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Abstract

This work is aimed at exploring the interaction of com-
munication and control in systems whose sensors and
actuators are distributed across a shared network. Ex-
amples of such systems include groups of autonomous
vehicles, MEMS arrays and other network-controlled
systems. We generalize recent results concerning the
stabilization of LTI systems under limited communi-
cation. We seek a stabilizing static output feedback
controller whose communication with the underlying
plant follows a given periodic pattern. We present an
algorithm that allows us to pass to a time-invariant for-
mulation of the problem and use simulated annealing
to search for stabilizing feedback gains.

1 Introduction

Recent advances in communications and networking
technologies are now enabling the construction of com-
plex systems whose sensors, actuators and computing
elements are connected by means of a network. Exam-
ples of such systems include groups of vehicles, satellite
clusters, smart structures and MEMS arrays, to name
a few. The performance of these distributed systems is
often limited as much by the lack of time on a shared
network of sensors and actuators as it is by lack of
computational power. This fact has led to recent ef-
forts towards bringing together aspects of control and
communication, under a framework that will lead to a
better understanding of control systems with commu-
nication constraints [3, 8, 5, 7, 2].

One approach to analyzing the effects of communica-
tion on the control of a distributed system, is to in-
troduce a “communication sequence” [3] which allows
multiple (sub)systems to share the attention of a cen-
tralized controller [5]. Communication sequences quan-
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tify the amount of “attention” that the decision-maker
pays to each component of a control system. Previous
work has addressed the problem of stabilizing a set of
LTI systems when the controller can only communi-
cate with one sub-system at a time [6]. In this paper
we generalize those results by separating sensing and
actuation events without the need for grouping states
into sub-systems. In Sec. 4 we present a new “extensi-
fication algorithm” which transforms the stabilization
problem into an equivalent problem, involving a search
for stable elements of a family of matrices [6].

2 A Prototype Computer-Controlled System

Consider an n-dimensional LTI system with input
u ∈ R

m
and output y ∈ R

p
. The system is driven

by a digital controller (Fig. 1) that does not have
simultaneous access to all inputs/outputs of the
control system. In particular:
• The controller sends inputs to and receives measure-
ments from the system every ∆ units of time, via a
zero-order-hold stage.
• Inputs/outputs are transmitted via a bus which has
limited capacity. Specifically, the bus can “carry” at
most b > 0 signals, with b < m+ p, b ∈ N ∗.

The capacity of the communication bus is to be

Figure 1: A closed-loop computer-controlled system

split between input and output signals, with br chan-
nels used for sampling the output of the underlying
LTI system and bw channels used for transmitting
control inputs. We will refer to these two groups
of channels as the “input” and “output bus.” Of
course, br and bw may change at any time as long
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as br + bw = b. This represents a rather general
setting for describing controller-plant communication,
allowing for dynamic reconfiguration of the available
channels. To simplify the discussion, we will take the
number of input and output channels to be constant,
with bw < m and br < p.

Consider the discretization of G(s) (with sampling pe-
riod ∆) and let x(k+1) = Ax(k)+Bu(k), y(k) = Cx(k)
be a state-space representation of the resulting discrete-
time system. Each element of u retains its value (by
virtue of the ZOH stage) until that element is updated
by the controller. At the same time, the controller
may only receive partial information about the output
y(k). One way of negotiating the constraints imposed
by the bus, is to choose a sequence of operations for the
switches (see Fig. 1) that select which inputs/outputs
are to be updated/sampled at a particular time. This
is captured in the idea of a “communication sequence”
(originally introduced in [3]):

Definition 1 An N-periodic communication se-
quence is an element of

E
m×N
per = {(σ(0), σ(1), ..., σ(N − 1),

σ(0), ..., σ(N − 1), ...) : σ(i) ∈ {0, 1}m} (1)

for some m > 0.
Controller-plant communication follows a periodic pat-
tern, specified by a pair of N -periodic sequences: a
“control” sequence σw ∈ E

m×N
per will be used to trans-

mit inputs and a “measurement” sequence σr ∈ E
p×N
per

will provide a pattern for sampling the system output.
The entries of σw(i) (σr(i)) indicate which elements of
u(k) (y(k))are to be updated (measured) at the kth

time step. We will ignore quantization errors associ-
ated with the representation of signal samples in the
digital controller and with the transmission of those
samples through the communication bus.

