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Thesis directed by: Professor Armand Makowski
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We use recent advances from the theory of multivariate stochastic orderings

to formalize the “folk theorem” to the effect that positive correlations leads to

increased buffer occupancy and larger buffer levels at a discrete time multiplexer

queue of infinite capacity. We do so by comparing input sequences in the super-

modular (sm) ordering and the corresponding buffer contents in the increasing

convex (icx) ordering, respectively.

Three popular classes of (discrete-time) traffic models are considered here,

namely, the fractional Gaussian noise (FGN) traffic model, the on-off source

model and theM |G|∞ traffic model. The independent version of an input process

in each of these classes of traffic models is a member of the same class. We show



that this independent version is smaller than the input sequence itself and that

the corresponding buffer content processes are ordered in the same direction. For

each traffic model, we show by simulations that the first and second moments of

buffer levels are ordered in agreement with the comparison results.

The more general version of the folk theorem, namely “the larger the positive

correlations of input traffic, the higher the buffer occupancy levels” is established

in some cases. For the FGN traffic models, we show that the process with higher

Hurst parameter is larger than the process with smaller Hurst parameter. In the

case of the M |G|∞ model, the effect of session-duration variability is discussed

and the comparison result is obtained in the bivariate case.
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Chapter 1

Introduction

1.1 Buffer provisioning

A basic design problem in the engineering of store-and-forward networks is buffer

provisioning, namely the determination of buffer sizes at various network nodes.

This question is often addressed through the analysis of an appropriate queueing

system. The simplest of models operates in discrete time and considers a flow of

packets arriving in a finite buffer with a capacity of at most B packets; packets

are transmitted out of the buffer in order of arrival over a communication link of

constant rate. More precisely, with time organized in contiguous slots of identical

duration, let QB
t denote the number of packets still present in the system at the

beginning of time slot [t, t + 1) and let At denote the number of new packets

arriving into the buffer during that slot. If the buffer output link can transmit c

packets/slot, then the buffer content evolves according to the recursion

QB
t+1 = min

{
B, [QB

t + At − c]+
}
, t = 0, 1, . . . (1.1)

1



for some given intial condition QB
0 ; we take QB

0 = 0 for concreteness 1. If the input

sequence {At, t = 0, 1, . . .} is stationary and ergodic, then the system eventually

reaches a statistical equilibrium or steady-state regime in that 2 QB
t =⇒t Q

B for

some random variable (rv) QB 3.

Determining the distribution of QB is a natural step towards the evaluation

of key design quantities such as the blocking probability and the packet loss rate.

Indeed, in the stationary ergodic framework, these quantities are readily given

by

lim
t→∞

1

t+ 1

t∑
s=0

1
[
QB

s = B
]

= P
[
QB = B

]
(1.2)

and

lim
t→∞

∑t
s=0[[Q

B
s + As − c]+ − B]+∑t

s=0As
=

E
[
[[QB + A1 − c]+ − B]+

]
E [A1]

, (1.3)

respectively. Evaluating the right handside of (1.2) and (1.3) is often a very

difficult task; closed form solutions are available in only a few instances of input

sequences {At, t = 0, 1, . . .}, and numerical techniques need to be developed to

handle most cases of practical interest.

However, in many situations (e.g., ATM networks), the blocking probability

and cell loss rate assume acceptable levels only when B is large. With this in

mind, it is reasonable to look instead at the corresponding infinite buffer system

(B = ∞) associated with (1.1). The evolution of the buffer content sequence

1Other models of buffer behavior are possible but will not be pursued here.

2The notation used in this thesis is collected in Section 2.1.

3The existence of QB is always guaranteed in the stationary and ergodic framework, but

additional assumptions are required to have uniqueness and independence with respect to the

initial condition.
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{Qt, t = 0, 1, . . .} is now governed by the Lindley recursion

Qt+1 = [Qt + At − c]+, t = 0, 1, . . . (1.4)

for some given initial condition Q0, say Q0 = 0 for concreteness. It is well known

[27] that if the input sequence {At, t = 0, 1, . . .} is stationary and ergodic with

E [A1] < c, then the system will reach statistical equilibrium, i.e., Qt =⇒t Q for

some IR+-valued rv Q.

The relevance of this approach is reinforced by the observation that the upper

bounds P
[
QB

t = B
]
≤ P [Qt ≥ B] are valid for all t = 0, 1, . . . and all B 4. This

fact translates to steady-state under the appropriate conditions, so that

P
[
QB = B

]
≤ P [Q ≥ B] , B ≥ 0. (1.5)

As argued earlier, we need secure reasonably good approximations to the blocking

probability P
[
QB = B

]
only for large B. Hence, as engineering designs tend to

be conservative, (1.5) suggests that this objective can be achieved by evaluating

the upper bound P [Q ≥ B] for large B.

1.2 Dependencies in network traffic

In the past decade, this evaluation task has been the subject of intense investiga-

tions in the wake of several traffic measurement studies which have concluded to

the “failure of Poisson modeling [42]” of traditional traffic models. As the data set

collected at BellCore [22] and a large number of following measurement studies

have by now indicated, network traffic exhibits time dependencies at much higher

4A direct sample path comparison can be used to show recursively that QB
t ≤ Qt for all

t = 0, 1, . . . provided QB
0 ≤ Q0.

3



time scales than had been traditionally observed. This long-range dependence has

been detected in a wide range of networking applications and over multiple net-

working infrastructures, e.g., Ethernet LANs [14, 22, 54], VBR traffic [9, 16, 36],

Web traffic [11] and WAN traffic [42].

