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This thesis presents a systems engineering model of modern drug discovery processes and 

related systems integration requirements. Some challenging problems include the 

integration of public information content with proprietary corporate content, supporting 

different types of scientific analyses, and automated analysis tools motivated by diverse 

forms of biological data. 

To capture the requirements of the discovery system, we identify the processes, users, and 

scenarios to form a UML use case model. We then define the object-oriented system 

structure and attach behavioral elements. We also look at how object-relational database 

extensions can be applied for such analysis. 



The next portion of the thesis studies the performance of clustering algorithms based on 

LVQ, SVMs, and other machine learning algorithms, to two types of analyses – functional 

and phenotypic classification. We found that LVQ initialized with the LBG codebook 

yields comparable performance to the optimal separating surfaces generated by related 

SVM kernels.  

We also describe a novel similarity measure, called the unnormalized symmetric Kullback-

Liebler measure, based on unnormalized expression values. Since the Mercer criterion 

cannot be applied to this measure, we compared the performance of this similarity measure 

with the log-Euclidean distance in the LVQ algorithm. 

The two distance measures perform similarly on cDNA arrays, while the unnormalized 

symmetric Kullback-Liebler measure outperforms the log-Euclidean distance on certain 

phenotypic classification problems.  

Pre-filtering algorithms to find discriminating instances based on PCA, the Find Similar 

function, and IB3 were also investigated. The Find Similar method gives the best 

performance in terms of multiple criteria. 
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CHAPTER 1: INTRODUCTION 

1.1 Outline of the Thesis 

The thesis is organized as follows. 

Chapter 2 gives an overview of genetics and gene expression. It discusses DNA structure 

and its role in protein synthesis processes. It also covers representative mechanisms of the 

control of gene expression for the interpretation of genetic expression data. 

Chapter 3 details large-scale expression analysis using DNA microarrays. Two popular 

technologies – oligonucleotide and cDNA arrays, are explained. Based on the overview in 

Chapter 2, the nature and analysis of microarray data for gene functional classification are 

discussed.  

In Chapter 4, we attempt to model the integration of the high-throughput microarray 

technology and genetics databases in drug discovery and development processes. We give 

a brief overview of traditional and modern drug discovery. UML use cases are developed to 

model the requirements of a pharmaceutical discovery/analysis system. The overall system 

architecture is described using package and class diagrams, including the behavioral 

elements. 

Chapter 5 gives an overview of supervised and unsupervised clustering algorithms for 

expression analysis. We outline two similarity measures – the log-Euclidean distance and 

the unnormalized symmetric Kullback-Liebler measure - and their application in the 

(supervised) learning vector quantization (LVQ) algorithm. We also give a brief 
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description of other learning techniques like support vector machines (SVM) and instance-

based learning. 

In Chapter 6, we compare different algorithmic implementations of important use cases in 

microarray analysis from Chapter 4. Two types of analyses are considered – functional and 

phenotypic classification. We give a description of the data sets, the methods and 

performance measures used, and a summary of the results. 

 

 

 



 3 

CHAPTER 2: GENETICS AND GENE EXPRESSION 

The biological information in an organism is contained in the DNA molecule, which is 

present in all cells. Cellular processes such as growth, replication, differentiation, and 

response to environmental conditions, are controlled by the DNA sequence data and the 

interaction of DNA with cellular compounds. 

2.1 DNA Structure and Function 

In this section, we elaborate on how the structure of the DNA molecule plays a vital role in 

regulating biochemical activities, and discuss mechanisms by which this is carried out. 

The DNA molecule consists of two strands of nucleotide sequences forming a double-

helical structure. Individual strands are composed of repeating blocks of deoxyribose sugar 

and phosphate subunits forming the exterior backbone of the molecule, and a nucleotide 

base on the interior. The two strands are held by hydrogen bonding between the nucleotide 

bases, as shown in Fig. 2.1. 
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Fig. 2.1 Schematic Diagram of DNA Structure [10] 

Due to the pairing properties of deoxyribose to the phosphate subunit, the ends of each 

strand have different chemical properties. The two strands run anti-parallel to each other, 

thus imposing directionality to the DNA molecule. 

The nucleotide subunits in DNA are derived from a four-letter alphabet, viz., adenine (A), 

guanine (G), cytosine (C), and thymine (T). An additional constraint on DNA structure is 

illustrated by the complementary base-pairing rule; the nucleotide bases line up in such a 
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way that adenine on one strand corresponds to thymine on the other, and guanine 

corresponds to cytosine. 

2.2 Protein Synthesis 

The nucleotide sequences in a DNA molecule act as a template for synthesizing proteins; 

enzyme molecules catalyze these reactions. Most of the enzymes are proteins themselves, 

with structural properties that render them suitable for specific cellular processes. The order 

of reaction events in a cell is determined by a combination of sequence information and the 

presence of enzymes. 

Sections of the DNA molecule called genes contain the information for synthesizing 

specific proteins, which are essentially amino-acid sequences. The information for protein 

synthesis is organized in nucleotide triplets called codons, defined by the four-letter DNA 

alphabet. Codons act as the template for 20 different amino acids, as well as start and stop 

markers for protein synthesis.  

Gene expression is the physiological manifestation of the genetic makeup of an organism. 

At a finer level, it is the process by which information on a gene is used for protein 

synthesis. It takes place in two steps. During transcription (Fig. 2.2), a single-stranded 

ribonucleic acid (RNA) molecule is synthesized based on the complementary genetic 

sequence, in the presence of the RNA polymerase enzyme. The RNA molecule is 

structurally similar to the DNA molecule and is composed of the four-letter alphabet 

AUGC, with uracil (U) in place of the thymine (T) base. 
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Fig. 2.2 Synthesis of mRNA during Transcription [10] 

The RNA molecule from transcription, also called mRNA (messenger RNA), attaches to 

ribosomes in the cytoplasm of the cell. In the second step called translation (Fig. 2.3), a 

molecule called transfer RNA (tRNA) with a nucleotide triplet complementary to any of 

the mRNA codons forms a complex with specific amino acids in the presence of the 

aminoacyl-tRNA synthetase enzyme. By sequential alignment of codon-specific tRNA 

molecules, polypeptide chains of amino acids are constructed to form proteins from the 

start to the stop codons on the mRNA molecule. 



 7 

 
 

Fig. 2.3 Amino Acid Synthesis during Translation [10] 

The entire DNA sequence information in DNA is not useful for protein synthesis. A 

significant portion is composed of non-coding regions, such as those that form regulatory 

elements or garbage sequences between coding regions. Bacterial genomes, for example 

have a very high codon density. However, an increase in genome size does not necessarily 

indicate an increase in efficiency or quality. 

2.3 Regulation of Gene Expression 

Protein synthesis as described above, is a fundamental and relatively uncomplicated 

process. However, in order for the cell to respond to the environment and initiate higher-

level processes like growth and differentiation, complex regulatory schemes exist. Control 
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can occur at various stages of the protein synthesis process. In this section, we illustrate a 

few well-known mechanisms of gene expression regulation and relate them to gene 

function. 

2. 3.1 Chromatin Structure 

The chromatin is the fibrous complex of DNA and proteins within the nucleus. The 

physical structure of the DNA in the chromatin can vary in differentiated cells in an 

organism, and result in enhancing or repressing the expression of specific genes. For 

instance, the presence of compounds like histones, might affect the ability of RNA 

polymerase and transcriptional regulatory proteins to access specific genes on the DNA. 

2.3.2 Transcriptional Control 

Repression is a transcriptional control mechanism to turn specific genes on or off and is 

explained by the operon model of regulation in prokaryotic cells (cells having no nuclear 

membrane). The model states that groups of genes coding for related proteins exist close to 

each other on the DNA and are controlled by a single promoter region, where the 

transcriptional enzyme RNA polymerase attaches itself. The operator region separates the 

upstream promoter site from the genes. In the case of the lac operon, the constituent genes 

code for enzymes to break down lactose. In the absence of lactose, a regulatory gene 

upstream of the promoter codes for a repressor protein that binds to the operator region and 

inhibits transcription initiation. When lactose is present, it forms a complex with the 

repressor protein and detaches it from the operator site.  
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Attenuation is the mechanism by which the abundance of a protein inhibits its own 

transcription. This occurs in genes that code for energy-consuming processes like amino-

acid production. 

In activation, the binding of enhancer proteins near promoter and upstream regions of the 

DNA enable the RNA polymerase enzyme action, thereby initiating transcription. 

2. 3.3 Processing-level Control 

This refers to the relation between the coding scheme of genes and proteins. Proteins are 

often encoded by members of a multigene family. A multigene family of genes arises by 

undergoing modifications during evolution from a single ancestor. Such a set can code for 

homologous proteins with similar functions. 

2.3.4 Translational Control 

Translation of mRNA can be enhanced or suppressed by the amount of the specific protein 

in the cell. For instance, iron is stored in the protein ferritin. When iron levels are low in the 

cell, a repressor molecule binds to the mRNA for ferritin inhibiting synthesis. When iron 

levels in the cell rise, iron binds to the mRNA-repressor complex and detaches the 

repressor protein, thereby enhancing the synthesis of ferritin for storage. 

2.3.5 Post-translational Factors 

Protein expression varies even after translation. The presence of an inhibitor in the 

environment can repress protein function. Most proteins exist in an inactive state after 

translation and need to undergo polypeptide cleavage to become active. Some proteins may 
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also require activation through a combination with another molecule. The operation of 

enzymes in the presence of a cofactor is an example. 

Many other mechanisms of gene regulation at various levels of biochemistry exist, and 

these may be specific to organisms. However, it is important to note that not all changes are 

observable in gene expression experiments. Hence, knowledge of the metabolism, 

phylogeny, and careful experimentation is required to draw meaningful results about gene 

functional characteristics. 
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CHAPTER 3: GENE EXPRESSION ANALYSIS 

Based on the background on gene expression, we give a brief overview of the state-of-the-

art in microarray technology, and two different types of microarrays. We then discuss the 

nature and applications of various gene microarray data. In the section on expression 

analysis, we explain how microarrays can be related to molecular biology and gene 

function.  

3.1 Microarray Technology 

Genetic analyses have traditionally been based on single-gene experiments in order to 

estimate the preferential expression of the gene in multiple experiments. With the 

availability of the complete genome sequence information for some organisms, it is now 

possible to simulate and study cellular control at the level of genetic interactions. The 

DNA microarray is an experimental tool that combines genome information with chip 

technology, and allows us to monitor specifically, the gene expression of thousands of 

genes at the same time, in different environmental conditions designed by the 

investigating biologist. 

DNA microarrays give a quantitative measure of gene expression from all genes in a tissue 

sample, under a variety of conditions.  To explore various genetic properties, experimental 

methods need to be designed to map them to expression values. 

Microarrays measure the ability of DNA or RNA sequences from a sample to bind (or 

hybridize) to their complementary DNA sequences (cDNAs) laid out on a chip. Because of 
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complementary base pairing, measurement of the degree of hybridization between nucleic 

acids provides good sensitivity and specificity in detection. This basic idea remaining the 

same, two popular techniques exist to measure gene expression on microarrays. They differ 

in the manner in which the sequences are prepared initially and are described in the 

sections below. 

3.1.1 Oligonucleotide Arrays 

Oligonucleotides are nucleotide sequences that are 5-25 bases long.  The oligonucleotide 

array was the first microarray product developed by Affymmetrix. In a procedure similar to 

semiconductor manufacturing, it uses photolithography techniques to synthesize nucleotide 

sequences. 

