buying tools with low 

capacities too, and runs out of the available budget with further improvement in the 

cycle time still possible. When the available budget is low, as for the other data sets, it is 

not able to spend as much and hence the cost metric is low. The other algorithms 

however, are most likely to buy only tools having the highest capacity and hence do not 

end up spending the whole budget available, whenever possible. Since the cost metric is 

inherently normalized with respect to the total budget available, it is lower when r = 10 

compared to when r = 2. This is because when r = 10, the capacity of the tools is very 

low and a lot of tools are purchased. But after a certain stage, it does not help in reducing 
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the cycle time. In other words, the addition of a fast tool to a few similar fast tools will 

have more impact on the cycle time compared to the addition of a slow tool to a lot of 

similar slow tools. Hence, even though the capacity is 80% smaller when r = 10, it does 

not imply that 5 times the money should be spent in further purchasing the tools, as there 

will be no reduction in the cycle time after a certain stage. We shall refer to this logic as 

quick sand reasoning. The hill climbing algorithm (HCA) performs closest to the 

analytical algorithm (ANLT), whose cost metric turns out to be the lowest amongst all 

the algorithms. The cost metric for the safer leap algorithm (SLA) is slightly higher than 

that for HCA, but lower than that for the nested partitions algorithm-II (NPA-II).  

It can also be seen that the cost metric for data sets 6, 8, 14 and 16 (β = 3, r = 10) 

is lower for all algorithms except BLA, than that for data sets 5, 7, 13 and 15 (β = 1, r = 

10) respectively. The reason is the high budget with respect to which the metric is 

normalized. The increase in the cost metric from data set 7 to 8, and the approximate 

equality for data sets 5 and 6 for NPA-II are exceptions.  
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Figure 5.1: Comparison of the cost metric at β = 1 and β = 3 respectively 
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Figure 5.2 shows the comparison of the capacity metric. When the budget is low 

(β = 1), we find that for data sets 3 and 11, the capacity metric for all the algorithms is 

very low. For these data sets, the cost metric is low too. Since not enough money was 

available to purchase the tools after the heuristic, the system could not gain much 

capacity. On a similar basis, the high values of the capacity metric for data sets 13 and 

15 can be explained, where the cost metric was high as well. When the available budget 

is low, and only one tool is bought at each iteration for BLA, the behavior of HCA, BLA 

and SLA is the same. When the available budget is high, BLA tends to increase the 

capacity of the workstations in a highly skewed manner, so that the overall capacity of 

the system remains low, as can be seen from the Figure 5.2. All other algorithms 

perform more or less in a similar manner, except for data sets 13 and 15. For data set 13, 

the capacity metric for SLA and NPA-II is higher than that for the other algorithms. For 

these algorithms the cost metric is higher too, for the corresponding data set. However 

for data set 15, even though the cost metric was approximately the same, the capacity 

metric of NPA-II is low. This implies a skewed distribution of capacity amongst the 

workstations.  

When the budget is high (β = 3), it is seen that for all algorithms, the capacity 

metric for data sets 6, 8, 14 and 16 (r = 10) is lower than that for data sets 2, 4, 10 and 12 

(r = 2) respectively. This is due to quick sand reasoning. It is interesting to note that 

BLA has a higher capacity metric, yet a lower cost metric when r = 2, compared to when 

r = 10. This is because when r = 2, the capacity of each tool is high, but the available 

budget is low. Hence, the whole budget is not squandered in a skewed manner, as is the 

tendency of BLA. ANLT has the lowest capacity metric. HCA performs closest to 
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ANLT, barring data sets 10 and 12. The capacity metric is highest for BLA when r = 10 

and for NPA-II when r = 2. The behavior of SLA is similar to that of HCA only when r 

= 10. 

It can also be seen that the magnitude of increase in the capacity metric from data 

sets 5, 7, 13 and 15 (β = 1, r = 10), to data sets 6, 8, 14 and 16 (β = 3, r = 10) 

respectively, is lower than that for the corresponding data sets when r = 2, for all the 

algorithms except BLA. This is due to quick sand reasoning.  
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Figure 5.2: Comparison of the capacity metric at β = 1 and β = 3 respectively 
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Figure 5.3 shows the comparison of the cycle time metric. When the budget is 

low (β = 1), we find that for data sets 9, 13 and 15, the cycle time metric is low. The 

capacity metric for these data sets is high too. Although capacity metric for data set 3 is 

higher than that for 11, the cycle time metric indicates otherwise. Out of the eight 

feasible instances that were taken into consideration for data set 11, two had no addition 

to capacity after the heuristic and two others had insignificant addition to the capacity. 

For data set 3, only three instances were feasible. Hence the data was insufficient for 

concrete comparison, as it resulted in skewed metrics. The performance of all algorithms 

except BLA appears to be similar for the cycle time metric. For BLA, it is always higher 

than the rest, when it is not equal to that for HCA and SLA. 

