
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

PH.D. THESIS

Classification and Compression of Multi-Resolution Vectors: A
Tree Structured Vector Quantizer Approach

by Sudhir Varma
Advisor: Professor John S. Baras

PhD 2002-6

ABSTRACT

Title of Dissertation: CLASSIFICATION AND COMPRESSION OF MULTI-

RESOLUTION VECTORS: A TREE STRUCTURED

VECTOR QUANTIZER APPROACH

Sudhir Varma, Doctor of Philosophy, 2002

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

Tree structured classifiers and quantizers have been used with good success

for problems ranging from successive refinement coding of speech and images to

classification of texture, faces and radar returns. Although these methods have

worked well in practice there are few results on the theoretical side.

We present several existing algorithms for tree structured clustering using

multi-resolution data and develop some results on their convergence and asymp-

totic performance.

We show that greedy growing algorithms will result in asymptotic distortion

going to zero for the case of quantizers and prove termination in finite time for

constraints on the rate. We derive an online algorithm for the minimization of

distortion. We also show that a multiscale LVQ algorithm for the design of a

tree structured classifier converges to an equilibrium point of a related ordinary

differential equation.

Simulation results and description of several applications are used to illustrate

the advantages of this approach.

CLASSIFICATION AND COMPRESSION OF

MULTI-RESOLUTION VECTORS: A TREE STRUCTURED

VECTOR QUANTIZER APPROACH

by

Sudhir Varma

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2002

Advisory Committee:

Professor John S. Baras, Chair/Advisor
Professor Pamela A. Abshire
Professor Carlos A. Berenstein
Professor Rama Chellappa
Professor Shihab A. Shamma

c©Copyright by

Sudhir Varma

2002

DEDICATION

To Amma and Achchen

ii

ACKNOWLEDGEMENTS

First and foremost, to my late father Mr. Kerala Varma Thampuran and my

mother, Mrs. Manorama Varma for all the trust and encouragement they have

given me in this pursuit, for which I am forever indebted.

To my advisor, Dr. John Baras, for his support, help and patience. I would

have found it impossible to choose the right direction in research and career without

his advice.

To Dr. P. Abshire, Dr. C. Berenstein, Dr. R. Chellappa and Dr. S. Shamma

for valuable corrections and criticisms regarding the thesis and for taking time out

of their schedules to be in my defence committee

I would like to thank Vijay Bharadwaj for all the interesting conversations and

the opportune loans of money. Also my thanks to my office room-mates Zhang

Chang, Xiaobo Tan, Maben Rabi and Jia-Shiang Jou for all the discussions and

help on research topics and other matters.

To my friends, for giving me a life outside of school.

This work was supported by the following grants for which I am grateful

• ONR contract NOO149710501EE

• DARPA contract DAAD190110494

• Hughes Network Systems and the Maryland Industrial Partnerships Program

contract 182918

iii

TABLE OF CONTENTS

List of Figures vii

1 Introduction 1
1.1 The quantization problem . 2
1.2 The classification problem . 3
1.3 Tree structured quantizers and classifiers 4
1.4 Summary of new work . 5
1.5 Arrangement of thesis . 6
1.6 Notation . 6

2 Compression, Classification and Trees 7
2.1 VQ for compression . 7

2.1.1 Problem definition . 8
2.1.2 Iterative local minimization of distortion 8
2.1.3 Asymptotic behavior for high resolution quantizers 9

2.2 Vector classification . 10
2.2.1 Bayes risk and Bayes optimal classifier 11
2.2.2 Learning Vector Quantization (LVQ) 11

2.3 Tree Structured Vector Quantizers 13
2.3.1 TSVQ for compression . 13
2.3.2 Achieving successive refinement 15
2.3.3 Construction of TSVQ . 16
2.3.4 Definitions . 17
2.3.5 Greedy tree growing . 18
2.3.6 Tree structured classifiers 19

3 Signal space and multi-resolution analysis 22
3.1 Signal space . 22
3.2 Definition of MRA . 23
3.3 Wavelets . 25

3.3.1 Semi-orthogonal wavelets . 27
3.3.2 Bi-orthogonal wavelets . 28

3.4 Biological filters . 28

iv

3.5 Probability densities on L2(τ) . 31
3.6 Splitting to reduce distortion . 32

3.6.1 Projections of cells in multiple resolutions 33

4 Compression using Multi-resolution TSVQ 35
4.1 Preliminaries . 35
4.2 Greedy growing for MRTSVQ . 39
4.3 Properties of the algorithm . 41
4.4 Property 1: Vanishing distortion . 41
4.5 Preliminaries . 42
4.6 Property 2: Termination with rate constraint 48
4.7 Online algorithm for distortion minimization 49
4.8 Practical implementation of the MRTSVQ 53

5 Multi-resolution classifiers 55
5.1 Multi-resolution vector classification 56
5.2 Multi-level LVQ . 57
5.3 Convergence of multi-level LVQ . 60

5.3.1 Preliminaries . 60
5.3.2 Proof of the theorem . 62
5.3.3 Multi-level LVQ . 65

5.4 Issues in practical implementation 67

6 Simulations and applications of MRTSVQ 69
6.1 Simulation for compression . 70
6.2 Simulation for classification . 71
6.3 Yeast gene clustering . 72

6.3.1 Data analysis methods and results 74
6.4 Lymphoma prediction using tree classifiers 77
6.5 Application to wear prediction . 79

6.5.1 Inner Ear . 79
6.5.2 Description of the data . 81
6.5.3 Preprocessing and training 82
6.5.4 Testing . 83

6.6 Fingerprint identification . 85
6.6.1 Fingerprint encoding and tree growing 86

7 Conclusions and further research 88
7.1 Conclusions . 88
7.2 Future research . 89

7.2.1 Combined compression and classification 89
7.2.2 Convergence of LVQ for local equilibria 90

v

A Geometric result 91

Bibliography 95

vi

LIST OF FIGURES

3.1 Features arranged along the second axis in A1 29
3.2 Axes of analysis of spectrum in A1 31

4.1 Illustration of V1,V2,W1 and W2 in 2 dimensions 52

6.1 Signal in 7 resolutions . 70
6.2 Classification error vs. split number 72
6.3 Clustering tree for yeast gene expression profiles 74
6.4 Occurences of ribosomal genes in clustering tree 75
6.5 Occurrences of protein synthesis genes in clustering tree 76
6.6 Occurrences of helix-turn-helix genes in clustering tree 76
6.7 Spectral processing of sound stimuli in the inner ear 80

A.1 Illustration of B1, B2 and H in 3-dimensional space 92

vii

Chapter 1

Introduction

One important problem in communication theory is that of signal coding. Most

real-world signals of interest are real-valued scalars or vectors and most commu-

nication systems are digital in nature and for such systems mapping a real-valued

signal onto a discrete alphabet is necessary before it can be transmitted.

Signal coding lies at the heart of almost all modern data transmission systems.

Digital transmission offers a tremendous advantage over analog transmission in

noise suppression, signal processing algorithms, error correction schemes and se-

curity issues. The easy availability and flexibility of embedded or stand-alone

computing power has made digital communication and processing of signals ubiq-

uitous.

Since, in general, a real-valued source cannot be exactly represented by a dis-

crete alphabet, we have the notion of a distortion measure which quantifies the

cost incurred by representing a given source with a given alphabet. Convention-

ally, lesser cost implies better performance and to find the optimal alphabet with

the least distortion for a given source is always our aim. In succeeding chapters,

we will give our definition of a distortion measure and present algorithms that

1

construct optimal alphabets.

Shannon [42] introduced the idea that quantizing a real valued signal onto a

discrete alphabet with the least amount of distortion is possible if this quantization

is done on signal blocks, instead of scalar values. Significant improvement in

distortion over scalar quantization is possible even if the values of the signal in a

block are independent of each other. If the values of the signal at subsequent time

points are not independent, we gain even more in performance. Then there are also

times where the signal itself is a vector and quantizing each component separately

would be inefficient. Such cases happen, for example, in image processing or sensor

arrays.

1.1 The quantization problem

As mentioned earlier, the initial applications of vector quantization (VQ) were

in the field of quantization and coding of real, vector-valued signals. Here the

objective is to find a mapping from the continuous valued vector space D ⊆ R
d

to a discrete alphabet with k elements. Specifically, we look for a function Q :

D �→ Θ = {θ1, θ2, . . . , θk}, with θi ∈ R
d. This gives us a partition V = {Vi} such

that Vi = {x ∈ D|Q(x) = θi}. For any x ∈ Vi, the vector θi, is the codeword

(or representation) assigned by Q(x). Our goal is to select a code-book Θ and a

function Q(x) such that the average quantization error, D(V,Θ) = E(ρ(Q(x), x))

measured by a positive, convex function ρ(Q(x), x) is minimized. Some examples

of ρ are the mean squared error ||x− θi||2, the general rth–norm error (||x− θi||r)r

and the Itakura-Saito distortion (x− θi)
TR(x)(x− θi) (see appendices of [9]).

One requirement that is not readily apparent from the above description is that

the mapping Q(.) must be mathematically tractable in the sense that given any

2

x, it should not be computationally burdensome to calculate Q(x) nor should the

memory requirements for storing this map be excessive. We will see later that the

optimal mapping is easy to calculate and the storage requirements are limited to

storing the values of a few centroids.

1.2 The classification problem

Mapping a vector-valued signal to a discrete alphabet has applications other than

coding. One common problem in signal-processing is classification of data in the

form of a vector. Specifically, assume that we have a random ordered pair (X,CX)

where X is i.i.d. and can take values in D ⊂ R
d, and CX ∈ {1, 2} is a class label

that can be one of two classes. We have the prior probabilities π1 = P (cx = 1)

and π2 = P (cx = 2) and probability density functions p1(x) = p(x|cx = 1) and

p2(x) = p(x|cx = 2). We are interested in finding a predictor Ĉ(x) for the class cx,

given the vector x. Ĉ(x) must, of course, give a unique prediction for any x. In

addition we would like to ensure that the classification error P{Ĉ(X) �= CX} is as

small as possible.

Some real life examples of this problem include classification of radar returns

and face recognition [3], texture classification [32], vowel classification [41] and tool

wear analysis [45].

Ĉ(x) is a mapping from D onto {1, 2} which partitions the space D into two

areas, V1 = {x : Ĉ(x) = 1} and V2 = {x : Ĉ(x) = 2}. The correspondence to

the quantization problem described in the previous section is clear. Instead of

mapping each x to a representative to minimize the expected distortion ρ(., .) we

map it to a class to minimize a classification error.

Finding a Ĉ(x) that minimizes the classification risk is easy if we know π1, π2, p1(x)

3

and p2(x). But, in most cases we only have a training sample in the form of a se-

quence of observation vectors and corresponding class labels (xi, ci), i = 1, 2, . . . , n.

In Chapter 3 we will present the popular LVQ algorithm for constructing a decision

function Ĉ(x) using training samples.

1.3 Tree structured quantizers and classifiers

Quantization and classification can both be seen as decision-making algorithms

in the sense that given a vector x we have to choose one of several codewords or

classes to assign to the vector.

Tree Structured Vector Quantizers (TSVQ) offer faster lookup speed compared

to other quantizers and classifiers. With k codewords or classes, the TSVQ execu-

tion time is O(log(k)) compared to O(k) for an ordinary quantizer. This improve-

ment comes with a decrease in performance, but with a carefully designed TSVQ,

this decrease can be minimized.

TSVQ operate on the principle of successive refinement of knowledge. It does

a progressive classification where an initial rough classification is done followed by

finer and finer partitions that improve the performance.

Multi-Resolution TSVQ (MRTSVQ) is an improvement on TSVQ in cases

where we can obtain the observation vector in multiple levels of detail. Coarse

representations can be used to do the initial, rough classification and more and

more detail can be added for finer discrimination.

4

1.4 Summary of new work

In this thesis we will present a greedy growing algorithm for constructing tree

structured classifiers and quantizers for multi-resolution data. For the quantization

case we show that under some conditions the distortion of the tree goes to zero

asymptotically as the number of iterations increases without bound.

For any tree structured clustering method, we assign a new vector to its appro-

priate cluster by starting out with the root as the current node. Then the children

of the current node are compared with the given vector to find the closest node.

This node now becomes the new current node and the process repeats until we

reach a leaf node. The cluster corresponding to this leaf node is assigned as the

cluster to which the vector belongs. The expected number of comparisions with

child nodes is a measure of the expected computational time it will take to assign

a new vector to its cluster. We will call this the rate of the tree. It is easy to see

(and we will prove it later) that as the tree grows, the rate of the tree increases.

Now assume that we stop the algorithm when the rate of the tree gets larger

R. Then we will show that the algorithm stops in finite time.

We also derive the form of the online algorithm for minimization of distortion

that was implied in [2] for the case of two centroids and show how it can be

extended for the general K-centroid case.

For the classification case we present a multi-scale, multi-level LVQ algorithm

that adapts each level of the tree simultaneously to converge to a classifier that

seeks to reduce the Bayes risk. We show that the adaptation algorithm behaves

like a corresponding ordinary differential equation and converges to the global

equilibrium of the ODE.

Finally we present several simulation results that illustrate the implementation

5

of these algorithms and one example of the application of these clustering algo-

rithms to the prediction of tool wear from acoustic emissions. We also give several

heuristics for practical implementation of these algorithms.

1.5 Arrangement of thesis

Chapter 2 presents background on the motivation and methodology for use of

VQ and TSVQ for compression and classification. We present several well known

results on algorithms and achievability of successive refinement codes for vector

data.

In Chapter 3, we present our definition of a Multi-Resolution Analysis while

Chapter 4 will deal with the MRTSVQ algorithm as it applies to compression and

some results on asymptotic distortion, termination and online algorithms.

In Chapter 5 we describe the multi-scale LVQ algorithm for classification us-

ing an MRTSVQ and present some results pertaining to the convergence of this

algorithm.

We end with simulations and descriptions of several applications of MRTSVQ

in Chapter 6.

1.6 Notation

We will use script letters (S ,T , . . .) to denote transforms of signals. Calligraphic

letters (V,Si, . . .) will be used for sets and the set of real numbers will be denoted

by R. Symbols starting with d will usually denote the dimension of vector spaces.

6

Chapter 2

Compression, Classification and

Trees

2.1 VQ for compression

As mentioned earlier, vector quantization was initially proposed for the purpose of

quantizing a real-valued signal onto a finite, discrete alphabet. Given a real-valued

source, there are an infinite number of alphabets that it can be mapped onto; each

such mapping producing a code of some information rate R and suffering some

distortion D. Rate-Distortion theory [11] shows that the set of all possible couples

(R,D) has a convex hull called the achievable rate-distortion limit. Points on

the hull correspond to alphabets that have either the minimum rate for a given

distortion or the minimum distortion for given rate.

This mapping can be done on a point-to-point basis where the output of the

source at each time point is mapped onto a letter; or it can be done in a block-wise

fashion where a block of data, k time steps long, is mapped onto a letter. Except

for rare cases, the rate-distortion limit is achieved asymptotically as k → ∞. This

7

holds true even if the output of the source is independent from one time-step to

the next. As Cover and Thomas put it, “It is simpler to describe an elephant and

a chicken with one description than to describe each alone.” [11, page 336]

This also means that if the source is itself multi-variate and outputs a vector

valued signal at each time, quantizing the output using a vector quantizer is more

efficient than quantizing each component separately.

2.1.1 Problem definition

Consider a signal consisting of a sequence {xi}, xi ∈ R
d, with xi i.i.d. and dis-

tributed according to a probability density p(x). We want a mapping Q(x) : R
d �→

Θ = {θ1, θ2, . . . θk}. Here Θ is a discrete alphabet with k letters {θi}, θi ∈ R
d.

In addition, we have a distortion measure ρ(θ, x) which quantifies the cost

incurred in representing x by θ. The expected value of this distortion measure is

denoted as

D(Q,P) = Ep(ρ(X,Q(X)))

Given a probability density p(.), our goal is to find a quantizer (V,Θ) that

minimizes the distortion D(V,Θ). In the next subsection we will present the

Linde, Buzo and Gray (LBG) algorithm that iteratively finds a locally optimal

quantizer.

2.1.2 Iterative local minimization of distortion

Linde, Buzo and Gray [29] show that the following conditions are necessary for a

quantizer to minimize the cost D(V,Θ):

8

1. For a given reproduction alphabet Θ, the partition V = {Vi}, where

Vi = {x : ρ(θ, xi) < ρ(θ, xj), j = 1, 2, . . . , k, j �= i} (2.1)

has an expected error that is not greater than any other partition

2. For a given partition V, the reproduction alphabet Θ = {θi}, where

θi = arg min
θ∈D

∫
Vi

ρ(θ, x)p(x)dx (2.2)

gives an expected error that is not greater than any other alphabet. We call

θi the centroid of Vi.