The entire chip is initially covered with the photolithographic mask. The laser exposes 

precise locations on the chip. The particular amino acid solution is passed over the chip and 

binds nucleotides at these locations. 

The masking agent is applied again and the process is repeated until sequences up to 25 

base pairs are generated. Finally, when the fluorescently tagged DNA sequences are treated 

with the oligonucleotides, the degree of hybridization is measured by the amount of 

fluorescent emission following laser excitation. 

A unique feature of oligonucleotide arrays compared to other microarray techniques is their 

high degree of accuracy. They hybridize multiple independent oligonucleotides with 

different segments of the same RNA. Two sets of (usually) ten probes, called the perfect 

match (PM) and mismatch (MM) probe sets, are used with each pair differing in a single 
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base ([7][5]). The MM probes, which act as the control, are supposed to display a much 

lower signal compared to the PM probes. This kind of redundancy leads to more accurate 

results as averaging and outlier detection can be performed prior to quantitative evaluation. 

Since the hybridization process is simple, these arrays have high reproducibility. 

To generate oligonucleotide arrays, clearly, we need to know the entire sequence 

information of genes and non-coding regions involved in the experiment. However, once 

the sequence is known, it can be used in genotypic analysis ([20]). For example, 

resequencing known DNA by inserting minor modifications in the complementary 

oligonucleotides can detect single nucleotide polymorphisms (SNPs), which are point 

mutations in DNA found in a part of the population. Similarly, such mutations can help in 

identifying multiple forms of existence of longer sequences by partial matching. Another 

advantage of the technique is that since the sequence lengths are small, it is possible to 

construct high-density chips monitoring relatively larger number of genes. 

However, array synthesis is slow and expensive as it uses a large amount of 

photolithographic mask reagent during synthesis. These problems are overcome in cDNA 

microarrays discussed below. 

3.1.2 cDNA Microarrays 

cDNA microarrays were first prepared by the Brown Lab of Stanford University. They 

improve upon the oligonucleotide arrays by changing the layout strategy in a fundamental 

way. Using purified mRNA transcripts from tissues, the reverse-transcription polymerase 

chain reaction (RTPCR) is performed to obtain a large number of gene-specific 
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polynucleotide clones. Thus, after purification of RNA samples and PCR amplification, the 

clones are spotted on the array using a non-contact method similar to ink jet printing as 

shown in Fig. 3.1. 

Fig. 3.1 cDNA Microarray Manufacturing [6] 

RNA samples obtained from two samples - a test case and a reference/control case, are 

converted to cDNA sequences by reverse transcription. These sequences are then labeled 

with two cyanine dyes Cy5 (test) and Cy3 (control). At this point, the array is 

simultaneously hybridized with the fluorescently labeled cDNA from both samples. The 

expression values are given by the relative degree of hybridization, which is calculated by 

image processing software. For example, the two-color hybridization would yield red (ratio 
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Cy5/Cy3>1) when the gene is induced, or green when it is repressed, or yellow when there 

are no changes. 

The cDNA method of fabrication is quick and less expensive compared to oligonucleotide 

arrays, and allows the production of oligonucleotides longer than 500 base pairs. The 

precise arrangement of spots leads to accurate signal measurement. The individual 

expression values are normalized with respect to extracted subsets of closely related 

samples. 

One chief disadvantage of cDNA microarrays is that it monitors the expression of relatively 

fewer genes. Since hybridization ratios are not reliable when gene expression is compared 

across chips, this poses an obstacle for large genomes.  

Another problem with cDNA microarrays is that they are limited by the availability of 

clones for the solid phase and the purity of RNA samples derived from tissues. Further, 

cDNA microarrays require a large quantity of RNA (usually 50-200 micrograms) per 

hybridization [6]. 

3.2 Nature of Microarray Data 

Since microarray expression data are going to be the basis for gene function prediction in 

many applications, we list some of the limitations of microarrays and their role in 

experimental design. 
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1. The quality of microarray data depends on its mRNA source. Tissue samples used 

in in vivo experiments might be composed of inseparable cell types, and might 

show large variability during replication of experiments.  

2. With regard to time-series data, it is important to note that individual cycle times of 

individual processes have order-of-magnitude differences. Expression analysis can 

be used to reveal interactions at the gene-to-gene level but not at the level of 

cellular processes/mechanisms. Based on the knowledge of biochemistry of the 

experiment, sampling should be carefully designed to enunciate valid and 

significant interactions. 

a. Unwinding of the helix ~ microseconds 

b. Transcription ~ seconds 

c. Translation ~ minutes 

d. Life of a protein ~ hours 

3. A microarray dataset represents a snapshot of particular cell lines. This cell ‘state’ 

varies significantly based on the environmental conditions, the stage of the cell 

cycle, etc. Hence, it is essential to collect multiple data points for each gene and 

base inferences on average values. 

4. Measurement of mRNA transcript levels after hybridization might not be a true 

indicator of protein levels due to post-transcriptional factors (See Sec. 2.3.5). If the 

proteins are synthesized, they sometimes might not have any physiological 

consequence in the experiment. In such cases, a combination of the knowledge of 
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protein interactions and gene expression values might be a good indicator of gene 

function. 
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CHAPTER 4: USE-CASE MODELING OF MICROARRAY 

ANALYSIS 

4.1 Introduction 

In this chapter, firstly, a brief description of processes in pharmaceutical drug development 

is given. The impact of the high-throughput microarray technology on processes in 

pharmaceutical research and development is explained. A UML systems engineering model 

of an analysis system for modern drug development is developed, that captures the high-

level requirements. In the UML use cases, the main actors and their interaction with the 

system are studied to build a structural model. From the UML model, we construct a 

database schema for microarray data mining. Finally, we look at alternate system and data 

architectures for pharmaceutical analysis in an enterprise.  

4.2 Overview of Drug Discovery and Development 

The discovery and development of drugs involves several stages, and careful planning and 

allocation of large investments and time. A drug research plan might attempt to target an 

untreated disease, or improve upon an existing drug using a novel approach. The decision 

to pursue any project is based on criteria such as the immediate medical requirements, the 

effectiveness of current products, etc.   

According to the 2000-2001 statistics from Pharmaceutical Research and Manufacturers of 

America (PhRMA), for every 5000 medicines tested, 5 of them pass on to undergo clinical 

trials, of which only one is accepted ([32]). Considering that the average development cost 
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for a single drug costs $500 million and 12-15 years and the fact that only 30% of marketed 

drugs generate revenues in excess of development costs, it is imperative for pharmaceutical 

companies to investigate the integration of new genomic technology in dealing with their 

lifecycle cost breakdown.  

4.2.1 Traditional Drug Discovery 

Fig. 4.1 shows an approximate distribution of the times involved in the stages of traditional 

drug development [34]. 

Fig 4.1 Traditional Drug Discovery Life Cycle 

Drug discovery is a complex process with repetition and is characterized by many trials. 

The process is initiated by investigating the biochemistry of the disease. Drugs based on 

biochemistry produce their desired effects by acting on small protein molecules called 

receptors located in the cell membrane. Receptors monitor extra-cellular activity and are 

normally activated by hormones, whereby they undergo shape modifications and trigger 
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cellular responses. Since receptors are connected with signaling pathways, they are able to 

swiftly affect cellular mechanisms by reacting with drug molecules. 

The molecular biologist uses biochemical pathways participating in the disease 

pathophysiology to form a hypothesis about the chemical reactions involved. Common 

drug targets chosen are those that code for enzymes, transporters, and hormone receptors, 

since they can be easily controlled by small external molecules.  

Feasible lead compounds are selected based on the knowledge of their structure and action. 

A majority of these lead compounds arise from natural extracts, which have been 

discovered and proven effective previously. The targets are purified and screened against a 

variety of lead compounds. The lead compounds are filtered based on their effectiveness on 

the drug target. They are then optimized by combinatorial chemistry techniques to form 

new compounds with greater specificity. Pre-clinical testing involves in vitro testing on 

tissue samples and in vivo testing on animal models (when available) for compound 

toxicity. This set of compounds is filtered further to evaluate their side effects, dosage, etc. 

on a larger population during the long and expensive clinical trials process. 

There are many drawbacks and implicit limitations in the above procedure, in the current 

context. The selection of targets is limited by the knowledge of their molecular function. 

The proteins that some gene targets encode, like transcription factors, are not easy to 

modulate. In the case when the molecular nature of the target is not known, random screens 

are performed against thousands of lead compounds, which consume resources, time and 

expenses. By having a large number of compounds after screening, the cost of testing is 
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carried over to the expensive development and clinical trials phases. In cases where pre-

clinical testing can be carried out in animal models alone, the same lead compounds might 

not be effective in human tissues, as some receptors are very species-specific; this risk is 

carried on to the expensive clinical trials process.  

Research and pre-clinical testing are the steps where automation and new technology can 

play an important role in reducing process times and carry-over costs. The sequencing of 

the human genome, miniaturization and automation of key biological processes, high-

throughput techniques like microarrays and the increasing integration of public information 

can dramatically reduce the time, risk, and expenses involved in the drug development life 

cycle.  

Using microarrays, it is possible to screen lead compounds against all known genes and 

filter out fewer compounds with greater accuracy and possibility of success. This is 

illustrated below in Fig. 4.2 by the percentage expenditure in terms of compound and 

development costs involved in these steps.  
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Fig 4.2 Comparison of Life-cycle Cost Variation 
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In comparison with Fig. 4.1, the following is an estimate of how micro-array data 

processing affects process costs and times for each stage of the life cycle, by bringing down 

the number of pre-selected compounds ([33, 35]). 

• Research & Pre-clinical Testing: Average 18 months 

• Clinical Trials (on human subjects): Average 5 years. 

Some examples of the use of new technologies in drug discovery are listed below. 

1. Sequence information opens up a large number of new feasible drug targets. It is 

possible to conduct genome-wide experiments with microarrays, which have much 

lower turnaround times compared to traditional polymerase chain reaction (PCR) 

techniques. Gene sequencing from the human genome project is expected to 

increase the number of gene targets for drug innovation from 500 to 3000-10000 

[8].  

2. Diseases like lymphoma and viral infections require drugs that can target the 

transcriptional mechanism. Genes related to such cases can be targeted using gene 

expression profiling. 

3. A single-nucleotide polymorphism (SNP) is a point mutation that represents a 

subset of a large population. SNPs are strong markers that can be used in 

association studies to identify correlations between the presence of a chromosomal 

region and any trait such as a disease phenotype. Microarrays can be used to study 

drug response in diverse genotypes in clinical trials. 
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4. Pre-clinical trials can make use of microarrays to conduct toxicology experiments 

and to study in vitro testing. 

5. Since gene expression is a clear indicator of function, functional prediction of target 

genes can lead to rational drug design during the lead identification phase. 

6. Gene expression in different experiments and across time points is a fair indication 

of gene function. However, in some cases, mRNA levels might not give an 

indication of protein levels, due to post-translational factors (Sec. 2.3.5).  

4.2.2 Modern Drug Discovery 

Using scenarios of the use of microarrays in modern drug development, a detailed 

description of the processes involved in drug discovery is given below. Based on this, the 

flow of events is illustrated in the activity diagram of Fig. 4.3. 

