
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

MASTER'S THESIS

Clustering Algorithms for Microarray Data Mining

by Phanikumar Bhamidipati
Advisor: John S. Baras

MS 2002-4

ABSTRACT

Title of Thesis: CLUSTERING ALGORITHMS FOR MICROARRAY DATA

MINING

Degree Candidate: Phanikumar R. V. Bhamidipati

Degree and year: Master of Science, 2002

Thesis directed by: Professor John S. Baras
Department of Electrical and Computer Engineering/Institute for
Systems Research

This thesis presents a systems engineering model of modern drug discovery processes and

related systems integration requirements. Some challenging problems include the

integration of public information content with proprietary corporate content, supporting

different types of scientific analyses, and automated analysis tools motivated by diverse

forms of biological data.

To capture the requirements of the discovery system, we identify the processes, users, and

scenarios to form a UML use case model. We then define the object-oriented system

structure and attach behavioral elements. We also look at how object-relational database

extensions can be applied for such analysis.

The next portion of the thesis studies the performance of clustering algorithms based on

LVQ, SVMs, and other machine learning algorithms, to two types of analyses – functional

and phenotypic classification. We found that LVQ initialized with the LBG codebook

yields comparable performance to the optimal separating surfaces generated by related

SVM kernels.

We also describe a novel similarity measure, called the unnormalized symmetric Kullback-

Liebler measure, based on unnormalized expression values. Since the Mercer criterion

cannot be applied to this measure, we compared the performance of this similarity measure

with the log-Euclidean distance in the LVQ algorithm.

The two distance measures perform similarly on cDNA arrays, while the unnormalized

symmetric Kullback-Liebler measure outperforms the log-Euclidean distance on certain

phenotypic classification problems.

Pre-filtering algorithms to find discriminating instances based on PCA, the Find Similar

function, and IB3 were also investigated. The Find Similar method gives the best

performance in terms of multiple criteria.

 CLUSTERING ALGORITHMS FOR

MICROARRAY DATA MINING

by

Phanikumar R V Bhamidipati

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2002

Advisory Committee

Professor John S. Baras, Chair
Associate Professor Mark A. Austin
Professor Carlos A. Berenstein

 ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. John S Baras, Lockheed Martin Chair in

Systems Engineering, for his guidance, support, and advice, throughout my thesis research

at the University of Maryland, College Park.

I would also like to thank Automation, Information, and Management Systems (AIMS),

Inc. for the offer of summer internship, their continuous interaction and support with regard

to microarray expression bioinformatics. I appreciate the valuable inputs provided by Dr.

Bernard A Frankpitt of AIMS, Inc. in introducing me to the concepts of microarray data

processing and appropriate software architectures.

I also would like to thank Alexander Baras of Georgetown University and AIMS, Inc., for

explaining the biological details supporting the development and use of microarray data

processing, and for his close collaboration on the biological aspects of the research.

This work was supported by the NSF Combined Research and Curriculum Development

(CRCD) grant (NSF Grant Number: EEC0088112)

 iii

TABLE OF CONTENTS

LIST OF TABLES..VI

LIST OF FIGURES..VIII

CHAPTER 1: INTRODUCTION ...1

1.1 Outline of the Thesis .. 1

CHAPTER 2: GENETICS AND GENE EXPRESSION..3

2.1 DNA Structure and Function ... 3

2.2 Protein Synthesis .. 5

2.3 Regulation of Gene Expression .. 7
2. 3.1 Chromatin Structure... 8
2.3.2 Transcriptional Control... 8
2. 3.3 Processing-level Control.. 9
2.3.4 Translational Control .. 9
2.3.5 Post-translational Factors.. 9

CHAPTER 3: GENE EXPRESSION ANALYSIS...11

3.1 Microarray Technology... 11
3.1.1 Oligonucleotide Arrays... 12
3.1.2 cDNA Microarrays ... 13

3.2 Nature of Microarray Data... 15

CHAPTER 4: USE-CASE MODELING OF MICROARRAY ANALYSIS..............18

4.1 Introduction .. 18

4.2 Overview of Drug Discovery and Development ... 18
4.2.1 Traditional Drug Discovery.. 19
4.2.2 Modern Drug Discovery... 24

4.3 System Description and System Requirements.. 28

 iv

4.4 UML Requirements Modeling.. 29
4.4.1 Use Cases Associated with a Biologist .. 30
4.4.2 Use Cases Associated with a Chemist.. 32
4.4.3 Use Cases Associated with a Pharmacologist/Toxicologist 34
4.4.4 Use Cases Associated with a Clinical Scientist ... 35
4.4.5 Use Cases Associated with a Lab Manager ... 35
4.4.6 Use Cases Associated with a Product Development Manager................................ 35
4.4.7 Use Cases Associated with a Computational Biologist/Chemist 36
4.4.8 Use Cases Associated with a Technology Manager .. 37
4.4.9 Use Cases Associated with the System Developer .. 37

4.5 System Structure .. 41
4.5.1 Package Architecture .. 41
4.5.2 Class Diagrams ... 44

4.6 System Behavior... 49

4.7 System Architecture Summary .. 56

4.8 Data Architecture and Database Extensions .. 59

CHAPTER 5: LEARNING ALGORITHMS...61

5.1 Introduction .. 61

5.2 Similarity Measures ... 61
5.2.1 Microarray Expression Data... 61
5.2.2 Probabilistic Models of Microarray Data... 62
5.2.3 Unnormalized Symmetric Kullback-Liebler Measure... 62

5.3 Learning Algorithms ... 65
5.3.1 LBG/LVQ Algorithm ... 65
5.3.2 Support Vector Machines ... 68
5.3.2 IB3 Algorithm... 70

CHAPTER 6: RESULTS ..73

6.1 Objectives .. 73

6.2 Description of Microarray Data... 73
6.2.1 Lymphoma Dataset ... 73
6.2.2 Yeast Data ... 75
6.2.3 Leukemia Data .. 77

6.3 Methods ... 78
6.3.1 Supervised Classification.. 78

 v

6.3.2 Similarity-based Clustering .. 78
6.3.3 Comparison of Algorithms ... 79

6.4 Experiments .. 79
6.4.1 Lymphoma Data.. 79

6.4.1.1 Binary Classification of Cancerous/Non-cancerous Tissues............................ 80
6.4.1.2 Tissue Type Classification of Cancerous Cells .. 81

6.4.2 Gene Functional Classification from yeast data .. 82
6.4.3 Cancer Classification and Discovery in Leukemia data .. 86

6.4.3.1 Prefiltering with the IB3 Algorithm.. 87
6.4.3.2 Pre-filtering with the Relative Distance.. 91
6.4.3.3 Pre-filtering with Principal Components Analysis ... 93
6.4.3.4 Pre-filtering with the Find Similar Method .. 95
6.4.3.5 Comparison of Find Discriminating Methods .. 97

6.5 Conclusions ... 99

 vi

LIST OF TABLES

TABLE 5.1 SVM KERNEL FUNCTIONS.. 69

TABLE 6.1 LYMPHOMA TISSUE TYPES.. 74

TABLE 6.2 TISSUE SAMPLE DISTRIBUTION ... 75

TABLE 6.3 DISTRIBUTION OF YEAST FUNCTIONAL CLASSES............................. 77

TABLE 6.4 LOG-EUCLIDEAN LVQ CLASSIFICATION ERROR FOR CANCER

DETECTION USING 10-FOLD CROSS-VALIDATION ... 81

TABLE 6.5 CLASSIFICATION ERROR COMPARISON FOR CANCEROUS/NON-

CANCEROUS CELLS USING 10-FOLD CROSS-VALIDATION 81

TABLE 6.6 CLASSIFICATION ERROR FOR CANCEROUS TISSUES USING 10-

FOLD CROSS-VALIDATION... 81

TABLE 6.7 OVERALL ERROR FOR TISSUE TYPE DETECTION USING 10-FOLD

CROSS-VALIDATION .. 82

TABLE 6.8 YEAST DATA SET DISTRIBUTIONS .. 83

TABLE 6.9 CONFUSION MATRIX FOR LVQ TESTING WITH THE LOG-

EUCLIDEAN DISTANCE ... 85

TABLE 6.10 CONFUSION MATRIX FOR LVQ TESTING WITH THE

UNNORMALIZED SYMMETRIC KULLBACK-LIEBLER MEASURE 85

TABLE 6.11 AVERAGE CLASS PREDICTION ERROR WITH THE RELATIVE

DISTANCE METHOD AND N = 50 ... 93

 vii

TABLE 6.12 CLASS DISCOVERY ERROR WITH THE RELATIVE DISTANCE

METHOD... 95

 viii

LIST OF FIGURES

FIG. 2.1 SCHEMATIC DIAGRAM OF DNA STRUCTURE [10] 4

FIG. 2.2 SYNTHESIS OF MRNA DURING TRANSCRIPTION [10]................................ 6

FIG. 2.3 AMINO ACID SYNTHESIS DURING TRANSLATION [10] 7

FIG. 3.1 CDNA MICROARRAY MANUFACTURING [6] .. 14

FIG 4.1 TRADITIONAL DRUG DISCOVERY LIFE CYCLE.. 19

FIG 4.2 COMPARISON OF LIFE-CYCLE COST VARIATION...................................... 22

FIG. 4.3 BUSINESS PROCESS MODEL.. 27

FIG. 4.4 USE CASES FOR TARGET IDENTIFICATION AND VALIDATION............ 38

FIG. 4.5 USE CASES FOR THE COMPUTATIONAL BIOLOGIST/CHEMIST............ 39

FIG. 4.6 USE CASES FOR COMPOUND IDENTIFICATION AND VALIDATION,

AND PRE-CLINICAL TESTING .. 40

FIG. 4.7 USE CASES FOR THE PRODUCT DEVELOPMENT MANAGER................. 41

FIG. 4.8 PACKAGE DIAGRAM.. 44

FIG. 4.9 PUBLIC DATA SUBSYSTEM CLASS DIAGRAM... 46

FIG. 4.10 TARGET, COMPOUND, AND ANALYSIS SUBSYSTEM CLASS

DIAGRAM... 47

FIG. 4.11 EXPERIMENT AND ADMINISTRATION SUBSYSTEM CLASS DIAGRAM

.. 48

FIG. 4.12 STATE-CHART DIAGRAM FOR BEHAVIOR.. 51

FIG. 4.13 INPUT-OUTPUT DIAGRAM FOR BEHAVIOR .. 52

 ix

FIG. 4.14 LOWER-LEVEL FFBD FOR FUNCTION 1: IMPORT EXPERIMENTAL

DATA... 53

FIG. 4.15 LOWER-LEVEL FFBD FOR FUNCTION 4: GENERATE VISUALIZATIONS

.. 53

FIG. 4.16 LOWER-LEVEL FFBD FOR FUNCTION 8: FILTER DATA 54

FIG. 4.17 LOWER-LEVEL FFBD FOR FUNCTION 10: VALIDATE AND REVIEW

CLUSTERS.. 54

FIG. 4.18 TWO-TIER CLIENT/SERVER ARCHITECTURE [36] 57

FIG. 4.19 THREE-TIER CLIENT/SERVER ARCHITECTURE [37] 58

FIG. 4.20 CORBA ARCHITECTURE [38] ... 59

FIG. 6.2 OVERALL ERROR RATE COMPARISON WITH 3-FOLD CROSS-

VALIDATION... 84

FIG. 6.3 COMPARISON OF ERROR RATES FOR INDIVIDUAL CLASSES USING 3-

FOLD CROSS-VALIDATION... 86

FIG. 6.4 AVERAGE CLASS PREDICTION ERROR OVER THE TRAINING SET...... 89

FIG. 6.5 DECREASE IN CLASSIFICATION ERROR WITH IB3 DISCRIMINATIVE

INSTANCES.. 90

FIG. 6.6 CLASSIFICATION ERROR VARIATION ON THE INDEPENDENT

TESTING DATA SET .. 91

FIG. 6.7 CLASS DISCOVERY ERROR WITH THE RELATIVE DISTANCE METHOD

.. 92

FIG. 6.8 AVERAGE CLASS PREDICTION ERROR WITH THE PCA METHOD........ 95

 x

FIG. 6.9 AVERAGE CLASS DISCOVERY ERROR WITH THE FIND_SIMILAR

METHOD... 96

FIG. 6.10 CLASS PREDICTION ERROR WITH THE FIND_SIMILAR METHOD...... 96

FIG. 6.11 COMPARISON OF CLASS PREDICTION AND DISCOVERY ERROR

RATES WITH FIND_DISCRIMINATING METHODS.. 98

 1

CHAPTER 1: INTRODUCTION

1.1 Outline of the Thesis

The thesis is organized as follows.

Chapter 2 gives an overview of genetics and gene expression. It discusses DNA structure

and its role in protein synthesis processes. It also covers representative mechanisms of the

control of gene expression for the interpretation of genetic expression data.

Chapter 3 details large-scale expression analysis using DNA microarrays. Two popular

technologies – oligonucleotide and cDNA arrays, are explained. Based on the overview in

Chapter 2, the nature and analysis of microarray data for gene functional classification are

discussed.

In Chapter 4, we attempt to model the integration of the high-throughput microarray

technology and genetics databases in drug discovery and development processes. We give

a brief overview of traditional and modern drug discovery. UML use cases are developed to

model the requirements of a pharmaceutical discovery/analysis system. The overall system

architecture is described using package and class diagrams, including the behavioral

elements.

Chapter 5 gives an overview of supervised and unsupervised clustering algorithms for

expression analysis. We outline two similarity measures – the log-Euclidean distance and

the unnormalized symmetric Kullback-Liebler measure - and their application in the

(supervised) learning vector quantization (LVQ) algorithm. We also give a brief

 2

description of other learning techniques like support vector machines (SVM) and instance-

based learning.

In Chapter 6, we compare different algorithmic implementations of important use cases in

microarray analysis from Chapter 4. Two types of analyses are considered – functional and

phenotypic classification. We give a description of the data sets, the methods and

performance measures used, and a summary of the results.

 3

CHAPTER 2: GENETICS AND GENE EXPRESSION

The biological information in an organism is contained in the DNA molecule, which is

present in all cells. Cellular processes such as growth, replication, differentiation, and

response to environmental conditions, are controlled by the DNA sequence data and the

interaction of DNA with cellular compounds.

2.1 DNA Structure and Function

In this section, we elaborate on how the structure of the DNA molecule plays a vital role in

regulating biochemical activities, and discuss mechanisms by which this is carried out.

The DNA molecule consists of two strands of nucleotide sequences forming a double-

helical structure. Individual strands are composed of repeating blocks of deoxyribose sugar

and phosphate subunits forming the exterior backbone of the molecule, and a nucleotide

base on the interior. The two strands are held by hydrogen bonding between the nucleotide

bases, as shown in Fig. 2.1.

 4

Fig. 2.1 Schematic Diagram of DNA Structure [10]

Due to the pairing properties of deoxyribose to the phosphate subunit, the ends of each

strand have different chemical properties. The two strands run anti-parallel to each other,

thus imposing directionality to the DNA molecule.

