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Abstract

A system of two earth satellites is analyzed as a con-
trolled mechanical system. The orbit of an earth satel-
lite can be represented by a point in the vector space of
ordered pairs of angular momentum and Laplace vec-
tors. Control laws are obtained by introducing a Lya-
punov function on this space. Formations of two satel-
lites are achieved asymptotically by the controlled dy-
namics.

1 Introduction

There is increasing interest in the behaviors of a cluster
of relatively small satellites in space. Such satellites are
usually inter-connected by wireless radio or laser links
for communication. By keeping a cluster of such satel-
lites in a certain geometrical form, one can acquire ben-
efits for scientific observations. The information shar-
ing across the cluster will allow the satellites to work
cooperatively to perform tasks impossible or difficult
for a single satellite. Compared to a single satellite
providing the functionality of a cluster, a member of
a cluster can be smaller/lighter. Building and launch
costs will then be reduced. In addition, A cluster can
also be reconfigured according to different mission goals
or in the case that a member of the cluster fails.

The size and shape of a cluster or formation are usually
determined by the required functionality of the forma-
tion. With J2 and higher order terms of the earth’s
gravitational field ignored, the solution of the Kepler
problem tells us that a satellite will track an elliptical or
circular orbit. To determine the orbit of each satellite
in a cluster such that the size and shape of the cluster

1This research was supported in part by the National Aero-
nautics and Space Administration under NASA-GSFC Grant No.
NAG5-10819, by the Air Force Office of Scientific Research un-
der AFOSR Grant No. F49620-01-0415, by the Army Research
Office under ODDR&E MURI97 Program Grant No. DAAG55-
97-1-0114 to the Center for Dynamics and Control of Smart
Structures (through Harvard University), and under ODDR&E
MURI01 Program Grant No. DAAD19-01-1-0465 to the Center
for Communicating Networked Control Systems (through Boston
University).

is kept unchanged over sufficiently long period is not a
trivial problem. Because the amount of fuel on board
is limited for each satellite, one needs to find a set of
orbits that demand the minimum control effort. This
problem becomes more challenging when the effect of
J2 and other disturbances are considered. In [3] the
authors proposed a ring of evenly distributed satellites
on the same circular orbit for communication purpose.
The stability of such ring is proved in [4]. In [2] and [5]
the investigations of Clohessy-Wiltshire equations re-
vealed possible formations with constant apparent dis-
tributions. The effects of perturbations are calculated
and possible station keeping strategy are proposed. In
[7], the authors proposed that in the presence of J2, a
set of constraints on the orbital elements shall be satis-
fied to prevent the orbits from drifting apart. However,
extra station keeping is still necessary due to the com-
plicated nature of the disturbances. The adjustment
can be performed periodically when the drifting error
exceeds certain threshold.

The initialization of a formation is another important
problem. The whole cluster can be launched together
by a space shuttle or rocket. Satellites will be first
placed in a parking orbit before transferring to the final
orbits. The final orbits must be such that the forma-
tion will be achieved. The orbital transfer can happen
individually. One idea is to develop a Lyapunov func-
tion which will achieve its minimum when correct orbit
is reached. In [6], a Lyapunov function is expressed as a
quadratic function of the differences of orbital elements
between current orbit and the destination orbit. In [1],
the authors proved that an elliptic orbit can be repre-
sented uniquely as a point on the linear space formed
by the angular momentum vectors and Laplace vectors.
A Lyapunov function was built naturally from the Eu-
clidean metric on this space. It has been suggested that
compared to Hohmann transfer, this approach will con-
sume less fuel.

In this paper, we will show that cooperative orbit trans-
fer is possible in the setting of pairs of satellites. The
satellites in a cluster can make the transfer together
and the cluster relationship can be established asymp-
totically. The same technique can be used to perform
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station keeping task when the relative position errors
of the satellites exceed a certain threshold. By extend-
ing the method in [1] to multi-satellite case, we will de-
sign a Lyapunov function and show that correct cluster
relationship between orbits can be established by the
controlled dynamics which will minimize this function.

In section (2), we will review the Kepler two body prob-
lem and introduce the concept of the shape space of
elliptic Keplerian orbits. In section (3), the Lyapunov
function for a pair of satellites is developed and the case
of two satellites making a cooperative orbit transfer is
studied. Simulation results are given in section (4).