Definition 2 Consider a computer-controlled system
G(z) with bw < m (br < p) being the dimension of the
input (output) communication bus. A pair of commu-

nication sequences σw ∈ E
m×N

, σr ∈ E
p×N

is admis-
sible if:
• ‖σw(i)‖2 ≤ bw, ‖σr(i)‖2 ≤ br ∀i = 0, ..., N − 1
• Span{σw(0), . . . , σw(N − 1)} = R

m
and

Span{σr(0), . . . , σr(N − 1)} = R
p

The above conditions require that no more than bw (br)
of the system inputs (outputs) be updated (measured)
by the controller at each step and that the pair (σw, σr)
allow communication with all inputs and outputs of the
linear system at least once every period.

3 Stabilization with Limited Communication

We now focus on the problem of stabilizing a computer-
controlled system with communication constraints, us-

ing static output feedback.

Problem 1 Given: a computer-controlled LTI system
G(z) with br, bw ∈ N∗ denoting the size of the input
and output communication busses and a pair of ad-
missible N -periodic communication sequences σr, σw ∈
E
p×N
per , E

m×N
per , find a constant output feedback gain

Γ ∈ Rp×m that stabilizes the closed-loop system.

In [6], we showed (by providing a so-called “extensifi-
cation algorithm”) that a version of this problem was
equivalent to the NP-hard problem:

Problem 2 Given a collection of matrices Ai ∈
R
q×q

, 0 ≤ i ≤ imax, and scalars γ1, ..., γimax ∈ R , find
a stable element of the affine subspace

A = A0 +

imax∑
i=1

γiAi (2)

In the next section we present a new, more gen-
eral algorithm which considers actuation and measure-
ment events separately, requires no a-priori grouping of
states into “sub-systems” and arrives at a similar con-
struction for the matrices that span the affine subspace
of interest, with q = (2N2 − N)n and imax = mp in
the statement of Problem 2.

4 Extensive Form of a Discrete LTI System

Consider the (discretized) system of Fig. 1, to which
a static output feedback controller is attached, subject
to limited communication as described in Sec. 2.

4.1 Constrained Measurements
Assume for now that bw = m so that the controller
can transmit an entire input vector at once to the LTI
system. Only some of the elements of y(k) are received
by the controller at each step (as dictated by σr ∈

E
p×N
per ), with all remaining elements holding their last-

known values. More precisely,

u(k) = Γyl(k) (3)

where yl(k) is the output vector composed of the most
up-to-date measurements available to the controller at
the kth step. Typically, we expect that yl(k) 6= y(k).
We write:

yl(k) = diag
(
σr(k)

)
y(k) +

(
I − diag

(
σr(k)

))
yl(k − 1)

(4)
where for a vector x ∈ R

n
, diag(x) is an n × n ma-

trix with the elements of x along its diagonal, all other
entries being zero. By iteratively applying Eq. 4 for a
number of steps equal to the communication period N ,
we obtain:

yl(k) =
N−1∑
i=0

DR(k, i)Cx(k − i) (5)
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where

DR(k, i)
4
=

{
diag(σr(k)) i = 0

diag(σr(k − i))
∏i−1
j=0 MR(k, j) i > 0

(6)

MR(k, j)
4
= I − diag (σr(k − j)) (7)

Note that DR(k, i) are diagonal p × p matrices. The
jth diagonal element of DR(k, i) is 1 if the jth output
was last read at the (k − i)th step and is 0 otherwise.
We observe that if the communication sequence σr is
admissible then each of the p elements of the output
y(k) will be read at least once every N steps so that
the summation in Eq. 5 terminates after at most N
terms.

4.2 Constrained Control
We now consider controller-plant communication over
the input bus. At the kth step, only the inputs specified
by the non-zero entries of σw(k) are updated, with all
other inputs retaining their previous values:

u(k) = diag
(
σw(k

)
Γyl(k)+

(
I− diag

(
σw(k)

))
u(k− 1)

(8)
By iterating backwards for a full period (N steps) and
assuming that the communication sequence σw is ad-
missible, we obtain:

u(k) =
N−1∑
i=0

DW (k, i)Γyl(k − i) (9)

whereDW (andMW ) are obtained from Eq. 6, 7 simply
by replacing σr with σw. In this case DW (k, i) is an
m×m diagonal matrix.

