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Abstract

We investigate the stability of a collection of systems
which are governed by linear dynamics and operate un-
der limited communication. We view each system and
its feedback controller as users on an idealized shared
network which grants access only to a few system-
controller pairs at any one time. A communication se-
quence, which plays the role of a network admission pol-
icy, speci�es the amount of time available for each sys-
tem to complete its feedback loop. Using Lyapunov the-
ory, we give a suÆcient condition for the existence of a
stabilizing communication sequence and show how one
can be constructed in a way that minimizes network us-
age. Our solution depends on the parameters of the un-
derlying system(s) and on the number of controller-plant
connections that can be maintained simultaneously. We
include simulation results illustrating the main ideas.

1 Introduction

Over the past decade, the rapid growth of communica-
tion and network technologies has arguably been charac-
terized by its emphasis on information 
ow (the Internet
and mobile telephony being two of the most prominent
examples). At the same time, the technologies responsi-
ble for what one might call \the connectivity revolution"
have signi�cant implications for the design, deployment
and control of distributed and networked control sys-
tems, fueling recent interest in new large-scale systems
such as formations of robots, smart structures and sen-
sor/actuator networks. However, as we might expect
and can observe experimentally [6] in such settings, the
e�ectiveness of a control policy depends on the commu-
nication constraints imposed by medium which connects
sensors, actuators and computing elements within a dis-
tributed system. This fact separates networks which
mainly transmit information for Internet-based appli-
cations, telephony, etc, from those whose \users" are
parts of a dynamical system. This important distinc-
tion - sometimes summarized in the phrase \networks
for control vs. control of networks" - underscores the

1This work was supported by ARO MURI GC169368NGD

long-term need for a brand of control theory which bal-
ances control and communication considerations.

This paper investigates the stability of a collection of
control systems (assumed to be LTI) whose feedback
loops are closed via a shared network; the network can-
not accommodate all controller-system pairs simultane-
ously. Because of the communication constraints thus
imposed, the systems in question become coupled to
one another, so that their stability depends both on the
choice of control law(s) and on the allocation of time on
the shared network. We want to �nd: i) communication
patterns which allow every system to periodically (but
sparsely) close its feedback loop in order to maintain
stability and ii) criteria for designing eÆcient commu-
nication patterns which stabilize the entire collection.

A number of related works have explored the e�ects of
communication constraints on control problems, includ-
ing the relationship between practical stability of a dy-
namical system and the bit-rate available for feedback
[11], control/scheduling co-design [3] and joint commu-
nication/control optimization problems [2, 7]. These
last works focus on the use of communication sequences
for quantifying the amount of \attention" received by
the sensors and actuators of a control system over the
course of a control task. A similar approach has been
used to attack problems in optimal tracking [6] and LQG
control [9] with limited communication. Recent works
which are relevant in the present setting include studies
of the e�ects of network delay on the stability of lin-
ear systems [10], algorithms for stabilization of discrete-
time systems under limited communication [7], analyses
of event-driven asynchronous dynamical systems [5] and
switched systems (see [8] and references therein).

2 LTI systems as users of a shared network

Consider a collection of continuous-time LTI systems

_xi(t) = Aixi(t) +Biui(t); i = 1; : : : ; N (1)

xi(t) 2 R
n
; ui(t) 2 R

m

whose open loop dynamics are unstable. Each system
communicates with a remotely located controller that



occasionally transmits control signals over a shared net-
work, according to the static state feedback law1 ui(t) =
Kixi(t) (see Fig. 1). We assume that the constant

Figure 1: A collection of networked control systems
Gi(s) = I(sI�Ai)

�1
Bi driven by feedback con-

trollers Ki via a network. H denotes a zero-
order-hold stage. Only k of N switches si can
be closed at any one time.

gains Ki are designed to stabilize (Ai; Bi) when the
ith feedback loop is closed (i.e Ref�(Ai + BiKi)g < 0,
i = 1; : : : ; N).