2 The Kepler two body problem

For a system of two small satellites, one can make the
following assumptions: (a) The gravitational attraction
between the satellites can be omitted. (b) The total
mass of the satellites satisfies m1 + m2 � M where M
is the mass of the Earth. Under these assumptions, the
three body system can be approximated by two uncou-
pled two body problems. Each of the two body prob-
lems can be further simplified to a one center problem
with the center of Earth being the center of mass.

The gravitational potential function V depends only on
the distance ‖q‖ of the satellite from the center. Then
we have

mq̈ = −∇V (1)

Let p = mq̇ be the momentum of the satellite. The
angular momentum l = q × p and the energy W =
1
2m‖q̇‖2 + V are integrals of motion (i.e. they are con-
served). Since

l̇ = q̇ × p + q × ṗ
= 0 + q × mq̈

= −q × m
q

‖q‖
∂V

∂‖q‖ = 0 (2)

and

Ẇ = q̇ · mq̈ + V̇
= −q̇ · ∇V + V̇ = 0 (3)

If we make further assumptions that the shape of
the earth is a perfect homogeneous ball, then V =
−mµ/‖q‖ where µ = kM and k is the gravity con-
stant, the Laplace vector A = p × l − m2µ q

‖q‖ is also
conserved given q(t) �= 0 for all t > 0. To see this,

Ȧ = ṗ × l − m2µ
d

dt
(

q

‖q‖)

= mq̈ × (q × p) − m2µ(
q̇

‖q‖ − (q · q̇)q
‖q‖3

) (4)

Notice that
mq̈ = −mµ

q

‖q‖3
(5)

Thus

mq̈ × (q × p) = −mµ
(q · p)q
‖q‖3

+ mµ
p

‖q‖ (6)

Comparing (6) with (4) we have Ȧ = 0

Knowing l , W and A, we have seven integrals for the
two-body problem. They are not all independent be-
cause there are two relations connecting them. They
are:

A · l = 0
‖A ‖2 = m4µ2 + 2mW ‖ l ‖2 (7)

The space of ordered pairs (l, A) is R3 × R3 on which
we define the metric:

d((l1, A1), (l2, A2)) = (‖ l1 − l2 ‖2 + ‖A1 − A2 ‖2)
1
2

(8)

Let P denote the phase space of the satellite, define a
mapping π : P → R3 × R3, (q, p) �→ (l, A). Let the set
Σe be defined as

Σe = {(q, p) ∈ P |W (q, p) < 0, l �= 0} (9)

and let the set D be defined as

D = {(l, A) ∈ R3 × R3 |A · l = 0, l �= 0, ‖A ‖ < m2µ}
(10)

In [1], the authors proved the following results:

Theorem 2.1 (Chang-Chichka-Marsden)The follow-
ing hold:

1. Σe is the union of all elliptic Keplerian orbits.

2. π(Σe) = D and Σe = π−1(D).

3. The fiber π−1(l, A) is a unique (oriented) elliptic
Keplerian orbit for each (l, A) ∈ D.

The mapping π is a continuous mapping because l and
A are continuous with respect to (q, p). Furthermore,
the following corollary hold.

Corollary 2.2 π−1(K) is compact for any compact set
K ⊂ D

Proof: Since D is a metric space, K is compact implies
that K is closed and bounded. By the continuity of π,
π−1(K) is closed. The only thing left to prove is the
boundedness of π−1(K).

p. 2



K is closed and bounded implies that there exist r0 > 0,
r1 > 0 and 0 ≤ r2 < m2µ s.t.

r0 ≤ ‖ l ‖ ≤ r1 ‖A ‖ ≤ r2 (11)

This is true since we already know ‖A ‖ < m2µ and
‖ l ‖ > 0. Because ‖ · ‖ is continuous on the compact set
K, we declare that r0 and r2 exist and can be achieved.
The existence of r1 is based on the fact that ‖ l ‖2 +
‖A ‖2 is bounded.

