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ABSTRACT
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Dissertation directed by: Professor Adrian Papamarcou

Department of Electrical and Computer Engineering

The ease with which digital data can be duplicated and distributed over the

media and the Internet has raised many concerns about copyright infringement.

In many situations, multimedia data (e.g., images, music, movies, etc) are illegally

circulated, thus violating intellectual property rights. In an attempt to overcome

this problem, watermarking has been suggested in the literature as the most ef-

fective means for copyright protection and authentication. Watermarking is the

procedure whereby information (pertaining to owner and/or copyright) is embed-

ded into host data, such that it is: (i) hidden, i.e., not perceptually visible; and (ii)

recoverable, even after a (possibly malicious) degradation of the protected work.

In this thesis, we prove some theoretical results that establish the fundamental

limits of a general class of watermarking schemes.



The main focus of this thesis is the problem of joint watermarking and com-

pression of images, which can be briefly described as follows: due to bandwidth

or storage constraints, a watermarked image is distributed in quantized form, us-

ing RQ bits per image dimension, and is subject to some additional degradation

(possibly due to malicious attacks). The hidden message carries RW bits per

image dimension. Our main result is the determination of the region of allow-

able rates (RQ, RW ), such that: (i) an average distortion constraint between the

original and the watermarked/compressed image is satisfied, and (ii) the hidden

message is detected from the degraded image with very high probability. Using

notions from information theory, we prove coding theorems that establish the rate

region in the following cases: (a) general i.i.d. image distributions, distortion

constraints and memoryless attacks, (b) memoryless attacks combined with collu-

sion (for fingerprinting applications), and (c) general—not necessarily stationary

or ergodic—Gaussian image distributions and attacks, and average quadratic dis-

tortion constraints. Moreover, we prove a multi-user version of a result by Costa

on the capacity of a Gaussian channel with known interference at the encoder.
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Chapter 1

Introduction

1.1 General Background

Over the last decade, principally due to the development of the Internet and the

World-Wide-Web (WWW), distribution of digital multimedia data to a large pop-

ulation of users can be done very easily. Moreover, digital data can be duplicated

very fast and without any degradation in quality—consider, for example, how

common the copying of musical CDs has become in the last few years. Naturally,

this situation has raised many concerns about possible violations of intellectual

property rights. Unauthorized duplication and distribution of copyrighted ma-

terial (photographs, music, movies, etc.), without appropriate compensation to

the copyright holders, are becoming increasingly problematic. In order to fight

piracy, many companies (especially in the entertainment and news industries) have

devoted considerable attention to the development of information hiding (or wa-

termarking) techniques. In plain terms, a watermark is a signal which is hidden

(i.e., is not perceptually visible) inside some multimedia data, and carries informa-

tion about this data (e.g., owner, title, date of creation, etc). Thus a watermark
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uniquely identifies the work being protected, and helps resolve disputes about the

ownership of the data.

As an example of the usefulness of watermarking, let us consider a simple sce-

nario: Newspaper X publishes a photograph, for which it claims exclusive rights.

Newspaper Y, also claiming to be the exclusive owner, publishes the same pho-

tograph after copying it from X. Without any special protection mechanism, X

cannot prove that it is the rightful owner of the photograph. However, if X wa-

termarks the photograph before publication (that is, X embeds a hidden message

that identifies it as its legitimate owner), and is able to detect the watermark later

in the illegally distributed copy, it will be able to supply proof of ownership in a

court of law. On the other hand, to prevent detection of the watermark, Y may try

to remove it from the picture by distorting the picture. That is, Y may attempt

to attack the watermark so as to render it undetectable, without significantly de-

grading the quality of the image or affecting its commercial value. Careful design

of the watermarking system can prevent this from happening.

There have been many instances of disputes or litigations on the intellectual

ownership of multimedia data. A copyright violations lawsuit that received ex-

tensive publicity in the early 2000’s, was that against Napster [1]. Napster was

essentially a centralized database which allowed millions of users to freely dis-

tribute music files in a peer-to-peer network. The music files were unwatermarked

and compressed in such a way that the quality of the reproduced music was very

close to that of a Compact Disc (CD recording). However, all copyright informa-

tion that normally accompanies the music written on a CD was lost. As a result,

it was not an easy task for the music companies to prove that unauthorized distri-

bution was indeed taking place through Napster. A watermarking scheme robust
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to compression would have provided additional ammunition to the music industry,

as the copyright information would have been inseparable from the music itself.

Due to its significance, the watermarking field has grown tremendously over the

last five years. There are numerous articles (e.g., see [2, 3, 4] and the references

therein) and books (e.g., [5, 6]) that explain the basics of watermarking, explore

its many practical applications, and evaluate the performance of various schemes

under a variety of attacks.

Two key issues in the design of watermarking schemes are:

• Transparency: The hidden message should not interfere perceptually with

the host signal (or covertext [7]). This requirement is perfectly justified by

the fact that watermarking aims at protecting multimedia data, which are

sensitive, in general, to changes. In other words, an image or a musical

piece could become useless if the introduced artifacts (due to watermarking)

exceeded some perceptual threshold. The quality of the watermarked data

must thus be comparable to that of the covertext, a requirement which is

often expressed in terms of a distortion constraint.

• Robustness: The message must be detectable in the watermarked image

(the covertext is assumed to be an image throughout this thesis, though sim-

ilar techniques can be applied to other types of multimedia data), even after

degradation due to malicious attacks or other processing (quantization, D/A

conversion, etc). Of course, detectability of the watermark is closely related

to the maximum amount of distortion that can be introduced by an attacker

(for example, an attack that completely destroys an image would render the

watermark detection impossible). A watermarking scheme is robust if it al-

lows the hidden message to be accurately decoded in a distorted image whose
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quality is close to that of the watermarked image (this requirement is again

expressed in terms of a distortion constraint).

There are two detection scenarios: private and public. In the private detection

scenario, the original image is available to the detector; in the public scenario, it

is not. Although public detection schemes can be more useful in practice (since it

is not always possible to have the original image available during the detection),

private schemes usually offer more robustness.

One important application of information hiding is fingerprinting (also known

as transaction tracking [6]). The fingerprint is a signal hidden inside an image,

which satisfies the aforementioned transparency and robustness requirements. As

opposed to a watermark, a fingerprint uniquely identifies each individual copy

distributed, making it possible to trace illegally distributed data back to the user

[8]. In other words, a fingerprint plays the role of a user’s serial number. When

both embedded into an image, watermark and fingerprint uniquely identify an

(owner, user) pair.

Fingerprinting applications create new possibilities for attacks, mainly collusion

attacks. In this type of attack, two or more users who possess fingerprinted copies

of the same image combine their copies to produce a forged document in which the

individual fingerprints maybe harder to detect (than without collusion) [9, 10, 11].

1.2 Literature Review on Information-Theoretic

Aspects of Watermarking

Information hiding has also been studied from an information-theoretic perspec-

tive. Simply put, information-theoretic approaches treat watermarking as a com-
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Figure 1.1: Watermarking system viewed as communication system with side in-

formation.

munication process, their main goal being to determine the maximum number of

bits that can be hidden in (and reliably detected from) an image. In general, this

number grows linearly with the image size, and the constant of proportionality is

known as the capacity C. Practical watermarking implementations embed at a

rate R bits/image dimension, where R < C.

1.2.1 Communication with Side Information

In the communication model for watermarking, the watermark embedder plays the

role of the transmitter, the watermark detector plays the role of the receiver and

the attack represents the communication channel (see Figure 1.1). The objective

is to decode the hidden message reliably; the original image can be construed of

as side information which is always available at the encoder, but is only available

at the decoder in the private scenario (not the public one) [12, 4, 6].

Earlier results on communication with side information at the transmitter (such

as those obtained by Gel’fand and Pinsker [13], Heegard and El Gamal [14] and

Costa [15]) have been applied extensively to digital watermarking in the public
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scenario. Costa’s paper [15] in particular, has been instrumental in the develop-

ment of many practical watermarking schemes [16, 6, 17]. Specifically, the author

considers the following situation: a transmitter sends a signal Xn to a receiver

(with n transmissions), through the following channel:

Y n = Xn + Sn + Zn

where Sn, Zn are independent, i.i.d. Gaussian random vectors. Here, Sn is known

to the encoder (but not the decoder), while Zn acts as noise known to neither

encoder or decoder. It is proved that the capacity of this channel is the same as if

Sn were known to the decoder as well. Namely, C = 1/2 log(1 + P/N), where P is

the average (per symbol) power of Xn and N is average power of Zn. This result is

quite surprising because one would expect Sn to act as interference at the receiver,

thus hindering the detection of the message. The analogy to watermarking is

obvious: in a public detection scenario, Sn would play the role of the covertext

(known to the watermark embedder only), Xn would represent the watermark

embedded, and Zn would be the noise added by the attacker. Extensions of this

result are developed by Yu et al. [18] and Cohen and Lapidoth [19].

1.2.2 Capacity of Watermarking Systems without Com-

pression

One of the earliest information-theoretic studies of watermarking is by Moulin,

O’Sullivan and Ettinger [20]. Extensions of that work are published in [21, 22, 9]

by the first two authors. The main problem they consider is the following: a

watermarker (or information hider) embeds a watermark into an image such that

an average distortion constraint is met. An attacker modifies the watermarked
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image using a memoryless attack to produce a forgery. The attacker is also limited

by a distortion constraint, expressible either between the watermarked image and

the forgery, or the original image and the forgery. Note that although the attacker

does not have the original image in his possession, an average distortion constraint

between the original image and the forgery can still be satisfied. The detector

attempts to detect the watermark message from the forgery, possibly with the aid

of some side information (e.g., the original image in a private scenario). Through

a coding theorem, the authors compute the maximum achievable rate of the size

of the watermark message set. They show that this maximum rate (i.e., capacity)

is the value of a game played by the information hider and the attacker. In this

game, the watermarker chooses his watermarking scheme so as to maximize the

embedding rate while the attacker chooses an attack mechanism so as to minimize

it. It is also assumed that the attacker knows the covert channel utilized by the

watermarker, while the decoder knows the attack channel transition probabilities

(more details about these assumptions will be given in Chapter 2). The authors

also compute the capacity for the case where the covertext is i.i.d. Gaussian

distributed, and show that the capacity remains the same in both the public and

the private scenarios.

Another interesting information-theoretic treatment of digital watermarking is

due to Cohen and Lapidoth [23, 7, 24]. In their work, they determine the capacity

of a watermarking system, similar to the one considered by Moulin and O’Sullivan

above, but with the following differences: (a) the attacker is not constrained to

perform a memoryless attack; (b) the distortion constraints on the watermarker

and the attacker are of the almost sure, rather than average, type; (c) neither

encoder or decoder have any knowledge about the attack channel other than the

7



aforementioned distortion constraints; and (d) the attacker knows the details of the

watermark embedder except for a secret key shared between encoder and decoder.

In order to prove their result, the authors determine the value of the “mutual

information game”, which is the same as the value of the memoryless attack game

(with average quadratic distortion constraints) that is studied in [9]. Moreover,

the authors prove that, under average quadratic distortion constraints, there exists

a (non-memoryless) attack that results in zero capacity.

A similar formulation for a vector Gaussian watermarking game is proposed by

Cohen and Lapidoth in [7] and studied in detail in [25].

The capacity of a private watermarking scheme is studied by Somekh-Baruch

and Merhav in [26, 27]. Here, the distortion constraint is expressed as follows:

the probability that the distortion induced (by the watermarker or the attacker)

exceeds a given threshold is upper bounded by an exponentially decaying func-

tion. This requirement (termed “large deviations distortion constraint”) is more

general than the almost sure constraint considered by Cohen [24]. In addition to

determining the capacity, the authors investigate the exponent of the probability

of decoding error; similar studies are conducted in [28]. Finally, the capacity of a

public watermarking scheme is investigated in [29].

Steinberg and Merhav [30] study the identification capacity of a watermarking

system, subject to a memoryless attack channel. For that model, they derive the

maximum number of watermarks that can be embedded into an image, assuming

that the decoder is interested only in determining (with vanishing probability of

error) whether a particular watermark in present in the watermarked image or not.
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1.2.3 Joint Watermarking and Compression

The problem of joint watermarking and compression of images—which is the main

focus of this thesis—has received less attention in the literature. This problem

can be formally described as follows: due to bandwidth or storage constraints, a

watermarked image is quantized to RQ bits per image dimension, corresponding

to a source codebook index. The information is then delivered to the customer,

who is assumed to have access to the source codebook. The compression scheme

complies with the aforementioned transparency and robustness requirements, in

that a distortion (fidelity) constraint is met, and the watermark is detectable from

the reproduced (quantized), and possibly degraded, version of the image.

In [16], Chen and Wornell develop an interesting watermarking/compression

scheme termed Quantization Index Modulation (QIM), where an ensemble of

quantizers—each corresponding to a particular watermark index—is used for com-

pressing the image. The authors provide an information-theoretic analysis of QIM

based on Costa’s work [15], and developed a practical scheme which makes use

of dithered quantizers. Also, they distinguish between two versions of QIM: reg-

ular and distortion-compensated QIM. In regular QIM, the watermarked image is

communicated to the user as an index in a source codebook, while in distortion-

compensated QIM, the output of the encoder is a linear combination of the cover-

text and the output of a quantizer. Regular QIM is of relevance to our work and

will be studied further in Chapter 2.

The main goal of this thesis is the determination of regions of allowable rates

(RQ, RW ), where RW is the rate of the watermark index set, under certain trans-

parency and robustness requirements. In [31, 8], Karakos and Papamarcou examine

the case where the watermarked/compressed image is not subject to attacks (com-
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pression inherently introduces degradation, but cannot be construed as a malicious

attack of the type studied in, e.g., [9, 24]). They show that, when the original im-

age is i.i.d. Gaussian and an average quadratic distortion constraint is imposed,

the region of allowable rates (RQ, RW ) (for the no-attack case) is given by

RQ ≥ 1

2
log

(
PI

D

)

RW ≤ RQ − 1

2
log

(
PI

D

)

where PI is the image variance (per dimension or pixel) and D is the average

quadratic distortion between the original image and the watermarked/compressed

image. In this thesis, we extend this result to the case where the quantized,

watermarked image is subject to malicious attacks, as well as to the case where

fingerprinted images are distributed to different customers and are subject to collu-

sion attacks. More details about these extensions can be found in the next section,

where an overview of the thesis is presented.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2 we establish the rate region of

achievable rate pairs (RQ, RW ) under memoryless attacks such that (i) an average

quadratic constraint between the original image and the watermarked, compressed

image is satisfied, and (ii) the probability of correct detection of the watermark

from a distorted image approaches unity as the number of image dimensions ap-

proaches infinity. The following cases are considered:

• The memoryless attack is chosen independently of the embedding strategy

and is known to both encoder and decoder. Results are obtained for two
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statistical models: the general discrete alphabet case for arbitrary image dis-

tributions and distortion constraints, as well as the Gaussian case where the

original image and the attack channel are i.i.d. Gaussian, and the distortion

metric is quadratic.

• The information hider and the attacker play a game (similar to [9]). Specif-

ically, the attacker knows the encoding function used by the watermarker,

while the decoder knows the attack distribution.

Moreover, we give achievability results for the rate region of regular QIM (public

scenario), as well as the rate region of additive watermarking schemes [31, 8, 32].

In Chapter 3 we establish the region of achievable rates for fingerprinting sys-

tems under collusion attacks. Similar statistical models (discrete and Gaussian)

are considered here. The formulation is different than the one in Chapter 2, in

that we allow a number of users to collude by producing a forgery which depends

on more than one fingerprinted version of the same image. We demonstrate that

collusion can be very effective in reducing the size of the rate region. We con-

clude Chapter 3 with a multi-user version of Costa’s paper; we prove that in the

public version of a fingerprinting system without compression, the maximum rate

achievable under Gaussian symmetric collusion attacks is the same as in a private

scenario.

In Chapter 4 we extend the theory derived by Yu et al. in [18] for non-stationary

Gaussian models, to the case where watermarked images are quantized before

distribution. We obtain a general rate region formula, and we give examples in

which the general formula yields simpler expressions. Finally, conclusions and

directions for further research are given in Chapter 5.
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1.4 Information-Theoretic Contributions

In this section, we briefly summarize the most important contributions of this

thesis, from an information-theoretic viewpoint.

As mentioned in the previous section, the main problem treated in this thesis

is that of joint quantization and watermarking. Using terminology from commu-

nication theory, this problem can be stated as follows: a transmitter wishes to

convey two kinds of information through a channel: a quantized form of a random

vector (i.e., the image), and a message (the watermark index) taken from a par-

ticular set of messages. Each information is intended for two different “receivers”,

respectively: the watermark index has to be decoded only by one receiver (i.e., the

watermark decoder) and not the other (i.e., the customer), while the quantized in-

formation is decodable by both. Moreover, the customer receives a noise-free copy

of the quantized image, while the watermark decoder has access to side information

(the original image), which is not available to the customer.

A naive way of performing the encoding would be to concatenate the two bit-

streams that describe the two entities (image and watermark) and send the result

through the channel. However, this particular encoding is inefficient in terms of

protection, because an attacker can simply discard the watermark message with-

out affecting the image quality. Instead, our goal is to embed the watermark

information inside the compressed image representation. This is accomplished by

designing appropriate source codewords, which can be used for conveying informa-

tion through an attack channel. In other words, we study to what extent a source

codebook can be used as a channel codebook, and we derive the relationship be-

tween the rates of these two codebooks. This relationship reveals two interesting

(and quite surprising) properties: (i) at low quantization rates, Gaussian attack
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noise does not affect the detectability of the watermark, and the only limitation

imposed on the watermarking rate is due to the quantization itself; and (ii) at high

(but finite) quantization rates the source code can achieve the watermarking rate

of an optimal channel code.

The relationship between quantization and watermarking rates is derived in

Chapter 2 for the single-watermark (or, single user) case. Chapter 3 is an extension

of the result of Chapter 2 to the multi-user case, in which the decoder decodes

reliably more than one (fingerprint) messages. The result derived in this case

is relevant to the expression for the rate region of a multi-access channel [33].

Moreover, we prove that a Gaussian multi-access channel with side information

available only at the transmitter has the same capacity (assuming that the rates

of all users are the same), as if the side information were known at the receiver

as well. This result extends Costa’s single-user result. Finally, it is interesting

that the analysis of Chapter 2 can be extended to the case of non-stationary and

non-ergodic Gaussian images and attacks, as explained in Chapter 4.

1.5 Notation

The following symbols and conventions will be used consistently throughout the

thesis.

Capital letters are used to denote random quantities, while small letters denote

deterministic quantities (or realizations of the respective random variables). Also,

a random variable can be a deterministic function of a random quantity (e.g., Ŷ =

ŷ(Q)). All variables take values in sets that are represented by the corresponding

script letters, e.g., X ∈ X . A sequence of n variables X1, . . . , Xn is denoted by Xn

and belongs to the Cartesian product X n.
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We denote the original image (covertext) by In. The integer n can be inter-

preted in many ways; it could represent the number of pixels of the image or the

number of its most significant DCT coefficients. The exact meaning of n pertains

to the particular implementation of the watermarking algorithm. For the purposes

of this thesis, we assume that n represents the number of image values that are

altered by means of the watermarking algorithm. Moreover, we assume that the

watermark index W is uniformly distributed on the set {1, . . . , 2nRW }, where RW

is the watermarking rate. The watermark decoder, which attempts to detect W

from a watermarked, compressed and possibly distorted image, outputs its esti-

mate Ŵ of W . Finally, a source codebook (quantizer) consists of 2nRQ elements

{ŷn(1), . . . , ŷn(2nRQ)}, where RQ is the quantization rate.
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Chapter 2

Relationship between Quantization and

Watermarking Rates in the Presence of

Memoryless Attacks

In this chapter, we establish the region of achievable rates (RQ, RW ) under mem-

oryless attacks. We assume that a distortion constraint on the watermarker (and,

possibly, on the attacker) is met and the probability of correct watermark detec-

tion goes to unity when n goes to infinity. The chapter is organized as follows: in

Section 2.1 we give a summary of the results; proofs of the theorems can be found

in Sections 2.2, 2.3, 2.4 and 2.5. Finally, we conclude the chapter with Section 2.6,

where we discuss achievable rate regions of various schemes. The results of this

chapter are extensions of results published in [31, 8, 34, 32].

2.1 Summary of Results

This section summarizes the results for: (i) the case in which the memoryless attack

is fixed (in terms of the conditional probability distribution of the attack channel),

for both discrete and continuous alphabets; and (ii) the case where the attacker

15



chooses its distribution with respect to the distribution of Ŷ n given In used by

the watermarker, and with respect to some distortion constraint on the attack. In

the latter case, we assume that the attacker knows the information hiding strategy

utilized by the watermarker, and tries to minimize the achievable rate region by

appropriate choice of the attack (while the watermarker tries to maximize the same

region). Thus, watermarker and attacker play a game, in which the watermarker

plays first (by choosing the information-hiding strategy) and the attacker plays

next by choosing its attack strategy with respect to the strategy chosen by the

watermarker. Note that the watermark encoder knows pZn|Ŷ n = (pZ|Ŷ )n only in

case (i), while the watermark decoder knows (or can reliably estimate) pZ|Ŷ in both

cases (i) and (ii).

2.1.1 Fixed Attack Channel

We first present results for discrete alphabets, and then for continuous alphabets

with Gaussian distributions.

Discrete Alphabets

The general form of the watermarking/quantization system under consideration

is shown in Figure 2.1. The watermark index W is uniformly distributed over a

set of size 2nRW ; In is the n-dimensional i.i.d. image, with distribution pIn(in) =∏n
j=1 pI(ij); and Ŷ n is the watermarked/quantized image which can be found in a

source codebook of size 2nRQ . The attack channel is memoryless; its conditional

probability distribution is given by

pZn|Ŷ n(zn|ŷn) =
n∏

j=1

pZ|Ŷ (zj|ŷj)

We assume pZn|Ŷ n to be known to both encoder and decoder.
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Figure 2.1: The general watermarking/quantization system with memoryless at-

tacks.

The watermark decoder outputs Ŵ , its estimate of W . We consider a private

scenario here, so we assume that In is known at the decoder. The transparency

and robustness requirements are expressed via the following constraints:

Transparency: n−1Ed(In, Ŷ n) = n−1

n∑
j=1

Ed(Ij, Ŷj) ≤ D (2.1)

Robustness: Pr{Ŵ �= W} → 0 as n → ∞ (2.2)

where d : I × Ŷ → R+ is a given distortion function and D is a non-negative

number.

Formally stated, we have the following definition of a private quantization/wa-

termarking code.

Definition 2.1 A (2nRQ , 2nRW , n) private quantization/watermarking code con-

sists of the following:

• A watermark set Mn = {1, . . . , 2nRW }.

• An encoding function f : Mn × In → Ŷn which maps a watermark index w

and an image sequence in to a representation sequence ŷn taken from the set

{ŷn(1), . . . , ŷn(2nRQ)}.
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• A decoding function g : Zn×In → Mn which maps the output of the channel

zn and the original image in to an estimate ŵ of w.

For random W and In, we have the random quantities Ŷ n = f(W, In) and Ŵ =

g(Zn, In). A definition of a public quantization/watermarking code would be sim-

ilar to the above, except that the decoder g would take as input only zn.

We now state the following definitions:

Definition 2.2 The probability of error in detecting watermark w is given by

Pe(w) = Pr{g(Zn, In) �= w|Ŷ n = f(w, In)}

Furthermore, the average probability of error for decoder g is given by

Pe =
1

2nRW

∑
w

Pe(w)

and is equal to Pr{W �= Ŵ} when the watermark index W is uniformly distributed

in {1, . . . , 2nRW }.

Definition 2.3 For a (2nRQ , 2nRW , n) quantization/watermarking code, the aver-

age (per-symbol) distortion is given by

D̄ = E[n−1

n∑
j=1

d(Ij, f(W, In)j)]

assuming that W is uniformly distributed in {1, . . . , 2nRW }.

Definition 2.4 A rate pair (RQ, RW ) is achievable for distortion constraint D,

if there exists a sequence of quantization/watermarking codes (2nRQ , 2nRW , n) such

that maxw Pe(w) tends to 0 as n → ∞ and D̄ ≤ D. Moreover, a rate region R of

pairs (RQ, RW ) is achievable if every element of R is achievable.
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Definition 2.5 For a quantization/watermarking system operating at quantiza-

tion rate RQ, the watermarking capacity C(RQ) is defined as the supremum of all

rates RW such that (RQ, RW ) is achievable.