Long-range dependence amounts to the correlations in the packet stream span-

ning over multiple timescales. More precisely, these long-range dependent pro-

cesses have hyperbolic decaying correlation structures (slow decaying) which are

non-summable. This is expected to affect performance in a manner drastically

different from that predicted by (traditional) summable correlation structures

which typically arise in Markovian traffic models and Poisson-like source. This

state of affairs has generated a strong interest in a number of alternative traffic

models which capture the (long-range) dependencies; good surveys are available

in [15, 30]. Suggested models are on-off sources [17, 22, 19], fractional Brownian

motion (FBM) processes [8, 35, 34], fractional Auto Regressive Integrated Mov-

ing Average (f-ARIMA) processes [18], M |G|∞ input processes [38, 39, 42] and

etc.

Under these new models, the corresponding buffer distribution displays much

heavier tails than the exponential tails which typically appear in short-range

dependent Markovian models. Thus, from these analyses emerges the recommen-

dations that buffers in networks carrying long-range dependent traffic should be

provisioned more generously than in networks with short-range dependent traffic.

4



1.3 Positive correlations

The recommendation above is based on asymptotic results of the form

lim
B→∞

1

v(B)
lnP [Q > B] = −γ (1.6)

with constant γ > 0 and monotone function v : (0,∞) → (0,∞) increasing

at infinity. Of course, γ and v are determined through the statistics of the

input sequence {At, t = 0, 1, . . .} to the buffer [36] – Typical examples include

v(B) = B, v(B) = Bβ (0 < β < 1) and v(B) = lnB.

Thus, (1.6) implies tails of the form

P [Q > B] ∼ e−v(B)(γ+o(1)) (B → ∞) (1.7)

but more detailed information on the tail of Q is usually not available as closed-

form expressions are simply not known, or hard to come by due to the inher-

ent computational complexity of these models. However, for the traffic models

for which (1.6) has been developed, these asymptotics already suggest the fol-

lowing: Assume the input process {At, t = 0, 1, . . .} to be positively correlated,

say associated [Definition 4.5.1], and let {Ât, t = 0, 1, . . .} denote its indepen-

dent version [Definition 4.3.2]. Then, the corresponding buffer content processes

{Qt, t = 0, 1, . . .} and {Q̂t, t = 0, 1, . . .} are “ordered” in some suitable sense, and

Q̂ is “smaller” than Q where Q̂ and Q denote the steady state versions (when-

ever appropriate). In other words, positive correlations lead to increased buffer

occupancy and larger buffer levels.

This “folk theorem” has been observed by others, e.g., the simulation study in

[26] with the help of the TES modeling tool. When Large Deviations arguments

are used to validate (1.6) with v(B) = B, then γ can often be related to the

5



Large Deviations functional of the input sequence {At, t = 0, 1, . . .}, and under

association, it is easy to see that

lim
B→∞

1

B
lnP

[
Q̂ > B

]
= −γ̂ (1.8)

with γ ≤ γ̂. Consequently, P
[
Q̂ > B

]
is less than P [Q > B] for large values of

B.

1.4 Overview

In this thesis, we consider the “folk theorem” on a more formal basis with the help

of recent advances from the theory of multivariate stochastic orderings [29, 47]:

First, we compare the input sequence and its independent version using the su-

permodular (sm) ordering [Definition 4.3.1] which is well suited for capturing the

positive dependence in the components of a random vector. From this compar-

ison, we then can compare the corresponding buffer contents in the increasing

convex (icx) ordering [Definition 4.1.2]. Unlike the sm ordering, the icx ordering

formalizes comparability in terms of size and variability.

In our discussion, we consider three versatile, mathematically convenient

and widely used models, namely, fractional Gaussian noise (FGN) model, on-

off sources and M |G|∞ input processes. The results we obtain for these classes

of traffic models can be briefly described as follows: If {At, t = 0, 1, . . .} and

{Ât, t = 0, 1, . . .} denote the input traffic process and its independent version,

then we can conclude that

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .} (1.9)

where the independent version is also a member of the same class of traffic models

as the input traffic process. This comparison (1.9) implies a similar comparison

6



in the increasing directionally convex (idcx) ordering [Definition 4.3.1 and (4.2)]

and thus by our main theorem [Theorem 5.1.1], the corresponding buffer content

processes {Qt, t = 0, 1, . . .} and {Q̂t, t = 0, 1, . . .} are icx ordered with

Q̂t ≤icx Qt, t = 0, 1, . . . , (1.10)

provided Q̂0 = Q0. Furthermore, under the stationarity assumption of the input

traffic and stability condition (E [A0] < c), the steady state comparison

Q̂ ≤icx Q (1.11)

can be derived through (1.10) provided Q̂0 = Q0 = 0 [Theorem 5.2.1]. In other

words, the independent version does act as a lower bound process, and (1.9),

(1.10) and (1.11) yield a formalization of the “folk theorem” mentioned above for

these classes of traffic models.

The passage from (1.9) to (1.10) is simply a consequence of the properties

of the sm ordering (and of its close cousin the idcx ordering) [Theorem 5.1.1].

The key idea behind the comparison (1.9) is the property of positive dependence,

known as sequentially stochastically increasing (SSI). As shown by Meester and

Shantihikumar [29], this property provided a sufficient condition for (1.9) to hold

[Theorem 4.5.1]. While these ideas are applied without too much difficulties to the

FGN traffic model, the analysis for the on-off sources and M |G|∞ traffic models

is more elaborate. In the case of on-off sources, conditions on the distribution of

the on- and off-periods are needed to achieve (1.9) (and resp. (1.10)). For the

M |G|∞ process, it is not clear whether the process is SSI or not. However, by

the properties of sm and idcx orderings, a decomposition of the M |G|∞ process

into independent components allows us to obtain (1.9).