These two conditions, which are a generalization of the Lloyd-Max algorithm

[30], [31] for the design of scalar quantizers, can be used in an iterative fashion in

the LBG algorithm to obtain a partition and an alphabet that is locally minimal

for D(V,Θ) [29].

Condition (1) is called a Nearest Neighbor or Voronoi or Dirichlet partition. It

should be noted that we need to store only the values of the k centroids θi to fully

characterize this quantizer.

If ρ(x, y) = ||x−y||2 is the squared error distance and we have only two centroids

θ1 and θ2, then the Nearest Neighbor condition gives a partition {V1,V2} = {V ∩
H,V ∩Hc} where H = {x : ||x−θ1||2 < ||x−θ2||2}. Thus the partition is achieved

by a hyper-plane ||x− θ1|| = ||x− θ2||.

2.1.3 Asymptotic behavior for high resolution quantizers

Assume that ρ(θ, x) = ||x− θ||2. Then it is easy to show that for a distribution p

of the random variable X such that E{||X||2} <∞, the distortion for the optimal

quantizer can be made arbitrarily small by choosing a large enough number of

9

centroids k. Indeed, for any δ > 0, choose a ball of radius r <∞ centered on zero

such that E{||x||2 : ||x||2 > r2} < δ2/2. The finite variance of X implies that such

an r exists. Now divide this ball using a partition composed of planes perpendicular

to each axis, separated by a distance of δ2/
√
d where d is the dimension ofX. Then

B(0, r) is partitioned by a finite set of cuboids of side δ2/
√
d. Assign the center

point of each cuboid as a centroid to all points lying in the cuboid. Since no

point in the ball is farther than δ2/2 from its centroid, the distortion due to points

lying in the ball is less than δ2/2. For all points lying outside the ball, assign

the origin as the centroid. Then the distortion contributed by these points is

E{||x||2 : ||x||2 > r2} < δ2/2. Thus the total distortion is less than δ2. This gives

the result.

This result also shows that the minimum distortion with k number of centroids,

D(V,Θ) → 0 as k → ∞.

2.2 Vector classification

As mentioned in the previous chapter, classification of vectors is a problem that

is closely related to quantization. In quantization, we are interested in finding a

mapping between a vector x ∈ R
d onto a discrete alphabet Θ that minimizes a

distortion measure between x and its quantized value. In classification, we assume

that X is an observation that depends on some class CX and we need to find a

mapping Ĉ(X) from X onto a discrete alphabet that minimizes a classification

error between the actual class CX and the prediction Ĉ.

10

2.2.1 Bayes risk and Bayes optimal classifier

The most common case is when both CX and Ĉ(X) take values in the same alpha-

bet. Then, the Bayes risk is one quantitative measure of classification performance

[24, Ch. 7.2]. Let us denote π1 = P{Cx = 1} and π2 = P{Cx = 2} the a-priori

probabilities of observing a vector of a particular class and p1(x) and p2(x) the

a-posteriori probability densities for vector x given that class 1 or 2 was observed.

For the case where we have two classes the signal space is split into two disjoint

regions V1 = {x|Ĉ(x) = 1} and V2 = {x|Ĉ(x) = 2}. The Bayes risk is then, the

probability of misclassification

B(V1,V2) =

∫
V1

π2p2(x)dx+

∫
V2

π1p1(x)dx (2.3)

The Bayes optimal classifier is defined as a partition that minimizes the cost (2.3).

It is easy to see that

V1 = {x : π1p1(x) ≥ π2p2(x)}

V2 = {x : π2p2(x) > π1p1(x)} (2.4)

is such a partition.

2.2.2 Learning Vector Quantization (LVQ)

We have already mentioned that the problem with trying to implement the Bayes

optimal classifier is that we need to know the a priori probabilities π1 and π2

and the a posteriori probability densities p1(x) and p2(x). In almost all cases of

interest, all we have available is a set of training vectors along with their classes

{(xn, cn) : n = 1, 2, . . . , N}.
One solution to this problem is Learning Vector Quantization (LVQ), first pro-

posed by Kohonen [24]. LVQ is a clustering method for approximating the Bayes

11

regions with the Nearest Neighbor partitions of some set of centroids Θ = {θi} and

a distance function ρ(θ, x). The algorithm starts with an initial set of centroids

along with corresponding classes for their partitions and iteratively updates the

centroids and their classes according to the training sequence (xn, cn).

The update algorithm is as follows

θi(n+ 1) = θi(n) − α(n) �θ ρ(θi, xn), if cn is equal to class of θi

θi(n + 1) = θi(n) + α(n) �θ ρ(θi, xn), if cn is not equal to class of θi (2.5)

for all θi in a neighborhood of xn. Usually, the only θi updated in each iteration is

the one nearest to xn. α(n) is a learning parameter that determines how the past

observations are weighted with respect to the present. If ρ(θ, x) = ||x− θ||2, then

�θρ(θ, x) = 2(θ − x), and it is easy to see that the θi is pushed towards or away

from xn, depending on whether the classes are equal or different. After a cycle of

updates in this way, the assigned class of all centroids are updated according to

the majority class in its partition.

It seems reasonable that if an equilibrium exists for the centroids in the above

algorithm, the total “push” on the centroids by vectors belonging to a different

class must be exactly balanced by the total “pull” by the vectors of the same class.

Making this intuition more precise, [26] shows that under some conditions on the

learning parameter α(n), the LVQ algorithm converges to centroids θi such that

∫
Vi

(π1p1(x) − π2p2(x)) �θ ρ(θi, x)dx = 0, ∀i (2.6)

with Vi the Nearest Neighbor partition for θi.

In general, [26] shows that the behavior of the LVQ algorithm approximates

12

that of the ordinary differential equation (ODE)

θ̇i =

∫
Vi

(π1p1(x) − π2p2(x)) �θ ρ(θi, x)dx for all θi of class 1

θ̇i =

∫
Vi

(π2p2(x) − π1p1(x)) �θ ρ(θi, x)dx for all θi of class 2

2.3 Tree Structured Vector Quantizers

One way of getting reduced algorithmic complexity with the same amount of com-

putational resources, with little degradation in performance is a Tree Structured

VQ (TSVQ). TSVQs operate on the principle of successive refinement of knowledge

[16]. In the compression/quantization case, this takes the form of a progressive

code for x [8]. A coarse partitioning in the upper layers of the tree results in the

most significant bits of the code. Further refinement in the lower levels of the tree

gives the less significant bits.

In the case of classification, successive refinement means that in the beginning

we do a broad classification at a higher level; followed by refining of the classifica-

tion at the lower levels until we get a sufficiently low level of error. The classifier

is in the form of a tree where at each of the nodes a test is done that determines

which child node it is classified into [8]. In this way a test vector ends up at a leaf,

each of which is associated with a class.

2.3.1 TSVQ for compression

Using a tree structured quantizer offers several advantages. In the case where the

number of letters in the codebook is very large (see [3] for example), searching

through all the centroids of an ordinary, single level quantizer to find the nearest

centroid might be computationally expensive. For k centroids, this search takes

13

O(k) time which might not be feasible in real-time applications. But this process

is highly parallelizable and a parallel computation of all the k distances, followed

by a parallel search can bring down the time complexity to O(log(k)). But this

requires more computing resources. A TSVQ will achieve the same decrease in

computational effort without additional processors. In many cases, the degradation

in fidelity for the same rate can be minimized.

Another advantage of a TSVQ is that it naturally results in a successive re-

finement code. The structure of the code is such that a few bits give a coarse

description of the source and the rest of the bits provide more and more details.

This is useful in when multi-media data has to be sent over communication links to

users with differing capacity. Using the same codebook, users with high capacity

can enjoy high-fidelity audio and video while those with low capacity links can

trade off rate for data that lacks detail, but is still intelligible.

The second way in which multi-rate codes can be useful is when a user might

want to skim through several images quickly and is not interested in high-resolution,

but might want to pick out some of the images to look at in higher detail.

Which one of the codes, high or low rate should we optimize first in the first

case? The answer depends on factors like the relative capacities of the two classes

of users and how much each is paying for the multi-media service. The answer is

easier in the second case; we would want to find the optimal low-rate codebook

and fix it, and then try to find the high-rate codebook that is optimal with the

given constraint.

Under what conditions is it possible to optimize the codebooks for each rate

simultaneously? This question is addressed in the next section.

14

2.3.2 Achieving successive refinement

Successive refinement is defined as a higher rate (and lower distortion) code that

attains the rate-distortion (R-D) limit which is formed by appending bits to a

lower rate (and higher distortion) code that itself attains the R-D limit. Suppose

that we are given a real-valued random variable X and that we use two encoders

to create a low-rate encoded signal X1 of rate R1 and expected distortion D1, and

a higher-rate X2 of rate R2 and distortion D2. Then we will say that X1 and X2

are successive refinements of X if

1. X2 can be obtained from X1 by appending to it (R2−R1) bits on the average.

2. (R1, D1) and (R2, D2) attain the R-D limit.

Note that the bits that are appended to X1 to obtain X2 are derived from X and

represent additional information that is not present in X1.

Equitz and Cover discuss the achievability of a successive refinement code in

[16]. They show that for a code to be a successive refinement code, it is necessary

and sufficient that the sequence X1 → X2 → X is Markov.

If this condition is not satisfied, the code will not be a successive refinement

code. In such a case, Rimoldi [39] characterizes the set of all (R1, D1), (R2, D2)

pairs that are achievable. He also extends this to general L-resolution codes.

Tree structured vector quantizers are a way of creating multi-resolution code-

books that are very efficient, though suboptimal. There are various ways of cre-

ating a tree and they are detailed in [8]. Here, we will briefly summarize different

approaches and then present a greedy tree growing algorithm

15

2.3.3 Construction of TSVQ

Constructing a TSVQ for compression can be done by either the top down or the

bottom up approach [13]. In the top down approach, we start with a root node that

contains the whole vector space. Then this root node is split (and the vector space

partitioned) to form children. These children are further split and this process

continues until the desired rate is reached. In this approach, we optimize the low-

rate codebook first and then find the high-rate codebook that is optimal given the

restriction on the low-rate code. These kinds of hierarchical codebooks are useful

when most of the traffic is low-rate and high-rate is the exception.

The other approach, bottom up, is the exact opposite. We start with a set of

leaf nodes that partition the space and then we recursively merge nodes to form

a tree. Here, the performance of the high-rate code is more efficient compared to

that of the low-rate code.

[13] also shows an approach where different weights are given to the rate and

distortion at different levels and then the algorithm tries to minimize the sum of

weighted distortions and rates. This is a generalization of which the top down and

bottom up approaches are special cases.

In this thesis, we will be concerned with a kind of top down approach called

greedy growing. Greedy algorithms are one of the most commonly used methods

in hierarchical codebook design. They are simple to implement and provide suffi-

ciently good performance in many cases. The next subsection gives the details of

the greedy growing algorithm.

16

2.3.4 Definitions

Clusters in a space can be regarded as a partition of the space. In the rest of this

thesis, we will assume that each partition of a set D ⊆ R
d is characterized by a

set of centroids θ1, θ2, . . . , θk ∈ R
d. The partition itself is created as the union of

k cells, Vi, i = 1, 2, . . . , k. Cell Vi corresponds to centroid θi. To derive the cells

from the centroids, we need to fix a distance criterion ρ(x, y) between any two

points x, y ∈ R
d. In the remainder of this thesis, we will fix ρ(x, y) as the squared

Euclidian distance ρ(x, y) = ||x− y||2.
Given this distance, we derive the cells Vi as follows

Vi = {x : ρ(x, θi) < ρ(x, θj), j = 1, 2, . . . , k, j �= i}

Note that each cell is associated with a cluster and all points belonging to that

cell belongs to the corresponding cluster. Thus, given a new vector x, we assign

it the cluster corresponding to the cell it belongs to. This is done by finding the

centroids θi among θ1, . . . , θk that is closest to it in the distance metric ρ(x, θ).

Denote by θx this particular centroid that is closest to x and Vx the corresponding

cell, then x is said to belong to the cluster associated with cell Vx.

For the case of unsupervised clustering, the distance measure also doubles as

a distortion measure. ρ(x, y) not only measures the distance between x and y,

but also gives the error made when x is represented by y. A valid criterion for

choosing one particular partition out of the infinite possibilities is to minimize the

expected distortion E{ρ(X, θX)}. Here the expectation is computed with respect

to the probability density p(x) on X. There are other ways of defining criteria for

unsupervised clustering [37].

Let θ = θ∗ = c(V, p) attain the minimum for D(V, θ) = E{ρ(X, θ)|X ∈ V}
given the probability density p. If ρ(., .) is the Euclidian distance metric, this point

17

is unique and belongs to the convex hull of V. We call this θ∗ as the generalized

centroid of V and denote the minimum value by D∗(V) = D(V, θ∗). In what

follows we will not explicitly mention the probability density p unless there is any

ambiguity.

Now assume that we have two centroids θ1, θ2 and correspondingly, two cells

V1,V2 such that V1 ∪ V2 = V. The resultant distortion due to this partition of V
is D(V1, θ1) +D(V2, θ2). For fixed V1,V2, this quantity will be the minimum and

equal to D∗(V1) +D∗(V2) if θ1 and θ2 are equal to the generalized centroids of V1

and V2 respectively. We denote the decrease in distortion

�D(V,V1,V2) = D∗(V) − (D∗(V1) +D∗(V2))

There will be at-least one partition {V∗
1 ,V∗

2} which is optimal in the sense that

for any other partition the decrease in distortion is equal to or greater than that

achieved by {V∗
1 ,V∗

2}.

2.3.5 Greedy tree growing

The greedy tree growing algorithm starts out with a root node that is associated

with a cell D ⊆ R
d. Then, recursively, all leaf-nodes are examined to find the one

that will give the biggest reduction in distortion when split. This incrementally

optimal node is split and the process is repeated until a desired rate is reached.

We have a splitting algorithm ψ that splits the cell corresponding to any given

node on the tree. For a node on the tree and the corresponding cell V, ψ will

compute a partition {V1,V2} of V that gives a decrease in distortion �D(V,V1,V2)

which is close to the optimal.

Given this the algorithm is as follows:

1. Fix a splitting algorithm ψ

18

2. Initialize the tree, T = c(D, p)

3. For any leaf node t̃j belonging to the set of leaf nodes T̃ of the tree with

corresponding cell U , use ψ to find a partition {U1,U2}.

4. Compute �D(U ,U1,U2)

5. Find the leaf node t̃j∗ with the maximum value for �D(U ,U1,U2)

6. Implement the split for t̃j∗

7. If stopping criterion is reached, stop. Else, repeat 3-6

The stopping criterion can be of several types. Most common ones are con-

straint on rate, number of leaf nodes, maximum value of distortion, number of

iterations and so on.

In [34] it is shown that if the growth of the tree is continued indefinitely, the

distortion of the tree goes to zero while [35] gives conditions under which the

algorithm for a tree grown with a stopping criterion on rate eventually terminates.

2.3.6 Tree structured classifiers

Tree structured classifiers are similar to the “if-then-else” rules in case-based rea-

soning. We have an observation vector consisting of features that are indicative

of the class of a source. These features can be real-valued, discrete or categorical.

Classification takes place in a step by step manner where at each node in the tree

one or a combination of more than one features are used to classify the observation

vector into one of the child nodes. This is repeated until a leaf node is reached

and a class label is assigned to the observation depending on the node.

19

Another way of interpreting tree structured classifiers is that each node divides

the input vector space into as many disjoint regions as it has child nodes. Thus

the input space is hierarchically partitioned into disjoint sets; each set has a class

label associated with it and any observation vector falling in it is classified with

that label.

Construction of tree structured classifiers can be done in the greedy fashion

that we presented for tree structured quantizers. We start with a root node that

contains all of the input space. Then, recursively, each leaf node is examined to

find the one that gives the biggest decrease in classification cost if split. This

optimal node is then split to produce the improved tree. This process is repeated

until the stopping criterion is satisfied.

Some classification costs that have been used for comparing classifiers are the

Bayes risk, the entropy, the Gini index and the generalized Neyman-Pearson cost

which is a weighting of the probabilities of false positives and false negatives [9],[26].

Some common stopping criterion are expected depth of search and average classi-

fication error.

In [8], the authors present several algorithms for classification of data that are

either numerical or categorical. They also tackle problems where the dimensional-

ity of the observation vectors is not fixed.

The problem with creating classifiers by successive partitioning is that at each

node we have to find a split that is optimal in reducing the classification error.

With N elements in a node there are a possible 2N possible partitions. Searching

through all possible partitions becomes impossible even for small amounts of data.