The nucleotide subunits in DNA are derived from a four-letter alphabet, viz., adenine (A),

guanine (G), cytosine (C), and thymine (T). An additional constraint on DNA structure is

illustrated by the complementary base-pairing rule; the nucleotide bases line up in such a

 5

way that adenine on one strand corresponds to thymine on the other, and guanine

corresponds to cytosine.

2.2 Protein Synthesis

The nucleotide sequences in a DNA molecule act as a template for synthesizing proteins;

enzyme molecules catalyze these reactions. Most of the enzymes are proteins themselves,

with structural properties that render them suitable for specific cellular processes. The order

of reaction events in a cell is determined by a combination of sequence information and the

presence of enzymes.

Sections of the DNA molecule called genes contain the information for synthesizing

specific proteins, which are essentially amino-acid sequences. The information for protein

synthesis is organized in nucleotide triplets called codons, defined by the four-letter DNA

alphabet. Codons act as the template for 20 different amino acids, as well as start and stop

markers for protein synthesis.

Gene expression is the physiological manifestation of the genetic makeup of an organism.

At a finer level, it is the process by which information on a gene is used for protein

synthesis. It takes place in two steps. During transcription (Fig. 2.2), a single-stranded

ribonucleic acid (RNA) molecule is synthesized based on the complementary genetic

sequence, in the presence of the RNA polymerase enzyme. The RNA molecule is

structurally similar to the DNA molecule and is composed of the four-letter alphabet

AUGC, with uracil (U) in place of the thymine (T) base.

 6

Fig. 2.2 Synthesis of mRNA during Transcription [10]

The RNA molecule from transcription, also called mRNA (messenger RNA), attaches to

ribosomes in the cytoplasm of the cell. In the second step called translation (Fig. 2.3), a

molecule called transfer RNA (tRNA) with a nucleotide triplet complementary to any of

the mRNA codons forms a complex with specific amino acids in the presence of the

aminoacyl-tRNA synthetase enzyme. By sequential alignment of codon-specific tRNA

molecules, polypeptide chains of amino acids are constructed to form proteins from the

start to the stop codons on the mRNA molecule.

 7

Fig. 2.3 Amino Acid Synthesis during Translation [10]

The entire DNA sequence information in DNA is not useful for protein synthesis. A

significant portion is composed of non-coding regions, such as those that form regulatory

elements or garbage sequences between coding regions. Bacterial genomes, for example

have a very high codon density. However, an increase in genome size does not necessarily

indicate an increase in efficiency or quality.

2.3 Regulation of Gene Expression

Protein synthesis as described above, is a fundamental and relatively uncomplicated

process. However, in order for the cell to respond to the environment and initiate higher-

level processes like growth and differentiation, complex regulatory schemes exist. Control

 8

can occur at various stages of the protein synthesis process. In this section, we illustrate a

few well-known mechanisms of gene expression regulation and relate them to gene

function.

2. 3.1 Chromatin Structure

The chromatin is the fibrous complex of DNA and proteins within the nucleus. The

physical structure of the DNA in the chromatin can vary in differentiated cells in an

organism, and result in enhancing or repressing the expression of specific genes. For

instance, the presence of compounds like histones, might affect the ability of RNA

polymerase and transcriptional regulatory proteins to access specific genes on the DNA.

2.3.2 Transcriptional Control

Repression is a transcriptional control mechanism to turn specific genes on or off and is

explained by the operon model of regulation in prokaryotic cells (cells having no nuclear

membrane). The model states that groups of genes coding for related proteins exist close to

each other on the DNA and are controlled by a single promoter region, where the

transcriptional enzyme RNA polymerase attaches itself. The operator region separates the

upstream promoter site from the genes. In the case of the lac operon, the constituent genes

code for enzymes to break down lactose. In the absence of lactose, a regulatory gene

upstream of the promoter codes for a repressor protein that binds to the operator region and

inhibits transcription initiation. When lactose is present, it forms a complex with the

repressor protein and detaches it from the operator site.

 9

Attenuation is the mechanism by which the abundance of a protein inhibits its own

transcription. This occurs in genes that code for energy-consuming processes like amino-

acid production.

In activation, the binding of enhancer proteins near promoter and upstream regions of the

DNA enable the RNA polymerase enzyme action, thereby initiating transcription.

2. 3.3 Processing-level Control

This refers to the relation between the coding scheme of genes and proteins. Proteins are

often encoded by members of a multigene family. A multigene family of genes arises by

undergoing modifications during evolution from a single ancestor. Such a set can code for

homologous proteins with similar functions.

2.3.4 Translational Control

Translation of mRNA can be enhanced or suppressed by the amount of the specific protein

in the cell. For instance, iron is stored in the protein ferritin. When iron levels are low in the

cell, a repressor molecule binds to the mRNA for ferritin inhibiting synthesis. When iron

levels in the cell rise, iron binds to the mRNA-repressor complex and detaches the

repressor protein, thereby enhancing the synthesis of ferritin for storage.

2.3.5 Post-translational Factors

Protein expression varies even after translation. The presence of an inhibitor in the

environment can repress protein function. Most proteins exist in an inactive state after

translation and need to undergo polypeptide cleavage to become active. Some proteins may

 10

also require activation through a combination with another molecule. The operation of

enzymes in the presence of a cofactor is an example.

Many other mechanisms of gene regulation at various levels of biochemistry exist, and

these may be specific to organisms. However, it is important to note that not all changes are

observable in gene expression experiments. Hence, knowledge of the metabolism,

phylogeny, and careful experimentation is required to draw meaningful results about gene

functional characteristics.

 11

CHAPTER 3: GENE EXPRESSION ANALYSIS

Based on the background on gene expression, we give a brief overview of the state-of-the-

art in microarray technology, and two different types of microarrays. We then discuss the

nature and applications of various gene microarray data. In the section on expression

analysis, we explain how microarrays can be related to molecular biology and gene

function.

3.1 Microarray Technology

Genetic analyses have traditionally been based on single-gene experiments in order to

estimate the preferential expression of the gene in multiple experiments. With the

availability of the complete genome sequence information for some organisms, it is now

possible to simulate and study cellular control at the level of genetic interactions. The

DNA microarray is an experimental tool that combines genome information with chip

technology, and allows us to monitor specifically, the gene expression of thousands of

genes at the same time, in different environmental conditions designed by the

investigating biologist.

DNA microarrays give a quantitative measure of gene expression from all genes in a tissue

sample, under a variety of conditions. To explore various genetic properties, experimental

methods need to be designed to map them to expression values.

Microarrays measure the ability of DNA or RNA sequences from a sample to bind (or

hybridize) to their complementary DNA sequences (cDNAs) laid out on a chip. Because of

 12

complementary base pairing, measurement of the degree of hybridization between nucleic

acids provides good sensitivity and specificity in detection. This basic idea remaining the

same, two popular techniques exist to measure gene expression on microarrays. They differ

in the manner in which the sequences are prepared initially and are described in the

sections below.

3.1.1 Oligonucleotide Arrays

Oligonucleotides are nucleotide sequences that are 5-25 bases long. The oligonucleotide

array was the first microarray product developed by Affymmetrix. In a procedure similar to

semiconductor manufacturing, it uses photolithography techniques to synthesize nucleotide

sequences.

The entire chip is initially covered with the photolithographic mask. The laser exposes

precise locations on the chip. The particular amino acid solution is passed over the chip and

binds nucleotides at these locations.

The masking agent is applied again and the process is repeated until sequences up to 25

base pairs are generated. Finally, when the fluorescently tagged DNA sequences are treated

with the oligonucleotides, the degree of hybridization is measured by the amount of

fluorescent emission following laser excitation.

A unique feature of oligonucleotide arrays compared to other microarray techniques is their

high degree of accuracy. They hybridize multiple independent oligonucleotides with

different segments of the same RNA. Two sets of (usually) ten probes, called the perfect

match (PM) and mismatch (MM) probe sets, are used with each pair differing in a single

 13

base ([7][5]). The MM probes, which act as the control, are supposed to display a much

lower signal compared to the PM probes. This kind of redundancy leads to more accurate

results as averaging and outlier detection can be performed prior to quantitative evaluation.

Since the hybridization process is simple, these arrays have high reproducibility.

To generate oligonucleotide arrays, clearly, we need to know the entire sequence

information of genes and non-coding regions involved in the experiment. However, once

the sequence is known, it can be used in genotypic analysis ([20]). For example,

resequencing known DNA by inserting minor modifications in the complementary

oligonucleotides can detect single nucleotide polymorphisms (SNPs), which are point

mutations in DNA found in a part of the population. Similarly, such mutations can help in

identifying multiple forms of existence of longer sequences by partial matching. Another

advantage of the technique is that since the sequence lengths are small, it is possible to

construct high-density chips monitoring relatively larger number of genes.

However, array synthesis is slow and expensive as it uses a large amount of

photolithographic mask reagent during synthesis. These problems are overcome in cDNA

microarrays discussed below.

3.1.2 cDNA Microarrays

cDNA microarrays were first prepared by the Brown Lab of Stanford University. They

improve upon the oligonucleotide arrays by changing the layout strategy in a fundamental

way. Using purified mRNA transcripts from tissues, the reverse-transcription polymerase

chain reaction (RTPCR) is performed to obtain a large number of gene-specific

 14

polynucleotide clones. Thus, after purification of RNA samples and PCR amplification, the

clones are spotted on the array using a non-contact method similar to ink jet printing as

shown in Fig. 3.1.

Fig. 3.1 cDNA Microarray Manufacturing [6]

RNA samples obtained from two samples - a test case and a reference/control case, are

converted to cDNA sequences by reverse transcription. These sequences are then labeled

with two cyanine dyes Cy5 (test) and Cy3 (control). At this point, the array is

simultaneously hybridized with the fluorescently labeled cDNA from both samples. The

expression values are given by the relative degree of hybridization, which is calculated by

image processing software. For example, the two-color hybridization would yield red (ratio

 15

Cy5/Cy3>1) when the gene is induced, or green when it is repressed, or yellow when there

are no changes.

The cDNA method of fabrication is quick and less expensive compared to oligonucleotide

arrays, and allows the production of oligonucleotides longer than 500 base pairs. The

precise arrangement of spots leads to accurate signal measurement. The individual

expression values are normalized with respect to extracted subsets of closely related

samples.

One chief disadvantage of cDNA microarrays is that it monitors the expression of relatively

fewer genes. Since hybridization ratios are not reliable when gene expression is compared

across chips, this poses an obstacle for large genomes.

Another problem with cDNA microarrays is that they are limited by the availability of

clones for the solid phase and the purity of RNA samples derived from tissues. Further,

cDNA microarrays require a large quantity of RNA (usually 50-200 micrograms) per

hybridization [6].

3.2 Nature of Microarray Data

Since microarray expression data are going to be the basis for gene function prediction in

many applications, we list some of the limitations of microarrays and their role in

experimental design.

 16

1. The quality of microarray data depends on its mRNA source. Tissue samples used

in in vivo experiments might be composed of inseparable cell types, and might

show large variability during replication of experiments.

2. With regard to time-series data, it is important to note that individual cycle times of

individual processes have order-of-magnitude differences. Expression analysis can

be used to reveal interactions at the gene-to-gene level but not at the level of

cellular processes/mechanisms. Based on the knowledge of biochemistry of the

experiment, sampling should be carefully designed to enunciate valid and

significant interactions.

a. Unwinding of the helix ~ microseconds

b. Transcription ~ seconds

c. Translation ~ minutes

d. Life of a protein ~ hours

3. A microarray dataset represents a snapshot of particular cell lines. This cell ‘state’

varies significantly based on the environmental conditions, the stage of the cell

cycle, etc. Hence, it is essential to collect multiple data points for each gene and

base inferences on average values.

4. Measurement of mRNA transcript levels after hybridization might not be a true

indicator of protein levels due to post-transcriptional factors (See Sec. 2.3.5). If the

proteins are synthesized, they sometimes might not have any physiological

consequence in the experiment. In such cases, a combination of the knowledge of

 17

protein interactions and gene expression values might be a good indicator of gene

function.

 18

CHAPTER 4: USE-CASE MODELING OF MICROARRAY

ANALYSIS

4.1 Introduction

In this chapter, firstly, a brief description of processes in pharmaceutical drug development

is given. The impact of the high-throughput microarray technology on processes in

pharmaceutical research and development is explained. A UML systems engineering model

of an analysis system for modern drug development is developed, that captures the high-

level requirements. In the UML use cases, the main actors and their interaction with the

system are studied to build a structural model. From the UML model, we construct a

database schema for microarray data mining. Finally, we look at alternate system and data

architectures for pharmaceutical analysis in an enterprise.

4.2 Overview of Drug Discovery and Development

The discovery and development of drugs involves several stages, and careful planning and

allocation of large investments and time. A drug research plan might attempt to target an

untreated disease, or improve upon an existing drug using a novel approach. The decision

to pursue any project is based on criteria such as the immediate medical requirements, the

effectiveness of current products, etc.

According to the 2000-2001 statistics from Pharmaceutical Research and Manufacturers of

America (PhRMA), for every 5000 medicines tested, 5 of them pass on to undergo clinical

trials, of which only one is accepted ([32]). Considering that the average development cost

 19

for a single drug costs $500 million and 12-15 years and the fact that only 30% of marketed

drugs generate revenues in excess of development costs, it is imperative for pharmaceutical

companies to investigate the integration of new genomic technology in dealing with their

lifecycle cost breakdown.

4.2.1 Traditional Drug Discovery

Fig. 4.1 shows an approximate distribution of the times involved in the stages of traditional

drug development [34].

Fig 4.1 Traditional Drug Discovery Life Cycle

Drug discovery is a complex process with repetition and is characterized by many trials.

The process is initiated by investigating the biochemistry of the disease. Drugs based on

biochemistry produce their desired effects by acting on small protein molecules called

receptors located in the cell membrane. Receptors monitor extra-cellular activity and are

normally activated by hormones, whereby they undergo shape modifications and trigger

 20

cellular responses. Since receptors are connected with signaling pathways, they are able to

swiftly affect cellular mechanisms by reacting with drug molecules.

The molecular biologist uses biochemical pathways participating in the disease

pathophysiology to form a hypothesis about the chemical reactions involved. Common

drug targets chosen are those that code for enzymes, transporters, and hormone receptors,

since they can be easily controlled by small external molecules.

Feasible lead compounds are selected based on the knowledge of their structure and action.

A majority of these lead compounds arise from natural extracts, which have been

discovered and proven effective previously. The targets are purified and screened against a

variety of lead compounds. The lead compounds are filtered based on their effectiveness on

the drug target. They are then optimized by combinatorial chemistry techniques to form

new compounds with greater specificity. Pre-clinical testing involves in vitro testing on

tissue samples and in vivo testing on animal models (when available) for compound

toxicity. This set of compounds is filtered further to evaluate their side effects, dosage, etc.

on a larger population during the long and expensive clinical trials process.

There are many drawbacks and implicit limitations in the above procedure, in the current

context. The selection of targets is limited by the knowledge of their molecular function.