Besides the folk theorem mentioned above, we also consider a more general

version of the folk theorem, namely “the larger the positive correlations of input

7



traffic, the higher the buffer occupancy levels.” This problem can be formalized

as followed: For a given traffic model, if the input traffic {A2
t , t = 0, 1, . . .} is

more “correlated” than the input traffic {A1
t , t = 0, 1, . . .} (in some sense), then

it is desirable to establish the order relation

{A1
t , t = 0, 1, . . .} ≤sm {A2

t , t = 0, 1, . . .} (1.12)

as suggested by the main theorem [Theorem 5.1.1] in order to obtain the compar-

ison for the corresponding buffer levels. For FGN traffic models, we show that

higher Hurst parameter results in higher size and variability of the buffer levels.

In the case of M |G|∞ processes, if the session duration of {A2
t , t = 0, 1, . . .} is

more variable than that of {A1
t , t = 0, 1, . . .}, then it is reasonable to expect that

(1.12) holds. Unfortunately, we are unable to establish (1.12) in this case and

the problem remains open for future research. However, we do get some insight

into this problem by proving the comparison in the bivariate case, i.e,

(A1
0, A

1
t ) ≤sm (A2

0, A
2
t ), t = 1, 2, . . . . (1.13)

Lastly, we conjecture for the case of on-off sources that the comparison (1.12)

should hold if the on-period duration distribution of {A2
t , t = 0, 1, . . .} is more

variable than that of {A1
t , t = 0, 1, . . .}.

1.5 Thesis organization

The thesis is organized as follows: Chapter 2 collects the notation used in this

thesis and basic facts on IN-valued rvs, exponential rvs and discrete-Pareto rvs.

Chapter 3 summarizes basic definitions and facts of three traffic models, namely,

fractional Gaussian noise (FGN) traffic model, on-off sources and M |G|∞ input

8



traffic. These traffic models are well suited to model the long-range dependent

traffic, e.g. FGN with Hurst parameter is 0.5 < H < 1 [1], the on-off sources with

Pareto-like activity periods [19], and M |G|∞ with Pareto-like session duration

[38].

In Chapter 4, we introduce the notion of stochastic orderings of random vec-

tors and random sequences with an emphasis on multivariate orderings that cap-

ture the dependence structure among the components of random vectors. Then,

the key notion of sequentially stochastically increasing (SSI) property is presented

and its relationship with the sm ordering is shown. In Chapter 5, we formulate

the buffer sizing problem and apply the property of the idcx ordering to obtain

the main theorem [Theorem 5.1.1]. The translation of the results from transient

to steady state is also discussed.

We give the comparison and simulation results of FGN traffic model in Chap-

ter 6. Chapter 7 and 8 contain the discussions of SSI conditions for stationary

on-off sources and non-stationary on-off sources, respectively. We then confirm

the comparison results of on-off sources by simulations in Chapter 9. Moreover,

in Chapter 10, we extend the result of a single on-off source to the superposition

of N independent on-off sources. Under some enforced assumptions, as N goes

to infinity, the limiting process of the superposition of N i.i.d. on-off sources con-

verges in distribution to an M |G|∞ process. From this approach, we establish

the comparison between the M |G|∞ process and its independent version under

the condition that the session duration rv and its forward recurrence are DFR

rvs.

Finally, in Chapter 11 we develop the comparison between the M |G|∞ in-

put process and its independent version using an independent decomposition.

9



We conclude to the same result as in Chapter 10 but without any condition on

the session duration rv. Furthermore, the effect of session-duration variability

is discussed and the comparison in the case of two-dimensional rvs (1.13) is es-

tablished. Lastly, we confirm the comparison between the M |G|∞ input process

and its independent version using simulations in Section 11.4.
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Chapter 2

Notation and Basic Facts

2.1 Notation

A few words on the notation used in this thesis:

A scalar x in IR is denoted by a regular font, while a vector x in IRn is written in

a bold font. For any scalar x in IR, we write x+ to denote max(0, x). For any two

vectors x,y in IRn, let ≤ and < denote the coordinatewise orderings in IRn such

that if x ≤ y, then xi ≤ yi for i = 1, . . . , n, and similarly, if x < y, then xi < yi for

i = 1, . . . , n. Moreover, for x,y and z in IRn, we write [x,y] ≤ z if x ≤ z and y ≤
z. Also, let ∧ and ∨ denote the coordinatewise minimum and maximum, respec-

tively, i.e., for any two vectors x,y in IRn, x ∧ y = (min(x1, y1), . . . ,min(xn, yn))

(respectively, x ∨ y = (max(x1, y1), . . . ,max(xn, yn))).

All random variables (rvs) are defined on some probability triple (Ω,F ,P),

with E denoting the corresponding expectation operator. Usually, unless specified

otherwise, we use upper case letters (e.g., X, Y ) to denote rvs. Moreover, random

vectors are denoted by bold upper case letters (e.g., X,Y). Two rvs X and Y

are said to be equal in law if they have the same distribution, a fact we denote

by X =st Y . Weak convergence is denoted by =⇒N (with N going to infinity).
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Finally, for any vector µ in IRn and for any symmetric non-negative definite

n× n matrix Σ = (Σij), we write X =st N (µ,Σ) to indicate that the IRn-valued

rv X is normally distributed with mean vector µ and covariance matrix Σ.

2.2 Basic facts on IN-valued rvs

We begin with a few definitions: For any IN-valued rv X, we define

S(X) := {t = 0, 1, . . . : P [X ≥ t] > 0}.

Obviously, S(X) is not empty as it contains t = 0, and is of the form {0, 1, . . . , TX}
for some integer TX (possibly infinite). More precisely, we have

TX = sup{t = 0, 1, . . . : P [X ≥ t] > 0}.

Recall that the failure rate function and the residual life function of an IN-valued

rv X are defined by

hX(t) :=
P [X = t]

P [X ≥ t]
, t = 1, . . . , TX

and

rX(t) :=
P [X ≥ t+ 1]

P [X ≥ t]
= 1 − hX(t), t = 1, . . . , TX ,

respectively1. We say that the rv X is increasing failure rate (IFR) (resp. de-

creasing failure rate (DFR)) if the mapping {1, . . . , TX} → IR+ : t → hX(t) is

increasing (resp. decreasing).