Controller-plant communication is limited in the sense
that a maximum of k < N plants may close their feed-
back loops at any one time. This could be because:

� All systems are stabilized by a single centralized
controller which can perform a limited amount of
computation per unit time, or has only suÆciently
many outputs to communicate with k out of N
systems

� Each system has its own controller, with commu-
nication taking place over a medium which can
only accommodate a maximum of k \users" at a
time.

We are interested in �nding an ordered sequence of es-
tablishing and terminating communication between each
system and its controller (as well as the duration of
each communication) in a way that preserves the sta-
bility of each system in the collection. We assume that
the \shared network" is an idealized communication
medium which provides connectivity between a system
and its controller in a discrete sense (on or o�). We will
not consider the e�ects of network layers, random delays
or complications due to packed-based communication.

1We assume that continuous-time state feedback is available,
although the discussion that follows can easily be adapted for out-
put feedback laws ui = KiCixi and/or discrete-time dynamics.

For each system we de�ne a binary-valued function si :
R
+
! f0; 1g which indicates whether the ith feedback

loop is closed at t (si(t) = 1) or not (si(t) = 0). Each
system is preceded by a zero-order hold stage H which
is activated when communication is cut o� (si(t) = 0)
and \resets" its output to zero after a certain amount
of time (to be speci�ed later) has elapsed without re-
establishing communication. The reason for proposing
a zero-order hold with such a feature will become clear
in the next section. More precisely, let U denote the
space of admissible inputs to one of the systems (e.g.
piecewise continuous, R

m
-valued functions). We de�ne

H : U � R
+
� f1g� R

+
! U , with

H(u(t); t1; �) =

8<
:

u(t) t < t1
u(t1) t1 � t < t1 + �
0 t1 + � � t

(2)

where t1 denotes the time that si(t
�

1 ) = 1; si(t1) = 0. If
communication with the ith system is initiated at t = t0
and interrupted at t1, we have:

ui(t) =

8<
:

Kixi(t) t 2 [t0; t1)
Kixi(t1) t1 � t < t1 + �
0 t1 + � � t

(3)

We will call �i the \reset time" associated with the
zero-order hold stage Hi. For notational convenience
we will use (Ai; Bi) as shorthand for the LTI system
of Eq.1; the triple (Ai; Bi;Ki) will denote the closed-
loop dynamics of (Ai; Bi) with static feedback gain Ki.
Finally, we will write (Ai; Bi;Ki; �i) to indicate the net-
worked feedback system whose zero-order hold stage
(de�ned in Eq.2) has a reset time of �i.

2.1 Network allocation and Communication Se-

quences

In the setting we have just described, the remote con-
troller(s) must choose:

� which of them will communicate with their corre-
sponding system(s) at a particular time

� how long communication should take place before
a di�erent set of feedback loops should be closed.

The above remarks motivate the following de�nition:

De�nition 1 Consider a collection of N LTI systems
with limited communication where at most k < N of
the systems can simultaneously communicate with their
controller(s). A T -periodic network allocation se-

quence 
T = f�s1; :::;�sNg is a choice of N time in-

tervals of length �si > 0 with �si � T ,
PN

1 �si = kT .

�si corresponds to the length of time during which the
ith system communicates with its controller during ev-
ery period. Given a T -periodic network allocation se-
quence, 
T = f�s1; :::;�sNg we can compute the time
intervals during which the ith feedback loop is closed.

Iij(t) = [jT+
i�1X
0

�sk; jT+
iX
0

�sk); j = 0; 1; ::: (4)



Moreover, one can show that there is a corresponding
sequence of operations for the switches si so that the i

th

system closes its loop for �si units of time during every
interval of duration T , without violating the constraintP

i�si < kT . Equivalently, Cardfi : t 2
S
j Iijg �

k;8t. We will limit our discussion to periodic communi-
cation, although one can consider the problem without
this restriction (see for example [5]). Periodic commu-
nication ensures that disturbances in a system will not
grow too large between communication events. We can
now state the problem we are concerned with:

Problem Statement 1 Consider a collection of LTI
systems (Ai; Bi), i = 1; :::; N , with a choice of stabi-
lizing feedback laws ui = Kixi. If no more than k of
those feedback loops can be closed at any time, �nd a
T -periodic network allocation sequence which preserves
the stability of the collection.