When the budget is high (β = 3), we notice that the cycle time metric for data sets 

10, 12, 14 and 16 (z = 5) is lower as compared to others (z = 2). For data sets 10 and 12, 

the capacity metric was highest too. For data sets 14 and 16, a greater choice of tools at a 

workstation implies greater probability for at least one tool to have a very high capacity. 

This translates as a lower cycle time value, and hence as a lower cycle time metric 

despite the capacity metric not being among the highest. The performance of all the 

algorithms but BLA matches closely. The cycle time metric for BLA is always higher, 

despite a higher capacity metric for a few data sets. This is due to the purchase of low 

capacity tools. Wafer lots at these low capacity tools would take more time to get 

processed. It is unlikely however, for the other algorithms to buy tools that would not 

have the highest capacity at a workstation.  
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Figure 5.3: Comparison of the cycle time metric at β = 1 and β = 3 respectively 
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Figure 5.4 shows the comparison of the simulation metric. When the budget is 

low (β = 1), we find that the number of simulations for data sets 1, 3, 9 and 11 (r = 2) is 

equal and very small for HCA, BLA and SLA. This is due to less money available at the 

end of the heuristic to purchase more tools. For NPA-II however, the number of 

simulations is higher due to the search process, as it has no initial solution to work with. 

For data sets 13 and 15 (r = 10, z = 5), since the available budget is high and there are 

many tool types with low capacity (compared to when r = 2) to choose from, the number 

of simulations is higher for HCA. For NPA-II also, the number of primary and 

secondary nodes is more when z = 5, resulting in a higher simulation metric. BLA and 

SLA have the lowest values for the simulation metric.  

When the budget is high (β = 3), we find that the number of simulations for data 

sets 2 and 4 (r = 2, z = 2) is small. This is due to less money being available (compared 

to when r = 10) and few tool types to choose from. For similar reasons, data sets 14 and 

16 (r = 10, z = 5) have the highest simulation metric. It is seen that NPA-II requires a lot 

of simulation runs compared to the other algorithms. This is because when the budget 

available is high, NPA-II has a broader width to cover at each depth level for the 

secondary nodes. BLA and SLA require fewer simulation runs compared to HCA.  
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Figure 5.4: Comparison of the simulation metric at β = 1 and β = 3 respectively 



 99

Figures 5.5 and 5.6 give an idea about how effectively the budget that is spent, 

reduces the cycle time. A higher capacity to cost ratio implies that the system gained 

more capacity by spending the same amount of money. A high ratio along with a low 

cycle time metric provides an ideal combination. Figure 5.5 shows the comparison when 

the budget is low (β = 1). HCA performs the best for data sets 1 and 9 (r = 2, α = 0.5), 

and relatively well for data sets 3, 5 and 13 and 15. BLA performs well only when the 

available budget is very low, so that its behavior tends to that of HCA. This can be seen 

for data sets 3 and 9. For data sets 5, 7, 13 and 15 (r = 10), it performs the worst. SLA’s 

performance is always very close to that of HCA. NPA-II performs the best for data set 

13 and relatively well for all other data sets except for 11 (r = 2, α = 0.8) where it 

performs the worst. It has a tendency to spend a little more money for the same amount 

of capacity, achieving almost the same reduction in the cycle time. ANLT performs the 

best for data sets 3, 5, 7, 11 and 15, and relatively well for 9 and 13.  

Figure 5.6 shows the comparison when the budget is high (β = 3). HCA performs 

relatively well, while BLA performs the worst for all data sets. SLA’s performance is 

close to that of HCA, although it spends more money for the same capacity. NPA-II and 

ANLT also perform relatively well for all the data sets. NPA-II, again has a tendency to 

spend more money for the same capacity, though it achieves the minimum cycle time for 

all data sets. 
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Figure 5.5: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at  

β = 1 
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Figure 5.6: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at  

β = 3 
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5.2.2 Cost and capacity are correlated 

Based on Table 5.2, we plotted the results for the output metrics for all the 

algorithms, which we discuss next.   
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Figure 5.7 shows the comparison of the cost metric. When the budget is low (β = 

1), we find that for data sets 3 and 11 (r = 2, e = 1.0), the cost metric is very low. This is 

because the available budget is very low, and compared to data sets 1 and 9 (r = 2, e = 

0.5), the capacity of the tools is lower. Hence the heuristic itself eats up a major chunk of 

the budget, not leaving enough money to purchase more tools. We also notice that the 

cost metric for data sets 5 and 13 (r = 10, e = 0.5) is very high. The capacity of the tools 

is higher compared to data sets 7 and 15 (r = 10, e = 1.0) and hence the heuristic does 

not spend much money, thereby leaving a huge sum to be spent to purchase more tools. 