If the IN-valued rv X has finite mean, we define the forward recurrence time

X̂ to be the IN-valued rv with pmf given by

P
[
X̂ = t

]
=

P [X ≥ t]

E [X]
, t = 0, 1, . . . (2.1)

1In most cases of interest, X is a {1, 2, . . .}-valued rv. Therefore, we define the domain of

hX and rX as the set {1, . . . , TX}.
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Note that

P
[
X̂ ≥ t

]
= E [X]−1

∞∑
s=t

P [X ≥ s] , t = 0, 1, . . . (2.2)

so that P
[
X̂ ≥ t

]
= 0 if and only if P [X ≥ t] = 0, and we conclude S(X̂) =

S(X).

The next lemma provides a simple characterization of the DFR (resp. IFR)

property of X̂.

Lemma 2.2.1 For any IN-valued rv X with finite mean, the corresponding IN-

valued rv X̂ is DFR (resp. IFR) if and only if

hX̂(t+ 1) ≤ (resp. ≥) hX(t), t = 1, . . . , TX − 1. (2.3)

Proof. Fix t = 1, . . . , TX − 1. Combining the definition of hX̂(t) with (2.1) and

(2.2), we first obtain

hX̂(t) =
P [X ≥ t]∑∞

s=t P [X ≥ s]
(2.4)

so that

P [X ≥ t] = P [X = t] + P [X ≥ t+ 1]

= hX(t)P [X ≥ t] + hX̂(t+ 1)
∞∑

s=t+1

P [X ≥ s] . (2.5)

Upon substituting (2.5) into (2.4), we get

hX̂(t)
∞∑
s=t

P [X ≥ s] = hX(t)P [X ≥ t] + hX̂(t+ 1)
∞∑

s=t+1

P [X ≥ s]

and rearranging we find

(hX̂(t+ 1) − hX(t))P [X ≥ t] = (hX̂(t+ 1) − hX̂(t))
∞∑
s=t

P [X ≥ s] .

The desired conclusion now follows.
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2.3 Geometric and discrete-Pareto rvs

In this section, we discuss facts and properties of two well-known rvs namely,

geometric and discrete-Pareto rvs.

For 0 < ρ < 1, an {1, 2, . . .}-valued rv X is said to be a geometric rv with

parameter ρ if it is distributed according to the pmf

P [X = k] = ρk−1(1 − ρ), k = 1, 2, . . . ,

in which case we write X =st G(ρ). It is plain that

E [X] =
1

1 − ρ
and hX(t) = 1 − ρ, t = 1, 2, . . . . (2.6)

Let X̂ be the forward recurrence associated with X. By its definition in (2.1),

the rv X̂ =st G(ρ), thus hX̂(t) = 1 − ρ. Therefore, both X and X̂ are DFR.

A rv Y is said to have a discrete-Pareto distribution with parameter 1 < α ≤ 2

if its pmf is given by

P [Y = k] = k−α − (k + 1)−α, k = 1, 2, . . . , (2.7)

so that

P [Y ≥ k] = k−α, k = 1, 2, . . . . (2.8)

We denote this rv Y by P(α). It is known that when 1 < α < 2, the discrete-

Pareto rv has finite mean but infinite variance. From (2.7) and (2.8), we have

E [Y ] =
∞∑

k=1

k−α and hY (t) = 1 − (
t

t+ 1
)α, t = 1, 2, . . . . (2.9)

Moreover, its forward recurrence rv Ŷ has pmf

P
[
Ŷ = t

]
=

t−α∑∞
k=1 k

−α
, t = 1, 2, . . . , (2.10)
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and hazard rate function

hŶ (t) =
t−α∑∞

k=t k
−α
, t = 1, 2, . . . . (2.11)

Clearly, the rv Y is DFR from the expression (2.9) of hY (t). In order to show

the DFR property of Ŷ , define the sequence of mappings {fK : IR+ → IR, K =

1, 2, . . .} such that for each K = 1, 2, . . .,

fK(t) =
t−α∑K

k=0(t+ k)−α
, t > 0. (2.12)

For fixed K = 1, 2, . . ., the mapping fK is decreasing since by evaluating the first

derivative of fK , we have

dfK(t)

dt
=

αt−α

(
∑K

k=0(t+ k)−α)2
[−

K∑
k=0

t−1(t+ k)−α +
K∑

k=0

(t+ k)−α−1]

=
αt−α

(
∑K

k=0(t+ k)−α)2

K∑
k=0

(t+ k)−α((t+ k)−1 − t−1) ≤ 0, t > 0.

Thus, it holds that for all K = 1, 2, . . .,

fK(t+ 1) ≤ fK(t), t = 1, 2, . . . . (2.13)

Note from (2.11) that hŶ (t) = limK→∞ fK(t) for all t = 1, 2, . . .. By letting K go

to infinity in (2.13), we conclude that Ŷ is DFR.
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Chapter 3

Traffic Models

Over the past decade, network traffic in both LANs and WANs, has been shown

to possess long-range dependence [22, 42]. As a result, traditional traffic models,

which mostly characterize short-range dependent traffic, cannot be used for eval-

uating the performance of today’s networks. Many new traffic models have been

proposed [22, 36, 42] to capture the long-range dependence property. In this the-

sis, we consider three traffic models, namely, the fractional Gaussian noise model,

the on-off source model, and the M |G|∞ input traffic model. These three models

are described in details in Sections 3.1-3.3.