In [9], the authors derive optimal partitioning rules for creating tree structured

classifiers. They show that under a wide variety of conditions, it is possible to find

20

the optimal partition in O(N) time. For any “impurity” measure for the node,

they show that minimization of the impurity is equivalent to the nearest neighbor

condition for a specific distance.

21

Chapter 3

Signal space and multi-resolution

analysis

A multi-resolution analysis (MRA) is a way of obtaining representations of a signal

in increasing levels of resolution. MRAs can be obtained in various ways. A

truncated Fourier series is one simple example. Affine wavelet transforms and

wavelet packets offer powerful and flexible procedures for obtaining MRAs. An

interesting circumstance where signals are analyzed in multiple resolutions is in

biological systems ([1], [47]), as mentioned before. Before we give a definition of

an MRA and provide examples, we must define the space of signals that we are

considering.

3.1 Signal space

Consider functions x(t) : [0, 1) → R defined on the interval τ = [0, 1) with a norm

defined as

||x||2 =

∫ 1

0

x2(t) dt

22

We will be dealing with the space of all functions of finite norm

L2(τ) = {x(t), t ∈ [0, 1) : ||x||2 =

∫ 1

0

x2(t)dt <∞}

Since our distance metric between two elements of L2(τ) is the norm of the

difference ||x1 − x2||2, we will actually be working in the equivalence class of el-

ements that are equal in the mean square norm sense. This means that we will

not discriminate between two elements x1 and x2 if ||x1 − x2||2 = 0. For example,

elements that are equal almost everywhere, but not point-wise equal, will fall into

the same equivalence class.

3.2 Definition of MRA

Given this signal space, we define an MRA as a sequence of sets Si ⊆ L2(τ) such

that

1. S0 ⊆ S2 ⊆ S3 ⊆ . . .

2.
⋃∞

i=0 Si = L2(τ)

3. x(t) ≡ 0 ∈ S0

4. Each Si is spanned by a set of di basis functions φi
k(t), k = 1, 2, . . . , di such

that any x(t) ∈ Si can be written as

x(t) =

di∑
k=1

ck(x)φ
i
k(t)

for a unique set of weights ck(x).

For any x(t) ∈ L2(τ) we denote the projection onto the space Si by Six(t) ∈ Si

where

Six(t) = arg min
y(t)∈Si

||x(t) − y(t)||2

23

Since Six(t) ∈ Si, we can find weights ck(x) such that

Six(t) =

di∑
k=1

ck(x)φ
i
k

Note that if x(t) ∈ Si then Six(t) = x(t) so the notation for the weights ck(x) is

consistent.

In what follows, we will assume that x and φi
k are functions of t ∈ L2(τ)

and not make it explicit. If we denote c(x) = [c1(x), c2(x), . . . , cdi
(x)]T and Φi =

[φi
1, . . . , φ

i
di

]T we can write the above as

Six = cT (x)Φi

Note that Six is a linear projection and Φi is not necessarily an orthogonal basis.

For a given MRA, denote by Ci ⊆ R
di the set of all possible weight vectors; i.e.

Ci = {c(x) : x ∈ Si}. Then Si is a one-to-one mapping from the set of functions

Si to the set of weights Ci. For the norm ||x|| for any x ∈ Si we can write

||x||2 = cT (x)Ric(x)

where Ri is a di × di matrix whose (m,n)th element is given by

Rm,n
i =

∫ 1

0

φi
m(t)φi

n(t) dt = 〈φi
m, φ

i
n〉

Since Ri is a symmetric, positive-definite matrix we can find a non-singular matrix

Wi such that Ri = W T
i Wi. This implies that

||x||2 = ||Wic(x)||2

where the latter norm is the ordinary squared norm in a di dimensional space.

Similarly, the distance between the projections onto Si of any two elements x1(t)

24

and x2(t) belonging to L2(τ) can be computed as ||Six1 − Six2||2 = ||Wic(x1) −
Wic(x2)||2 We will denote

x̂i = Wic(x)

Thus for all x ∈ Si, ||x||2 = ||x̂i||22.

3.3 Wavelets

Since Fourier first showed that signals could be decomposed into projections along

orthogonal basis functions, harmonic analysis has come a long way. Windowed

Fourier transforms were studied by Gabor [20] while the first wavelet finds mention

in the thesis of Haar [22]. Mallat discovered several relationships between quadra-

ture mirror filters, pyramid algorithms and orthonormal wavelet bases. Meyer [33]

constructed the first continuously differentiable wavelets while Daubechies [12] con-

structed a class of wavelets with compact support with arbitrarily high regularity.

In wavelet analysis, a signal x(t) at resolution i is decomposed into a weighted

sum of a series of functions φi
k(t)

x(t) =
∞∑

k=−∞
ci,kφ

i
k(t)

The most important fact is that for all i, k, φi
k(t) is derived from the same scaling

function φ(t) by dilation-s and translations.

φi
k(t) = φ(2it− k)

φi
k(t) might not be orthogonal across scale i or translation k. We will discuss the

cases of orthogonal, bi-orthogonal and semi-orthogonal basis functions later in this

section.

25

The set of all basis functions φi
k, i = . . . ,−2,−1, 0, 1, 2, . . . for a given i span a

space denoted by Si. We have

. . . ⊆ S−2 ⊆ S−1 ⊆ S0 ⊆ S1 ⊆ . . .

The fact that Si ⊆ Si+1 implies that there exists weights aj such that

φi
k(t) =

∞∑
j=−∞

ajφ
i+1
j (t) (3.1)

This is true of any MRA (not necessarily wavelet generated) and gives a recursion

from which it is frequently possible to reconstruct φ(t), for a given set of coefficients

aj .

Denote by Wi the space of all signals that complement Si to make up Si+1 so

that

Si ⊕Wi = Si+1

where for any two sets U ,W, we denote U ⊕ V = {u + v : u ∈ U , v ∈ V}.
In addition to the scaling function φ(t) we also have a function ψ(t) called the

wavelet whose dilations and translations form a basis on the space Wi. Since any

function belonging to Wi also belongs to Si+1, we have weights wj such that

ψi
k(t) =

∞∑
j=−∞

wjφ
i+1
j (t) (3.2)

Note the similarity to 3.1.

Much work has been done on constructing wavelet bases that have orthogonal-

ity, compact support and symmetry. Orthogonality makes it easy to decompose a

signal into a weighted sum of basis functions. Compact support is desirable be-

cause it results in finite impulse response (FIR) filters for the decomposition rather

than infinite impulse response (IIR) filters. FIR filters are easier to implement us-

ing common signal processing circuits than IIR filters. Finally, symmetry of the

26

basis functions results in linear phase filters that are necessary to avoid undesirable

phase distortions.

Unfortunately, these three attributes are mutually antagonistic. Compactly

supported, orthogonal wavelet functions are not symmetric. Bi-orthogonal and

semi-orthogonal wavelets are a compromise that offer compactness and symmetry

in exchange for some complexity in the decomposition procedure.

3.3.1 Semi-orthogonal wavelets

Semi-orthogonal wavelets differ from orthogonal wavelets in that there are two

scaling functions φ and ˜phi. φi
j is not orthogonal across translation j but we have

〈φi
k, φ̃

i
j〉 = δ(j, k)

i.e. φ̃i
j is orthogonal to all φi

k, k �= j. Thus it is possible to calculate the coefficients

for the decomposition

x(t) =
∞∑

k=−∞
ci,kφ

i
k(t)

for x ∈ Si as

ci,k = 〈x, φ̃i
k〉

Another property of semi-orthogonal wavelets is that the space spanned by

φ̃i
j, j = 1, 2, . . . is the same as the space spanned by φi

j , j = 1, 2, . . . i.e. Si. φ̃
i
j is

called the dual scaling function. We also have a dual wavelet ψ̃i
j such that

〈ψi
k, ψ̃

i
j〉 = δ(j, k)

which spans the space Wi. ψ
i
j and ψ̃i

j are called the synthesis and analysis wavelet

respectively.

Semi-orthogonal MRAs offer compactly supported, symmetric synthesis wavelets

but the analysis wavelets are not compactly supported.

27

3.3.2 Bi-orthogonal wavelets

Like semi-orthogonal MRAs, bi-orthogonal wavelets have dual wavelets and scaling

functions. But the difference here is that the dual scaling functions span a subspace

S̃i �= Si and the dual wavelets span a subspace W̃i �= W. Furthermore we do not

have Si orthogonal to Wi as we had in the case of orthogonal and semi-orthogonal

MRAs.

Bi-orthogonal MRAs offer compactly supported, symmetric analysis and syn-

thesis wavelets and scaling functions; something that neither orthogonal nor semi-

orthogonal wavelets can provide.

For more details on the construction and use of orthogonal, semi-orthogonal

and bi-orthogonal wavelets see [21].

3.4 Biological filters

Hierarchical processing of signals have been observed in the primary auditory cor-

tex (A1) of the mammalian brain [47]. The auditory cortex receives the input from

the inner ear which computes a spectrogram of the sound that impinges on the

ear.

In the A1, the neurons are arranged in a 2D map. Neurons are arranged in

order of selectivity to increasing frequencies along one axis of the 2D map. This

is the so called tonotopic axis. Thus sounds of a particular frequency will excite

neurons around a particular region on the tonotopic axis.

Much research has gone into determining what features are presented along the

other axis of this 2D map. Researchers have identified three characteristics that

vary along the second axis. They are

28

1. symmetry of the spectrogram,

2. bandwidth of the spectrogram and

3. direction of FM sweep.

Along the second axis, neurons exhibit a continuous gradation in the kind of sym-

metry they are attuned to. Starting with neurons that are selective to spectrograms

with higher energy in frequencies above the Base Frequency (BF), the selectivity

grades to neurons that are selective to symmetric spectrograms up to neurons se-

lective to spectrograms with higher energy in frequencies below BF (See Fig. 3.1).

Tonotopic axis xTonotopic axis xTonotopic axis x

S
ym

m
et

ry
 a

xi
s

φ

B
an

dw
id

th
 a

xi
s

F
M

 d
ire

ct
io

na
lit

y

Figure 3.1: Features arranged along the second axis in A1

The bandwidth of the spectra that the neurons are selective to, also changes

from narrow bandwidth in the center of the axis to broad bandwidths at the ends.

Thirdly, neurons at one end are selectively attuned to chirps with downward

moving frequency and neurons at the other end are attuned to upward moving

FM chirps, while neurons in the middle are equally responsive to chirps in both

directions.

Wang and Shamma [47] propose a multi-resolution signal processing scheme

to account for these observations. A seed function h(x) is used to model the

29

sensitivity profile of a neuron. Given any function h(x), we can find symmetric

and anti-symmetric functions he and ho such that

h = he + ho

The unique he and ho are given by

he(x) =
h(x) + h(−x)

2

ho(x) =
h(x) − h(−x)

2

Then we can produce a function

ws(x;φc) = he(x) cosφc − ho(x) sinφc

that continuously grades from antisymmetric in one direction to symmetric to

antisymmetric in another direction when φc goes from −π/2 to π/2. This form

for ws was chosen so that the magnitude of the Fourier transform of ws(x : φc)

is a constant independent of φc. The authors also show that this is effective in

accounting for FM selectivity.

This takes care of the variation in symmetry and FM selectivity of the response.

To model the variation in bandwidth, h(x) is dilated according to hs(x) = h(αsx)

for a fixed parameter α (Usually α = 2). This gives us two variables; φc which

models the symmetry and s which models the scale. Thus, in this model of the

primary auditory cortex, the spectrum of the input sound is analyzed along three

axes, the center frequency x, the symmetry φc and scale (or bandwidth) s. Fig 3.2

shows this pictorially.

In Chapter 6 we will present an application of this model when we use it to

extract multi-resolution features that will help us estimate the wear on a milling

tool from its acoustic emissions.

30

Scale Axiss

φ
Symmetric
Axis

Low Base Frequency High Base Frequency
x

Tonotopic Axis

narrowly tuned
(narrow bandwidth)

broadly tuned
(large bandwidth)

asymmetrically
inhibited by low
frequency

asymmetrically
inhibited by high
frequencysymmetrically

inhibited,
medium
bandwidth

Figure 3.2: Axes of analysis of spectrum in A1

3.5 Probability densities on L2(τ)

We assume that we have a probability density P on L2(τ). One interpretation of a

probability density on an infinite dimensional space is that the signals x(t) are the

outputs of a stochastic process. Given this density, we can also find the density in

the di dimensional space of ith resolution representations of all x ∈ L2(τ), i.e. Si.

Another assumption for the remainder of this thesis is thatM∞(P) = EP (||x||2) <
∞. In other words, the expected power of the signal must be finite. The fact that

Six is the projection of x onto the space Si implies that Six is orthogonal to the

31

error (Six− x) which gives

Mi(P) = E{||Six||2}

≤ E{||x− Six||2} + E{||Six||2}

= E{||x− Six||2} + E{||Six||2} + 〈(x− Six),Six〉

= E{||x− Six+ Six||2}

= E{||x||2} = M∞(P) <∞

Mi(P) <∞ for all i means that for any V ⊂ Si, the problem of finding the centroid

that minimizes the distortion is well defined and has at least one solution.

The actual multi-resolution analysis done on the signals plays a very important

role in good classifier and quantizer performance. It must be capable of picking

out features that are most significant to the performance, in the coarse level. Some

algorithms for selecting an MRA for a specific problem are given in [10], [38] and

[49].

3.6 Splitting to reduce distortion

Given a probability density p on L2(τ), we can calculate the distortion due to all

the points in a cell V ⊆ L2(τ) represented by point θ ∈ V as

D(V, θ) =

∫
V
||x− θ||2dP (3.3)

32

If θ ∈ Sk, i.e. θ can be expressed as a linear combination of the dk basis functions

of Sk, then we can express 3.3 as

D(V, θ) =

∫
V
||x− Skx+ Skx− θ||2dP

=

∫
V
||x− Skx||2 + ||Skx− θ||2 − 2〈(x− Skx), (Skx− θ)〉dP

=

∫
V
||x− Skx||2dP +

∫
V
||Skx− θ||2dP (3.4)

The last equality follows since (Skx−θ) is a linear combination of the orthonormal

basis functions of Sk to which (x− Skx) is orthogonal.

Denote Dk(V, θ) =
∫
V ||Skx − θ||2dP and D̂k(V) =

∫
V ||Skx − x||2dP =

Ep{||SkX −X||2}. Dk(V, θ) is the component of the distortion that changes with

θ. D̂k(V) is the orthogonal component of the distortion that is independent of θ

and depends only on the resolution k. For any V, D̂k(V) → 0 as k → ∞.

The above shows that to find a k-resolution centroid θ to minimize distortion,

we need only look at the dk dimensional space of k-resolution representations of

all signals x ∈ V. In other words,

arg min
θ∈Sk

D(V, θ) = arg min
θ∈Sk

Dk(V, θ) (3.5)

The minimum value that D(V, θ) can take for any θ is D̂k(V), when Dk(V, θ) =

0.

3.6.1 Projections of cells in multiple resolutions

Let us define how cells in one resolution are carried over to another resolution. Let

Si and Sj be the representations at two resolutions. Assume that we have a cell

Vi in resolution i. Then the corresponding cell Vj in resolution j is

Vj = {Sjx : Six ∈ Vi, x ∈ L2(τ)}

33

Note that if we take a cell in high-res space and project it to a low-res space and

then project it back to the high-res space we might not necessarily end up with

the original cell. This happens because more than one point in the high resolution

space is projected onto the same point in the low resolution space.

Any convex cell Vk ⊆ Sk in the kth resolution is projected onto a convex cell

at all resolutions. To see this, consider the projection of Vk onto L2(τ) defined as

V∞ = {x ∈ L2(τ) : Skx ∈ Vk}. For any x, y ∈ V∞ we have Skx,Sky ∈ Vx. Then

the convexity of Vk gives

Sk(αx+ (1 − α)y) = αSkx+ (1 − α)Sky ∈ Vk, for any α ∈ [0, 1]

This implies that αx+ (1 − α)y ∈ V∞ which shows that V∞ is convex.

For any i, Vi = {Six : Skx ∈ Vk} = {Six : x ∈ V∞}. For any Six,Siy ∈ Vi

we have x, y ∈ V∞ and αx+ (1 − α)y ∈ V∞ which implies that

Si(αx+ (1 − α)y) = αSix+ (1 − α)Siy ∈ Vi

which implies that Vi is convex. Thus convex cells in one resolution are projected

onto convex cells in any other resolution.

34

Chapter 4

Compression using

Multi-resolution TSVQ

As we mentioned earlier, MRTSVQ offers several advantages over unembellished

TSVQ. To do the coarse quantization in the top layers of the tree structured

codebook, it is frequently adequate to use a coarse representation of the signal.