For data sets 1, 3, 9 and 11 (r = 2) the performance of all the algorithms is nearly the 

same. For the others however, the cost metric for ANLT and NPA-II is generally lower. 

Barring data set 5 where BLA has the highest cost metric, HCA, SLA and BLA behave 

in a similar manner.  

When the budget is high (β = 3), we find that the trend for BLA is opposite to 

that for the other algorithms, as in the first problem set. It has the highest cost metric for 

all data sets. For data sets 6, 8, 14 and 16 (r = 10), the cost metric is very low compared 

to other data sets where r = 2. This is due to the huge budget available, with respect to 

which the metric is normalized, and quick sand reasoning. BLA, unlike the other 

algorithms, ends up spending the whole budget. HCA has the lowest cost metric for data 

sets 2 and 10 (r = 2, e = 0.5) and ANLT for the rest. The nested paritions-I (NPA-I) 

algorithm has a very high cost metric for data set 16, but it is still lower than that for 

BLA. SLA performs worse than HCA, but better than NPA-II, whose cost metric is 

generally high, and especially when r = 2.  
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It can also be seen that the cost metric for data sets 6, 8, 14 and 16 (β = 3, r = 

10), is lower for all algorithms except BLA, than that for 5, 7, 13 and 15 (β = 1, r = 10), 

respectively. The reason is the high budget with respect to which the metric is 

normalized and quick sand reasoning.  
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Figure 5.7: Comparison of the cost metric at β = 1 and β = 3 respectively 
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Figure 5.8 shows the comparison of the capacity metric. When the budget is low 

(β = 1), we find that the capacity metric for data sets 1 and 9 (e = 0.5) is less than that for 

data sets 3 and 11 (e = 1.0) respectively, despite the opposite trend in the cost metric. 

This is explained as follows. When e = 0.5, tools have a higher capacity. The capacity 

after the heuristic was implemented, turned out to be higher compared to when e = 1.0, 

and the remaining budget was higher too. However it was not enough to purchase tools 

for each and every workstation, and hence the system capacity could not be increased by 

a huge amount. When e = 1.0, it was found that the capacity of one or two workstations 

was close to the required throughput, implying that the system capacity was low. After 

the heuristic was implemented, a higher gain in capacity resulted after purchasing tools 

for those couple of workstations, which explains the opposite trend in the cost and the 

capacity metrics. For data sets 5 and 13 (r = 10, e = 0.5), the capacity metric is the 

highest for all algorithms except BLA and the cost metric was the highest too. BLA has 

the lowest capacity metric, despite its cost metric being the highest among all the 

algorithms. For data sets 1, 3, 9 and 11 (r = 2), NPA-II has the highest capacity metric. 

The performance of HCA, BLA and SLA is similar for these data sets. For the rest, 

SLA’s performance is close to that of HCA. On average, the capacity metric for ANLT 

is similar to that for HCA.   

When the budget is high (β = 3), it is seen that for all the algorithms, the capacity 

metric for data sets 6, 8, 14 and 16 (r = 10) is lower than that for data sets 2, 4, 10 and 12 

(r = 2) respectively. The reason is the same as in the case when the cost and capacity are 

not correlated. Again, for the same reason as in Problem Set 1, BLA has a higher 

capacity metric, yet a lower cost metric when r = 2, compared to when r = 10. ANLT 
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has the lowest capacity metric for most data sets. HCA performs closest to ANLT, 

barring data set 14. The capacity metric is highest for BLA when r = 10 and for data sets 

2 and 10 (r = 2, e = 0.5). NPA-II has the highest capacity metric for data sets 4 and 12 (r 

= 2, e = 1.0). The capacity metric for SLA is always higher than that for HCA. For data 

set 16, NPA-I has the lowest capacity metric even though its cost metric is very high. 

It can also be seen that the magnitude of increase in the capacity metric from data 

sets 5, 7, 13 and 15 (β = 1, r = 10), to data sets 6, 8, 14 and 16 (β = 3, r = 10) 

respectively, is lower than that for the corresponding data sets when r = 2, for all the 

algorithms except BLA. This is due to the fact that the capacity of each tool is much 

higher when r = 2, compared to when r = 10, and that the amount of money spent to gain 

further capacity will not be proportional to the ratio between these two values of r, as 

there will be no reduction in the cycle time on addition of a quick sand tool to a lot of 

similar quick sand tools after a certain stage, as explained earlier. 
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Figure 5.8: Comparison of the capacity metric at β = 1 and β = 3 respectively 
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Figure 5.9 shows the comparison of the cycle time metric. When the budget is 

low (β = 1), we find that for data sets 5, 7, 13 and 15 (r = 10), the cycle time metric is 

low. The capacity metric for these data sets is high too. Although data sets 3 and 11 (r = 