3.1 Fractional Gaussian noise (FGN)

The fractional Gaussian noise is a Gaussian process which is strictly self-similar

(Appendix A). A detailed treatment of fractional Gaussian noise (and its close

cousin, fractional Brownian motion) can be found in the monograph [44], and

their use for traffic modeling is discussed in [34, 49, 55]. For 0 < H < 1, any zero-

mean Gaussian random process {BH(t), t ∈ IR} with autocorrelation function

RH(t, s) ≡ Cor(BH(t), BH(s))
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=
1

2
{|t|2H + |s|2H − |t− s|2H}V ar(BH(1)), t, s ∈ IR (3.1)

is called a fractional Brownian motion (FBM) with Hurst parameter H . Frac-

tional Gaussian noise (FGN) {NH
t , t = 0, 1, . . .} is now defined by

NH
t ≡ BH(t+ 1) −BH(t), t = 0, 1, . . . .

Since FBM has stationary increments, the rvs {NH
t , t = 0, 1, . . .} form a zero-

mean stationary Gaussian sequence with autocovariance function

ΓH(k) ≡ cov(NH
t , N

H
t+k)

=
σ2

2
(|k + 1|2H − 2|k|2H + |k − 1|2H), k = 0, 1, . . . (3.2)

where σ2 ≡ V ar(NH
t ) = V ar(BH(1)). We refer to the sequence {NH

t , t =

0, 1, . . .} by FGN(H).

In this thesis, we consider H only in the range 0.5 ≤ H < 1, which corresponds

to positive correlations as was found appropriate for network traffic modeling. It

is easy to see that when H = 0.5, ΓH(k) = 0 for all k = 1, 2, . . ., and {NH
t , t =

0, 1, . . .} is then a sequence of i.i.d. Gaussian random variables. However, when

0.5 < H < 1, the asymptotics [44]

ΓH(k) ∼ σ2H(2H − 1)k2H−2 as k → ∞

show that FGN(H) exhibits long-range dependence. It is also clear from condi-

tion (A.5), (A.6) and (3.2) that FGN(H) is an exactly second-order self-similar

process, thus a self-similar process, since it is a Gaussian process.

The FGN(H) traffic model we use as the input traffic {AH
t , t = 0, 1, . . .} in

this thesis will be of the form

AH
t = m+NH

t , t = 0, 1, . . .
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where m is the average rate of the traffic. The process {AH
t , t = 0, 1, . . .} is also

a Gaussian process with E
[
AH

t

]
= m for all t = 0, 1, . . ., and its autocovariance

function is still given by (3.2). Therefore, {AH
t , t = 0, 1, . . .} is a self-similar

process.

3.2 On-off sources

A discrete time independent on-off source is defined as a succession of cycles

where each cycle contains an off period followed by an on period. In the off

period, the source is silent while during the on period the source is active and

produces traffic at a constant rate. For simplicity, we set this rate to be unity,

say one cell/slot. The first on and off period durations, denoted B0 and I0,

are IN-valued rvs. The following on period durations {Bn, n = 1, 2, . . .} and off

period durations {In, n = 1, 2, . . .} form i.i.d. sequences of {1, 2, . . .}-valued rvs

distributed according to generic rvs B and I, respectively. We will assume that

the rvs B0, I0, {Bn, n = 1, 2, . . .} and {In, n = 1, 2, . . .} are independent and that

both B and I have finite first moments, i.e., 0 < E [B] ,E [I] < ∞. We refer to

the independent on-off process just defined as the on-off source (I, B).

To mark the beginning of cycles, we define a sequence of epochs {Tn, n =

0, 1, . . .} by T0 := 0 and Tn+1 :=
∑n

k=0(Ik + Bk) for all n = 0, 1, . . .. Hence, at

time Tn the process begins the (n + 1)st cycle with an off period of duration In

followed by an on period of duration Bn. Furthermore, the first cycle will start

with timeslot [0,1). The traffic process {At, t = 0, 1, . . .} indicates the level of

activity of the source and can be represented by

At =
∞∑

n=0

1 [Tn + In ≤ t < Tn+1] , t = 0, 1, . . . . (3.3)

18



In general, the discrete-time on-off process {At, t = 0, 1, . . .} as defined above

is not stationary, and additional assumptions on the sequence of rvs {In, Bn, n =

0, 1, . . .} are needed to obtain the stationary version. As in the continuous-time

version [2, 17], we require the following:

(i) The rvs (I0, B0), {In, n = 1, . . .} and {Bn, n = 1, . . .} are mutually inde-

pendent families of rvs;

(ii) The rvs {In, n = 1, . . .} (respectively, {Bn, n = 1, . . .}) are i.i.d. {1, 2, . . .}-
valued rvs distributed according to a generic off period rv I (respectively,

on period rv B).

(iii) The relations

[(I0, B0)|I0 > 0] =st (Î , B) and [(I0, B0)|I0 = 0] =st (0, B̂) (3.4)

hold where Î is independent of B. In addition, the average rate p of the

source is given by

p := P [I0 = 0] =
E [B]

E [B] + E [I]
. (3.5)

Under the assumption (i)-(iii), we have

[I0 +B0|I0 > 0] =st Î +B and [I0 +B0|I0 = 0] =st B̂. (3.6)

We note that every cycle always starts with an off period with the possibility

that I0 = 0, so that every cycle contains an on period. Throughout the thesis,

we refer to the stationary version of the discrete-time on-off source (I, B) as the

stationary on-off source (I, B). The non-stationary on-off source (I, B) is defined

in the same way as the stationary on-off source but with (I0, B0) =st (I, B)
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(instead of (3.6)), i.e., the non-stationary on-off source (I, B) always starts with

the off-period with off-period duration distributed according to I followed by the

on-period with on-period duration distributed according to B.

