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PHYSICS OF PLASMAS VOLUME 9, NUMBER 7 JULY 2002

Propagation of solitons of the Derivative Nonlinear Schrodinger equation
in a plasma with fluctuating density

M. S. Ruderman
Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road,
Sheffield S3 7RH, United Kingdom

(Received 18 February 2002; accepted 9 April 2002

The propagation of quasi-parallel nonlinear small-amplitude magnetohydrodynamic waves in a cold
Hall plasma with fluctuating density is studied. The density is assumed to be a homogeneous
random function of one spatial variable. The modified Derivative Nonlinear Sutger equation
(DNLS) is derived with the use of the mean waveform method developed by Gurevich, Jeffrey, and
Pelinovsky] Wave Motionl7, 287 (19931, which is the generalization of the reductive perturbation
method for nonlinear waves propagating in random media. This equation differs from the standard
DNLS equation by one additional term describing the interaction of nonlinear waves with random
density fluctuations. As an example of the use of the modified DNLS equation, the quasi-adiabatic
evolution of a one-parametric DNLS soliton propagating through a plasma with fluctuating density
is studied. ©2002 American Institute of Physics. [DOI: 10.1063/1.1482764

I. INTRODUCTION II. BASIC EQUATIONS

The Derivative Nonlinear Schdinger equatiorfDNLS) We consider wave propagation in a cold Hall plasma.
describes the propagation of small-amplitude nonlinear mag! N Plasma motions are described by the system of Hall
netohydrodynamigdMHD) waves at small angles with re- MHD equations,
spect to the equilibrium magnetic field. It was first derived ap
by Rogistet starting with the Vlasov kinetic description for E+V~ (pv)=0, 1)
the particle species. Later it was derived by/Mijes® and

Mio et al.® on the basis of Hall magnetohydrodynamics for EY, 1

cold plasmas, and by Spangler and Shéesind by Sakai p EHV'V)V) =—(VXB)XB, (2
and Sonnerupfrom fluid models for warm plasmas. A com- H

prehensive review of the theory of quasi-parallel small- B P00 vz

amplitude MHD waves based on the use of the DNLS equa- —=VX(vXB)+I|—| VX—(BXVXB). 3
tion and its extensions has been given by Kis and Had4. N s P

The comparison of this theory with the observation of NONHere is the densityy the velocity,B the magnetic fieldy

linear MHD waves at the Earth’s bow shock has been CONthe magnetic permeability of empty space, @gg=const is

sidered by Spénglé‘f- _ the averaged equilibrium density. The ion inertia lenigib
In the majority of papers on the DNLS equation the given by

equilibrium plasma was assumed to be homogeneous. How-

ever, Butf derived the modified DNLS equation for waves in

a Hall plasma with a homogeneous equilibrium magnetic I=

field and plasma density varying along the magnetic field.

Buti et al.® extended this derivation for the radial equilibrium wherem; is the ion mass anethe elemental electric charge.

magnetic field. In what follows we consider perturbations that depend
The aim of this paper is also to derive the modifiedonly onx in Cartesian coordinates y, z. We assume that the

DNLS equation for a Hall plasma with inhomogeneous den-characteristic scale of perturbationseéd, wheree<1. In

sity. However, in contrast to Bitand Butiet al.° we con-  accordance with this we introduce the scaled ion inertia

sider random fluctuation of the equilibrium density. The pa-lengthl = ¢ 2|. We consider the fluctuating equilibrium den-

per is organized as follows. In the next section we describgity p, with the fluctuation amplitude of ordes, so that

the equilibrium state and present the governing equations

and boundary conditions. In Sec. Ill we derive the modified ~ Po=pod 1+ €0(X)], ®)

DNLS equgtion describing the quasi-parqllel propagation O(/vhereb'(x) is a homogeneous random function with the zero
small-amplitude nonlinear MHD waves in a cold plasmaaverage (6(x))=0, the angular brackets indicating the sto-

with fluctuating density. In Sec. IV we study the evolution of -hatic averaging The autocorrelation function is given by
one-parameter solitons due to density fluctuations. Section V

contains our conclusions. R(X1—X5) =(6(Xq) 0(X)). (6)

4

1/2
m? )

M€ poo
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Since all variables depend only on one spatial variable
the system of Eq9.1)—(3) can be rewritten as

dp d(pu)
au+ gu\ 1 4B,[? o
Plat " Yox) T T 20 ax ®
v ov B, dB
p —hu— =X (9)
at x| m ox
1/2
(?Bl aVL (Q(UBL)—F 2|_B Poo ~ Jd 1 8BL
— = —_— € — - | ).
ar X ax \ u X\ p ax
(10

Hereu and B,=const are thex-components of the velocity
and the magnetic field;, andB, are the components of the
velocity and the magnetic field perpendicular to the
x-direction, andk is the unit vector in the-direction. In what
follows we look for solutions to Eqg7)—(10) in the region
x>0 for all moments of timgpositive and negatiye and
assume thati,v, —0, p—pg, andB, — B as|t|—c.