Without loss of generality, assume the satellite has unit
mass. From

‖A ‖2 = µ2 + 2W ‖ l ‖2 (12)

We get

|W | =
µ2 − ‖A ‖2

2 ‖ l ‖2 (13)

Hence,

0 <
µ2 − r2

2

2r2
1

≤ |W | ≤ µ2

2r2
0

(14)

Let a denote the semi-major axis of an elliptic Kep-
lerian orbit and e denote the eccentricity. It is well
known that

a = −2µ

W
e =

‖A ‖
µ

(15)

Thus a,e are bounded. For any (q(t), p(t)) ∈ π−1(K),
on an elliptic orbit q(t) is bounded below by a(1 − e)
and bounded above by a(1 + e). Furthermore, because
‖ l ‖ = ‖ p(t) ‖ ‖ q(t) ‖ sin θ, ‖ p(t) ‖ is bounded given the
fact that ‖ l ‖ �= 0. Hence (q(t), p(t)) is bounded which
implies that π−1(K) is bounded.

In the case of two satellites, let (li, Ai, Pi, Σei, Di, πi, di)
denote the corresponding objects defined for the ith
satellite. Let P̂ = P1×P2 , q̂(t) = (q1(t), q2(t)), p̂(t)) =
(p1(t), p2(t)). Let Σ̂e = Σe1 × Σe2. Let D̂ = D1 × D2

and l̂ = (l1, l2), Â = (A1, A2). Let

d̂((l̂1, Â1), (l̂2, Â2)) =
√

d2
1 + d2

2 (16)

and π̂ = π1 × π2. We define the shape space of ellip-
tic Keplerian orbits to be the set D̂ with the distance
function d̂.

Proposition 2.3 The following hold:

1. Σ̂e is the union of all pairs of elliptic Keplerian
orbits.

2. π̂(Σ̂e) = D̂ and Σ̂e = π̂−1(D̂).

3. The fiber π̂−1(l̂, Â) is a unique pair of (oriented)
elliptic Keplerian orbit for each (l̂, Â) ∈ D̂.

4. π̂−1(K̂) is compact for any compact set K̂ ⊂ D̂

Proof: Use the definitions of (l̂, Â, Σ̂e, D̂, π̂, d̂)
and apply Theorem (2.1) and corollary (2.2) to
(li, Ai, Σei, Di, πi, di) for i = 1, 2. The statements are
immediately proved.

3 Control Strategies to Achieve Formations

Based on the distance function on the shape space of
elliptic Keplerian orbits, a Lyapunov function can be
introduced on the phase space for the Hamiltonian sys-
tem of two satellites. By applying LaSalle’s invariance
principle, we prove that the system can be driven to an
invariant manifold of the phase space where formation
is achieved.

The system of two satellites is a Hamiltonian (Control)
system with H =

∑2
i Hi where

Hi =
1

2mi
‖ pi ‖2 − V (‖ qi ‖) (17)

For each satellite the dynamics is:

ṗi = −∂Hi

∂qi
+ ui = −miµ

qi

‖qi‖3
+ ui

q̇i =
∂Hi

∂pi
=

pi

mi
(18)

where i = 1, 2. Here ui are controls.

Using the notations at the end of the last section, let
J1(q̂, p̂) = (l1, A1), J2(q̂, p̂) = (l2, A2) and J(q̂, p̂) =
(J1, J2). Define a Lyapunov function as

V (J(q̂, p̂)) =
1
2
[‖l1 − l2 − δl‖2 + ‖A1 − A2 − δA‖2

+ ‖ l1 − ld ‖2 + ‖A1 − Ad ‖2] (19)

Here, δl , δA are constant vectors which specify the
desired final difference between (l1, A1) and (l2, A2). ld
and Ad are also constant vectors which specify the ref-
erence orbit of the formation. It can be verified that V
is continuously differentiable and bounded from below
by 0.

To investigate the derivation of the control law, we can
rewrite (18) as:

˙̂p = −∂H

∂q̂
+ u = B(q̂, p̂) + u

˙̂q =
∂H

∂p̂
(20)

and J(q̂, p̂) is conserved when u = 0. Then we have

V̇ (J(q̂, p̂)) =
∂V

∂J
· ∂J

∂q̂
˙̂q +

∂V

∂J
· ∂J

∂p̂
˙̂p

=
∂V

∂J
· ∂J

∂q̂
˙̂q +

∂V

∂J
· ∂J

∂p̂
B(q̂, p̂) +

∂V

∂J
· ∂J

∂p̂
u
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=
∂V

∂J
· J̇ |u=0 +

∂V

∂J
· ∂J

∂p̂
u

=
∂V

∂J
· ∂J

∂p̂
u = (

∂J

∂p̂
)T ∂V

∂J
· u (21)

By letting

u = −λ((
∂J

∂p̂
)T ∂V

∂J
) (22)

i.e

ui = −λi

2∑
j=1

(
∂V

∂Jj

∂Jj

∂pi
) (23)

where λ = diag(λi) and λi > 0 for i = 1, 2, we have
V̇ ≤ 0 along the integral curves of the system. In [1] the
authors used this observation for the setting of a sin-
gle satellite to derive a Lyapunov based orbit transfer.
The following theorem based on LaSalle’s invariance
principle holds.