3.3 M |G|∞ input traffic

The M |G|∞ input traffic is simply the number of busy servers in the infinite

server system fed by a discrete-time Poisson process with rate λ (customers per

timeslot) and with generic service time S (expressed in timeslots). A more de-

tailed treatment of M |G|∞ input processes can be found in [37, 40, 52]. For

the continuous-time version, we refer the reader to [19, 24]. This process is a

versatile class of input traffic since both short-range and long-range dependent

traffic can be generated by properly selecting the service distribution of S. In

this section, we start with the description of the discrete-time M |G|∞ process

and of its stationary version, and then give an explicit representation of these

processes.

3.3.1 System description

Consider a system of infinitely many servers. Suppose there are Bt customers ar-

riving to the system in timeslot [t−1, t), t = 1, 2, . . .. Customer i, i = 1, 2, . . . , Bt,

is assigned its own server from which it starts receiving service with duration St,i

(number of slots) in timeslot [t, t+ 1). If there are B initial customers present in

the system at time t = 0 (i.e., A0 = B), then initial customer i, i = 1, 2, . . . , B,

will have service time duration S0,i (starting at t = 0). Let At be the number of

busy servers, or equivalently, the number of customers still present at the begin-
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ning of the timeslot [t,t+1). The busy server process {At, t = 0, 1, . . .} defines

the M |G|∞ input process.

To define the stationary and ergodic version of the M |G|∞ input process,

we need to make the following assumptions on the IN-valued rvs B, {Bt, t =

1, 2, . . .}, {St,i, t = 1, 2, . . . , i = 1, 2, . . .} and {S0,i, i = 1, 2, . . .}:

(i) These rvs are mutually independent;

(ii) The rv B is Poisson distributed with mean λE [S];

(iii) The rvs {Bt, t = 1, 2, . . .} are i.i.d. Poisson rvs with mean λ > 0;

(iv) The rvs {St,i, t = 1, 2, . . . , i = 1, 2, . . .} are i.i.d. with common pmf G on

{1, 2, . . .}. Let S be a generic rv distributed according to the pmf G and as-

sume throughout that this pmf G has a finite first moment, or equivalently,

that E [S] <∞;

(v) The rvs {S0,i, i = 1, 2, . . .} are i.i.d. {1, 2, . . .}-valued rvs distributed accord-

ing to pmf Ĝ which is the forward recurrence pmf associated with G.

Hereafter, by an M |G|∞ input process we mean the stationary and ergodic

version, still denoted {At, t = 0, 1, . . .} and identified by the conditions above.

In that case, we will write {Ŝi, i = 1, 2, . . .} instead of {S0,i, i = 1, 2, . . .}. Since

the process can be characterized by two parameters, namely λ and S, we refer to

this M |G|∞ process as the M |G|∞ input process (λ, S). The next proposition

summarizes key properties of such a stationary M |G|∞ input process.

Proposition 3.3.1 Under assumptions (i)-(v) above, the M |G|∞ input process

(λ, S) {At, t = 0, 1, . . .} is a (strictly) stationary and ergodic process with the

following properties:
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(i) For each t = 0, 1, . . ., the rv At is a Poisson rv with parameter λE [S].

(ii) Its covariance function is given by

cov(At, At+h) = λE
[
(S − h)+

]
= λE [S]P

[
Ŝ > h

]
, t, h = 0, 1, . . . .

(iii) Its index of dispersion of counts (IDC) is given by

IDC ≡
∞∑

h=0

cov(At, At+h) = λE [S]
∞∑

h=0

P
[
Ŝ > h

]
=
λ

2
E [S(S + 1)] ,

and the process is short-range dependent (i.e., has finite IDC) if and only

if E [S2] is finite.

3.3.2 Mathematical representation

Fix t = 0, 1, . . .. From the system description in Section 3.3.1, we can write

At = A
(0)
t + A

(a)
t (3.7)

where A
(0)
t and A

(a)
t are the numbers of busy servers in the system at the be-

ginning of the timeslot [t, t + 1) contributed by the initial customers and new

arrivals during [0, t), respectively. From the B initial customers, customer i,

i = 1, 2, . . . , B, will be in the system at the beginning of timeslot [t, t+ 1) if and

only if Ŝi > t, whence

A
(0)
t =

B∑
i=1

1
[
Ŝi > t

]
. (3.8)

The arrival portion A
(a)
t can be viewed as the number of customers at the

beginning of timeslot [t, t+1) of the system with no initial customer (B = A0 = 0).

Let A
(a,s)
t be the number of customers still in the system at the beginning of

timeslot [t, t+1) having arrived in the timeslot [s−1, s) with s = 1, . . . , t. These
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Bs customers who arrive in [s − 1, s) will be in the system at the beginning of

timeslot [t, t+1) if their service time durations exceed t−s timeslots. Therefore,

A
(a,s)
t =

Bs∑
i=1

1 [Ss,i > t− s] , s = 1, . . . , t.

Since A
(a)
t is the sum of the independent rvs {A(a,s)

t , s = 1, 2, . . . , t}, we have

A
(a)
t =

t∑
s=1

Bs∑
i=1

1 [Ss,i > t− s] . (3.9)

It can be shown via Laplace transforms [37] that the rv A
(a,s)
t is Poisson dis-

tributed with rate λP [S > t− s] so that the rv A
(a)
t is also Poisson distributed

with rate λ
∑t

s=1 P [S > s].

From (3.7),(3.8) and (3.9), the stationary version of the M |G|∞ input process

has the expression

At = A
(0)
t + A

(a)
t

=
B∑

i=1

1
[
Ŝi > t

]
+

t∑
s=1

Bs∑
i=1

1 [Ss,i > t− s] . (3.10)

Sometimes, it is useful to consider the cumulative arrival process on [0, t], namely,

t∑
s=1

As =
t∑

s=1

A(0)
s +

t∑
s=1

A(a)
s . (3.11)

Explicit expressions are available for these quantities; they are summarized in

the next proposition proved in [37].