Our first result is stated as follows:

Theorem 2.1 A private quantization/watermarking code (2nRQ , 2nRW , n) satisfies

the transparency and robustness requirements (2.1) and (2.2) respectively, if and

only if (RQ, RW ) ∈ Rdsc
D , where

Rdsc
D =

{
(RQ, RW ) :

RQ ≥ min
pŶ |I :Ed(I,Ŷ )≤D

I(Ŷ ; I)

RW ≤ max
pŶ |I :Ed(I,Ŷ )≤D

Ξ(RQ, pI , pŶ |I , pZ|Ŷ )

}

Here,

Ξ(RQ, pI , pŶ |I , pZ|Ŷ )
∆
= min{RQ − I(Ŷ ; I), I(Z; Ŷ |I)} (2.3)

and the mutual information quantities on the right-hand side of (2.3) are com-

puted with respect to pI , pŶ |I and pZ|Ŷ . Theorem 2.1 holds for arbitrary discrete

alphabets In, Ŷn,Zn. The superscript “dsc” in Rdsc
D is used to distinguish this

rate region from the one obtained in the case of continuous alphabets. The proof

of Theorem 2.1 can be found in Section 2.2.

Continuous Alphabets, Gaussian Distributions

A variant of Theorem 2.1 can be obtained in the case of continuous alphabets

(all equal to R). We consider the system shown in Figure 2.2. Here, In is i.i.d.

Gaussian with variance PI ; the memoryless attack is described by the expression

Zn = βAŶ n + V n where βA is a real scalar and V n is i.i.d. Gaussian with variance
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Figure 2.2: The watermarking/quantization system with Gaussian attacks com-

bined with scaling.

PV ; and the distortion function d is the squared difference:

d(x, y) = (x − y)2 (2.4)

The distortion constraint (2.1) then becomes

n−1E||In − Ŷ n||2 ≤ D (2.5)

The rate region Rgauss
D of achievable rates in the continuous case is then established

by the following theorem.

Theorem 2.2 A private, continuous alphabet quantization/watermarking code

(2nRQ , 2nRW , n) satisfies requirements (2.2) and (2.5), if and only if (RQ, RW ) ∈
Rgauss

D , where

Rgauss
D =

{
(RQ, RW ) :

RQ ≥
[
1

2
log

(
PI

D

)]+

RW ≤ max
γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

β2
APW (γ)

PV

)}}
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Figure 2.3: The rate region Rgauss
D of achievable rate pairs (RQ, RW ).

Here,

PW (γ)
∆
=

γ(PI + D) − 2PI + 2
√

PI(γD − PI)(γ − 1)

γ2
(2.6)

and [·]+ ∆
= max{·, 0}. The proof of the Theorem 2.2 can be found in Section 2.3.

Rgauss
D is the shaded region in Figure 2.3. Its upper boundary is composed of:

• The segment AB on the straight line RW = RQ − [1
2
log
(

PI

D

)]+
.

• The curved segment BC defined by the equation

RW = max
γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

β2
APW (γ)

DA

)}

for RQ in the interval
[

1
2
log
(
max

{
1, PI

D

}
+

β2
A|PI−D|

PV

)
,

1
2
log
(
1 + PI

D
+

β2
A(PI+D)

PV

)]
, i.e., the projection of BC on the RQ-axis.

• The half-line C∞ which is parallel to the RQ-axis and has vertex C. The

RW -ordinate on C∞ is given by 1
2
log
(
1 +

β2
AD

PV

)
.

Two key conclusions can be drawn from Figure 2.3:
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• For rates RQ ∈
[[

1
2
log
(

PI

D

)]+
, 1

2
log
(
max

{
1, PI

D

}
+

β2
A|PI−D|

PV

)]
, the water-

marking rate RW can be as high as RQ−
[

1
2
log
(

PI

D

)]+
, which is the maximum

watermarking rate for the case of no attack (DA=0). In other words, at low

quantization rates, Gaussian attack noise does not degrade the performance

of the system.

• When RQ ≥ 1
2
log
(
1 + PI

D
+

β2
A(PI+D)

PV

)
, the maximum watermarking rate is

constant and equal to 1
2
log
(
1 +

β2
AD

PV

)
. This expression makes sense in the

case RQ = ∞, where the distortion in the original image is solely due to

watermarking, and where β2
AD represents the “signal” power in the AWGN

Gaussian attack channel of variance PV —hence the familiar expression for

the capacity of that channel. It is surprising that in the case RQ < ∞,

there exists a quantization rate threshold above which quantization does not

hinder the detection of the watermark, i.e., the watermarking rate can be as

high as in the case of no compression.

2.1.2 The Watermarker vs. Attacker Game

Here, we assume that the attacker knows (or can estimate reliably) the joint distri-

bution of In, Ŷ n (a similar assumption was made in [9, 22]). Thus, depending on

the encoding algorithm and the rate RQ chosen by the watermarker, the attacker

chooses his conditional distribution function pZ|Ŷ (we use single letters here be-

cause we assume memoryless attacks), so as to minimize the maximum achievable

rate C(RQ), subject to a fidelity criterion. This fidelity criterion can be expressed

in the form of a distortion constraint between the watermarked image Ŷ n and the

forgery Zn. Similarly to the distortion constraint on the watermarker, we assume
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that the distortion constraint on the attacker is given by

n−1

n∑
j=1

EdA(Ŷj, Zj) ≤ DA (2.7)

for some non-negative DA.

On the other hand, the watermarker (who designs the encoder/decoder pair)

has to ensure that the detection of the watermark is reliable for any attack that

the attacker is allowed to use. So, watermarker and attacker play a game, in which

the former tries to maximize the achievable rate region while the latter tries to

minimize it. Note that we call a rate region maximized, when C(RQ) is maximum

for all RQ (analogously for minimum). The “rules” of this game are expressed as

follows:

• The encoder (watermark embedder) is designed without any knowledge of

the attack conditional distribution pZ|Ŷ . Therefore, in terms of the game

evolution, the watermarker plays first, and designs an encoding function f

(according to Definition 2.1) that remains fixed for the rest of the game. This

function f induces a fixed conditional probability pŶ n|In . Moreover, the rate

pair (RQ, RW ) of the quantization/watermarking code is chosen without any

knowledge of the attack and remains fixed. The watermarker must ensure

that the rates are chosen such that the watermark is detected reliably for

any attack distribution pZ|Ŷ chosen by the attacker.

• The attacker, who knows pŶ n|In , plays second and chooses a conditional

distribution pZ|Ŷ for the attack such that the distortion constraint (2.7) is

met.

• The watermarker plays next, and designs his watermark decoding algorithm

g with respect to the distribution pZ|Ŷ chosen by the attacker.
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Given the above game formulation, we now define an achievable rate pair

(RQ, RW ) as follows:

Definition 2.6 A rate pair (RQ, RW ) is achievable for distortion constraint D if

there exists a sequence of quantization/watermarking codes (2nRQ , 2nRW , n) such

that for any admissible attack distribution pZ|Ŷ , the maximal error probability

maxw Pe(w) tends to 0 as n → ∞ and D̄ ≤ D. Moreover, a rate region R of

pairs (RQ, RW ) is achievable if every element of R is achievable.

For the rest of our results in this sub-section, we assume that Definition 2.6 is in

effect when we refer to achievable rates.

We now define the following sets of distributions, which we use in the sequel:

M(pI , D)
∆
= {pŶ n|In : n−1

n∑
j=1

Ed(Ij, Ŷj) ≤ D} (2.8)

Mml(pI , D)
∆
= {pŶ |I : Ed(I, Ŷ ) ≤ D} (2.9)

which contains all the memoryless distributions that belong to M(pI , D). Also,

MA(pI , f,DA)
∆
= {pZ|Ŷ : n−1

n∑
j=1

EdA(f(W, In)j, Zj) ≤ DA} (2.10)

where dA : Ŷ × Z → R+ is a distortion function. Observe that the set

MA(pI , f,DA) depends on f only through the induced conditional probability

pŶ n|In = pf(W,In)|In . Thus, instead of writing the attacker’s set of admissible dis-

tributions as MA(pI , f,DA), we use the notation

MA(pI , pŶ n|In , DA)
∆
= {pZ|Ŷ : n−1

n∑
j=1

EdA(Ŷj, Zj) ≤ DA} (2.11)

Note that by the Markov condition

In → Ŷ n → Zn (2.12)
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we have pZn,Ŷ n,In = (pZ|Ŷ )n pŶ n|In (pI)
n.

The admissible set of distributions is defined by

A(pI , D,DA) = {(pŶ n|In , pZ|Ŷ ) : pŶ n|In ∈ M(pI , D), pZ|Ŷ ∈ MA(pI , pŶ n|In , DA)}

and is, in general, non-rectangular.

We now state the following theorem (for discrete alphabets):

Theorem 2.3 Assume that, for all n ≥ 1, the attacker knows pŶ n|In, the water-

mark decoder knows pZ|Ŷ , and the attack distortion constraint (2.7) is satisfied.

Then, a rate pair (RQ, RW ) is achievable (i.e., it satisfies Definition 2.6) if and

only if it belongs to the set

Rdsc
D,DA

=

{
(RQ, RW ) :

RQ ≥ min
pŶ |I∈Mml(pI ,D)

I(Ŷ ; I)

RW ≤ max
pŶ |I∈Mml(pI ,D)

min
pZ|Ŷ ∈MA(pI ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ )

}

The proof of Theorem 2.3 can be found in Section 2.4.

Our final result in this section is the determination of the region of achievable

rate pairs (RQ, RW ) when all alphabets are continuous (and equal to R), In is

i.i.d. Gaussian with variance PI , and when both distortion functions d(·, ·), dA(·, ·)
are equal to the squared-error distortion function (2.4). In this case, Theorem 2.3

becomes:

Theorem 2.4 Under the same assumptions as in Theorem 2.3, a rate pair
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(RQ, RW ) is achievable if and only if it belongs to the set

Rgauss
D,DA

=

{
(RQ, RW ) :

RQ ≥
[
1

2
log

(
PI

D

)]+

RW ≤ max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}}

Moreover, if

Γ(RQ, D,DA)
∆
=
[
max{1, PI/D}, 22RQ

] ∩ {γ : γPW (γ) > DA} (2.13)

is empty, then no positive RW can be achieved for that particular RQ.

The proof of Theorem 2.4 can be found in Section 2.5.

2.1.3 Other Schemes

Finally, Section 2.6 contains achievable rate regions of other schemes; namely, the

public scenario of the regular QIM, as well the private scenario of additive schemes

[8, 32] in the presence of additive Gaussian noise. In both of these cases, the

achievable regions are subsets of the region derived in Theorem 2.2 (for βA = 1

and PV = DA).

2.2 Proof of Theorem 2.1

The coding theorem which establishes the region Rdsc
D , consists of a converse and

a direct (achievability) part.

Converse Theorem

The converse theorem states that any (2nRQ , 2nRW , n) code which satisfies con-

straints (2.1) and (2.2) must satisfy (RQ, RW ) ∈ Rdsc
D .
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Proof: Let ε > 0. We assume that the watermark index W is uniformly dis-

tributed in {1, . . . , 2nRW }, that Pr{W �= Ŵ} < ε, and that the distortion constraint

is met with equality:

1

n

n∑
j=1

Ed(Ij, Ŷj) = D (2.14)

By virtue of the monotonicity of the region Rdsc
D in D, the constraint can then be

relaxed to an inequality, as in (2.1).

A standard converse rate-distortion theorem (e.g., [33]) yields

RQ ≥ 1

n
I(In; Ŷ n) ≥ rq(D) (2.15)

where rq(D) is the rate-distortion function for the memoryless source In, with

distortion D. Specifically,

rq(D) = min
pŶ |I :Ed(I,Ŷ )≤D

I(I; Ŷ ) (2.16)

This establishes the lower bound on RQ in the definition of Rdsc
D .

The upper bound on RW is obtained using two chains of inequalities. The first

chain is as follows:

RW = n−1H(W )

= n−1H(W |In) (2.17)

= n−1I(W ; Ŷ n|In) + n−1H(W |Ŷ n, In) (2.18)

≤ n−1I(W ; Ŷ n|In) + n−1H(W |Zn, In) (2.19)

≤ n−1I(W ; Ŷ n|In) + ε (2.20)

= n−1H(Ŷ n|In) − n−1H(Ŷ n|In,W ) + ε

= n−1H(Ŷ n|In) + ε (2.21)

= n−1H(Ŷ n) − n−1(H(Ŷ n) − H(Ŷ n|In)) + ε
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≤ RQ − n−1I(Ŷ n; In) + ε (2.22)

= RQ − H(I) + n−1H(In|Ŷ n) + ε

≤ RQ − H(I) + n−1

n∑
j=1

H(Ij|Ŷj) + ε (2.23)

= RQ − n−1

n∑
j=1

I(Ij; Ŷj) + ε (2.24)

where (2.17) holds because In is independent of W ; (2.19) follows from the data

processing inequality applied to the Markov chain W → (Ŷ n, In) → (Zn, In);

(2.20) is a consequence of Fano’s inequality; (2.21) holds because Ŷ n is a deter-

ministic function of In,W , (2.22) follows from RQ ≥ n−1H(Ŷ n) and (2.23) is due

to the inequalities H(In|Ŷ n) ≤∑n
i=1 H(Ij|Ŷ n) ≤∑n

j=1 H(Ij|Ŷj).

The second chain of inequalities is as follows:

RW = n−1H(W |In) (2.25)

= n−1I(W ; Zn|In) + n−1H(W |In, Zn)

≤ n−1I(W ; Zn|In) + ε (2.26)

= n−1H(Zn|In) − n−1H(Zn|In,W ) + ε

= n−1H(Zn|In) − n−1H(Zn|Ŷ n) + ε (2.27)

≤ n−1

n∑
j=1

H(Zj|Ij) − n−1

n∑
j=1

H(Zj|Z1, . . . , Zj−1, Ŷ
n) + ε (2.28)

= n−1

n∑
j=1

H(Zj|Ij) − n−1

n∑
j=1

H(Zj|Ŷj) + ε (2.29)

≤ n−1

n∑
j=1

(H(Zj|Ij) − H(Zj|Ŷj, Ij) + ε (2.30)

= n−1

n∑
j=1

I(Zj; Ŷj|Ij) + ε (2.31)

where (2.25) is due to the independence of In and W ; (2.26) follows from Fano’s

inequality; (2.27) holds because of the Markov chains (In,W ) → Ŷ n → Zn and
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Ŷ n → (In,W ) → Zn; (2.28) follows from the chain rule for the entropy; (2.29)

holds because the attack channel is memoryless and therefore given Ŷj, Zj is con-

ditionally independent of everything else and (2.30) follows because conditioning

reduces entropy.

Combining (2.24) and (2.31) we have:

RW ≤ min

{
RQ − n−1

n∑
j=1

I(Ij; Ŷj), n
−1

n∑
j=1

I(Zj; Ŷj|Ij)

}
+ ε (2.32)

We now observe that (2.32) depends only on the pmf’s pZj ,Ŷj ,Ij
(z, ŷ, i) =

pZ|Ŷ (z|ŷ) pŶj |Ij
(ŷ|i) pI(i), for each time instant j = 1, . . . , n (pZ|Ŷ and pI do not

depend on j due to memorylessness). Furthermore, RQ − I(Ij; Ŷj) and I(Zj; Ŷj|Ij)

are both concave with respect to pŶj |Ij
. Hence, applying Jensen’s inequality, we

obtain:

n−1

n∑
j=1

(RQ − I(Ij; Ŷj)) ≤ RQ − Ia(I; Ŷ ) (2.33)

n−1

n∑
j=1

I(Zj; Ŷj|Ij) ≤ Ia(Z; Ŷ |I) (2.34)

where, for the computation of the mutual information in the right-hand side of

(2.33) and (2.34), the “averaged” pmf

pa
Ŷ |I(ŷ|i)

∆
= n−1

n∑
j=1

pŶj |Ij
(ŷ|i) (2.35)

was used. It is easy to establish that pa
Ŷ |I satisfies the one-dimensional distortion

constraint

Ed(I, Ŷ ) = D (2.36)

Then, combining (2.33), (2.34) and (2.36), from (2.32) we obtain

RW ≤ Ξ(RQ, pI , pa
Ŷ |I , pZ|Ŷ ) + ε
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≤ max


pŶ |I : ∃ pŶ1|I1 ... pŶn|In
s.t.

pŶ |I=n−1
∑n

j=1 pŶj |Ij

n−1
∑n

j=1 Ed(Ij ,Ŷj)=D




Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) + ε

≤ max
pŶ |I :Ed(I,Ŷ )=D

Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) + ε (2.37)

≤ max
pŶ |I :Ed(I,Ŷ )≤D

Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) + ε

where inequality (2.37) is due to (2.36). By letting ε → 0, we conclude the proof

of the converse.

Direct Theorem

We now show that Rdsc
D is achievable.

Proof: As required for Rdsc
D , we limit the quantization rate to RQ ≥ rq(D) (where

rq(D) was defined in (2.16)).

We use a random coding argument, where the watermark index W is assumed

uniformly distributed in {1, . . . , 2nRW }. The technique is similar to the private

version of regular QIM [16], in that 2nRW quantizers, each one indexed by a different

watermark, are employed.

Codebook Generation: A set of 2nRQ i.i.d. sequences Ỹ n, is generated, such that

each dimension is distributed according to some pmf pŶ . The set is then partitioned

into 2nRW subsets of 2nR1 sequences each, i.e.,

RQ = RW + R1

The wth subset, consisting of sequences Ỹ n(w, 1), . . . , Ỹ n(w, 2nR1), becomes the

codebook for the wth watermark.

Watermark Embedding: Given In and a deterministic w, the embedder iden-

tifies within the wth codebook the first codeword Ỹ n(w, q) such that the pair
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(In, Ỹ n(w, q)) lies in the set TI,Ŷ (ε) of typical pairs with respect to a bivari-

ate pI,Ŷ , such that the distortion constraint (2.1) is satisfied. The output of

the embedder (encoder) is denoted by Ŷ n(w) = Ỹ n(w, q). If none of the code-

words in the wth codebook is jointly typical with In, then the embedder outputs

Ŷ n(w) = 0. In this manner, 2nRW watermarked versions of the image In are ob-

tained: Ŷ n(1), . . . , Ŷ n(2nRW ). Clearly, for random W , the embedder output is

Ŷ n(W ).

Decoding: Again, the decoder has access to the original image In. Upon receiving

Zn, the decoder seeks among all watermarked versions Ŷ n(1), . . . , Ŷ n(2nRW ) of In

a single Ŷ n(ŵ) such that the triplet (In, Ŷ n(ŵ), Zn) lies in T n
I,Ŷ ,Z

(ε), the set of

typical triplets with respect to the trivariate distribution pI,Ŷ ,Z , such that pI,Ŷ ,Z =

pZ|Ŷ pŶ ,I . If a unique such sequence Ŷ n(ŵ) exists, then the decoder outputs Ŵ = ŵ;

otherwise, the decoder declares an error.

Error Events: Without loss of generality, we assume W = 1. We then have the

following error events:

• E1: Ŷ n(1) = 0, i.e., there exists no q ∈ {1, . . . , 2nR1} such that (In, Ỹ n(1, q)) ∈
TI,Ŷ .

• E2: There exists a Ỹ n(1, q) = Ŷ n(1) such that (In, Ŷ n(1)) ∈ TI,Ŷ , but

(In, Ŷ n(1), Zn) �∈ TI,Ŷ ,Z .

• E3: (In, Ŷ n(1), Zn) ∈ TI,Ŷ ,Z but there also exists a k > 1 such that

(In, Ŷ n(k), Zn) ∈ TI,Ŷ ,Z .

The probability of error is then

Pr{Ŵ �= 1} = Pr(E1) + Pr(E2) + Pr(E3)
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Behavior of Pr(E1): From standard rate-distortion theorems [33], we know that

if R1 = RQ − RW > I(I; Ŷ ) (the mutual information of the bivariate pI,Ŷ defined

above), then Pr(E1) → 0 as n → ∞. Equivalently, if

RW ≤ RQ − I(I; Ŷ ) − ε (2.38)

then Pr(E1) → 0 as n → ∞.

Behavior of Pr(E2): To show that Pr(E2) → 0, it suffices to show that the triplet

(In, Ŷ n(1), Zn) lies in TI,Ŷ ,Z with probability approaching unity asymptotically. In

the previous paragraph, we showed that Pr{(In, Ŷ n(1)) ∈ TI,Ŷ } → 1. Since Zn is

the output of a memoryless channel with conditional probability distribution pZ|Ŷ

(that was used for the generation of the typical set TI,Ŷ ,Z), it can be easily verified

that Zn is typical with In, Ŷ n(1) as well, with probability that approaches unity.

Behavior of Pr(E3):

Pr(E3) = Pr{∃w �= 1 : (In, Ŷ n(w), Zn) ∈ TI,Ŷ ,Z}

≤
2nRW∑
w=2

Pr{(In, Ŷ n(w), Zn) ∈ TI,Ŷ ,Z}

= (2nRW − 1) Pr{(In, Ŷ n(2), Zn) ∈ TI,Ŷ ,Z} (2.39)

where the last equality is due to the symmetry of the random code statistics. Since

Pr{(In, Ŷ n(2)) ∈ TI,Ŷ } → 1

and by construction, Zn is independent of Ŷ n(2) given In, a standard argument

(cf. the proof of Theorem 8.6.1 in [33]) yields

Pr{(In, Ŷ n(2), Zn) ∈ TI,Ŷ ,Z} ≤ 2−n(I(Z;Ŷ |I)−(ε/2))

where the conditional mutual information is computed with respect to the trivari-

ate pI,Ŷ ,Z defined earlier. Hence, if

RW ≤ I(Z; Ŷ |I) − ε (2.40)
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it follows that the upper bound on Pr(E3) in (2.39) vanishes asymptotically.

Thus, combining (2.38) and (2.40) and letting ε → 0, we obtain the achievable

rate

RW ≤ Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) (2.41)

Then by maximizing (2.41) with respect to pŶ |I such that the distortion constraint

(2.1) is met, we obtain the required result.

We have thus proved that if (RQ, RW ) ∈ Rdsc
D , then the average probability of

error, over the ensemble of random codes, vanishes asymptotically with n. By a

standard argument, there exists a deterministic code that achieves Rdsc
D with arbi-

trarily small probability of error (averaged over all the messages); and the codebook

can be then expurgated to make the maximal probability of error arbitrarily small.

2.3 Proof of Theorem 2.2

As in the discrete case, here too we have a direct and a converse part.

Converse Theorem

The converse part states that if constraints (2.2) and (2.5) are satisfied by some

(2nRQ , 2nRW , n) code, then the rates (RQ, RW ) must lie in Rgauss
D , as defined in the

statement of the theorem.

Proof: Let ε > 0. We assume that the watermark index W is uniformly dis-

tributed in {1, . . . , 2nRW }, that Pr{W �= Ŵ} < ε, and that the distortion constraint

is met with equality (similarly to the discrete case):

1

n

n∑
j=1

E(Ij − Ŷj)
2 = D (2.42)

33



Since In is i.i.d. Gaussian, a standard converse rate-distortion theorem (e.g., [33])

yields

RQ ≥ 1

n
I(In; Ŷ n) ≥

[
1

2
log

(
PI

D

)]+

(2.43)

This establishes the lower bound on RQ in the definition of Rgauss
D .

The derivation of the upper bound on RW can be simplified by considering the

L2-space spanned by vectors In and Ŷ n, with inner product defined by

< Un, V n >
∆
=

1

n

n∑
j=1

E[UjVj].

for any random vectors Un, V n. The geometry of this space is shown in Figure

2.4, where the circle C has radius
√

D corresponding to the distortion constraint

(2.42). The lengths of In and Ŷ n are given by
√

PI and
√

PŶ , respectively, where

PŶ

∆
= n−1

∑n
j=1 E(Ŷ 2

j ); while the angle between the two vectors is denoted by φ.

As can be seen from Figure 2.4, when PI ≥ D, the maximum φmax of φ is obtained

when Ŷ n is tangent to C, in which case

sin2(φmax) =
D

PI

Otherwise, if PI < D, φ can take any value in [0, π] (due to symmetry, we ignore

negative angles). Note that for every φ (except when PI ≥ D and φ = φmax), the

line on which Ŷ n lies, meets C at two points. Equivalently, for every γ
∆
= sin−2(φ)

with γ ≥ max{1, PI/D}, there are two positions of Ŷ n on C (the position farther

from the origin is shown in every case in Figure 2.4).