The proteins that some gene targets encode, like transcription factors, are not easy to

modulate. In the case when the molecular nature of the target is not known, random screens

are performed against thousands of lead compounds, which consume resources, time and

expenses. By having a large number of compounds after screening, the cost of testing is

 21

carried over to the expensive development and clinical trials phases. In cases where pre-

clinical testing can be carried out in animal models alone, the same lead compounds might

not be effective in human tissues, as some receptors are very species-specific; this risk is

carried on to the expensive clinical trials process.

Research and pre-clinical testing are the steps where automation and new technology can

play an important role in reducing process times and carry-over costs. The sequencing of

the human genome, miniaturization and automation of key biological processes, high-

throughput techniques like microarrays and the increasing integration of public information

can dramatically reduce the time, risk, and expenses involved in the drug development life

cycle.

Using microarrays, it is possible to screen lead compounds against all known genes and

filter out fewer compounds with greater accuracy and possibility of success. This is

illustrated below in Fig. 4.2 by the percentage expenditure in terms of compound and

development costs involved in these steps.

 22

Fig 4.2 Comparison of Life-cycle Cost Variation

Traditional Drug Development Cycle

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

2 4 6 8 10 12 14 16

Year

C
o

st
 (

%
)

Compound Cost

Development Cost

Microarray-based Drug Development Cycle

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 2 3 4 5 6 7 8

Year

C
os

t
(%

)

Compound Cost

Development Cost

 23

In comparison with Fig. 4.1, the following is an estimate of how micro-array data

processing affects process costs and times for each stage of the life cycle, by bringing down

the number of pre-selected compounds ([33, 35]).

• Research & Pre-clinical Testing: Average 18 months

• Clinical Trials (on human subjects): Average 5 years.

Some examples of the use of new technologies in drug discovery are listed below.

1. Sequence information opens up a large number of new feasible drug targets. It is

possible to conduct genome-wide experiments with microarrays, which have much

lower turnaround times compared to traditional polymerase chain reaction (PCR)

techniques. Gene sequencing from the human genome project is expected to

increase the number of gene targets for drug innovation from 500 to 3000-10000

[8].

2. Diseases like lymphoma and viral infections require drugs that can target the

transcriptional mechanism. Genes related to such cases can be targeted using gene

expression profiling.

3. A single-nucleotide polymorphism (SNP) is a point mutation that represents a

subset of a large population. SNPs are strong markers that can be used in

association studies to identify correlations between the presence of a chromosomal

region and any trait such as a disease phenotype. Microarrays can be used to study

drug response in diverse genotypes in clinical trials.

 24

4. Pre-clinical trials can make use of microarrays to conduct toxicology experiments

and to study in vitro testing.

5. Since gene expression is a clear indicator of function, functional prediction of target

genes can lead to rational drug design during the lead identification phase.

6. Gene expression in different experiments and across time points is a fair indication

of gene function. However, in some cases, mRNA levels might not give an

indication of protein levels, due to post-translational factors (Sec. 2.3.5).

4.2.2 Modern Drug Discovery

Using scenarios of the use of microarrays in modern drug development, a detailed

description of the processes involved in drug discovery is given below. Based on this, the

flow of events is illustrated in the activity diagram of Fig. 4.3.

1. Target Identification and Validation

Target identification is an exploratory phase that involves hypothesizing disease-causing

genes with evidence that can arise from multiple sources. The molecular biologist uses the

knowledge of biochemistry of the disease and associates known targets with new genes of

unknown function through information about DNA sequence, single nucleotide

polymorphisms (SNPs), and population genetics. In cases where little prior knowledge is

available, studies can be based on parallel results from model organisms, or differential

expression profiling of normal and diseased tissues. Information on pathways involving

these targets and sequence homology is also used to suggest alternate genes that can be

attacked.

 25

In the target validation step, microarray-based experiments are conducted on the individual

genes to determine their molecular function and interaction with others under different

cellular conditions. They are then filtered by their cellular response and marked as potential

drug targets.

2. Lead Identification and Validation

Biochemical assays of target gene products are developed in a closely similar environment

for in vitro testing. Since the target function may be determined or unknown, they are

screened ‘rationally’ or through random screens against compound library. The compound

library is composed of thousands of synthetic chemicals and natural products.

Cell-based assays, on the other hand, represent animal and cellular models of the disease.

They are used for in vivo testing, and provide more accurate information on drug action

inside the body. While biochemical assays identify lead compounds for a threshold level of

drug action in relevant pathways, cell-based assays also test their potency in being able to

act on cellular models.

These lead compounds are filtered further by studying their specificity, cellular response,

toxicity, and other pharmacological and chemical properties. These validated leads are

characterized by structural properties, which can be found from databases like MDL/ISIS.

Using combinatorial chemistry techniques, they are further optimized by synthesizing lead

compounds with these properties and improved activity on the drug targets.

3. Pre-clinical Testing

 26

Pre-clinical testing determines the toxic effects of a particular drug on secondary drug

targets, similar to the lead validation phase. Proteome analysis can be used to determine if

the cell is in a natural state, or showing a specific response mechanism, or an unspecified

response. The subset of proteins showing the response can be analyzed further. These

results can support future characterization of lead compounds during the previous phase.

4. Clinical Trials

In this phase, the drug discovery process is reviewed and clinical trial experiments are

designed to be implemented in the following order.

a. Phase I: Determine potential side effects and dosage of the drug by

administering on 20-80 healthy volunteers.

b. Phase II: Determine effectiveness on a small number of volunteers with the

disease.

c. Phase III: Determine large-scale effectiveness on 1000-3000 patients with

the disease.

d. Regulatory Review and Approval by the FDA.

e. Post-marketing surveillance: Medical practitioners continue to monitor the

drug’s safety and efficacy over a much larger population with the disease.

 27

Fig. 4.3 Business Process Model

Feasibility
Analysis

Target
Identification

Target
Validation

Lead Compound
Identification

Compound
Synthesis

No Suitable Leads

Compound
Validation

Compound
Optimization

Drug Synthesis
Procedure

Drug
Formulation

Toxicology
Testing

Clinical Trials
I

Clinical Trials
II

Clinical Trials
III

Manufacturing
Process Design

Bioavailabilit
y Studies

NDA Review

Post-approval
Surveillance

Poor Pharmaceutical Activity

Toxic Effects Present

Review

Reject

Unsuitable Target Properties

 28

4.3 System Description and System Requirements

A pharmaceutical corporation typically consists of hundreds of users of different

backgrounds such as biologists, chemists, bioinformaticians, clinical scientists, program

managers, and administrators. Users conduct analyses on project-related (transactional)

data such as from experiments, previous analyses, processes, etc. and aggregations of

project data (analytical) at the corporate-level. The applications implementing business

logic are handled by computing on distributed hardware. The broad requirements of an

analysis system within such an enterprise for the modern drug development process can be

listed as follows:

1. Data mining across distributed public and corporate databases.

2. Storage and retrieval of user-specific analyses.

3. Access to archived and current project data such as process status, materials,

analyses, etc. for tracking and prediction in research.

4. (Restricted) Corporate-wide access ability for departmental data stored in a pre-

defined schema/format.

5. Controlled access to different users and customized interfaces for

visualization/data mining.

6. Ability to integrate modules of new functionality with minimal configurational

changes to the system.

7. Database-independent data and results transfer.

 29

4.4 UML Requirements Modeling

In this section, we model the high-level requirements of the pharmaceutical analysis system

with UML use cases. These use cases represent unit-transaction scenarios where the users

(actors) interact with system components during different phases of the drug development

life cycle. Knowing the nature of these interactions allows us to create the system structure

in terms of the data model for database system design. This process is an iterative one,

where the structure is related back to the initial requirements model and modified if any

conditions are ambiguous or not met.

The following use cases attempt to model the requirements of a pharmaceutical corporation

in terms of microarray data processing as rigorously as possible. However, when we derive

the class structure from the UML model, some schema elements such as lead compound

properties, storage of results from different public databases, and so on are deliberately left

‘masked’ or undetermined to keep the implementation from becoming too specific while

keeping the model as accurate as possible.

The main actors of the model include the product development manager, computational

biologist/chemists, molecular biologists, pharmacologists, chemists, clinical scientists,

technical managers, system developers, and lab managers. They relate to the drug

development processes that are shown in Fig. 4.3. The use cases are grouped by the users

involved in these major processes. Entities like the corporate knowledge base, public

databases, and transactional databases in the use cases denote subsystems, and are denoted

as actors and abstract entities themselves. They have a detailed structure for different

phases of the process, which will be derived in Section 4.5 on system structure.

 30

4.4.1 Use Cases Associated with a Biologist

4.4.1.1 FORMULATE TARGET HYPOTHESIS: This use case deals with the

biologist’s research on feasible targets and results reported to the transactional database.

The biologist queries public databases and the corporate knowledge base about the

biochemistry of the disease. The system collates information and returns the pathways

involved, disease categories, and related targets (genes, receptors, enzymes, and other

proteins). It also retrieves experimental data from normal and diseased cells, and

treatments with several compounds, references, and so on. The biologist stores the

results of the search, including the target, its type, associated diseases, and pathways

involved, in the transactional database.

4.4.1.2 IDENTIFY AND VALIDATE TARGET GENES: The use case provides

shared behavior for the specific use cases such as Find Similar, Find Discriminating,

Pre-filter and Cluster, and Search. It reports the results of experimental findings on

genes from (4.4.1.1) to the transactional database.

With the leads from (4.4.1.1), namely genes involved and corresponding experimental

data, the biologist performs different kinds of analyses. The biologist also specifies

experimental protocols to obtain differential expression data on the activity of the

feasible targets in normal and disease cells. The system retrieves analysis results based

on the criteria and receives analysis reports about the resultant set of genes,

experiments analyzed, similarity measure used, feature analyzed, threshold similarity

(if applicable), and data values used (raw values, normalized logarithmic values, and so

on)

 31

4.4.1.2.1 FIND DISCRIMINATING: The biologist tries to find (gene or chip)

expression profiles are able to discriminate two classes of profiles the most. The

system retrieves these classifier-boundary instances to examine their properties further

in context.

4.4.1.2.2 FIND SIMILAR: This is a high-level case that can be further specialized by

specifying qualifiers such as similarity in compound structure, gene sequence, target

structure, or microarray expression profile. The system uses appropriate or specified

analysis algorithms for retrieval.

4.4.1.2.2.1 FIND SIMILAR PROFILE: The biologist tries to find similar

expression profiles over an experiment’s chip set. He can also pick an interesting

profile, such as those obtained from (1.2.1) and find profiles, which are closest to it.

4.4.1.2.2.2 FIND SIMILAR TARGET: The computational biologist queries

structure databases like MDL/ISIS to find targets with similar structural and

functional features to a known one.

4.4.1.2.2.3 FIND SIMILAR SEQUENCE: The biologist queries for genes with

similar sequence to a given sequence. The system can return, for example, E-values

from BLAST searches for genetic sequences.

4.4.1.2.3 PRE-FILTER AND CLUSTER: This case builds on the previous two use

cases.

The biologist queries genes with a chosen threshold activity or other criteria. This is

done to eliminate redundant or irrelevant features and to increase the efficiency of

clustering. He then partitions (the algorithm, similarity measure, and number of

clusters can be specified) co-expressed profiles. He further analyzes the results by

 32

clustering over genes or chip profiles. The system executes server-side algorithms,

retrieves the results, and displays them in a visualization tool.

4.4.1.2.4 SEARCH: Like (4.4.1.2.2), this is also a generic use case, which can be

specialized for searches on various criteria.

The biologist queries several public databases and the corporate knowledge base and

executes tools to find genes with high similarity in terms of sequence, structure, or

genetic linkage, to the available genes. For instance, the results of a BLAST query on

sequence similarity can be stored in the form of analysis type, gene sequence, BLAST

E-value, result set, and other parameters. The system collates information from

disparate databases and returns the results. The analysis reports stored by the system

will also have similarity measures based on multiple criteria along with those

described in (4.4.1.2).

4.4.1.3 BUILD DISEASE MODELS: The biologist accesses corporate/in-house and

public references, and builds disease models to simulate or predict the target’s response

to different compounds, if the function of every gene in all pathways where the target

gene is involved, is known. He stores his model in the transactional database. The

results from the target validation phase are submitted for the approval of the product

development manager.

4.4.2 Use Cases Associated with a Chemist

4.4.2.1 IDENTIFY LEAD COMPOUNDS: The chemist obtains the list of probable

drug targets from (4.4.1.3). He queries the in-house and public compound libraries and

references for target structure and previous results of effective structural (this

 33

methodology is called rational drug design) and other properties of compounds for

targets with known molecular function. For example, these include queries on structural

databases like MDL / ISIS. The system retrieves results and stores the hypothesis on

feasible lead compounds, listing the compound, its structure, the target and its structure,

target type, references, related diseases, and other compound properties.

4.4.2.1.1 PREDICT TARGET STRUCTURE: If the target site function is not known

in (4.4.2.1), the chemist and the computational chemist query the compound library

for functional groups with a wide range of structural properties and activities, and

perform experiments on the target by repeated addition of these groups (function site

mapping). The system executes algorithms to predict function and returns the

compound set. The results are stored in the form of the target, its predicted structure,

and its geometric and chemical properties. Then, suitable compounds are found as

described in (4.4.2.1).

4.4.2.2 PREPARE AND TEST WITH BIOCHEMICAL ASSAYS: The chemist

prepares the protocol for biochemical (in vitro) and cell-based (in vivo) assays in

normal and diseased cells, specifying genes, compounds to be tested, organism,

experimental conditions, cell stage, etc. A request is submitted to the laboratory

subsystem. The system retrieves and stores the experiment information, the assay

protocol, and the data in the transactional database. The chemist filters compounds in

biochemical assays based on a minimum level of drug activity over at least a chosen

proportion of target genes. Further, he filters the compounds in in vivo testing, based on

cross-validation with action on regulatory pathways and toxicity measurements. The

system retrieves information on pathways of the tested targets and other genes in the

 34

assay. The analysis results stored include the resultant compound set, experiments

analyzed, activity level, and threshold activity.

4.4.2.3 OPTIMIZE LEAD COMPOUNDS: The chemist studies the structural

properties of the lead compounds and synthesizes new compounds using computer

models of the reaction mechanisms and combinatorial chemistry tools. He documents

the rationale, synthesis procedure and uses the same assay protocol for testing. The

screen results are submitted for validation.

4.4.2.4 FORMULATE DRUG SYNTHESIS AND DOSAGE: The chemist implements

and records the procedure to make any novel candidate lead compound and tests the

purity of the product.

4.4.3 Use Cases Associated with a Pharmacologist/Toxicologist

4.4.3.1 VALIDATE COMPOUNDS: This use case provides shared behavior for toxic

testing in the lead validation and pre-clinical testing phases.