Proposition 3.3.2 For each t = 1, 2, . . ., we have the expressions

t∑
s=1

A(0)
s =

B∑
i=1

min(t, Ŝi − 1), (3.12)

and
t∑

s=1

A(a)
s =

t∑
s=1

Bs∑
i=1

min(t− s+ 1, Ss,i). (3.13)
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Chapter 4

Stochastic Orderings and Positive Dependence

4.1 Integral stochastic orderings

In this section, we summarize some important definitions and facts about the

stochastic orderings of random vectors. Additional information can be found in

the monographs by Shaked and Shanthikumar [45] and by Stoyan [48]. The basic

definition of integral stochastic orderings can be stated as follows:

Definition 4.1.1 Let F be a class of Borel measurable function ϕ : IRn → IR.

We say that the two IRn-valued rvs X and Y satisfy the order relation X ≤F Y

if

E [ϕ(X)] ≤ E [ϕ(Y)] (4.1)

for all functions ϕ in F , whenever the expectations exist.

This generic definition has been specialized in the literature. Here are some

important examples.

Definition 4.1.2 The IRn-valued rvs X and Y are said to be ordered according

to
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(i) the usual stochastic ordering, written X ≤st Y, if (4.1) holds for all

increasing functions ϕ : IRn → IR, provided the expectations exist;

(ii) the convex ordering, written X ≤cx Y, if (4.1) holds for all convex

functions ϕ : IRn → IR, provided the expectations exist; and

(iii) the increasing convex ordering, written X ≤icx Y, if (4.1) holds for all

increasing convex functions ϕ : IRn → IR, provided the expectations exist.

It is known [45] that for IR-valued rvsX and Y , if X ≤cx Y then E [X] = E [Y ]

and V ar(X) ≤ V ar(Y ), thus X has the same mean as Y but less variability than

Y . In addition, when X ≤icx Y , we find E [X] ≤ E [Y ], hence Y is greater than

X in both “size and variability.” Consequently, the orderings cx and icx are

appropriate for comparing the variability of rvs. However, in the case of random

vectors, it is also desirable to compare their “dependence” structures. In the

following sections, we investigate stochastic orderings which are well suited for

comparing the dependence structures of random vectors and sequences.

4.2 Directional convexity and supermodularity

The stochastic ordering based on directional convexity has been introduced by

Shaked and Shanthikumar [46] and Meester and Shanthikumar [29]. Recently,

the supermodular ordering, which is closely related to the directionally convex

ordering, has been used in a number of queueing and reliability applications

[6, 7, 47]. We begin by introducing the classes of functions associated with these

two orderings. We then state some important lemmas and theorems that will be

useful in the buffer sizing problem.

25



Definition 4.2.1 A function ϕ : IRn → IR is said to be supermodular (sm) if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y), x,y ∈ IRn.

Definition 4.2.2 A function ϕ : IRn → IR is said to be directionally convex (dcx)

if for any x1,x2,x3,x4 in IRn such that

x1 ≤ [x2,x3] ≤ x4 and x1 + x4 = x2 + x3,

it holds that

ϕ(x1) + ϕ(x4) ≥ ϕ(x2) + ϕ(x3).

With ε > 0 and ei the ith unit vector in IRn, i = 1, 2, . . . , n, we define the

difference operator

�ε
iϕ(x) = ϕ(x + εei) − ϕ(x), x ∈ IRn

for a function ϕ : IRn → IR.

The followings contain well-known equivalent conditions for directionally con-

vex functions [46].

Proposition 4.2.1 For a function ϕ : IRn → IR, the following conditions (i)-(iv)

are equivalent, where

(i) ϕ is directionally convex;

(ii) ϕ is supermodular and convex in each coordinate;

(iii) For all ε, δ > 0 and 1 ≤ i, j ≤ n, it holds that

�ε
i �δ

j ϕ(x) ≥ 0, x ∈ IRn;
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(iv) For any x1,x2,y in IRn with x1 ≤ x2 and y > 0, it holds that

ϕ(x1 + y) − ϕ(x1) ≤ ϕ(x2 + y) − ϕ(x2).

We note that directional convexity does not imply nor is it implied by convex-

ity. However, it is plain from condition (iv) of Proposition 4.2.1 that directional

convexity can be viewed as a natural extension of univariate convexity. Condition

(iii) also implies that any twice differentiable function with non-negative second

derivatives is dcx. A function is said to be increasing directionally convex (idcx)

(resp. increasing supermodular (ism)) when it is increasing in addition to being

dcx (resp. sm).

4.3 Directionally convex and supermodular or-

derings

We now are ready to define the dependence orderings based on the supermodular

and directionally convex functions.

Definition 4.3.1 The IRn-valued rvs X and Y are said to be ordered according

to

(i) the supermodular ordering, written X ≤sm Y, if (4.1) holds for all su-

permodular functions ϕ : IRn → IR, provided the expectations exist;

(ii) the directionally convex ordering, written X ≤dcx Y, if (4.1) holds for

all directionally convex functions ϕ : IRn → IR, provided the expectations

exist;
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(iii) the increasing supermodular ordering, written X ≤ism Y, if (4.1) holds

for all increasing supermodular functions ϕ : IRn → IR, provided the expec-

tations exist; and

(iv) the increasing directionally convex ordering, written X ≤idcx Y, if (4.1)

holds for all increasing directionally convex functions ϕ : IRn → IR, provided

the expectations exist.

From condition (ii) in Proposition 4.2.1, the class of directionally convex func-

tions is a subclass of the class of supermodular functions, so that the supermod-

ular ordering is stronger than the directionally convex ordering. Moreover, the

dcx ordering also implies the idcx ordering and the following implications thus

hold: For any IRn-valued rvs X and Y,

X ≤sm Y ⇒ X ≤dcx Y ⇒ X ≤idcx Y. (4.2)

It can be shown that for non-negative IRn-valued rvs X and Y, if X ≤idcx Y,

then E [XiXj] ≤ E [YiYj] for all i, j = 1, . . . , n. Lastly, we note the equivalence

between the sm and ism orderings given in [32].