Let λ0I
n be the projection of Ŷ n on In, or equivalently, the MMSE estimator

of Ŷ n among all scalar multiples on In:

λ0
∆
= arg min

λ∈R

1

n

n∑
i=1

E(Ŷi − λIi)
2 (2.44)
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√
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0

φ

C

√
D Ŷ n
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√
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0
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√
PW (γ)

(a) (b) (c)

Figure 2.4: The 2nd moment space L2 spanned by vectors In and Ŷ n, shown for

three different values of φ. The top figures correspond to the case PI ≥ D, while the

bottom figures correspond to PI < D. The circle C is the locus of all Ŷ n such that

n−1E||In− Ŷ n||2 = D. As φ increases from 0, PW (γ) increases monotonically (case

(a)) until it reaches its maximum value D (case (b)), then decreases monotonically

until φ = φmax (case (c)). We do not consider the case φ > π/2 when PI < D,

since it gives the same value for γ and PW (γ) as the angle π − φ.
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Let PŶ |I denote the resulting MMSE error, and note that

sin2(φ) =
PŶ |I
PŶ

From the geometry of Figure 2.4, using the Pythagorean theorem, it easily follows

that

PŶ |I(γ − 1) =
(PI + PŶ − D)2

4PI

(2.45)

PŶ (= γPŶ |I) can then be eliminated to yield a quadratic equation for PŶ |I in

terms of PI , D and γ, with roots

PŶ |I =
γ(PI + D) − 2PI ± 2

√
PI(γD − PI)(γ − 1)

γ2
(2.46)

Consistent with our earlier observation, there are two possible values of PŶ |I for

every φ (< φmax if PI ≥ D) or equivalently, for every γ ≥ max{1, PI/D}. The

larger value is precisely PW (γ), as defined in (2.6).

The mutual information between In and Ŷ n is also related to the geometry of

Figure 2.4. Specifically, if µ0Ŷ
n is the projection of In onto Ŷ n, we have

I(In; Ŷ n) = h(In) − h(In|Ŷ n)

= h(In) − h(In − µ0Ŷ
n|Ŷ n)

≥ h(In) − h(In − µ0Ŷ
n)

The differential entropy of In − µ0Ŷ
n is upper-bounded by that of an i.i.d.

Gaussian vector having components of the same variance. By concavity of the

logarithm, we then have

h(In − µ0Ŷ
n) ≤ n

2
log

(
2πe

n

n∑
j=1

E(Ij − µ0Ŷj)
2

)
=

n

2
log(2πePI|Ŷ )

where PI|Ŷ is defined similarly to PŶ |I . Therefore

1

n
I(In; Ŷ n) ≥ 1

2
log

(
PI

PI|Ŷ

)
,
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and since
PI|Ŷ
PI

=
PŶ |I
PŶ

= sin2(φ) ,

we conclude that

1

n
I(In; Ŷ n) ≥ 1

2
log

(
1

sin2(φ)

)
=

1

2
log(γ) (2.47)

As in the discrete case, the upper bound on RW is obtained using two parallel

chains of inequalities. The first chain is identical to inequalities (2.17)-(2.22).

Thus, from (2.22) we obtain

RW ≤ RQ − n−1I(Ŷ n; In) + ε (2.48)

and together with (2.47), we finally obtain (for any value of γ corresponding to

the geometry of In and Ŷ n)

RW ≤ RQ − 1

2
log(γ) + ε (2.49)

The second chain of inequalities is as follows (where λ0 was defined in (2.44)):

RW = n−1H(W |In) (2.50)

= n−1I(W ; Zn|In) + n−1H(W |In, Zn)

≤ n−1I(W ; Zn|In) + ε (2.51)

= n−1h(Zn|In) − n−1h(Zn|In,W ) + ε

= n−1h(Zn|In) − n−1h(V n|In,W ) + ε (2.52)

= n−1h(βAŶ n − βAλ0I
n + V n|In) − n−1h(V n) + ε (2.53)

≤ n−1h(βA(Ŷ n − λ0I
n) + V n) − 1

2
log(2πe)PV + ε

≤ 1

2
log(2πe)(β2

APŶ |I + PV ) − 1

2
log(2πe)PV + ε (2.54)

=
1

2
log

(
1 +

β2
APŶ |I
PV

)
+ ε (2.55)
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where (2.50) holds because In is independent of W ; (2.51) follows from Fano’s

inequality; (2.52) holds because Ŷ n is a function of In and W ; (2.53) follows from

the independence of V n and (In,W ); and (2.54) holds by the usual Gaussian bound

on differential entropy.

From (2.55) and (2.46) we obtain

RW ≤ 1

2
log

(
1 +

β2
APW (γ)

PV

)
+ ε

An upper bound on the range of γ can be deduced from (2.43), (2.47), resulting in

max

{
1,

PI

D

}
≤ γ ≤ 22RQ (2.56)

Thus

RW ≤ max
γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

β2
APW (γ)

PV

)}
+ ε (2.57)

and taking ε → 0, we obtain the upper bound on RW in the definition of Rgauss
D .

The Upper Boundary of the Rate Region

Before proceeding to the proof of the direct theorem, it is instructive to examine

the behavior of the upper bound on RW as a function of RQ:

rW (RQ)
∆
= max

γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

β2
APW (γ)

PV

)}
(2.58)

Note that since RQ is variable, the range of interest for γ is [max{1, PI/D},∞).

The second argument of min{·, ·} in (2.58) is independent of RQ and monotone

in PW (γ). From the proof of the converse theorem above, we know that
√

PW (γ)

is the length of the error vector Ŷ n −λ0I
n when In and Y n are as shown in Figure

2.4, with sin−2(φ) = γ. Clearly,
√

PW (γ) increases monotonically as φ increases

from φ = 0 to φ = arctan(
√

D/PI) = arcsin(
√

D/(PI + D)); then decreases
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monotonically as φ increases to φmax = arcsin(min{1,√D/PI}). Equivalently

(but in the reverse direction), as γ increases from γ = max
{
1, PI

D

}
to γ = 1 +

PI

D
and then on to infinity, PW (γ) increases from |PI − D|min

{
1, D

PI

}
to D (its

maximum value), and then decreases to 0. The function 1
2
log(1 +

β2
APW (γ)

PV
) has

similar behavior, and is plotted in Figure 2.5 against 1
2
log(γ). The initial (leftmost)

and maximum RW -ordinates on the curve are 1
2
log(1 + |PI−D|

PV
min{1, D

PI
}) and

1
2
log(1 + D

PV
), respectively.

The first argument of min{·, ·} in (2.58) involves RQ and decreases monotoni-

cally from RQ − [
1
2
log(PI

D
)
]+

to zero as γ ranges over the interval

[max{1, PI

D
}, 22RQ ] of maximization in (2.58). Plotted against 1

2
log(γ), it yields

a line segment of slope −1 (in Figure 2.5), whose position on the graph depends

on the value of RQ.

The behavior of rW (RQ) as RQ varies can be examined with the aid of Figure

2.5. There are three regimes of interest:

(a) In the first regime, the straight line segment lies entirely below the curve

(Figure 2.5(a)). The maximin in (2.58) is then given by the maximum ordinate

on the line segment, i.e., rW (RQ) = RQ − 1
2
log(max{1, PI

D
}). This occurs for

RQ ∈
[[

1
2
log
(

PI

D

)]+
, 1

2
log
(
max

{
1, PI

D

}
+

β2
A|PI−D|

PV

))
.

(b) In the second regime, the straight line segment intersects the rising portion

of the curve (Figure 2.5(b)). The maximin in (2.58) is then given by the ordinate at

the point of intersection (this value is given by the root of a cubic equation). This

occurs for RQ ∈
[

1
2
log
(
max

{
1, PI

D

}
+

β2
A|PI−D|

PV

)
, 1

2
log
(
1 + PI

D
+

β2
A(PI+D)

PV

)]
.

(c) The third regime corresponds to all other values of RQ, namely RQ >

1
2
log(1+ PI

D
+

β2
A(PI+D)

PV
). In this case, the straight line segment either intersects the

curve on its falling portion only (as in Figure 2.5(c)), or does not intersect it at all.
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(a)
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2
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[
1
2
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(
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D
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(b)

Figure 2.5: (a), (b): Plots of RQ− 1
2
log(γ) and 1

2
log(1+

β2
APW (γ)

PV
) and determination

of the maximin point for various values of RQ (continued on next page).
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(c)

Figure 2.5: (c): Determination of the maximin value when RQ belongs to the third

regime (continued from previous page).

The maximin value in (2.58) is then given by the maximum ordinate on the curve,

i.e., rW (RQ) = 1
2
log(1 +

β2
AD

PV
). Note that this upper bound on RW also follows

by a simpler argument, namely that RW can be no higher than the capacity of

an AWGN channel with signal (i.e., watermark) power β2
AD and noise power PV

(when no quantization noise is present, i.e., RQ = ∞).

The three regimes obtained above correspond to the three segments AB, BC

and C∞ of the upper boundary of Rgauss
D described in Section 2.1.

Note: In the special case PV = 0 (no attack), the curve in Figure 2.5 is displaced

to +∞ and only the first regime obtains, i.e., the bound on RW is simply RW ≤
RQ − [1

2
log(PI

D
)
]+

. The converse theorem then reduces to the channel coding part

of the converse theorem in [35], and also the converse theorem of [8] for RF = 0.
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Direct Theorem

We now show that Rgauss
D is achievable.

Proof: First, we limit the quantization rate to RQ ≥ [1
2
log(PI

D
)
]+

. We use a

random coding argument, similar to the discrete case (proved in Section 2.2).

Codebook Generation: Let γ ∈ [
max

{
1, PI

D

}
, 22RQ

]
. A set of 2nRQ i.i.d. ∼

N (0, γPW (γ)) Gaussian sequences Ỹ n, is generated and partitioned into 2nRW sub-

sets of 2nR1 sequences each, i.e.,

RQ = RW + R1 (2.59)

The wth subset, consisting of sequences Ỹ n(w, 1), . . . , Ỹ n(w, 2nR1), becomes the

codebook for the wth watermark.

Watermark Embedding: The procedure here is identical to the one given in the

proof of Theorem 2.1. That is, from In and watermark index w the embedder

identifies within the wth codebook the first codeword Ỹ n(w, q) such that the pair

(In, Ỹ n(w, q)) lies in a typical set TI,Ŷ (ε). The set TI,Ŷ (ε) of typical pairs is con-

structed with respect to a bivariate Gaussian distribution pI,Ŷ having mean zero

and covariance

KI,Ŷ =


 PI

√
(γ − 1)PIPW (γ)√

(γ − 1)PIPW (γ) γPW (γ)




Note that the second moments in KI,Ŷ are consistent with the geometry of Figure

2.4, with γ = sin−2(φ). In particular, if the pair (In, Ŷ n) lies in TI,Ŷ (ε), then the

empirical second moments:

1

n

n∑
i=1

I2
i ,

1

n

n∑
i=1

Ŷ 2
i and

1

n

n∑
i=1

IiŶi
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are within ε (or a factor thereof) of the average values shown implicitly in Figure

2.4. This also means that the distortion constraint (2.42) is essentially met (since

ε-differences can be safely ignored).

Decoding: Upon receiving Zn = Ŷ n(W ) + V n, the decoder seeks among all water-

marked versions Ŷ n(1), . . . , Ŷ n(2nRW ) of In a single Ŷ n(ŵ) such that the triplet

(In, Ŷ n(ŵ), Zn) lies in T n
I,Ŷ ,Z

(ε), the set of typical triplets with respect to the

trivariate Gaussian distribution pI,Ŷ ,Z having zero mean and covariance matrix

KI,Ŷ ,Z =




PI

√
(γ − 1)PIPW (γ) βA

√
(γ − 1)PIPW (γ)√

(γ − 1)PIPW (γ) γPW (γ) βAγPW (γ)

βA

√
(γ − 1)PIPW (γ) βAγPW (γ) β2

AγPW (γ) + PV




If a unique such sequence Ŷ n(ŵ) exists, then the decoder outputs Ŵ = ŵ; other-

wise, the decoder declares an error.

Note that pI,Ŷ ,Z(i, ŷ, z) = pI,Ŷ (i, ŷ)pV (z − ŷ), where pV is the marginal of the

attack noise V n.

Error Events: Carrying out the same analysis as in the proof of the discrete-case

theorem, we find that the probability of error Pr{W �= Ŵ} can be arbitrarily small

as long

RW < min{RQ − I(I; Ŷ ), I(Z; Ŷ |I)} (2.60)

and since (from the definition of the typical sets TI,Ŷ , TI,Ŷ ,Z) we have I(I; Ŷ ) =

1
2
log(γ) and I(Z; Ŷ |I) = 1

2
log
(
1 +

β2
APW (γ)

PV

)
, we finally obtain

RW < min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

β2
APW (γ)

PV

)}
(2.61)

Choosing γ ∈ [max
{
1, PI

D

}
, 22RQ

]
so as to maximize the right-hand side of

(2.61), we can achieve the whole region Rgauss
D .
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This proof holds for random codes; however, using a standard expurgation

argument we can argue that there exists a deterministic code such that the maximal

probability of error is made arbitrarily small, for sufficiently large codelength n.

2.4 Proof of Theorem 2.3

We begin with the converse part of Theorem 2.3.

Converse Part

This part shows that every achievable rate (RQ, RW ) (under the assumption that

the attacker knows pŶ n|In , the decoder knows pZ|Ŷ and (2.7) is satisfied) must lie

in Rdsc
D,DA

.

Proof: Let ε > 0. The watermarker chooses an encoding function f such that

pŶ n|In ∈ M(pI , D). By a standard rate-distortion theorem [33], we have

RQ ≥ min
pŶ |I∈Mml(pI ,D)

I(I; Ŷ )

thus establishing the lower bound on RQ. Now, since (RQ, RW ) is achievable, we

know that for every pZ|Ŷ ∈ MA(pI , pŶ n|In , DA), we have Pe < ε. Therefore, the

converse of Theorem 2.1 (and hence inequality (2.32)) applies for every pZ|Ŷ ∈
MA(pI , pŶ n|In , DA). Thus

RW ≤ min
pZ|Ŷ ∈MA(pI ,pŶ n|In ,DA)

min

{
RQ − n−1

n∑
j=1

I(Ij; Ŷj), n
−1

n∑
j=1

I(Zj; Ŷj|Ij)

}
+ ε

(2.62)

We can now use inequalities (2.33) and (2.34) to upper bound (2.62) and obtain

RW ≤ min
pZ|Ŷ ∈MA(pI ,pŶ n|In ,DA)

Ξ(RQ, pI , pa
Ŷ |I , pZ|Ŷ ) + ε (2.63)

where the single-letter pmf pa
Ŷ |I , was defined in (2.35).
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We now prove that MA(pI , pŶ n|In , DA) = MA(pI , (p
a
Ŷ |I)

n, DA) as follows:

MA(pI , pŶ n|In , DA) =

{
pZ|Ŷ : n−1

n∑
j=1

EdA(Ŷj, Zj) ≤ DA

}

=


pZ|Ŷ : n−1

n∑
j=1

∑
zj ,ŷj ,ij

pZ|Ŷ (zj|ŷj) pŶj |Ij
(ŷj|ij) pI(ij)dA(ŷj, zj) ≤ DA




=

{
pZ|Ŷ :

∑
z,ŷ,i

pZ|Ŷ (z|ŷ) pI(i) dA(ŷ, z)

(
n−1

n∑
j=1

pŶj |Ij
(ŷ|i)

)
≤ DA

}
(2.64)

=

{
pZ|Ŷ :

∑
z,ŷ,i

pZ|Ŷ (z|ŷ) pI(i) pa
Ŷ |I(ŷ|i) dA(ŷ, z) ≤ DA

}

= MA(pI , (p
a
Ŷ |I)

n, DA) (2.65)

where the equality in (2.64) is due to that fact that all variables {Ŷj, Zj, Ij, j =

1, . . . , n} have the same support set as Ŷ1, Z1, I1 respectively. Hence, from (2.63)

and (2.65) we obtain

RW ≤ min
pZ|Ŷ ∈MA(pI ,(pa

Ŷ |I)n,DA)
Ξ(RQ, pI , pa

Ŷ |I , pZ|Ŷ ) + ε

≤ max
pŶ |I∈Mml(pI ,D)

min
pZ|Ŷ ∈MA(pI ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) + ε

(2.66)

where the last inequality stems from the fact that, as we saw in Section 2.2, pa
Ŷ |I

satisfies the one-dimensional distortion constraint (2.36). Finally, by letting ε → 0,

we conclude the proof.

Direct Part

The achievability of Rdsc
D,DA

is proved next.

Proof: Here, we use the proof of the direct part of Theorem 2.1. More specifically,

we generate a random code exactly as in that proof, for a rate pair (RQ, RW ) ∈
Rdsc

D,DA
. Observe that the design of the encoder is oblivious of the attack channel
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(as required by the rules of the game), and remains fixed for any distribution pZ|Ŷ .

The conditional distribution pŶ n|In chosen by the encoder is p∗
Ŷ n|In = (p∗

Ŷ |I)
n, such

that the quantity

min
pZ|Ŷ ∈MA(pI ,(p∗

Ŷ |I)n,DA)
Ξ(RQ, pI , pŶ |I , pZ|Ŷ )

is maximized under the condition that p∗
Ŷ |I ∈ Mml(pI , D).

Assume now that the attacker uses some distribution p′
Z|Ŷ ∈

MA(pI , (p
∗
Ŷ |I)

n, DA). By the proof of Theorem 2.1 we know that the decoder

(which presumably knows p′
Z|Ŷ ), is able to detect the watermark with vanishing

probability of error as long RW ≤ Ξ(RQ, pI , p∗
Ŷ |I , p′

Z|Ŷ ). Since (RQ, RW ) ∈ Rdsc
D,DA

,

it follows that:

RW ≤ max
pŶ |I∈Mml(pI ,D)

min
pZ|Ŷ ∈MA(pI ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ )

= min
pZ|Ŷ ∈MA(pI ,(p∗

Ŷ |I)n,DA)
Ξ(RQ, pI , p∗

Ŷ |I , pZ|Ŷ )

≤ Ξ(RQ, pI , p∗
Ŷ |I , p′

Z|Ŷ ) (2.67)

as required.

In order to complete the proof, we need to prove that there exists a deter-

ministic code with arbitrarily small probability of error for all possible attack

channels. As is explained in [36], using random coding arguments for proving

achievability results for a family of channels is not as straighforward as in the

case of fixed channels. In our case, the family of channels is determined by the

set MA(pI , pŶ n|In , DA). As we proved, for each pZ|Ŷ ∈ MA(pI , pŶ n|In , DA), the

average probability of error over the ensemble of random codes is small. However,

this does not immediately guarantee the existence of a single deterministic code

which is simultaneously good for all pZ|Ŷ ∈ MA(pI , pŶ n|In , DA). In principle, for

each pZ|Ŷ , a different deterministic code could achieve small probability of error.
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Existence of a deterministic code that achieves Rdsc
D,DA

can indeed be estab-

lished using the same technique as in proving the existence of a deterministic code

for compound channels [37]. This technique consists of: (a) first approximating

MA(pI , (p
∗
Ŷ |I)

n, DA) by a discrete set that contains sufficiently many channel distri-

butions; (b) showing existence of a good code for a single (not compound) channel

whose distribution function is an “average” of the distribution functions of the

discrete set; and (c) proving that the code obtained in (b) can be used for the

entire compound channel, with the original set of channel distributions.

2.5 Proof of Theorem 2.4

Theorem 2.3 can be applied to the continuous case as well. Replacing sums with

integrals and pmf’s with pdf’s (where applicable), we can obtain a proof for the

maximal achievable rate region for the case where

• I = Ŷ = Z = R.

• In is i.i.d. zero-mean Gaussian with variance PI . The distribution of I is

denoted pG
I for simpicity.

• d(x, y) = dA(x, y) = (x − y)2.

Direct application of Theorem 2.3 gives:

Rgauss
D,DA

=

{
(RQ, RW ) :

RQ ≥
[
1

2
log

(
PI

D

)]+

RW ≤ max
pŶ |I∈Mml(pG

I ,D)
min

pZ|Ŷ ∈MA(pG
I ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ )

}

47



since we know that the rate-distortion function of an i.i.d. Gaussian source of

variance PI and distortion constraint D is given by

min
pŶ |I :E(I−Ŷ )2≤D

I(I; Ŷ ) =

[
1

2
log

(
PI

D

)]+

Thus, it suffices to prove that

max
pŶ |I∈Mml(pG

I ,D)
min

pZ|Ŷ ∈MA(pG
I ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) =

max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}
(2.68)

where Γ(RQ, D,DA) was defined in (2.13).

In order to prove (2.68), we show that the left-hand side of (2.68) is upper- and

lower-bounded by the quantity on the right-hand side, i.e., by

max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}
.

Observe that for any pŶ |I ∈ Mml(pG
I , D) and any pZ|Ŷ ∈ MA(pG

I , (pŶ |I)
n, DA),

the n-variate i.i.d. extensions of the scalar random variables I, Ŷ , Z, whose joint

distribution is pG
I pŶ |I pZ|Ŷ , are consistent with the L2-space geometry of Section

2.3. The quantities γ, PW (γ), PŶ are defined similarly here.

Upper bound

We now define a class of conditional probabilities {p′
Z|Ŷ (pŶ |I)} such that

(∀ pŶ |I ∈ Mml(pG
I , D)) p′

Z|Ŷ (pŶ |I) ∈ MA(pG
I , (pŶ |I)

n, DA)

By the above, it obviously holds that

max
pŶ |I∈Mml(pG

I ,D)
min

pZ|Ŷ ∈MA(pG
I ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) ≤

max
pŶ |I∈Mml(pG

I ,D)
Ξ(RQ, pG

I , pŶ |I , p′
Z|Ŷ (pŶ |I)) (2.69)

48



The construction of the class p′
Z|Ŷ (pŶ |I) is as follows:

Case 1

If PŶ = E(Ŷ 2) ≤ DA then p′
Z|Ŷ (pŶ |I)(z|ŷ) = δ(z), i.e., Z = 0. Observe that

p′
Z|Ŷ ∈ MA(pG

I , (pŶ |I)
n, DA) since E[(Ŷ − Z)2] = E(Ŷ 2) ≤ DA. Thus, the upper

bound of (2.69) is zero in this case. In terms of the notation of Section 2.3 (proof

of Theorem 2.2), the condition PŶ ≤ DA is equivalent to γPW (γ) ≤ DA, and hence

Γ(RQ, D,DA) is empty.

Case 2

If PŶ > DA or, equivalently,

γPW (γ) > DA (2.70)

then p′
Z|Ŷ (pŶ |I) = N (βAŶ , PV ) where

βA = 1 − DA

E(Ŷ 2)
, PV = βADA

In other words, Z = βAŶ + V , where V is zero-mean Gaussian with variance PV ,

independent from I, Ŷ . It is straightforward to show that E[(Ŷ − Z)2] = DA in

this case.

We now have

I(Z; Ŷ |I) = h(Z|I) − h(V )

and applying the chain of inequalities (2.53)-(2.55), we obtain

I(Z; Ŷ |I) ≤ 1

2
log

(
1 +

β2
APW (γ)

PV

)
(2.71)

=
1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)
(2.72)
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where the actual values of βA and PV were used in the last equality. Also, from

(2.47), we obtain

I(I; Ŷ ) ≥ 1

2
log(γ) (2.73)

Hence, from (2.69), (2.72) and (2.73) we have

max
pŶ |I∈Mml(pI ,D)

min
pZ|Ŷ ∈MA(pI ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ )

≤ max
pŶ |I∈Mml(pI ,D)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}
(2.74)

= max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}
(2.75)

where (2.75) holds because the right-hand side of (2.74) depends only on γ, whose

range is determined by (2.56) and by (2.70).

We now proceed to prove the lower bound.

Lower Bound

Firstly, if Γ(RQ, D,DA) is empty, we set the lower bound to be trivially equal to

zero, as required by the theorem.