A stabilizing network allocation sequence is still sta-
bilizing if we re-order its elements. Once an order-
ing is chosen, a network allocation sequence de�nes a
set of continuous-time communication sequence �i(
)
of times at which the switches si(t) transition from
0 to 1 and vise versa2. For example, if k = 1,
N = 2 then �1(
) = f0;�s1; T; T + �s1; :::g and
�2(
) = f�s1;�s1 +�s2;�s1 + T;�s1 +�s2 + T; :::g
provided that �s1 + �s2 < T . Here we use the
words \continuous-time" when referring to a commu-
nication sequence in order to distinguish it from those
in a discrete-time context [2], [7], where communication
events occur only at integer multiples of a common pe-
riod.

3 SuÆcient conditions for stability under

limited communication

We begin by focusing on a single system-member of the
collection3. Consider Eq.1 where without loss of gener-
ality the system and its controller are allowed to com-
municate for the �rst �s < T units of time during each
interval [jT; (j + 1)T ]. When access to the network is
\allowed" (s(t) = 1) the system can close its feedback
loop so that

_x = (A+BK)x; t 2 [jT; jT +�s) j = 0; 1; :::

Because (A+BK) is stable by choice ofK, there exists a
quadratic Lyapunov function Vs(x) = xTPx, with P =
P T > 0 such that for Q = QT > 0,

(A+BK)TP + P (A+BK) = �Q < 0)

_Vs(x) � �sVs(x); t 2 [jT; jT +�s); j = 0; 1; ::: (5)

2We note that Prob. 1 can be re-stated in the context of
continuous-time communication sequences. Doing so would in-
troduce additional structure and would be more faithful to the
operational details of our model. For simplicity, we have chosen
to work with network allocation times instead.

3To simplify the notation, we will sometimes drop the subscript
i when referring to the parameters of a system in the collection

for some �s 2 R
�
, with

0 > �s � 2maxifRe(�i(A+BK))g.

We want to estimate the (worst-case) growth rate of
V (x) when communication is interrupted (s(t) = 0).
Towards that end, let us assume that the zero-order-
hold stage preceding the system (A;B) has a reset time
of � = 0. When communication is interrupted (say at
t = tint) thenH = H(u(t); tint; 0), u = 0 and the system
is governed by its (unstable) open-loop dynamics. We
can obtain an upper bound on the growth of V (x) from

_x = Ax; t 2 [jT +�s; jT + T ) j = 0; 1; :::

while at the same time

_V (x) � �uV (x); t 2 [jT +�s; jT + T ) j = 0; 1; :::
(6)

for some �u � 2maxifRe(�i(A))g > 0. Notice that if

we de�ne R
4
= ATP +PA then we have the inequalities

0 > �s � max(�(Q))=min(�(P )) (7)

�u � max(�(R))=min(�(P )) > 0 (8)

The bounds for the decay and growth rates �s; �u sug-
gested by (7),(8) might be conservative, depending on
how we choose P . The following result gives a suÆ-
cient condition on the amount of time a system must
spend periodically closing its feedback loop in order to
preserve its stability.

Observation 1 Consider a networked LTI system de-
scribed by (A;B;K; 0), with A+BK stable. Let V (x) =
xTPx; P = P T > 0 be a Lyapunov function for the
closed-loop system satisfying (A + BK)TP + P (A +
BK) < �sP < 0 when communication is available (feed-
back loop closed) and ATP + PA < �uP otherwise.
Then the LTI system is stable under the T -periodic net-
work allocation sequence 
 = f�sg if

�s�s+ �u(T ��s) < 0; or equivalently

T > �s >
�uT

�u � �s
(9)

Proof: The result follows by considering that for j =
0; 1; ::: we have V (x(jT + �s)) � e�s�sV (x(jT )) and
V (x(jT + T )) � e�u(T��s)V (x(jT +�))

A related result for so-called asynchronous dynamical
systems can be found in [5].