This in turn enables us to do distance calculations with far less computations than

if the vectors were at the highest resolution. This computational advantage is very

important if the number of letters in the codebook is very large. Furthermore,

storing the centroids corresponding to the nodes of the tree requires less memory.

In this chapter we will present the greedy growing algorithm for MRTSVQs

and establish some useful properties of this algorithm.

4.1 Preliminaries

As briefly mentioned in earlier chapters, the goal of compression is to quantize

a real valued, random signal into a finite number of indexed values. Then these

35

indices can be transmitted or stored instead of the original signal. Let X ∈ L2(τ)

be a random variable that is distributed according to some density p(x) as detailed

in the previous chapter. Note that X is not a scalar or a vector, but a function

defined on [0, 1).

We want to find a mapping Q : L2(τ) → {θ1, θ2, . . . , θk} where θi ∈ L2(τ).

Thus, given an x ∈ L2(τ), Q(x) will be a quantized version of x. The error

between x and its quantization Q(x) is given by a distortion function ρ(x,Q(x)).

ρ(., .) is non-negative everywhere and convex. Some examples of ρ were given in

previous chapters.

In what follows, we will assume that ρ(x, y) = ||x − y||2 =
∫ 1

0
(x − y)2 dt. For

x, y ∈ Si denote

x =

di∑
j=1

cij(x)φ
i
j(t) = ci(x)T Φ(t)

y =

di∑
j=1

cij(y)φ
i
j(t) = ci(y)TΦ(t)

Then we can write ||x − y||2 = ||Wic
i(x) −Wic

i(y)||22 where Wi is a non-singular

matrix that depends on the basis functions at resolution i and ||.||2 is the ordinary

squared norm of a vector. Thus, the distortion between two functions in Si is

equivalent to the squared error between linear transforms of their MRA coefficients.

If we denote

x̂i = Wic
i(x)

ŷi = Wic
i(y) (4.1)

then the distortion between x and y in the L2(τ) space is equal to the squared

error between x̂i and ŷi in the R
di space. The fact that it is easier to calculate

the latter distortion compared to the former is what makes MRTSVQ much faster

36

than TSVQ. This also allows us to extend, to L2(τ) results and algorithms that

apply to R
d. For any C ⊆ Si, we denote Ĉ = {x̂i : x ∈ C} ⊆ R

di . In what follows

we will denote x̂ = x̂i whenever it is not necessary to make explicit the resolution

of the decomposition.

If we represent all x ∈ C ⊆ Si with one representative θ ∈ Si, the expected

distortion is given by

D(C, θ) = Ep{||X − θ||2 : X ∈ C} =

∫
Ĉ
||x̂− θ̂||22 dx̂

Denote by θ∗ the representative that minimizes this distortion. As mentioned in

the previous chapter, we call this the generalized centroid of C. With the squared

error distortion, the centroid is unique and lies within the convex hull of C. With

other distortion measures, these properties might not hold.

Now assume that we split C using two representatives θ1 and θ2. The LBG

algorithm presented in Chapter 2 shows that the partition with the least distortion

must be two cells separated by a hyper-plane given by

{x ∈ C : ||x− θ1||2 = ||x− θ2||2}

and the partition is {C1, C2} = {C ∩H, C ∩Hc} where

H = {x : ||x− θ1||2 < ||x− θ2||2}.

Denote by C1 the cell corresponding to θ1 and C2 the cell corresponding to θ2.

Then C1∪C2 = C. Let (θ∗1, θ
∗
2) be a set of two centroids that minimize the distortion

D(C1, θ1 +D(C2, θ2) =

∫
Ĉ1

||x̂− θ̂1||22 dx̂+

∫
Ĉ2

||x̂− θ̂2||22 dx̂

where all x̂ is the transformed projection of the signal in the current resolution

and Ĉ = {x̂ : x ∈ C}.

37

In contrast to the case where we only had one centroid, here there can be more

than one set of centroids (θ∗1, θ
∗
2) that minimize the above distortion. For example,

take a probability distribution in Ĉ that is radially symmetric. Then any rotation

of an optimal centroid-couple will given another optimal centroid-couple.

The decrease in distortion when going from one centroid to two is given by

�D(C, C1, C2) =

∫
Ĉ
||x̂− θ̂∗||22 dx̂−

∫
Ĉ1

||x̂− θ̂∗1||22 dx̂−
∫
Ĉ2

||x̂− θ̂∗2||22 dx̂

This quantity plays an important role in deciding which leaf of the MRTSVQ to

split.

Before proceeding, we need to present some supporting results that will be used

later in this chapter. For these lemmas, assume that the cell U ∈ Si so that we

can consider the space Û ⊆ R
di of transformed coeffients as in 4.1.

Lemma 1 For any cell U ∈ Si and hyper-plane H, we have �D(Û , H) ≥ 0.

Proof:

D∗(Û) = min
θ̂

∫
Û
||x̂− θ̂||2p(x̂)dx̂

= min
θ̂

(

∫
Û∩H

||x̂− θ̂||22p(x̂)dx̂+

∫
Û∩Hc

||x̂− θ̂||22p(x̂)dx̂)

≥ min
θ̂

∫
Û∩H

||x̂− θ̂||2p(x̂)dx̂+ min
θ̂

∫
Û∩Hc

||x̂− θ̂||2p(x̂)dx̂

= D∗(Û ∩H) +D∗(Û ∩Hc)

⇒ �D(Û , Û1, Û2) = D∗(Û) − (D∗(Û ∩H) +D∗(Û ∩Hc)) ≥ 0

This shows that any split will improve or leave unchanged the total distortion

of a cell.

Lemma 2 Assume a cell U ⊆ Sk with an absolutely continuous density and non-

zero probability that is split into two cells U1,U2 by θ1, θ2 belonging to the set of

38

optimal centroids. Then we have �D(U ,U1,U2) > 0 and P (U1) > 0 and P (U2) >

0.

Proof: Denote by θp the centroid of U . Since the probability density of Skx

is absolutely continuous, we can find a partition V1,V2 such that θp is not one of

the centroids of V2. This can be done by selecting V2 such that θp lies outside the

convex hull of V2. Let θ2 be a centroid of V2. Then we have

�D(U , θ) ≥ D(U , θp) −D(V1, θp) −D(V2, θ2)

= D(V2, θp) −D(V2, θ2)

> 0

The last inequality holds because θp is not a centroid of V2. Since we can find

at-least one θ1 and θ2 such that �D > 0, the result holds.

Without loss of generality, assume P (U1) = 0. Then P (U2) = P (U). This

implies that the distortion contributed by the elements in U1 is zero, which shows

that the minimum distortion D∗(U2) = D∗(U). This gives �D = 0 which is

contradicted by the previous result.

4.2 Greedy growing for MRTSVQ

The greedy growing algorithm for MRTSVQ is very similar to that for the ordinary

TSVQ. The only difference is that here we need a rule that tells us whether to split

a given node at the current resolution or to go to a higher resolution. One rule

used in [3] is to go to the next higher resolution when the decrease in distortion

obtained by splitting at the current level is lesser than some fixed fraction of the

total distortion of the node. There can be many other possibilities. d(ti) will

39

denote the dimension of the signal representation at node ti. We will denote by

φ the rule used to determine the resolution in which a node at any given depth is

split.

This rule takes into account our tradeoff between computational ease at the

lower resolution and higher potential decrease in distortion at a higher resolution.

The computational burden increases linearly with the dimension of the vectors

while the potential decrease in distortion on going from resolution k to k + 1

decreases with increasing k for large k. Thus a reasonable rule would try to utilize

as much of the information in the lower resolution as possible before going onto a

higher resolution. Also if there is zero potential decrease in the current resolution,

this rule will try to find at least one higher resolution k where the decrease in

distortion is greater than zero.

We also have a splitting algorithm ψ that splits a given node to maximize the

decrease in distortion. A reasonable splitting algorithm would start with a good

initial position for the centroids and then use the LBG algorithm to converge to a

local optimum.

We have used the notation φ, ψ to denote the rules that tell us when to go up

in resolution and how to split. These should not be confused with the wavelet and

scaling functions we presented in the last chapter that were denoted by the same

letters. We will denote trees by the letter T . T ′ � T denotes that T ′ is a subtree

of T . This means that T ′ and T have the same root node and all nodes belonging

to T ′ also also belong to T . T ′ ≺ T implies that there is at-least one node in T

that does not belong to T ′. We will denote nodes by the letter t, leaves by t̃ and

the set of all leaves of a tree T by T̃ .

Given this, the algorithm for greedy growing is as follows:

40

Algorithm I:

1. Fix a splitting algorithm ψ and a rule φ that determines when to split at a

higher resolution.

2. Initialize tree, T = c(p0,S0), where c(p0,S0) denotes the generalized centroid

of S0 ⊆ R
d0 , the zeroth resolution space under the corresponding probability

density p0. Initialize iteration count i = 0.

3. For any leaf node t̃j belonging to the set of leaf nodes T̃ of the tree with

corresponding cell Uj ⊂ St̃j at resolution d(t̃j) decide whether to go to the

next higher resolution or to split at the same resolution.

4. Calculate �D(ψ, Uj) in the corresponding resolution.

5. Find the leaf node t̃j∗ with the maximum value for �D(ψ, Uj)

6. Implement the split for t̃j∗ .

7. If stopping criterion is reached, stop. Else, increase i by 1 and repeat steps

3-7

4.3 Properties of the algorithm

4.4 Property 1: Vanishing distortion

The following theorem shows that under a condition on the rule that decides which

resolution to split in, the distortion of the tree can be made arbitrarily small by

implementing the greedy growing algorithm.

41

Theorem 1 Let Alg(p, kn) denote the set of all trees produced by the greedy grow-

ing algorithm in kn iterations and Tn ∈ Alg(p, kn). Then, if

d(tm)

log(depth(tm))
→ 0

for the sequence of nodes {tm} on any branch, we have D(Tn) → 0

Before we prove this theorem, we will need several preliminary results.

4.5 Preliminaries

Denote by D(T) the average distortion of a tree structured VQ. We assume that

the probability density p is fixed and will not explicitly mention it.

Lemma 3 For any two trees T, T ′ such that T ′ ≺ T

D(T ′) ≥ D(T)

Proof: The proof follows easily from Lemma 1 and the fact that T can be obtained

from T ′ by splitting at-least one node

Lemma 4 For any fixed splitting rule ψ,

∑
t∈T

�D(Ut,U1
t ,U2

t) ≤M∞(p)

where U1
t ,U2

t is the partition of of Ut given by ψ.

Proof: If we start with a tree of a single node at resolution 0 with a distortion

D∗(S0) and successively split leaf nodes to expand the tree, each split of a node t

will decrease the original distortion by �D(Ut,U1
t ,U2

t). Since the total distortion

42

of the tree always remains non-negative we get

D∗(S0) −
∑
t∈T

�D(Ut,U1
t ,U2

t) ≥ 0

⇒
∑
t∈T

�D(Ut,U1
t ,U2

t) ≤ D∗(S0) ≤ M∞(p) (4.2)

The last inequality comes from the optimality of D∗(S0) and the fact that the

function x(t) = 0 : t ∈ [0, 1) belongs to S0.

When the greedy growing algorithm is applied n times to vectors from a fixed

probability density p, we get a sequence of trees T0 ≺ T1 ≺ . . . ≺ Tn′ . We call this

a trajectory. If n′ = n we call it a complete trajectory. Incomplete trajectories can

form if �D(Ut̃,U1
t̃
,U2

t̃
) = 0 for all t̃ ∈ T̃n in all resolutions.

Lemma 5 [34] If T has a complete trajectory of the form T0 ≺ T1 ≺ . . . ≺ Tn = T ,

then

min
1≤j≤n

∑
t∈T̃j−1

�D(Ut,U1
t ,U2

t) ≤ M∞(p)

w(n)

where w(n) =
∑n

j=1 j
−1

Proof: For j = 1, . . . , n let t∗j−1 ∈ T̃j−1 be the terminal node that is split to

form Tj . Since Tj−1 has j such nodes, the greedy node selection criterion ensures

that

j−1
∑

t∈T̃j−1

�D(Ut,U1
t ,U2

t) ≤ �D(Ut∗j−1
,U1

t∗j−1
,U2

t∗j−1
)

Therefore

w(n) min
1≤j≤n

∑
t∈T̃j−1

�D(Ut,U1
t ,U2

t) ≤ �D(Ut∗j−1
,U1

t∗j−1
,U2

t∗j−1
)

≤
∑
t∈T

�D(Ut,U1
t ,U2

t) ≤M∞(p)

which gives the necessary result.

The following lemma is a geometric result that will be used later.

43

Lemma 6 Consider two concentric balls B1 = B(0, r) and B2 = B(0, r
√
d) in

a d-dimensional space. Now take a hyper-plane in this space that is tangent to

the inner ball B1 and intersects the outer ball in a hyper-circle, thus dividing the

surface of the outer ball into two parts, V1 and V2 with V ol(V1) < V ol(V2) (See

figure in Appendix). Then, we have

V ol(V1)

V ol(V1) + V ol(V2)
>

1

2
√

2πe
∀d

Proof: Given in the Appendix.

Lemma 7 If ψ is an optimal splitting rule, then for every set U ⊆ Sk for some k,

every distribution p and every number β > 0

��D(U ,U1,U2) ≥ β2

2
√

2πed
P (x ∈ U : ||Skx− c(U , k, p)|| > β) (4.3)

Proof: Denote by x̂ the k-th resolution representation of x in R
dk .We will not

make the resolution k explicit as long as there is no confusion. As mentioned in

the previous chapter, ||Skx−Sky||2 = ||x̂− ŷ||2 for any x, y ∈ L2(τ). Also denote

by ĉ the k-th resolution representation of c(U , k, p). Then

P (x ∈ U : ||Skx− c(U , k, p)|| > β) = P (x ∈ U : ||x̂− ĉ|| > β)

Consider two balls B1 = B(ĉ, β/
√
dk), B2 = B(ĉ, β) around ĉ with radius β/

√
dk

and β. Then, from the previous lemma, any hyper-plane H tangential to B1 will

have at-least 1/(2
√

2πe) fraction of the surface area ofB2 on the side not containing

the common center. This, in turn, means that there will be a hyper-plane H∗ such

that

P (H ∩ B2
c) >

1

2
√

2πe
P (x ∈ U : ||x̂− ĉ|| > β)

44

Let v∗ be the vector in H that is closest to ĉ. Then (ĉ− v∗)t(x̂− v∗) ≤ 0 holds

for every x̂ ∈ H , which gives

||x̂− ĉ||2 − ||x̂− v∗||2 ≥ ||ĉ− v∗||2 =
β2

dk

If ĉ1 is the centroid of V = U ⋂H and ĉ2 is the centroid of W = U ⋂Hc, then

�D(U ,V,W) = D(U , ĉ) −D(V, ĉ1) −D(W, ĉ2)

= Dk(U , ĉ) +R(U , k) −Dk(V, ĉ1) − R(V, k) −Dk(W, ĉ
2)

−R(W, k)

= Dk(U , ĉ) −Dk(V, ĉ1) −Dk(W, ĉ
2)

= (Dk(V, ĉ) −Dk(V, ĉ1)) + (Dk(W, ĉ) −Dk(W, ĉ
2))

≥ Dk(V, ĉ) −Dk(V, ĉ1)

≥ Dk(V, ĉ) −Dk(V, v∗)

=

∫
V
(‖x− c‖2 − ‖x− v∗‖2)dp

≥ β2

d
p(V)

≥ β2

2
√

2πed
p(x ∈ U : ||x̂− ĉ|| > β)

which gives the required result.

Denote by T (x) the function that maps x ∈ Ut to c(Ut, kt, p) where Ut ⊆ L2(τ)

is the cell associated with a leaf node t ∈ T and c(Ut, kt, p) is the centroid of Ut

when it is split in the kt-th resolution. Further denote by k(x) the resolution kt of

the cell to which x belongs to and by c(x) the centroid c(Ut, kt, p). Then we have

the following lemma

Lemma 8 There exists constants β, γ > 0 depending only on δ and p such that

for any tree T with D(T) > δ, created after a sufficiently large number of iterations

45

of the algorithm,

P (x : ‖Sk(x) − c(x)‖ ≥ β) > γ

Proof: Assume that there is a number K <∞ such that P{x : ‖x‖ ≤ K} = 1.

Then, for any x, y, ‖x− y‖2 < 4K2. If D(T) > δ for any T , we have

δ ≤
∫

‖x− T (x)‖2dp

≤ δ

2
+ 4K2P{x : ‖x− T (x)‖ ≥

√
δ

2
}

which gives

P{x : ‖x− T (x)‖ ≥
√
δ

2
} > δ

8K2

Now for any x ∈ L2(τ) integer k and c ∈ Sk, ‖x−c‖2 = ‖Skx−c‖2+‖x−Skx‖2.