If Γ(RQ, D,DA) is non empty, we consider a conditional probability p̃Ŷ |I such that

(I, Ŷ ) are jointly zero-mean Gaussian with respect to the covariance matrix KI,Ŷ

that we saw in the proof of the direct part of Theorem 2.2. That is,

KI,Ŷ =


 PI

√
(γ − 1)PIPW (γ)√

(γ − 1)PIPW (γ) γPW (γ)




where γ, PW (γ) are defined similarly to Section 2.3. Moreover, we set

γ = arg max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}
(2.76)

Also, the matrix KI,Ŷ is consistent with the L2-space geometry of Section 2.3, and

hence the distortion constraint (2.42) is satisfied. Therefore,

p̃Ŷ |I ∈ Mml(pG
I , D).
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Hence, we have

max
pŶ |I∈Mml(pG

I ,D)
min

pZ|Ŷ ∈MA(pG
I ,(pŶ |I)n,DA)

Ξ(RQ, pG
I , pŶ |I , pZ|Ŷ )

≥ min
pZ|Ŷ ∈MA(pG

I ,(p̃Ŷ |I)n,DA)
Ξ(RQ, pG

I , p̃Ŷ |I , pZ|Ŷ )

≥ min

{
RQ − 1

2
log(γ), min

pZ|Ŷ ∈MA(pG
I ,(p̃Ŷ |I)n,DA)

I(Z; Ŷ |I)

}
(2.77)

where (2.77) was obtained by substituting I(I; Ŷ ) with 1
2
log(γ) (from the Gaus-

sianity of p̃Ŷ |I).

We now have the following chain of inequalities:

I(Z; Ŷ |I) = I(Ŷ − λ0I; Z − λ0κI|I) (2.78)

= h(Ŷ − λ0I) − h(Ŷ − λ0I|Z − λ0κI, I) (2.79)

≥ h(Ŷ − λ0I) − h(Ŷ − λ0I|Z − λ0κI) (2.80)

= I(Ŷ − λ0I; Z − λ0κI) (2.81)

where λ0 is the linear MMSE coefficient for estimating Ŷ given I (defined in (2.44))

and κ �= 0 is an arbitrary constant; (2.79) was obtained since Ŷ − λ0I is orthog-

onal to I (and hence they are independent); and (2.80) is due to the fact that

conditioning reduces entropy.

Let Z̃ be a zero-mean Gaussian random variable such that (I, Ŷ , Z̃) are jointly

Gaussian and have the same second moments as (I, Ŷ , Z). A lower bound to (2.81)

can be obtained as follows:

I(Ŷ − λ0I; Z − λ0κI)

= h(Ŷ − λ0I) − h(Ŷ − λ0I|Z − λ0κI)

= h(Ŷ − λ0I) − h(Ŷ − λ0I − µ(Z − λ0κI)|Z − λ0κI), µ �= 0 (2.82)

≥ h(Ŷ − λ0I) − h(Ŷ − λ0I − µ(Z − λ0κI)) (2.83)
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≥ h(Ŷ − λ0I) − 1

2
log(E[(Ŷ − λ0(1 − µ)I − µZ)2]) (2.84)

= h(Ŷ − λ0I) − 1

2
log(E[(Ŷ − λ0(1 − µ)I − µZ̃)2]) (2.85)

= h(Ŷ − λ0I) − h(Ŷ − λ0I − µ(Z̃ − λ0κI)|Z∗ − λ0κI) (2.86)

= I(Ŷ − λ0I; Z̃ − λ0κI) (2.87)

where µ in (2.82) is the linear MMSE coefficient for estimating Ŷ − λ0I given

Z − λ0κI (hence, Ŷ − λ0I − µ(Z − λ0κI) is orthogonal to Z − λ0κI); (2.83)

was obtained because conditioning reduces entropy; (2.84) is due to the Gaussian

entropy upper bound; (2.85) is from the definition of Z̃; and (2.86) holds because

Ŷ − λ0I − µ(Z̃ − λ0κI) is independent of Z̃ − λ0κI (since they are Gaussian and

uncorrelated).

From (2.77), (2.81) and (2.87) we obtain

min
pZ|Ŷ ∈MA(pG

I ,(p̃Ŷ |I)n,DA)
I(Z; Ŷ |I)

≥ min
pZ|Ŷ ∈MA(pG

I ,(p̃Ŷ |I)n,DA)
I(Ŷ − λ0I; Z̃ − λ0κI)

= min
E(Z̃Ŷ ),E(Z̃2): E[(Z̃−Ŷ )2]≤DA

I(Ŷ − λ0I; Z̃ − λ0κI) (2.88)

where the last equality is because the quantity I(Ŷ − λ0I; Z̃ − λ0κI) depends on

pZ|Ŷ only through the second moments E(Z̃Ŷ ) = E(ZŶ ) and E(Z̃2) = E(Z2)

(since Z̃ is Gaussian).

Since Ŷ , Z̃ are jointly Gaussian, we can express them in the form:

Z̃ = κŶ + U

where κ is the same as used in (2.88), and U is a zero-mean Gaussian variable

independent of Ŷ and I (because of the Markov condition (2.12)). Therefore,

E(Z̃Ŷ ) = κγPW (γ) and E(Z̃2) = κ2γPW (γ) + PU , where PU is the variance of U .

52



0

θmax

√
PU

Z̃

√
DA

Ŷ

κŶ

CG

Figure 2.6: The L2 space spanned by variables Ŷ and Z̃, shown for the maximum

possible θ = θmax (when PŶ > DA).

Hence, we have

I(Ŷ − λ0I; Z̃ − λ0κI)

= h(Z̃ − λ0κI) − h(Z̃ − λ0κI|Ŷ − λ0I)

= h(κ(Ŷ − λ0I) + U) − h(κ(Ŷ − λ0I) + U |Ŷ − λ0I)

=
1

2
log(2πe)(κ2PW (γ) + PU) − 1

2
log(2πe)PU

=
1

2
log

(
1 +

κ2PW (γ)

PU

)
(2.89)

Therefore, (2.88) is equal to

min
(κ, PU ): E[(Ŷ −Z̃)2]≤DA

1

2
log

(
1 +

κ2PW (γ)

PU

)
(2.90)

We observe now that minimizing the ratio κ2/PU in (2.90) is equivalent to mini-

mizing the ratio κ2PŶ /PU . This ratio is equal to cot2(θ), where θ is shown in the

L2-space of Figure 2.6. Therefore, for computing the minimum in (2.90), it suffices
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to maximize θ. We consider the following two cases: (i) if PŶ = γPW (γ) ≤ DA

then the maximum possible θ is π/2 and hence (2.90) is equal to zero (note that

Γ(RQ, D,DA) is empty in this case); (ii) if γPW (γ) > DA, then θ is maximized when

Z̃ is tangent to the circle CG and E[(Ŷ −Z̃)2] = DA; in this case cot2(θ) = γPW (γ)
DA

−1

and (2.90) is equal to

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)
(2.91)

By combining (2.76), (2.77), (2.88) and (2.91), we obtain

max
pŶ |I∈Mml(pG

I ,D)
min

pZ|Ŷ ∈MA(pG
I ,(pŶ |I)n,DA)

Ξ(RQ, pG
I , pŶ |I , pZ|Ŷ )

≥ max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2
log

(
1 +

PW (γ)

DA

− 1

γ

)}
(2.92)

as required.

Combining (2.75) and (2.92), the theorem is proved.

Remarks: In proving (2.68), we had to prove that

max
pŶ |I∈Mml(pG

I ,D)
min

pZ|Ŷ ∈MA(pG
I ,(pŶ |I)n,DA)

Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) (2.93)

is upper- and lower-bounded by a suitable quantity. In the course of the proof,

it became apparent that, in most cases of interest (that is, PŶ > DA), the most

malicious attack is of the form

Zn =

(
1 − DA

PŶ

)
Ŷ n + V n (2.94)

where V n is i.i.d. Gaussian, independent of Ŷ n, with variance (1− DA

PŶ
)DA. As can

be seen in Figure 2.6, this particular attack is equivalent to optimally quantizing

an i.i.d. Gaussian source at distortion DA. This attack has been proved to be

optimal (from the attacker’s point of view) in other watermarking schemes, as well

[22, 24].
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As we pointed out in Section 2.1, the set of admissible encoding and attack

distributions A(pI , D,DA) is non-rectangular, since MA(pI , pŶ n|In , DA) depends

on the choice of pŶ n|In . Therefore, one cannot use any concavity and convexity

properties of Ξ(RQ, pI , pŶ |I , pZ|Ŷ ) in order to establish the existence of a saddle-

point that would give the value of (2.93). The approach we followed in this section

(i.e., finding upper and lower bounds to (2.93)) overcomes this difficulty. Similar

techniques were followed by [22, 24].

2.6 Performance of Other Schemes

In this section we present achievability results for certain schemes that combine

watermarking and compression. Specifically, we investigate the relationship be-

tween watermarking and quantization rates in the presence of additive memoryless

Gaussian noise of variance DA, for the following systems:

• Regular Quantization Index Modulation (QIM) [16], where no knowledge of

the original image is available at the decoder (public scenario).

• Additive watermarking, where the embedder computes the weighted sum of

the original image and a watermark-dependent signal and then compresses

the resulting vector using a universal (watermark non-specific) quantizer. A

private detection scenario is assumed in this case.

Although our focus is on achievability results, the rate region Rgauss
D derived in

Section 2.3 (for βA = 1 and PV = DA,) can be taken as an outer bound on the

achievable rate region of both schemes considered in this section.

A. Regular Quantization Index Modulation, Public Scenario

We consider the regular version of QIM [16] (distinct from distortion-compensated
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QIM), since we require the output of the embedding process to be a quantized

image (corresponding to an index in a source codebook).

Essentially, here we have an ensemble of 2nRW quantizers and their codebooks.

Each quantizer corresponds to a different watermark index, and covers the entire

image space with 2n(RQ−RW ) representation vectors (codewords). The watermark

W is embedded into an original image In by quantizing In using the W th quantizer,

yielding a representation vector Ŷ n. Detection of the watermark W in a (possibly

corrupted) image Zn entails mapping Zn to a representation vector taken from

the union of the 2nRW codebooks; the index of the codebook which contains that

vector becomes the estimate Ŵ of the watermark W . (By contrast, the private

detection scenario used in the proof of the direct theorem of Section 2.3 mapped

Zn to one of 2nRW representation vectors, each taken from a different codebook.)

As discussed in [16], achievable pairs (RQ, RW ) for regular QIM (also called

“hidden” QIM) under constraints (2.1) and (2.2) can be found using a well-known

formula due to Gel’fand and Pinsker [13]:

RQ = I(Ŷ ; Z) = I(Ŷ ; Ŷ + V ) (2.95)

RW = [I(Ŷ ; Z) − I(Ŷ ; I)]+ (2.96)

The trivariate distribution pI,Ŷ ,Z(i, ŷ, z), can be taken as the Gaussian in the proof

of the direct theorem in Section 2.3. Thus pI,Ŷ ,Z(i, ŷ, z) = pI,Ŷ (i, ŷ)pV (z − ŷ),

where I and V = Z − Ŷ are independent with mean zero and variances PI and

DA respectively; and Ŷ also has mean zero and satisfies E(Ŷ − I)2 = D. It should

be noted again that the second moments of pI,Ŷ ,Z(i, ŷ, z) are consistent with the

geometry of Figure 2.4.

56



We briefly investigate the behavior of (2.96) as RQ (given by (2.95)) varies.

Letting PŶ = γPW (γ) = E(Ŷ 2), we have from (2.95)

RQ =
1

2
log

(
1 +

PŶ

DA

)

and thus

PŶ = DA(22RQ − 1) (2.97)

Also, (2.96) gives

RW =

[
RQ − 1

2
log(γ)

]+

(2.98)

Setting PŶ |I = PW (γ) = PŶ /γ in (2.45) and expressing γ in terms of PI , PŶ and

D, we obtain (with the aid of (2.97))

RW =

[
RQ − 1

2
log

(
PIDA(22RQ − 1)

PIDA(22RQ − 1) − 1
4
(PI + DA(22RQ − 1) − D)2

)]+

(2.99)

The range of values of RQ for which RW in (2.99) is nonzero is a subinterval of[
1

2
log

(
1 +

(
√

PI −
√

D)2

DA

)
,

1

2
log

(
1 +

(
√

PI +
√

D)2

DA

)]

whose exact endpoints are given by the roots of a cubic. Expression (2.99) is

shown in Figure 2.7 as the dashed-dotted curved line. One can trivially achieve

the rest of the region (below the horizontal, dashed-dotted line), by appending

extra “dummy” bits to the output of the quantizer (thus increasing the rate RQ).

As can be seen from Figure 2.7, the watermarking rate RW obtained using i.i.d.

Gaussian codebooks is positive only for a finite range of values of RQ (without

appending the trivial bits). This is explained by the fact that as the quantization

rate increases, the quantization cells shrink and thus it becomes increasingly likely

that a corrupted image will be mistaken for an image generated by another quan-

tizer (resulting in a different watermark index at the decoder). This difficulty does
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log
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RQ
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Additive
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Figure 2.7: Inner bounds on the achievable rate regions for public QIM and private

additive schemes. Rgauss
D , for βA = 1 and PV = DA, is an outer bound on the

achievable rate regions of both schemes.

not arise when additive watermarking schemes (see, e.g., [31, 8]) are used. The

analysis of such an additive scheme follows.

B. Additive Watermarking, Private Scenario

Additive watermarking schemes (see, e.g., [31, 8]) are immune to the problem

discussed above, as they use a single quantizer which is not dependent on the

embedded watermark. From a complexity/cost viewpoint, they are particularly

attractive in applications where the same image is distributed to different cus-

tomers (i.e., the embedded watermark is a fingerprint identifying the customer),

as customers can use the same codebook in order to reconstruct their image.

In general, additive watermarking reduces to the computation of

Y n = αIn + βxn(W ) (2.100)

where W is the index of the watermark and xn(·) is a n-dimensional signal that

does not depend on the original image In. α, β are non-zero scalars. To further
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compress Y n, a universal quantizer (i.e., one that does not depend on the water-

mark embedded in Y n) can be used:

Ŷ n = f(Y n)

subject to an appropriate distortion constraint ((2.1) in this case). The decoder

attempts to detect W given Ŷ n and In with vanishing probability of error.

We obtain an inner bound on the achievable (RQ, RW ) region using a random

coding argument. First, we note that compressing Y n is equivalent to compress-

ing α−1Y n, which effectively eliminates the parameter α in (2.100); and that the

parameter β can be absorbed in the power of the watermark. Thus we use the

simpler form

Y n = In + xn(W )

The watermarker generates a random channel codebook {Xn(1), . . . , Xn(2nRW )},
all components of which are i.i.d. Gaussian with variance PX ; and a random source

codebook {Ỹ n(1), . . . , Ỹ n(2nRQ)} , also i.i.d. Gaussian with variance PŶ , where

both PX and PŶ are free parameters in the model.

Y n is encoded as Ŷ n = Ỹ n(q), where q is the smallest index such that the

pair (Y n, Ỹ n(q)) is jointly typical with respect to a bivariate Gaussian pY,Ŷ having

mean zero and covariance

KY,Ŷ =


 PI + PX

PI+PX

2PI
(PI + PŶ − D)

PI+PX

2PI
(PI + PŶ − D) PŶ




Without going into detail, it is not difficult to show that joint typicality of Y n

and Ŷ n = Ỹ n(q) implies that the per-letter distortion between In and Ŷ n is, with

probability approaching unity, no larger than D + ε, which in turn implies that

the distortion constraint (2.1) is essentially satisfied. By the usual rate-distortion
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argument, taking

RQ = I(Y ; Ŷ ) + ε (2.101)

ensures that, with probability approaching unity, a jointly typical pair (Y n, Ỹ n(q))

can be found. (As expected from rate-distortion theory, I(Y ; Ŷ ) ≥ 1
2
log(PI

D
) with

equality iff PX=0 and PI = PŶ + D.)

Upon receiving Zn = Ŷ n + V n, the watermark detector attempts to find a

unique w such that the triplet (In, Xn(w), Zn) is jointly typical with respect to a

trivariate Gaussian pI,X,Z having mean zero and covariance

KI,X,Z =




PI 0
PI+PŶ −D

2

0 PX
PX(PI+PŶ −D)

2PI

PI+PŶ −D

2

PX(PI+PŶ −D)

2PI
PŶ + DA




(This distribution is consistent with pY,Ŷ and the additive noise distribution pV

in the sense that pZ|I,X(z|i, x) =
∫

ŷ
pY,Ŷ (i + x, ŷ)pV (z − ŷ)dŷ/pY (i + x).) Again,

without going into detail, it can be shown that if

RW = I(X; I, Z) − ε (2.102)

then the probability of decoding error vanishes as n → ∞.

Solving (2.101) for PX , then substituting into (2.102) and letting ε → 0, we

obtain the following achievable watermarking rate:

RW =
1

2
log

(
22RQ(2D(PI + PŶ ) − D2 − (PI − PŶ )2 + 4DAPI)

4PI(22RQDA + PŶ )

)
(2.103)

which is positive for RQ ≥ 1
2
log
(

PI

D

)
. (2.103) is maximized for

PŶ = −22RQDA +
√

(22RQDA + D)2 + PI(PI + 2DA(22RQ − 2) − 2D)
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yielding the final expression

RW =

1

2
log


2

2RQ

(
4PI(D+DA)−

(
D+PI+2

2RQDA−
√

(2
2RQDA+D)2+PI(PI+2DA(2

2RQ−2)−2D)

)2
)

4PI

√
(2

2RQDA+D)2+PI(PI+2DA(2
2RQ−2)−2D)




(2.104)

The corresponding curve is also shown in Figure 2.7 (the region below it being an

inner bound on the achievable region for this additive scheme). As expected, when

RQ → ∞, Ŷ n is negligibly different from Y n = In + Xn and thus RW approaches

the capacity of an AWGN channel.
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Chapter 3

Fingerprinting and Collusion Attacks

In this chapter, we extend the results of Chapter 2 to the case of fingerprinting. As

we mentioned in Chapter 1, fingerprinting is used for tracking illegal distributors

of a protected image. More precisely, the information hider creates different finger-

printed versions of an image and distributes each to a respective customer. Each

customer thus receives an image containing a fingerprint which uniquely identifies

him. If a fingerprint is detected in an illegally distributed copy, then it is likely

that the customer, to whom the fingerprint was assigned, is responsible for the

illegal distribution.

Fingerprinting, like watermarking, has to adhere to some transparency and

robustness requirements. That is, each fingerprinted copy should be of the same

(or comparable) quality as the original image; and the hidden fingerprint should

be recoverable even after degradation (possibly due to a malicious attack) of the

protected work. An important consideration in fingerprinting is that attacks can

be made more effective through collusion: two or more users who possess different

fingerprinted copies of the same image can collude to produce a forgery. The

fingerprint detector will then attempt to detect all the colluders (that is, all the
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fingerprint indices) from the forgery.

Fingerprinting has attracted considerable attention during the recent years.

Most work has focused on designing practical codes which are resistant to collusion

attacks [38, 39, 40, 11]; little work has been done on information-theoretic aspects

in terms of achievable rates [8, 41]. This chapter gives results on achievable rate

regions in the presence of quantization.

The chapter is organized as follows: in Section 3.1 we summarize our results;

Sections 3.2, 3.3 and 3.4 contain proofs of the theorems.

3.1 Summary of the Results

3.1.1 Discrete and Continuous Alphabets

The general form of the system under consideration is shown in Figure 3.1. The

information hider creates 2nRF fingerprinted copies Ŷ n(1, In), . . . , Ŷ n(2nRF , In) of

In, and distributes them to an equal number of customers using nRQ bits per

customer. We now assume that k (out of 2nRF ) customers collude by combining

their copies {Ŷ n(W1, I
n), . . . , Ŷ n(Wk, I

n)} and produce a forgery Zn. Then Zn,

together with In (in a private scenario), are provided to the fingerprint decoder,

which outputs an estimate {Ŵ1, . . . , Ŵk} of {W1, . . . ,Wk}. Note that we have

successful detection if all the fingerprint indices are correctly detected; this does not

necessarily require Ŵl = Wl for all 1 ≤ l ≤ k. In other words, the decoder tries to

estimate the set {W1, . . . ,Wk}, or, equivalently, any permutation of (W1, . . . ,Wk).

The indices W1, . . . ,Wk are all distinct and the vector (W1, . . . ,Wk) is uniformly

distributed in the set

F(n, k)
∆
= {(w1, . . . , wk) ∈ {1, . . . , 2nRF }k : (∀ l �= m) wl �= wm}
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Figure 3.1: The general fingerprinting/quantization system with memoryless col-

lusion attacks.

Note that the size of F(n, k) is J(n, k)
∆
= |F(n, k)| = Jn!

(Jn−k)!
, where Jn = 2nRF .

Using Stirling’s approximation formula [42], we have

J(n, k)
.
= (Jn)k (3.1)

where we use the notation an
.
= 2n(b±ε) to mean

∣∣∣∣ 1n log an − b

∣∣∣∣ < ε

for n sufficiently large [33]. Furthermore,

Pr{Wl = wl} = Pr{W1 = w1} =
(Jn − 1)!

(Jn − 1 − (k − 1))!
· 1

J(n, k)
=

1

Jn

We further assume that k, as well as the attack channel conditional distribution,

are known to the fingerprint encoder and decoder. Similarly to Chapter 2, here

too we assume that the attack is time-independent and memoryless; its conditional

probability distribution is

p
(k)

Zn|Ŷ n
1 ,...,Ŷ n

k

= (p
(k)

Z|Ŷ1,...,Ŷk
)n
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We assume that k ≥ 2 and that it is fixed in n. The case k = 1 is the case

of no collusion, treated in Chapter 2. For simplicity, we use the notation Ŷ n
l =

Ŷ n(Wl, I
n).

We now have the following definitions:

Definition 3.1 A (2nRQ , 2nRF , n) private quantization/fingerprinting code consists

of the following:

• A fingerprint set Fn = {1, . . . , 2nRF }.

• An encoding function f : Fn × In → Ŷn which maps a fingerprint index w

and an image sequence in to a representation sequence ŷn taken from the set

{ŷn(1), . . . , ŷn(2nRQ)}.

• A decoding function g(k) : Zn × In → F(n, k), which maps the output of

the channel zn and the original image in to an estimate (ŵ1, . . . , ŵk) of a

permutation of (w1, . . . , wk).

Definition 3.2 The probability of error in detecting fingerprints (w1, . . . , wk) is

given by

Pe(w1, . . . , wk) =

Pr{g(k)(Zn, In) �∈ P(w1, . . . , wk)|Ŷ n
1 = f(w1, I

n), . . . , Ŷ n
k = f(wk, I

n)}

where P(S) is the set of all permutations of the ordered set S. Furthermore, the

average probability of error for decoder g(k) is given by

Pe =
1

J(n, k)

∑
(w1,...,wk)∈F(n,k)

Pe(w1, . . . , wk)

and is equal to Pr{(Ŵ1, . . . , Ŵk) �∈ P(W1, . . . ,Wk)} when the fingerprint index

vector (W1, . . . ,Wk) is uniformly distributed in F(n, k).
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Definition 3.3 For a (2nRQ , 2nRF , n) quantization/fingerprinting code, the aver-

age (per-symbol) distortion is given by

D̄ = E[n−1

n∑
j=1

d(Ij, f(W, In)j)]

assuming that W is uniformly distributed in {1, . . . , 2nRF }.

Definition 3.4 A rate pair (RQ, RF ) is achievable for distortion constraint D,

if there exists a sequence of quantization/fingerprinting codes (2nRQ , 2nRF , n) such

that

D̄ ≤ D (3.2)

max
w1,...,wk

Pe(w1, . . . , wk) → 0 as n → ∞ (3.3)

Moreover, a rate region R of pairs (RQ, RF ) is achievable if every element of R is

achievable.

We can now state the following theorem.

Theorem 3.1 A private quantization/fingerprinting code (2nRQ , 2nRF , n) satisfies

the transparency and robustness requirements (3.2) and (3.3), respectively, if and

only if (RQ, RF ) ∈ Rdsc, F
D , where

Rdsc, F
D =

{
(RQ, RF ) :

RQ ≥ min
pŶ |I :Ed(I,Ŷ )≤D

I(Ŷ ; I)

RF ≤ max
pŶ |I :Ed(I,Ŷ )≤D

min
{

RQ − I(I; Ŷ ),

min
1≤l≤k

min
Sl⊂{1,...,k}

1

l
I(Z; {Ŷs}s∈Sl

|{Ŷt}t∈S̄l
)
}}
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where Sl is any subset of {1, . . . , k} with l elements, and S̄l = {1, . . . , k}−Sl. For

the computation of I(Z; {Ŷs}s∈Sl
|{Ŷt}t∈S̄l

), the conditional probabilities pŶ1,...,Ŷk|I =

(pŶ |I)
n and p

(k)

Z|Ŷ1,...,Ŷk
are used.