2, e = 1.0) have a higher capacity metric than data sets 1 and 9 (r = 2, e = 0.5), it does 

not translate into a lower cycle time. The reason is that when the budget available is low, 

and e = 1.0, the capacity of tools is not as high compared to when e = 0.5. Hence the 

heuristic spends a lot more money comparatively, and buys the tool with the highest 

capacity to cost ratio, even though that capacity might be much below that of the highest 

capacity tool at that workstation. After the heuristic is implemented, not enough money 

is left to purchase the highest capacity tools. Hence the cycle time metric is high. The 

performance of NPA-II and ANLT is approximately the same, and they have the lowest 

cycle time metric. When r = 2, HCA, BLA and SLA perform similarly, and have the 

highest cycle time metric. However when r = 10, BLA has the highest cycle time metric, 

while the performance of SLA is close to that of HCA. 

When the budget is high (β = 3), we notice that the cycle time metric for data set 

12 is minimum. For this data set, the capacity metric was the highest. For data sets 6, 8, 

14 and 16 (r = 10), the capacity metric is low. For these data sets with 16 being an 

exception, the cycle time metric is among the highest. But surprisingly for 16 (r = 10), it 

is among the lowest. NPA-II and ANLT have the lowest cycle time metric, while BLA 

has the highest. The performance of SLA is almost similar to that of HCA. NPA-I has a 

low cycle time metric too, but it is higher than that for NPA-II.  
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Figure 5.9: Comparison of the cycle time metric at β = 1 and β = 3 respectively 
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Figure 5.10 shows the comparison of the simulation metric. We find the analysis 

exactly similar to that for the case when the cost and capacity are not correlated. When 

the budget is low (β = 1), we find that the number of simulations for data sets 1, 3, 9 and 

11 (r = 2) is equal, and very small for HCA, BLA and SLA. This is due to less money 

being available at the end of the heuristic, to purchase more tools. For NPA-II however, 

the number of simulations is higher due to the search process, as it has no initial solution 

to work with. For data sets 13 and 15 (r = 10, z = 5), since the available budget is high 

and there are many tool types with low capacity (compared to when r = 2) to choose 

from, the number of simulations is higher for HCA. For NPA-II also, the number of 

primary and secondary nodes is more when z = 5, resulting in a higher simulation metric. 

BLA and SLA have the lowest values for the simulation metric.  

When the budget is high (β = 3), we find that the number of simulations for data 

sets 2 and 4 (r = 2, z = 2) is small. This is due to less money being available (compared 

to when r = 10) and few tool types to choose from. For similar reasons, data sets 14 and 

16 (r = 10, z = 5) have the highest simulation metric. It is seen that NPA-II requires a lot 

of simulation runs compared to the other algorithms. BLA and SLA require much less 

simulation runs compared to HCA. For data set 16, NPA-I requires a prohibitive amount 

of simulation effort. 
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Figure 5.10: Comparison of the simulation metric at β = 1 and β = 3 respectively 



 114 

Figures 5.11 and 5.12 show the comparison between the cycle time metric and 

the ratio of the capacity to cost metrics. Figure 5.11 shows the comparison when the 

budget is low (β = 1). NPA-II performs the best for data sets 1, 3 and 9 (r = 2) and 

relatively well for data sets 7, 11 and 15. ANLT performs the best for data sets 7 and 15 

(r = 10, e = 1.0), and relatively well for data set 11. Performance of HCA and SLA is 

similar, and relatively good for data sets 5, 7 and 13 (r = 10). BLA performs the worst.  

Figure 5.12 shows the comparison when the budget is high (β = 3). HCA 

performs relatively well, while BLA performs the worst for all the data sets. SLA’s 

performance is close to that of HCA. NPA-II has the lowest cycle time metric but 

generally spends more money for the same capacity. ANLT performs relatively well for 

data sets 4, 8, 12 and 16 (e = 1.0). For data set 16, NPA-I spends relatively much more 

for the same amount of capacity, yet does not have the lowest cycle time metric.  
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Figure 5.11: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at 

β = 1 
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Figure 5.12: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at 

β = 3 
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5.2.3 Comparison between Problem Sets 1 and 2 

It is found that the cost and capacity metrics are higher, when the cost and 

capacity are correlated (Problem Set 2), compared to when they are not (Problem Set 1). 