3.1 The e�ect of zero-order-hold (� > 0)
The bound given by (9) is conservative because it ap-
plies even when � = 0, i.e. the actuators of the
linear system are turned o� during periods of non-
communication. We can obtain a smaller lower bound
for �si by examining the case where � > 0, i.e. a zero-
order hold is applied for � units of time, absent commu-
nication.



Theorem 1 Consider a collection of N networked LTI
systems (Ai; Bi;Ki; ��i), with (Ai +BiKi) stable, whose
feedback loops can be closed, k < N at a time.
If Vi(x) = xTPix are Lyapunov functions satisfying
_Vi < �siVi < 0 (when the ith feedback loop is closed)
and _Vi < �uiVi (i

th feedback loop open) then there is a
T -periodic allocation sequence

T = f�s1; :::;�sNg which preserves the stability of all
N systems if

T > �si >
�ui(T � ��i)

�ui � �si
(10)

NX
i=1

�ui(T � ��i)

�ui � �si
< kT (11)

��i = mintft : maxf�(Mi(t))g = 0g (12)

where Mi(t) = (I +
R t
0
e�Ai�d�BiKi)

T eA
T

i
tPie

Ait(I +R t
0 e

�Ai�d�BiKi)� Pi
Proof: Without loss of generality, let t = 0 be the time
when communication between the ith system and its
controller is interrupted. Then, Vi(0

�) > 0; _Vi(0
�) < 0.

For t > 0 the system evolves according to

_xi = Aixi +BiKixi(0)

or (dropping the subscripts for simplicity)

_x = (A+BK)x�BKe; e(t)
4
= x(t) � x(0)

Because e is continuous on some interval [0; t0) (where
at t0 communication is next restored), V (x(t)) is di�er-
entiable on [0; t0), therefore _V cannot reverse its sign
instantaneously. We conclude that V (x) will continue
to decrease for some time before it begins to increase
again. In particular, there will be a shortest time �� > 0
at which

V (x(�� )) = x(0)Px(0) (13)

i.e. xT (0)(I +
R t
0 e

�Ai�d�BK)T eA
T tPeAt(I +R t

0 e
�Ai�d�BK)x(0) = xT (0)Px(0)

Let M(t)
4
= (I +

R t
0
e�Ai�d�BK)T eA

T tPeAt(I +R t
0 e

�Ai�d�BK)� P , and

�� = mint;x(0)ft : x
T (0)M(t)x(0) = 0g , (14)

�� = mintft : maxf�(M(t))g = 0g (15)

if � � �� , then for all x(0), we have V (x(�)) � V (x(0)).
Using Obs. 1 we see that if �� is used as a reset time
for H , then the evolution of V (x(t)) over one pe-
riod will satisfy V (x(T )) � e(T�����s)�uV (x(�s)) �
e(T�����s)�ue�s�uV (x(0)) from which the suÆcient
condition for the stability of all N systems follows.

Note that we chose to \reset" u to zero after a speci-
�ed time because holding a value of u for too long might
make matters worse for stability, raising _V (x) over what
it would be if u = 0. On the other hand, we are guaran-
teed that if a feedback loop is opened at t = tint, V (x)
will not grow larger than V (x(tint)) for another �� units
of time, as long as u(t) = u(tint).

3.2 Stability with guaranteed convergence rates

Returning to Th. 1, given �si; �si ; �ui for each system,
the rate of decay of the sequence
Vi(xi(jT )); j = 1; 2; :::; i = 1; :::; N will be

ri � �si�si + (T � ��i ��si)�ui (16)

The rate ri can take on any value in [�si ; (T � ��i)�ui ],
where the upper bound of that interval assumes the ith

system has a chance to close its loop at least once dur-
ing [jT; (j+1)T ), for an arbitrarily short time. We can
now consider a scenario where each system \requests"
suÆcient network time to achieve a desired rate of con-
vergence, ri for the samples Vi(xi(jT )). This rate can
be viewed as a quantitative measure of the quality of
service provided by the network to a dynamical system.