The proof of Theorem 3.1 can be found in Section 3.2.

We have also considered a continuous-alphabet, Gaussian analogue of Theorem

3.1. In particular, if we assume that (i) all (single-letter) alphabets are equal

to R, (ii) the image In is i.i.d. Gaussian with variance PI , (iii) the distortion

function is the squared-error (i.e., (2.4)) and (iv) the output of the attack channel

is Zn =
∑k

l=1 λk,lŶ
n
l + V n where λk,l are scalar, fixed quantities and V n is i.i.d.

Gaussian with variance PV , then Theorem 3.1 becomes:

Theorem 3.2 (Gaussian case) A private, continuous alphabet quantization/

fingerprinting code (2nRQ , 2nRF , n) satisfies requirements (3.2) and (3.3), if and

only if (RQ, RF ) ∈ Rgauss, F
D , where

Rgauss, F
D =

{
(RQ, RF ) :

RQ ≥
[
1

2
log

(
PI

D

)]+

RF ≤ max
γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

min
1≤l≤k

min
Sl⊂{1,...,k}

1

2l
log

(
1 +

∑
s∈Sl

λ2
k,sPW (γ)

PV

)}}

where PW (γ) was defined in (2.6), and Sl in Theorem 3.1.

It is trivial to show that in the special case λk,l = λk for all l, the region Rgauss, F
D

becomes

Rgauss, F
D =

{
(RQ, RF ) :
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RQ ≥
[
1

2
log

(
PI

D

)]+

RF ≤ max
γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

1

2k
log

(
1 +

kλ2
kPW (γ)

PV

)}}

The proof of Theorem 3.2 can be found in Section 3.3.

3.1.2 A Simple Optimization of the Gaussian Collusion At-

tack

Adopting a conservative approach, and consistent with the game formulation of

Chapter 2, we can assume that the colluders know the statistics of the embedding

strategy. Namely, they know the joint distribution pIn,Ŷ n . Therefore, they might

wish to optimize the attack in terms of the parameters {λk,l}k
l=1, PV , such that a

distortion constraint is satisfied. One such distortion constraint is the following:

(∀ l ≤ k)
1

n
E||Ŷ n

l − Zn||2 ≤ DA (3.4)

In other words, the forgery should look similar to every fingerprinted copy in the

collusion. Such a requirement is quite reasonable, assuming that the colluders

want to be fair to each other. The ultimate goal of the attackers is to minimize

the achievable region Rgauss, F
D subject to the above distortion constraint. This can

be done by minimizing

rF (γ, k,λk, PV )
∆
= min

1≤l≤k
min

Sl⊂{1,...,k}
1

2l
log

(
1 +

∑
s∈Sl

λ2
k,sPW (γ)

PV

)
(3.5)

with respect to λk
∆
= (λk,1, . . . , λk,k) and PV , such that (3.4) is satisfied.

Assuming that k and PV are fixed, we make the following observations:

1. For every l ≤ k, the region Λk,l of allowable λk such that the constraint

n−1E||Ŷ n
l − Zn||2 ≤ DA is satisfied, is a convex set. Therefore, the region
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Λk = ∩k
l=1Λk,l (which contains all λk that satisfy (3.4)) is convex. Hence,

for any κ1, . . . ,κm ∈ Λk, we have κ1+···+κm

m
∈ Λk.

2. The set of constraints in (3.4) is symmetric with respect to the λk,l’s. There-

fore, if λk ∈ Λk, then any permutation of the elements of λk will also lie in

Λk. That is, P(λk) ∈ Λk, where P(λk) is the set that contains all distinct

permutations of λk.

3. For every m ≥ 1, the function r(λ1, . . . , λm)
∆
= λ2

1 + · · · + λ2
m is convex.

Therefore,

r(λ1, . . . , λm) ≥ r

(
λ1 + · · · + λm

m
, . . . ,

λ1 + · · · + λm

m

)
(3.6)

with equality if and only if λ1 = · · · = λm.

Based on the observations above, we have the following theorem.

Theorem 3.3 The value of λk which minimizes rF (γ, k,λk, PV ) subject to the

constraint (3.4), satisfies λ∗
k = λ∗

k(1, . . . , 1) for some scalar λ∗
k.

Proof: Let us assume that λ∗
k = (λ∗

k,1, . . . , λ
∗
k,k) ∈ Λk, and let P ∗

V minimize rF .

We distinguish between the following cases:

• The minimum of rF equals

1

2l
log

(
1 +

∑
s∈Sl

λ2
k,sPW (γ)

PV

)

for some Sl, and coefficients λk,s = λ∗
k for all s ∈ Sl. Without loss of gener-

ality, we can take λ∗
k = λ∗

k(1, . . . , 1).

• Suppose now that for t, s ∈ Sl (where Sl attains the minimum in (3.5)) we

have λ∗
k,s �= λ∗

k,t. By switching the sth and tth elements of λ∗
k, we obtain λ′

k
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which, by Observation 2, lies in Λk. From Observation 1, κ∗
k

∆
=

λ∗
k+λ′

k

2
∈ Λk,

and from Observation 3 we have:

∑
m∈Sl

(λ∗
k,m)2 >

∑
m∈Sl

(κ∗
k,m)2

where we have strict inequality because λ∗
k,s �= λ∗

k,t. Hence, rF (γ, k,κ∗
k, P

∗
V ) <

rF (γ, k,λ∗
k, P

∗
V ) (contradiction). Therefore, all elements of λ∗

k should be

equal.

The proof of the theorem is thus concluded.

From the above, we obtain that the optimal choice (with respect to the colluders’

point of view) is λk,l = λk, ∀ l ≤ k. Then, (3.4) becomes

(k − 1)(k − 2)λ2
k(γ − 1)PW (γ) + (k − 1)λ2

kγPW (γ)

+ 2(k − 1)λk(λk − 1)(γ − 1)PW (γ) + (λk − 1)2γPW (γ) + PV ≤ DA (3.7)

where DA ≥ PW (γ)
(
1 − 1

k

)
. Also, the rate region Rgauss, F

D , optimized for (3.7),

becomes:

Rgauss, F
D,DA

=

{
(RQ, RF ) :

RQ ≥
[
1

2
log

(
PI

D

)]+

RF ≤ max
γ∈
[
max

{
1,

PI
D

}
,2

2RQ
]min

{
RQ − 1

2
log(γ),

min
{λk,PV }: (3.7) is satisfied

1

2k
log

(
1 +

kλ2
kPW (γ)

PV

)}}

For computing the optimal values of λk, PV , an analysis similar to the one in

Section 2.5 can be carried out here. It can then be shown that the optimal values
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are

λ∗
k =




0 if DA > γPW (γ)

γPW (γ)−DA

PW (γ)(1+(γ−1)k)
otherwise

and

P ∗
V = ((DA − PW (γ))k + PW (γ))λ∗

k

Therefore,

Rgauss, F
D,DA

=

{
(RQ, RF ) : RQ ≥

[
1

2
log

(
PI

D

)]+

RF ≤ max
γ∈Γ(RQ,D,DA)

min

{
RQ − 1

2
log(γ),

1

2k
log

(
1 +

k(γPW (γ) − DA)

(1 + (γ − 1)k)((DA − PW (γ))k + PW (γ))

)}}

where Γ(RQ, D,DA) was defined in (2.13).

Figure 3.2 shows Rgauss, F
D,DA

for different values of k, when PI = 150 and D =

DA = 50. We can immediately see that, as the number of colluders increases, the

rate region shrinks. Therefore, collusion can be a very effective means of attack.

Note that for k = 1, the rate region shown is the one achieved under the optimum

Gaussian attack (2.94), which is consistent with the values of λ∗
1 and P ∗

V derived

above.

3.1.3 A Multi-User Costa Scheme

Thus far, all fingerprinting systems considered in this chapter operate in a private

scenario. We also present a public scenario which is analogous to Costa’s formula-

tion [15] for the multi-access case. More precisely, assume that the output of the
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Figure 3.2: The rate region achieved under an optimized Gaussian attack, for

different values of k (number of colluders).

encoder is Y n
l = f(Wl, I

n) = In + Xn(Wl, I
n) (without quantization) such that a

squared-error distortion constraint is met. That is,

(∀ l) n−1E||In − Y n
l ||2 = n−1E||Xn

l ||2 ≤ D (3.8)

The k colluders combine their fingerprinted images linearly and adding i.i.d. Gaus-

sian noise, i.e.,

Zn =
k∑

l=1

λkY
n
l + V n

The detector receives Zn and attempts to detect all W1, . . . ,Wk without any knowl-

edge of In. As it turns out, using an encoding technique similar to Costa’s in [15],

we can achieve any rate RF such that

RF ≤ 1

2k
log

(
1 +

λ2
kkD

PV

)

which is precisely the maximum rate achievable in Rgauss, F
D when RQ = ∞. The

proof of this result can be found in Section 3.4.
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3.2 Proof of Theorem 3.1

As we saw in Section 3.1, the Wl’s are uniformly distributed in {1, . . . , Jn}, but

not independent. From (3.1), we have

1

J(n, k)

∑
(w1,...,wk)∈F(n,k)

Pe(w1, . . . , wk)

.
=

1

(Jn)k

∑
(w1,...,wk)∈F(n,k)

Pe(w1, . . . , wk)

≤ 1

(Jn)k

∑
(w1,...,wk)∈(Fn)k

Pe(w1, . . . , wk)

The last expression is the average probability of error resulting by choosing the Wl’s

in an i.i.d. fashion (in which case they will not necessarily be distinct). From the

above inequality it suffices to show that this probability of error is asymptotically

vanishing.

By virtue of the above bound, we assume from now on, and in all the proofs

of this chapter, that (W1, . . . ,Wk) are independent and uniformly distributed in

{1, . . . , Jn}. Hence, given In, the random variables Ŷ n
l = f(Wl, I

n) are independent

(since the Wl’s are independent and Ŷ n is a function of W and In). Thus, we have

the Markov condition

(∀ l �= m) Ŷ n
l → In → Ŷ n

m (3.9)

and therefore:

pŶ n
1 ,...,Ŷ n

k |In =
k∏

l=1

pŶ n
l |In = (pŶ n|In)k

where the last equality is due to the fact that all Ŷ n
l ’s are outputs of the same

function f .

Converse Theorem

We first prove the following lemma, which is a variant of Fano’s inequality [33].
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Lemma 3.1 Let Ŵl ∈ {1, . . . , Jn} for all 1 ≤ l ≤ k. Then

H(W1|Ŵ1, . . . , Ŵk) ≤ log(k + 1) + PenRF

where Pe = Pr{(Ŵ1, . . . , Ŵk) �∈ P(W1, . . . ,Wk)}, and P(S) is the set of all permu-

tations of an ordered set S.

Proof: First, we define an “error” variable T , such that

T =




1 if Ŵ1 = W1

2 if Ŵ2 = W1

...
...

k if Ŵk = W1

0 otherwise

Then, we have

H(W1, T |Ŵ1, . . . , Ŵk) = H(W1|Ŵ1, . . . , Ŵk, T ) + H(T |Ŵ1, . . . , Ŵk)

= H(W1|Ŵ1, . . . , Ŵk) + H(T |Ŵ1, . . . , Ŵk,W1)

Observe that H(T |Ŵ1, . . . , Ŵk,W1) = 0. Also, H(T |Ŵ1, . . . , Ŵk) ≤ H(T ) ≤
log(k + 1). Hence, we have

H(W1|Ŵ1, . . . , Ŵk) ≤ H(W1|Ŵ1, . . . , Ŵk, T ) + log(k + 1) (3.10)

We now have

H(W1|Ŵ1, . . . , Ŵk, T ) =
k∑

l=0

Pr{T = l}H(W1|Ŵ1, . . . , Ŵk, T = l)

= Pr{T = 0}H(W1|Ŵ1, . . . , Ŵk, T = 0) (3.11)

≤ PenRF (3.12)

where (3.11) holds because H(W1|Ŵ1, . . . , Ŵk, T = l) = 0 for all l �= 0. Thus,

combining (3.10) and (3.12), the lemma is proved.
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The converse theorem states that any rate pair (RQ, RF ) that satisfies constraints

(3.2) and (3.3) must lie in Rdsc, F
D .

Proof: Let ε > 0. We assume that Pr{(Ŵ1, . . . , Ŵk) �∈ P(W1, . . . ,Wk)} < ε and

that the distortion constraint is met with equality:

1

n

n∑
j=1

Ed(Ij, Ŷl,j) = D (3.13)

where Ŷ n
l = (Ŷl,1, . . . , Ŷl,n) is the fingerprinted image of the l-th user. Since all

fingerprinted copies are generated through the same encoder f , it follows that

(∀ l) pŶ n
l |In = pŶ n|In

and the Markov conditions (3.9) are satisfied.

As we saw in Section 2.2, the lower bound on RQ in the definition of Rdsc, F
D can

be established using a standard argument from rate-distortion theory [33].

For establishing the upper bound on RF , we have:

RF = n−1H(W1)

= n−1H(W1|In) (3.14)

= n−1I(W1; Ŷ
n
1 |In) + n−1H(W1|Ŷ n

1 , In) (3.15)

≤ n−1I(W1; Ŷ
n
1 |In) + n−1H(W1|Zn, In) (3.16)

≤ n−1I(W1; Ŷ
n
1 |In) + n−1H(W1|Ŵ1, . . . , Ŵk) (3.17)

≤ n−1I(W1; Ŷ
n
1 |In) + ε (3.18)

= n−1H(Ŷ n
1 |In) − n−1H(Ŷ n

1 |In,W1) + ε

= n−1H(Ŷ n
1 |In) + ε (3.19)

= n−1H(Ŷ n
1 ) − n−1(H(Ŷ n

1 ) − H(Ŷ n
1 |In)) + ε

≤ RQ − n−1I(Ŷ n
1 ; In) + ε (3.20)
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= RQ − H(I) + n−1H(In|Ŷ n
1 ) + ε

≤ RQ − H(I) + n−1

n∑
j=1

H(Ij|Ŷ1,j) + ε (3.21)

= RQ − n−1

n∑
j=1

I(Ij; Ŷ1,j) + ε

= RQ − n−1

n∑
j=1

I(Ij; Ŷj) + ε (3.22)

where (3.14) is true because In is independent of W1; (3.16) follows from the

Markov chain W1 → (Ŷ n
1 , In) → (Zn, In); (3.17) holds because H(W1|Zn, In) =

H(W1|g(k)(Zn, In), Zn, In) ≤ H(W1|g(k)(Zn, In)) = H(W1|Ŵ1, . . . , Ŵk); (3.18) fol-

lows from Lemma 3.1; (3.19) holds because Ŷ n
1 is a deterministic function of

In,W1, (3.20) follows from RQ ≥ n−1H(Ŷ n
1 ) and (3.21) is due to the inequali-

ties H(In|Ŷ n
1 ) ≤∑n

i=1 H(Ij|Ŷ n
1 ) ≤∑n

j=1 H(Ij|Ŷ1,j).

For l with 1 ≤ l ≤ k, we denote by Sl any subset of {1, . . . , k} such that |Sl| = l.

Let Sl = {s1, . . . , sl}. We use the following notation:

WSl

∆
= (Ws1 , . . . ,Wsl

), Ŷ n
Sl

∆
= (Ŷ n

s1
, . . . , Ŷ n

sl
)

and

ŶSl,j
∆
= (Ŷs1,j, . . . , Ŷsl,j)

where Ŷs,j is the j-th element of Ŷ n
s . Also, we denote S̄l = {1, . . . , k} − Sl.

For each 1 ≤ l ≤ k, and for each Sl (as defined above), we obtain the following

chain of inequalities:

lRF = n−1H(WSl
|WS̄l

, In) (3.23)

= n−1I(WSl
; Zn|WS̄l

, In) + n−1H(WSl
|WS̄l

, In, Zn)

≤ n−1I(WSl
; Zn|WS̄l

, In) + n−1

l∑
m=1

H(Wsm|Zn, In)
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≤ n−1I(WSl
; Zn|WS̄l

, In) + lε (3.24)

= n−1H(Zn|WS̄l
, In) − n−1H(Zn|W1, . . . ,Wk, I

n) + lε

= n−1H(Zn|ŶS̄l
, In) − n−1H(Zn|Ŷ n

1 , . . . , Ŷ n
k ) + lε (3.25)

≤ n−1

n∑
j=1

H(Zj|ŶS̄l,j, Ij)

−n−1

n∑
j=1

H(Zj|Z1, . . . , Zj−1, Ŷ
n
1 , . . . , Ŷ n

k ) + lε (3.26)

= n−1

n∑
j=1

H(Zj|ŶS̄l,j, Ij) − n−1

n∑
j=1

H(Zj|Ŷ1,j, . . . , Ŷk,j) + lε (3.27)

≤ n−1

n∑
j=1

(H(Zj|ŶS̄l,j, Ij) − H(Zj|Ŷ1,j, . . . , Ŷk,j, Ij) + lε (3.28)

= n−1

n∑
j=1

I(Zj; ŶSl,j|ŶS̄l,j, Ij) + lε (3.29)

where (3.23) is due to the independence of In and W1, . . . ,Wk; (3.24) follows

from Lemma 3.1; (3.25) holds because of the Markov chains (In,W1, . . . ,Wk) →
(Ŷ n

1 , . . . , Ŷ n
k ) → Zn and (Ŷ n

1 , . . . , Ŷ n
k ) → (In,W1, . . . , Wk) → Zn; (3.26) follows

from the chain rule for the entropy; (3.27) holds because the attack channel is

memoryless and therefore given (Ŷ1,j, . . . , Ŷk,j), the variable Zj is conditionally

independent of everything else and (3.28) follows because conditioning reduces

entropy.

Note that (3.29) is true for all 1 ≤ l ≤ k and all Sl ⊂ {1, . . . , k}. Hence, together

with (3.22), we obtain

RF ≤ min

{
RQ − 1

n

n∑
j=1

I(Ij; Ŷj),

min
1≤l≤k

min
Sl⊂{1,...,k}

1

ln

n∑
j=1

I(Zj; ŶSl,j|ŶS̄l,j, Ij)

}
+ ε (3.30)

Using a similar approach as in Section 2.2, we can argue that, since I(Ij; Ŷj) and
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I(Zj; ŶSl,j|ŶS̄l,j, Ij) are concave with respect to pŶj |Ij
, the following are true:

n−1

n∑
j=1

(RQ − I(Ij; Ŷj)) ≤ RQ − Ia(I; Ŷ ) (3.31)

n−1

n∑
j=1

I(Zj; ŶSl,j|ŶS̄l,j, Ij) ≤ Ia(Z; ŶSl
|ŶS̄l

, I) (3.32)

where the mutual information expressions on the right-hand side of (3.31) and

(3.32) are computed with respect to the pmf pa
Ŷ |I = n−1

∑n
j=1 pŶj |Ij

that was defined

in (2.35). The remainder of the proof follows in the same way as in the converse

in Section 2.2, and will be omitted.

Note: The same result can be obtained if, instead of using pa
Ŷ |I , we introduce

a time-sharing variable Q uniformly distributed over {1, . . . , n} on the conditions

side of each mutual information functional. In that case, the final expression

involves maximization with respect to the joint distribution pŶ |I,Q pQ|I pI . The

rate region obtained is the same as the region Rdsc, F
D described by the expression

in the statement of the theorem.

Direct Theorem

We now show that Rdsc, F
D is achievable.

Proof: As usual (cf. proofs of Theorems 2.1, 2.3), we limit the quantization rate

to RQ ≥ rq(D).

We present an outline of the proof here. Many of the details are quite straight-

forward, or come directly from proofs presented elsewhere.

We assume that the indices W1, . . . ,Wk are uniformly distributed in {1, . . . , Jn}.
Furthermore, we use a random coding argument and we finally establish that there

exists a deterministic code that achieves arbitrarily small probability of error.
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Codebook Generation: The codebook generation is identical to the one given in

the direct part of Theorem 2.1. A set of 2nRQ sequences Ỹ n is generated i.i.d.

according to a pmf pŶ , and then the set is partitioned uniformly into 2nRF subsets.

Fingerprint Embedding: The embedding is again identical to the procedure de-

scribed in the proof of Theorem 2.1. Given In and a fingerprint index w, the

encoder outputs Ŷ n(w), as determined by joint typicality with respect to some

probability distribution pŶ |I which satisfies

n−1Ed(In, Ŷ n) ≤ D

Decoding: The decoder receives Zn (generated from Ŷ n(W1), . . . , Ŷ
n(Wk)). In

the sequel, we will refer to Ŷ n(Wl) as Ŷ n
l . The decoder then seeks a k-tuple

(Ŷ n(ŵ1), . . . , Ŷ
n(ŵk)) such that (In, Ŷ n(ŵ1), . . . , Ŷ

n(ŵk), Z
n) belongs to a set

T n
I,Ŷ1,...,Ŷk,Z

(ε), the set of typical k-tuples with respect to the distribution pI,Ŷ1,...,Ŷk,Z

= pZ|Ŷ1,...,Ŷk
(pŶ |I)

kpI (observe that the last equality is due to the Markov conditions

(3.9)). If a unique set of indices {ŵ1, . . . , ŵk} exists (their ordering is immaterial

here) then the decoder outputs it, otherwise it declares an error.

Probability of Error: Without loss of generality, we assume that W1 = 1, . . . ,Wk =

k. Consistent with the proof of Theorem 2.1, we again have three kinds of error

events:

(i) E1: In is not represented well (i.e., in terms of the distortion constraint) by at

least one of Ŷ n
1 , . . . , Ŷ n

k .

(ii) E2: Assuming Ec
1 (i.e., that E1 did not occur), (In, Ŷ n(1), . . . , Ŷ n(k), Zn) �∈

T n
I,Ŷ1,...,Ŷk,Z

(ε).

(iii) E3: Assuming (E1 ∪ E2)
c, there exists a k-tuple (w1, . . . , wk) �∈ P(1, . . . , k)

such that (In, Ŷ n(w1), . . . , Ŷ
n(wk), Z

n) ∈ T n
I,Ŷ1,...,Ŷk,Z

(ε).

As we proved in Section 2.2, the probability of event E1 approaches zero as long
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as

RF ≤ RQ − I(I; Ŷ ) − ε (3.33)

Moreover, it can be easily proved that the probability of E2 goes to zero.

We can upper-bound the probability of the error event E3 as follows:

Pr(E3) ≤ Pr{∃ (w1, . . . , wk) �= (1, . . . , k) :

(In, Ŷ n(w1), . . . , Ŷ
n(wk), Z

n) ∈ T n
I,Ŷ1,...,Ŷk,Z

(ε)} (3.34)

= Pr{(∃ Sl ⊂ {1, . . . , k}, 1 ≤ l ≤ k) ∧ (∃ (w1, . . . , wk) :

(ws �= s, ∀ s ∈ Sl) ∧ (wt = t, ∀ t ∈ S̄l)) :

(In, Ŷ n(w1), . . . , Ŷ
n(wk), Z

n) ∈ T n
I,Ŷ1,...,Ŷk,Z

(ε)}

≤
k∑

l=1

∑
Sl⊂{1,...,k}

∑
(w1,...,wk):

ws �=s, ∀ s∈Sl

wt=t, ∀ t∈ S̄l

1 ×

×Pr{(In, Ŷ n(w1), . . . , Ŷ
n(wk), Z

n) ∈ T n
I,Ŷ1,...,Ŷk,Z

(ε)} (3.35)

where the right-hand side of (3.34) is clearly an upper bound on Pr(E3), since

there are fingerprint index combinations (e.g., when (w1, . . . , wk) is a permutation

of (1, . . . , k)) that do not lead to error. Also, all probabilities are computed under

the condition that Zn is the output of the channel whose input is Ŷ n(1), . . . , Ŷ n(k).

Moreover, Sl and S̄l are defined similarly as in the converse part; Sl denotes any

subset of {1, . . . , k} that has l elements and S̄l = {1, . . . , k} − Sl.