The system of Eqs(7)—(10) will be used in the next
section to derive the governing equation By .

IIl. DERIVATION OF THE GOVERNING EQUATION

To derive the governing equation for quasi-parallel
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JB, d
_:)\_(UBL_BXVL)_C[UBL_BXVL]
T Z3
1/2
_ “ J
+ B, P2 xx()\——ﬁ)
n aT
T\ £[B, ] (16)
P\ ar s
where the operatof is given by
i + i + €2 i + (17)
= — E— 6 — .--'
X gXy X,

We look for the solution to the system of Eq43)—(16) in
the form of expansions,

p=poo( 1+ €0)+ €?py+--+,
u=euy+---,

Vi =€V, 1+ €V o+ v g+, (18
B,=€B,;+€’B,,+€B 3+ .

The inverse spatial-dependent veloaitix) is also expanded

A=Noten;+ e +-+. (19

In what follows we assume that all quantities except and
B, ; are zero ak=0.

small-amplitude waves we use the mean waveform metho@- First-order approximation

developed by Gureviclet al.? (see also Refs. 11 and J12

In the first-order approximation we collect terms of order

This method is a generalization of the reductive perturbation: in Eqgs. (13)—(16). Since such terms are present only in

method®~1®for nonlinear waves propagating in random me-
dia. Following Gurevichet al.,'° we introduce the running
variable,

X
T=t—f A(£)d¢, (12)
0
and the sequence of stretched variables,
Xi=ex, X,=¢€X, ... (12

In the new variables the system of E¢g)—(10) is rewritten
as

dp _ d(pu)
—-—N——+L[pu]=0, (13
au )\&u+£ N dBJ? 1,/382
plo- AU U[U]—zT ZH 4],
(14
ov v AB, B B
p(—l—)\u—Lﬁ-uL[vl]):— XL 2By,
aT aT MmOt M
(19

Egs.(15) and(16), we obtain

N By [dB1 \ B4
aT MPoo\ IX 0 or |’
(20
dB, 1 B v, 1 v, 1
ar ax % ar )

In what follows we consider a particular solution to this sys-
tem of equations corresponding to the wave propagating in
the positivex-direction. This solution is given by

_(mpoo)*?_1
By Vv

No =
whereV is the Alfven speed an@ ; is independent ok.

(21)

V
Vii=— B_(Bu_Bo).

X

B. Second-order approximation

In the second-order approximation we collect terms of
order €? in Egs.(13)—(16). This yields

dp2  Poo dUz

or V oJr

y

P —=0,
00 IX

(22
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au, V dB,4? whereRy(x) =(g(£)g(x+£)) is the agtocorrelation function
— (23 of the homogeneous random functigiix). Usually Ry(x)
ar 2By o7 tends to zero fast enough &s-, so that
v V iB,, V2B, V2B 9B >
ot it s ¥ “) f ERy(£)dg| <. (35
dr By dr By dIx B, \ dX; ar 0
N1 Then, assuming thgiyRy(£)dé+0, we obtain that the mean
-0 ; (24 value of the square of the left-hand side of E3g) grows as
X X whenx—o, i.e., it behaves similar to the Brownian par-
ticle. However, it must be bounded whéx]—c, which is
JB B, ¢ J J J . y . ’
12 BxVi2 - B, Viz =B, Vit —B\; Vi1 (25)  only possible ifg(x) =0. Hence, we obtain
ar vV aJr X X4 ar
" O(x \%
It follows from Egs. (22) and (23) and the conditions at A(X)=(\{)+ 2(_\/) Vv, ,=—B,,. (36)
[t| — oo that B,
U py |BJ_1|2_|BO|2 26 Using Egs.(21), (30), and(36), we rewrite Eq.(24) as
V' poo 2B; 0B, 2B,  6(x) B, a7
When obtaining this result we have taken into account that ax YV agr 2V a7
U, is independent ok and, as a result, the last term in Eq. ) . L
(22) is zero. With the account of Eq21) we obtain from  1he solution to this equation is
s e andEs, — [(50 P 20x- v
d B, 6\ B, B, L2 02V 47
x| B2~ VVLZ K2 Ik v] vt PV (27
1 +F(N )X, X5, .. )dE. (39