Corollary 1 Consider a collection of N networked LTI
systems (Ai; Bi;Ki; ��i), with (Ai +BiKi) stable, whose
feedback loops can be closed k < N at a time. Let ��i
be given by Eq.12. If Vi(x) = xTPix are Lyapunov
functions such that _Vi < �siVi < 0 (ith loop closed)
and _Vi < �uiVi > 0 (ith loop open) then there is a T -
periodic allocation sequence 
T = f�s1; :::;�sNg which
preserves the stability of all N systems and guarantees
that the sequences Vi(xi(jT )) decay with rates ri < 0
over each period, provided that

qi
4
=

�ui(T � ��i)� riT

�ui � �si
< T ; i = 1; :::; N

NX
i=1

qi < kT

3.3 Finding a suitable Lyapunov function

The utility of the bounds in Th. 1 and Cor. 1 depends
on our estimate of the decay/growth rates �si ; �ui for
the Lyapunov functions Vi = xTi Pixi. If Pi are not
carefully chosen, the inequalities (7),(8) can give con-
servative results for �si so that a system unnecessar-
ily demands almost constant communication. To avoid
this situation, we would like to �nd quadratic Lyapunov
functions for which the the decay/growth rates �si ,�ui
are as small as possible (keeping in mind that �si < 0).
The inequalities (10),(11) suggest solving the following
problem:

min

P

�
�u

�u � �s

�

subject to

(A+BK)TP + P (A+BK) < �sP (17)

ATP + PA < �uP (18)

P > 0; �s < 0; �u > 0 (19)

Observation 2 The preceding problem is equivalent to
minimizing c = ��u=�s subject to (17)-(19).



Proof: Minimizing �u
�u��s

is equivalent to maximizing
the inverse quantity, which is equivalent to minimizing
��u=�s > 0.

We can thus parameterize �u = �c�s with c > 0 and
instead solve the following:

Problem Statement 2 Given: A;B;K, Minimize
c > 0 over all P = P T > 0; �s < 0, subject to:

(A+BK)TP + P (A+BK) < �sP

ATP + PA < �c�sP (20)

P > 0; �s < 0; c > 0

In this problem we are minimizing a linear function sub-
ject to the given inequalities, therefore we expect the
minimum to be achieved at the boundary of the feasible
region. We observe that the inequalities (20), viewed
in the space (P; �s; c), are linear in each variable after
�xing the other two. Notice that if (P; �s; c1) satisfy the
inequalities then so do (P; �s; c) for all c > c1. Also, if
the inequalities cannot be satis�ed for some c = c2, then
they cannot be satis�ed for any other c < c2. There-
fore the minimum in Prob.2 will be the unique value of
c = c� > 0 such that (20) has a solution for c � c� but
not for c < c�. This observation allows us to �nd the
global minimum c� using bisection for the parameter c,
where at each step we compute a feasible solution to (20)
which form a set of bilinear matrix inequalities (in �s
and P ) [1], [4]. The latter problem can be solved glob-
ally using a branch and bound technique as suggested
in [5].

4 Simulation Results

We simulated a group of three (N = 3) unstable linear
systems which can communicate two at a time (k = 2)
with three remotely-located controllers. The communi-
cation period was T = 3sec. To simplify matters, all
three systems are governed by the same dynamics:

_xi = Axi +Bui; ui = Kxi; i = 1; 2; 3 (21)

with

A =

�
0 1

1:5 �0:1

�
; B = [0 1]T ;

the open loop eigenvalues being 1:17;�1:27. The con-
trollers Ki = [�35;�29] were designed to place the
closed loop eigenvalues of each system (Ai + BiKi) at
�1;�2. We solved the minimization problem of Sec. 3.3
(Prob. 2) and found �s = �2:00; �u = 2:35; c� = 1:17
and