4.3 Combining Communication Constraints
Substituting Eq. 5 into Eq. 9, we obtain:

Bu(k) =
2N−2∑
i=0

Fkix(k − i) (10)

where

Fki
4
= B

b iN c(i−N−1)∑
j=min(i,N−1)

DW (k, j)ΓDR(k − j, i− j)C (11)

It follows that the closed-loop dynamics of the
computer-controlled system are given by:

x(k + 1) = Ax(k) +
2N−2∑
i=0

Fkix(k − i) (12)

Define Comp(p) to be the companion form associated
with an nth-degree polynomial p(s) =

∑n
0 pis

i:

Comp(p)
4
=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 · · · · · · 0 1
pn pn−1 · · · p1 p0

 (13)

If we now use the Fkj (Eq. 11) to define the matrix
polynomials

fk(s) = A+
2N−2∑
i=0

Fkjs
i (14)

then the closed-loop dynamics of Eq. 12 can be ex-
pressed in first-order form:

χ(k + 1) = Comp(fk)χ(k) (15)

where χ = [xT(k−2N+3) · · · x
T
(k) x

T
(k+1)]

T ∈ R (2N−1)n
.

The (linear) system of Eq. 15 is N -periodic in k, and
describes the state evolution of the original computer-
controlled system under output feedback and periodic
communication. We have essentially “extensified” the
state vector to include past values up to two commu-
nication periods.

It is a fact that every discrete-time periodic system
can be expressed as a time-invariant system of higher
dimension [4]. Applied to Eq. 15, this fact yields a sys-
tem of order (2N2−N)n which we call the “extensive
form” of the original system of Problem 1:

Xe(k + 1) = AX e(k) (16)

where Xe(k) ∈ R
(2N2−N)n

and

A =


0 · · · 0 0 Comp(f0)

Comp(f1) 0 · · · 0 0
0 Comp(f2) 0 · · · 0

.

.

.

.

.

.

.
.
. · · · 0

0 · · · 0 Comp(fN−1) 0


(17)

By construction, stability of the extensified system
(Eq. 16) is equivalent to the stability of the original
system. Moreover, each of the matrices Comp(fk) are
affine in the entries of Γ. By choosing a basis for R

m×p
,

we can express Γ as Γ =
∑mp
i=0 γiEi where Ei is anm×p

matrix whose (b i−1
p c+ 1, (i− 1) mod p+ 1)th entry is

“1”, with all other entries being zero. In the basis of
the {Ei} we can write A as an element of the affine
subspace

A = A0 +

mp∑
i=0

γiAi (18)

where each of the Ai are obtained by substituting Ei
for Γ in Eq. 11.

In summary, we have given a procedure for converting
an output feedback stabilization problem involving LTI
systems under limited communication, into a search
problem involving a finite collection of (2N2 − N)n-
dimensional matrices. These matrices are obtained
from the parameters of the original LTI system together
with a pair of admissible communication sequences.
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5 An Extensification Example

Consider the scalar system

x(k + 1) = ax(k) + u(k); y(k) = x(k) (19)

We assume that the controller communicates with the
above system over a bus of width b = 1 according to the
following pair of 2-periodic communication sequences:

σr = (1, 0, 1, 0, . . .), σw = (0, 1, 0, 1, . . .) (20)

so that the communication channel is used both for
measuring the output and for transmitting the control,
in an alternating fashion. Clearly, the above sequences
are admissible. We want to stabilize the system using
a control law of the form

u(k) = γy(k − d(σr , σw, k)) (21)

where d(σr, σw, k) is a delay that depends on the com-
munication sequences and the current step k.

Following the procedure outlined in Sec.4, we ob-
tain a 3-dimensional periodic system χ(k + 1) =
Comp(fk)χ(k) with

fk(s) =

{
a+ γs2 k even
a+ γs k odd

(22)

The corresponding companion forms are:

Comp(fk) =



 0 1 0
0 0 1
γ 0 a

 k even 0 1 0
0 0 1
0 γ a

 k odd

(23)

and the extensive form is given by the 6-dimensional
LTI system:

Xe(k + 1) =


0 1 0

0 0 0 1
γ 0 a

0 1 0
0 0 1 0
0 γ a

Xe(k) (24)

which is to be made stable by choice of γ. The coef-
ficients matrices A0 and A1 (Eq. 18) can now be read
off from Eq. 24.