This is because the average capacity of a tool is higher in Problem Set 2, and since the 

cost and capacity are correlated, we end up spending more money. The cycle time metric 

for Problem Set 2 though, is higher than that for Problem Set 1. This can be explained as 

follows. The cycle time metric is normalized with respect to the average total processing 

time. Hence a higher value for the metric for a particular data instance would imply a 

longer waiting time. Since the search algorithms continue buying tools even though there 

would be only a small improvement in the cycle time, the average total waiting time in 

the queue is very less at the end, compared to the average total processing time. Hence, 

as a fraction of the total processing time, the waiting time will be more when the total 

processing time is less, which corresponds to the case when the average capacity of tools 

is higher, as in Problem Set 2. The simulation metric is also higher for Problem Set 2. 

For HCA, BLA and SLA, there will be more iterations in the search process when the 

capacity of the tools is higher. This is because addition of a higher capacity tool would 

be more likely to improve the cycle time, than the addition of a lower capacity tool. For 

NPA-II, the range of tool values over which the partitioning is done for a secondary 

node, will be higher when the cost and capacity are correlated. Section 4.7.2 in Chapter 4 

provides the description on partitioning the nodes for NPA-II. The upper bound for the 

tool value is inversely proportional to the sum of the ratios of the cost to the capacity of 

the tools chosen, which will be higher for Problem Set 1. Hence there will be fewer total 

simulation runs for the secondary nodes when the cost and capacity are not correlated.  
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5.3 Summary of the results 

Based on the results and explanations, we summarize as follows. The 

performance of the algorithms was compared through cost, capacity, cycle time and 

simulation metrics. A higher cost metric implies that a greater portion of the budget was 

spent in purchasing the tools. A higher capacity metric implies a greater capacity in the 

system. A higher cycle time metric implies that a wafer lot spends a longer time in the 

system. A higher simulation metric implies that a large number of simulation runs are 

needed to reach the final solution.  

HCA and ANLT tend to have the lowest cost metric, followed by SLA, NPA-II 

and NPA-I respectively. BLA has the highest cost metric. 

HCA and ANLT have a relatively high capacity metric when the budget is low, 

but have a very low capacity metric at high values of budget. BLA has the lowest 

capacity metric at low values of budget and the highest capacity metric at high values of 

budget. At high values of budget, SLA has a higher capacity metric compared to HCA. 

NPA-I has the lowest capacity metric. NPA-II in general, has a high capacity metric. 

ANLT and NPA-II almost always have the lowest cycle time metric, followed by 

HCA and SLA that have similar values of the cycle time metric. NPA-I performs slightly 

better than HCA and SLA. BLA almost always has the highest cycle time metric.   

BLA has the lowest simulation metric, followed by SLA. HCA requires more 

simulation runs than SLA, but fewer than NPA-II. NPA-I requires an exorbitant amount 

of simulation effort. 
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Table 5.3 summarizes the performance of the algorithms with respect to the 

output metrics. The number of stars reflects the relative performance of each algorithm 

on that metric.  

 

Algorithm Cost Capacity Cycle Time Simulation  
HCA * * * * * * * * * * * * * * 
BLA * * * * * * * * * * 
SLA * * * * * * * * * * * * * * * 

NPA-I * * * * * * * * 
NPA-II * * * * * * * * * * * * * * * 
ANLT * * * * * * * * * * * * * - 

* worst performance * * * * * best performance 

 

 

5.4 Summary 

This chapter discussed the experimental set-up and the results that we obtained. 

Each of the six algorithms was used to find solutions to the 320 instances of the problem. 

After describing the results in detail, this chapter summarized the results and discussed 

the performance of the algorithms on each metric. The next chapter summarizes the 

conclusions and lists the limitations, contributions and the future work.  

Table 5.3: Performance of the algorithms under consideration 
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6. SUMMARY AND CONCLUSIONS 

 

This chapter summarizes the research work that we performed and draws the 

conclusions. Section 6.1 discusses the suitability of the algorithms that we implemented, 

with respect to the special structure of the equipment selection problem. Section 6.2 lists 

the contributions of our research. Section 6.3 mentions some of the limitations of our 

implementation. Finally, in Section 6.4 we discuss the future work. 

 

6.1 Conclusions 

An equipment selection problem was formulated with minimization of the 

average cycle time as the objective, along with constraints on the budget and minimum 

throughput on the system. We developed and implemented five simulation-based 

algorithms, namely hill climbing, biggest leap, safer leap, nested partitions-I and nested 

partitions-II, and an analytical algorithm for the problem. After testing them on two 

different problem sets characterized by the presence or absence of a correlation between 

the cost and capacity of tools, we found that there are trade-offs associated with the 

performance of the simulation-based algorithms. The hill climbing algorithm spends the 

least amount of money to achieve a very low cycle time but requires a large amount of 

simulation effort. The biggest leap algorithm spends an unreasonable amount of money 

and yet is not able to reduce the cycle time appreciably. The quality of solutions is the 

worst, but the simulation effort required is the least. The safer leap algorithm 

incorporates the best features of the hill climbing and the biggest leap algorithms, 

providing good quality solutions with reasonable simulation effort. NPA-II requires a 



 121 

tremendous amount of simulation effort, but provides good quality solutions, although at 

a slightly higher cost. NPA-I requires the most amount of simulation effort, but spends a 

lot of money to achieve a low cycle time value. It performs better than the biggest leap 

algorithm, but is dominated by NPA-II. The analytical algorithm turns out to be the best 

amongst all, as it spends the least amount of money to achieve a very low cycle time 

without any simulation effort at all. This benchmark algorithm was chosen after 

implementing and comparing two searches (described in the appendix) over a wide 

range of problem instances.  