1. Target Identification and Validation 

Target identification is an exploratory phase that involves hypothesizing disease-causing 

genes with evidence that can arise from multiple sources. The molecular biologist uses the 

knowledge of biochemistry of the disease and associates known targets with new genes of 

unknown function through information about DNA sequence, single nucleotide 

polymorphisms (SNPs), and population genetics. In cases where little prior knowledge is 

available, studies can be based on parallel results from model organisms, or differential 

expression profiling of normal and diseased tissues. Information on pathways involving 

these targets and sequence homology is also used to suggest alternate genes that can be 

attacked. 
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In the target validation step, microarray-based experiments are conducted on the individual 

genes to determine their molecular function and interaction with others under different 

cellular conditions. They are then filtered by their cellular response and marked as potential 

drug targets. 

2. Lead Identification and Validation 

Biochemical assays of target gene products are developed in a closely similar environment 

for in vitro testing. Since the target function may be determined or unknown, they are 

screened ‘rationally’ or through random screens against compound library. The compound 

library is composed of thousands of synthetic chemicals and natural products. 

Cell-based assays, on the other hand, represent animal and cellular models of the disease. 

They are used for in vivo testing, and provide more accurate information on drug action 

inside the body. While biochemical assays identify lead compounds for a threshold level of 

drug action in relevant pathways, cell-based assays also test their potency in being able to 

act on cellular models. 

These lead compounds are filtered further by studying their specificity, cellular response, 

toxicity, and other pharmacological and chemical properties. These validated leads are 

characterized by structural properties, which can be found from databases like MDL/ISIS. 

Using combinatorial chemistry techniques, they are further optimized by synthesizing lead 

compounds with these properties and improved activity on the drug targets. 

3. Pre-clinical Testing 
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Pre-clinical testing determines the toxic effects of a particular drug on secondary drug 

targets, similar to the lead validation phase. Proteome analysis can be used to determine if 

the cell is in a natural state, or showing a specific response mechanism, or an unspecified 

response. The subset of proteins showing the response can be analyzed further. These 

results can support future characterization of lead compounds during the previous phase. 

4. Clinical Trials 

In this phase, the drug discovery process is reviewed and clinical trial experiments are 

designed to be implemented in the following order. 

a. Phase I: Determine potential side effects and dosage of the drug by 

administering on 20-80 healthy volunteers. 

b. Phase II: Determine effectiveness on a small number of volunteers with the 

disease. 

c. Phase III: Determine large-scale effectiveness on 1000-3000 patients with 

the disease. 

d. Regulatory Review and Approval by the FDA. 

e. Post-marketing surveillance: Medical practitioners continue to monitor the 

drug’s safety and efficacy over a much larger population with the disease. 



 27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Business Process Model 
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4.3 System Description and System Requirements 

A pharmaceutical corporation typically consists of hundreds of users of different 

backgrounds such as biologists, chemists, bioinformaticians, clinical scientists, program 

managers, and administrators. Users conduct analyses on project-related (transactional) 

data such as from experiments, previous analyses, processes, etc. and aggregations of 

project data (analytical) at the corporate-level. The applications implementing business 

logic are handled by computing on distributed hardware. The broad requirements of an 

analysis system within such an enterprise for the modern drug development process can be 

listed as follows: 

1. Data mining across distributed public and corporate databases. 

2. Storage and retrieval of user-specific analyses. 

3. Access to archived and current project data such as process status, materials, 

analyses, etc. for tracking and prediction in research. 

4. (Restricted) Corporate-wide access ability for departmental data stored in a pre-

defined schema/format. 

5. Controlled access to different users and customized interfaces for 

visualization/data mining. 

6. Ability to integrate modules of new functionality with minimal configurational 

changes to the system. 

7. Database-independent data and results transfer. 
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4.4 UML Requirements Modeling 

In this section, we model the high-level requirements of the pharmaceutical analysis system 

with UML use cases. These use cases represent unit-transaction scenarios where the users 

(actors) interact with system components during different phases of the drug development 

life cycle. Knowing the nature of these interactions allows us to create the system structure 

in terms of the data model for database system design. This process is an iterative one, 

where the structure is related back to the initial requirements model and modified if any 

conditions are ambiguous or not met. 

The following use cases attempt to model the requirements of a pharmaceutical corporation 

in terms of microarray data processing as rigorously as possible. However, when we derive 

the class structure from the UML model, some schema elements such as lead compound 

properties, storage of results from different public databases, and so on are deliberately left 

‘masked’ or undetermined to keep the implementation from becoming too specific while 

keeping the model as accurate as possible. 

The main actors of the model include the product development manager, computational 

biologist/chemists, molecular biologists, pharmacologists, chemists, clinical scientists, 

technical managers, system developers, and lab managers. They relate to the drug 

development processes that are shown in Fig. 4.3. The use cases are grouped by the users 

involved in these major processes. Entities like the corporate knowledge base, public 

databases, and transactional databases in the use cases denote subsystems, and are denoted 

as actors and abstract entities themselves. They have a detailed structure for different 

phases of the process, which will be derived in Section 4.5 on system structure. 



 30

4.4.1 Use Cases Associated with a Biologist 

4.4.1.1 FORMULATE TARGET HYPOTHESIS: This use case deals with the 

biologist’s research on feasible targets and results reported to the transactional database. 

The biologist queries public databases and the corporate knowledge base about the 

biochemistry of the disease. The system collates information and returns the pathways 

involved, disease categories, and related targets (genes, receptors, enzymes, and other 

proteins). It also retrieves experimental data from normal and diseased cells, and 

treatments with several compounds, references, and so on. The biologist stores the 

results of the search, including the target, its type, associated diseases, and pathways 

involved, in the transactional database. 

 

4.4.1.2 IDENTIFY AND VALIDATE TARGET GENES: The use case provides 

shared behavior for the specific use cases such as Find Similar, Find Discriminating, 

Pre-filter and Cluster, and Search. It reports the results of experimental findings on 

genes from (4.4.1.1) to the transactional database. 

With the leads from (4.4.1.1), namely genes involved and corresponding experimental 

data, the biologist performs different kinds of analyses. The biologist also specifies 

experimental protocols to obtain differential expression data on the activity of the 

feasible targets in normal and disease cells. The system retrieves analysis results based 

on the criteria and receives analysis reports about the resultant set of genes, 

experiments analyzed, similarity measure used, feature analyzed, threshold similarity 

(if applicable), and data values used (raw values, normalized logarithmic values, and so 

on) 
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4.4.1.2.1 FIND DISCRIMINATING: The biologist tries to find (gene or chip) 

expression profiles are able to discriminate two classes of profiles the most. The 

system retrieves these classifier-boundary instances to examine their properties further 

in context.  

4.4.1.2.2 FIND SIMILAR: This is a high-level case that can be further specialized by 

specifying qualifiers such as similarity in compound structure, gene sequence, target 

structure, or microarray expression profile. The system uses appropriate or specified 

analysis algorithms for retrieval.  

4.4.1.2.2.1 FIND SIMILAR PROFILE: The biologist tries to find similar 

expression profiles over an experiment’s chip set. He can also pick an interesting 

profile, such as those obtained from (1.2.1) and find profiles, which are closest to it.  

4.4.1.2.2.2 FIND SIMILAR TARGET: The computational biologist queries 

structure databases like MDL/ISIS to find targets with similar structural and 

functional features to a known one. 

4.4.1.2.2.3 FIND SIMILAR SEQUENCE: The biologist queries for genes with 

similar sequence to a given sequence. The system can return, for example, E-values 

from BLAST searches for genetic sequences. 

4.4.1.2.3 PRE-FILTER AND CLUSTER: This case builds on the previous two use 

cases.  

The biologist queries genes with a chosen threshold activity or other criteria. This is 

done to eliminate redundant or irrelevant features and to increase the efficiency of 

clustering. He then partitions (the algorithm, similarity measure, and number of 

clusters can be specified) co-expressed profiles. He further analyzes the results by 
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clustering over genes or chip profiles. The system executes server-side algorithms, 

retrieves the results, and displays them in a visualization tool. 

4.4.1.2.4 SEARCH: Like (4.4.1.2.2), this is also a generic use case, which can be 

specialized for searches on various criteria. 

The biologist queries several public databases and the corporate knowledge base and 

executes tools to find genes with high similarity in terms of sequence, structure, or 

genetic linkage, to the available genes. For instance, the results of a BLAST query on 

sequence similarity can be stored in the form of analysis type, gene sequence, BLAST 

E-value, result set, and other parameters. The system collates information from 

disparate databases and returns the results. The analysis reports stored by the system 

will also have similarity measures based on multiple criteria along with those 

described in (4.4.1.2). 

4.4.1.3 BUILD DISEASE MODELS: The biologist accesses corporate/in-house and 

public references, and builds disease models to simulate or predict the target’s response 

to different compounds, if the function of every gene in all pathways where the target 

gene is involved, is known. He stores his model in the transactional database. The 

results from the target validation phase are submitted for the approval of the product 

development manager. 

 

4.4.2 Use Cases Associated with a Chemist 

4.4.2.1 IDENTIFY LEAD COMPOUNDS: The chemist obtains the list of probable 

drug targets from (4.4.1.3). He queries the in-house and public compound libraries and 

references for target structure and previous results of effective structural (this 
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methodology is called rational drug design) and other properties of compounds for 

targets with known molecular function. For example, these include queries on structural 

databases like MDL / ISIS. The system retrieves results and stores the hypothesis on 

feasible lead compounds, listing the compound, its structure, the target and its structure, 

target type, references, related diseases, and other compound properties.  

4.4.2.1.1 PREDICT TARGET STRUCTURE: If the target site function is not known 

in (4.4.2.1), the chemist and the computational chemist query the compound library 

for functional groups with a wide range of structural properties and activities, and 

perform experiments on the target by repeated addition of these groups (function site 

mapping). The system executes algorithms to predict function and returns the 

compound set. The results are stored in the form of the target, its predicted structure, 

and its geometric and chemical properties. Then, suitable compounds are found as 

described in (4.4.2.1). 

4.4.2.2 PREPARE AND TEST WITH BIOCHEMICAL ASSAYS: The chemist 

prepares the protocol for biochemical (in vitro) and cell-based (in vivo) assays in 

normal and diseased cells, specifying genes, compounds to be tested, organism, 

experimental conditions, cell stage, etc. A request is submitted to the laboratory 

subsystem. The system retrieves and stores the experiment information, the assay 

protocol, and the data in the transactional database. The chemist filters compounds in 

biochemical assays based on a minimum level of drug activity over at least a chosen 

proportion of target genes. Further, he filters the compounds in in vivo testing, based on 

cross-validation with action on regulatory pathways and toxicity measurements. The 

system retrieves information on pathways of the tested targets and other genes in the 
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assay. The analysis results stored include the resultant compound set, experiments 

analyzed, activity level, and threshold activity. 

 

4.4.2.3 OPTIMIZE LEAD COMPOUNDS: The chemist studies the structural 

properties of the lead compounds and synthesizes new compounds using computer 

models of the reaction mechanisms and combinatorial chemistry tools. He documents 

the rationale, synthesis procedure and uses the same assay protocol for testing. The 

screen results are submitted for validation. 

 

4.4.2.4 FORMULATE DRUG SYNTHESIS AND DOSAGE: The chemist implements 

and records the procedure to make any novel candidate lead compound and tests the 

purity of the product.  