The toxicologist filters compounds in biochemical assays based on a minimum level of

drug activity over at least a chosen proportion of target genes. Further, he filters the

compounds in in vivo testing, based on cross-validation with action on regulatory

pathways and toxicity. The system retrieves information on pathways of the tested

targets and other genes in the assay. The analysis results stored include the resultant

compound set, experiments analyzed, activity level, cellular response, pharmacological

and chemical properties, and threshold activity.

 35

4.4.3.2 DETERMINE TOXIC EFFECTS: The pharmacologist and toxicologist

perform toxic studies on primary and secondary drug targets as described in (4.4.2.3)

on animal cells. They query proteome information to determine the nature of cell state.

They document characteristics such as cellular response and drug selectivity, potency,

and toxicity.

4.4.4 Use Cases Associated with a Clinical Scientist

4.4.4.1 DETERMINE STUDY PARAMETERS: In the clinical trials phase, the clinical

scientist determines parameters for drug experimentation such as normal dose ranges,

expected values, measurement techniques, and equipment required.

4.4.4.2 DEVISE EXPERIMENTAL PROTOCOL: The scientist prepares a case report

form to study the drug effects on patients, prepares schedules, dosage, etc.

4.4.5 Use Cases Associated with a Lab Manager

4.4.5.1 IMPLEMENT EXPERIMENT PROTOCOLS: The lab technician obtains the

experimental protocol for microarray and assay development from the drug discovery

team. He co-ordinates and documents procedures for sample preparation, hybridization,

normalization, quality check, etc. using a LIMS (Laboratory Information Management

System) tool. The system stores the raw experimental data in the transactional database.

4.4.6 Use Cases Associated with a Product Development Manager

The Product Development Manager oversees the progress of different project groups

working in the firm.

4.4.6.1 CONDUCT FEASIBILITY ANALYSIS: The manager picks a preliminary

research area based on the current demand, knowledge of competing brands, etc. He

queries the corporate knowledge base for availability and potential of compounds in the

 36

company’s compound libraries for new products, and the performance and viability of

similar projects. He then initiates a research project. The system collates information

across projects, analysis results, financial and other corporate data for business

decisions.

4.4.6.2 ALLOCATE RESOURCES FOR PROJECTS: With simultaneous drug

development projects in progress, the manager allocates personnel to specific project

phases. He makes decisions on manufacturing or purchasing resources such as

chemical compounds, assays, etc.

4.4.6.3 MONITOR THE PERFORMANCE OF PROJECT GROUPS: On the basis of

the performance of ongoing and past projects, the manager can allow or revoke the

continuation of a particular project phase. For instance, this might be in the form of the

following queries: ‘Which projects have been more productive in terms of the number

of leads?’

4.4.6.4 CONDUCT PEER REVIEW: The peer review team, involving the product

manager, reviews the analyses results at different checkpoints during the drug

discovery life cycle. They approve the transfer of new results at the end of individual

sub phases into the corporate database, and allow other research teams to make use of

these results.

4.4.7 Use Cases Associated with a Computational Biologist/Chemist

4.4.7.1 FIND SIMILAR:

4.4.7.1.1 FIND SIMILAR TARGET: (As in 4.4.1.2.2.2)

4.4.7.1.2 FIND SIMILAR COMPOUND: The computational chemist tries to find

compounds with similar activity and physical properties to a compound known to

 37

produce desired therapeutic response on a given target. He performs a large number of

experiments with a wide variety of compound chemistries. The system runs

correlation methods like QSAR (Quantitative Structure Activity Relationship) and

stores the results in the form of the target, the compound, its QSAR activity score, and

its structure.

4.4.7.2 PREDICT TARGET STRUCTURE: (As described in (4.4.2.1.1))

4.4.7.3 DESIGN LIBRARIES: The computational chemist uses combinatorial

chemistry techniques to determine compounds with high activity scores on a chosen

target. The results obtained are similar to (4.4.7.1.2)

4.4.7.4 PREDICT COMPOUND PROPERTIES: (Similar to 4.4.7.1.2) The system runs

correlation methods like QSPR (Quantitative Structure Property Relationship) to

predict the chemical properties given the compound structure.

4.4.8 Use Cases Associated with a Technology Manager

4.4.8.1 ORGANIZE REQUIREMENTS: The technology manager represents the

domain experts from different areas of research and testing in the corporation. He

studies new technology and current shortcomings in the system, and prioritizes new

requirements from different users. He communicates with the system developer to

assess and improve the structure and functionality of the system.

4.4.9 Use Cases Associated with the System Developer

4.4.9.1 OBTAIN REQUIREMENTS: The developer obtains requirements from the

technology manager, and interacts with him to understand how the system will be used.

Changes to the system are to be made incrementally, after new requirements come in.

 38

4.4.9.2 DESIGN KNOWLEDGE BASE: The developer designs the database to

organize current as well as archived data and results. He creates a client-server model

of microarray analysis, and designs the interfaces for different users.

Fig. 4.4 Use Cases for Target Identification and Validation

Pre-fi lter and Cluster

Find Similar Sequence Find Similar Target Find Similar Profi le Find Similar Compound

Identify and Validate Targets

<<Uses>>

Build Disease Models

Biologist Transactional DB

Public DB

Formulate Target Hypothesis Search

<<Uses>>

Find Similar

<<Uses>>

Find Discriminating

<<Uses>>

Corporate KB

<<Extends>>

<<Extends>>
<<Extends>>

<<Extends>>

 39

Fig. 4.5 Use Cases for the Computational Biologist/Chemist

Find Similar

Predict Target Structure Predict Compound
Properties

Computational
Biologist/Chemist

Transactional DB Corporate KB

Find Similar Target

<<Extends>>

Find Similar Compound

<<Extends>>

Design Libraries

Public DB

 40

Fig. 4.6 Use Cases for Compound Identification and Validation, and Pre-clinical

Testing

Predict Target Structure

Pharmacologist

Validate Compounds

Detemine Toxic Effects

<<Uses>>

Toxicologist

Public DB

Transactional DB

Prepare and Test with
Biochemical Assays

Identify Lead Compounds

<<Extends>>

Chemist Corporate KB

Optimize Lead Compounds

Computational
Biologist/Chemist

 41

Fig. 4.7 Use Cases for the Product Development Manager

4.5 System Structure

The UML use case model described in the previous section used very abstract definitions

of the system components that the actors interact with, like the TransactionDB and the

CorporateKB. This section goes into more details by first grouping use cases based on their

interaction with the analysis system and deriving a package diagram for system

architecture. The individual classes are then defined to create the system structure.

4.5.1 Package Architecture

The following lists the mapping between related use cases and the packages. Some of the

packages can directly translate to database schema, if all the constituent objects are

persistent.

Allocate Resources

Transactional DB Product Development Manager

Conduct Feasibility Analysis Monitor Project Group
Performance

Conduct Peer Review

Corporate KB

 42

1. Use cases such as Formulate Target Hypothesis (4.4.1.1), Find Similar Target

(4.4.1.2.2.2), and Predict Target Structure (4.4.2.1.1), chiefly involve querying the

in-house knowledge base on target properties such as the geometrical structure and

relevant pathways. This is characterized by the Target subsystem. The attributes

and operations of the Target class can be further specialized for individual target

types such as receptors, enzymes, and other proteins.

2. In a similar manner, Identify Lead Compounds (4.4.2.1), Optimize Lead

Compounds (4.4.2.3), and Find Similar Compound (4.4.7.1.2) use cases make

extensive use of a compound’s structural and chemical properties. The Chemical

Compound subsystem handles these features.

3. A large number of use cases such as those involved with target or compound

identification and validation retrieve and query archived experimental data. These

characterize the Experiment subsystem, consisting of diverse data like raw data,

normalized expression values, etc. for many protocols, and array and experiment

types.

4. Many of the hypothesis-related use cases also use public genomic and structural

databases. The PublicData subsystem can consist of collated information from these

databases like pathways, structure, sequence, and homology information, which can

also be retrieved on-demand. It can also provide access to Internet-based tools like

BLAST for sequence comparison.

 43

5. Frequent upgrades of the public databases, archiving validated information or

completed projects, as well as access control privileges and maintenance is handled

by the DB Administration subsystem.

6. The LIMS subsystem deals with laboratory techniques and protocols in the

acquisition and preparation of diverse samples, assays, and microarrays.

7. Finally, the documentation of analysis steps and results from use cases in the target

and lead compound identification and validation phases, are stored in the Analysis

subsystem. This might also consist of archived results from use cases like Predict

Target Structure (4.4.7.2), Design Libraries (4.4.7.3), Predict Compound Properties

(4.4.7.4), Conduct Feasibility Analysis (4.4.6.1), and so on. The storage of data in

this subsystem can be similar to a data warehouse and is used by all the major users

of the system, making it the most important component of the system. It may be

further specialized for target and compound analyses.

Fig. 4.8 shows the high-level package diagram for the analysis system. The arrows indicate

the dependency of packages on each other. The following section discusses the individual

classes in each subsystem.

 44

Fig. 4.8 Package Diagram

4.5.2 Class Diagrams

Figures 4.9-4.11 show the class models for the subsystems outlined in Sec. 4.5.1. In this

section, we will be concerned about the data model alone. The operations defining the

behavior of classes are discussed in Sec. 4.6.

A representative structure of classes in the Public Data subsystem is shown in Fig. 4.9. This

might involve collated information from knowledge bases like the characteristics of a

PHARMA. ANALYSIS SYSTEM
<<Top-level Subsystem>>

Target
<<Subsystem>>

Chemical
Compound

<<Subsystem>>

DB
Administration

<<Subsystem>>

Analysis
<<Subsystem>>

LIMS
<<Subsystem>>

Public Data
<<Subsystem>>

Experiment
<<Subsystem>>

 45

disease in Disease_Phenotype and the MYGD (MIPS Yeast Genome Database). Or, it

might include data from primary databases like KEGG pathways, and related genomic

information shown in Pathway, Pathway_Map, and related classes.

Fig. 4.10 shows the Target, Compound and Analysis subsystems. The classes Target and

Compound allow indexing across different chemical and physical properties. They can also

be linked to an external structural database in the Public Data subsystem. The Analysis

class shown here stores a report of a scientist’s study. This leads to its documentation in

Analysis_Steps, of the experiments, methods used, and their parameters. As a specific

example in the case of target and compound validation, the TC_Analysis class extends the

Analysis_Steps class to include specific functions like finding significant genes/compounds

and search. The TC_Analysis also permits the execution of ad hoc queries through the

Random_Query interface. This extends the functionality to use cases like Conduct

Feasibility Analysis (4.4.6.1) for other users.

Finally, Fig. 4.11 shows the Administration and Experiment subsystems. The former

merely shows the relation between large projects with many project groups and users.

Details regarding user restrictions and other maintenance criteria are not discussed further

here. The Experiment subsystem links the User class with experiments conducted by an

individual. Each Experiment class object corresponds to many individual chips

(environmental conditions) and each chip is defined by a protocol and parameter set.

 46

Fig. 4.9 Public Data Subsystem Class Diagram

Disease_Phenotype

Disease_ID
Name
Category
Summary
Diagnosis
Molecular Genetics
Resources
References
Clinical Description

Proteome_Info

Protein_ID
GAN
Protein Name
Functional Categ
Post Trans Modifications
Molecular Envt
Cellular Role
Subcel lular Function

EC_GAN

EC Number
GAN

MYGD_Class

ORF
Gene Name
ORF Description

Pathway

Pathway ID
Pathway Name
Species
Diagram : BLOB
Category

Pathway_Map

Pathway ID
Location ID
LLX
LLY
URX
URY

1

1

1

1

Represents

Locus_GAN

Locus ID
GAN

Enzyme

EC Number
Enzyme Name

1..n

1..n

1..n

1..n

Contains

1

1

1

1

Identified by

MYGD_Fun
ction

Class ID

Functional_Cl
ass

Class ID
Description

MYGD_Protein

Protein Class ID

Protein_Class

Protein Class ID
Description

 47

Fig. 4.10 Target, Compound, and Analysis Subsystem Class Diagram

Target_Structure

Structure ID
Geometry : Object

Find Similar Structure()

Compound_Structure

Structure ID
Geometry : Object

Find Similar Compound()

ReceptorProtein

Target

Target ID
Name
Pathways
Structure ID
Diseases
Chemical Prop. : Object
Physical Prop. : Object
References

Get Physical Property()
Get Chemical Property()
Predict Target Structure()

1

1

1

1

Corresponds to

Compound

Compound ID
Name
Structure ID
Category
Chemical Prop. : Object
Formula
Physical Prop. : Object
References

Find Similar Target()
Predict ADME Property()
Predict Chemical Property()
Predict Physical Property()
Get Physical Property()
Get Chemical Property()

Corresponds to

TC_Analysis

Target ID
Compound ID
Experiment ID
Sim Measure
Threshold Sim
Activity Level
GAN
Data Desc

Prefil ter()
Search()
Cluster()
Find Active()
Find Feasible()

1

n

1

n

1

n

Analysis

Analysis ID
Project ID
User ID
Description
Project Phase

Analysis_Steps

Step ID
Analysis ID
Experiment ID
Description
Method+Params

Consists of

Type of

Implements

Random_Query

 48

Fig. 4.11 Experiment and Administration Subsystem Class Diagram

Assay Oligo Array cDNA Array

Protocol
Protocol ID
Parameter

Project_Group
Group ID
Project ID
Group Desgn

Chip
Chip ID
Experiment ID
Desc
Protocol ID
Protocol Params
Expt. Condition
Data

Find Experiments()

User
User ID
Group ID
Role

Project
Project ID
Curr. Phase
Project Desc
Category

TC_Analysis
Target ID
Compound ID
Experiment ID
Sim Measure
Threshold Sim
Activity Level
GAN
Data Desc

Prefilter()
Search()
Cluster()
Find Active()
Find Feasible()

Random_Query

Experiment
Experiment ID
Project ID
User ID
Desc
Organism

Find Similar Profile()
Cluster()
Prefilter()
Normalize Data()
Get Data()
Find Discriminating()

Analysis_Steps
Step ID
Analysis ID
Experiment ID
Description
Method+Params

Analysis
Analysis ID
Project ID
User ID
Description
Project Phase

1

n

1

n

1

n

1

n

Consists of

Implements

1

n

1

n

Contains0..n

1..n

0..n

1..n

Creates

1

0..n

1

0..n

Performs

0..1

1..n

0..1

1..n

Leads to

Implements

Type of

1

1..n

1

1..n

Consists of

 49

4.6 System Behavior

Modeling system behavior allows us to capture what the system does, without specifying

the actual implementation used. It thus allows us to simulate time-dependent execution of

different scenarios and study them for correctness and efficiency.

In Sec. 4.3, we defined the system requirements that specify behavior at the highest level.

In this context, we now define the low-level functions, their inputs and outputs, and their

ordering through functional flow block diagrams, as applied to common microarray data

processing.

Fig. 4.12 shows the functional flow block diagram (FFBD) for microarray data analysis, as

a state-chart diagram. Each block indicates a state, and defines its main action. The arrows

indicate transitions between states, which might be based on selection criteria, be

concurrent (AND condition), or be optional (OR condition). The corresponding input-

output diagram for each function is shown in Fig. 4.13. The order of operations is

explained below.