Lemma 9 shows that the depth of the leaf node with the minimum depth keeps on

increasing as the number of iterations increases. This implies that the resolution

of the lowest resolution leaf node increases indefinitely and we can always find an

iteration number such that for all leaf nodes of the tree

‖x− Sk(x)x‖2 < ε2 ∀x

for some ε > 0 such that ε < β.

This implies that for all leaf nodes in such a tree

‖x− c(x)‖2 > β2 ⇒ ‖Sk(x)x− c(x)‖2 > β2 − ε2

which gives

P{x : ‖Sk(x) − c(x)‖2 > β2 − ε2} > P{x : ‖x− c(x)‖ > β} > γ

providing the desired result. The more general case where p does not have compact

support can be derived from the result given in the appendix of [34].

46

Proof of Theorem 1: If the algorithm stops before all iterations have been

finished, then it means that �Dk(Ut,U1
t ,U2

t) = 0 for all leaf nodes t ∈ T̃ and all

resolutions. This implies either that the probability P (Ut) is zero for all leaf nodes

or that all the probability is concentrated at a point. In either case, the distortion

of the tree is zero.

Now consider the case where the algorithm does not terminate until all itera-

tions have been finished. For a large enough iteration number n, consider all trees

thus formed which have a distortion D(T) > δ. By Lemma 5, there exists a T ′ � T

such that ∑
t′∈T̃ ′

�D(Ut′,U1
t′ ,U2

t′) ≤
M∞(p)

w(n)
(4.4)

Since T ′ is a subtree of T , it follows from Lemma 3 that D(T ′) ≥ δ, and thus there

exists constants β, γ > 0 depending only on δ and p such that

P{x : ‖Sk(x)x− T ′(x)‖ ≥ β} > γ (4.5)

when n is large. Then, the optimality of ψ and Lemma 7 imply that

∑
t′∈T̃ ′

�D(Ut′,U1
t′ ,U2

t′) ≥
β2

2
√

2πedmax

P{x : ‖x− T ′(x)‖ ≥ β} ≥ η (4.6)

where η = γβ2/2
√

2πedmax > 0 and dmax is the dimension of the MRA at the leaf

node with the highest resolution. The above implies that

M∞(p)
dmax

w(n)
>

γβ2

2
√

2πe
> 0 (4.7)

If dmax/w(n) → 0 as n increases, the left hand side goes to zero, while the right

hand side is positive and independent of n. This shows that D(T) > δ for only a

finite number of trees. Since δ was arbitrary, this gives the necessary result.

Note that ln(n) < w(n) < ln(n)+1, so the condition above can also be written

as dmax/ ln(n) → 0.

47

4.6 Property 2: Termination with rate constraint

In the previous chapter we mentioned a stopping criterion for the greedy growing

algorithm. The growth of the tree is stopped when this criterion is satisfied. For

quantizers, a very common stopping criterion is in the form of a rate constraint. We

keep on growing the tree as long as the expected bit-length of the codebook is lesser

than a given R and stop as soon as it gets larger than R. This is reasonable when

we have a channel with a fixed capacity and we want to constrain the quantizer to

have a rate lesser than or equal to the channel capacity.

Here we will show that for a rate constraint, the algorithm given in the previous

chapter will terminate after a finite number of iterations. This is important as it

ensures that only a finite time is required to create a quantizer in practice.

Theorem 2 For a stopping criterion of the form r ≤ R, the algorithm Alg. 1

terminates after a finite number of iterations i

The proof of this result uses the following lemma. By definition, a balanced binary

tree is a binary tree where all leaf nodes are at the same depth and all nodes that

are not leaf nodes have both their children present.

Lemma 9 Let T1 ≺ T2 ≺ . . . be the sequence of trees created by each iteration of

Alg. 1. Then there is a sequence of balanced trees T̆1, T̆2, . . . such that T̆k � Tk and

Depth(T̆k) → ∞

Proof: Let T̆i be the largest balanced tree that is a subtree of Ti. Then Depth(T̆i)

is non-decreasing. If Depth(T̆i) does not go to infinity, then we have some K such

that Depth(T̆i) → K. This implies that there is at least one leaf node t and integer

n > 0 such that t is a leaf node for all Ti, i > n. Then for all such Ti, any subtree

T � Ti contains a leaf node that is either t or one of its ancestors. Lemma 2

48

gives us that none of t or its ancestors have probability zero, and that for t and its

ancestors, �D(.) > 0. Denoting by Anc(t) the set composed of t and its ancestors,

let δ = mint̂∈Anc(t) �D(t̂) > 0.

Since t or one of its ancestors are present in the set of leaf nodes of all Ti, we

have

0 < δ ≤ min
1≤j≤n

∑
t∈T̃j−1

�D(Ut, k(t) : ψ) ≤ M∞(p)

w(k)

Where the second inequality comes from Lemma 5 with w(k) =
∑n

j=1 j
−1.

Since M∞/w(k) → 0 this fails to hold true for sufficiently large values of k.

This shows that our assumption that Depth(T̆i) converges to K is wrong and thus

Depth(T̆i) → ∞.

Proof of Theorem 2: Let T1 � T2. Then R(T1) ≤ R(T2). Also the rate of a

balanced tree T̆ is equal to Depth(T̆). These two, along with the previous lemma

show that R(Ti) → ∞, which shows that the algorithm Alg. 1 with a stopping

criterion on the maximum rate will terminate after a finite number of iterations,

providing the result we need.

4.7 Online algorithm for distortion minimization

An online algorithm for distortion minimization has been implied in [2] where the

authors develop an online algorithm for combined compression and classification

using VQ. Here we will present the algorithm and show how it is related to the

LBG algorithm.

The algorithm presented in [2] is as follows. We assume a source of i.i.d. random

vectors x1, x2, x3, . . . that have a distribution p(x). We start with an initial set of

centroids Θ = {θ1, θ2, . . . , θk}. Then for each observation xn we find the centroid

49

θi that is closest to it in terms of the distortion function ρ(xn, θi). This centroid is

moved in the direction of xn. Specifically

θi(n) = θi(n− 1) + α(n) �θi
ρ(xn, θi(n− 1)) (4.8)

As shown in [2], in the limit α(n) → 0, the trajectory of Θ follows the trajectory

of the system of ordinary differential equations

θ̇1 =

∫
V1

p(x) �θ ρ(x, θ1)dx

θ̇2 =

∫
V2

p(x) �θ ρ(x, θ2)dx

...

θ̇k =

∫
Vk

p(x) �θ ρ(x, θk)dx

where Vi is the cell in the Nearest Neighbor partition that corresponds to centroid

θi. Note that each Vi can be a function of all centroids θ1, θ2, . . . , θk.

In [2] the authors claim that this is a gradient descent on the cost

J(Θ) =

k∑
i=1

∫
Vi

p(x)ρ(x, θi)dx (4.9)

Here we will prove this claim. To simplify the proof we will consider the case of

only two centroids. The general k-centroid case can be similarly proved but we

will only present pointers on how to extend this proof for that case.

The ODE that characterizes the behavior of the centroids in the 2-centroid

algorithm is

θ̇1 =

∫
V1

p(x) �θ ρ(x, θ1)dx

θ̇2 =

∫
V2

p(x) �θ ρ(x, θ2)dx

(4.10)

50

where V1 = {x ∈ R : ρ(x, θ1) ≤ ρ(x, θ2)} and V2 = {x ∈ R : ρ(x, θ2) < ρ(x, θ1)}.
The cost 4.9 is

J(Θ) =

2∑
i=1

∫
Vi

p(x)ρ(x, θi)dx (4.11)

Taking the gradient of the cost with respect to θ1 or θ2 is complicated by the

fact that the regions of integration V1 and V2 are themselves functions of θ1 and

θ2. To simplify notation, let us denote

g(x, θ) = ρ(x, θ)p(x)

Then the expected distortion D(θ1, θ2) can be written as

D(θ1, θ2) =

∫
V1(θ1,θ2)

g(x, θ1) dx+

∫
V2(θ1,θ2)

g(x, θ2) dx (4.12)

where we have made explicit, the dependence of V1 and V2 on θ1 and θ2.

To find the gradient of 4.12 with respect to θ1, let us compute

D(θ1 + �θ, θ2) − D(θ1, θ2)

=

∫
V1(θ1+�θ,θ2)

g(x, θ1 + �θ) dx

+

∫
V2(θ1+�θ,θ2)

g(x, θ2) dx−
∫
V1(θ1,θ2)

g(x, θ1) dx+

∫
V2(θ1,θ2)

g(x, θ2) dx

=

∫
V1(θ1+�θ,θ2)

g(x, θ1 + �θ) dx−
∫
V1(θ1,θ2)

g(x, θ1 + �θ) dx

+

∫
V1(θ1,θ2)

g(x, θ1 + �θ) dx−
∫
V1(θ1,θ2)

g(x, θ1) dx

+

∫
V2(θ1+�θ,θ2)

g(x, θ2) dx−
∫
V2(θ1,θ2)

g(x, θ2) dx

Denote W1 = V1(θ1 + �θ, θ2) ∩ V2(θ1, θ2) and W2 = V2(θ1 + �θ, θ2) ∩ V1(θ1, θ2)

(see Fig. 4.1). Then we can write

51

θ2
θ1

θ1+∆θ

 V2(θ1,θ2) V1(θ1,θ2)

V2(θ1+∆θ,θ2) V1(θ1+∆θ,θ2)

W1

W2

Figure 4.1: Illustration of V1,V2,W1 and W2 in 2 dimensions

D(θ1 + �θ, θ2) − D(θ1, θ2)

=

∫
V1(θ1,θ2)

[g(θ1 + �θ, x) − g(θ1)] dx

+

∫
W1

g(θ1 + �θ, x) dx−
∫

W2

g(θ1 + �θ, x) dx

+

∫
W2

g(θ2, x) dx−
∫

W1

g(θ2, x) dx

= �θT

∫
V1(θ1,θ2)

�g(θ1, x) dx+ (higher order terms in �θ)

+

∫
W1

g(θ1 + �θ, x) dx−
∫

W2

g(θ1 + �θ, x) dx

+

∫
W2

g(θ2, x) dx−
∫

W1

g(θ2, x) dx

The sets W1 and W2 are infinitesimally thin sets along the hyper-plane that sep-

arates V1 and V2. Since the definition of this hyper-plane is such that H = {x :

ρ(x, θ1) < ρ(x, θ2)} we have g(θ1 + �θ, x) − g(θ2, x) = O(�θ). Thus

∫
W1

g(θ1 + �θ, x) dx−
∫

W2

g(θ1 + �θ, x) dx +

∫
W2

g(θ2, x) dx−
∫

W1

g(θ2, x) dx

= 0 + (higher order terms in �θ)

52

Thus

D(θ1+�θ, θ2)−D(θ1, θ2) = �θT

∫
V1(θ1,θ2)

�g(θ1, x) dx+ (higher order terms in �θ)

which implies that

�θ1D(θ1, θ2) =

∫
V1

�θ1g(θ1, x) dx

=

∫
V1

�θ1ρ(θ1, x)p(x) dx

Similarly

�θ2D(θ1, θ2) =

∫
V2

�θ2ρ(θ2, x)p(x) dx

which is the result we wanted.

Note that the method of proof depended on the fact that the infinitesimal

change in total distortion is zero when a perturbation in θ1 causes a point close to

the separating hyper-plane to move from V1 to V2. This method cannot be used to

establish the cost function that is minimized by the Learning Vector Quantization

algorithm.

The extension of this proof to more than two centroids is messy but straight-

forward. Instead of looking at the hyper-plane between only two centroids we

have to look at the hyper-planes between a given centroid and all other centroids.

An argument similar to the one above shows that perturbation in the position

of one centroid does not change the distortion contribution from points near the

separating hyper-planes.

4.8 Practical implementation of the MRTSVQ

Practical implementation of the tree structured quantizer brings up several issues

that have not been addressed above. Two of them are initialization of centroids

53

and choosing φ, the function that tells whether to split in the current resolution

or the next. Initialization of centroids is accomplished by randomly selecting data

vectors that falls into the cell. This usually gives good results. If we have more

than two centroids at each split, we can initially split with just two centroids and

then introduce additional centroids one after another at random positions.

One way of deciding whether to go up a resolution is by comparing the change

in distortion on splitting at the current resolution to the total distortion. If the

change is less than a certain fixed fraction (call it δD), then we split at the next

higher resolution. Increasing δD will force the algorithm to go to higher resolutions

early on, but will result in lower distortion for a given rate. If δD is chosen small

the algorithm exploits more of the information in the lower resolution before trying

out the higher resolutions. The tradeoff is that one ends up with a higher rate for

the same total distortion level.

Another way of choosing the resolution to split at is to look at a weighted

sum of the computational complexity and the decrease in distortion for a split at a

given resolution. The resolution that minimizes this function will be chosen for the

splitting. Different tradeoffs between computational complexity and tree efficiency

can be obtained with different weights.

54

Chapter 5

Multi-resolution classifiers

In this chapter we will explore the use of Multi-Resolution TSVQ as a classifier.

We assume that a source can be in any one of two states or classes when it outputs

a signal x(t), t ∈ [0, 1). Labeling the classes by 1 or 2, we have a probability density

defined on L2(τ) that depends on whether the source is in class 1 or 2. Let p1(x)

denote the probability density at x given that the source was in class 1 and p2(x)

denote the density given that the source was in class 2. We assume that either

class occurs independently with probabilities π1 and π2 = 1 − π1.

Our problem is to estimate the class of the source given only the output x.

As mentioned in Chapter 3, if we know the prior probabilities and the marginal

probability densities, the Bayes optimal classifier achieves the least possible mis-

classification error. If all we have is a training set consisting of pairs {xn, cn} of

observations and classes, we need algorithms that find a classifier that comes as

close to the Bayes optimal classifier as possible.

55

5.1 Multi-resolution vector classification

Now consider the above problem of constructing a classifier from training samples

with the added feature that the signals output by the source can be observed in

various levels of detail. The first question is: How is this useful? The answer is

that processing each signal to determine the class might be easier if less detailed

versions of the signal are used. Most classifiers compare the signal to a set of

exemplars and this comparison is usually computationally simpler if the signal is

of lower dimension.

Additionally, in some cases, most of the high level detail of the signal is

swamped in noise and only the low resolution features offer usable information

about the class of the signal. In such a case using the high resolution details might

make the classifier perform worse compared to using low resolution representation

since the algorithm tries to model the noise.

Multi-resolution analysis is used to find out good features for other kinds of

classifiers too. Typically, the multiple resolutions of the signal are examined to

find those resolutions that have the most potential for the classification problem.

In a TSVQ, this selection is done automatically. At each step of the tree growing

process, we not only decide which node to split, but also which resolution to split

it in. A resolution that offers the best trade-off between dimensionality and error

reduction is chosen.

The second question is: How can we construct hierarchical classifiers using

training sets in multiple resolutions? Here we will provide one solution based on

an extension of the Learning Vector Quantization we presented in Chapter 2.

56

5.2 Multi-level LVQ

Taking the algorithm used to create the MRTSVQ for compression, we can try to

extend LVQ to the multi-resolution tree structured classifier in a straightforward

way. We start out with a root node that contains as its cell, all the training vectors

at the lowest resolution. The class of the root node is assigned according to the

majority vote amongst the training vectors; if the class 1 vectors outnumber the

class 2 vectors, then the class of the node is 1 and vice-versa. Then, recursively,

each leaf node of the tree is examined to find the one that gives the biggest decrease

in the classification error when its cell is split into two parts, each part assigned

a different class. This splitting is done by the LVQ algorithm at an appropriate

resolution. The node that gives the highest difference is then split to produce a

new tree and this process repeats.

The only problem with this algorithm is that LVQ takes a long time to converge

(learning rate α(n) = O(1/n)). Waiting until the centroids at a higher resolution

have converged before going on to the next resolution is very time consuming.

Additionally, in an online learning case, we cannot use the classifier until all the

levels of the tree have converged. In such a case, we would be interested in an

algorithm where all levels of the tree are simultaneously updated when each data

sample arrives.

Such an algorithm would start out with a structure for a tree with centroids for

each node initialized to appropriate values. Then, as each training sample arrives,

it will be used to update the centroids of all nodes of the tree at the appropriate

resolution simultaneously. Thus the tree, as a whole, adapts to the data rather

than each node adapting separately. The classifier tree can be used at any time for

predicting the class, with a misclassification error that goes down as the centroids

57

converge.