It is worth noting that the equipment selection problem we considered has a 

special structure to it. It seems intuitive that given a choice between a variety of tools, 

the addition of a higher capacity tool will serve to reduce the cycle time more. Moreover, 

a proportionate distribution of the capacity of workstations tends to avoid serious 

bottlenecks that occur when the capacity distribution is skewed. Although the hill 

climbing algorithm (explained in Chapter 4, Section 4.3) invariably selects the tool with 

the highest capacity at the end of each iteration, it does so without making use of any 

knowledge about the problem structure. The biggest leap algorithm (explained in 

Chapter 4, Section 4.4) tends to select the tool with the highest capacity, though it ends 

up buying the other tools with lower capacity at that workstation as well. It is oblivious 

of the problem structure too. The safer leap algorithm (explained in Chapter 4, Section 

4.5) exploits the problem structure, as it buys tools with the highest capacity for at least 

one workstation at the end of each iteration, thereby trying to increase the capacity of all 

the workstations uniformly. NPA-I (explained in Chapter 4, Section 4.6) also tries to buy 

tools with the highest capacity, although, due to its random search, it also buys tools 
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with lower capacities. The modifications made to develop NPA-II (explained in Chapter 

4, Section 4.7) not only reduce the simulation runs involved but also direct the efforts of 

the algorithm towards selecting the highest capacity tool to help it utilize the special 

structure of the problem that NPA-I did not. The analytical algorithm (explained in 

Chapter 4, Section 4.8) we presented is completely based on the special structure that the 

equipment selection problem has. However, it may be inappropriate for more complex 

manufacturing systems such as job shops where different workstations have different 

throughput requirements. If the interarrival and processing times have other probability 

distributions, a more general GI/G/m approximation would be required to estimate 

manufacturing cycle times. See Herrmann and Chincholkar [64] for instance. 

Therefore, when selecting a simulation-based stochastic algorithm for any given 

problem, it is beneficial to have prior knowledge about any special properties that might 

be inherent in the structure of the problem. This helps to fine tune the algorithm to direct 

the search for the optimum solution in the most efficient manner.  

 

6.2 Contributions 

We presented five simulation-based algorithms and two analytical searches to 

solve the equipment selection problem. Unlike other manufacturing system design 

problems, this novel formulation requires selection amongst various tool types at a given 

workstation. Combining the cycle time objective with a budget constraint is another 

unique feature that addresses the trade-off between initial investment and system 

performance. The hill climbing algorithm was based on the generalized hill climbing 

algorithm described by Sullivan and Jacobson [1]. The biggest leap algorithm was based 
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on the gradient-based method described by Mellacheruvu [62]. We designed the new 

safer leap algorithm by combining the salient features of the hill climbing and the 

biggest leap algorithms. The nested partitions algorithm proposed by Shi and Olafsson 

[3], formed the basis for our novel implementation of NPA-I and NPA-II.  

When a manufacturing system incorporating complexities such as break down of 

tools, maintenance schedules or re-entrant flows is to be designed, it is difficult to 

develop analytical algorithms to solve an associated optimization problem. Sometimes, a 

rough estimate is needed to get a quick idea about what the optimal solution might look 

like, and on other occasions, an accurate solution might be required, which may take 

time. We discussed the performance of the algorithms we implemented for our problem, 

with respect to such trade-offs between the quality of solution and the time and effort 

involved. No systematic comparison of these algorithms has been done before.  

We also showed the importance of the knowledge of the problem structure, 

through the implementation of the safer leap algorithm, two different versions of the 

nested partitions algorithm, and the analytical algorithm. In general, the black box 

approach that assumes no knowledge about the system that is being simulated performs 

well for problems that do not reveal much information about their structure. However, 

those methods that utilize the knowledge of the problem structure, whenever such 

information is available, dominate the black box approach. In Chapter 2, we mentioned 

the research work, such as that of Gong, Ho and Zhai [47], pertaining to the simulation-

based algorithms that utilize the special structure of the problem under consideration. 