The scientist imports generated microarray data and other experimental data from the

archives in Function 1. The input to the function can be a gene or compound involved in

the Experiment database, or any other description. Expanding this function in Fig. 4.14, the

system should combine diverse experimental data into a single, standard format.

In the next step, the scientist tries to build a data model by applying transformations to the

data, and fitting various models to it. This might involve the use of information from

 50

external sources like sequence and structure databases, and the use of visualization tools as

detailed in Fig. 4.15.

He/she then picks clustering methods and applies the data transform appropriate to the data

model (Functions 6,7). A variety of filtering steps can be applied at this point to the data, to

eliminate redundant or noisy features and reduce the dimension of the dataset (Function 8).

Fig. 4.16 expands this function including filtering based on fold-variation, significant

features, and function. The output of this step is a significant subset of features, which is

used in clustering or classification in the next steps (Functions 9, 11).

The scientist analyzes the clusters obtained by unsupervised clustering using contextual

information from queries to external information sources (Fig. 4.17), while he uses the

results of supervised classification directly for performance evaluation. For each type of

dataset, he/she tries different algorithms and varies their parameters. He/she then generates

a report of the findings and conclusions of the analysis, which can be made available to

other groups within the organization.

 51

Fig. 4.12 State-chart Diagram for Behavior

(1) do: Import
experimental data

(2) do: Search and link
public-domain information

(5) do: Build
the data model

(6) do: Choose an appropriate clustering
method for the model

(8) do: Filter data by specifying the statistical
criteria to pick a reduced set of features

(12) do: Measure
performance

(13) do: Generate and
store analysis reports

(4) do: Generate
visualizations

(3) do: Apply a
data transform

(7) do: Apply the
data transform

(9) do: Apply the unsupervised
clustering algorithm (11) do: Perform supervised

classification to discriminate classes

(10) do: Validate and
review the clusters

OR

AND

AND

Done

Repeat with a
different algorithm

Repeat with new
parameters

 52

Fig. 4.13 Input-output Diagram for Behavior

1
Import the microarray

experimental data

2
Search and link public-

domain information
like functional

annotations, pathways,
etc.

5
Build data model

6
Choose an appropriate
clustering method and

parameters for the
model

7
Apply the data

transform

8
Filter data by
specifying the

statistical criteria to
pick a reduced set of

features

9
Apply the unsupervised
clustering algorithm to

group co-expressed
genes

12
Measure Performance

13
Generate and store

analysis reports

4
 Generate

visualizations

3
Apply a data transform

10
Validate and review the

clusters

11
Perform supervised

classification to
discriminate classes

Query Gene/
Compound/
Experiment

Array data in
std. format

Sequence
Info.

Pathway
Diagrams

Class labels

Histograms

Dendrograms

Transformed
Data

Profile plots

Discriminant
Features

Significant
clusters

Transformed
Data

Performance
Analyses

Final report of
findings and
conclusions

Data model and
normalization method

Filter
parameters

Structure

 53

Fig. 4.14 Lower-level FFBD for Function 1: Import Experimental Data

Fig. 4.15 Lower-level FFBD for Function 4: Generate Visualizations

(1.1) do: Import the
generated experimental data

(1.2) do: Search the
experiment database

(1.3) do: Import the
array data

(1.4) do: Standardize
the data formats

AND

(3) do: Apply a
data transform

(4.1) do: Generate
scatter plots

(4.2) do: Generate
histograms for each class

(4.3) do: Generate plots of
expression profiles

(3) do: Apply a data
transform

(5) do: Build the
data model

OR

Model does not fit the
transformed data

 54

Fig. 4.16 Lower-level FFBD for Function 8: Filter Data

Fig. 4.17 Lower-level FFBD for Function 10: Validate and Review Clusters

We now map the overall system behavior as the operations associated with the classes in

Figs. 4.9-4.11. We illustrate the mapping between the behavior and the structure with

(7) do: Apply the data
transform

(8.1) do: Find genes with profiles
similar to a specified profile

(8.2) do: Perform SVD
to obtain eigengenes

(8.3) do: Find genes with profiles having high
coefficients corresponding to an eigengene

(8.4) do: Filter genes
with low fold-variation

(8.5) do: Search for genes
having a particular function

OR

(10.1) do: Query
functional annotations

(10.2) do: Query pathways
involving the genes

(10.3) do: Find structurally
similar targets

(9) do: Apply the unsupervised
clustering algorithm

(12) do: Measure
performance

OR

 55

examples from the class diagrams. By indexing over target structure, it is possible to obtain

targets with high structural similarity to a known one. This is defined in the

FindSimilarStructure() operation of the Target_Structure class. Other related functions are

FindSimilarCompound() in the Compound_Structure class, and FindSimilarProfile() in the

Experiment class.

The operations on the Compound class like PredictADMEProperties() are derived from the

use case scenarios for the computational biologist/chemist. Such queries might also involve

other subsystems and require indexing across heterogeneous databases.

It is also important to note that the class diagrams above show only persistent object

structure, and their constraints and relationships. By associating persistent object behavior

with the database, the processing of array data can be handled by the DBMS itself. The

advantage of this technique is that processing can be carried out using the DBMS

optimizations in parallel with the application.

ORDBMS products like Oracle 8 emulate database server behavior by allowing the

operations to be coded in a database programming language like PL/SQL. The

implementation can also be performed in modules containing the class methods, such as

Oracle NCS Cartridges and Informix Data Blades. The features of the object-relational

model and database extensions are discussed in Sec. 4.8. Here, we list some of the common

data mining queries and the corresponding system responses derived from the UML

models:

 56

(i) What are the characteristics of a disease? (pathways, active compounds, known

targets, disease phenotype, references)

(ii) What are the properties of known targets? (target type, structures, function,

chemical and geometric properties)

(iii) Which experiments in MicroarrayDB involve the known targets and

corresponding active compounds? (ExperimentID, data format, expression data)

(iv) Which genes have shown activity similar to known targets?

(v) Which genes are good discriminating instances across all experiments in a

dataset?

(vi) Which genes are likely to be drug targets from a set of experiments, given their

sequence and structure?

(vii) Which compounds are likely to show good activity, specificity and

pharmacological properties (for ADME tests) on these targets? (QSPR)

(viii) What compounds in the libraries are likely to give a comparable performance to

an existing product?

(ix) How will the activity of a compound be on a particular target given their

structure? (QSAR)

(x) Which drug research categories have high lead times?

4.7 System Architecture Summary

In this section, a variety of system architectures are studied, to determine how they meet

the high-level requirements outlined in Sec. 4.3.

 57

A simple two-tier client-server architecture (Fig. 4.18) distributes the functions of user

interface (session tracking, console, display, etc.) and database management (application

execution). Both tiers share the process management functions such as process

development, monitoring, and resources. Business logic is usually implemented as stored

procedures and triggers in the database management server. This architecture is

advantageous in offloading computational load on the client's side and reducing the amount

of data transfer over the network. However, there are several shortcomings with this

approach. When the application resides on the client machine, it is difficult to maintain

application versions and integrate new applications. Further, the implementation of

business logic, which is data-intensive, through stored procedures on the database server is

limited by the server's processing power as the complexity of computation or the number of

applications or users increases. When processing occurs on the server, its link with the

client is kept alive through 'hello' messages, increasing network load. Typically, the

performance of a two-tier architecture deteriorates beyond one hundred users ([36]).

Fig. 4.18 Two-tier Client/Server Architecture [36]

The three-tier client-server architecture (Fig. 4.19) overcomes some of these limitations by

incorporating an additional application services layer as the middle tier. It handles

 58

application execution and queuing, allowing the client to detach itself from the database

server during processing. Now, each client application is linked with multiple applications

and upgrades can be performed with minimal configuration changes.

The three-tier architecture can be extended for example, by considering further abstractions

of application management at the level of project phases or scientific analyses, leading to a

n-tier architecture. Though such architectures have desirable properties in terms of

scalability, reusability, and abstraction, the structure causes the application code design to

become very complex. This is especially true in handling data transfer operations while

collating heterogeneous databases and communication between applications in different

programming environments.

Fig. 4.19 Three-tier Client/Server Architecture [37]

The distributed-object computing model incorporates an object-oriented approach in

handling such problems. It partitions applications into components interacting with

particular elements of the architecture. For instance, an algorithm mining microarray

 59

expression data can be divided into database-intensive and algorithmic components, and

these can be executed on specialized hardware.

Distributed computing architectures like CORBA (Common Object Request Broker

Architecture) provide the abstract IDL (interface definition language) utility, which

allows communication between heterogeneous objects such as applications written in

different programming languages, different database management systems, and

platforms. The CORBA architecture (Fig. 4.20) also provides services like object

lifecycle management, naming, and persistence.

Fig. 4.20 CORBA Architecture [38]

4.8 Data Architecture and Database Extensions

Bioinformatics applications involve heterogeneous data, such as pathway diagrams,

nucleotide sequences, molecular structures, and diverse microarray data formats. A large

number of queries derived from the use cases collate information across different data

 60

types and finding patterns in uncommon data types like molecular structures, gene

expression, and so on.

The traditional relational data model is restrictive in modeling the structure of data and

such queries based on particular properties would need to be implemented as part of the

application behavior, thereby increasing complexity and execution time.

The object-relational data model provides several extensions to the relational and object-

oriented models:

• The ability to implement restrictions on data types as subtypes.

• Encapsulated data types, which can be extending from the base types, and can be

implemented by separate indexing and access methods.

• Complex objects and collections like nested tables, typed columns, references, and

function indices.

• More complex rule mechanisms compared to relational triggers.

The following examples show how object-relational database extensions can be designed

to handle bioinformatics queries:

• Operator and function notation in place of indices. E.g. NearestNeighbor()

• User-Defined Aggregates: E.g. Centroid (similarity)

• User-defined Comparison Operators: E.g. MoreSpecificThan()

 61

CHAPTER 5: LEARNING ALGORITHMS

5.1 Introduction

In this chapter, we discuss a few algorithms that implement by the system behavior

described in the previous chapter. We begin with a description and properties of a new

similarity measure for gene expression data based on raw, un-normalized values, called the

Symmetric Kullback-Liebler similarity measure. In the later sections, we describe the

analysis methods.

5.2 Similarity Measures

The database behavior described in Chapter 4 required several algorithms involving search,

indexing, and clustering procedures. With a variety of microarray manufacturing

techniques, this requires the development of appropriate measures of similarity of gene

expression.

5.2.1 Microarray Expression Data

In particular, we look at two types of microarrays - cDNA and oligonucleotide arrays. An

expression value from a cDNA array represent the lognormal ratio of the amount of RNA

present in an experiment sample to that measured in a control sample. Oligonucleotide

array expression values indicate the average difference between (approximately 10)

replicate probe pairs containing the perfect match (PM) and mismatch (MM) values [7].

Because of manufacturing technique and standardization procedures, oligonucleotide arrays

have a very high reproducibility compared to cDNA arrays as explained in Sec. 3.1.1.

 62

5.2.2 Probabilistic Models of Microarray Data

With common microarray technologies, it has been noted that the log-values of expression

data for a functional class or a phenotype, roughly follow the Gaussian distribution ([9]). In

our analysis, we also implicitly assume conditional independence. This is a reasonable

assumption since we focus on classification based on co-expression and are not trying to

infer higher-level genetic interactions. Thus the likelihood of a set of m genes {gi} with

expression values D = {xij} over n experiments, where j indicates the experiment index,

belonging to a class k is given by -

2 2

1

(| ,) (| ,),

{ }, 1,...,

m

k k i k k
i

i ij

P D P y

y x j n

µ σ µ σ
=

=

= =

∏

It has been shown in numerous experiments ([1], [2], [8], and [23] for example) that the

log-Euclidean distance over expression values has been successful in classification

problems.

5.2.3 Unnormalized Symmetric Kullback-Liebler Measure

In this section, we discuss the formulation and properties of a novel similarity measure for

microarray data, which was developed by A. S. Baras and J. S. Baras in [24,25] and

utilized in [23,25,26,27].

This measure is based on the relative entropy or the Kullback-Liebler (KL-) distance from

information theory, which measures the error (in terms of the excess number of bits

 63

needed) to represent a random variable with a distribution q, given that its true distribution

is p. For a random variable x, the KL-distance is given by

2 2

() ()
(||) () log log

() ()p
x X

p x p x
D p q p x E

q x q x∈

= =∑

The KL-distance is also known as relative entropy([30]). The relative entropy is

asymmetric and measures the deviation between the two distributions.

The unnormalized symmetric Kullback-Liebler measure quantifies the dissimilarity

between two expression indexes (over genes or experiments), so that it is symmetric and

there is no need for normalization of the expression data; its novelty is the latter property. It

is based on the un-normalized expression indexes like the average difference values in

oligonucleotide arrays and the fluorescence ratio of Cy5 to Cy3 in cDNA arrays. We follow

[24,25] in describing it here.

Definition ([24,25]): The unnormalized symmetric Kullback-Liebler measure between two

expression vectors x and y of length N is defined as

1

log() log()1
(||)

2 log() log()

, 0, 1,...,

N
i i

i i
i i i

i i

x y
D x y x y

y x

x y i N

=

= +

> =

∑

Properties ([24,25]):

1. (||) 0D x y ≥ , if , 0, 1,...,i ix y i N> =

 64

(||) 0D x y = , iff i ix y i= ∀

2. (||)D x y is convex in the pair (x, y).

1 2 1 2 1 1 1 1((1) || (1)) (||) (1) (||)D x x y y D x y D x yλ λ λ λ λ λ+ − + − ≤ + − , where 0 1λ≤ ≤

3. There exists a unique centroid c of a set kS = {x }, k=1,...K of vectors of length N

based on the unnormalized symmetric Kullback-Liebler measure given by the

solution of the following equation ([24,25]).

�

ln 1, 1,...,i i

ii

c x
i N

cx
= − = , where

1 k
i i

k

x x
K

= ∑ is the arithmetic mean, and �
1

exp ln()k
i i

k

x x
K

 =

∑ is the geometric

mean. Further, the centroid is bounded by the two means:

� , 1,...,i i ix c x i N≤ ≤ =

The unnormalized symmetric Kullback-Liebler measure describes quantitatively the

dissimilarities between two expression vectors x and y, assuming either is the true

distribution. It combines the value difference and fold variation (log-values) between the

two vectors, and can lead to a more accurate prediction across classes where genes have

widely varying levels of expression. With reference to the planar separating surfaces

formed by the log-Euclidean distance during classification, we note that the unnormalized

symmetric Kullback-Liebler measure leads to non-linear hyper-surfaces.

 65

5.3 Learning Algorithms

In this section, we look at specific algorithms for different types of gene expression

analyses. The chief properties of such algorithms should include:

• Minimum inductive bias.

• Ability to handle noisy and irrelevant attributes, and outliers.

• Ability to handle different similarity measures.

• Good initial hypothesis.

• Ability to generalize well with limited training data.

