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Propagation of solitons of the Derivative Nonlinear Schrödinger equation
in a plasma with fluctuating density

M. S. Ruderman
Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road,
Sheffield S3 7RH, United Kingdom

~Received 18 February 2002; accepted 9 April 2002!

The propagation of quasi-parallel nonlinear small-amplitude magnetohydrodynamic waves in a cold
Hall plasma with fluctuating density is studied. The density is assumed to be a homogeneous
random function of one spatial variable. The modified Derivative Nonlinear Schro¨dinger equation
~DNLS! is derived with the use of the mean waveform method developed by Gurevich, Jeffrey, and
Pelinovsky@Wave Motion17, 287~1993!#, which is the generalization of the reductive perturbation
method for nonlinear waves propagating in random media. This equation differs from the standard
DNLS equation by one additional term describing the interaction of nonlinear waves with random
density fluctuations. As an example of the use of the modified DNLS equation, the quasi-adiabatic
evolution of a one-parametric DNLS soliton propagating through a plasma with fluctuating density
is studied. ©2002 American Institute of Physics. @DOI: 10.1063/1.1482764#

I. INTRODUCTION

The Derivative Nonlinear Schro¨dinger equation~DNLS!

describes the propagation of small-amplitude nonlinear mag-
netohydrodynamic~MHD! waves at small angles with re-
spect to the equilibrium magnetic field. It was first derived
by Rogister1 starting with the Vlasov kinetic description for
the particle species. Later it was derived by Mjo” lhus2 and
Mio et al.3 on the basis of Hall magnetohydrodynamics for
cold plasmas, and by Spangler and Sheerin4 and by Sakai
and Sonnerup5 from fluid models for warm plasmas. A com-
prehensive review of the theory of quasi-parallel small-
amplitude MHD waves based on the use of the DNLS equa-
tion and its extensions has been given by Mjo” lhus and Hada.6

The comparison of this theory with the observation of non-
linear MHD waves at the Earth’s bow shock has been con-
sidered by Spangler.7

In the majority of papers on the DNLS equation the
equilibrium plasma was assumed to be homogeneous. How-
ever, Buti8 derived the modified DNLS equation for waves in
a Hall plasma with a homogeneous equilibrium magnetic
field and plasma density varying along the magnetic field.
Buti et al.9 extended this derivation for the radial equilibrium
magnetic field.

The aim of this paper is also to derive the modified
DNLS equation for a Hall plasma with inhomogeneous den-
sity. However, in contrast to Buti8 and Butiet al.,9 we con-
sider random fluctuation of the equilibrium density. The pa-
per is organized as follows. In the next section we describe
the equilibrium state and present the governing equations
and boundary conditions. In Sec. III we derive the modified
DNLS equation describing the quasi-parallel propagation of
small-amplitude nonlinear MHD waves in a cold plasma
with fluctuating density. In Sec. IV we study the evolution of
one-parameter solitons due to density fluctuations. Section V
contains our conclusions.

II. BASIC EQUATIONS

We consider wave propagation in a cold Hall plasma.
The plasma motions are described by the system of Hall
MHD equations,
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Herer is the density,v the velocity,B the magnetic field,m
the magnetic permeability of empty space, andr005const is
the averaged equilibrium density. The ion inertia lengthl is
given by

l5S m i
2

me2r00
D 1/2

, ~4!

wherem i is the ion mass ande the elemental electric charge.
In what follows we consider perturbations that depend

only onx in Cartesian coordinatesx, y, z. We assume that the
characteristic scale of perturbations ise2l, wheree!1. In
accordance with this we introduce the scaled ion inertia
length l̄ 5e22l. We consider the fluctuating equilibrium den-
sity r0 with the fluctuation amplitude of ordere, so that

r05r00@11eu~x !#, ~5!

whereu(x) is a homogeneous random function with the zero
average (̂u(x)&50, the angular brackets indicating the sto-
chastic averaging!. The autocorrelation function is given by

R~x12x2!5^u~x1!u~x2!&. ~6!
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Since all variables depend only on one spatial variablex,
the system of Eqs.~1!–~3! can be rewritten as
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Here u and Bx5const are thex-components of the velocity
and the magnetic field,v' andB' are the components of the
velocity and the magnetic field perpendicular to the
x-direction, andx̂ is the unit vector in thex-direction. In what
follows we look for solutions to Eqs.~7!–~10! in the region
x.0 for all moments of time~positive and negative!, and
assume thatu,v'→0, r→r0 , andB'→B0 as utu→`.

The system of Eqs.~7!–~10! will be used in the next
section to derive the governing equation forB' .

III. DERIVATION OF THE GOVERNING EQUATION

To derive the governing equation for quasi-parallel
small-amplitude waves we use the mean waveform method
developed by Gurevichet al.10 ~see also Refs. 11 and 12!.
This method is a generalization of the reductive perturbation
method13–16 for nonlinear waves propagating in random me-
dia. Following Gurevichet al.,10 we introduce the running
variable,

t5t2E
0

x

l~j !dj, ~11!

and the sequence of stretched variables,

X15ex, X25e2x, . . . . ~12!