Let us now present the formal algorithm

Algorithm II:

1. Fix in advance the MRA, size of tree (maximum depth), data size and number

of iterations.

2. Start with an initial tree T0 consisting of a structure that details:

(a) How the nodes are connected to each other; i.e. which nodes are the

children of a given node.

(b) The resolution of each node. Each node is at the same resolution as its

siblings and we require that the resolution is non-decreasing down the

tree along every branch.

(c) The initial positions of the centroids at each node. The centroids at

each node must be at the resolution of the node.

3. Initialize iteration number i = 1 and data number n = 1.

4. Take data vector xn at the lowest resolution and compare it to the centroids

of the children of the root node and perform the following update

θ1
0(t+ 1) = θ1

0(t) − α0(t)(S0xn − θ1
0(t))

if ‖S0xn − θ1
0(t)‖2 < ‖S0xn − θ2

0(t)‖2 and cn = 1

θ1
0(t+ 1) = θ1

0(t) + α0(t)(S0xn − θ1
0(t))

if ‖S0xn − θ1
0(t)‖2 < ‖S0xn − θ2

0(t)‖2 and cn = 2

58

θ2
0(t+ 1) = θ2

0(t) − α0(t)(S0xn − θ2
0(t))

if ‖S0xn − θ2
0(t)‖2 < ‖S0xn − θ1

0(t)‖2 and cn = 2

θ2
0(t+ 1) = θ2

0(t) + α0(t)(S0xn − θ2
0(t))

if ‖S0xn − θ2
0(t)‖2 < ‖S0xn − θ1

0(t)‖2 and cn = 1

5. Recursively, for each pair of nodes θ1
i , θ

2
i at resolution k, do the following

update only if their parent was updated.

θ1
i (t+ 1) = θ1

i (t) − αk(t)(Skxn − θ1
i (t))

if ‖Skxn − θ1
i (t)‖2 < ‖Skxn − θ2

i (t)‖2 and cn = 1

θ1
i (t+ 1) = θ1

i (t) + αk(t)(Skxn − θ1
i (t))

if ‖Skxn − θ1
i (t)‖2 < ‖Skxn − θ2

i (t)‖2 and cn = 2

θ2
i (t+ 1) = θ2

i (t) − αk(t)(Skxn − θ2
i (t))

if ‖Skxn − θ2
i (t)‖2 < ‖Skxn − θ1

i (t)‖2 and cn = 2

θ2
i (t+ 1) = θ2

i (t) + αk(t)(Skxn − θ1
i (t))

if ‖Skxn − θ2
i (t)‖2 < ‖Skxn − θ2

i (t)‖2 and cn = 1

6. Increase data number by 1. Repeat for all data vectors.

7. Increase iteration number by 1. Repeat for all iterations.

Note that there is an implicit linkage between a node and its parent. Only the

vectors that cause the parent to be updated will be considered for updating the

node and its siblings. Thus, the only vectors being used to split a node will be the

vectors that fall into its cell.

59

5.3 Convergence of multi-level LVQ

In our algorithm, the decision whether to consider a vector for the update of a

node depends on whether the vector fell in the cell of the node’s parent. Since the

cell of the parent changes with the position of the centroid at each time step, the

centroids of the node have to try and keep up with a “moving target.” We can

ask the question: Under what conditions will the centroids of the tree converge to

a stationary value as the number of data vectors increase indefinitely?

To investigate this, we will need to present and prove a theorem that is a slightly

different from the result shown by Borkar [5]. While [5] deals with stochastic

approximation algorithms in two levels with different “training speeds”, we need to

generalize it to arbitrary number of levels K. In addition, the algorithm considered

in [5] has an update function that depends on the state variables at lower levels

(i.e. update for state xi depends on xj , j > i). We will only need update functions

that depend only on state variables at higher levels. This adds some simplicity to

the proof.

5.3.1 Preliminaries

In what follows, we will denote by xi(n) ∈ R
di the di-dimensional component of the

state space in the i-th level at time step n. Xi(n) = [x0(n), x1(n), . . . xi(n)] denotes

the set of state variables that are at or above the i-th level. X(n) = XK−1(n) =

[x0(n), x1(n), . . . xK−1(n)] denotes the total state space of the algorithm.

Consider the stochastic approximation algorithm consisting of the linked dif-

60

ference equations

x0(n + 1) = x0(n) + α0(n)[f0(X0(n)) +M0(n)]

x1(n + 1) = x1(n) + α1(n)[f1(X1(n)) +M1(n)]

...
...

xK−1(n + 1) = xK−1(n) + αK−1(n)[fK−1(XK−1(n)) +MK−1(n)] (5.1)

where

• A.1 fi(Xi(n)) : R
d0+d1+d2+...di → R

di is Lipschitz for all i

• A.2
∑

n αi(n) = ∞ and
∑

n αi(n)2 <∞ for all i

• A.3 αi(n)/αj(n) → 0 if i < j for all i, j

• A.4 If Fn = σ{Xi(l),Mi(l)|l ≤ n, ∀i} denotes the σ-algebra formed by the

state Xi and the noise Mi, then (Mi(n), Fn) are random variables satisfying

∑
n

αi(n)Mi(n) <∞ a.s.

In the case of the multi-level LVQ, we will show that Gi(n) =
∑n

m=1 αi(m)Mi(m)

is a martingale; then condition A.4 follows from a version of the martingale con-

vergence theorem.

The usual method of analyzing the convergence of a system of stochastic ap-

proximations like 5.1 is to compare it to the associated ordinary differential equa-

tion (ODE). Denoting by the same symbols {xi}, {Xi}, the state variables in con-

61

tinuous time, we have the system of equations

ẋ0(t) = f0(X0(t))

εẋ1(t) = f1(X1(t))

ε2ẋ2(t) = f2(X2(t))

...
...

εK−1ẋK−1(t) = fK−1(XK−1(t)) (5.2)

for the limit ε ↓ 0. This is a generalized singularly perturbed system where

each variable xi behaves as if all variables x0 to xi−1 are constants. Denote by

λi(x0, x1, . . . , xi−1) the function that gives the equilibrium point of ẋi(t) = fi(Xi(t))

for given constant values of x0, x1, . . . , xi−1.

Now suppose that there is an asymptotically stable equilibriumX∗ = [x∗0, x
∗
1, . . . , x

∗
K−1]

for the system of equations 5.2. Then we have the following theorem

Theorem 3 If there is an N such that X(n) remains in the domain of attraction

of X∗ for all n > N and supnX(n) <∞, the iterates 5.1 converge to X∗ a.s.

The assumption that X(n) remains in the domain of attraction of the equi-

librium and that its supremum is bounded might not be always valid. In that

case, we can keep projecting X(n) back into the bounding set at the expense of an

error term. [25] shows how to deal with the error term in the case of constrained

optimization.

5.3.2 Proof of the theorem

Our proof closely parallels and borrows much of its notation from [5]. We will

first show that the state variable xi(t) at any level i > 0 converges to x∗i =

λi(x0, x1, . . . , xi−1). Then we will show that x0(t) converges to x∗0.

62

First, a definition and a lemma. Consider the ODE in R
d given by

ż(t) = h(z(t)) (5.3)

for a Lipschitz h such that Eq. 5.3 has an asymptotically stable attractor J with

a domain of attraction D(J). Given T, δ > 0, we call a bounded measurable

y(t) : R+ → Rd a (T, δ)-perturbation of Eq. 5.3 if there exists 0 = T0 < T1 < . . . <

Tn = ∞ with Ti+1 − Ti ≥ T and solutions zj(t) of Eq. 5.3 such that

sup
t∈[Tj ,Tj+1]

||zj(t) − y(t)|| < δ

Lemma 10 Given ε, T > 0 there exists a δ̄ > 0 such that for δ ∈ (0, δ̄), every

(T, δ)-perturbation of Eq. 5.3 converges to the ε-neighborhood J ε of J .

The proof is given in the appendix of [5]

Fix a level i. We will now show that as far as this level is concerned, the ODE

being followed by 5.1 is

ẋ0(t) = 0

ẋ1(t) = 0

...
...

ẋi−1(t) = 0

ẋi(t) = fi(Xi(t))

63

For a given T let ti(0) = 0 = Ti(0) and define

ti(n) =

n∑
k=1

αi(k), n ≥ 1

m(0) = 0,

m(n) = min

k ≥ m(n− 1)|

k∑
j=m(n−1)+1

αi(j) ≥ T

Ti(n) = ti(m(n))

(5.4)

With this notation we have Ti(j+1) ∈ [Ti(j)+T, Ti(j)+T +Ci], Ci = supn αi(n).

Define X̄i(t) = [x̄0(t), x̄1(t), . . . , x̄i(t)] as X̄i(ti(n)) = Xi(n) with a linear interpo-

lation for the time between the instants ti(n) and ti(n + 1).

Consider the system of equations 5.4. We have the lemma

Lemma 11 For any δ > 0, there exists a time tδ > 0 such that X̄i(t + tδ) is a

(T, δ) perturbation of 5.4

Proof: Rewrite the stochastic approximation algorithm 5.1 up to level i as

x0(n + 1) = x0(n) + αi(n)
α0(n)

αi(n)
[f0(X0(n)) +M0(n)]

x1(n + 1) = x1(n) + αi(n)
α1(n)

αi(n)
[f1(X1(n)) +M1(n)] (5.5)

...
...

xi(n + 1) = xi(n) + αi(n)[fi(Xi(n)) +Mi(n)]

Let Xn
i (t) be the solution to 5.4 on [Ti(n),∞) with initial conditions Xn

i (t) =

Xi(n). Then 5.5 can be seen as a discretized version of 5.4 with step sizes αi(n)

and an error

αj(n)

αi(n)
[fj(Xj(n)) +Mj(n)]

64

at the j-th level, j < i and αi(n)Mi(n) at the i-th level. The fact that all fj

are Lipschitz and that αj(n)/αi(n) → 0 for all j < i makes the contribution of

this error asymptotically negligible as n → ∞. With the fact that αi(n) → 0, we

get the required result by a standard approximation argument using the Gronwall

inequality.

Lemma 12 Xi(n) → [x0, x1, . . . , xi−1, λi(x0, x1, . . . , xi−1)]

This follows from the above two lemmas.

Now we have to show that x0(n) converges. This follows in a straightforward

fashion from

Lemma 13 Under the conditions in Theorem 3 and A.1 to A.4, x0(n) → x∗0 where

x∗0 is the equilibrium solution of

ẋ0(t) = f0(x0(t))

a.s.

Proof: See [25]

This completes the proof of Theorem 3

5.3.3 Multi-level LVQ

The application of Theorem 3 to the Multi-level LVQ algorithm is straightforward

once we set the algorithm up in the form of 5.1 and verify that assumptions A.1

to A.4 are satisfied.

To make the link between Algorithm 1 in section 5.2 and the stochastic ap-

proximation algorithm 5.1, let us denote the set of all centroids at resolution k by

Θk(n) = {θ1
i (n), θ2

i (n)} node i belongs to the k-th level of the tree. Also denote

65

by S̃kx = [Skx,Skx, . . . ,Skx] where the number of repetitions is equal to the

number of centroids at resolution k. Then the LVQ algorithm can be written as

Θ0(n+ 1) = Θ0(n) + α0(n)η0(Θ0(n))[Θ0(n) − S̃0x(n)]

Θ1(n+ 1) = Θ1(n) + α1(n)η1(Θ0(n),Θ1(n))[Θ1(n) − S̃1x(n)]

...
...

ΘK−1(n+ 1) = ΘK−1(n)

+αK−1(n)ηK−1(Θ0(n),Θ1(n), . . . ,ΘK−1(n))[ΘK−1(n) − S̃K−1x]

where ηi(Θ0,Θ1, . . . ,Θi) is a diagonal matrix of size lkdk × lkdk where lk is the

number of centroids and dk is the dimension of the signal vector at the resolution

k. The diagonal is composed of blocks of length dk where all elements of the j-th

such block are

0 if vector x does not fall into each ancestor of centroid j

1 if x falls into each ancestor of j and the class of x is different from class of j

−1 if x falls into each ancestor of j and the class of x is same as class of j

Here centroid j refers to the j-th amongst the lk centroids at resolution k.

Now let us show that assumption A.4 is satisfied

fi(Θ0(n),Θ1(n), . . . ,Θi(n)) = Ex{ηi(Θ0(n),Θ1(n), . . . ,Θi(n))[Θi(n) − S̃ix]}

and

Mi(n) = ηi(. . .)[Θi − S̃ix] − fi(. . .)

Then Ex(M(n)) = 0. Given that xn and xm are uncorrelated for n �= m, it is easy

to verify that

E{Mi(n)Mi(m)} = 0

66

These two facts imply that {Mi(n)} is a martingale difference sequence and that

Gi(n) =

n∑
m=1

αi(m)Mi(m)

is a martingale. Then, a martingale convergence theorem like Theorem 5.14 in [7]

shows that Gi(n) converges a.s.

A.2 and A.3 are design issues, so the only other assumption we have to check

is A.1.; i.e. that fi(. . .) is Lipschitz. It is not hard to verify that this is satisfied if

x has a probability distribution p(x) = π1p1(x) + π2p2(x) that is bounded.

Thus, all assumptions for Theorem 3 are satisfied and we get the result that

all centroids θj(n) converge as n→ ∞.

5.4 Issues in practical implementation

Practical implementation of the above algorithm introduces several issues that are

not readily apparent from the description. Here we will discuss some of them and

offer heuristic solutions.

The convergence result holds only if there is an equilibrium solution to the

associated ODE and if the initial conditions are close enough to it. The ODE

might not have an equilibrium solution if, for a cell, there is no hyper-plane that

will partition it into two parts with clear majorities in each part. This can mean

two things; either there is no more improvement possible by splitting that node

at the current resolution or improvement is possible only with more than two

partitions. If it is the former case one might try splitting at a higher resolution. In

the latter case the algorithm can be modified to include the possibility of splitting

a node with more than two partitions and its convergence proved without difficulty.

Proper initialization of the centroids is very important for fast convergence.

67

Several heuristic rules exist for good initialization. One method that works well is

randomly selecting a data vector of each class as initial values. Another method is

to initialize the centroid to the mean of the data vectors that belong to its class.

It is necessary to initialize the class of each centroid according to the majority

vote in its partition and update the class after a number of iterations. [26] shows

an example where failure to do this will result in divergence of the centroids even

though there is a stable solution. It might happen that this updating causes the

class of both centroids to be the same; in such a case re-assignment of the centroids

and their classes is the only recourse.

68

Chapter 6

Simulations and applications of

MRTSVQ

In this chapter we will present two simulation examples for compression and clas-

sification. Working on synthetic data, these simulations will illustrate the im-

plementation of the algorithms we presented in earlier chapters and their typical

behavior.

We will also present several applications of clustering and classification using

MRTSVQ. Tree structured VQ will be used to cluster yeast genes according to their

expression profile and for classification of cells into tumerous and non-tumerous

classes. Then we will present a parallel tree method for predicting wear on a milling

tool. Computational advantages of the MRTSVQ method will be illustrated by an

application in fingerprint identification.

69

6.1 Simulation for compression

In this section we will show the results obtained by using the greedy algorithm

for quantization of signals. We have used the algorithm described in Chapter

4. Splitting was done using the LBG algorithm with random initial values for the

centroids. The decision to go up in resolution was taken on the basis of the decrease

in distortion on splitting a leaf. If the decrease was less than a fixed fraction of

the total distortion of the leaf, we proceeded to the higher resolution.

The quantized signals were created as the output of a linear filter of 2nd order

with an i.i.d, Gaussian noise input. These signals were then analyzed in 7 resolu-

tions using a Bi-orthogonal wavelet of order 2 for both analysis and reconstruction.

The resulting coefficient vectors were transformed to have the same norm as the

function they approximate. Fig. 6.1 shows an example of a signal at 7 resolutions.

0 20 40 60 80 100 120 140
−50

0

50

100

150

200

250

300

350

Time

In
cr

ea
si

ng
 r

es
ol

ut
io

n
→

Figure 6.1: Signal in 7 resolutions

Fig. 6.2(a) shows the decrease in distortion as the number of splits increase

while Fig. 6.2(b) shows the increase in rate as the tree grows. Note that distortion

70

decreases to zero in the asymptotic case while rate goes to infinity as was shown

in Chapter 4.