Because of the symmetry of the random code and because Zn is independent

of Ŷ n(w),∀ w > k given In, a standard argument similar to the one used in the

proof of the direct part of Theorem 14.3.1 in [33], gives:

Pr{(In, Ŷ n(w1), . . . , Ŷ
n(wk), Z

n) ∈ T n
I,Ŷ1,...,Ŷk,Z

(ε)} ≤ 2−n(I(Z;{Ŷs}s∈Sl
|{Ŷt}t∈S̄l

)−o(1))

for all ws �= s, wt = t with s ∈ Sl and t ∈ S̄l. Note that o(1) approaches zero with
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ε. Hence, (3.35) gives:

Pr(E3) ≤
k∑

l=1

∑
Sl⊂{1,...,k}

(2nRF )l 2−n(I(Z;{Ŷs}s∈Sl
|{Ŷt}t∈S̄l

)−o(1)) (3.36)

Hence, (3.36) approaches zero as n goes to infinity provided

(∀ 1 ≤ l ≤ k) (∀ Sl ⊂ {1, . . . , k}) RF ≤ 1

l
I(Z; {Ŷs}s∈Sl

|{Ŷt}t∈S̄l
) − o(1)

or, equivalently, when

RF ≤ min
1≤l≤k

min
Sl⊂{1,...,k}

1

l
I(Z; {Ŷs}s∈Sl

|{Ŷt}t∈S̄l
) − o(1) (3.37)

Finally, we combine (3.33) with (3.37) and maximizing with respect to all pŶ |I

such that Ed(I, Ŷ ) ≤ D, we obtain the achivability of Rdsc, F
D . The existence of a

deterministic code can be proved using a standard expurgation argument.

3.3 Proof of Theorem 3.2

Converse Theorem

We begin with the converse part, which establishes that all (2nRQ , 2nRF , n) codes

which satisfy conditions (3.2) and (3.3) have rates (RQ, RW ) ∈ Rgauss, F
D .

Proof: Let ε > 0. Similarly to the converse of the discrete case (Section (3.2)),

here too we assume that the fingerprint indices W1, . . . ,Wk are independent, each

one being uniformly distributed in {1, . . . , 2nRF }, that Pe < ε, and that the distor-

tion constraint is met with equality:

(∀ l)
1

n

n∑
j=1

E||In − Ŷ n
l ||2 = D (3.38)

The lower bound on RQ is the standard rate-distortion function, and is trivially

established.
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For establishing the upper bound on RF , we need to consider the L2-space

of Section 2.3. The quantities φ, γ, PW (γ), λ0 have exactly the same meaning.

Moreover, the upper bound

RF ≤ RQ − 1

2
log(γ) (3.39)

follows from (3.22) and (2.47), so, no further discussion is needed here.

For each 1 ≤ l ≤ k and for each Sl (as defined in Section 3.2), we have from

(3.25):

lRF ≤ n−1h(Zn|ŶS̄l
, In) − n−1h(Zn|Ŷ n

1 , . . . , Ŷ n
k ) + lε (3.40)

where we replaced the discrete entropy H(·) with the differential entropy h(·), since

Zn is a continuous random vector. Recall that Zn =
∑k

l=1 λk,lŶ
n
l + V n, where V n

is i.i.d. Gaussian of variance PV .

From (3.40), we continue the chain of inequalities as follows:

lRF ≤

n−1h


Zn −

∑
s∈S̄l

λk,sŶ
n
s

∣∣∣∣∣ŶS̄l
, In




−n−1h

(
Zn −

k∑
l=1

λk,lŶ
n
l

∣∣∣∣Ŷ n
1 , . . . , Ŷ n

k

)
+ lε

= n−1h

(∑
s∈Sl

λk,sŶ
n
s + V n

∣∣∣∣ŶS̄l
, In

)
− n−1h(V n) + lε (3.41)

= n−1h

(∑
s∈Sl

λk,sŶ
n
s + V n

∣∣∣∣In

)
− 1

2
log(2πe)PV + lε (3.42)

= n−1h

(∑
s∈Sl

λk,s(Ŷ
n
s − ΨIn) + V n

∣∣∣∣In

)
− 1

2
log(2πe)PV + lε (3.43)

≤ n−1h

(∑
s∈Sl

λk,s(Ŷ
n
s − ΨIn) + V n

)
− 1

2
log(2πe)PV + lε (3.44)

82



≤ n−1

n∑
j=1

h

(∑
s∈Sl

λk,s(Ŷs,j − Ψ(j)In) + Vj

)
− 1

2
log(2πe)PV + lε

≤ n−1

n∑
j=1

1

2
log(2πe)


E


(∑

s∈Sl

λk,s(Ŷs,j − Ψ(j)In)

)2

+ PV




−1

2
log(2πe)PV + lε (3.45)

≤ 1

2
log(2πe)


 1

n

n∑
j=1

E


(∑

s∈Sl

λk,s(Ŷs,j − Ψ(j)In)

)2

+ PV




−1

2
log(2πe)PV + lε (3.46)

=
1

2
log


1 +

1

PV

1

n

n∑
j=1

E


(∑

s∈Sl

λk,s(Y̆s,j − Ψ(j)In)

)2



+ lε (3.47)

where (3.41) holds because V n is independent of all other variables; (3.42) follows

from the fact that, given In, ŶSl
is independent from ŶS̄l

. The Ψ used in (3.43)

is a n × n matrix; the j-th row of Ψ is denoted Ψ(j) while Ψ(j)In is the best

linear estimator of Ŷs,j given In, and is the same for every s (since we know that

all {Ŷ n
s }k

s=1 have the same statistics); (3.44) holds because conditioning reduces

entropy; (3.45) is the Gaussian entropy upper bound and (3.46) is a consequence

of Jensen’s inequality. Finally, in (3.47), we assume that ({Y̆ n
s }s∈Sl

, In) are jointly

zero-mean Gaussian, they have the same second moments as ({Ŷ n
s }s∈Sl

, In) and

they satisfy the same Markov conditions (3.9):

(∀ l �= m) Y̆ n
l → In → Y̆ n

m (3.48)

It is easy to establish that E[(Y̆l,j − Ψ(j)In)(Y̆m,j − Ψ(j)In)] = 0 for all l �= m.

Indeed,

E[(Y̆l,j − Ψ(j)In)(Y̆m,j − Ψ(j)In)]

= E[E[(Y̆l,j − Ψ(j)In)(Y̆m,j − Ψ(j)In)|In]]
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= E[E[Y̆l,j Y̆m,j|In] − Ψ(j)InE[Y̆l,j + Y̆m,j|In] + (Ψ(j)In)2]

= E[E[Y̆l,j|In]E[Y̆m,j|In] − Ψ(j)InE[Y̆l,j|In]

−Ψ(j)InE[Y̆m,j|In] + (Ψ(j)In)2] (3.49)

because E[Y̆l,j Y̆m,j|In] = E[Y̆l,j|In]E[Y̆m,j|In] from (3.48). Since ({Y̆ n
s }s∈Sl

, In) is

Gaussian, we have that E[Y̆l,j|In] = E[Y̆m,j|In] = Ψ(j)In. Substituting in (3.49),

we obtain a value of zero.

Thus, (3.47) equals

1

2
log

(
1 +

1

PV

∑
s∈Sl

λ2
k,s

(
1

n

n∑
j=1

E[(Y̆s,j − Ψ(j)In)2]

))
+ lε

≤ 1

2
log

(
1 +

1

PV

∑
s∈Sl

λ2
k,s

(
1

n

n∑
j=1

E[(Y̆s,j − λ0Ij)
2]

))
+ lε (3.50)

=
1

2
log

(
1 +

∑
s∈Sl

λ2
k,sPW (γ)

PV

)
+ lε (3.51)

where λ0 in (3.50) is as defined in Section 2.3; the inequality stems from the fact

that λ0Ij cannot be a better estimator of Y̆s,j than Ψ(j)In, hence the mean-square-

error E[(Y̆s,j − λ0Ij)
2] can only be higher; and (3.51) follows from the definition of

PW (γ).

Thus, from (3.47) and (3.51) we have

RF ≤ 1

2l
log

(
1 +

∑
s∈Sl

λ2
k,sPW (γ)

PV

)
+ ε (3.52)

Finally, since (3.52) holds for all 1 ≤ l ≤ k and all Sl ⊂ {1, . . . , k}, we have:

RF ≤ min
1≤l≤k

min
Sl⊂{1,...,k}

1

2l
log

(
1 +

∑
s∈Sl

λ2
k,sPW (γ)

PV

)
+ ε

Thus, (3.39) and maximization with respect to γ ∈ [max
{
1, PI

D

}
, 22RQ

]
, yields the

required result.
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Direct Theorem

Proof: The proof of the direct part follows immediately from the direct part of

Theorem 2.2 (Section 2.3) and the direct part of Theorem 3.1 (Section 3.2). More

precisely: the fingerprint generation and embedding procedures are identical to

those in Section 2.3, and the fingerprint detection as well as the computation of

the probability of error follow from Section 3.2. What has to be determined is the

joint probability distribution pI,Ŷ1,...,Ŷk,Z used by the joint typicality detector. As

expected, this distribution is jointly zero-mean Gaussian, with covariance matrix

KI,Ŷ1,...,Z =


PI

√
(γ−1)PIPW (γ) ··· ∑k

l=1 λk,l

√
(γ−1)PIPW (γ)√

(γ−1)PIPW (γ) γPW (γ) ··· λk,1γPW (γ)+
∑k

l=2 λk,l(γ−1)PW (γ)

...
...

...
...∑k

l=1 λk,l

√
(γ−1)PIPW (γ) λk,1γPW (γ)+

∑k
l=2 λk,l(γ−1)PW (γ) ··· PZ




where PZ =
∑k

l=1 λ2
k,lγPW (γ) +

∑
l �=m λk,lλm,l(γ − 1)PW (γ) + PV .

Arguments similar to the ones in Section 3.2 for the existence of deterministic

codes can be given here, thus concluding the proof.

3.4 A Multi-User Costa Scheme

In this Section, we consider collusion attacks on fingerprinted images, under a

public detection scenario. Furthermore, we assume no quantization.

As usual, In is an i.i.d. Gaussian image of per-symbol variance PI . There are

2nRF fingerprint indices, each one corresponding to a particular customer. The

information hider generates 2nRF fingerprinted copies of In, say Y n(1, In), . . . ,

Y n(2nRF , In), such that the following distortion constraint is satisfied:

(∀ w)
1

n
E||In − Y n(w, In)||2 ≤ D (3.53)
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Equivalently, we can assume that Y n(w, In) = In +Xn(w, In), and therefore (3.53)

becomes

(∀ w) n−1E||Xn(w, In)||2 ≤ D (3.54)

Let W1, . . . ,Wk be the indices of the colluders, each uniformly distributed in

{1, . . . , 2nRF } and independent. The colluders produce the forgery Zn as

Zn =
k∑

l=1

λkY
n
l + V n

where, by definition, Y n
l = Y n(Wl, I

n) and V n is i.i.d. Gaussian noise with variance

PV (per dimension). The decoder produces estimates Ŵ1, . . . , Ŵk of W1, . . . ,Wk

without knowledge of In.

We use a random coding argument for our achievability proof. The approach

is the multi-user extension of Costa’s proof [15]. We trace the following steps:

Codebook Generation: First, 2nRU sequences Un are generated i.i.d. Gaussian with

variance D +α2PI per dimension. Next, these sequences are distributed uniformly

into 2nRF bins. Therefore, each bin w contains Un(w, 1), . . . , Un(w, 2n(RU−RF )).

Fingerprint Embedding: Given In and fingerprint index w, the embedder seeks

within bin w a Un(w, q) which is jointly typical with In (that is, (In, Un(w, q)) ∈
T n

I,Û
(ε)). Joint typicality is with respect to some joint Gaussian distribution with

covariance matrix

KI,Û =


 PI αPI

αPI D + α2PI




An error is declared if no such Un can be found. Otherwise, the encoder sets

Ûn(w, In) = Un(w, q) and outputs Y n = Ûn(w, In) + (1 − α)In. The selected

sequence Ûn(w, In) is also distortion-typical, in the sense that n−1E||Ûn(w, In) −
αIn||2 = n−1E||Xn(w, In)||2 ≤ D + ε.
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Decoding: The decoder, given Zn, seeks Un(ŵ1, q1), . . . , U
n(ŵk, qk) (belonging to

bins ŵ1, . . . , ŵk, respectively) such that (Un(ŵ1, q1), . . . , U
n(ŵk, qk), Z

n) ∈
T n

Û1,...,Ûk,Z
(ε). Here, T n

Û1,...,Ûk,Z
(ε) is the set of jointly typical tuples with respect

to a joint Gaussian distribution with covariance matrix

KÛ1,...,Ûk,Z =




D+α2PI ··· α2PI λk(D+kαPI)

α2PI

... α2PI λk(D+kαPI)

...
...

...
...

λk(D+kαPI) ··· λk(D+kαPI) λ2
kk(D+kPI)+PV




If exactly k typical Un(ŵ1, q1), . . . , U
n(ŵk, qk) are found, then the decoder outputs

Ŵl = ŵl for all 1 ≤ l ≤ k. Otherwise, an error is declared.

Probability of Error: Without loss of generality, we assume that W1 = 1, . . . ,Wk =

k (this is the worst-case scenario in which all the fingerprint indices are different).

We now have the following error events:

(i) E1: No Un(l, q) can be found for some l ≤ k, such that (In, Un(l, q)) ∈ T n
I,Û

.

(ii) E2: Assuming Ec
1 (i.e., that all bins 1, . . . , k contain Un’s which are typical

with In), not all bins 1, . . . , k contain Un(1, q1), . . . , U
n(k, qk) respectively, such

that (Un(1, q1), . . . , U
n(k, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

.

(iii) E3: Assuming (E1 ∪ E2)
c, there exists a tuple (w1, . . . , wk) �∈ P(1, . . . , k) and

there exist Un(w1, q1), . . . , U
n(wk, qk) in bins w1, . . . , wk respectively, such that

(Un(w1, q1), . . . , U
n(wk, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε). Note that P(1, . . . , k) is the set

that contains all ordered permutations of the tuple (1, . . . , k).

Behavior of E1: We know, from rate-distortion theory, that if the number of

elements in each bin is at least 2n(I(I;Û)+ε), then Pr{E1} → 0 as n approaches

infinity. This is equivalent to

RU − RF ≥ I(I; Û) + ε (3.55)

where the mutual information is computed with respect to the Gaussian joint
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distribution with covariance matrix KI,Û . Hence, by substitution, (3.55) becomes

RU − RF ≥ 1

2
log

(
1 +

α2PI

D

)
+ ε (3.56)

Behavior of E2: To show that Pr{E2} → 0, it suffices to show that (Ûn(1, In), . . . ,

Ûn(k, In), Zn) ∈ T n
Û1,...,Ûk,Z

with probability that approaches 1. From the previous

paragraph, we know that Pr{(In, Ûn(l, In)) ∈ T n
I,Û

(ε)} → 1 for all 1 ≤ l ≤ k.

Since Zn =
∑k

l=1 λkY
n
l + V n =

∑k
l=1 λkÛ

n(l, In) + kλk(1 − α)In + V n and V n

is independent of (In, Ûn(1, In), . . . , Ûn(k, In)), it follows easily that the empir-

ical correlations obtained from (Ûn(1, In), . . . , Ûn(k, In), Zn) are within a factor

of ε of the corresponding entries of KÛ1,...,Ûk,Z with probability approaching unity

asymptotically. Hence, typicality is established with probability that approaches

1 (therefore Pr{E2} → 0).

Behavior of E3: We upper-bound the probability of the error event E3 as follows:

Pr(E3) ≤ Pr{(∃ (w1, . . . , wk) �= (1, . . . , k)) ∧ ((∀ 1 ≤ l ≤ k) ∃ Un(wl, ql)) :

(Un(w1, q1), . . . , U
n(wk, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε)} (3.57)

= Pr{(∃ Sl ⊂ {1, . . . , k}, 1 ≤ l ≤ k) ∧ (∃ (w1, . . . , wk) :

(ws �= s, ∀ s ∈ Sl) ∧ (wt = t, ∀ t ∈ S̄l)) ∧

((∀ 1 ≤ l ≤ k) ∃ Un(wl, ql)) :

(Un(w1, q1), . . . , U
n(wk, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε)}

≤
k∑

l=1

∑
Sl⊂{1,...,k}

∑
(w1,...,wk):

ws �=s, ∀ s∈Sl

wt=t, ∀ t∈ S̄l

∑
{qm},1≤m≤k

1 ×

×Pr{(Un(w1, q1), . . . , U
n(wk, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε)} (3.58)

Assume that there exists a set WQ′(r) that contains r pairs (w′
1, q

′
1), . . . , (w

′
r, q

′
r),

which belong to the set WQ = {(w1, q1), . . . , (wk, qk)} such that Ûn(w′
s, I

n) =
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Un(w′
s, q

′
s) for all 1 ≤ s ≤ r. Then, because of the symmetry in the construction

of the Un’s and their symmetric contribution to Zn, we have

Pr{(Un(w1, q1), . . . , U
n(wk, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε)} =

Pr{({Ûn(w′
s, I

n)}r
s=1, {Un(wm, qm)}(wm,qm)∈WQ−WQ′(r), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε)} .
=

2−n((k−r)h(Û)−h(Ûr+1,...,Ûk|Û1,...,Ûr,Z))

where the differential entropies are computed with respect to the joint Gaussian

with covariance matrix KÛ1,...,Ûk,Z .

Then, continuing from (3.58) we have

Pr{E3} ≤
k∑

l=1

∑
Sl⊂{1,...,k}

∑
(w1,...,wk):

ws �=s, ∀ s∈Sl

wt=t, ∀ t∈ S̄l

∑
{qm},m∈Sl

∑
{qν},ν∈S̄l

1 ×

×Pr{(Un(w1, q1), . . . , U
n(wk, qk), Z

n) ∈ T n
Û1,...,Ûk,Z

(ε)}
.
=

k∑
l=1

∑
Sl⊂{1,...,k}

∑
ws �=s, ∀ s∈Sl

2n(RU−RF )l

k−l∑
r=0

2n(RU−RF )(k−l−r) ×

× 2−n((k−r)h(Û)−h(Ûr+1,...,Ûk|Û1,...,Ûr,Z))

=
k∑

l=1

∑
Sl⊂{1,...,k}

∑
ws �=s, ∀ s∈Sl

k−l∑
r=0

2n(RU−RF )(k−r) ×

× 2−n((k−r)h(Û)−h(Ûr+1,...,Ûk|Û1,...,Ûr,Z))

≤
k∑

l=1

(
k

l

) k−l∑
r=0

2nRU (k−r)−nRF (k−l−r) 2−n((k−r)h(Û)−h(Ûr+1,...,Ûk|Û1,...,Ûr,Z))

(3.59)

The last expression in (3.59) approaches zero if for every 1 ≤ l ≤ k and 0 ≤ r ≤ k−l

we have

RU(k − r) − RF (k − l − r) < (k − r)h(Û) − h(Ûr+1, . . . , Ûk|Û1, . . . , Ûr, Z) (3.60)

Observe that when k = 1 (no collusion) then (3.60) becomes RU < I(Û ; Z), as

expected from [15].
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It can be proved by induction that

(k − r)h(Û) − h(Ûr+1, . . . , Ûk|Û1, . . . , Ûr, Z) = (k − r)
1

2
log

(
1 +

α2PI

D

)

+
1

2
log

(
D2λ2

k(k − r) + rα2PIPV + D(λ2
kkPI(k + rα2 − 2rα) + PV )

kα2PIPV + D(k2λ2
kPI(1 − α)2 + PV )

)

Thus, from (3.60) we obtain that for every 1 ≤ l ≤ k and 0 ≤ r ≤ k − l

RU < RF

(
1 − l

k − r

)
+

1

2
log

(
1 +

α2PI

D

)

+
1

2(k − r)
log

(
D2λ2

k(k − r) + rα2PIPV + D(λ2
kkPI(k + rα2 − 2rα) + PV )

kα2PIPV + D(k2λ2
kPI(1 − α)2 + PV )

)
(3.61)

Hence, from (3.56) and (3.61) we obtain that for every 1 ≤ l ≤ k and 0 ≤ r ≤ k− l

RF ≤ 1

2l
log

(
D2λ2

k(k − r) + rα2PIPV + D(λ2
kkPI(k + rα2 − 2rα) + PV )

kα2PIPV + D(k2λ2
kPI(1 − α)2 + PV )

)
(3.62)

It is easy to check that the right-hand side of (3.62) is maximized when α =

Dkλ2
k

Dkλ2
k+PV

. By substituting in (3.62), we obtain

RF < min
1≤l≤k

min
0≤r≤k−l

1

2l
log

(
1 +

Dλ2
k(k − r)

PV

)
(3.63)

or, equivalently,

RF <
1

2k
log

(
1 +

Dλ2
kk

PV

)
(3.64)

which is the required result. Observe that RF cannot be higher because this is

the maximum rate achieved in Rgauss, F
D when RQ = ∞ (and In is known at the

decoder).
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Chapter 4

General Gaussian Images and Attacks

All results obtained so far are based on two main assumptions: that the attacks

are memoryless, and the original image In is i.i.d. In this chapter, we consider

again the problem of quantization of watermarked data, but under the following

assumptions: (i) the attack noise is additive and Gaussian but not necessarily

i.i.d. (or even stationary), and (ii) the original image In is Gaussian, but not

necessarily stationary, either. We derive achievable quantization and watermarking

rates whose values depend on the image size n. Although these rates may not have

a limit as n → ∞ (like it happens in the i.i.d. case), probabilities of error do

approach zero for very large n.

In our analysis, we use the theory developed in [18, 43, 44]. The problem that

was studied in [18, 43] is the “colored” paper version of [15]. Specifically, the

authors consider a single block of n transmissions, in which the received signal is

given by

Y n = Xn + Sn + Zn

where Xn is the transmitted signal and Zn, Sn are independent Gaussian processes

with arbitrary finite-dimensional covariance matrices (thus are not necessarily sta-
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tionary or ergodic). Sn (which plays the role of the “colored” paper) is available

non-causally to the transmitter only. Moreover, the transmission is power limited

in the usual sense:

1

n

n∑
j=1

E(X2
j ) ≤ P

The main result of [18, 43] is that there exists a (en(Cn−4ε), n) code over a one-

shot use of n transmissions such that the probability of error is upper bounded

by e−nα(ε), where α(ε) does not depend on the statistics of Zn. Cn is called the

capacity of the Gaussian channel over one shot of n transmissions, and is given by

Cn = max
KXn : n−1tr(KXn )≤P (1−ε)

1

2n
log

( |KXn + KZn|
|KZn|

)

where KXn , KZn are the covariance matrices of Xn and Zn, respectively, the max-

imum is attained for a non-singular KXn , and ε is an arbitrary positive number.

Although Cn may fluctuate arbitrarily with n, the probability of error approaches

zero for large n, as long as the rate of the code is upper-bounded by Cn.

In this chapter, we consider a private watermarking scheme, where the wa-

termarked image is distributed in quantized form. In Section 4.1, we give an

overview of the general Gaussian watermarking/quantization model and we state

the main result, i.e., the theorem which establishes the region of achievable rate

pairs (RQ, RW ). Section 4.2 contains the proof of the main theorem; finally, in

Section 4.3 we consider special cases of the general result.

4.1 Main Result

We consider a system similar to the one shown in Figure 2.2. We assume that the

watermark index W is uniformly distributed over a set of size 2nR
(n)
W ; the original

image In is zero-mean Gaussian with covariance matrix KIn , and the additive noise
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V n is zero-mean Gaussian with covariance matrix KV n , independent of (In,W ).

Note that R
(n)
W depends on n. The output of the encoder is a sequence Ŷ n which

belongs to a source codebook of size 2nR
(n)
Q (again, note the dependence of R

(n)
Q

on n). The output of the attack is Zn = BAŶ n + V n, where BA is a fixed n × n

matrix. For each n, both encoder and decoder know BA and the statistics of the

noise, i.e., KV n . For simplicity of notation, we will drop the superscript n when we

refer to the correlation matrices; for example, KI denotes KIn . Moreover, KIŶ is

the cross-correlation matrix E[In(Ŷ n)t], where the superscript t denotes the matrix

transpose.

The definitions of a private quantization/watermarking code are similar to

those in Section 2.1, except that the rates (RQ, RW ) are no longer constant in

n. Moreover, we say that a rate pair (R
(n)
Q , R

(n)
W ) is achievable over one shot of n

transmissions if there exists a sequence of codes (2nR
(n)
Q , 2nR

(n)
W , n) such that

1

n

n∑
j=1

E[(Ij − Ŷj)
2] ≤ D (4.1)

and

(∀ w) P (n)
e (w)

∆
= Pr{g(Zn, In) �= w|Xn = f(w, In)} → 0, as n → ∞ (4.2)

Also, as usual,

P (n)
e =

1

2nR
(n)
W

2
nR

(n)
W∑

w=1

P (n)
e (w)

is the average probability of error, assuming that the watermark indices are uni-

formly distributed in {1, . . . , 2nR
(n)
W }.