Theorem 3.1 Given the system as defined in (20),
Let V : P̂ → R be a continuously differentiable func-
tion which is bounded from below. Suppose there exists
a compact set Ω ⊂ Σ̂e on which V̇ ≤ 0. Let E ⊂ Ω be
the set on which V̇ = 0. Let M be the largest invari-
ant set in E. Then by applying the control u as defined
(22), every solution of the system starting within Ω ap-
proaches M as t → ∞. Furthermore, Let Γ denote the
subset of Ω where u(t) ≡ 0 holds for all t, then M = Γ

Proof: It is easy to verify that the conditions for
LaSalle’s invariance principle are all satisfied. Hence
(q(t), p(t)) → M as t → ∞.

The set Γ where u(t) ≡ 0 is an invariant set contained
in E. This is because we must have V̇ = u · u ≡ 0 on
Γ. Hence Γ ⊂ M . On the other hand, M is invariant
implies V̇ ≡ 0 on M . Furthermore, u(t) ≡ 0 on M .
Hence M ⊂ Γ. We conclude that M = Γ.

From this theorem we know that the largest invariant
set is M = Ω ∩ C where C = {(q̂, p̂) ∈ Σ̂e|u(t) ≡
0}. Then two questions should be answered. The first
question is whether a suitable compact set Ω exists in
Σ̂e. The second question is to determine C.

The following proposition gives the answer to the first
question.

Proposition 3.2 Given

‖ ld ‖ �= 0
‖Ad ‖ < m2

1µ
Ad · ld = 0 (24)

Let c,c1,c2,c3,c4 be positive numbers which satisfy

c1 =
1
4
‖ ld − δl ‖2

c2 =
1
2
‖ ld ‖2

c3 =
1
2
(m2

1µ − ‖Ad ‖)2

c4 =
1
4
(m2

2µ − ‖Ad − δA ‖)2

c < min{c1, c2, c3, c4} (25)

Let the set

G = {(l̂, Â) ∈ R6 ×R6|V (l̂, Â) ≤ c} (26)

where V is defined in equation (19).

Then the set Ω = π̂−1(G ∩ D̂) is a compact subset of
Σ̂e.

Proof: According to proposition (2.3), all we need to
show is that the set G ∩ D̂ is a compact subset of the
set D̂. According to our definitions,

D̂ = {(l̂, Â) ∈ R6 × R6|li · Ai = 0, l̂i �= 0,
‖Ai ‖ < m2

i µ, i = 1, 2} (27)

Obviously, this set D̂ is not a closed subset of R6×R6.
If we let

K = {(l̂, Â) ∈ R6 × R6|li · Ai = 0, i = 1, 2} (28)

This set K is a closed subset of R6 × R6. The set D̂
is a subset of K. It is not difficult to see that the set
(K − D̂) is a closed subset of R6 ×R6.

In the next step we want to show that if the value of c
is chosen as proposed, we must have

G ∩ (K − D̂) = ∅ (29)

Suppose this is not true. Notice that since G∩(K −D̂)
is a compact subset of R6 ×R6, the function V has a
minimum and a maximum value on this set. The maxi-
mum value shall not exceed c. The minimum value can
be found by solving a constrained minimization prob-
lem.One should compare the unconstrained minimum
value with the minimum value achieved on the bound-
ary of (K − D̂). In this case, the unconstrained mini-
mum value of V is 0 which can not be achieved since
(ld, Ad) ∈ D̂.On the other hand, c1 can be achieved
on the boundary of (K − D̂) where l1 = 0. c2 can
be achieved on the boundary where l2 = 0. c3 can be
achieved on the boundary where A1 = m2

1µ. c4 can be
achieved on the boundary where A2 = m2

2µ. However,
if c < min{c1, c2, c3, c4}, then the maximum is less than
the minimum. We have a contradiction. Thus the set
G must have no intersection with the set (K − D̂).