6 Finding a Set of Stabilizing Gains

It has been shown that a version of Problem 2 is NP-
hard [1] thus in general, one cannot hope to obtain an
analytic solution for the stabilizing gains γi. One pos-
sibility is to pose an optimization problem by asking
that the eigenvalues of A = A0 +

∑
i γiAi be enclosed

in a circle with the smallest possible radius. This sug-
gests minimizing the spectral radius of the closed-loop
system

ρ = ||λmax(A)|| (25)

where λmax(A) denotes the largest-magnitude eigen-
value of A. To negotiate the large number of local
minima that are expected, we applied simulated an-
nealing on the gains γi. Our algorithm numerically
computes the gradient ∂ρ/∂γi and then lets the γi flow
along that gradient, adding a white-noise term dw with
a gain g(t) that decays to zero:

dγi =
∂ρ

∂γi
dt+ g(t)dw. (26)

The “cooling schedule” g(t) should go to zero as t→∞,
but it should do so at a slow enough rate for the spectral
radius to approach the global minimum.

7 Simulation Results

Consider the fourth-order, two-input, two-output LTI
system:

x(k + 1) =

[
1 3/4 1/2 0

1/4 3 1/3 −1/3
1/6 0 −1/2 −3/7
0 −1 2/5 0

]
x(k) +

[
0 0
1 0
0 0
0 1

]
u

y(k) =
[

1 0 0 1
0 1 0 0

]
x(k) (27)

The open-loop system has a spectral radius of
‖λmax‖ = 3.2 which is also the spectral radius of the
extensive form, for γi = 0, i = 1, . . . , 4. We want to
stabilize this LTI system using static output feedback,
given that the communication bus can carry two sig-
nals to/from any of the inputs or outputs (i.e. b = 2).
In the following, we investigate the performance of the
simulated annealing algorithm for two different com-
munication patterns.

7.1 Control using Non-uniform Attention
We selected a period-four pair of communication se-
quences,

σw = σr =

([
1
0

]
,

[
1
0

]
,

[
1
0

]
,

[
0
1

]
, · · ·

)
(28)

that devote three cycles to the pair (u1, y1) for every
one cycle allocated to (u2, y2). The above sequences
were chosen after some experimentation and by notic-
ing that the upper-left 2× 2 block of the dynamics for
the state evolution (Eq. 27) has a larger spectral radius
than the lower-right block (when the coupling between
the two blocks is removed). As a result, communicat-
ing more often with the (u1, y1) pair may lead to better
performance.

The matrices composing the extensive form were com-
puted and simulated annealing was performed on the
four elements of the feedback matrix Γ. The simu-
lated annealing algorithm was stopped after 5000 steps
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(approximately 15 minutes on a 500MHz PC). The
cooling schedule was given by

g(i) =
30

log
(
(1 + i)

)(0.8+i/3000)
i = 1, . . . , 4800

(29)
i.e. logarithmic decay to a level of 0.11, followed by a
linear decay to zero in an additional 200 steps. Equa-
tion 29 and its parameters were chosen after some
numerical experimentation. Choosing “good” cooling
schedules for the stabilization problem considered here
remains an open problem. Simulated annealing sta-
bilized the closed-loop system, reducing the spectral
radius to 0.795. The final closed-loop eigenvalues are
shown in Fig. 2. with the evolution of the spectral

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re

Im

Figure 2: Closed-loop eigenvalues with non-uniform at-
tention, λmax = 0.795.

radius of the system shown in Fig. 3.
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Figure 3: Cooling schedule and evolution of spectral ra-
dius (non-uniform attention).

7.2 Control with Uniform Attention
Next, we chose communication sequences correspond-
ing to “uniform attention”

σw = σr =

([
1
0

]
,

[
0
1

]
,

[
1
0

]
,

[
0
1

]
, · · ·

)
(30)

with the same cooling schedule as in the in the non-
uniform attention case. This time, simulated annealing
did not lead to stabilizing gains, even after repeated tri-
als with slower-decaying cooling schedules. The spec-
tral radius of the closed-loop system reached a mini-
mum level of 2.7.

8 Conclusions and Future Work

We discussed the stabilization of LTI systems which op-
erate under limited communication. Our approach is
based on the use of periodic communication sequences
which direct the flow of control and measurement sig-
nals between controller and plant. It is expected (and
verified in numerical experiments) that some communi-
cation sequences allow more effective control than oth-
ers. We gave a general “extensification” algorithm for
converting the stabilization problem to a time-invariant
form and proposed an optimization method for finding
stabilizing feedback gains.

There are several issues which require further study,
including methods for finding “good” communication
sequences, cooling schedules and stopping criteria for
simulated annealing. It would be interesting to de-
velop models which provide for more general (perhaps
interrupt-based) communication protocols. The design
of state observers with limited communication seems to
be of importance, especially in light of the NP-hardness
result regarding the stabilization problem.
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