4.4.3 Use Cases Associated with a Pharmacologist/Toxicologist 

4.4.3.1 VALIDATE COMPOUNDS: This use case provides shared behavior for toxic 

testing in the lead validation and pre-clinical testing phases.  

The toxicologist filters compounds in biochemical assays based on a minimum level of 

drug activity over at least a chosen proportion of target genes. Further, he filters the 

compounds in in vivo testing, based on cross-validation with action on regulatory 

pathways and toxicity. The system retrieves information on pathways of the tested 

targets and other genes in the assay. The analysis results stored include the resultant 

compound set, experiments analyzed, activity level, cellular response, pharmacological 

and chemical properties, and threshold activity. 
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4.4.3.2 DETERMINE TOXIC EFFECTS: The pharmacologist and toxicologist 

perform toxic studies on primary and secondary drug targets as described in (4.4.2.3) 

on animal cells. They query proteome information to determine the nature of cell state. 

They document characteristics such as cellular response and drug selectivity, potency, 

and toxicity. 

4.4.4 Use Cases Associated with a Clinical Scientist 

4.4.4.1 DETERMINE STUDY PARAMETERS: In the clinical trials phase, the clinical 

scientist determines parameters for drug experimentation such as normal dose ranges, 

expected values, measurement techniques, and equipment required. 

4.4.4.2 DEVISE EXPERIMENTAL PROTOCOL: The scientist prepares a case report 

form to study the drug effects on patients, prepares schedules, dosage, etc. 

4.4.5 Use Cases Associated with a Lab Manager 

4.4.5.1 IMPLEMENT EXPERIMENT PROTOCOLS: The lab technician obtains the 

experimental protocol for microarray and assay development from the drug discovery 

team. He co-ordinates and documents procedures for sample preparation, hybridization, 

normalization, quality check, etc. using a LIMS (Laboratory Information Management 

System) tool. The system stores the raw experimental data in the transactional database. 

4.4.6 Use Cases Associated with a Product Development Manager 

The Product Development Manager oversees the progress of different project groups 

working in the firm. 

4.4.6.1 CONDUCT FEASIBILITY ANALYSIS: The manager picks a preliminary 

research area based on the current demand, knowledge of competing brands, etc. He 

queries the corporate knowledge base for availability and potential of compounds in the 
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company’s compound libraries for new products, and the performance and viability of 

similar projects. He then initiates a research project. The system collates information 

across projects, analysis results, financial and other corporate data for business 

decisions. 

4.4.6.2 ALLOCATE RESOURCES FOR PROJECTS: With simultaneous drug 

development projects in progress, the manager allocates personnel to specific project 

phases. He makes decisions on manufacturing or purchasing resources such as 

chemical compounds, assays, etc.  

4.4.6.3 MONITOR THE PERFORMANCE OF PROJECT GROUPS: On the basis of 

the performance of ongoing and past projects, the manager can allow or revoke the 

continuation of a particular project phase. For instance, this might be in the form of the 

following queries: ‘Which projects have been more productive in terms of the number 

of leads?’   

4.4.6.4 CONDUCT PEER REVIEW: The peer review team, involving the product 

manager, reviews the analyses results at different checkpoints during the drug 

discovery life cycle. They approve the transfer of new results at the end of individual 

sub phases into the corporate database, and allow other research teams to make use of 

these results. 

4.4.7 Use Cases Associated with a Computational Biologist/Chemist 

4.4.7.1 FIND SIMILAR:  

4.4.7.1.1 FIND SIMILAR TARGET: (As in 4.4.1.2.2.2) 

4.4.7.1.2 FIND SIMILAR COMPOUND: The computational chemist tries to find 

compounds with similar activity and physical properties to a compound known to 
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produce desired therapeutic response on a given target. He performs a large number of 

experiments with a wide variety of compound chemistries. The system runs 

correlation methods like QSAR (Quantitative Structure Activity Relationship) and 

stores the results in the form of the target, the compound, its QSAR activity score, and 

its structure. 

4.4.7.2 PREDICT TARGET STRUCTURE: (As described in (4.4.2.1.1)) 

4.4.7.3 DESIGN LIBRARIES: The computational chemist uses combinatorial 

chemistry techniques to determine compounds with high activity scores on a chosen 

target. The results obtained are similar to (4.4.7.1.2) 

4.4.7.4 PREDICT COMPOUND PROPERTIES: (Similar to 4.4.7.1.2) The system runs 

correlation methods like QSPR (Quantitative Structure Property Relationship) to 

predict the chemical properties given the compound structure. 

4.4.8 Use Cases Associated with a Technology Manager 

4.4.8.1 ORGANIZE REQUIREMENTS: The technology manager represents the 

domain experts from different areas of research and testing in the corporation. He 

studies new technology and current shortcomings in the system, and prioritizes new 

requirements from different users. He communicates with the system developer to 

assess and improve the structure and functionality of the system. 

4.4.9 Use Cases Associated with the System Developer 

4.4.9.1 OBTAIN REQUIREMENTS: The developer obtains requirements from the 

technology manager, and interacts with him to understand how the system will be used. 

Changes to the system are to be made incrementally, after new requirements come in. 
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4.4.9.2 DESIGN KNOWLEDGE BASE: The developer designs the database to 

organize current as well as archived data and results. He creates a client-server model 

of microarray analysis, and designs the interfaces for different users. 
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Fig. 4.5 Use Cases for the Computational Biologist/Chemist 
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Fig. 4.6 Use Cases for Compound Identification and Validation, and Pre-clinical 

Testing 
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Fig. 4.7 Use Cases for the Product Development Manager  
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1. Use cases such as Formulate Target Hypothesis (4.4.1.1), Find Similar Target 

(4.4.1.2.2.2), and Predict Target Structure (4.4.2.1.1), chiefly involve querying the 

in-house knowledge base on target properties such as the geometrical structure and 

relevant pathways. This is characterized by the Target subsystem. The attributes 

and operations of the Target class can be further specialized for individual target 

types such as receptors, enzymes, and other proteins. 

2. In a similar manner, Identify Lead Compounds (4.4.2.1), Optimize Lead 

Compounds (4.4.2.3), and Find Similar Compound (4.4.7.1.2) use cases make 

extensive use of a compound’s structural and chemical properties. The Chemical 

Compound subsystem handles these features. 

3. A large number of use cases such as those involved with target or compound 

identification and validation retrieve and query archived experimental data. These 

characterize the Experiment subsystem, consisting of diverse data like raw data, 

normalized expression values, etc. for many protocols, and array and experiment 

types. 

4. Many of the hypothesis-related use cases also use public genomic and structural 

databases. The PublicData subsystem can consist of collated information from these 

databases like pathways, structure, sequence, and homology information, which can 

also be retrieved on-demand. It can also provide access to Internet-based tools like 

BLAST for sequence comparison. 
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5. Frequent upgrades of the public databases, archiving validated information or 

completed projects, as well as access control privileges and maintenance is handled 

by the DB Administration subsystem.  

6. The LIMS subsystem deals with laboratory techniques and protocols in the 

acquisition and preparation of diverse samples, assays, and microarrays.  

7. Finally, the documentation of analysis steps and results from use cases in the target 

and lead compound identification and validation phases, are stored in the Analysis 

subsystem. This might also consist of archived results from use cases like Predict 

Target Structure (4.4.7.2), Design Libraries (4.4.7.3), Predict Compound Properties 

(4.4.7.4), Conduct Feasibility Analysis (4.4.6.1), and so on. The storage of data in 

this subsystem can be similar to a data warehouse and is used by all the major users 

of the system, making it the most important component of the system. It may be 

further specialized for target and compound analyses.  

Fig. 4.8 shows the high-level package diagram for the analysis system. The arrows indicate 

the dependency of packages on each other. The following section discusses the individual 

classes in each subsystem. 
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Fig. 4.8 Package Diagram 
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disease in Disease_Phenotype and the MYGD (MIPS Yeast Genome Database). Or, it 

might include data from primary databases like KEGG pathways, and related genomic 

information shown in Pathway, Pathway_Map, and related classes. 

Fig. 4.10 shows the Target, Compound and Analysis subsystems. The classes Target and 

Compound allow indexing across different chemical and physical properties. They can also 

be linked to an external structural database in the Public Data subsystem. The Analysis 

class shown here stores a report of a scientist’s study. This leads to its documentation in 

Analysis_Steps, of the experiments, methods used, and their parameters. As a specific 

example in the case of target and compound validation, the TC_Analysis class extends the 

Analysis_Steps class to include specific functions like finding significant genes/compounds 

and search. The TC_Analysis also permits the execution of ad hoc queries through the 

Random_Query interface. This extends the functionality to use cases like Conduct 

Feasibility Analysis (4.4.6.1) for other users. 

Finally, Fig. 4.11 shows the Administration and Experiment subsystems. The former 

merely shows the relation between large projects with many project groups and users. 

Details regarding user restrictions and other maintenance criteria are not discussed further 

here. The Experiment subsystem links the User class with experiments conducted by an 

individual. Each Experiment class object corresponds to many individual chips 

(environmental conditions) and each chip is defined by a protocol and parameter set. 
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Fig. 4.9 Public Data Subsystem Class Diagram 
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Fig. 4.10 Target, Compound, and Analysis Subsystem Class Diagram 
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Fig. 4.11 Experiment and Administration Subsystem Class Diagram 
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4.6 System Behavior 

Modeling system behavior allows us to capture what the system does, without specifying 

the actual implementation used. It thus allows us to simulate time-dependent execution of 

different scenarios and study them for correctness and efficiency.  

In Sec. 4.3, we defined the system requirements that specify behavior at the highest level. 

In this context, we now define the low-level functions, their inputs and outputs, and their 

ordering through functional flow block diagrams, as applied to common microarray data 

processing.  

Fig. 4.12 shows the functional flow block diagram (FFBD) for microarray data analysis, as 

a state-chart diagram. Each block indicates a state, and defines its main action. The arrows 

indicate transitions between states, which might be based on selection criteria, be 

concurrent (AND condition), or be optional (OR condition). The corresponding input-

output diagram for each function is shown in Fig. 4.13. The order of operations is 

explained below. 

The scientist imports generated microarray data and other experimental data from the 

archives in Function 1. The input to the function can be a gene or compound involved in 

the Experiment database, or any other description. Expanding this function in Fig. 4.14, the 

system should combine diverse experimental data into a single, standard format. 

In the next step, the scientist tries to build a data model by applying transformations to the 

data, and fitting various models to it. This might involve the use of information from 
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external sources like sequence and structure databases, and the use of visualization tools as 

detailed in Fig. 4.15.  

He/she then picks clustering methods and applies the data transform appropriate to the data 

model (Functions 6,7). A variety of filtering steps can be applied at this point to the data, to 

eliminate redundant or noisy features and reduce the dimension of the dataset (Function 8).  

Fig. 4.16 expands this function including filtering based on fold-variation, significant 

features, and function. The output of this step is a significant subset of features, which is 

used in clustering or classification in the next steps (Functions 9, 11).  