On the other hand, we know that G ∩ K �= ∅. This
means G ∩ K ⊂ D̂. The compactness of G ∩ K comes

p. 4



from the fact that G is compact and K is closed in
R6 ×R6

Next we want to characterize the invariant set. By
equation (23), without loss of generality, we let λ1 =
λ2 = 1, the controls can be calculated as

u1 = −[
∂V

∂l1

∂l1
∂p1

+
∂V

∂A1

∂A1

∂p1
]

= −[(l1 − l2 − δl + l1 − ld)×q1

+l1×(A1 − A2 − δA + A1 − Ad)
+((A1 − A2 − δA + A1 − Ad)×p1)×q1](30)

u2 = −[
∂V

∂l2

∂l2
∂p2

+
∂V

∂A2

∂A2

∂p2
]

= (l1 − l2 − δl)×q2 + l2×(A1 − A2 − δA)
+((A1 − A2 − δA)×p2)×q2 (31)

We need the following lemma to solve the equations
obtained by letting u1(t) ≡ 0 and u2(t) ≡ 0.

Lemma 3.3 Suppose a single satellite has external
control u(t) ≡ 0. Let x, y be time invariant unknown
vectors. Suppose (q(t), p(t)) ∈ Σe, the solution of equa-
tion

x×q + l×y + (y×p)×q ≡ 0 (32)

is
x = αA y = αl (33)

For some α ∈ R

Proof: Take the inner product with q(t) on both sides
of equation (32) we get:

(l×y) · q(t) ≡ 0 (34)

Since the orbit of the satellite is elliptic, q(t) �= 0. Fur-
thermore, q(t) would stay in the orbital plane l⊥ which
is perpendicular to l. Notice because l×y is time in-
variant and q(t) is not 0, we conclude that l×y must be
either parallel to l or vanish. However, since the rela-
tion (l×y) · l = 0 must be satisfied, the only possibility
is to have l×y = 0. Thus, there exists a number α ∈ R
such that y = αl. Equation (32) can be simplified to

(x + αl×p)×q ≡ 0 (35)

Since
p×l = A + m2µ

q

‖ q ‖ (36)

we now have,

(x − αA)×q(t) ≡ 0 (37)

Again, since q(t) is tracking an elliptic orbit, from the
fact that x and A are time invariant, we must have
x = αA.

Problem 3.4 Suppose two satellites are controlled by
(30) and (31) respectively. If we select ld �= 0 and
‖Ad ‖ < m2

1µ, we want to calculate the maximal set
C ⊂ Σ̂e where u1(t) ≡ 0 and u2(t) ≡ 0 are satisfied.

Solution: From u1(t) ≡ 0, we have

(l1 − l2 − δl + l1 − ld)×q1 + l1×(A1 − A2 − δA + A1

−Ad) + ((A1 − A2 − δA + A1 − Ad)×p1)×q1 ≡ 0(38)

From u2(t) ≡ 0, we have

(l1 − l2 − δl)×q2 + l2×(A1 − A2 − δA)
+((A1 − A2 − δA)×p2)×q2 ≡ 0 (39)

We want to solve these two equations for l1,l2,A1 and
A2. Notice that these unknowns are time invariant.

By applying the results in the lemma to equation (38),
we get

l1 − l2 − δl + l1 − ld = αA1

A1 − A2 − δA + A1 − Ad = αl1 (40)

From equation (38) we get

A1 − A2 − δA = βl2
l1 − l2 − δl = βA2 (41)

Hence,

l1 − ld = αA1 − βA2

A1 − Ad = αl1 − βl2 (42)

The maximal invariant set C within Σ̂e is where equa-
tion (41) and (42) are satisfied.

Notice that although we have introduced two unknown
variables α and β, we can still solve for (l1, l2, A1, A2)
in terms of (ld, Ad, δl, δA) because we have two “extra”
equations

l1 · A1 = 0 l2 · A2 = 0 (43)

Let C1 denote the set where α = 0 and β = 0. Let C2

denote the set where α = 0 and β �= 0. Let C3 denote
the set where α �= 0 and β = 0. Let C4 denote the set
where α �= 0 and β �= 0. Then

C = C1 ∪ C2 ∪ C3 ∪ C4 (44)

Among all the possible invariant sets we have calcu-
lated, only C1 is the one we want the system to ap-
proach. Thus, we shall pick suitable values for δl, δA,
ld, Ad and initial conditions so that C1 is the only pos-
sible invariant set within Ω. The following proposition
gives a set of sufficient conditions to achieve this goal.