We now state the main result of this chapter:
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Theorem 4.1 Let ε > 0 and consider the rate region

Rgeneral, gauss
D =

{
(R

(n)
Q , R

(n)
W ) :

R
(n)
Q ≥ 1

n

n∑
j=1

1

2
log

(
σ2

j

min{ξ, σ2
j}
)

, where ξ satisfies
n∑

j=1

min{ξ, σ2
j} = nD;

R
(n)
W ≤ max

KIŶ ,KŶ :

n−1tr(KI+KŶ −2KIŶ )≤D

min

{
R

(n)
Q − 1

2n
log

(
|KI |

|KI − KIŶ K−1

Ŷ
Kt

IŶ
|

)
,

1

2n
log

(
|BA(KŶ − KŶ IK

−1
I Kt

Ŷ I
)Bt

A + KV |
|KV |

)}}

where σ2
1, . . . , σ

2
n are the eigenvalues of In. If the maximum in the above expres-

sion is achieved for non-singular matrices KŶ , KIŶ , then there exists a sequence

of (2nR
(n)
Q , 2nR

(n)
W , n) quantization/watermarking codes with (R

(n)
Q − ε, R

(n)
W + ε) ∈

Rgeneral, gauss
D such that conditions (4.1) and (4.2) are satisfied. Conversely, any

sequence of (2nR
(n)
Q , 2nR

(n)
W , n) codes with (R

(n)
Q , R

(n)
W ) �∈ Rgeneral, gauss

D violates either

conditions (4.1) or (4.2).

The proof of this theorem can be found in Section 4.2.

Note: Assuming that the matrices BA and KV are non-singular, we can write the

second upper bound on R
(n)
W as follows:

1

2n
log

(
|Θ(KŶ − KŶ IK

−1
I Kt

Ŷ I
)Θt + ∆|

|∆|

)
≤

1

2n

n∑
j=1

log

(
(Θ(KŶ − KŶ IK

−1
I Kt

Ŷ I
)Θt)jj + ∆jj

∆jj

)

where ∆ = diag(δ2
1, . . . , δ

2
n) satisfies

B−1
A KV (B−1

A )t = Θ∆Θt, ΘΘt = I

(whitening transformation). The right-hand side of the inequality becomes tight

only when Θ(KŶ −KŶ IK
−1
I Kt

Ŷ I
)Θt is diagonal (cf. the argument for the capacity
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of an additive colored Gaussian noise channel in [33]). However, this does not

necessarily give a tight upper bound for R
(n)
W , because the first upper bound

R
(n)
W ≤ R

(n)
Q − 1

2n
log

(
|KI |

|KI − KIŶ K−1

Ŷ
Kt

IŶ
|

)

may become suboptimally small.

4.2 Proof of Theorem 4.1

Before we proceed with the proof, it is useful to consider some important definitions

and lemmas.

The first lemma proves the asymptotic equipartition property (AEP) for arbi-

trary Gaussian stochastic processes. Note that, in general, the AEP holds only for

stationary and ergodic processes [33]; that is, if {Xj} is a stationary and ergodic

process with entropy rate h, then

− 1

n
log p(X1, . . . , Xn) → h

with probability one; here p is the joint distribution of (X1, . . . , Xn), and h is

defined as

h = lim
n→∞

H(Xn|Xn−1, . . . , X1) = lim
n→∞

H(X1, . . . , Xn)

n

However, Gaussian processes are special because they obey the AEP without any

assumption on stationarity or ergodicity. Although the entropy rate may not exist,

the per time unit differential entropy hn of (X1, . . . , Xn) plays the same role, where

hn(X)
∆
=

h(X1, . . . , Xn)

n

We thus have the following lemma (proved in [44]):
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Lemma 4.1 If {Xj} is an arbitrary Gaussian stochastic process, then

− 1

n
log p(X1, . . . , Xn) − hn(X) → 0

with probability one.

Note that if the Gaussian {Xj} has an entropy rate h, then the above lemma implies

that − 1
n

log p(X1, . . . , Xn) → h, as expected. In proving Lemma 4.1, it is argued

in [44] that (Xn)tK−1
XnXn has a chi-square distribution with n degrees of freedom,

i.e., it has the same distribution as
∑n

j=1 Z2
j , where Zj are i.i.d. ∼ N (0, 1). By

utilizing the Chernoff bound, it is then proved that, if |KXn| > 0 for all n (where

KXn is the covariance matrix of (X1, . . . , Xn)),

Pr

{∣∣∣∣− 1

n
log p(X1, . . . , Xn) − hn(X)

∣∣∣∣ > ε

}
< 2−nε′ , for all ε > 0 (4.3)

where ε′ = ε − 1/2 log(1 + 2ε) is a positive quantity which approaches zero as ε

approaches zero. Hence, the rate of the convergence depends only on ε, and not

on |KXn|.
We now provide the following definitions, consistent with [44, 43].

Definition 4.1 Let (Xn, Y n) be jointly distributed with density p(xn, yn). Let

hn(X) =
1

n
h(Xn), hn(Y ) =

1

n
h(Y n), hn(X,Y ) =

1

n
h(Xn, Y n)

Then, the set T n
X,Y (ε) of jointly ε-typical (Xn, Y n) is defined by

T n
X,Y (ε) =

{
(xn, yn) ∈ Rn × Rn :

∣∣∣∣− 1

n
log p(xn) − hn(X)

∣∣∣∣ < ε∣∣∣∣− 1

n
log p(yn) − hn(Y )

∣∣∣∣ < ε

∣∣∣∣− 1

n
log p(xn, yn) − hn(X,Y )

∣∣∣∣ < ε

}

where p(xn), p(yn) are the marginals of Xn, Y n respectively.
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From the definition above and Lemma 4.1, it is trivial to prove the following:

Lemma 4.2 Let Xn be an arbitrary Gaussian stochastic process, with |KXn| > 0.

Then,

Pr{Xn ∈ T n
X(ε)} > 1 − ε

for n sufficiently large.

We now have the following Lemma, proved in [43].

Lemma 4.3 Let Xn, Y n be jointly Gaussian. The volume of the typical set T n
X,Y (ε),

denoted by |T n
X,Y (ε)|, satisfies:

(1 − 2−nε′)2n(hn(X,Y )−ε) ≤ |T n
X,Y (ε)| ≤ 2n(hn(X,Y )+ε) (4.4)

Also, let Un and V n be two independent Gaussian sequences with the same marginals

as Xn and Y n respectively. Then

(1 − 2−nε′)2−n(In(X;Y )−3ε) ≤ Pr{(Un, V n) ∈ T n
X,Y (ε)} ≤ 2−n(In(X;Y )+3ε) (4.5)

where, by definition, In(X; Y ) = 1
n
I(Xn; Y n).

The proof of Lemma 4.3 is very similar to the proof of the corresponding result for

i.i.d. sources, found in [33]. Moreover, we have two more lemmas:

Lemma 4.4 For all (xn, yn) ∈ T n
X,Y (ε)

pY n(yn) ≥ pY n|Xn(yn|xn) 2−n(In(X;Y )+3ε)

where the distributions pY n , pY n|Xn are the ones used in the definition of T n
X,Y (ε).

Lemma 4.5 For 0 ≤ x, y ≤ 1, n > 0,

(1 − xy)n ≤ 1 − x + e−yn.
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The proof of Lemma 4.4 is very similar to the proof of Lemma 13.5.2 in [33], and

Lemma 4.5 is identical to Lemma 13.5.3 in [33].

We will now begin the proof of Theorem 4.1, starting with the converse part.

Converse Theorem

Proof: Let ε > 0. We assume that the watermark index W is uniformly dis-

tributed in {1, . . . , 2nR
(n)
W }, that Pr{W �= Ŵ} < ε, and that the distortion con-

straint is met with equality:

1

n

n∑
j=1

E[(Ij − Ŷj)
2] = D (4.6)

which is equivalent to

1

n
tr(KI + KŶ − 2KIŶ ) = D

Without loss of generality, we assume that KI is non-singular, therefore, |KI | > 0

(if not, we can linearly transform In into a vector of lower dimension which has a

non-singular covariance matrix.)

First, we will derive the lower bound for R
(n)
Q . The derivation is similar to the case

of parallel Gaussian sources [33]:

R
(n)
Q ≥ n−1H(Ŷ n)

≥ n−1(H(Ŷ n) − H(Ŷ n|In))

= n−1I(Ŷ n; In)

= n−1(h(In) − h(In|Ŷ n))

= n−1(h(In) − h(In − Ŷ n|Ŷ n))

≥ n−1(h(In) − h(In − Ŷ n)) (4.7)

= n−1(h(Ĩn) − h(In − Ŷ n)) (4.8)

=
1

n

n∑
j=1

1

2
log(2πe)σ2

j − n−1h(In − Ŷ n) (4.9)

98



≥ 1

n

n∑
j=1

1

2
log(2πe)σ2

j −
1

n

n∑
j=1

h(Ij − Ŷj)

≥ 1

n

n∑
j=1

1

2
log(2πe)σ2

j −
1

n

n∑
j=1

1

2
log(2πe)Dj (4.10)

=
1

n

n∑
j=1

1

2
log

(
σ2

j

Dj

)
(4.11)

where (4.7) is true because conditioning reduces entropy; Ĩn in (4.8) is the Karhunen-

Loève transformation (KLT) of In, i.e.,

Ĩn = QtIn, s.t. QQt = I

(I = diag(1, . . . , 1)) with KĨ = QtKIQ and hence h(Ĩn) = h(In); σ2
1, . . . , σ

2
n in

(4.9) are the eigenvalues of KI ; and, finally, we used the Gaussian upper bound on

the entropy in (4.10), where Dj
∆
= E[(Ij − Ŷj)

2].

Our goal now is to minimize (4.11) with respect to Dj, subject to the constraint

(4.6), or equivalently,

1

n

n∑
j=1

Dj = D

This can be done using Lagrange multipliers and the reverse “water-filling” method

[33]. It can thus be proved that (4.11) is minimized when

Dj =




ξ, if ξ < σ2
j

σj, if ξ ≥ σ2
j

where ξ is chosen such that
∑n

j=1 Dj = nD, thus establishing the lower bound for

R
(n)
Q .

We now establish the first upper bound on R
(n)
W . By following the same chain

of inequalities as in the converse in Section 2.2, we obtain from (2.22):

R
(n)
W ≤ R

(n)
Q − n−1I(Ŷ n; In) + ε (4.12)
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We have

I(Ŷ n; In) = h(In) − h(In|Ŷ n)

= h(In) − h(In − MŶ n|Ŷ n) (4.13)

≥ h(In) − h(In − MŶ n) (4.14)

≥ 1

2
log(2πe)n|KI | − 1

2
log(2πe)n|KI−MŶ | (4.15)

=
1

2
log

( |KI |
|KI−MŶ |

)
(4.16)

where (4.13) is true for any arbitrary n×n matrix M ; (4.14) holds because condi-

tioning reduces entropy; and the Gaussian upper bound on the entropy was used

in (4.15).

We can now set M = KIŶ K−1

Ŷ
. Then (see, for example, [45]) MŶ n is the

MMSE linear estimator of In given Ŷ n. The covariance matrix of the error is

KI−MŶ = KI − KIŶ K−1

Ŷ
Kt

IŶ
, so, by substitution in (4.16) and together with

(4.12), we finally obtain:

R
(n)
W ≤ R

(n)
Q − 1

2n
log

(
|KI |

|KI − KIŶ K−1

Ŷ
Kt

IŶ
|

)
+ ε (4.17)

The second set of inequalities establishes the second upper bound on R
(n)
W as

follows:

R
(n)
W = n−1H(W |In)

= n−1I(W ; Zn|In) + n−1H(W |In, Zn)

≤ n−1I(W ; Zn|In) + ε (4.18)

= n−1h(Zn|In) − n−1h(Zn|W, In) + ε

= n−1h(BA(Ŷ n − ΛIn) + V n|In) − n−1h(V n) + ε (4.19)

≤ n−1h(BA(Ŷ n − ΛIn) + V n) − n−1h(V n) + ε (4.20)
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≤ 1

2n
log(2πe)n(|BAKŶ −ΛIB

t
A + KV |) − 1

2n
log(2πe)n|KV | + ε (4.21)

=
1

2n
log

( |BAKŶ −ΛIB
t
A + KV |

|KV |
)

+ ε (4.22)

where (4.18) is a consequence of Fano’s inequality; (4.19) is true for any n × n

matrix Λ; conditioning reduces entropy in (4.20); and we used the Gaussian upper

bound on the entopy of BA(Ŷ n − ΛIn) + V n in (4.21).

By setting Λ = KŶ IK
−1
I , we have KŶ −ΛI = KŶ − KŶ IK

−1
I Kt

Ŷ I
. Then (4.22)

becomes

R
(n)
W ≤ 1

2n
log

(
|BA(KŶ − KŶ IK

−1
I Kt

Ŷ I
)Bt

A + KV |
|KV |

)
+ ε (4.23)

Hence, combining (4.17) and (4.23) and maximizing with respect to KIŶ and KŶ

such that (4.6) is satisfied, we obtain the required result (letting ε → 0, as usual).

We now proceed with the proof of the direct part.

Direct Theorem

Proof: We use a random coding argument. Let ε > 0 and let W be uniformly dis-

tributed in {1, . . . , 2nR
(n)
W }. As required for Rgeneral, gauss

D , we limit the quantization

rate to R
(n)
Q ≥ r

(n)
q (D), where

r(n)
q (D)

∆
=

1

n

n∑
j=1

1

2
log

(
σ2

j

min{ξ, σ2
j}
)

, s.t.
n∑

j=1

min{ξ, σ2
j} ≤ nD

The encoding/decoding and analysis of the probability of error follow. Notice the

similarities with the achievability proof of Section 2.2.

Codebook Generation: A set of 2nR
(n)
Q sequences Ỹ n is generated, such that each

sequence is generated independently of every other sequence, according to the joint
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Gaussian N (0, KŶ ), for some non-singular matrix KŶ . The set is then partitioned

into 2nR
(n)
W subsets of 2nR

(n)
1 sequences each, i.e.,

R
(n)
Q = R

(n)
W + R

(n)
1

The wth subset, consisting of sequences Ỹ n(w, 1), . . . , Ỹ n(w, 2nR
(n)
1 ), becomes the

codebook for the wth watermark.

Watermark Embedding: Given In and a deterministic w, the embedder iden-

tifies within the wth codebook the first codeword Ỹ n(w, q) such that the pair

(In, Ỹ n(w, q)) lies in the set T n
I,Ŷ

(ε) of typical pairs with respect to a joint Gaussian

distribution of pIn,Ŷ n , whose covariance matrix is

KI,Ŷ =


 KI KIŶ

KŶ I KŶ




for covariance matrices KIŶ , KŶ such that the distortion constraint (4.6) is sat-

isfied. The output of the embedder (encoder) is denoted by Ŷ n(w) = Ỹ n(w, q).

If none of the codewords in the wth codebook is jointly typical with In, then the

embedder outputs Ŷ n(w) = 0. This way, 2nR
(n)
W watermarked versions of the image

In can be obtained: Ŷ n(1), . . . , Ŷ n(2nR
(n)
W ). For random W , the embedder output

is Ŷ n(W ).

Decoding: The decoder has access to the original image In, and together with Zn,

it seeks among all watermarked versions Ŷ n(1), . . . , Ŷ n(2nR
(n)
W ) of In a single Ŷ n(ŵ)

such that the triplet (In, Ŷ n(ŵ), Zn) lies in T n
I,Ŷ ,Z

(ε), the set of typical triplets with

respect to a joint Gaussian distribution pIn,Ŷ n,Zn with covariance matrix

KI,Ŷ ,Z =




KI KIŶ KIŶ Bt
A

KŶ I KŶ KŶ Bt
A

BAKŶ I BAKŶ BAKŶ Bt
A + KV
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If a unique such sequence Ŷ n(ŵ) exists, then the decoder outputs Ŵ = ŵ; other-

wise, the decoder declares an error.

Error Events: Without loss of generality, we assume W = 1. Similarly to the proof

in Section 2.2, we have the following error events:

• E1: Ŷ n(1) = 0, i.e., there exists no q ∈ {1, . . . , 2nR
(n)
1 } such that (In, Ỹ n(1, q)) ∈

T n
I,Ŷ

(ε).

• E2: There exists a Ỹ n(1, q) = Ŷ n(1) such that (In, Ŷ n(1)) ∈ T n
I,Ŷ

(ε), but

(In, Ŷ n(1), Zn) �∈ T n
I,Ŷ ,Z

(ε).

• E3: (In, Ŷ n(1), Zn) ∈ T n
I,Ŷ ,Z

(ε) but there also exists a k > 1 such that

(In, Ŷ n(k), Zn) ∈ T n
I,Ŷ ,Z

(ε).

The probability of error is then

Pr{Ŵ �= 1} = Pr(E1) + Pr(E2) + Pr(E3)

Behavior of Pr(E1): We prove that, if the rate of the size of each codebook (i.e.,

R
(n)
1 ) is at least equal to to In(I; Ŷ )+ε (as defined in Lemma 4.3), then Pr(E1) → 0

as n → ∞. The proof is similar to the achievability proof of the rate-distortion

theorem for i.i.d. sources in [33]. It proceeds as follows:

Pr(E1) =

Pr{(In, Ỹ n(1, 1)) �∈ T n
I,Ŷ

(ε) ∧ . . . ∧ (In, Ỹ n(1, 2nR
(n)
1 )) �∈ T n

I,Ŷ
(ε)}

≤
∫

in: in∈T n
I (ε)

pIn(in) Pr




2nR
(n)
1⋂

q=1

(
(in, Ỹ n(1, q)) �∈ T n

I,Ŷ
(ε)
) ∣∣∣In = in


 din

+

∫
in: in �∈T n

I (ε)

pIn(in)din
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≤
∫

in: in∈T n
I (ε)

pIn(in) Pr




2nR
(n)
1⋂

q=1

(
(in, Ỹ n(1, q)) �∈ T n

I,Ŷ
(ε)
)
 din + ε (4.24)

=

∫
in: in∈T n

I (ε)

pIn(in)(1 − Pr{(in, Ỹ n(1, 1)) ∈ T n
I,Ŷ

(ε)})2nR
(n)
1 din + ε (4.25)

=

∫
in: in∈T n

I (ε)

pIn(in)

(
1 −

∫
ŷn:(in,ŷn)∈T n

I,Ŷ
(ε)

pŶ n(ŷn) dŷn

)2nR
(n)
1

din + ε (4.26)

≤
∫

in: in∈T n
I (ε)

pIn(in)

(
1

−
∫

ŷn:(in,ŷn)∈T n
I,Ŷ

(ε)

pŶ n|In(ŷn|in)2−n(In(Ŷ ;I)+3ε) dŷn

)2nR
(n)
1

din + ε (4.27)

≤
∫

in: in∈T n
I (ε)

pIn(in)

(
1

−
∫

ŷn:(in,ŷn)∈T n
I,Ŷ

(ε)

pŶ n|In(ŷn|in) dŷn + e−2n(R
(n)
1 −In(Ŷ ;I)−3ε)

)
din + ε (4.28)

≤ 1 −
∫

in,ŷn:(in,ŷn)∈T n
I,Ŷ

(ε)

pIn,Ŷ n(in, ŷn) dindŷn + e−2n(R
(n)
1 −In(Ŷ ;I)−3ε)

+ ε

= 1 − Pr{(In, Ŷ n) ∈ T n
I,Ŷ

(ε)} + e−2n(R
(n)
1 −In(Ŷ ;I)−3ε)

+ ε

≤ e−2n(R
(n)
1 −In(Ŷ ;I)−3ε)

+ 2ε (4.29)

where (4.24) holds because Ỹ n(1, q) is independent of In for all q and the second

integral in the preceding expression is equal to Pr{In �∈ T n
I (ε)} which is less than

ε (by Lemma 4.2). Also, (4.25) is true because all Ỹ n(1, q) are independently

generated for all q. The distribution pŶ n was used in the inner integral of (4.26),

since it is equal to pỸ n by construction. Also, Lemma 4.4 was used in (4.27), Lemma

4.5 was used in (4.28), and (4.29) follows because Pr{(In, Ŷ n) ∈ T n
I,Ŷ

(ε)} > 1 − ε

104



(from Lemma 4.2).

In order for (4.29) to be made arbitrarily small, it suffices that

R
(n)
1 ≥ In(Ŷ ; I) + 3ε

or, equivalently,

R
(n)
W ≤ R

(n)
Q − In(Ŷ ; I) − 3ε (4.30)

Thus, for arbitrarily small ε, choosing a sufficiently large n, we can have Pr(E1) <

4ε, irrespectively of the covariance matrices KI , KV , as long as (4.30) is satisfied.

Moreover, the distortion constraint (4.6) is satisfied (within ε), by virtue of the

choice of KIŶ , KŶ in the definition of the typical set T n
I,Ŷ

(ε).

Behavior of Pr(E2): To show that Pr(E2) → 0, it suffices to show that the triplet

(In, Ŷ n(1), Zn) lies in T n
I,Ŷ ,Z

(ε) with probability approaching unity asymptotically.

In the previous paragraph, we showed that Pr{(In, Ŷ n(1)) ∈ T n
I,Ŷ

(ε)} → 1. How-

ever, we cannot claim that (In, Ŷ n(1), Zn) is jointly Gaussian and thereby imme-

diately show that Pr(E2) → 0 through the use of Lemma 4.2. We observe the

following:

Pr{(In, Ŷ n(1), Zn) ∈ T n
I,Ŷ ,Z

(ε)}

=

∫
in,ŷn,zn:

(in,ŷn,zn)∈T n
I,Ŷ ,Z

(ε)

pIn,Ŷ n(1),Zn(in, ŷn, zn) dzndindŷn

=

∫
in,ŷn:

(in,ŷn)∈T n
I,Ŷ

(ε)

pIn,Ŷ n(1)(i
n, ŷn)

∫
zn:

(in,ŷn,zn)∈T n
I,Ŷ ,Z

(ε)

pZn|In,Ŷ n(1)(z
n|in, ŷn) dzndindŷn

(4.31)

We now note that the conditional distribution of Zn given In, Ŷ n(1) is equal to

the unconditional distribution of V n (which is independent of In, Ŷ n(1)). That is,

pZn|In,Ŷ n(1)(z
n|in, ŷn) = pV n(zn − BAŷn)
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On the other hand, pV n(zn − BAŷn) = pZ̃n|In,Ŷ (zn|in, ŷ), where (In, Ŷ n, Z̃n) are

jointly Gaussian with the same covariance matrix as in the definition of T n
I,Ŷ ,Z

(ε).

Moreover, for (in, ŷn) ∈ T n
I,Ŷ

(ε), the set {zn : (in, ŷn, zn) ∈ T n
I,Ŷ ,Z

(ε)} is the same

as the set {zn : zn ∈ T n
Z (ε) ∧ zn ∈ T n

Z|Ŷ n=ŷn,In=in
(ε)}. This is true because when

(in, ŷn, zn) ∈ T n
I,Ŷ ,Z

(ε), then pZ̃n|In,Ŷ n(zn|in, ŷn) is approximately (within ε) equal

to 2−h(Zn|In,Ŷ n), and also

h(Zn|In, Ŷ n)

=

∫
in,ŷn

pIn,Ŷ n(in, ŷn)h(Zn|In = in, Ŷ n = ŷn)

=

∫
in,ŷn

pIn,Ŷ n(in, ŷn)h(V n) (4.32)

= h(V n)

= h(V n|In = in, Ŷ n = ŷn)

= h(Zn|In = in, Ŷ n = ŷn)

where (4.32) and the remaining equalities hold because of the independence be-

tween V n and (In, Ŷ n).