The scientist analyzes the clusters obtained by unsupervised clustering using contextual 

information from queries to external information sources (Fig. 4.17), while he uses the 

results of supervised classification directly for performance evaluation. For each type of 

dataset, he/she tries different algorithms and varies their parameters. He/she then generates 

a report of the findings and conclusions of the analysis, which can be made available to 

other groups within the organization. 
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Fig. 4.12 State-chart Diagram for Behavior
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Fig. 4.13 Input-output Diagram for Behavior
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Fig. 4.14 Lower-level FFBD for Function 1: Import Experimental Data 

 

 

 

 

 

 

 

 

 

Fig. 4.15 Lower-level FFBD for Function 4: Generate Visualizations 
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Fig. 4.16 Lower-level FFBD for Function 8: Filter Data 

 

 

 

 

 

 

 

Fig. 4.17 Lower-level FFBD for Function 10: Validate and Review Clusters 
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examples from the class diagrams. By indexing over target structure, it is possible to obtain 

targets with high structural similarity to a known one. This is defined in the 

FindSimilarStructure() operation of the Target_Structure class. Other related functions are 

FindSimilarCompound() in the Compound_Structure class, and FindSimilarProfile() in the 

Experiment class.  

The operations on the Compound class like PredictADMEProperties() are derived from the 

use case scenarios for the computational biologist/chemist. Such queries might also involve 

other subsystems and require indexing across heterogeneous databases. 

It is also important to note that the class diagrams above show only persistent object 

structure, and their constraints and relationships. By associating persistent object behavior 

with the database, the processing of array data can be handled by the DBMS itself. The 

advantage of this technique is that processing can be carried out using the DBMS 

optimizations in parallel with the application.  

ORDBMS products like Oracle 8 emulate database server behavior by allowing the 

operations to be coded in a database programming language like PL/SQL. The 

implementation can also be performed in modules containing the class methods, such as 

Oracle NCS Cartridges and Informix Data Blades. The features of the object-relational 

model and database extensions are discussed in Sec. 4.8. Here, we list some of the common 

data mining queries and the corresponding system responses derived from the UML 

models: 
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(i) What are the characteristics of a disease? (pathways, active compounds, known 

targets, disease phenotype, references)  

(ii) What are the properties of known targets? (target type, structures, function, 

chemical and geometric properties) 

(iii) Which experiments in MicroarrayDB involve the known targets and 

corresponding active compounds? (ExperimentID, data format, expression data) 

(iv) Which genes have shown activity similar to known targets? 

(v) Which genes are good discriminating instances across all experiments in a 

dataset? 

(vi) Which genes are likely to be drug targets from a set of experiments, given their 

sequence and structure? 

(vii) Which compounds are likely to show good activity, specificity and 

pharmacological properties (for ADME tests) on these targets? (QSPR) 

(viii) What compounds in the libraries are likely to give a comparable performance to 

an existing product? 

(ix) How will the activity of a compound be on a particular target given their 

structure? (QSAR) 

(x) Which drug research categories have high lead times? 

 

4.7 System Architecture Summary 

In this section, a variety of system architectures are studied, to determine how they meet 

the high-level requirements outlined in Sec. 4.3. 
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A simple two-tier client-server architecture (Fig. 4.18) distributes the functions of user 

interface (session tracking, console, display, etc.) and database management (application 

execution). Both tiers share the process management functions such as process 

development, monitoring, and resources. Business logic is usually implemented as stored 

procedures and triggers in the database management server. This architecture is 

advantageous in offloading computational load on the client's side and reducing the amount 

of data transfer over the network. However, there are several shortcomings with this 

approach. When the application resides on the client machine, it is difficult to maintain 

application versions and integrate new applications. Further, the implementation of 

business logic, which is data-intensive, through stored procedures on the database server is 

limited by the server's processing power as the complexity of computation or the number of 

applications or users increases. When processing occurs on the server, its link with the 

client is kept alive through 'hello' messages, increasing network load. Typically, the 

performance of a two-tier architecture deteriorates beyond one hundred users ([36]). 

 

Fig. 4.18 Two-tier Client/Server Architecture [36] 

The three-tier client-server architecture (Fig. 4.19) overcomes some of these limitations by 

incorporating an additional application services layer as the middle tier. It handles 
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application execution and queuing, allowing the client to detach itself from the database 

server during processing. Now, each client application is linked with multiple applications 

and upgrades can be performed with minimal configuration changes. 

The three-tier architecture can be extended for example, by considering further abstractions 

of application management at the level of project phases or scientific analyses, leading to a 

n-tier architecture. Though such architectures have desirable properties in terms of 

scalability, reusability, and abstraction, the structure causes the application code design to 

become very complex. This is especially true in handling data transfer operations while 

collating heterogeneous databases and communication between applications in different 

programming environments. 

 

Fig. 4.19 Three-tier Client/Server Architecture [37] 

The distributed-object computing model incorporates an object-oriented approach in 

handling such problems. It partitions applications into components interacting with 

particular elements of the architecture. For instance, an algorithm mining microarray 
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expression data can be divided into database-intensive and algorithmic components, and 

these can be executed on specialized hardware. 

Distributed computing architectures like CORBA (Common Object Request Broker 

Architecture) provide the abstract IDL (interface definition language) utility, which 

allows communication between heterogeneous objects such as applications written in 

different programming languages, different database management systems, and 

platforms. The CORBA architecture (Fig. 4.20) also provides services like object 

lifecycle management, naming, and persistence. 

Fig. 4.20 CORBA Architecture [38] 

4.8 Data Architecture and Database Extensions 

Bioinformatics applications involve heterogeneous data, such as pathway diagrams, 

nucleotide sequences, molecular structures, and diverse microarray data formats. A large 

number of queries derived from the use cases collate information across different data 
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types and finding patterns in uncommon data types like molecular structures, gene 

expression, and so on.  

The traditional relational data model is restrictive in modeling the structure of data and 

such queries based on particular properties would need to be implemented as part of the 

application behavior, thereby increasing complexity and execution time.  

The object-relational data model provides several extensions to the relational and object-

oriented models:  

• The ability to implement restrictions on data types as subtypes.  

• Encapsulated data types, which can be extending from the base types, and can be 

implemented by separate indexing and access methods.  

• Complex objects and collections like nested tables, typed columns, references, and 

function indices.  

• More complex rule mechanisms compared to relational triggers.  

The following examples show how object-relational database extensions can be designed 

to handle bioinformatics queries:  

• Operator and function notation in place of indices. E.g. NearestNeighbor()  

• User-Defined Aggregates: E.g. Centroid (similarity)  

• User-defined Comparison Operators: E.g. MoreSpecificThan() 
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CHAPTER 5: LEARNING ALGORITHMS 

5.1 Introduction 

In this chapter, we discuss a few algorithms that implement by the system behavior 

described in the previous chapter. We begin with a description and properties of a new 

similarity measure for gene expression data based on raw, un-normalized values, called the 

Symmetric Kullback-Liebler similarity measure. In the later sections, we describe the 

analysis methods. 

5.2 Similarity Measures 

The database behavior described in Chapter 4 required several algorithms involving search, 

indexing, and clustering procedures. With a variety of microarray manufacturing 

techniques, this requires the development of appropriate measures of similarity of gene 

expression.  

5.2.1 Microarray Expression Data 

In particular, we look at two types of microarrays - cDNA and oligonucleotide arrays. An 

expression value from a cDNA array represent the lognormal ratio of the amount of RNA 

present in an experiment sample to that measured in a control sample. Oligonucleotide 

array expression values indicate the average difference between (approximately 10) 

replicate probe pairs containing the perfect match (PM) and mismatch (MM) values [7]. 

Because of manufacturing technique and standardization procedures, oligonucleotide arrays 

have a very high reproducibility compared to cDNA arrays as explained in Sec. 3.1.1.  
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5.2.2 Probabilistic Models of Microarray Data 

With common microarray technologies, it has been noted that the log-values of expression 

data for a functional class or a phenotype, roughly follow the Gaussian distribution ([9]). In 

our analysis, we also implicitly assume conditional independence. This is a reasonable 

assumption since we focus on classification based on co-expression and are not trying to 

infer higher-level genetic interactions. Thus the likelihood of a set of m genes {gi} with 

expression values D = {xij} over n experiments, where j indicates the experiment index, 

belonging to a class k is given by - 

2 2
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( | , ) ( | , ),
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It has been shown in numerous experiments ([1], [2], [8], and [23] for example) that the 

log-Euclidean distance over expression values has been successful in classification 

problems. 

 

5.2.3 Unnormalized Symmetric Kullback-Liebler Measure 

In this section, we discuss the formulation and properties of a novel similarity measure for 

microarray data, which was developed by A. S. Baras and J. S. Baras in [24,25] and 

utilized in [23,25,26,27].  

This measure is based on the relative entropy or the Kullback-Liebler (KL-) distance from 

information theory, which measures the error (in terms of the excess number of bits 
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needed) to represent a random variable with a distribution q, given that its true distribution 

is p. For a random variable x, the KL-distance is given by 

2 2

( ) ( )
( || ) ( ) log log

( ) ( )p
x X

p x p x
D p q p x E

q x q x∈

= =∑  

The KL-distance is also known as relative entropy([30]). The relative entropy is 

asymmetric and measures the deviation between the two distributions.  

The unnormalized symmetric Kullback-Liebler measure quantifies the dissimilarity 

between two expression indexes (over genes or experiments), so that it is symmetric and 

there is no need for normalization of the expression data; its novelty is the latter property. It 

is based on the un-normalized expression indexes like the average difference values in 

oligonucleotide arrays and the fluorescence ratio of Cy5 to Cy3 in cDNA arrays. We follow 

[24,25] in describing it here. 

Definition ([24,25]): The unnormalized symmetric Kullback-Liebler measure between two 

expression vectors x and y of length N is defined as  
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Properties ([24,25]): 

1. ( || ) 0D x y ≥ , if , 0, 1,...,i ix y i N> =  
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( || ) 0D x y = , iff  i ix y i= ∀  

2. ( || )D x y  is convex in the pair (x, y).  

1 2 1 2 1 1 1 1( (1 ) || (1 ) ) ( || ) (1 ) ( || )D x x y y D x y D x yλ λ λ λ λ λ+ − + − ≤ + − , where 0 1λ≤ ≤  

3. There exists a unique centroid c of a set kS = {x }, k=1,...K of vectors of length N 

based on the unnormalized symmetric Kullback-Liebler measure given by the 

solution of the following equation ([24,25]). 
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mean. Further, the centroid is bounded by the two means: 
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The unnormalized symmetric Kullback-Liebler measure describes quantitatively the 

dissimilarities between two expression vectors x and y, assuming either is the true 

distribution. It combines the value difference and fold variation (log-values) between the 

two vectors, and can lead to a more accurate prediction across classes where genes have 

widely varying levels of expression. With reference to the planar separating surfaces 

formed by the log-Euclidean distance during classification, we note that the unnormalized 

symmetric Kullback-Liebler measure leads to non-linear hyper-surfaces. 
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5.3 Learning Algorithms 

In this section, we look at specific algorithms for different types of gene expression 

analyses. The chief properties of such algorithms should include: 

• Minimum inductive bias. 

• Ability to handle noisy and irrelevant attributes, and outliers. 

• Ability to handle different similarity measures. 

• Good initial hypothesis. 

• Ability to generalize well with limited training data. 

5.3.1 LBG/LVQ Algorithm  

The Linde-Buzo-Gray algorithm (LBG) or the Generalized Lloyd algorithm [19] is a signal 

approximation algorithm, which generates a codebook of centroid vectors. We use LBG for 

unsupervised clustering in a tree-structured manner ([15]). The algorithm starts with a 

representative pattern of gene expression for the entire dataset and partitions the pattern 

space by applying small perturbations at each successive node. At the same time, it 

iteratively optimizes the codebook at each level until the centroids at the level are 

stationary. The stopping rule for LBG is based on the percentage decrease in the overall 

distortion. The algorithm steps are listed below. 