Proposition 3.5 Let δl, δA, ld,Ad satisfies all the as-
sumptions in proposition (3.2) and

δl · δA = 0
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δl · (ld − δl) = 0
δA · (Ad − δA) = 0

(ld − δl) · (Ad − δA) = 0 (45)

and one of the following inequalities

ld �= δl − σδA
Ad �= δA − σδl (46)

where σ = ±√
2.

Select the initial condition (q̂0, p̂0) s.t

V (q̂0, p̂0) < c (47)

where c is defined in proposition (3.2). The system will
be controlled to the set C1 where

l1 − l2 − δl = 0
A1 − A2 − δA = 0

l1 = ld
A1 = Ad (48)

are satisfied.

Proof: We will show that the maximal invariant sub-
set of the compact set determined by the given initial
conditions contains only the set C1. Other invariant
sets will vanish or will be impossible to reach.

On C2, the following equations are satisfied

l1 − l2 = δl
A1 − A2 = δA (49)

l1 − αA1 = ld
A1 − αl1 = Ad (50)

from (50), since ld · Ad = 0 and l1 · A1 = 0 we have

α(‖ l1 ‖2 + ‖A1 ‖2) = 0 (51)

Because α �= 0, this implies that l1 and A1 vanish.
Thus equation (50) will not be satisfied. C2 vanishes.

On C3, the following equations are satisfied

l1 − l2 = δl + βA2

A1 − A2 = δA + βl2 (52)

l1 + βA2 = ld
A1 + βl2 = Ad (53)

From (52) we can solve for l1 and A1 and put them in
(53). We get

l2 + 2βA2 = ld − δl
A2 + 2βl2 = Ad − δA (54)

Since (ld − δl) · (Ad − δA) = 0 and l2 · A2 = 0 we have

2β(‖ l2 ‖2 + ‖A2 ‖2) = 0 (55)

Because β �= 0, this implies that l2 and A2 vanish.
Hence C3 vanishes.

On C4, the following equations are satisfied

l1 − l2 = δl + βA2

A1 − A2 = δA + βl2 (56)

l1 − αA1 + βA2 = ld
A1 − αl1 + βl2 = Ad (57)

Replace βA2 and βl2 of equation (57), we have

2l1 − l2 − αA1 = ld + δl
2A1 − A2 − αl1 = Ad + δA (58)

From (56) we can solve for l1 and A1 and put them in
(58). We get

(1 − αβ)l2 + (2β − α)A2 = ld − δl + αδA
(2β − α)l2 + (1 − αβ)A2 = Ad − δA + αδl (59)

According to (45), we have

(ld − δl + αδA) · (Ad − δA + αδl) = 0

so
(1 − αβ)(2β − α)(‖ l2 ‖2 + ‖A2 ‖2) = 0

Because ‖ l2 ‖ and ‖A2 ‖ can not vanish, there are three
possibilities:

(1) α = 2β but αβ �= 1

From equation (59) we have

l2 =
1

1 − 2β2
(ld − δl + 2βδA)

A2 =
1

1 − 2β2
(Ad − δA + 2βδl) (60)

Solve for l1,A1 from equation (56), we have

l1 =
1

1 − 2β2
(ld + β(Ad + δA))

A1 =
1

1 − 2β2
(Ad + β(ld + δl)) (61)

Now, since l1 · A1 = 0 we have

(ld + β(Ad + δA)) · (Ad + β(ld + δl)) = 0

which implies

β(‖ ld ‖2 + ‖Ad ‖2 + ‖ δl ‖2 + ‖ δA ‖2) = 0

This result is impossible.

(2) αβ = 1 but α �= 2β

From equation (59) we have

l2 =
1

2β − α
(Ad − δA + αδl)
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A2 =
1

2β − α
(ld − δl + αδA) (62)

Solve for l1,A1 from equation (56), we have

l1 =
1

2β − α
(Ad + β(ld + δl))

A1 =
1

2β − α
(ld + β(Ad + δA)) (63)

Now, since l1 · A1 = 0 we have

(Ad + β(ld + δl)) · (ld + β(Ad + δA)) = 0

which implies

β(‖ ld ‖2 + ‖Ad ‖2 + ‖ δl ‖2 + ‖ δA ‖2) = 0

This result is also impossible.