In the new variables the system of Eqs.~7!–~10! is rewritten
as

]r

]t
2l

]~ru !

]t
1L@ru#50, ~13!

rS ]u

]t
2lu

]u

]t
1uL@u# D5

l

2m

]uB'u2

]t
2

1

2m
L@ uB'u2#,

~14!

rS ]v'

]t
2lu

]v'

]t
1uL@v'# D 52

lBx

m

]B'

]t
1

Bx

m
L@B'#,

~15!

]B'

]t
5l

]

]j
~uB'2Bxv'!2L@uB'2Bxv'#

1e2 l̄ BxS r00

m
D 1/2

x̂ÃS l
]

]t
2LD

3H 1

r S l
]B'

]t
2L@B'# D J , ~16!

where the operatorL is given by
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We look for the solution to the system of Eqs.~13!–~16! in
the form of expansions,

r5r00~11eu !1e2r21¯,

u5e2u21¯,
~18!

v'5ev'11e2v'21e3v'31¯,

B'5eB'11e2B'21e3B'31¯ .

The inverse spatial-dependent velocityl(x) is also expanded
as

l5l01el11e2l21¯. ~19!

In what follows we assume that all quantities exceptv'1 and
B'1 are zero atx50.

A. First-order approximation

In the first-order approximation we collect terms of order
e in Eqs. ~13!–~16!. Since such terms are present only in
Eqs.~15! and ~16!, we obtain
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In what follows we consider a particular solution to this sys-
tem of equations corresponding to the wave propagating in
the positivex-direction. This solution is given by
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whereV is the Alfvén speed andB'1 is independent ofx.

B. Second-order approximation

In the second-order approximation we collect terms of
ordere2 in Eqs.~13!–~16!. This yields
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It follows from Eqs. ~22! and ~23! and the conditions at
utu→` that
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When obtaining this result we have taken into account that
u2 is independent ofx and, as a result, the last term in Eq.
~22! is zero. With the account of Eq.~21! we obtain from
Eqs.~24! and ~25!,
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It follows from this equation that
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Since the right-hand side of Eq.~28! is independent ofx, this
equation implies that the quantity^B'22Bxv'2 /V& is a lin-
ear function ofx. However, this quantity must be bounded
for x→`, which is only possible if the right-hand side of Eq.
~28! is zero, i.e.,
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Using Eq.~29! we rewrite Eq.~27! as
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The solution to Eq.~31! is
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It is easy to obtain
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whereRg(x)5^g(j)g(x1j)& is the autocorrelation function
of the homogeneous random functiong(x). Usually Rg(x)
tends to zero fast enough asx→`, so that

UE
0

`

jRg~j !djU,`. ~35!

Then, assuming that*0
`Rg(j)djÞ0, we obtain that the mean

value of the square of the left-hand side of Eq.~33! grows as
x when x→`, i.e., it behaves similar to the Brownian par-
ticle. However, it must be bounded whenuxu→`, which is
only possible ifg(x)50. Hence, we obtain
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Using Eqs.~21!, ~30!, and~36!, we rewrite Eq.~24! as
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The solution to this equation is
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In order to eliminate transitional effects which arise when the
random process is switched on at a given spatial position, it
is convenient to shift thex value at which the boundary
conditions are given from 0 to2`. Then we rewrite Eq.
~38! as
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C. Third-order approximation

In the third-order approximation we only use Eqs.~15!
and ~16!. Collect terms of ordere3 in these equations and
using Eqs.~21!, ~26!, ~30!, and~36!, we obtain
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where k5 l̄ /2V2 and x5sign(Bx). It follows from these
equations that
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Averaging this equation and taking into account that the
quantity^B'32Bxv'3 /V& is bounded asx→`, we arrive at
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With the aid of Eqs.~6! and ~39! we obtain

^uB'2&52E
0

`R~j !

2V

]B'1

]t
~t12j/V1^l1&X1 ,X2 , . . . !dj.

~44!

The substitution of Eqs.~26! and ~44! into Eq. ~43! yields
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Let us introduce the new variables,
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b5~ B̃y11iB̃z1!/uBxu, b05~By01iBz0!/uBxu, ~46!

t85t1^l1&X11^l2&X2 ,

and the notations5X2 . Then, dropping the prime att8, we
rewrite Eq.~45! as
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When there are no density fluctuations@R(j)50# this equa-
tion coincides~with the accuracy up to the notation! with the
DNLS equation for a cold plasma.2,3,6

IV. SOLITON EVOLUTION DUE TO DENSITY
FLUCTUATIONS

The DNLS equation describes a few different types of
solitons. Here we consider only one-parameter solitons. The
analytic expression for these solitons can be given either in a
modulational form,17–19 or as a rational expression of expo-
nential functions.6 There are two types of one-parametric

solitons, bright and dark.20,6 In bright solitons ubu.ub0u,
while in dark solitonsubu,ub0u. Since dark solitons are un-
stable to transverse perturbations,19 it does not make very
much sense to consider their evolution due to density fluc-
tuations. Therefore, we concentrate on bright solitons in what
follows. We write the rational expression of exponential
functions for bright one-parameter solitons in a form slightly
different from that in Mio” lhus and Hada:6

b5b0H 11

4sin2a exp~2gQ2ia !