1. Given the input matrix MxNX , initial learning rate ε , fix the number of codevectors 

K = 1 and the tree depth L=1. 
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2. Node splitting: Set 2K K= , L=1, and for k=1,2,…K, initialize the codevectors at 
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3. Set the iteration index i=0 and 
( )

1
i

LErr Err= . 

(i) Find the closest centroid to each data vector xl and the associated class C(xl) as 

( ) arg min( ( , ))i i
l l k

k

C x dist x c= . 

(ii) Update the codevector for the K classes. For k=1,…,K,  

1 ({ : , ( ) })i i
kc centroid x x X C x k+ = ∈ = . 

 Set i = i + 1 and evaluate the new error i
LErr . 

(iii) If 1 1( ) /i i i
L L LErr Err Err ε− −− > , go to step (i). Otherwise, for k=1,…,K, set i

k kc c= . 

4. Repeat steps 2 and 3 until the desired number of levels is reached. 

Learning vector quantization (LVQ) [18,28,29] is a neural network learning method, which 

uses the nearest neighbor rule to train the codebook. Its inductive bias simply states that the 

code vectors of a class are closer to its instances.  
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Each cluster from the LBG algorithm is labeled with the class that has the maximum 

percentage proportion of members in it. This codebook forms the input to supervised LVQ 

training. The code vector closest to the training instance is moved at a rate proportional to 

the gradient of the distance, as per the LVQ1 competitive learning rule ([21]). The learning 

rate is decreased uniformly with time. The LVQ algorithm steps are listed below. 

1. Set the iteration index 1iter =  and the learning rate 0

iter

αα = , where 0α is the initial 

learning rate. 

2. Pick a random instance x and determine its nearest code vector co. Update the centroid by 

distance( , ),  ( ) ( )

distance( , ),  ( ) ( )

o o
n

o o

c x c h x C x
c

c x c h x C x

α
α

 + ∇ = =  
− ∇ ≠  

, where 0 1α≤ ≤ , h(x) is the class of the 

nearest centroid and C(x) is the true class of x. 

3. Repeat 1 and 2 until the centroids converge. 

Being a gradient-descent algorithm, LVQ can converge to local minima. The performance 

of LVQ strongly depends on the initial codebook vectors. Hence, we expect that systematic 

initialization by LBG should outperform a random initialization of K centroids.  

The class boundaries formed by LVQ are composed of finite hyperplanes with the 

Euclidean distance and of finite hypercurves with unnormalized symmetric Kullback-

Liebler measure. 
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5.3.2 Support Vector Machines 

Support vector machines (SVM)[12] are classifiers based on statistical learning theory, 

which map the input space to a high-dimensional space of non-linear features. This 

mapping is implicitly made via a kernel function and all the computation is performed with 

the input space vectors.  

The SVM training algorithm generates hyperplanes in the feature space, whose margin is 

optimized to obtain good generalization. Consider a data set composed of N expression 

vectors <xi, yi>, where yi denotes the label for the data vector xi. Using the notation from 

[11], the problem of finding the weight vector w can be formulated as minimizing the 

function  

21
( ) || ||

2
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Here, the function ( )xφ maps the input vector to the feature vector. The dual formulation is 

given by maximizing  
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The iα ’s are the Lagrange multipliers and C is the regularization parameter. Non-negative 

iα ’s correspond to support vectors. ( , ) ( ). ( )i j i iK x x x xφ φ=  denotes the kernel function 

satisfying Mercer’s theorem, which states that  

“For all vectors ,x z D∈ (here, D is the input domain), there exists a mapping φ  to the 

feature space F, iff the function ( , )K x z  is symmetric and positive semi-definite [12].” 

Kernel functions used in Chapter 6 are listed in Table 5.1 below. 

TYPE OF KERNEL KERNEL FUNCTION 

Linear Kernel ( , ) ,i j i jK x x x x c=< > +  

Polynomial Kernel ( , ) ( , )d
i j i jK x x x x c= < > +  

Gaussian Kernel 
2

2
( , ) exp i j

i j

x x
K x x

σ
  < − >

= −   
   

 

 

Table 5.1 SVM Kernel Functions 

The generation of SVM surfaces assumes no prior probability distributions and the solution 

obtained is the global optimum. Thus, the accuracy of SVMs provides an upper bound for 

gradient-descent methods like LVQ when similar hypothesis spaces are considered. They 
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also have good generalization properties because SVM training minimizes the empirical 

risk for a chosen hypothesis space.  

Choosing a particular kernel function imposes a restriction bias on the analysis. Another 

limitation is illustrated by the fact that the unnormalized symmetric Kullback-Liebler 

measure does not satisfy Mercer’s conditions and cannot be represented as a kernel 

function. 

5.3.2 IB3 Algorithm 

The IB3 algorithm developed by Aha et al. ([13]) is an instance-based learning algorithm. 

It classifies new instances in a lazy manner, using a set of representative stored instances 

called the concept description. The nearest neighbor rule is used to associate the test data to 

the class of the closest stored instance.  

IB3 eliminates the high computational cost involved in the testing phase of instance-based 

methods by storing instances with good predictive strengths. In the training phase, the 

algorithm stores misclassified instances in the concept description and associates a 

classification accuracy for all instances. The algorithm performs a statistical test to accept 

or reject new instances based on the classification accuracy and the prevalence of the 

instance’s true class, thus eliminating noisy data. The final concept description generated 

after one epoch is thus likely to contain instances a little farther from the class boundary 

than methods like IB2, which store all misclassified instances. The algorithm steps are 

described below. 

1. Initiate the concept description CD φ= . 
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2. Loop over the training instances x D∈  

(i) For each y CD∈ , evaluate its distance dist(x, y). 

(ii) If there exists an acceptable instance in CD,  

[ ]max arg min ( , ) , ( )
y

y dist x y y AcceptableSet CD= ∈  

Else:  

Pick a random number i of instances from CD and set ymax to the i-th most similar 

instance. 

(iii) If max( ) ( )class y class x≠ , add x to CD. 

(iv) Update classification records: 

For all y whose max( ) ( )dist y dist y≤ , update the classification record. 

If the upper bound of y’s accuracy ( , ) ( ( ))ub
rejectaccuracy y prevalence class yα ≤ , 

discard y. 

Else if the lower bound of y’s accuracy ( , ) ( ( ))lb
acceptaccuracy y prevalence class yα ≥ , 

accept y. 
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In [13], Aha et al. have shown that the concept description set stores instances with high 

classification accuracy, robustness, noise insensitivity, and high utilization (in terms of 

classifying other instances during training).  

IB3 has a restriction bias towards convex concepts. It shows poor performance with sparse 

data sets, and is very sensitive to irrelevant attributes. However, it has minimal inductive 

bias as it can approximate class boundaries with piecewise linear surfaces (with the 

Euclidean distance). This feature makes it suitable, for example, to learn informative 

instances in pre-filtering steps. Compared to IB3, decision trees have a stronger bias as 

their separating surfaces are hyper-rectangles. 
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CHAPTER 6: RESULTS 

6.1 Objectives 

The aims of the experiments described in this chapter are as follows. 

• Evaluate the performance of supervised classification of the LVQ algorithm with 

LBG codebook initialization and SVMs. 

• Compare the unnormalized symmetric Kullback-Liebler measure against Euclidean 

distance in similarity-based algorithms with oligonucleotide arrays (the Find 

Similar function). 

• Evaluate the performance of the similarity measures in retrieving informative 

instances (the Find Discriminating function). 

• Conduct experiments on two applications of expression analysis - gene functional 

classification and phenotype classification. 

6.2 Description of Microarray Data  

The three datasets used in testing the algorithms denote distinct applications in microarray 

expression analysis, namely, phenotype classification and functional classification.  

6.2.1 Lymphoma Dataset 

The lymphoma cDNA array dataset comprises gene expression patterns of genes involved 

in different classes of lymphoma and normal cell lines from Alizadeh et al [1].  
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The mechanism of cancer is characterized by uncontrolled growth and proliferation brought 

about by mutations to vital genes. Cancer diagnosis has traditionally been carried out based 

on clinical and molecular evidence such as cell and tissue type, and heredity. However, 

such information is mostly incomplete for evaluation or prognosis. It also leads to re-

validation or re-classification in some cases of cancer. By studying the phenotype or the 

genetic signature of the set of relevant genes for a particular condition, using microarray 

gene expression data, it is possible to understand the mechanism at the genetic level. Such 

analysis is related to pharmacogenomic studies to design customized drugs. 

In [1], Alizadeh et al collect the gene expression in three classes of lymphoid malignancies: 

diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic 

lymphocytic leukemia (CLL), and genes relevant to lymphocyte and/or cancer biology, as 

shown in Table 6.1. The notation is given below.  

CELL TYPE DESCRIPTION 

DLBCL Diffuse Large B-cell Lymphoma 

GCB Germinal Center B 

NLT Normal Lymph Node/Tonsil 

APB Activated Peripheral B 

RAT Resting/Activated T 

TCL Transformed Cell Line 

FL B-cell Follicular Lymphoma 

RPB Resting Peripheral B 

CLL Chronic Lymphocytic Leukemia 

Table 6.1 Lymphoma Tissue Types 
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The microarray dataset consists of expression values from 4026 genes involved in 96 

subpopulations. Each data point Xij represents the logarithm of the Cy5/Cy3 fluorescence 

ratio for gene j in tissue sample i. The distribution of tissue types in the sample dataset from 

[1] is shown in Table 6.2. 

 DLBCL GCB NLT APB RAT TCL FL RPB CLL 

#Arrays 46 2 2 10 6 6 9 4 11 

Cancerous 
Tissue? 

Y N N N N Y Y N Y 

Table 6.2 Tissue Sample Distribution 

In the case of a disease or malignancy, pharmacological studies have found that functional 

genes are likely to have a binary mode of operation.† Thus, in the identification of drug 

targets, the biologist is only concerned with genes that exhibit discrepancies in the 

signature. That is, their expression is either unaffected by the cellular condition, or they are 

inhibited. 

 

6.2.2 Yeast Data 

The second dataset consists of the genome-wide expression in budding yeast in response to 

different cell cycle-related processes like the diauxic shift, sporulation, pressure and 

reducing shocks. Since the expression values are representative of well-known cellular 

processes, co-expression analysis is expected to yield genes that are regulated by a 

common upstream transcription factor, belonging to a common metabolic pathway, or 

coding similar proteins. 
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This is an example of a case where genome-wide expression data is necessary to make 

sound predictions about gene function. The yeast data from cellular processes hides 

complex underlying mechanisms, which can be understood only by looking at the global 

genome expression. 

The microarray measures the expression of 6221 genes in the yeast genome, collected at 79 

time points during the diauxic shift (shift from anaerobic to aerobic respiration), division 

cycle, sporulation, and temperature and reducing shocks. A data point Xij represents the 

logarithm of the expression of gene i at time point j, as compared to a control.  