Pi = P =

�
57:1 42:5
42:5 35:2

�
;

giving a network allocation sequence with �si > 1:62sec
for each system (i.e. 
T = f1:62; 1:62; 1:62g). BecauseP

i�si < kT = 6, there exists a periodic communica-
tion sequence that preserves the stability of each of the

three systems, closing no more than two of the three
feedback loops at any one time. Using the above values
for P , A;B;K, we computed (from Eq. 12) ��i = 0:72sec.
This suggests that when communication is interrupted
(say at t = tint) and the zero-order hold is activated, our
Lyapunov function has not surpassed its value at tint un-
til another 0:72sec have elapsed. From this fact together
with Eq.10, we obtained a new bound of �si > 1:23sec
as a suÆcient communication time (every T = 3sec) for
stabilizing each system. Equivalently, the system(s) can
tolerate a communication disruption for at least 1:77sec,
or 59% of the communication period. These numbers
are to be compared with those given by the suÆcient
condition in [10] by which an interruption of less than
t0 = 0:173sec is required to guarantee stability for the
same systems. Figure 2 shows the evolution of the Lya-
punov functions Vi(xi) = xTi Pix

T
i for each of the three

systems, each starting from a di�erent, randomly cho-
sen initial condition. The switching functions si show-
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Figure 2: Top: Time evolution of the Lyapunov function of
each system. Bottom: The corresponding com-
munication sequence.

ing when communication with the ith system was taking
place are plotted in Fig.2, scaled by an integer factor of
i to make them easily distinguishable from one another.
As expected, there are at most two non-zero indicator
functions at any one time. Also, there are time intervals
where only one feedback loop is closed. This indicates
that there is \room" for guaranteeing a faster rate of
convergence.

4.1 Stability with guaranteed convergence rates

Using the same setup as in the previous section, we
now ask that the three systems converge with rates



r1 = �:5; r2 = �1; r3 = �1:5, in the sense that
Vi(xi(jT + T )) � eriVi(x(jT )). Using the results of
Cor. 1, we obtained a new network allocation sequence
with �s1 = 1:57; �s2 = 1:91; �s3 = 2:26. In this case,P

�si = 5:74 which is closer to the limit of available
network time. If we did not choose to take into account
the e�ects of the zero-order hold stage (i.e. �i = 0)
then the worst-case analysis gives �s1 = 1:97;�s2 =
2:31;�s3 = 2:66 which sum to 6:94 > kT = 6 and
our criterion would fail to indicate that there exists a
communication sequence that stabilizes all 3 systems.
Figure 3 shows the evolution of the Lyapunov function
for each of the three systems, starting from the same
initial conditions used in the previous simulation. The
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Figure 3: Systems 2 and 3 have faster guaranteed conver-
gence rates resulting from the allocation of more
network time to them.

time plot of the communication sequence i � si(t) (again
scaling si by i) shows signi�cantly higher utilization of
the available time. Note that the bound of (10),(11) is
conservative, in the sense that the actual decay rates
observed are signi�cantly faster than those guaranteed.

5 Conclusions and Future Work

We have proposed a model for groups of dynamical sys-
tems whose feedback loops are closed via a shared net-
work, and explored the problem of �nding network allo-
cation sequences (and their corresponding communica-
tion sequences) that preserve the stability of all systems
on that network. The presence of communication con-
straints was modeled by assuming that the network can
accommodate only a few controller/plant communica-
tions at any one time. Each system's feedback controller

was designed without considering the e�ects of the net-
work. We gave a suÆcient condition for the existence of
network allocation sequences that preserve the stability
of the collection and showed how such sequences can be
chosen to minimize the amount of communication nec-
essary for stability. Our analysis has taken into account
the e�ects of zero-order hold applied at the input of each
system when communication is not possible. Although
our results are conservative, they represent a signi�cant
improvement over previous estimates for the amount of
communication required to guarantee stability.

Opportunities for further work include the joint selec-
tion of the communication sequence and feedback gains,
use of time-varying reset intervals in a system's zero-
order hold stage, and augmenting the basic model to
include dynamic interactions between systems in addi-
tion to the coupling introduced by the presence of com-
munication constraints.
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