We also referred to the research that has been conducted to compare the performance of 

variants of a particular algorithm on a specific problem, such as that by Alrefaei and 
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Andradottir [43]. Similar to the literature related to the combination of salient features of 

two or more algorithms, such as that by Shi, Olafsson and Chen [51], our safer leap 

algorithm combines the salient features of the hill climbing algorithm and the biggest 

leap algorithm, which by themselves, do not utilize the special problem structure of our 

equipment selection problem. NPA-II exploits the structure better by purchasing only 

one tool type per workstation. Further, its implementation suggests a greater probability 

of selecting the tool type with the highest capacity. Compared to the simulation-based 

algorithms, the analytical algorithm that is completely based on utilizing the special 

problem structure provides the best results at no simulation cost. Our research work 

therefore, emphasizes the importance of the knowledge of the problem structure as well 

as the algorithms, so as to enable a customized implementation of the algorithms 

utilizing the special properties that the problem might have. 

 

6.3 Limitations 

We made a few basic assumptions for our simulation model. These were 

described in Section 5.1.2 of Chapter 5. Ours was a simple manufacturing system, 

without any tool breakdowns, multiple product flows, rework, maintenance or re-entrant 

flow. Improvement in cycle time of a magnitude greater than or equal to 0.01 hours 

(precision of Factory Explorer 2.5) was accepted as sufficient reason to purchase another 

tool, if the budget permitted so. The same value of 0.01 hours was also used for the 

analytical algorithms, as the lowest acceptable improvement in the cycle time. The 

simulation model also assumed that the number of wafer lots that visit each tool type at a 

workstation is proportional to the tool’s capacity.   
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Although in literature, the nested partitions algorithm has been combined with a 

technique called optimal computing budget allocation (OCBA) to ensure a larger 

allocation of simulation effort amongst the potentially good designs, we did not 

implement OCBA. Further, the selection of the number of samples for the partitioned 

and the surrounding regions did not have any strong basis due to lack of any concrete 

guidelines.  

 

6.4 Future work 

The scope of the problem we considered could be extended to sharing equipment 

between workstations, which is common in practical situations with re-entrant flow. 

Further complexities could be modeled in the form of breakdown of tools, maintenance 

schedules and multiple product families.  

For the hill climbing, biggest leap and safer leap algorithms, a better heuristic 

could be employed to obtain a different starting point for these search algorithms. 

Techniques to help the nested partitions algorithm focus on potentially good 

configurations and reduce the simulation effort involved could also be employed. 

Another approach would be to add the cost of equipment purchase with economic 

measures related to cycle time such as the cost of holding work-in-process, to determine 

the system design that minimizes the system life cycle costs. 

 Finally, we could study the performance of the analytical algorithm on systems 

with more general probability distributions for processing time and inter-arrival time.  
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APPENDIX 
 

This appendix presents the two analytical algorithms that were considered to 

decide the benchmark-algorithm for the simulation-based algorithms and discusses the 

experimental results. 

 

1. Description of the algorithms 

The algorithms search a solution space that consists of only one tool type per 

workstation. 

1.1 Notation 

The notation used is as follows: 

λ desired throughput 

M budget available 

n  number of workstations 

zi total number of different  tool types at workstation i; i = 1, ..., n  

Tij tool of type j at workstation i; j = 1, ..., zi 

µij capacity of Tij tool 

Cij cost of Tij tool 

Uij capacity per unit cost of Tij tool = 

k iteration number 

 greatest integer less than or equal to x 

 smallest integer greater than or equal to x  

Ti selected tool type at workstation i   

Xi number of tools for workstation i 

 x

 x

ij

ijC

µ



 127 

Ti and Xi are the decision variables.  If Ti = j, Ci = Cij and µi = µij. 

θ the number of tools: {X1, X2, …, Xn} 

f(θk) the manufacturing cycle time of the system given a solution θk  

χ {X11, X12, …, X1,z1
; …; Xn1, Xn2, …, Xn,zn

}  

1.2 Description 

The two search algorithms are called Algorithm I (A-I) and Algorithm II (A-II). 

The only difference in the algorithms is the selection of Ti. 

For Algorithm I (A-I), let Ti = j, such that µij > µik for all k ≤ zi and k ≠ j. If µij = 

µik, then choose the tool type with lower cost. Set Ci = Cij; µi = µij. 

For Algorithm II (A-II), let Ti = j, such that Uij > Uik for all k ≤ zi and k ≠ j. If Uij 

= Uik, then choose the tool type with higher capacity. Set Ci = Cij; µi = µij. 

After Ti are selected, each algorithm proceeds as follows: 

 

Step 1: Check feasibility 

For i = 1, ..., n: 

Set         

 

Set 

If B < 0, then  

Return the solution as infeasible  

Else 

Initialize k = 0 

i
i

X
λ
µ
 

=  
 

1

n

i i
i

B M X C
=

= −∑
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θk = {X1, X2, …, Xn} 

For i = 1, ..., n, 

 
i

i iX

λρ
µ

=
 

 1
1

1
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Output CostI = X1C1 + … + XnCn and Cycle TimeI = f(θk) 

Step 2: Perform the search 

Let f(θk-1) = ∞. 