@12exp~2gQ2ia !#2 J , ~48!

where

Q5xt1Ls, g5
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4kV
, L5

ub0u2cos2a

2V
.
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The anglea varies from 0 top/2. The soliton amplitude is
given by

A5max~ ubu2ub0u!52ub0ucosa. ~50!

We see that the amplitude decreases whena increases.
Multiplying Eq. ~47! by b* , where the asterisk indicates

a complex conjugate quantity, taking the real part of the re-
sult, and integrating with respect tot, we obtain
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with R indicating the real part of a quantity. Now we assume
that the right-hand side of Eq.~47! is small in comparison
with the left-hand side and can be considered as a perturba-
tion. Then we can look for a solution for Eq.~47! in the form
of the one-parametric soliton given by Eqs.~48! and ~49!
with the parametera slowly varying withs. If b is given by
Eq. ~48! then, after a long but straightforward calculation, we
obtain

E
2`

`

~ ubu22ub0u2!dt516kV~p2a !, ~53!
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Let us introduce the characteristic length of the func-
tion’s F(j) variation,
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L5

2kV2

ub0u2
5~eub0u!22l. ~56!

For a not very close to either 0 orp/2, this quantity is of
order of the soliton widthg21. Whenujusin2a@L, the func-
tion F(j) can be approximated by

F~j !'2

2ujuub0u4

kVL
sin4 a sin 2a sin 4a exp~2ujusin 2a/L !,

~57!

i.e., F(j) exponentially decays on the spatial scaleL. We
also introduce the characteristic correlation scalelcor deter-
mined by the condition thatR(j) is of order of R(0) for
uju&lcor, while R(j)'0 for uju@lcor. Now we assume that
lcor!L. In this case,

E
0

`

R~j !F~j !dj'F~0!E
0
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where
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0

`
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We now can make qualitative conclusions about the soliton
behavior even without solving the equation fora that is ob-
tained by the substitution of Eqs.~53! and~58! into Eq.~51!.
WhenK.0, it follows thatda/ds.0, which means that the
soliton amplitude decreases. IfK,0, thenda/ds,0, which
means that the soliton amplitude increases. These results are
not surprising at all because, forlcor!L, the right-hand side
of Eq. ~47! reduces to the second derivative ofb with respect
to t, the proportionality coefficient having the same sign as
K. Hence, for K.0, it describes conventional diffusion,
while for K,0 it describes negative diffusion.

In Fig. 1 the dependence ofa on the dimensionless dis-
tances̄5suKu(kLV2)21 is shown for different values ofa
at s50. The solid lines correspond toK.0, and the dashed
lines toK,0. We see thata→p/2 ass̄→` for K.0, while
a→0 ass̄→` for K,0. In accordance with Eqs.~49! and
~50! this implies that the soliton amplitudeA tends to zero as
s̄→` for K.0, and to 2ub0u for K,0. The soliton width
g21 tends to infinity in both cases.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the quasi-longitudinal with
respect to the magnetic field propagation of nonlinear MHD
waves in a cold plasma with fluctuating background density.
The main result of the paper is the modified DNLS equation
~47!. In comparison to the standard DNLS equation it con-
tains one additional term that describes the effect of density
fluctuation. Under the assumption that the density is a homo-

geneous random process, the effect of density fluctuation is
completely determined by the autocorrelation function of the
density.

Equation~47! has been derived under a few simplifying
assumptions. The most important one is that the density is a
homogeneous random process. We considered a boundary
problem in a regionx.0 with all quantities given atx50.
At first sight this contradicts the assumption that the density
is a homogeneous random function ofx. However, this con-
tradiction can be easily circumvented if we assume that, al-
though we consider the wave only in the regionx.0, the
density is given for allx, both positive and negative.

As an example of the use of the modified DNLS equa-
tion we considered propagation of one-parametric solitons.
We assumed that the term describing the effect of the density
fluctuation is small in comparison with other term in the
modified DNLS equation. This assumption enabled us to
consider quasi-adiabatic evolution of the soliton and derive
the equation describing this evolution. When the correlation
length of the density fluctuations is much smaller than the
soliton width, the term describing the effect of density fluc-
tuation corresponds either to conventional or to negative dif-
fusion. In the first case the soliton decays, and in the second
its amplitude tends to its maximum value, while the soliton
energy tends to infinity.
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