In [4], Eisen et al. used pairwise-linkage clustering to show that genes of five functional 

classes cluster together well based on expression data alone. These classes correspond to 

the MYGD (MIPS Yeast Genome Database) functional classes of tricarboxylic acid, 

respiration (TCA), cytoplasmic ribosomes, proteasomes, helix-turn-helix proteins (HTH), 

and histones. The HTH protein group is not expected to cluster well in this experiment, and 

is included as a control group. Brown et al. [2] showed superior results in accurately 

classifying these functional classes using support vector machines. The distribution of 

genes across these classes is shown in Table 6.3. 

FUNCTIONAL CLASS # SAMPLES 

Histones  

HTH Proteins 16 

Proteasomes 35 

Respiration 27 

                                                                                                                                                 
† Private discussions with Novartis Pharmaceuticals 
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Ribosomes 120 

TCA 14 

Table 6.3 Distribution of Yeast Functional Classes 

6.2.3 Leukemia Data 

These experiments from Golub et al. ([5]) attempt to differentiate between two types of 

acute leukemias – acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). 

Traditional identification techniques for leukemia have been based on factors like the 

morphology and the course of clinical trials. Microarray experiments have been shown to 

provide a systematic understanding and make accurate prediction feasible as described in 

[5].  

There are two data sets available for training (class prediction) and testing (class 

discovery). The training data consists of 38 bone marrow samples of adult leukemia 

patients, of which 27 are of the ALL type and 11 of the AML type.  The test data set is 

chosen independently, and consists of 24 bone marrow and 10 peripheral blood samples.  

The supervised learning algorithms are trained on a portion of the training set during cross-

validation experiments and tested on the remainder (class prediction). The separating 

surfaces generated during training are also used to identify the type of leukemia in the 

independent testing data set (class discovery). 
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6.3 Methods 

6.3.1 Supervised Classification 

Supervised classification with LBG/LVQ, SVM, IB3, and C4.5 algorithms, is performed 

using 3-fold cross-validation (except where indicated). Multiple runs with the data sets 

have been used to determine parameters like the LVQ learning rate, number of epochs in 

training, and the tree height in LBG. 

The SVMTorch support vector machine software [31] used here is Ronan Collobert’s 

implementation for large data sets and uses sequential minimal optimization (SMO). For 

multi-class problems, SVMTorch trains each class with a one-over-all mechanism. 

The IB3 algorithm implementation uses 90% and 68% confidence intervals for accepting 

and rejecting instances respectively, when compared to the corresponding class frequency. 

The C4.5 decision tree algorithm performs classification by repetitively choosing 

attribute/value pairs, which minimize the overall entropy after partitioning the data space. 

Quinlan’s information gain (or gain ratio to compensate diverse populations among classes) 

can be used to select attributes at each step. The decision tree is then post-pruned based on 

a user-specified threshold similarity, to avoid over-fitting. 

 

6.3.2 Similarity-based Clustering  

The log-Euclidean and the unnormalized symmetric Kullback-Liebler measures are 

compared using a simple nearest-neighbor algorithm. We do not expect to see significant 

differences in the performance with cDNA arrays, as against oligonucleotide arrays. 
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6.3.3 Comparison of Algorithms 

In all methods described, we generate the confusion matrices and measure the overall 

accuracy and the accuracy of individual classes.  

The performance of two learning algorithms is compared by a t-test. The average error rate 

of two learning algorithms 1L  and 2L , trained and tested on the same data sets Sk and Tk is 

given by 

1 2
1

1
( ( )) ( ( ))

k k

K

T k T k
k

err L S err L S
K

δ
=

 = − ∑ .  

The N% confidence interval for δ  to be an estimate of the true error difference is given by 

, 1N Kt sδδ −± ,  
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1

1
( )

( 1)

K

k
k

s
K Kδ δ δ

=

= −
− ∑   

and , 1N Kt −  is the t-test value for two-sided confidence intervals [14]. 

6.4 Experiments 

6.4.1 Lymphoma Data 

Two types of classification are studied with the lymphoma data:  

• Binary classification between cancerous and non-cancerous samples. 

• Tissue type classification based on global gene expression. 
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In Cai et al.[3], differential analysis based on genes known to be involved in B-cell 

lymphoma, has been shown to have no significant impact on the classifier’s ability to 

recognize cancerous tissues. Hence, in both cases, we do not distinguish between the 

selected genes based on prior knowledge. The C4.5 algorithm is expected to classify 

cancerous tissues if the genetic signature of a subset of genes is a sufficient indicator. 

Using the performance measure defined above, the results from the LVQ algorithm are 

compared with those from other supervised learning techniques in [3], viz., SVM and C4.5 

decision tree, using 10-fold cross-validation.  

6.4.1.1 Binary Classification of Cancerous/Non-cancerous Tissues 

For both cancer detection and tissue type identification (Section 6.4.1.2) experiments, the 

initial codebook generated by the LBG algorithm consists of 16 code vectors and the LVQ 

algorithm is trained for over 2 epochs. 

Table 6.4 shows the typical performance of LVQ with the log-Euclidean distance for 

cancer detection. These results on error average and variance are compared with results 

from Cai et al. ([3]) using a linear-kernel SVM and a C4.5 decision tree. In Table 6.5, the 

results from the LBG/LVQ algorithm are based on 10 cross-validation experiments, and 

compare closely to the globally optimal SVM method. The LBG/LVQ algorithm gives a 

much better and more stable performance compared to the C4.5 decision tree algorithm. 

LVQ 
CLASSIFICATION 

TRUE 
POSITIVE 

TRUE 
NEGATIVE 

FALSE 
POSITIVE 

FALSE 
NEGATIVE 

Cancerous Tissues 72 22 2 0 
Non-cancerous 
Tissues 22 72 0 2 



 81

Table 6.4 Log-Euclidean LVQ Classification Error for Cancer Detection using 10-fold 

Cross-validation 

  LVQ SVM C4.5 
Average Error 
Rate 

2.08% 1.04% 18.55% 

Error Rate Std. 
Devn. 

0.01% 0.03% 13.83% 

Table 6.5 Classification Error Comparison for Cancerous/Non-cancerous Cells using 

10-fold Cross-validation 

6.4.1.2 Tissue Type Classification of Cancerous Cells 

Table 6.6 and Fig. 6.1 show the classification of tissue types of cancer cells by the three 

algorithms with 10-fold cross-validation. As in the binary classification case, we see that 

the LVQ algorithm initialized with LBG closely follows the performance of the SVM, and 

both outperform the decision tree algorithm by a large margin.  

The overall error rate of LVQ is more than two times that of the SVM, in tissue type 

classification as shown in Table 6.7. 

CANCER TISSUE 
CLASSIFICATION 

  TP TN FP FN ERROR 
RATE 

LVQ 8 82 3 3 6.25% 
SVM 11 83 2 0 2.08% CLL 
C 4.5 4 79 6 7 13.54% 
LVQ 42 48 2 4 6.25% 
SVM 43 49 1 3 4.17% DLBCL 
C 4.5 38 46 4 8 12.50% 
LVQ 9 87 0 0 0.00% 
SVM 9 86 1 0 1.04% FL 
C 4.5 5 85 2 4 6.25% 
LVQ 6 88 2 0 2.08% 
SVM 6 88 2 0 2.08% TCL 
C 4.5 4 88 2 2 4.17% 

Table 6.6 Classification Error for Cancerous Tissues using 10-fold Cross-validation 
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Fig. 6.1 Tissue Classification Error Comparison 

TISSUE CLASSIFICATION LVQ SVM C4.5 

Average Error Rate 9.72% 4.17% 29.17% 

Table 6.7 Overall Error for Tissue Type Detection using 10-fold Cross-validation 

6.4.2 Gene Functional Classification from yeast data 

The following simulation runs involve genes in the six functional classes mentioned in the 

data description. The objective is to test the ability of the decision surfaces generated by the 

algorithms and similarity measures to separate these functional classes. In this step, we 

compare the ability of the LVQ and SVM algorithms in supervised functional 

classification. The LVQ algorithm is initiated with a codebook of 16 vectors and converges 

after training over one epoch. We test the SVM method for three types of kernels – linear, 

Cancerous Tissue Classification Error Rate
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C 4.5 13.54% 12.50% 6.25% 4.17%
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Gaussian, and second degree polynomial kernels. In all cases, 3-fold cross-validation is 

used. 

Table 6.8 gives a description of typical training and test data distributions in the six 

functional classes.  

CLASS ID / 
SIZE DESCRIPTION TRAINING TESTING TOTAL 

1 Diverse 1493 746 2239 
2 TCA 7 7 14 
3 Respiration 17 10 27 
4 Ribosomes 80 40 120 
5 Proteasomes 25 10 35 
6 Histones 8 3 11 
7 HTH 12 4 16 

Table 6.8 Yeast Data Set Distributions 

Fig. 6.2 shows the estimated overall error rate and the 95% confidence intervals with 

different algorithms. We can clearly see that the LVQ algorithm performs as well as the 

SVM, though there is no significant difference between the two similarity measures. This is 

also illustrated by the similarity in representative confusion matrices for the two distances 

in Tables 6.9 and 6.10. The SVM algorithm with the Gaussian kernel has the least average 

error rate, and also outperforms the unnormalized symmetric Kullback-Liebler LVQ 

algorithm with 95% confidence. 
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Fig. 6.2 Overall Error Rate Comparison with 3-fold cross-validation 
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Table 6.9 Confusion Matrix for LVQ Testing with the log-Euclidean Distance 

 

 

 

 

 

 

Table 6.10 Confusion Matrix for LVQ Testing with the Unnormalized Symmetric 

Kullback-Liebler Measure  

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 736 6 9 3 3 0 4
P2 0 0 0 0 0 0 0
P3 0 1 1 0 0 0 0
P4 6 0 0 37 0 0 0
P5 4 0 0 0 7 0 0
P6 0 0 0 0 0 3 0
P7 0 0 0 0 0 0 0

746 7 10 40 10 3 4

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 0.9866 0.8571 0.9 0.075 0.3 0 1
P2 0 0 0 0 0 0 0
P3 0 0.1429 0.1 0 0 0 0
P4 0.008 0 0 0.925 0 0 0
P5 0.0054 0 0 0 0.7 0 0
P6 0 0 0 0 0 1 0
P7 0 0 0 0 0 0 0

CONFUSION MATRIX (TESTING) WITH EUCL. LBG/LVQ ALGO

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 728 7 10 4 2 0 4
P2 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0
P4 5 0 0 36 0 0 0
P5 13 0 0 0 8 0 0
P6 0 0 0 0 0 3 0
P7 0 0 0 0 0 0 0

746 7 10 40 10 3 4

PREDICTED/ACTUAL A1 A2 A3 A4 A5 A6 A7
P1 0.9759 1 1 0.1 0.2 0 1
P2 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0
P4 0.0067 0 0 0.9 0 0 0
P5 0.0174 0 0 0 0.8 0 0
P6 0 0 0 0 0 1 0
P7 0 0 0 0 0 0 0

CONFUSION MATRIX (TESTING) WITH SKL LBG/LVQ ALGO
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Fig. 6.3 Comparison of Error Rates for Individual Classes using 3-fold Cross-

validation 

Fig. 6.3 shows the error rate components for individual functional classes. The helix-turn-

helix proteins are the control group, while the other five named classes are known to 

respond to the conditions. We see that taking the standard deviation into consideration, the 

methods are indistinguishable in all classes. All classes are able to classify histones, 

ribosomes and genes in the tricarboxylic acid (TCA) cycle consistently. 