Let ε be a small positive number (in our experiments, ε = 0.01 hours). 

Define P(B) = {i: Ci ≤ B} as the set of workstations with “affordable” tools (that is, the 

cost of a tool at any of these workstations is not greater than the unspent budget). 

While P(B) is not empty and f(θk) ≤ f(θk-1) - ε, repeat the following loop: 

Let i be the workstation in P(B) that currently has the least capacity (the smallest 

value of Xiµi). 

Update Xi, B, and k as follows: Xi = Xi +1; B = B – Ci; k = k + 1 

θk = {X1, X2, …, Xn} 

Calculate f(θk) 

Update P(B) 

If f(θk) > f(θk-1) - ε, then revise Xi, B, and k as follows: Xi = Xi - 1; B = B + Ci; k = k - 1 

Construct the solution χ from θk as follows: 
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For all i and j, Xij = Xi if Ti = j, and 0 otherwise 

Output CostF = X1C1 + … + XnCn and Cycle TimeF = f(θk) 

 

2. Experiments 

The algorithms were run on the Problem Set 2 described in Section 5.1.1 of 

Chapter 5. Each search algorithm (A-I and A-II) was run on each instance.  The output 

of each run included five performance measures.  The performance measures of the 

initial solution are CostI and Cycle TimeI. The performance measures of the final 

solution are CostF and Cycle TimeF.  Since each data set is different, we normalized 

these statistics by comparing the cost performance to the total budget for that data set 

and comparing the cycle time performance to the expected total processing time of that 

data set.  If b has a uniform distribution over [l,u], then the expected value of b0.5 can be 

calculated as follows: 

1.5 1.5
0.5 2

[ ] ( )
3

u l
E b

u l

−=
−

 

From these statistics, the following performance metrics are calculated to 

estimate the performance of each algorithm on each instance: 

Cost MetricI = CostI/M.  Cost MetricF = CostF/M. 

Cycle Time MetricI = Cycle TimeI/1.450 and Cycle Time MetricF = Cycle TimeF/1.450 

if e = 0.5 and r = 2 (Data sets 1, 2, 9, and 10).   

Cycle Time MetricI = Cycle TimeI/7.246 and Cycle Time MetricF = Cycle TimeF/7.246 

if e = 0.5 and r = 10 (Data sets 5, 6, 13, and 14).   

Cycle Time MetricI = Cycle TimeI/1.667 and Cycle Time MetricF = Cycle TimeF/1.667 

if e = 1.0 and r = 2 (Data sets 3, 4, 11, and 12).   
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Cycle Time MetricI = Cycle TimeI/8.333 and Cycle Time MetricF = Cycle TimeF/8.333 

if e = 1.0 and r = 10 (Data sets 7, 8, 15, and 16).   

The fifth performance measure was the number of iterations that the algorithm 

performed before stopping.  All of the metrics were averaged over all ten problem 

instances. Table 1 shows the results for each algorithm on each data set.  Figures 1 and 2 

also display the cost and cycle time metrics.  A larger cost metric implies that more of 

the budget was spent purchasing tools.  A larger cycle time metric implies that jobs spent 

more time in the system. 

 
3. Results 

The last two columns in Table A1 show that the number of iterations for both 

algorithms is approximately the same in most data sets.  A-II does require more 

iterations in some data sets.  The most significant increases occur in data sets 9 and 11 

because A-I selects, in general, more expensive tools and spends the budget more 

quickly than A-II. 

As shown in Table A1 and Figures A1 and A2, A-I constructs initial solutions 

that have, in general, a larger cost metric and a smaller cycle time metric than the initial 

solutions that A-II constructs.  This results from A-I’s selection of large capacity tools, 

which are expensive.  But the initial solution is likely to have more than enough 

capacity, which reduces congestion and cycle time.  A-II selects, in general, smaller 

tools, so the capacity of the initial solution will exceed the throughput constraint by a 

smaller margin.  Higher utilization will lead to larger cycle times. 
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At the end of the search, A-I finds solutions that have a larger cost metric than 

the final solutions that A-II finds, but the performance on the cycle time metric is very 

close.  Compared to the initial solutions, the final solutions found have much larger cost 

metrics and much smaller cycle time metrics.  Thus, it is clear that the search algorithms 

are useful for finding feasible, high-quality solutions.  

Algorithm A-I was selected as the benchmark-algorithm based on its lower cycle 

time values compared to A-II, for all the 16 data sets. 
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Figure A1: Average cost metric 
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Figure A2: Average cycle time metric 
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