5.3.1 LBG/LVQ Algorithm

The Linde-Buzo-Gray algorithm (LBG) or the Generalized Lloyd algorithm [19] is a signal

approximation algorithm, which generates a codebook of centroid vectors. We use LBG for

unsupervised clustering in a tree-structured manner ([15]). The algorithm starts with a

representative pattern of gene expression for the entire dataset and partitions the pattern

space by applying small perturbations at each successive node. At the same time, it

iteratively optimizes the codebook at each level until the centroids at the level are

stationary. The stopping rule for LBG is based on the percentage decrease in the overall

distortion. The algorithm steps are listed below.

1. Given the input matrix MxNX , initial learning rate ε , fix the number of codevectors

K = 1 and the tree depth L=1.

 66

1 ()c centroid X=

2
1

1

1 11 1
1 11

1
|| || ,Euclidean distance

11
[()(log() log())],(,)

unnormalized symmetric Kullback-Liebler

measure

N

n
n

N MN

nm m nm mn
n mn

x c
NM

x c x cErr dist x c
NMNM

=

= ==

 −

 − −= =

∑

∑∑∑

2. Node splitting: Set 2K K= , L=1, and for k=1,2,…K, initialize the codevectors at

the next level by

0

0

(1)

(1)
k k

K k k

c c

c c

ε
ε+

= −

= +

3. Set the iteration index i=0 and
()

1
i

LErr Err= .

(i) Find the closest centroid to each data vector xl and the associated class C(xl) as

() arg min((,))i i
l l k

k

C x dist x c= .

(ii) Update the codevector for the K classes. For k=1,…,K,

1 ({ : , () })i i
kc centroid x x X C x k+ = ∈ = .

 Set i = i + 1 and evaluate the new error i
LErr .

(iii) If 1 1() /i i i
L L LErr Err Err ε− −− > , go to step (i). Otherwise, for k=1,…,K, set i

k kc c= .

4. Repeat steps 2 and 3 until the desired number of levels is reached.

Learning vector quantization (LVQ) [18,28,29] is a neural network learning method, which

uses the nearest neighbor rule to train the codebook. Its inductive bias simply states that the

code vectors of a class are closer to its instances.

 67

Each cluster from the LBG algorithm is labeled with the class that has the maximum

percentage proportion of members in it. This codebook forms the input to supervised LVQ

training. The code vector closest to the training instance is moved at a rate proportional to

the gradient of the distance, as per the LVQ1 competitive learning rule ([21]). The learning

rate is decreased uniformly with time. The LVQ algorithm steps are listed below.

1. Set the iteration index 1iter = and the learning rate 0

iter

αα = , where 0α is the initial

learning rate.

2. Pick a random instance x and determine its nearest code vector co. Update the centroid by

distance(,), () ()

distance(,), () ()

o o
n

o o

c x c h x C x
c

c x c h x C x

α
α

 + ∇ = =
− ∇ ≠

, where 0 1α≤ ≤ , h(x) is the class of the

nearest centroid and C(x) is the true class of x.

3. Repeat 1 and 2 until the centroids converge.

Being a gradient-descent algorithm, LVQ can converge to local minima. The performance

of LVQ strongly depends on the initial codebook vectors. Hence, we expect that systematic

initialization by LBG should outperform a random initialization of K centroids.

The class boundaries formed by LVQ are composed of finite hyperplanes with the

Euclidean distance and of finite hypercurves with unnormalized symmetric Kullback-

Liebler measure.

 68

5.3.2 Support Vector Machines

Support vector machines (SVM)[12] are classifiers based on statistical learning theory,

which map the input space to a high-dimensional space of non-linear features. This

mapping is implicitly made via a kernel function and all the computation is performed with

the input space vectors.

The SVM training algorithm generates hyperplanes in the feature space, whose margin is

optimized to obtain good generalization. Consider a data set composed of N expression

vectors <xi, yi>, where yi denotes the label for the data vector xi. Using the notation from

[11], the problem of finding the weight vector w can be formulated as minimizing the

function

21
() || ||

2
L w w= , subject to []. () 1, 1,..., .i iy w x b i Nφ + ≥ =

Here, the function ()xφ maps the input vector to the feature vector. The dual formulation is

given by maximizing

1 1 1

1
() (,)

2

N N N

i i j i j i j
i i j

Q y y K x xα α α α
= = =

= −∑ ∑∑ subject to

1

0
N

i i
i

yα
=

=∑ and 0 , 1,..., .i C i Nα≤ ≤ =

 69

The iα ’s are the Lagrange multipliers and C is the regularization parameter. Non-negative

iα ’s correspond to support vectors. (,) (). ()i j i iK x x x xφ φ= denotes the kernel function

satisfying Mercer’s theorem, which states that

“For all vectors ,x z D∈ (here, D is the input domain), there exists a mapping φ to the

feature space F, iff the function (,)K x z is symmetric and positive semi-definite [12].”

Kernel functions used in Chapter 6 are listed in Table 5.1 below.

TYPE OF KERNEL KERNEL FUNCTION

Linear Kernel (,) ,i j i jK x x x x c=< > +

Polynomial Kernel (,) (,)d
i j i jK x x x x c= < > +

Gaussian Kernel
2

2
(,) exp i j

i j

x x
K x x

σ
 < − >

= −

Table 5.1 SVM Kernel Functions

The generation of SVM surfaces assumes no prior probability distributions and the solution

obtained is the global optimum. Thus, the accuracy of SVMs provides an upper bound for

gradient-descent methods like LVQ when similar hypothesis spaces are considered. They

 70

also have good generalization properties because SVM training minimizes the empirical

risk for a chosen hypothesis space.

Choosing a particular kernel function imposes a restriction bias on the analysis. Another

limitation is illustrated by the fact that the unnormalized symmetric Kullback-Liebler

measure does not satisfy Mercer’s conditions and cannot be represented as a kernel

function.

5.3.2 IB3 Algorithm

The IB3 algorithm developed by Aha et al. ([13]) is an instance-based learning algorithm.

It classifies new instances in a lazy manner, using a set of representative stored instances

called the concept description. The nearest neighbor rule is used to associate the test data to

the class of the closest stored instance.

IB3 eliminates the high computational cost involved in the testing phase of instance-based

methods by storing instances with good predictive strengths. In the training phase, the

algorithm stores misclassified instances in the concept description and associates a

classification accuracy for all instances. The algorithm performs a statistical test to accept

or reject new instances based on the classification accuracy and the prevalence of the

instance’s true class, thus eliminating noisy data. The final concept description generated

after one epoch is thus likely to contain instances a little farther from the class boundary

than methods like IB2, which store all misclassified instances. The algorithm steps are

described below.

1. Initiate the concept description CD φ= .

 71

2. Loop over the training instances x D∈

(i) For each y CD∈ , evaluate its distance dist(x, y).

(ii) If there exists an acceptable instance in CD,

[]max arg min (,) , ()
y

y dist x y y AcceptableSet CD= ∈

Else:

Pick a random number i of instances from CD and set ymax to the i-th most similar

instance.

(iii) If max() ()class y class x≠ , add x to CD.

(iv) Update classification records:

For all y whose max() ()dist y dist y≤ , update the classification record.

If the upper bound of y’s accuracy (,) (())ub
rejectaccuracy y prevalence class yα ≤ ,

discard y.

Else if the lower bound of y’s accuracy (,) (())lb
acceptaccuracy y prevalence class yα ≥ ,

accept y.

 72

In [13], Aha et al. have shown that the concept description set stores instances with high

classification accuracy, robustness, noise insensitivity, and high utilization (in terms of

classifying other instances during training).

IB3 has a restriction bias towards convex concepts. It shows poor performance with sparse

data sets, and is very sensitive to irrelevant attributes. However, it has minimal inductive

bias as it can approximate class boundaries with piecewise linear surfaces (with the

Euclidean distance). This feature makes it suitable, for example, to learn informative

instances in pre-filtering steps. Compared to IB3, decision trees have a stronger bias as

their separating surfaces are hyper-rectangles.

 73

CHAPTER 6: RESULTS

6.1 Objectives

The aims of the experiments described in this chapter are as follows.

• Evaluate the performance of supervised classification of the LVQ algorithm with

LBG codebook initialization and SVMs.

• Compare the unnormalized symmetric Kullback-Liebler measure against Euclidean

distance in similarity-based algorithms with oligonucleotide arrays (the Find

Similar function).

• Evaluate the performance of the similarity measures in retrieving informative

instances (the Find Discriminating function).

• Conduct experiments on two applications of expression analysis - gene functional

classification and phenotype classification.

6.2 Description of Microarray Data

The three datasets used in testing the algorithms denote distinct applications in microarray

expression analysis, namely, phenotype classification and functional classification.

6.2.1 Lymphoma Dataset

The lymphoma cDNA array dataset comprises gene expression patterns of genes involved

in different classes of lymphoma and normal cell lines from Alizadeh et al [1].

 74

The mechanism of cancer is characterized by uncontrolled growth and proliferation brought

about by mutations to vital genes. Cancer diagnosis has traditionally been carried out based

on clinical and molecular evidence such as cell and tissue type, and heredity. However,

such information is mostly incomplete for evaluation or prognosis. It also leads to re-

validation or re-classification in some cases of cancer. By studying the phenotype or the

genetic signature of the set of relevant genes for a particular condition, using microarray

gene expression data, it is possible to understand the mechanism at the genetic level. Such

analysis is related to pharmacogenomic studies to design customized drugs.

In [1], Alizadeh et al collect the gene expression in three classes of lymphoid malignancies:

diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic

lymphocytic leukemia (CLL), and genes relevant to lymphocyte and/or cancer biology, as

shown in Table 6.1. The notation is given below.

CELL TYPE DESCRIPTION

DLBCL Diffuse Large B-cell Lymphoma

GCB Germinal Center B

NLT Normal Lymph Node/Tonsil

APB Activated Peripheral B

RAT Resting/Activated T

TCL Transformed Cell Line

FL B-cell Follicular Lymphoma

RPB Resting Peripheral B

CLL Chronic Lymphocytic Leukemia

Table 6.1 Lymphoma Tissue Types

 75

The microarray dataset consists of expression values from 4026 genes involved in 96

subpopulations. Each data point Xij represents the logarithm of the Cy5/Cy3 fluorescence

ratio for gene j in tissue sample i. The distribution of tissue types in the sample dataset from

[1] is shown in Table 6.2.

 DLBCL GCB NLT APB RAT TCL FL RPB CLL

#Arrays 46 2 2 10 6 6 9 4 11

Cancerous
Tissue?

Y N N N N Y Y N Y

Table 6.2 Tissue Sample Distribution

In the case of a disease or malignancy, pharmacological studies have found that functional

genes are likely to have a binary mode of operation.† Thus, in the identification of drug

targets, the biologist is only concerned with genes that exhibit discrepancies in the

signature. That is, their expression is either unaffected by the cellular condition, or they are

inhibited.

6.2.2 Yeast Data

The second dataset consists of the genome-wide expression in budding yeast in response to

different cell cycle-related processes like the diauxic shift, sporulation, pressure and

reducing shocks. Since the expression values are representative of well-known cellular

processes, co-expression analysis is expected to yield genes that are regulated by a

common upstream transcription factor, belonging to a common metabolic pathway, or

coding similar proteins.

 76

This is an example of a case where genome-wide expression data is necessary to make

sound predictions about gene function. The yeast data from cellular processes hides

complex underlying mechanisms, which can be understood only by looking at the global

genome expression.

The microarray measures the expression of 6221 genes in the yeast genome, collected at 79

time points during the diauxic shift (shift from anaerobic to aerobic respiration), division

cycle, sporulation, and temperature and reducing shocks. A data point Xij represents the

logarithm of the expression of gene i at time point j, as compared to a control.

In [4], Eisen et al. used pairwise-linkage clustering to show that genes of five functional

classes cluster together well based on expression data alone. These classes correspond to

the MYGD (MIPS Yeast Genome Database) functional classes of tricarboxylic acid,

respiration (TCA), cytoplasmic ribosomes, proteasomes, helix-turn-helix proteins (HTH),

and histones. The HTH protein group is not expected to cluster well in this experiment, and

is included as a control group. Brown et al. [2] showed superior results in accurately

classifying these functional classes using support vector machines. The distribution of

genes across these classes is shown in Table 6.3.

FUNCTIONAL CLASS # SAMPLES

Histones

HTH Proteins 16

Proteasomes 35

Respiration 27

† Private discussions with Novartis Pharmaceuticals

 77

Ribosomes 120

TCA 14

Table 6.3 Distribution of Yeast Functional Classes

6.2.3 Leukemia Data

These experiments from Golub et al. ([5]) attempt to differentiate between two types of

acute leukemias – acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML).

Traditional identification techniques for leukemia have been based on factors like the

morphology and the course of clinical trials. Microarray experiments have been shown to

provide a systematic understanding and make accurate prediction feasible as described in

[5].

There are two data sets available for training (class prediction) and testing (class

discovery). The training data consists of 38 bone marrow samples of adult leukemia

patients, of which 27 are of the ALL type and 11 of the AML type. The test data set is

chosen independently, and consists of 24 bone marrow and 10 peripheral blood samples.

The supervised learning algorithms are trained on a portion of the training set during cross-

validation experiments and tested on the remainder (class prediction). The separating

surfaces generated during training are also used to identify the type of leukemia in the

independent testing data set (class discovery).

 78

6.3 Methods

6.3.1 Supervised Classification

Supervised classification with LBG/LVQ, SVM, IB3, and C4.5 algorithms, is performed

using 3-fold cross-validation (except where indicated). Multiple runs with the data sets

have been used to determine parameters like the LVQ learning rate, number of epochs in

training, and the tree height in LBG.

The SVMTorch support vector machine software [31] used here is Ronan Collobert’s

implementation for large data sets and uses sequential minimal optimization (SMO). For

multi-class problems, SVMTorch trains each class with a one-over-all mechanism.

The IB3 algorithm implementation uses 90% and 68% confidence intervals for accepting

and rejecting instances respectively, when compared to the corresponding class frequency.

The C4.5 decision tree algorithm performs classification by repetitively choosing

attribute/value pairs, which minimize the overall entropy after partitioning the data space.

Quinlan’s information gain (or gain ratio to compensate diverse populations among classes)

can be used to select attributes at each step. The decision tree is then post-pruned based on

a user-specified threshold similarity, to avoid over-fitting.

6.3.2 Similarity-based Clustering

The log-Euclidean and the unnormalized symmetric Kullback-Liebler measures are

compared using a simple nearest-neighbor algorithm. We do not expect to see significant

differences in the performance with cDNA arrays, as against oligonucleotide arrays.

 79

6.3.3 Comparison of Algorithms

In all methods described, we generate the confusion matrices and measure the overall

accuracy and the accuracy of individual classes.

The performance of two learning algorithms is compared by a t-test. The average error rate

of two learning algorithms 1L and 2L , trained and tested on the same data sets Sk and Tk is

given by

1 2
1

1
(()) (())

k k

K

T k T k
k

err L S err L S
K

δ
=

 = − ∑ .