6.4.3 Cancer Classification and Discovery in Leukemia data 

Two types of experiments are conducted with the leukemia data – leukemia class prediction 

with the training dataset and class discovery with the independent testing dataset. The 

oligonucleotide array data used here measures the average difference values for each gene 

Error Rate Comparison for Individual Classes
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SVM (Linear) 0.98% 0.73% 0.37% 0.24% 0.37% 0.00% 0.49%
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in an experiment against a control.  The pre-processing step involves setting negative 

expression values to 20; we do not exclude genes marked absent in certain experiments.  

We primarily study the Find Discriminating function (Use Case 1.2.1 in Sec. 4.4), which 

tries to filter a small subset of genes, which are sufficient to predict a disease phenotype, 

and which can be used to classify new phenotypes. We compare four different methods 

using the following performance measures: 

(i) Cross-validation error with the training set. 

(ii) Overall error with the independent testing set. 

(iii) Number of genes required obtaining certain prediction accuracy with the 

independent testing set. 

6.4.3.1 Prefiltering with the IB3 Algorithm 

As in the method described in [5], we choose the ideal expression pattern as the one which 

is uniformly high in the ALL experiments and low in the AML experiments, and vice-

versa. We then pick genes {g}, which have a close resemblance to this pattern c’, based on 

the following similarity measure: 

( , ')
ALL AML
g g

ALL AML
g g

P g c
µ µ
σ σ

−
=

+
 

We picked an arbitrary absolute threshold value of 0.5 to prefilter leading to 1331 ‘active’ 

genes. 
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The class prediction tests now involve several steps: 

• Cluster with the unsupervised LBG algorithm and label the genes based on the 

initial codebook. 

• Pick informative instances from the clusters using the IB3 algorithm. 

• Filter acceptable stored instances with high predictive accuracy exceeding its class 

frequency by a large margin. 

• Use this set of ‘informative’ genes in clustering across experiments using the LVQ 

and SVM algorithms. 

Here, we note that we use the nearest neighbor rule to predict the class and do not take a 

weighted vote from all the informative genes, as in [5].  

The LBG algorithm divides the 1,331 genes into 4 clusters and the IB3 algorithm picks 59 

and 66 instances of high-accuracy, with the log-Euclidean and the unnormalized symmetric 

Kullback-Liebler measures respectively. The training data composed of expression 

measurements of these genes across 38 types of leukemia, are used to train LVQ with 4 

code vectors.  

In a similar manner, the set of informative genes from the log-Euclidean distance based 

filtering, is used to train SVMs. 
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The error rates from 3-fold cross-validation experiments with these training methods are 

shown in Fig. 6.4. The log-Euclidean LVQ algorithm shows the best average error rate of 

all algorithms.  

The performance of LVQ algorithms before pre-filtering shown in Fig. 6.5 shows that IB3 

is able to capture certain discriminative instances. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4 Average Class Prediction Error over the Training Set 
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Fig. 6.5 Decrease in Classification Error with IB3 Discriminative Instances 

Fig. 6.6 shows the performance of the learning algorithms on the independent testing data 

set using the same set of discriminating genes as in the training set. We find that both LVQ 

and SVM algorithms fail badly on the testing data compared to results from [5], indicating 

a defect in the pre-processing steps and the retrieval of stored instances from IB3. Further, 

we also note that the unnormalized symmetric Kullback-Liebler measure leads to a 

significantly poorer performance compared to the log-Euclidean distance on this data set. 
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Fig. 6.6 Classification Error Variation on the Independent Testing Data Set  

6.4.3.2 Pre-filtering with the Relative Distance 

In this method, we compare the relative distance between the expression profiles of a gene 

in the 27 ALL and 11 AML data sets, to filter ‘interesting’ genes. The objective is to 

identify genes that have uniformly high dissimilarity between the two classes. The steps are 

listed as described below. 

(i) Eliminate gene profiles that are constant or show low variation (This filters 483 

genes). 

(ii) Randomly select 100 combinations of 11 ALL experiments corresponding to 

each gene and evaluate their distance with the corresponding AML profile. 
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(iii) Sort the genes by the coefficient of variation 
µ
σ

 of the distances. Pick N genes 

with the least value. 

(iv) Apply the LBG/LVQ algorithm to determine cross-validation error on the 

training dataset, and perform unsupervised clustering with the LBG algorithm 

on the independent testing dataset. 

Fig. 6.7 shows the results of the method with the log-Euclidean and SKL similarity 

measures. We find that by filtering to a much smaller subset of genes (N = 30-70) gives an 

improved performance over classification with the independent testing dataset. The SKL 

similarity gives a better performance with 30 and 50 discriminating genes compared to the 

log-Euclidean similarity over the testing dataset. 

 

 

 

 

 

 

Fig. 6.7 Class Discovery Error with the Relative Distance Method 
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Table 6.11 shows the best performance of the algorithm using 30 and 50 discriminating 

genes; we find that both similarity measures perform similarly with this training set. 

Find_Discriminating Error Mean/N = 50 Std. Dev. Mean/N = 30 Std. Dev. 
Rel. Distance (Log-Euclidean) 23.29% 12.95% 31.41% 20.02% 
Rel. Distance (SKL) 24.15% 17.01% 29.06% 5.34% 

Table 6.11 Average Class Prediction Error with the Relative Distance Method and N 

= 50 

6.4.3.3 Pre-filtering with Principal Components Analysis 

Principal components analysis (PCA) is a second-order statistical method that finds linear 

components of genes, called eigen-genes, which explain the maximum amount of variance. 

PCA is inherently applicable to Gaussian data, and hence we use log-AvgDiff values based 

on the assumption stated in 5.2.2 and [9]. 

Using singular value decomposition (SVD), it is possible to obtain K  (= min( , ))M N  

combinations of genes from a (N genes x M experiments) dataset, which contribute to the 

total variance in decreasing order. We use the profiles of these eigen-genes to determine the 

discriminating genes as follows: 

(i) Eliminate gene profiles that are constant or show low variation and center the 

dataset consisting of the log-values of Average Difference measurements. 

(ii) Perform SVD on the centered dataset. 
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(iii) Pick the principal component PCi that explains a large proportion of the 

variance and is closest to the ideal reference vector (uniformly high in one class 

and low in the other). 

(iv) Sort the genes that are closer to PCi than other principal components by their 

correlation with PCi.  

(v) Pick the top / 2N  genes with high positive and negative correlations to obtain 

the discriminating genes. 

(v) Apply the LBG/LVQ algorithm to determine cross-validation error on the 

training dataset, and perform unsupervised clustering with the LBG algorithm 

on the independent testing dataset. 

The results of PCA pre-filtering and classification with the two similarity measures are 

shown in Fig. 6.8. We find that by filtering to a much smaller subset of genes (N = 30-70) 

gives an improved performance in classification with the testing dataset. The SKL 

similarity gives a marginally better performance with 30 and 50 discriminating genes 

compared to the log-Euclidean similarity over the testing dataset. However, the best 

training cross-validation error obtained in Table 6.12 with 50 genes indicates that the 

principal component obtained from the training set is able to discriminate the experimental 

profiles in the training dataset. There is no significant difference in their performance of the 

similarity measures as expected (Sec. 6.4.2), since the same set of genes is used to train the 

LBG/LVQ algorithm. 
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Fig. 6.8 Average Class Prediction Error with the PCA Method 

Find_Discriminating Error Mean Error Std. Dev. 
PCA (Log-Euclidean) 5.13% 4.44% 
PCA (SKL) 5.13% 8.88% 

Table 6.12 Class Discovery Error with the Relative Distance Method 

6.4.3.4 Pre-filtering with the Find Similar Method 

The Find Similar method simply takes the ideal reference vectors for both the ALL and 

AML cases, about the centroid of the expression profiles. It then finds the top / 2N  genes 

that are closest to the ideal vector according to the similarity measure. 

Fig. 6.9 shows the performance of the method with the two similarity measures. The SKL 

similarity classifies all experiments in the independent testing dataset, with fewer (30) 

discriminating genes, compared to the best subset (of 50 genes) with the log-Euclidean 
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similarity. Fig. 6.10 shows the performance on the training data; we find that a subset of 30 

genes gives the least cross-validation error with both similarity measures. This shows that 

the SKL similarity is able to give the least errors in class prediction and discovery, with a 

fewer number of discriminating genes, than the log-Euclidean distance.  

 

 

 

 

 

Fig. 6.9 Average Class Discovery Error with the Find_Similar Method 

 

 

 

 

 

Fig. 6.10 Class Prediction Error with the Find_Similar Method 
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6.4.3.5 Comparison of Find Discriminating Methods 

Fig. 6.11 shows a chart comparing the class prediction and discovery error rates of different 

Find Discriminating pre-filtering algorithms and the basic LBG and LVQ algorithms run 

on the entire dataset.  

All these methods show a much-improved performance in detecting new disease 

phenotypes against the base case, with a very few number of genes. The Find Similar 

method, which compares the profiles in the gene set with an ideal gene vector, shows the 

best performance in terms of class prediction, class discovery, and the number of 

discriminating genes. Significantly, the SKL similarity measure is able to perfectly 

discriminate the two classes in the independent  testing dataset, with 30 genes. It 

outperforms the log-Euclidean distance with the LBG algorithm. 

The relative distance method captures genes with large and relatively constant separation 

between the expression profiles in the two types of experiments. Due to the large range of 

expression values in this dataset and noise, this might exclude significant genes. 

The PCA method suffers from similar problems as the base case. Since the gene subset is 

obtained by the correlation with eigen-genes of the training data, it shows poor 

generalization with the testing dataset. 
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Fig. 6.11 Comparison of Class Prediction and Discovery Error Rates with 

Find_Discriminating Methods 
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6.5 Conclusions 

In this thesis, we investigated processes in drug discovery through formal modeling 

techniques from systems engineering. We built a UML use case model to capture the 

requirements of a modern drug discovery analysis system and the related systems 

integration issues. We developed system structure and behavior, and discussed alternate 

methods of implementation. The discovery of efficient clustering algorithms for any 

particular type of microarray data will lead to efficient indexing mechanisms over very 

large experimental data sets. We also looked at database extensions that can handle new 

data types and how they can be applied to biological data. 

The next major focus of the thesis was the application of algorithms from signal processing 

and machine learning, to the analysis of gene expression data. We investigated two 

different types of analyses – functional and phenotypic classification, and found that the 

supervised LVQ algorithm, with the LBG codebook initialization, shows very good 

performance and is comparable to support vector machines, which are globally optimal 

classifiers. We also applied an instance-based learning algorithm IB3, and found good 

results with the identification of yeast functional classes.  

We also described a novel similarity measure for clustering based on unnormalized 

expression data, called the unnormalized symmetric Kullback-Liebler measure, based on 

the concept of relative entropy, and originally developed in [24,25]. Though there was no 

significant difference between the unnormalized SKL measure and log-Euclidean distance 

with cDNA arrays (as expected), we found that the unnormalized SKL measure is able to 

provide better performance with a leukemia oligonucleotide array data set. Different pre-
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filtering methods for finding discriminating genes based on the Find Similar function, 

PCA, relative distances, and the IB3 instance-based learning algorithm, were studied. All 

methods except IB3 showed a large improvement in performance with pre-filtering. The 

Find Similar pre-filtering method with the unnormalized SKL measure and the LBG/LVQ 

algorithm together gave the best performance in class prediction and class discovery, with 

the fewest number of discriminating genes. 
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