0 20 40 60 80 100 120 140 160
4

5

6

7

8

9

10

11

12
x 10

4

Split number

D
is

to
rt

io
n

(a) Distortion vs. split number

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Split number

R
at

e
(b) Rate vs. split number

6.2 Simulation for classification

We used the greedy tree growing algorithm to create a tree structured classifier for

multi-resolution data. Each signal can be expressed as

s(t) =

K∑
k=1

sk(t)

where each sk(t) is re-sampled from a dk dimension random vector xk. The Mat-

lab command “resample” was used for this purpose. The random vector xk was

produced from a Gaussian mixture density for either class. The distance between

the mean of xk for class 1 and 2 increases as k increases. This results in a signal

s(t) that has increasing information relevant to the classification as the resolution

increases. The Daubechies 8th order wavelet was used to analyze the data into

5 resolutions. The tree growing algorithm used LVQ to split each node. At each

71

iteration, the node that offered the biggest reduction in the classification error was

chosen to be split. Fig. 6.2 shows the decrease in the Bayes risk as the number of

splits increase.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Split number

C
la

ss
ifi

ca
tio

n
er

ro
r

Figure 6.2: Classification error vs. split number

6.3 Yeast gene clustering

An application of un-supervised clustering for clustering yeast (Saccharomyces

Cervisiae) genes according to their expression profiles is presented in this section.

This application is motivated by the recent advances in gene analysis techniques

that have the potential to measure the expressions of thousands of genes at the

same time [46] [40]. Since each cellular process is the result of several hundred

genes acting in concert, such techniques have expanded our ability to study the

cell at an unprecedented level of detail.

The inevitable consequence of this detail is the flood of data that is produced

by techniques such as micro-arrays. There is an urgent need for advanced methods

for organizing and displaying this data in a manner that is useful and intuitive for

72

biologists. One possible way of organizing is to group together the genes that are

expressed similarly in similar environments.

Since most cellular processes are step-by-step processes [28] where the products

of one step initiate and control the activity in the next step, one would expect that

genes that regulate each step would be expressed together. Thus genes that belong

to a common metabolic pathway would be highly correlated in their expression.

This in turn, means that clustering genes according to their expressions in different

environments would group together genes that have similar function.

The data, obtained from [14], consists of the log ratio of the expression levels

of 2467 genes during 8 experiments. For each experiment, expression levels are

measured at different time points (differing number of time points for each exper-

iment) giving a 79-dimensional vector of expression data for each experiment and

time point.

Eisen et.al. have used a pair-wise, bottom up approach to cluster yeast genes

in [15]. Initially, all genes belong to individual cells. Then the two closest genes (in

terms of a distance function) are chosen and their cells are merged and replaced

by the average of the two genes. Then this process is applied repeatedly until all

cells have been merged into the root node. The result is then displayed as a tree

and genes relating to similar functions are shown to cluster together.

We will use a similar clustering method to reveal similarities of expression in

genes of similar functional origin. However our method will be top down, in that

we start out with a single cluster containing all the vectors which is then split

successively to create the tree. In addition, a multi-resolution analysis is used to

represent the expression vector for each gene in different levels of detail. The higher

splits in the tree are done on the basis of lower resolution vectors and additional

73

Figure 6.3: Clustering tree for yeast gene expression profiles

resolution is used when needed in the subsequent splits.

Representing the expression profile of each gene in different resolutions has the

advantage that we can easily see those experiments whose expressions are crucial

for clustering genes similar in certain ways. A low resolution representation of the

expression profile gives a broad view of the expression of the gene while details

might be needed for better discrimination between genes with similar functions.

6.3.1 Data analysis methods and results

The 79 dimensional expression vector for each gene was represented in 6 resolu-

tions using a Daubechies 4th order wavelet filter. The tree growing algorithm is

implemented as discussed in Chapter 4. A large enough rate constraint was put so

that each leaf node ends up with a relatively small number (less than 10) number

of vectors. Fig. 6.3 shows that structure of the resulting tree.

To study the clustering of genes according to function, we plot only those nodes

in the tree that contain at-least one gene of the particular function. For example,

74

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Figure 6.4: Occurences of ribosomal genes in clustering tree

Fig. 6.4 shows all genes that contribute to ribosomal function. From these plots

we can notice some significant features.

Fig. 6.4 shows that ribosomal genes are very strongly correlated in their ex-

pression. Furthermore, it is apparent that there are five distinct clusters of such

genes. Genes in the same cluster behave similarly to each other, but each cluster

is distinctly different from another cluster.

Another kind of clustering behavior is noticable when we look at Fig. 6.5 which

shows genes that have functions related to protein synthesis. Here we see that there

are several strong and weak clusters along with many genes that are not part of

any cluster. This is the kind of clustering that is mostly seen when looking at

functions that occur under many different environmental conditions.

Of course, there are some classes of genes that do not cluster at all. Fig. 6.6

shows genes that have a Helix-Turn-Helix structure. Such structural features are

not expected to show themselves in the expression profiles and are therefore hard

to cluster.

In this section we have shown how un-supervised clustering can be used to

75

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Figure 6.5: Occurrences of protein synthesis genes in clustering tree

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Figure 6.6: Occurrences of helix-turn-helix genes in clustering tree

76

analyze and present data from gene expression experiments to display how genes

are organized according to function. Such methods will be of great importance

in the future to deal with the flood of information expected to be available from

current biological experimental tools.

6.4 Lymphoma prediction using tree classifiers

In this section we present an application of tree structured classifiers for lym-

phoma prediction. Alizadeh et al [17] have explored the use of gene expression

analysis for prediction of cancerous cells. We will use the same dataset and use

tree structured classifiers with multi-resolution analysis for classifying cancerous

from non-cancerous cells.

We have the expressions of 4096 genes from 98 different cell types. Of these

98, 72 are cancerous while 26 are non-cancerous. We are interested in finding out

which genes are most predictive of lymphoma through their expressions.

To rank gene expressions according to their discriminative power, we use the

Fischer discriminant [19]. For scalar observations x, Fischer proposed the following

measure of separation between observations for class 1 from class 2

F =
(µ1 − µ2)

2

σ2
1 + σ2

2

where µ1, µ2 are the means of the observations belonging to class 1 and class 2

respectively and σ1, σ2 the variances. The larger the value of F , the more separated

are the probability densities of the two classes in that feature space.

We order the 4096 genes according to the Fischer discriminant. The best 6

genes are chosen and a k-th order multi-resolution representation is created by

taking the vector composed of the expressions of the best k genes. Thus, from

77

the list of gene expressions sorted according decreasing Fischer index, we choose

the first k genes and concatenate them into a k resolution representation. As k

increases, we append genes one after another from the list. Fig. 6.7(a) shows the

points in the two classes in the space of the best two features. A classification tree

is created by using LVQ to split each node in a greedy fashion. Since we have all

the data on hand, we need not use the online algorithm as presented in Chapter

5. Fig. 6.7(b) shows an example of a tree created by using the greedy algorithm.

A 10-fold cross validation was performed to find the average error. We summarize

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4
Non−cancerous
Cancerous

(a) Distribution of the two classes accord-

ing to best two genes

(b) Example of tree classifier from greedy

growing algorithm. Solid lines are cancer-

ous, dotted non-cancerous

the result in Table 6.1. LVQ is a flat (non-hierarchical) LVQ classifier using all the

expressions from all the genes and SVM is a Support Vector Machine classifier.

78

Table 6.1: Average prediction error on lymphoma data

Type of classifier Avg. error on test set

MRTSVQ 0.085

LVQ* 0.021

SVM* 0.0104

* Bhamidipati [4]

6.5 Application to wear prediction

Trying to predict the wear of a tool from the sound (equivalently, the vibrations)

it makes is useful in real-time monitoring of machinery to detect faults as and

when they occur, rather than wait until the next maintenance period. This way,

unnecessary maintenance, as well as long runs in a faulty condition, can be avoided.

In the case of a cutting tool, trying to cut with a blunt tool can lead to the

breakage of the tool and degradation of the job, while pulling the tool off for

frequent assessments are expensive in terms of the machinist’s time.

We use two auditory filters, developed by Shamma et.al., for preprocessing [47],

[48]. The first one is a model of the filter banks and nonlinear operations that take

place in the inner ear [48]. The second filter mimics the analysis of the filtered

signal that take place in the primary auditory cortex and has been described in

detail in Chapter 3.

6.5.1 Inner Ear

This filter (Fig 6.7) describes the mechanical and neural processing in the early

stages of the auditory system. In the Analysis Stage, a bank of constant-Q filters,

approximates the function of the eardrum and the basilar membrane in the cochlea

79

 ∫

sound

cochlea

basilar
membrane

H(ω;s3)

ω

ω

ω

H(ω;s2)

H(ω;s1)

y1
U(ω)

ω ω
fluid-cilia
coupling

g(u)

u

ionic
channels

W(ω)

hair-cell
membrane

y2 y4 y

basilar membrane filters hair-cell stages lateral inhibitory network

Analysis Transduction Reduction
Cochlear Filters Hair Cells Lateral Inhibition

eardrum

Figure 6.7: Spectral processing of sound stimuli in the inner ear

with the continuous spatial axis of the cochlea as the scale parameter. Another

way to interpret the output of the cochlear filters is as an affine wavelet transform

of the stimulus. The Transduction Stage models the conversion of the mechanical

displacements in the basilar membrane into electrical activity along a dense, to-

pographically ordered array of auditory nerve fibers. This conversion can be well

modeled by a three-stage process consisting of

1. a velocity coupling stage (time derivative),

2. an instantaneous non-linearity describing the opening and closing of the ionic

channels and

3. a low-pass filter with a relatively short time constant to describe the ionic

leakage through the hair cell membranes.

The third stage called the Reduction Stage effectively computes an estimate

of the spectrum of the stimulus, through a lateral inhibitory network (LIN). The

details can be found in [48].

80

The output from this filter is analyzed into multiple resolutions by the filter

that models the primary auditory cortex.

6.5.2 Description of the data

The data-set consists of accelerometer readings from the spindle head for three

cases.

1. 0.5”dia. mill cutting a steel job,

2. 0.5”dia. mill cutting a titanium job and

3. 1.0”dia. mill cutting a steel job.

In each case, the speed of the mill is different, varying from 344 rpm for case 3 to

733 rpm for case 2. All three cases differ widely in the character of sound as well

as behavior over short and long time scales. Case 1 is rather well behaved, with

increase in wear leading to a gradual change in the frequency characteristics of the

sound. Indeed, one can find harmonics around 8kHz that increase in power, more

or less monotonically, as the tool life increases.

Cases 2 and 3 are much less easily analyzable. They show episodes of high-wear-

rate when the sound character markedly changes, interspersed through periods of

quiet cutting when the tool seems to behave ideally. There are no easy pointers

like the 8kHz harmonic in Case 1.

The sound sample from each pass of each tool also includes a sync file, which

gives the beginning of each revolution of the tool in terms of sample numbers. Also

2-3 wear measurements are given for the lifetime of each tool.

81

6.5.3 Preprocessing and training

The sound samples from the accelerometer were cut up into frames, each frame

being the sound from one revolution of the tool. Each such frame was re-sampled to

4096 samples, normalized to zero mean and unit variance, and further subdivided

into four sub-frames each. Each such sub-frame would correspond to one geometric

quarter of the tool, or one flute.

All sub-frames are then passed through the inner ear and auditory cortex filter

to obtain a set of multi-resolution vectors describing the timbre spectrum of the

sound. We use an average of four sub-frames (each belonging to one revolution) as

our observation vector. These vectors were then used as input to the tree growing

algorithm.

We utilize the class labels in growing the TSVQ, by building a tree for each class,

using only the appropriately labeled data. This method, usually called Parallel

TSVQ, gives better results than making one tree for all the classes combined. In

the combined tree, an initial wrong misclassification into one particular sub-tree

can end in a vector being incorrectly classified. This problem is avoided, to a great

extent, in the parallel case. The Parallel TSVQ is also quicker to execute when we

have a large number of classes. Testing on each tree can be done in parallel, which

reduces computational time.

The tree growing algorithm we used is similar to the algorithm used in [3] that

we have described earlier. This is essentially similar to the algorithm we have

presented in this thesis except that the stopping criterion is a constraint on the

number of leaves on the tree rather than the rate of the tree.

82

6.5.4 Testing

Testing was done on data belonging to all three cases. Tools that had not been

used in training were used in the testing procedure. The preprocessing was similar

to what was done for training. Each vector was dropped down all five trees and

the distance to the centroids of the leaf nodes it fell into, was compared. The

vector is assigned a wear-class according to the wear level of the tree that gives

the least distance from the centroid to the vector. This way, we get a time series

of wear-class prediction for all the frames for all the passes. Next we take a sliding

window of 500 frames and find the mean wear estimate for this window. This gives

an estimate of the changing wear at different times.

For the case of a 0.5” dia. tool cutting 4340 steel, the plots of mean wear

estimates vs. tool life is shown in Figs 6.8(a) and 6.8(b), for different tools. It

is apparent that our method has picked up features in the sound that seem to be

correlated to the tool-life and the wear of the tool. The periodic variation in the

0 5000 10000 15000
0.5

1

1.5

2

2.5

3

3.5
Tool S1

(a) Average (solid) and variance (dashed)

of wear vs. tool life for S1

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Tool S21

(b) Average (solid) and variance (dashed)

of wear vs. tool life for S21

wear estimate is a result of the different passes. The actual sound made by the tool

83

is not just a function of the state of the tool, but also depends on the position on

the job the tool is presently at. The wear estimate at the start and end of the pass

are higher than that in the middle. This could correspond to the observation that

the wear rate at the starting and ending of the job is higher than in the middle. A

tool wear model incorporating wear information from the sound is used for wear

prediction in [44].

Fig 6.8(c) shows the results of testing a Case 2 (0.5” dia. tool cutting titanium

job) tool data on the tree trained using Case 1 data only. Here also we see the

gradual increase in the tool wear, though the way it increases is different from that

in Case 2. Fig6.8(d) shows the results of the classification on a tool from Case 3

(1.0” dia. tool cutting 4340 steel).

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Tool Ti4

(c) Average (solid) and variance (dashed)

of wear vs. tool life for Ti4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Tool 1S2

(d) Average (solid) and variance (dashed)

of wear vs. tool life for 1S2

84

6.6 Fingerprint identification

In this section we will investigate the problem of storing fingerprint images for

fast retrieval and identification. A set of fingerprints takes about 10 megabytes of

storage in the raw form. The FBI has roughly 200 million fingerprints on record

and storing all of them in the raw form would require around 200 terabytes of disk-

space. In addition, whenever a new fingerprint is obtained, it has to be compared

with each print in the archive to find out if there is a match.

The Wavelet/Scalar Quantizer (WSQ) standard [6] was designed for lossy com-

pression of fingerprints for archival and transmission purposes. It uses a wavelet

preprocessor followed by scalar quantization and Huffman coding to reduce the

data by approximately 1:12. When a new fingerprint is obtained, it is compared

with all the decoded fingerprints in storage and a match is found.

Much of the time taken in identifying a new fingerprint is the processing time

associated with uncompressing each fingerprint in the database and comparing it

to the new print. It is our contention that this step is unnecessary and leaving the

prints in the multi-resolution domain will speed up the search process in two ways

1. Computation required for uncompressing each print is saved.

2. Multi-resolution tree structured arrangement of prints will decrease search

time to less than O(log(k)) where k is the number of prints in the database.

To illustrate these advantages, we store 25 fingerprints from the NIST 8-Bit Gray

Scale Images of Fingerprint Image Groups (FIGS) sample set [18] using an MRTSVQ.

We show that the number of computations needed to identify a given fingerprint

is reduced considerably as compared to a brute force search. This process is called

authentication since we know that we already have the test fingerprint in our

85

database and all we want is to search for it in the fastest possible way.

There is also the complimentary problem of verification where we have an

unknown test fingerprint and we want to see if we have this print in our database.

This problem is harder than authentication because we will need to extract features

like loops, whorls, arches and minutiae from the test print to find the fingerprint in

our database that it most closely corresponds to. This problem has been addressed

in [23] and [27]. Since extraction of these features is, technically speaking, not

related to classifier design, we will not deal with that problem here.

6.6.1 Fingerprint encoding and tree growing

We use a Bi-orthogonal wavelet filter with 3rd order reconstruction filter and 7th

order decomposition filter (’bior3.7’ in MATLAB) to represent each fingerprint in

a multi-resolution form. There are 6 resolutions and at the lowest resolution, each

image is represented by a set of 484 coefficients while at the highest resolution the

dimension is 64961. The original size of each fingerprint is 480 × 512 pixels with

8-bit gray level. Tree growing is accomplished according to the algorithm given

in Chapter 4. The decision to split at a higher level is taken when the fractional

decrease in distortion of the cell is lesser than a value δd that is fixed before

executing the algorithm. Larger values of δd force the algorithm to seek higher

resolutions early on in the tree growing process, thus increasing the computational

complexity of the tree search. Lower values allow the algorithm to remain in the

low resolution space for a longer time, resulting in trees with lower computational

complexity for search operations.