It follows from this equation that In order to eliminate transitional effects which arise when the

9 < 5 . > ~ oB,; B, random process is switched on at a given spatial position, it
127 V2 T

— (28) is convenient to shift thex value at which the boundary
conditions are given from 0 te-. Then we rewrite Eq.
Since the right-hand side of E€28) is independent of, this ~ (38) as

equation implies that the quantit8, ,— B,v, ,/V) is a lin-

oX

ear function ofx. However, this quantity must be bounded B, ,— - fooe(x—@ é’Bll(T-i-Zf/V
for x—oo, which is only possible if the right-hand side of Eq. * 2V aT
(29) is zero, i.e.,
+F(N)X, X5, .. )dE. (39
9By dBy1
N ! C. Third-order approximation
X, = 29 hird-ord
which yields In the third-order approximation we only use E¢5)
and (16). Collect terms of ordek® in these equations and
Bi1=B (7 (N )Xy, Xz, .. 0). (300 using Eqgs(21), (26), (30), and(36), we obtain

Using Eq.(29) we rewrite Eq.(27) as V.5 N V B,s V2B,

J X B4 dr By dr B, ox
—| Bio——V, 52| =0(X ) 31 x X
8x< SV . " > V2| B B, B 0 \dB
11 11 12 12
: A PN Y. PP
where Byl 0Xo - a1 X, Y]
0(x)
9(0)=2Ny(¥)—2(\) — (32 (40)
The solution to Eq(31) is ‘9BL3+E ‘7VL3_BX IV, 3
ar V odr X
By 9By (x
BLZ_VVM_ ar fog(f)df. 33 _ By 9By 9B, 6 \9B,>
T A A R A
It is easy to obtain T 2 1 T
X 2 X 14 9By
[Cae| ) =2 "o ory(orde, 34 5 3o UL+ 2xRViX @1
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where k=1/2v2 and x=sign(B,). It follows from these
equations that

d (B B, B, 2(98“ 0 9B, ,
E— __V 3 J— —_—
gx\ 2oV s Zor Tax, V oar
1 9°B,,
+v&_(UZBL1)+2XKXX > - (42

Averaging this equation and taking into account that the

quantity(B, 3—B,v, 3/V) is bounded ag— o, we arrive at

aBLl 0"BL1 1 &
=(A -5 —({6B,,)—u,B
X, (\2) PRV (97(< 12)~UB, )
~ 9°B,
+ x kXX . (43)
X a7
With the aid of Eqs(6) and (39) we obtain
»R(§) 9B, 1
<0Biz>=—f >y “L (7 28IV (AN )X Xy, .. ) dE.
0 aT
(44)

The substitution of Eq926) and (44) into Eq. (43) yields

’9;21=<A2> ajj1+ W%{wlsﬂlz—molz)}

2 . 2
+Xxixaali;1+J0 I:(Vi) (9;;1(7+2§/V
+(AN)X1, X5, ... )dE. (45)

Let us introduce the new variables,
B 1(7+(A)X5, X5, ... )=B (7, X5, .. .),
b=(By1+iBa)/[Bi, bo=(Byo+iBn)/|B,,  (46)

=7+ (A) X+ () Xy,

and the notatiomr= X,. Then, dropping the prime at, we
rewrite Eq.(45) as

b 1 9 b(Ib2— b2 . b
E_WE-{ (Ib]*=[bo| )}_|XKﬁ
2 ee)
=02 52 ) REP(r+ 281V, 0)dé. (47

When there are no density fluctuatigi®(£¢) = 0] this equa-
tion coincidegwith the accuracy up to the notatiowith the
DNLS equation for a cold plasnfe:®

IV. SOLITON EVOLUTION DUE TO DENSITY
FLUCTUATIONS

The DNLS equation describes a few different types of
solitons. Here we consider only one-parameter solitons. The

Propagation of solitons . . . 2943

solitons, bright and darf®® In bright solitons |b|>|b,|,
while in dark solitongb|<|bg|. Since dark solitons are un-
stable to transverse perturbatidiist does not make very
much sense to consider their evolution due to density fluc-
tuations. Therefore, we concentrate on bright solitons in what
follows. We write the rational expression of exponential
functions for bright one-parameter solitons in a form slightly
different from that in Midhus and Had&:

4sirfaexp—y0® —ia)

= , 48
17 —exp—yO—iw)]? “8
where
|bo|%sin 2a |bo|2cog
O=yt+Aoc, y=——, A=—-—7-—.
4V 2V
(49)

The anglex varies from 0 tow/2. The soliton amplitude is
given by
A=max(|b|—|bo|)=2|bg|cos a. (50)

We see that the amplitude decreases whédncreases.