(3) αβ = 1 and α = 2β.

This implies that α = ±√
2. Equation (59) will be

ld − δl + αδA = 0
Ad − δA + αδl = 0 (64)

This is impossible because it violated the conditions in
(46).

Hence C4 vanishes.

A special case of this proposition is when we choose
δl = 0 and δA = 0. This is the case where two satellites
are driven to the same orbit.

If we let the Lyapunov function V (J(q, p)) =
1
2 [‖ l1 − ld ‖2 + ‖A1 − Ad ‖2], we can control a single
satellite to transfer between elliptic orbits. This case
is first analyzed in [1]. In this case, the invariant set
is simply the set where l1 = ld and A1 = Ad are satis-
fied. Comparing to this case, the invariant set of two
satellites case is more complicated.

To completely set up the formation completely, we need
to know the final positions of the satellites on their
orbits. This can be computed off-line by simulation.
Then we can choose proper starting separation between
two satellites.

4 Simulation Results

In order to verify the control algorithm, we wrote a
simulation of controlling two satellites into formation
on MATLAB. We take the Lyapunov function as

V (J(q, p)) =
1
2
(b1‖l1 − l2 − δl‖2+

b2‖A1 − A2 − δA‖2 + b1‖l1 − ld‖2 + b2‖A1 − Ad‖2) (65)

here, we put factors b1 and b2 into the Lyapunov func-
tion so that the control is weighted. Our control is

u1 = −ξ[b1(l1 − l2 − δl + l1 − ld)×q1

+l1×b2(A1 − A2 − δA + A1 − Ad)
+(b2(A1 − A2 − δA)×p1)×q1]

u2 = η[b1(l1 − l2 − δl)×q2 + l2×b2(A1 − A2 − δA)
+(b2(A1 − A2 − δA)×p2)×q2] (66)

where ξ , η are positive numbers which can be adjusted
for numerical performance.

In practical applications this control law needs to be
discretized. Here we use a simple technique to ob-
tain a discrete control law from (66). Assume that
the thruster of a satellite can be fired towards any di-
rection. Let T be the time interval between two firings
of the thruster pulses. Let t0 denote the starting time
of the controller. Denote ūi the discretized control. At
time t0 + nT , we have:

ūi(n) = ui(t0 + nT ) · T (67)

That is, we assume that during the time interval T the
control ui is constant. Of course, if T is too large the
algorithm may fail to converge.

Figure 1: Two Satellites Formation

Figure 1 shows when δl = 0 and δA = 0. By applying
the discretized control law we can drive two satellites
Sat1 and Sat2 onto the same orbit. We take the unit
length to be the radius of the earth, the unit time to be
one minute and the unit mass to be 1000kg. The ini-
tial conditions of the two satellites are given by specify-
ing their six orbital elements (a, e, i, ω, Ω, τ) . We have
(3, 0.3, 0, π/2, 0, 0) for Sat1 and (4, 0.2, π/4, π/4, π/3, 0)
for Sat2. The destination orbit is a circular orbit given
as (3, 0, π/6, π/2, 0, 0). Hence, ld and Ad are deter-
mined. During the simulation process, we noticed that
by choosing b2 = 1000b1 and ξ = η = 0.01 we can get
a decent result.
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Figure 2 shows the change of ‖ l1 − l2 ‖, 100 ‖A1 − A2 ‖
and the Lyapunov function V with respect to time dur-
ing the whole process. As we can see, the Lyapunov
function is being reduced during the whole process.

Figure 2: Above: ‖ l1 − l2 ‖ and ‖A1 − A2 ‖ as a function
of time; Below: the Lyapunov function as a
function of time
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Figure 3: The final separation between two Satellites as
a function of starting separation

The final relative position of the two satellites depends
on the starting relative position of the two satellites.
In the following experiments, two LEO satellites are
first placed on the same circular orbit specified as
[1.1, 0, 0, π/2, 0, 0] with certain amount of initial sep-
aration. Then they are transfered to a final orbit of
[1.3, 0, 0, π/2, 0, 0]. Figure 3 shows the final separation
versus the initial separation between the two satellites.
It can be seen that the separation is increased since we
are transferring to a higher obit.
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