Fig. 6.8(e) shows an example of a tree generated by the greedy algorithm.

Darker branches correspond to higher resolutions.

86

(e) Tree-structured organization of finger-

print data: Darker branches are at higher

resolution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18
x 10

5

Value of δ d

C
om

pu
ta

tio
na

l c
om

pl
ex

ity
 (

nu
m

be
r

of
 m

ul
tip

lic
at

io
ns

)

Brute force search
MRTSVQ search

(f) Computational complexity vs. δd

Defining the computational complexity of the tree as the average number of

multiplications for distance computation Fig. 6.8(f) shows the experimental com-

putational complexity for each value of δd. The complexity increases sharply with

δd but is much smaller than the complexity of the brute force search.

87

Chapter 7

Conclusions and further research

7.1 Conclusions

In the previous chapters we have presented algorithms for achieving compression

and classification of signals represented in multiple resolutions. We have presented

a greedy algorithm for quantization of multi-resolution signals and showed that

under some conditions the expected distortion will go to zero asymptotically as

the number of iterations increase to infinity. The condition for this is that the

dimensionality of the MRA should not increase faster than the logarithm of the

depth. We have also shown that under a rate constraint, the algorithm will stop

in finite time.

We have derived an online algorithm for constructing quantizers and shown

that it minimizes a cost that is exactly the distortion error.

For classification we have introduced an extension of LVQ for creating a multi-

scale tree. This algorithm adapts the centroids of the tree as a whole to adapt to

a sequence of training samples of observation vectors and class labels. We have

shown that such an algorithm will converge to an equilibrium solution that is the

88

equilibrium for an associated ODE.

Tree structured classification and clustering methods have wide applicability

in most problems where the relationships between data-points have a hierarchical

structure. This is more general than appears at first sight. In most problems, we

implicitly assume that data-points lying near each other are more closely related

than points lying far from each other. Thus, if we consider a sequence of nested

neighborhoods of a point, there is a hierarchy of relationships between it and a

point in a neighborhood. Thus hierarchical relationships are very common in real

world data. [43] explains in more detail why it is reasonable for most data to have

a hierarchical structure.

7.2 Future research

7.2.1 Combined compression and classification

Combining the compression and classification criteria is motivated by the necessary

tradeoff between the contrary requirements for good compression compared to good

classification performance. An example that we considered in the previous chapter

is fingerprint archival and classification. Storing fingerprints in the raw form takes

terabytes of storage so we would be interested in finding ways of compressing these

images. But we cannot compress them so much that we lose vital information

necessary for discriminating between different prints.

This example is typical of applications where we not only need to reduce the

amount of storage required but also do the compression in a way that does not lose

the information necessary for classifying a new observation. The first formulation

of this problem and its solution by VQ was by Perlmutter et. al. [36]. They use the

89

Nearest Neighbor criterion combined with majority rule and a generalize centroid

to develop an iterative algorithm that seeks to minimize a weighted combination

of the classification error and the distortion.

Baras and Dey [2] present an LVQ-like algorithm for online minimization of

a combined classification and compression cost. They prove that this algorithm

converges to the equilibrium points of an associated ODE.

It has not yet been shown whether the distortion and classification errors go

to the minimum possible as the number of centroids increase. Also there have

been no results forthcoming on how changes in the relative weighting between the

classification error and the compression error changes the asymptotic behavior of

the algorithm.

7.2.2 Convergence of LVQ for local equilibria

In Chapter 5 we have shown how the multi-scale LVQ algorithm converges to the

global equilibrium of the associated ODE. A far more realistic assumption is that

there are more than one non-global equilibria. In such a case, our results do not

hold.

One way to solve this would be to use a Ljung-type convergence theorem that

says that if the centroids visit the domain of attraction of a local, asymptotically

stable equilibrium an infinite number of times then the algorithm will converge to

that equilibrium.

90

Appendix A

Geometric result

In Chapter 4 we used the following geometric result,

Lemma 14 Consider two concentric balls B1 = B(0, r) and B2 = B(0, r
√
d) in

a d-dimensional space. Now take a hyper-plane H in this space that is tangent to

the inner ball B1 and intersects the outer ball in a hyper-circle, thus dividing the

surface of the outer ball into two parts, V1 and V2 with V ol(V1) < V ol(V2). Then,

we have

V ol(V1)

V ol(V1) + V ol(V2)
>

1

2
√

2πe
∀d

Proof: Fix a dimension d. The surface area of a sphere in d dimensions is

π
2
� d

2
	2drd−1

(d− 2)(d− 4) . . . (1 or 2)
(A.1)

The hyper-plane H intersects B2 in a hyper-circle such that the surface area of the

sphere enclosed within this hyper-circle is the same as that enclosed by a cone with

vertex at the center of the sphere and angle α = cos−1(1/
√

(d)) (see Fig. A.1).

This surface area can be computed as (omitting tedious details)

(2r)d−1 π
2
� d−1

2
	

(d− 3)(d− 5) . . .
Id−2(cos−1(1/

√
(d))) (A.2)

91

r r√d

α

B(0,r√d)

B(0,r)

H

Figure A.1: Illustration of B1, B2 and H in 3-dimensional space

where Ik(α) =
∫ α

0
sink(x)dx

Taking the ratio of the surface enclosed by the cone A.2 to the total area A.1

we get

R(d) =
1

π
cos−1

(
1√
d

)
−

√
d− 1

πd

[
1 +

2

3

(
d− 1

d

)
+

2 × 4

3 × 5

(
d− 1

d

)2

+ . . .

+
2 × 4 × . . .× (d− 4)

3 × 5 × . . .× (d− 3)

(
d− 1

d

) d−4
2

]
(A.3)

if d is even and

R(d) =
1

2
− 1

2
√
d

[
1 +

1

2

(
d− 1

d

)
+

1 × 3

2 × 4

(
d− 1

d

)2

+ . . .

+
1 × 3 × . . .× (d− 4)

2 × 4 × . . .× (d− 3)

(
d− 1

d

) d−3
2

]
(A.4)

if d is odd.

R(d) is monotonically decreasing for increasing d, so R(d′) > limd→∞R(d) for

any d. Now we will find a lower bound on limd→∞R(d)

92

It is enough to find the above limit for d taking only odd values. A.4 can be

written as

R(d) =
1

2
− 1

2
√
d
S(d)

where

S(d) = 1+
1

2

(
d− 1

d

)
+

1 × 3

2 × 4

(
d− 1

d

)2

+ . . .+
1 × 3 × . . .× (d− 4)

2 × 4 × . . .× (d− 3)

(
d− 1

d

) d−3
2

We can write S(d) = S1(d) − S2(d) where

S1(d) = 1+
1

2

(
d− 1

d

)
+

1 × 3

2 × 4

(
d− 1

d

)2

+. . .+
1 × 3 × . . .× (i− 4)

2 × 4 × . . .× (i− 3)

(
d− 1

d

) i−3
2

+. . .

for an infinite number of terms and

S2(d) =
1 × 3 × . . .× (d− 2)

2 × 4 × . . .× (d− 1)

(
d− 1

d

) d−1
2

+
1 × 3 × . . .× (d)

2 × 4 × . . .× (d+ 1)

(
d− 1

d

) d+1
2

+. . .

S1(d) can be shown to be the Taylor expansion of

(
1 − d− 1

d

)−1/2

=
√
d

while S2(d) can be written as

(d− 1)!

(
(

d−1
2

)
!)22d−1

(
d− 1

d

) d−1
2

(
1 +

d

d+ 1

(
d− 1

d

)
+

d(d+ 2)

(d+ 1)(d+ 3)

(
d− 1

d

)2

+ . . .

)

>
(d− 1)!

(
(

d−1
2

)
!)2dd−1

(
d− 1

d

) d−1
2

(
1 +

d

d+ 1

(
d− 1

d

)
+

(
d

d+ 1

)2(
d− 1

d

)2

+ . . .

)

=
(d− 1)!

(
(

d−1
2

)
!)2dd−1

(
d− 1

d

) d−1
2

(
1

1 − d−1
d+1

)

=
(d− 1)!

(
(

d−1
2

)
!)2dd−1

(
d− 1

d

) d−1
2 (d+ 1)

2

where the inequality comes from the fact that (d + i)/(d + i+ 1) > d/(d + 1) for

any i, d > 0

93

Using Stirling’s formula

n! ≈
√

2π

n + 1
e−(n+1)(n + 1)n+1

for the factorial of a sufficiently large integer n, we can simplify the lower bound

on S2(d) as

S2(d) >

√
1

2π

e(d+ 1)√
d

(
d

d+ 1

)d(
d− 1

d

) d−1
2

Then

R(d) >
1

2
− 1

2
√
d

(√
d−

√
1

2π

e(d+ 1)√
d

(
d

d+ 1

)d(
d− 1

d

) d−1
2

)

which simplifies to

R(d) >
e

2
√

2π

√
(1 − 1/d)d√
(1 − 1/d)

1

(1 + 1/d)d

(
1 +

1

d

)

Using the fact the (1 − 1/d)d → e−1 and (1 + 1/d)d → e as d→ ∞ we get

lim
d→∞

R(d) >
1

2
√

2πe

which gives the desired result.

94

BIBLIOGRAPHY

[1] J. Ambrose-Ingerson, R. Granger, and G. Lynch. “Simulation of paleocortex
performs hierarchical clustering”. Science, 247:1344–1348, March 1990.

[2] J. S. Baras and S. Dey. “Combined compression and classification with
Learning Vector Quantization”. IEEE Transactions on Information Theory,
45(6):1911–1920, September 1999.

[3] J. S. Baras and S. I. Wolk. “Wavelet based hierarchical organization of large
image databases: ISAR and face recognition”. In Proc. SPIE 12th Interna-
tional Symposium on Aerospace, Defence Sensing, Simulation and Control,
volume 3391, pages 546–558, April 1998.

[4] P. Bhamidipati. “Clustering algorithms for microarray data mining”. Master’s
thesis, University of Maryland at College Park, 2002.

[5] V. S. Borkar. “Stochastic approximation with two time scales”. System and
Control Letters, 29:291–294, 1997.

[6] J. Bradley, C. Brislawn, and T. Hopper. “The FBI Wavelet/Scalar Quantiza-
tion Standard for gray-scale fingerprint image compression”. In Proc. SPIE,
volume 1961, pages 293–304, 1993.

[7] L. Breiman. “Probability Theory”. Classics in applied mathematics. SIAM,
Philadelphia, 1992.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. “Classification
and Regression Trees”. Wadsworth, Belmont, CA, 1984.

[9] P. A. Chou. “Optimal partitioning for classification and regression trees”.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4), April
1991.

[10] R. R. Coifman and M. V. Wickerhauser. “Entropy-based algorithms for best-
basis selection”. IEEE Transactions on Information Theory, 38:713–718, 1992.

[11] T. M. Cover and J. A. Thomas. “Elements of Information Theory”. John
Wiley and Sons, Inc., New York, 1991.

95

[12] I. Daubechies. “Ten lectures on Wavelets”. Number 61 in CBMS-NSF Series
in Applied Mathematics. SIAM, Philadelphia, 1992.

[13] M. Effros. “Practical multi-resolution source coding: TSVQ revisited”. In
Data Compression Conference, pages 53–62, 1998.

[14] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein.
http://genome-www.stanford.edu/clustering/.

[15] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. “Cluster analysis
and display of genome-wide expression patters”. Proceedings of the National
Academy of Science, USA, 95:14863–14868, Dec 1998.

[16] W. H. R. Equitz and T. M. Cover. “Successive refinement of information”.
IEEE Transactions on Information Theory, 37(2):269–275, March 1991.

[17] A. A. Alizadeh et al. “Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling”. Nature, 403:503–511, Feb 2000.

[18] NIST fingerprint database. http://www.nist.gov/srd/nistsd4.htm.

[19] R. Fischer. “The case of multiple measurements in taxonomic problems”.
Annals of Eugenics, 7(II):179–188, 1936.

[20] D. Gabor. “Theory of communication”. Journal of the IEE, 93:429–457, 1946.

[21] J. C. Goswami and A. K. Chan. “Fundamentals of Wavelets: Theory, Algo-
rithms and Applications”. John Wiley and Sons, Inc, New York, 1999.

[22] A. Haar. “Zur Theorie der orthogonalen Funktionensysteme”. Mathematische
Annalen, 69:331–371, 1910.

[23] K. Karu and A. K. Jain. “Fingerprint classification”. Pattern Recognition,
29(3):389–404, 1996.

[24] T. Kohonen. “Self organization and associative memory”. Springer-Verlag,
Berlin, 1989.

[25] H. J. Kushner and G. G. Yin. “Stochastic approximation algorithms and
applications”. Stochastic modelling and applied probability. Springer, New
York, 1997.

[26] A. LaVigna. “Nonparametric classification using Learning Vector Quantiza-
tion”. PhD thesis, University of Maryland at College Park, 1989.

[27] H. C. Lee and R. E. Gaensslen, editors. “Advances in fingerprint technology”.
Elsevier, New York, 1991.

96

[28] B. Lewin. “Genes”. John Wiley and sons, New York, third edition, 1987.

[29] Y. Linde, A. Buzo, and R. M. Gray. “An algorithm for vector quantizer
design”. IEEE Transactions on Communications, COM–28:84–95, 1980.

[30] S. P. Lloyd. “Least squares quantization in PCM”. Bell Laboratories Technical
Note, 1957.

[31] J. Max. “Quantizing for minimum distortion”. IRE Transactions on Infor-
mation Theory, IT-6:7–12, March 1960.

[32] G. F. McLean. “Vector quantization for texture classification”. IEEE Trans-
actions on Systems, Man and Cybernetics, 23(3):637–649, May/June 1993.

[33] Y. Meyer. “Wavelets:Algorithms and applications”. SIAM, Philadelphia, 1993.

[34] A. B. Nobel. “Recursive partitioning to reduce distortion”. IEEE Transactions
on Information Theory, 43(4):1122–1133, July 1997.

[35] A. B. Nobel and R. A. Olshen. “Termination and continuity of greedy growing
for tree-structured vector quantizers”. IEEE Transactions on Information
Theory, 42(1):191–205, January 1996.

[36] K. O. Perlmutter, S. M. Perlmutter, R. M. Gray, R. A. Olshen, and K. L.
Oehler. “Bayes risk weighted vector quantization with posterior estimation
for image compression and classification”. IEEE Transactions on Image Pro-
cessing, 5(2):347–360, February 1996.

[37] J. Puzicha, T. Hofmann, and J. M. Buhmann. “A theory of proximity
based clustering: Structure detection by optimization”. Pattern Recognition,
4(33):617–634, 1999.

[38] K. Ramachandran and M. Vetterli. “Best wavelet packet bases in a rate
distortion sense”. IEEE Transactions in Image Processing, 2(2):160–175, April
1993.

[39] B. Rimoldi. “Successive refinement of information: Characterization of the
achievable rates”. IEEE Transactions on Information Theory, 40(1):253–266,
January 1994.

[40] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. “Quantitative mon-
itoring of gene expression patterns with a complementary dna microarray”.
Science, 270(5235):467–470, October 1995.

[41] S. A. Shamma. “The acoustic features of speech phonemes in a model of
the auditory system: Vowels and unvoiced fricatives”. Journal of Phonetics,
16:77–91, 1988.

97

[42] C. E. Shannon. “A mathematical theory of communication”. Bell Sys. Tech.
Journal, 27:379–423,623–656, 1988.

[43] S. A. Starks, V. Kreinovich, and A. Meystel. “Multiresolution data processing:
It is necessary, it is possible, it is fundamental”. pages 22–25, Gaithersburg,
MD, USA, September 1997.

[44] S. Varma and J. S. Baras. “Tool wear estimation from acoustic emissions:
A model incorporating wear rate”. In International Conference on Pattern
Recognition, Quebec City, Quebec, Aug 2002.

[45] S. Varma, J. S. Baras, and S. A. Shamma. “Biologically inspired acoustic wear
analysis”. In Nonlinear Signal and Image Processing Conference, Baltimore,
MD, June 2001.

[46] V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler. “Serial analysis
of gene expression”. Science, 270(5235):484–487, October 1995.

[47] K. Wang and S. A. Shamma. “Spectral shape analysis in the central auditory
system”. IEEE Transactions on Speech and Audio Processing, 3(5):382–395,
September 1995.

[48] X. Yang, K. Wang, and S. A. Shamma. “Auditory representations of acoustic
signals”. IEEE Transactions on Information Theory, 38(2):824–839, March
1992.

[49] Y. Zhuang and J. S. Baras. “Optimal wavelet basis selection for signal rep-
resentation”. Technical Report T.R. 94-7, Center for Sattelite and Hybrid
Communication Networks, University of Maryland at College Park, 1994.

98