The N% confidence interval for δ to be an estimate of the true error difference is given by

, 1N Kt sδδ −± ,

where 2

1

1
()

(1)

K

k
k

s
K Kδ δ δ

=

= −
− ∑

and , 1N Kt − is the t-test value for two-sided confidence intervals [14].

6.4 Experiments

6.4.1 Lymphoma Data

Two types of classification are studied with the lymphoma data:

• Binary classification between cancerous and non-cancerous samples.

• Tissue type classification based on global gene expression.

 80

In Cai et al.[3], differential analysis based on genes known to be involved in B-cell

lymphoma, has been shown to have no significant impact on the classifier’s ability to

recognize cancerous tissues. Hence, in both cases, we do not distinguish between the

selected genes based on prior knowledge. The C4.5 algorithm is expected to classify

cancerous tissues if the genetic signature of a subset of genes is a sufficient indicator.

Using the performance measure defined above, the results from the LVQ algorithm are

compared with those from other supervised learning techniques in [3], viz., SVM and C4.5

decision tree, using 10-fold cross-validation.

6.4.1.1 Binary Classification of Cancerous/Non-cancerous Tissues

For both cancer detection and tissue type identification (Section 6.4.1.2) experiments, the

initial codebook generated by the LBG algorithm consists of 16 code vectors and the LVQ

algorithm is trained for over 2 epochs.

Table 6.4 shows the typical performance of LVQ with the log-Euclidean distance for

cancer detection. These results on error average and variance are compared with results

from Cai et al. ([3]) using a linear-kernel SVM and a C4.5 decision tree. In Table 6.5, the

results from the LBG/LVQ algorithm are based on 10 cross-validation experiments, and

compare closely to the globally optimal SVM method. The LBG/LVQ algorithm gives a

much better and more stable performance compared to the C4.5 decision tree algorithm.

LVQ
CLASSIFICATION

TRUE
POSITIVE

TRUE
NEGATIVE

FALSE
POSITIVE

FALSE
NEGATIVE

Cancerous Tissues 72 22 2 0
Non-cancerous
Tissues 22 72 0 2

 81

Table 6.4 Log-Euclidean LVQ Classification Error for Cancer Detection using 10-fold

Cross-validation

 LVQ SVM C4.5
Average Error
Rate

2.08% 1.04% 18.55%

Error Rate Std.
Devn.

0.01% 0.03% 13.83%

Table 6.5 Classification Error Comparison for Cancerous/Non-cancerous Cells using

10-fold Cross-validation

6.4.1.2 Tissue Type Classification of Cancerous Cells

Table 6.6 and Fig. 6.1 show the classification of tissue types of cancer cells by the three

algorithms with 10-fold cross-validation. As in the binary classification case, we see that

the LVQ algorithm initialized with LBG closely follows the performance of the SVM, and

both outperform the decision tree algorithm by a large margin.

The overall error rate of LVQ is more than two times that of the SVM, in tissue type

classification as shown in Table 6.7.

CANCER TISSUE
CLASSIFICATION

 TP TN FP FN ERROR
RATE

LVQ 8 82 3 3 6.25%
SVM 11 83 2 0 2.08% CLL
C 4.5 4 79 6 7 13.54%
LVQ 42 48 2 4 6.25%
SVM 43 49 1 3 4.17% DLBCL
C 4.5 38 46 4 8 12.50%
LVQ 9 87 0 0 0.00%
SVM 9 86 1 0 1.04% FL
C 4.5 5 85 2 4 6.25%
LVQ 6 88 2 0 2.08%
SVM 6 88 2 0 2.08% TCL
C 4.5 4 88 2 2 4.17%

Table 6.6 Classification Error for Cancerous Tissues using 10-fold Cross-validation

 82

Fig. 6.1 Tissue Classification Error Comparison

TISSUE CLASSIFICATION LVQ SVM C4.5

Average Error Rate 9.72% 4.17% 29.17%

Table 6.7 Overall Error for Tissue Type Detection using 10-fold Cross-validation

6.4.2 Gene Functional Classification from yeast data

The following simulation runs involve genes in the six functional classes mentioned in the

data description. The objective is to test the ability of the decision surfaces generated by the

algorithms and similarity measures to separate these functional classes. In this step, we

compare the ability of the LVQ and SVM algorithms in supervised functional

classification. The LVQ algorithm is initiated with a codebook of 16 vectors and converges

after training over one epoch. We test the SVM method for three types of kernels – linear,

Cancerous Tissue Classification Error Rate

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

LVQ

SVM

C 4.5

LVQ 6.25% 6.25% 0.00% 2.08%

SVM 2.08% 4.17% 1.04% 2.08%

C 4.5 13.54% 12.50% 6.25% 4.17%

CLL DLBCL FL TCL

 83

Gaussian, and second degree polynomial kernels. In all cases, 3-fold cross-validation is

used.

Table 6.8 gives a description of typical training and test data distributions in the six

functional classes.

CLASS ID /
SIZE DESCRIPTION TRAINING TESTING TOTAL

1 Diverse 1493 746 2239
2 TCA 7 7 14
3 Respiration 17 10 27
4 Ribosomes 80 40 120
5 Proteasomes 25 10 35
6 Histones 8 3 11
7 HTH 12 4 16

Table 6.8 Yeast Data Set Distributions

Fig. 6.2 shows the estimated overall error rate and the 95% confidence intervals with

different algorithms. We can clearly see that the LVQ algorithm performs as well as the

SVM, though there is no significant difference between the two similarity measures. This is

also illustrated by the similarity in representative confusion matrices for the two distances

in Tables 6.9 and 6.10. The SVM algorithm with the Gaussian kernel has the least average

error rate, and also outperforms the unnormalized symmetric Kullback-Liebler LVQ

algorithm with 95% confidence.

 84

Fig. 6.2 Overall Error Rate Comparison with 3-fold cross-validation

Estimated Overall Error Rate (95% Confidence) Comparison

0.000%

1.000%

2.000%

3.000%

4.000%

5.000%

6.000%

7.000%

8.000%

Learning Algorithm/Similarity Measure

E
s
ti
m
a
te
d
 E
rr
o
r
R
a
te

Average Error Rate 4.390% 5.490% 2.683% 3.780% 3.171%

LVQ (Eucl.) LVQ (SKL) SVM (Gaussian) SVM (Poly. deg. 2) SVM (Linear)

 85

Table 6.9 Confusion Matrix for LVQ Testing with the log-Euclidean Distance

Table 6.10 Confusion Matrix for LVQ Testing with the Unnormalized Symmetric

Kullback-Liebler Measure

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 736 6 9 3 3 0 4
P2 0 0 0 0 0 0 0
P3 0 1 1 0 0 0 0
P4 6 0 0 37 0 0 0
P5 4 0 0 0 7 0 0
P6 0 0 0 0 0 3 0
P7 0 0 0 0 0 0 0

746 7 10 40 10 3 4

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 0.9866 0.8571 0.9 0.075 0.3 0 1
P2 0 0 0 0 0 0 0
P3 0 0.1429 0.1 0 0 0 0
P4 0.008 0 0 0.925 0 0 0
P5 0.0054 0 0 0 0.7 0 0
P6 0 0 0 0 0 1 0
P7 0 0 0 0 0 0 0

CONFUSION MATRIX (TESTING) WITH EUCL. LBG/LVQ ALGO

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 728 7 10 4 2 0 4
P2 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0
P4 5 0 0 36 0 0 0
P5 13 0 0 0 8 0 0
P6 0 0 0 0 0 3 0
P7 0 0 0 0 0 0 0

746 7 10 40 10 3 4

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 0.9759 1 1 0.1 0.2 0 1
P2 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0
P4 0.0067 0 0 0.9 0 0 0
P5 0.0174 0 0 0 0.8 0 0
P6 0 0 0 0 0 1 0
P7 0 0 0 0 0 0 0

CONFUSION MATRIX (TESTING) WITH SKL LBG/LVQ ALGO

 86

Fig. 6.3 Comparison of Error Rates for Individual Classes using 3-fold Cross-

validation

Fig. 6.3 shows the error rate components for individual functional classes. The helix-turn-

helix proteins are the control group, while the other five named classes are known to

respond to the conditions. We see that taking the standard deviation into consideration, the

methods are indistinguishable in all classes. All classes are able to classify histones,

ribosomes and genes in the tricarboxylic acid (TCA) cycle consistently.

6.4.3 Cancer Classification and Discovery in Leukemia data

Two types of experiments are conducted with the leukemia data – leukemia class prediction

with the training dataset and class discovery with the independent testing dataset. The

oligonucleotide array data used here measures the average difference values for each gene

Error Rate Comparison for Individual Classes

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

SVM (Gaussian) 0.85% 0.85% 0.37% 0.24% 0.37% 0.00% 0.00%

SVM (Poly. 2) 1.59% 0.73% 0.49% 0.12% 0.37% 0.00% 0.49%

SVM (Linear) 0.98% 0.73% 0.37% 0.24% 0.37% 0.00% 0.49%

LBG/LVQ (SKL) 2.20% 0.85% 1.22% 0.49% 0.24% 0.00% 0.49%

LBG/LVQ (Eucl.) 1.22% 0.85% 1.10% 0.37% 0.37% 0.00% 0.49%

Others TCA Respiration Ribosome Proteasome Histone HTH

 87

in an experiment against a control. The pre-processing step involves setting negative

expression values to 20; we do not exclude genes marked absent in certain experiments.

We primarily study the Find Discriminating function (Use Case 1.2.1 in Sec. 4.4), which

tries to filter a small subset of genes, which are sufficient to predict a disease phenotype,

and which can be used to classify new phenotypes. We compare four different methods

using the following performance measures:

(i) Cross-validation error with the training set.

(ii) Overall error with the independent testing set.

(iii) Number of genes required obtaining certain prediction accuracy with the

independent testing set.

6.4.3.1 Prefiltering with the IB3 Algorithm

As in the method described in [5], we choose the ideal expression pattern as the one which

is uniformly high in the ALL experiments and low in the AML experiments, and vice-

versa. We then pick genes {g}, which have a close resemblance to this pattern c’, based on

the following similarity measure:

(, ')
ALL AML
g g

ALL AML
g g

P g c
µ µ
σ σ

−
=

+

We picked an arbitrary absolute threshold value of 0.5 to prefilter leading to 1331 ‘active’

genes.

 88

The class prediction tests now involve several steps:

• Cluster with the unsupervised LBG algorithm and label the genes based on the

initial codebook.

• Pick informative instances from the clusters using the IB3 algorithm.

• Filter acceptable stored instances with high predictive accuracy exceeding its class

frequency by a large margin.

• Use this set of ‘informative’ genes in clustering across experiments using the LVQ

and SVM algorithms.

Here, we note that we use the nearest neighbor rule to predict the class and do not take a

weighted vote from all the informative genes, as in [5].

The LBG algorithm divides the 1,331 genes into 4 clusters and the IB3 algorithm picks 59

and 66 instances of high-accuracy, with the log-Euclidean and the unnormalized symmetric

Kullback-Liebler measures respectively. The training data composed of expression

measurements of these genes across 38 types of leukemia, are used to train LVQ with 4

code vectors.

In a similar manner, the set of informative genes from the log-Euclidean distance based

filtering, is used to train SVMs.

 89

The error rates from 3-fold cross-validation experiments with these training methods are

shown in Fig. 6.4. The log-Euclidean LVQ algorithm shows the best average error rate of

all algorithms.

The performance of LVQ algorithms before pre-filtering shown in Fig. 6.5 shows that IB3

is able to capture certain discriminative instances.

Fig. 6.4 Average Class Prediction Error over the Training Set

Average Class Prediction Error - Training Set

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

Learning Algo/Sim. Measure

C
la
s
s
if
ic
a
t
io
n
 E
r
r
o
r

Average Error Rate 5.13% 15.81% 7.69% 7.69% 7.69%

Log-Euclidean SKL Log-Euclidean Log-Euclidean Log-Euclidean

LBG/LVQ LBG/LVQ SVM (Linear

Kernel)

SVM

(Gaussian

Kernel)

SVM (Poly. 2

Kernel)

 90

Fig. 6.5 Decrease in Classification Error with IB3 Discriminative Instances

Fig. 6.6 shows the performance of the learning algorithms on the independent testing data

set using the same set of discriminating genes as in the training set. We find that both LVQ

and SVM algorithms fail badly on the testing data compared to results from [5], indicating

a defect in the pre-processing steps and the retrieval of stored instances from IB3. Further,

we also note that the unnormalized symmetric Kullback-Liebler measure leads to a

significantly poorer performance compared to the log-Euclidean distance on this data set.

Class Prediction Error-Training Set

0

5

10

15

20

25

Learning Algo/Sim. Measure

C
la
s
s
if
ic
a
t
io
n
 E
r
r
o
r

Mean 13.03 20.94 5.13 15.81

LBG/LVQ LBG/LVQ LBG/LVQ (w/ PF) LBG/LVQ (w/ PF)

Log-Euclidean SKL Log-Euclidean SKL

 91

Fig. 6.6 Classification Error Variation on the Independent Testing Data Set

6.4.3.2 Pre-filtering with the Relative Distance

In this method, we compare the relative distance between the expression profiles of a gene

in the 27 ALL and 11 AML data sets, to filter ‘interesting’ genes. The objective is to

identify genes that have uniformly high dissimilarity between the two classes. The steps are

listed as described below.

(i) Eliminate gene profiles that are constant or show low variation (This filters 483

genes).

(ii) Randomly select 100 combinations of 11 ALL experiments corresponding to

each gene and evaluate their distance with the corresponding AML profile.

Class Discovery Error - Independent Testing Set

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Learning Algo./Sim. Measure

C
la
s
s
if
ic
a
t
io
n
 E
r
r
o
r

Error 44.12% 43.14% 43.14% 45.10% 48.04%

Log-Euclidean SKL Log-Euclidean Log-Euclidean SKL

LBG/LVQ LBG/LVQ SVM (Gaussian Kernel) LBG/LVQ (w/ pre-

filtering)

LBG/LVQ (w/ pre-

filtering)

 92

(iii) Sort the genes by the coefficient of variation
µ
σ

 of the distances. Pick N genes

with the least value.

(iv) Apply the LBG/LVQ algorithm to determine cross-validation error on the

training dataset, and perform unsupervised clustering with the LBG algorithm

on the independent testing dataset.

Fig. 6.7 shows the results of the method with the log-Euclidean and SKL similarity

measures. We find that by filtering to a much smaller subset of genes (N = 30-70) gives an

improved performance over classification with the independent testing dataset. The SKL

similarity gives a better performance with 30 and 50 discriminating genes compared to the

log-Euclidean similarity over the testing dataset.

Fig. 6.7 Class Discovery Error with the Relative Distance Method

Relative Distance Method - Class Discovery

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

#Discriminating Genes

M
e
a
n
 C
la
s
s
if
ic
a
ti
o
n
 E
rr
o
r

Rel. Distance (Log-Euclidean) 26.47% 20.59% 14.71% 52.94%

Rel. Distance (SKL) 17.65% 17.65% 17.65% 38.24%

N = 30 N = 50 N = 70 N = M

 93

Table 6.11 shows the best performance of the algorithm using 30 and 50 discriminating

genes; we find that both similarity measures perform similarly with this training set.