Multiplying Eq. (47) by b*, where the asterisk indicates
a complex conjugate quantity, taking the real part of the re-
sult, and integrating with respect tQ we obtain

a (= 1 (=
5f_w(|b|2—|bo|2)dr=—ﬁfo R(&F(&)dE, (51

where

= gb* db
F(§)=9%| fﬁx P (T,O’)E(T+2§/V,U)d7], (52

with 28 indicating the real part of a quantity. Now we assume
that the right-hand side of Eq47) is small in comparison
with the left-hand side and can be considered as a perturba-
tion. Then we can look for a solution for E@7) in the form

of the one-parametric soliton given by Eq48) and (49

with the parametew slowly varying witheo. If b is given by

Eq. (48) then, after a long but straightforward calculation, we
obtain

Jjo (|b|?=|bo|?)dT=16kV(7— a), (53

_ 4fbg|* . 1+4g+y?

F(¢&)= v sm“astaiR{zﬂ 4(111——1)4

2
(L) 10p+ yA) } 50
(y—1)°
where
2ci 2

$=2i(a—m)+ %, y=e?. (55)

analytic expression for these solitons can be given either in a
modulational formt’~*°or as a rational expression of expo-
nential functions. There are two types of one-parametric tion’s F(£) variation,
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2kV? s
L="—75=C(elbg) 2. (56)
|bol

For a not very close to either 0 ofr/2, this quantity is of
order of the soliton widthy 1. When|&|sin2a>L, the func-
tion F(&) can be approximated by

2|&[|bg|*
_Msin“asin2asin4aexp(—|§|5in2“/'-)’
K

(57)

i.e., F(£) exponentially decays on the spatial scaleWe
also introduce the characteristic correlation sdalgdeter-
mined by the condition thaR(¢) is of order of R(0) for
|€|=<|or, While R(&)~0 for |£]>1.,,. Now we assume that
l.or<L. In this case,

F(&)~

me(g)F(g)d§~F(O)fo(f)dE
0 0

2VK ) )
= Tsm a sin2a{2 sin a(2+cos 2)

+(7— a)cos a(5+cos )}, (58

where

K=focR(§)d§. (59
0

M. S. Ruderman

/2]
3m/8

7T/4:

FIG. 1. The dependence of the soliton parametesn the dimensionless

distanceo= o|K|(xLV?)~1. The solid lines correspond >0, and the
dashed lines t& <0.

geneous random process, the effect of density fluctuation is
completely determined by the autocorrelation function of the
density.

Equation(47) has been derived under a few simplifying
assumptions. The most important one is that the density is a
homogeneous random process. We considered a boundary
problem in a regiorx>0 with all quantities given ak=0.

At first sight this contradicts the assumption that the density

We now can make qualitative conclusions about the solitoris @ homogeneous random functionxofHowever, this con-

behavior even without solving the equation ferthat is ob-
tained by the substitution of Eq&3) and(58) into Eq.(51).
WhenK >0, it follows thatda/do>0, which means that the
soliton amplitude decreases.H 0, thenda/do<<0, which

tradiction can be easily circumvented if we assume that, al-
though we consider the wave only in the regior 0, the
density is given for alk, both positive and negative.

As an example of the use of the modified DNLS equa-

means that the soliton amplitude increases. These results dfen we considered propagation of one-parametric solitons.
not surprising at all because, fhy,<L, the right-hand side We assumed that the term describing the effect of the density
of Eq. (47) reduces to the second derivativelofvith respect ~ fluctuation is small in comparison with other term in the

to 7, the proportionality coefficient having the same sign asmodified DNLS equation. This assumption enabled us to
K. Hence, forK>0, it describes conventional diffusion, consider quasi-adiabatic evolution of the soliton and derive

while for K<O0 it describes negative diffusion.
In Fig. 1 the dependence af on the dimensionless dis-

tanceo = o|K|(xLV?) "t is shown for different values of
at 0=0. The solid lines correspond >0, and the dashed

lines toK <0. We see thatr— /2 aso— o for K>0, while
a—0 aso— for K<O0. In accordance with Eq$49) and
(50) this implies that the soliton amplitud®tends to zero as
o— for K>0, and to 2bg| for K<0. The soliton width
v~ ! tends to infinity in both cases.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the quasi-longitudinal wit

the equation describing this evolution. When the correlation
length of the density fluctuations is much smaller than the
soliton width, the term describing the effect of density fluc-
tuation corresponds either to conventional or to negative dif-
fusion. In the first case the soliton decays, and in the second
its amplitude tends to its maximum value, while the soliton
energy tends to infinity.
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