Hence, (4.31) equals

∫
in,ŷn:

(in,ŷn)∈T n
I,Ŷ

(ε)

pIn,Ŷ n(1)(i
n, ŷn)

∫
zn:zn∈T n

Z (ε) ∧
zn∈TZ|In=in,Ŷ n=ŷn

pZ̃n|In,Ŷ n(zn|in, ŷn) dzn din dŷn =

∫
in,ŷn:

(in,ŷn)∈T n
I,Ŷ

(ε)

pIn,Ŷ n(1)(i
n, ŷn) ×

×Pr{Z̃n ∈ (T n
Z (ε) ∩ T n

Z|In=in,Ŷ n=ŷn(ε))|In = in, Ŷ n = ŷn} din dŷn (4.33)

Since Z̃n given (In = in, Ŷ n = ŷn) is Gaussian, Lemma 4.1 holds. Therefore, for

all (in, ŷn) ∈ T n
I,Ŷ

(ε), Pr{Z̃n ∈ T n
Z|In=in,Ŷ n=ŷn(ε)|In = in, Ŷ n = ŷn} > 1 − ε. Also,
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Pr{Z̃n ∈ T n
Z (ε)} > 1− ε and Pr{(In, Ŷ n(1)) ∈ T n

I,Ŷ
(ε)} → 1. Then, it can be easily

proved that Pr{Z̃n ∈ (T n
Z (ε) ∩ T n

Z|In=in,Ŷ n=ŷn(ε))|In = in, Ŷ n = ŷn} > 1 − ε for all

(in, ŷn) ∈ T ′ ⊂ T n
I,Ŷ

(ε), such that Pr{(In, Ŷ n(1)) ∈ T ′} > 1−ε. Hence (4.33) equals

at least (1−ε) Pr{(In, Ŷ n(1)) ∈ T n
I,Ŷ

(ε)} > (1−ε)2. Thus, Pr(E2) < 1−(1−ε)2 < ε

for sufficiently large n and for any non-singular matrices KI , KŶ , KIŶ , KV .

Behavior of Pr(E3):

Pr(E3) = Pr{∃w �= 1 : (In, Ŷ n(w), Zn) ∈ T n
I,Ŷ ,Z

(ε)}

≤
2

nR
(n)
W∑

w=2

Pr{(In, Ŷ n(w), Zn) ∈ T n
I,Ŷ ,Z

(ε)}

= (2nR
(n)
W − 1) Pr{(In, Ŷ n(2), Zn) ∈ T n

I,Ŷ ,Z
(ε)} (4.34)

where the last equality is due to the symmetry in the random code generation.

Since Pr{(In, Ŷ n(2)) ∈ T n
I,Ŷ

(ε)} → 1 and by construction, Zn is independent of

Ŷ n(2) given In, a standard argument (cf. the proof of Theorem 8.6.1 in [33]) yields

Pr{(In, Ŷ n(2), Zn) ∈ T n
I,Ŷ ,Z

(ε)} ≤ 2−n(In(Z;Ŷ |I)−(ε/2))

where the conditional mutual information is computed with respect to the Gaussian

joint distribution defined earlier. Thus, if

R
(n)
W ≤ In(Z; Ŷ |I) − ε (4.35)

it follows that the upper bound on Pr(E3) in (4.34) vanishes asymptotically.

Thus, combining (4.30) and (4.35) and letting ε → 0, we obtain the achievable

rate

R
(n)
W ≤ min {R(n)

Q − In(Ŷ ; I), In(Z; Ŷ |I)} (4.36)

Since all distributions are Gaussian in the computation of the mutual information
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quantities in (4.36), using Schur’s formula [43]∣∣∣∣∣∣∣
A B

C D

∣∣∣∣∣∣∣ = |D| · |A − BD−1C|

it is easy to see that (4.36) takes the form

R
(n)
W ≤ min

{
R

(n)
Q − 1

2n
log

(
|KI |

|KI − KIŶ K−1

Ŷ
Kt

IŶ
|

)
,

1

2n
log

(
|BA(KŶ − KŶ IK

−1
I Kt

Ŷ I
)Bt

A + KV |
|KV |

)}
(4.37)

Then by maximizing (4.37) with respect to non-singular KŶ , KIŶ such that the

distortion constraint (4.6) is met, we obtain the required result.

By using a standard expurgation argument, we can now show the existence of a

deterministic code which achieves Rgeneral, gauss
D with vanishing probability of error.

4.3 Special Cases

In this section, we consider special cases of the general Gaussian watermarking

channel. Specifically, we find simple expressions for Rgeneral, gauss
D , in the following

situations:

• Parallel Gaussian model: V n consists of independent, but not necessarily

identically distributed components. That is, the j-th element of V n is zero-

mean Gaussian with variance τ 2
j . Also, we assume that In has independent

components, i.e., the j-th element of In is zero-mean Gaussian with variance

σ2
j . Moreover, BA is a diagonal matrix, i.e., BA = diag(β1, . . . , βn).

• Blockwise independent model: In and V n are blockwise memoryless. That

is, they consist of n/L blocks of L elements each, and the joint distribution
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of In, V n within each block is zero-mean Gaussian with arbitrary covariance

matrices K
(L)
I , K

(L)
V respectively. Moreover, each block is independent of each

other. Similarly, BA has a blockwise-diagonal form; specifically,

BA =




B
(L)
A 0 · · · 0

0 B
(L)
A · · · 0

...
...

. . .
...

0 0 · · · B
(L)
A




where B
(L)
A is a L × L matrix.

We now analyze each special case in more detail.

4.3.1 Parallel Gaussian Model

In order to find the matrices KŶ , KIŶ that attain the maximum in the definition

of Rgeneral, gauss
D , we consider the converse part of section 4.2. We will first find

upper bounds on (4.12) and (4.20), and then show that these upper bounds are

attainable by a particular selection of matrices KŶ , KIŶ .

From (4.12) and (4.14), we obtain the following (we let ε → 0 for simplicity,

and we set M to be such that MŶ n is the MMSE linear estimator of In given Ŷ n):

R
(n)
W ≤ R

(n)
Q − n−1h(In) + n−1h(In − MŶ n)

≤ R
(n)
Q − 1

n

n∑
j=1

1

2
log(2πe)σ2

j +
1

n

n∑
j=1

h(Ij − M (j)Ŷ n) (4.38)

≤ R
(n)
Q − 1

n

n∑
j=1

1

2
log(2πe)σ2

j

+
1

n

n∑
j=1

1

2
log(2πe)E[(Ij − M (j)Ŷ n)2] (4.39)

≤ R
(n)
Q − 1

n

n∑
j=1

1

2
log(2πe)σ2

j +
1

n

n∑
j=1

1

2
log(2πe)E[(Ij − µjŶj)

2](4.40)
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= R
(n)
Q − 1

n

n∑
j=1

1

2
log

(
σ2

j

σ2
j sin2(φj)

)
(4.41)

= R
(n)
Q − 1

n

n∑
j=1

1

2
log(γj) (4.42)

where (4.38) holds because the sum of the individual entropies is greater than the

entropy of the vector, and M (j) is the j-th row of the matrix M ; (4.39) is the

Gaussian upper bound to the entropy; (4.40) is true because E[(Ij − µjŶj)
2] ≥

E[(Ij − M (j)Ŷ n)2] for any scalar µj (recall that M (j)Ŷ n is the MMSE linear esti-

mator of Ij given Ŷ n), φj in (4.41) is the angle between Ij and Ŷj in the L2 space

of second moments (similar to Figure 2.4), and we define γj = sin−2(φj) in (4.42).

Thus, as it can be easily verified, the upper bound (4.42) can be achieved

by the matrices K∗
Ŷ

= diag(γ1PW (σ2
1, γ1, D1), . . . , γnPW (σ2

n, γn, Dn)) and K∗
IŶ

=

diag(
√

(γ1 − 1)σ2
1PW (σ2

1, γ1, D1), . . . ,
√

(γn − 1)σ2
nPW (σ2

n, γn, Dn)), where Dj
∆
=

E[(Ij − Ŷj)
2] and

PW (σ2
j , γj, Dj)

∆
=

γj(σ
2
j + Dj) − 2σ2

j + 2
√

σ2
j (γjDj − σ2

j )(γj − 1)

γ2
j

As we shall now prove, K∗
Ŷ

and K∗
IŶ

maximize the second upper bound of R
(n)
W .

From (4.20), we obtain (for ε → 0 and linear MMSE matrix Λ):

R
(n)
W ≤ n−1h(BA(Ŷ n − ΛIn) + V n) − n−1h(V n)

≤ 1

n

n∑
j=1

h(βj(Ŷj − Λ(j)In) + Vj) − 1

n

n∑
j=1

1

2
log(2πe)τ 2

j (4.43)

≤ 1

n

n∑
j=1

[
1

2
log(2πe)β2

j (E[(Ŷj − Λ(j)In)2] + τ 2
j ) − 1

2
log(2πe)τ 2

j

]
(4.44)

≤ 1

n

n∑
j=1

[
1

2
log(2πe)β2

j (E[(Ŷj − λjIj)
2] + τ 2

j ) − 1

2
log(2πe)τ 2

j

]
(4.45)

=
1

n

n∑
j=1

1

2
log

(
1 +

β2
j PW (σ2

j , γj, Dj)

τ 2
j

)
(4.46)
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where (4.43) is obtained by the usual upper bound by the entropy of independent

random variables; (4.44) is the Gaussian entropy upper bound (where Λ(j) is the

j-th row of Λ); (4.45) holds because λjIj cannot be a better estimator of Ŷj (given

In) than ΛIn; and finally, (4.46) is true because we choose λj such that λjIj is the

MMSE linear estimator of Ŷj given Ij.

Again, it can be easily verified that K∗
Ŷ

and K∗
IŶ

attain the upper bound (4.46).

Hence, Rgeneral, gauss
D takes the form:

Rgeneral, gauss (1)
D =

{
(R

(n)
Q , R

(n)
W ) :

R
(n)
Q ≥ 1

n

n∑
j=1

1

2
log

(
σ2

j

min{ξ, σ2
j}
)

, where ξ satisfies
n∑

j=1

min{ξ, σ2
j} = nD

R
(n)
W ≤ max

{γj ,Dj}:∑n
j=1 Dj=nD

γj≥max{1,σ2
j /Dj}∑n

j=1 log(γj)≤2nR
(n)
Q

min

{
R

(n)
Q − 1

n

n∑
j=1

1

2
log(γj),

1

n

n∑
j=1

1

2
log

(
1 +

β2
j PW (σ2

j , γj, Dj)

τ 2
j

)}}

Hence, under this memoryless attack scenario, the optimum hiding strategy is

also memoryless (but not necessarily identically distributed). A similar conclusion

(but for the case of no compression) was reached in [9] as well. Unfortunately,

the optimal values for {γj, Dj} (which attain the maximum in the definition of

Rgeneral, gauss (1)
D ) are difficult to determine analytically in the general case, mainly

due to the complexity of PW (·, ·, ·). However, we were able to perform a numerical

optimization, for the following simple case:

(∀ 1 ≤ j ≤ n1) σ2
j = σ2

1, τ 2
j = τ 2

1 , βj = β1

(∀ n1 + 1 ≤ j ≤ n) σ2
j = σ2

2, τ 2
j = τ 2

2 , βj = β2
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for some σ2
1, σ

2
2, τ

2
1 , τ 2

2 , β1, β2, n1. It is easy to establish that the values of {γj, Dj}
that maximize the upper bound on R

(n)
W in the definition of Rgeneral, gauss (1)

D are of

the form:

(∀ 1 ≤ j ≤ n1) γ∗
j = γ∗

1 , D∗
j = D∗

1,

(∀ n1 + 1 ≤ j ≤ n) γ∗
j = γ∗

2 , D∗
j = D∗

2,

due to the symmetry of the optimization equations with Lagrange multipliers.

Thus, Rgeneral, gauss (1)
D becomes:

Rgeneral, gauss (1)
D =

{
(RQ, RW ) :

RQ ≥ ν

2
log

(
σ2

1

min{ξ, σ2
1}
)

+
1 − ν

2
log

(
σ2

2

min{ξ, σ2
2}
)

,

where ξ satisfies: ν min{ξ, σ2
1} + (1 − ν) min{ξ, σ2

2} = D

RW ≤ max
{γ1,D1,γ2,D2}:

νD1+(1−ν)D2=D
γj≥max{1,σ2

j /Dj}
ν log(γ1)+(1−ν) log(γ2)≤2R

(n)
Q

min

{
RQ − ν

2
log(γ1) − 1 − ν

2
log(γ2),

ν

2
log

(
1 +

β2
1PW (σ2

1, γ1, D1)

τ 2
1

)
+

1 − ν

2
log

(
1 +

β2
2PW (σ2

2, γ2, D2)

τ 2
2

)}}

where ν = n1/n ≤ 1.

Figure 4.1 shows achievable rate regions and the optimal values of γ1, γ2, D1

(as functions of RQ), as determined from a numerical optimization. We considered

the following cases:

(a) σ2
1 = 4, σ2

2 = 3, τ 2
1 = τ 2

2 = 2, β1 = β2 = 1, D = 1, ν = 0.5.

Then, the minimum value for RQ is 1
4
log(4)+ 1

4
log(3) = 0.8962 (ξ = 1). The

maximum value of RW (when RQ = ∞) is 1
2
log(1 + 1

2
) = 0.2925. Note that

the values of σ2
1, σ

2
2 do not affect the maximum RW (since at infinite RQ, the
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Figure 4.1: The rate region and the optimal values for γ1, γ2, D1 as functions of

RQ for the two examples (a), (b) of parallel Gaussian channels.

113



watermark embedding is additive and the original image can be subtracted

completely at the decoder).

(b) σ2
1 = 4, σ2

2 = 3, τ 2
1 = 3.5, τ 2

2 = 2, β1 = β2 = 1, D = 1, ν = 0.5.

The minimum RQ is again 0.8962 and the maximum RW is 1
4
log(1 + 0.25

3.5
) +

1
4
log(1 + 1.75

2
) = 0.2516 (as determined by optimal water-filling in a parallel

Gaussian channel with noise variances 3.5, 2 and total signal power 2).

The various “squiggles” which appear on the plots are due to numerical artifacts in

the optimization. Also, D2 can be easily determined from D1 (since D2 = D−νD1

1−ν
).

We now observe the following:

• Both rate regions have three rate regimes: (i) Low RQ regime, in which

the maximum RW is a linear function of RQ with slope 1; the first part

of the min(·, ·) in the expression for Rgeneral, gauss
D is dominant, as was also

observed in the memoryless case of Chapter 2; γ1, γ2, D1 remain constant in

this regime, taking the optimal reverse water-filling values 4, 3, 1 respectively

(i.e., the ones that minimize n−1I(In; Ŷ n)). (ii) Intermediate RQ regime,

where the upper boundary of the rate region is “curved”, corresponding

to the second part of the min(·, ·) of Rgeneral, gauss
D ; in this case, γ1, γ2 both

change such that PW (σ2
j , γj, Dj) increases until it reaches its maximum value,

Dj. (iii) High RQ regime, where γ1, γ2, D1 and the maximum RW remain

constant; their values correspond to optimum water-filling in a Gaussian

parallel channel when RQ = ∞. For case (a) these values are: D1 = 1, γ1 =

1+σ2
1/D1 = 5, γ2 = 1+σ2

2/D2 = 4 and for case (b) they are: D1 = 0.25, γ1 =

17, γ2 = 2.714.

• As in the memoryless case of Chapter 2, the low and high RQ regimes have
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the same impact here as well; at low quantization rates the Gaussian noise

does not degrade the performance of the system, and at high (but finite)

quantization rates, the compression does not hinder the watermark detection.

4.3.2 Blockwise Independent Model

Various blockwise models were also considered in [7, 25, 46, 9]. Our formulation is

analogous to the one in [9]. Similarly to the previous subsection, here too we obtain

the expression for Rgeneral, gauss
D by deriving achievable upper bounds to expressions

(4.12) and (4.20).

Let

M =




M (L,1) 0 · · · 0

0 M (L,2) · · · 0

...
...

. . .
...

0 0 · · · M (L,n/L)




Λ =




Λ(L,1) 0 · · · 0

0 Λ(L,2) · · · 0

...
...

. . .
...

0 0 · · · Λ(L,n/L)




where M, Λ are n×n matrices and M (L,j), Λ(L,j) are L×L matrices for all 1 ≤ j ≤
n/L. Moreover, M (L,j)Ŷ (L,j) is the MMSE linear estimator of I(L,j) given Ŷ (L,j),

and Λ(L,j)I(L,j) is the MMSE linear estimator of Ŷ (L,j) given I(L,j) (the notation

X(L,j) means the j-th, L-size block of vector Xn). We have again the following

chains:

R
(n)
W ≤ R

(n)
Q − n−1h(In) + n−1h(In − MŶ n)

≤ R
(n)
Q − 1

n

n

L
h(IL) +

1

n

n/L∑
j=1

h(I(L,j) − M (L,j)Ŷ (L,j)) (4.47)

≤ R
(n)
Q − 1

2L
log(2πe)L|K(L)

I | +

1

n

n/L∑
j=1

1

2
log(2πe)L|K(L)

I − K
(L,j)

IŶ
(K

(L,j)

Ŷ
)−1K

(L,j)

Ŷ I
| (4.48)
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≤ R
(n)
Q − 1

2L
log


 1

n/L

n/L∑
j=1

|K(L)
I − K

(L,j)

IŶ
(K

(L,j)

Ŷ
)−1K

(L,j)

Ŷ I
|

|K(L)
I |


 (4.49)

and

R
(n)
W ≤ n−1h(BA(Ŷ n − ΛIn) + V n) − n−1h(V n)

≤ 1

n

n/L∑
j=1

h(B
(L)
A (Ŷ (L,j) − Λ(L,j)I(L,j) + V (L,j)) − 1

L
h(V L)

≤ 1

n

n/L∑
j=1

1

2
log(2πe)L(|B(L)

A (K
(L,j)

Ŷ
− K

(L,j)

Ŷ I
(KL

I )−1K
(L,j)

IŶ
)(B

(L)
A )t + K

(L)
V |)

− 1

2L
log(2πe)L|K(L)

V |

≤ 1

2L
log


 1

n/L

n/L∑
j=1

|B(L)
A (K

(L,j)

Ŷ
− K

(L,j)

Ŷ I
(KL

I )−1K
(L,j)

IŶ
)(B

(L)
A )t + K

(L)
V |

|K(L)
V |




(4.50)

We observe now that both inequalities (4.49) and (4.50) are consequences of

Jensen’s inequality [33], and they can be satisfied with equality if and only if

(∀ 1 ≤ j ≤ n/L) K
(L,j)

Ŷ
= K

(L)

Ŷ
, K

(L,j)

Ŷ I
= K

(L)

Ŷ I

From the above it follows that the rate region Rgeneral, gauss
D becomes

Rgeneral, gauss (2)
D =

{
(R

(n)
Q , R

(n)
W ) :

R
(n)
Q ≥ 1

2L

L∑
j=1

log

(
σ2

j

min{ξ, σ2
j}
)

, where ξ satisfies
L∑

j=1

min{ξ, σ2
j} = LD

R
(n)
W ≤

max
K

(L)

IŶ
,K

(L)

Ŷ
:

L−1tr(K
(L)
I +K

(L)

Ŷ
−2K

(L)

IŶ
)≤D

min

{
R

(n)
Q − 1

2L
log

(
|K(L)

I |
|K(L)

I − K
(L)

IŶ
(K

(L)

Ŷ
)−1K

(L)

Ŷ I
|

)
,

1

2L
log

(
|B(L)

A (K
(L)

Ŷ
− K

(L)

Ŷ I
(K

(L)
I )−1K

(L)

IŶ
)(B

(L)
A )t + K

(L)
V |

|K(L)
V |

)}}
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where σ2
1, . . . , σ

2
L are the eigenvalues of K

(L)
I .

In other words, Rgeneral, gauss (2)
D has the same form as Rgeneral, gauss

D , where n is

replaced by L. This is not surprising, since the blocks are independent from each

other and therefore the rate region should only depend on the statistics of one

block.
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Chapter 5

Concluding Remarks

The main focus of this thesis has been the determination of the largest possible

rate regions for information-hiding systems that combine watermarking with quan-

tization. In this last chapter, we review the key issues that were involved in our

study, and we present a unifying perspective. Finally, we conclude this dissertation

with directions for future research.

Single-User Watermarking: In Chapter 2, we derived the relationship between

quantization and watermarking rates under the following assumptions: (i) the orig-

inal image is i.i.d. distributed; (ii) attacks are memoryless; (iii) average distortion

constraints are imposed on the watermarker and the attacker; and (iv) the original

image is available at the detector (private scenario). We studied the cases of dis-

crete alphabets, as well as continuous alphabets with Gaussian images and attacks

(under quadratic distortion measures). Moreover, we considered fixed attacks, as

well as optimized attacks. In the latter case, we formulated the game played be-

tween the watermarker and the attacker, and we determined the resulting rate

region. It is interesting that, in the Gaussian case, the optimal attack is equivalent

to optimal compression of a Gaussian source.
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Fingerprinting and Collusion Attacks: In Chapter 3, we studied a finger-

printing/quantization system subject to different types of collusion attacks. The

assumptions (i)-(iv) listed above were also applicable here. We demonstrated that

collusion can significantly reduce the rate region. Furthermore, for attacks involv-

ing linear combinations plus Gaussian noise and satisfying a symmetric distortion

constraint, we showed that the optimal choice for the colluders is to perform a

symmetric attack (i.e., one where all the multiplicative coefficients are the same).

Finally, in a public scenario without compression, we proved a multi-user analogue

of Costa’s result [15]: that the maximum fingerprinting rate achievable is the same

as in a private scenario.

General Gaussian Images and Attacks: In Chapter 4 we considered Gaussian

images and attacks which are not necessarily stationary or ergodic. We derived a

general formula for the rate region in a private scenario and under average quadratic

distortion constraints. Moreover, we examined two special cases; namely, the paral-

lel Gaussian model and the blockwise-independent model, and we obtained simpler

expressions for the rate region.

5.1 A Common Theme

The results that we derived in this thesis share a common structure. Specifically,

the maximum watermarking (or fingerprinting) rate achievable in a joint water-

marking/quantization system is given by the general formula:

RW = max
CŶ

min {RQ − n−1I1(CŶ ; In), n−1I2(CŶ ;A|In)} (5.1)

where I1 and I2 are mutual information quantities, In corresponds to the original

image statistics, CŶ represents the code used by the information hider and A
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represents the attack channel. The two arguments of the minimum in (5.1) lead

to the following interpretations:

• nRW ≤ nRQ − I1(CŶ ; In), or, equivalently, nRQ ≥ nRW + I1(CŶ ; In). Thus,

the number of bits needed to describe a watermarked/compressed image

(i.e., nRQ) is at least the sum of the number of bits needed to describe the

watermark index (i.e., nRW ) and the number of bits needed to describe the

original image (i.e., I1(CŶ ; In)) at some distortion level. One would expect

this to be true considering the dual aim (watermarking and compression) of

the embedding process. It is surprising that at sufficiently low quantization

rates, (i.e., where the first argument of the minimum in (5.1) may prevail), no

additional bits may be needed in order to provide immunity against attacks.

• nRW ≤ I2(CŶ ;A|In). Thus, the number of bits needed to describe the water-

mark index cannot exceed the number of bits recoverable at the output of an

attack channel A with side information In. This is consistent with viewing

the watermark set as a code for information transmission through this chan-

nel. It is surprising that for sufficiently high quantization rates (i.e., where

the second argument of the minimum in (5.1) may prevail), compression may

not affect the detectability of the watermark.

5.2 Directions for Future Research

There are a number of extensions to the problem of joint watermarking and com-

pression of images treated in this thesis. The most important ones, are as follows:

Unknown Collusion Attacks: In Chapter 3, we assumed that the collusion at-

tack channel is fixed and known to the decoder. As a consequence, the information
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hider knows the number of colluders. Such an assumption is not always justified; in

practical situations, the decoder needs to estimate the number of colluders and the

attack channel. There exist various channel estimation techniques [36] for single-

user channels, based on training sequences. It would be interesting to obtain such

techniques for multi-user channels, as well.

The Public Scenario: All results derived in this dissertation (except the achiev-

able rates of public QIM of Chapter 2 and the multi-user Costa scheme of Chapter

3) assume a private scenario. We were not able to establish the region of achievable

rates in a public scenario, even for the simple Gaussian case of Chapter 2. Such

a region should be a subset of the region obtained in the private case; however,

whether or not it is a proper subset is still an open problem. Note that in the case

of no attacks, it was shown in [8] that public and private scenarios yield the same

rate region.

Other Types of Distortion Constraints: It would be interesting to estab-

lish rate regions for joint watermarking and compression systems under distortion

constraints that do not involve averaging of distortion measures. For example, mo-

tivated by the work in [24] and [27] respectively, two possible types of distortion

constraints could be: (i) in the almost sure sense, i.e., the distortion between two

vectors, does not exceed a threshold with probability one; and (ii) in the large-

deviations sense, where the probability that the distortion between two vectors

exceeds a threshold is upper-bounded by an exponentially-decaying function of n.
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