Find_Discriminating Error Mean/N = 50 Std. Dev. Mean/N = 30 Std. Dev.
Rel. Distance (Log-Euclidean) 23.29% 12.95% 31.41% 20.02%
Rel. Distance (SKL) 24.15% 17.01% 29.06% 5.34%

Table 6.11 Average Class Prediction Error with the Relative Distance Method and N

= 50

6.4.3.3 Pre-filtering with Principal Components Analysis

Principal components analysis (PCA) is a second-order statistical method that finds linear

components of genes, called eigen-genes, which explain the maximum amount of variance.

PCA is inherently applicable to Gaussian data, and hence we use log-AvgDiff values based

on the assumption stated in 5.2.2 and [9].

Using singular value decomposition (SVD), it is possible to obtain K (= min(,))M N

combinations of genes from a (N genes x M experiments) dataset, which contribute to the

total variance in decreasing order. We use the profiles of these eigen-genes to determine the

discriminating genes as follows:

(i) Eliminate gene profiles that are constant or show low variation and center the

dataset consisting of the log-values of Average Difference measurements.

(ii) Perform SVD on the centered dataset.

 94

(iii) Pick the principal component PCi that explains a large proportion of the

variance and is closest to the ideal reference vector (uniformly high in one class

and low in the other).

(iv) Sort the genes that are closer to PCi than other principal components by their

correlation with PCi.

(v) Pick the top / 2N genes with high positive and negative correlations to obtain

the discriminating genes.

(v) Apply the LBG/LVQ algorithm to determine cross-validation error on the

training dataset, and perform unsupervised clustering with the LBG algorithm

on the independent testing dataset.

The results of PCA pre-filtering and classification with the two similarity measures are

shown in Fig. 6.8. We find that by filtering to a much smaller subset of genes (N = 30-70)

gives an improved performance in classification with the testing dataset. The SKL

similarity gives a marginally better performance with 30 and 50 discriminating genes

compared to the log-Euclidean similarity over the testing dataset. However, the best

training cross-validation error obtained in Table 6.12 with 50 genes indicates that the

principal component obtained from the training set is able to discriminate the experimental

profiles in the training dataset. There is no significant difference in their performance of the

similarity measures as expected (Sec. 6.4.2), since the same set of genes is used to train the

LBG/LVQ algorithm.

 95

Fig. 6.8 Average Class Prediction Error with the PCA Method

Find_Discriminating Error Mean Error Std. Dev.
PCA (Log-Euclidean) 5.13% 4.44%
PCA (SKL) 5.13% 8.88%

Table 6.12 Class Discovery Error with the Relative Distance Method

6.4.3.4 Pre-filtering with the Find Similar Method

The Find Similar method simply takes the ideal reference vectors for both the ALL and

AML cases, about the centroid of the expression profiles. It then finds the top / 2N genes

that are closest to the ideal vector according to the similarity measure.

Fig. 6.9 shows the performance of the method with the two similarity measures. The SKL

similarity classifies all experiments in the independent testing dataset, with fewer (30)

discriminating genes, compared to the best subset (of 50 genes) with the log-Euclidean

PCA Method - Class Discovery

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

#Discriminating Genes

M
e
a
n
 C
la
s
s
if
ic
a
ti
o
n
 E
rr
o
r

PCA (Log-Euclidean) 23.53% 20.59% 32.35% 52.94%

PCA (SKL) 26.47% 26.47% 20.59% 38.24%

N = 10 N = 30 N = 50 N = M

 96

similarity. Fig. 6.10 shows the performance on the training data; we find that a subset of 30

genes gives the least cross-validation error with both similarity measures. This shows that

the SKL similarity is able to give the least errors in class prediction and discovery, with a

fewer number of discriminating genes, than the log-Euclidean distance.

Fig. 6.9 Average Class Discovery Error with the Find_Similar Method

Fig. 6.10 Class Prediction Error with the Find_Similar Method

Find_Similar Method - Class Discovery

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

#Discriminating Genes

M
e
a
n
 C
la
s
s
if
ic
a
ti
o
n
 E
rr
o
r

Find_Similar (Log-Euclidean) 8.82% 8.82% 0.00% 52.94%

Find_Similar (SKL) 6.06% 0.00% 5.88% 38.24%

N = 10 N = 30 N = 50 N = M

Find_Similar Method - Training Dataset

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Find_Discriminating Algo./Sim. Measure

C
V

 E
rr

o
r

CV Error 33.97% 20.51% 15.60% 17.95% 26.07% 23.08%

Find_Similar w/ Eucl.
Similarity & N = 10

Find_Similar w/ SKL
Similarity & N = 10

Find_Similar w/ Eucl.
Similarity & N = 30

Find_Similar w/ SKL
Similarity & N = 30

Find_Similar w/ Eucl.
Similarity & N = 50

Find_Similar w/ SKL
Similarity & N = 50

 97

6.4.3.5 Comparison of Find Discriminating Methods

Fig. 6.11 shows a chart comparing the class prediction and discovery error rates of different

Find Discriminating pre-filtering algorithms and the basic LBG and LVQ algorithms run

on the entire dataset.

All these methods show a much-improved performance in detecting new disease

phenotypes against the base case, with a very few number of genes. The Find Similar

method, which compares the profiles in the gene set with an ideal gene vector, shows the

best performance in terms of class prediction, class discovery, and the number of

discriminating genes. Significantly, the SKL similarity measure is able to perfectly

discriminate the two classes in the independent testing dataset, with 30 genes. It

outperforms the log-Euclidean distance with the LBG algorithm.

The relative distance method captures genes with large and relatively constant separation

between the expression profiles in the two types of experiments. Due to the large range of

expression values in this dataset and noise, this might exclude significant genes.

The PCA method suffers from similar problems as the base case. Since the gene subset is

obtained by the correlation with eigen-genes of the training data, it shows poor

generalization with the testing dataset.

 98

Fig. 6.11 Comparison of Class Prediction and Discovery Error Rates with

Find_Discriminating Methods

Compa rison of Ove ra ll Error wit h Find_Disc rimina t ing Me t hods

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Le a rning Algo/ S im Me a sure

CV Error 23.29% 24.15% 5.13% 5.13% 15.60% 17.95% 26.07% 23.08% 13.03% 20.94%

Ind. Te st ing Error 20.59% 17.65% 32.35% 20.59% 8.82% 0.00% 0.00% 5.88% 45.10% 48.04%

Re l. Log-

Euc l. , N = 50

Re l. S KL , N

= 50

Log-Euc l.

P CA , N = 50

S KL P CA ,

N = 50

Log-Euc l.

Find_S im ,N

= 30

S KL

Find_S im ,N

= 30

Log-Euc l.

Find_S im ,N

= 50

S KL

Find_S im ,N

= 50

Log-Euc l.

LVQ wit hout

P F

S KL LVQ

wit hout P F

 99

6.5 Conclusions

In this thesis, we investigated processes in drug discovery through formal modeling

techniques from systems engineering. We built a UML use case model to capture the

requirements of a modern drug discovery analysis system and the related systems

integration issues. We developed system structure and behavior, and discussed alternate

methods of implementation. The discovery of efficient clustering algorithms for any

particular type of microarray data will lead to efficient indexing mechanisms over very

large experimental data sets. We also looked at database extensions that can handle new

data types and how they can be applied to biological data.

The next major focus of the thesis was the application of algorithms from signal processing

and machine learning, to the analysis of gene expression data. We investigated two

different types of analyses – functional and phenotypic classification, and found that the

supervised LVQ algorithm, with the LBG codebook initialization, shows very good

performance and is comparable to support vector machines, which are globally optimal

classifiers. We also applied an instance-based learning algorithm IB3, and found good

results with the identification of yeast functional classes.

We also described a novel similarity measure for clustering based on unnormalized

expression data, called the unnormalized symmetric Kullback-Liebler measure, based on

the concept of relative entropy, and originally developed in [24,25]. Though there was no

significant difference between the unnormalized SKL measure and log-Euclidean distance

with cDNA arrays (as expected), we found that the unnormalized SKL measure is able to

provide better performance with a leukemia oligonucleotide array data set. Different pre-

 100

filtering methods for finding discriminating genes based on the Find Similar function,

PCA, relative distances, and the IB3 instance-based learning algorithm, were studied. All

methods except IB3 showed a large improvement in performance with pre-filtering. The

Find Similar pre-filtering method with the unnormalized SKL measure and the LBG/LVQ

algorithm together gave the best performance in class prediction and class discovery, with

the fewest number of discriminating genes.

 101

BIBILIOGRAPHY

1. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by

gene expression profiling. Nature 403, 503-511 (2000).

2. Brown, M.P. et al. Knowledge-based analysis of microarray gene expression data

by using support vector machines. Proc Natl Acad Sci USA 97, 262-267 (2000).

3. Cai, J. et al. Supervised Machine Learning Algorithms for Classification of Cancer

Tissue Types Using Microarray Gene Expression Data

<http://www.cpmc.columbia.edu/homepages/jic7001/cs4995/project1.htm>.

4. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D., Cluster analysis and

display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863-8

(1998).

5. Golub, T.R. et al. Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring. Science 286, 531-7 (1999).

6. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression Profiling

Using cDNA Microarrays. Nature Genetics 21, 10-14 (1999).

7. Lipschutz, R. J., Fodor, S. P. A., Gingeras, T. R. & Lockhart, D. J. High Density

Synthetic Oligonucleotide Arrays, Nature Genetics 21, 10-14 (1999).

8. Drug Target Validation and Identification of Secondary Drug Target Effects Using

DNA Microarrays; Matthew J. Marton, J. L. DeRisi, Holly A. Bennett, V. R. Iyer,

Michael R. Meyer, Christopher J. Roberts, Roland Stoughton, Julja Burchard,

David Slade, Hongyue Dai, Douglas E. Bassett Jr., Leland H. Hartwell, P. O.

Brown, and Stephen H. Friend; Nature Medicine 4:1293-1301 (1998).

 102

9. Baldi, P., Brunak, S., Brunak, S. Bioinformatics: The Machine Learning Approach

(2nd Edition), MIT Press (2001).

10. Drlica, K. Understanding DNA and Gene Cloning: A Guide for the Curious (3rd

Edition), John Wiley & Sons (1996).

11. Cherkassky, V. S., Mulier, F. M., Learning from Data : Concepts, Theory, and

Methods, Wiley-Interscience (1998).

12. Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines :

And Other Kernel-Based Learning Methods, Cambridge University Press (2000).

13. Aha, D., Kibler, D., Albert, M., Instance-based learning algorithms. Machine

Learning, 6:37--66, 1991.

14. Mitchell, T. M., Machine Learning, McGraw-Hill Higher Education (1997).

15. Gersho, A., Gray, R. M., Vector Quantization and Signal Compression, Kluwer

Academic Publishers (1992).

16. Kecman, V., Learning and Soft Computing, MIT Press (2001).

17. Baras, J. S., Dey, S., Combined Compression and Classification with Learning

Vector Quantization, IEEE Transactions on Information Theory, vol. 45, no. 6, pp.

1911-1920, September 1999.

18. Lavigna, A., Nonparametric Classification Using Learning Vector Quantization.

PhD thesis, Dept. of Electr. Eng., University of Maryland, College Park, Maryland

20742, 1989, ISR Technical Report PhD 90-1.

19. Linde, Y., Buzo, A., Gray, R. M., An Algorithm for Vector Quantization Design,

IEEE Trans. on Communication, pp. 702-710, 1980.

 103

20. Hacia, J., Resequencing and Mutational Analysis using Oligonucleotide Arrays, ,

Nature Genetics 21, pp. 42-47 (1999).

21. Kohonen, T., Huang, T. S., Schroeder, M. R., Self-organizing Maps (3rd Edition),

Springer Verlag (2001).

22. Oliver, D. W., Kelliher, T. P., Keegan, J. G., Engineering Complex Systems with

Models and Objects, McGraw Hill (1997).

23. Dressman, M. A., Baras, A. S., Malinowski, R., Kwon, I., Walz, T.,

Polymeropoulos, M. H., Detecting Genes Amplification in Breast Cancer by

Combining Gene Expression Profiling and Gene Mapping, Submitted to Nature

Medicine, 2001.

24. Baras, A. S., Baras, J. S., A Novel Similarity Measure for Microarray Expression

Data, Submitted for publication, 2001.

25. Frankpitt, B., Baras, J. S., Baras, A. S., Yang, S., Analysis of Microarray Data,

Technical Report 2001-04B, AIMS, Inc., April 2001.

26. Barnes, L. M., Staedler, F. Liebman, J., Polymeropoulos, M. Laredan, C., Use of

Animal Samples to Study Human Diseases and Mechanisms of Drug Action by

Cross Species Hybridization of Human Microarrays, Am. J. Human Genetics,

69:462, Supplement 1, 2001.

27. Vinores, M., Polymeropoulos, M., Laredan, C., Gene Expression Mapping of

Various Regions of the Adult Human Brain, Am. J. Human Genetics, 69:453,

Supplement 1, 2001.

 104

28. Baras, J. S., LaVigna, A., Convergence of Kohonen’s Learning Vector

Quantization, Prof. of the 1990 IJCNN Conference on Neural Networks, pp. 476-

482, San Diego, June 1990.

29. Kosmatopoulos, E., Christodoulou, M., Convergence Properties of a Class of

Learning Vector Quantization Algorithms, IEEE Trans. On Image Processing 5,

1996, pp. 366-388.

30. Cover, T. M., Thomas, J. A., Elements of Information Theory, Wiley-Interscience

(1991).

31. Ronan Collobert and Samy Bengio, SVMTorch: Support Vector Machines for

Large-Scale Regression Problems, Journal of Machine Learning Research, vol 1,

pages 143-160, 2001.

32. “Pharmaceutical Industry Profile 2000”, Pharmaceutical Research and

Manufacturers of America – Publications,

<http://www.phrma.org/publications/publications/profile00/>.

33. “How can we optimize selection of drug development candidates from many

compounds at the discovery stage?” Modern Drug Discovery, January/February

1999, 2(1), 55-60, <http://pubs.acs.org/hotartcl/mdd/99/janfeb/product.html>.

34. “The CDER Handbook”, The CDER Handbook,

<http://www.fda.gov/cder/handbook/>.

35. “New Drug Development Process”,

<http://www.kellogg.nwu.edu/faculty/radnor/htm/morsd56/website_readings/barbe

au_devtim.pdf>.

 105

36. Sadoski, D., Two Tier Software Architectures,

<http://www.sei.cmu.edu/str/descriptions/twotier_body.html>.

37. Sadoski, D., Comella-Dorda, S., Three Tier Software Architectures,

<http://www.sei.cmu.edu/str/descriptions/threetier_body.html>.

38. Wallnau, K., Common Object Request Broker Architecture,

<http://www.sei.cmu.edu/str/descriptions/corba_body.html>.