Proposition 4.3.1 For IRn-valued rvs X and Y, the conditions (i)-(ii) below are

equivalent, where

(i) X ≤sm Y;

(ii) X ≤ism Y and Xi =st Yi, i = 1, . . . , n.

Additional information on the supermodular ordering can be found in [5, 6,

7, 32, 47]. For some properties and applications of the dcx ordering, we refer the

reader to [7, 29, 51].
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The next two lemmas are due to Meester and Shanthikumar [29], and point

to relations between the directionally convex and convex orderings.

Lemma 4.3.1 If ϕ : IRn → IR is an idcx function and the mapping g : IR → IR

is increasing and convex, then the composition g ◦ ϕ : IRn → IR is idcx.

Lemma 4.3.2 If X ≤idcx Y, then ϕ(X) ≤icx ϕ(Y) for any idcx function ϕ :

IRn → IR.

In addition, we shall use the fact that the sm, dcx and idcx orderings are

closed under convolution.

Lemma 4.3.3 Let X,Y and Z be independent IRn-valued rvs. With ≤ denoting

either ≤sm,≤dcx or ≤idcx, if X ≤ Y, then X + Z ≤ Y + Z.

Proof. We give the proof for the idcx ordering as a similar argument can be used

to establish the result for the sm and dcx orderings. By definition, X ≤idcx Y

means that for any idcx function ψ : IRn → IR, we have

E [ψ(X1, . . . , Xn)] ≤ E [ψ(Y1, . . . , Yn)] (4.3)

whenever the expectations exist. Now, for an idcx function ϕ : IRn → IR, we

define the mapping Φ : IRn → IR by

Φ(x) = E [ϕ(x + Z)] , x ∈ IRn,

and note that Φ is also an idcx function. Under the independence assumption,

we can write

E [ϕ(X1 + Z1, . . . , Xn + Zn)] = E [Φ(X1, . . . , Xn)]

≤ E [Φ(Y1, . . . , Yn)]

= E [ϕ(Y1 + Z1, . . . , Yn + Zn)]
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where the inequality follows from (4.3) (when applied to Φ).

We also note the following convergence result [32, Thm. 3.1, p. 112].

Lemma 4.3.4 Let {Xi, i = 1, 2, . . .} and {Yi, i = 1, 2, . . .} denote two sequences

of IRn-valued rvs such that Xn =⇒n X∞ and Yn =⇒n Y∞. If Xn ≤sm Yn for

each n = 1, 2, . . ., then X∞ ≤sm Y∞.

It is not known whether either the dcx or idcx ordering is stable under weak

convergence.

Iterating Lemma 4.3.3 with the help of Lemma 4.3.4 leads to the following

two special cases, but first, a definition:

Definition 4.3.2 For IRn-valued rvs X and X̂, we say that X̂ = (X̂1, . . . , X̂n)

is an independent version of X = (X1, . . . , Xn) if the rvs X̂1, X̂2, . . . , X̂n are

mutually independent with X̂k =st Xk, k = 1, . . . , n.

Corollary 4.3.1 Let {Xi, i = 1, 2, . . .} and {X̂i, i = 1, 2, . . .} denote two se-

quences of mutually independent IRn-valued rvs where for each i = 1, 2, . . .,

X̂i = (X̂i1, . . . , X̂in) is an independent version of Xi. With ≤ denoting either

≤dcx or ≤idcx, if X̂i ≤ Xi for all i = 1, 2, . . ., then for each N = 1, 2, . . ., the rv

∑N
i=1 X̂i is an independent version of

∑N
i=1 Xi and

N∑
i=1

X̂i ≤
N∑

i=1

Xi, N = 1, 2, . . . .

Proof. We give the proof only for the idcx ordering as the dcx ordering can

be established by the same argument. Without loss of generality, we can always

assume that the sequences {Xi, i = 1, 2, . . .} and {X̂i, i = 1, 2, . . .} are mutually
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independent. The proof proceeds by induction: When N = 2, by a repeated use

of Lemma 4.3.3, we have

X̂1 + X̂2 ≤idcx X1 + X̂2 ≤idcx X1 + X2,

and the basis step is established. Suppose now that the result holds for some

N = m. For N = m+ 1, again by repeatedly using Lemma 4.3.3, we can write

m∑
i=1

X̂i + X̂m+1 ≤idcx

m∑
i=1

Xi + X̂m+1 ≤idcx

m∑
i=1

Xi + Xm+1.

We complete the proof by noting that
∑N

i=1 X̂i is the independent version of

∑N
i=1 Xi since the rvs

∑N
i=1 X̂i1,

∑N
i=1 X̂i2, . . . ,

∑N
i=1 X̂in are independent with

N∑
i=1

X̂ik =st

N∑
i=1

Xik, k = 1, 2, . . . , n.

Corollary 4.3.2 Let {Xi, i = 1, 2, . . .} and {X̂i, i = 1, 2, . . .} denote two se-

quences of mutually independent IRn-valued rvs where for each i = 1, 2, . . .,

X̂i = (X̂i1, . . . , X̂in) is an independent version of Xi. If X̂i ≤sm Xi for all

i = 1, 2, . . ., then:

(i) For N = 1, 2, . . ., the rv
∑N

i=1 X̂i is an independent version of
∑N

i=1 Xi

and
N∑

i=1

X̂i ≤sm

N∑
i=1

Xi;

(ii) If
∑N

i=1 Xi =⇒N
∑∞

i=1 Xi, then
∑N

i=1 X̂i =⇒N
∑∞

i=1 X̂i where the rv

∑∞
i=1 X̂i is an independent version of

∑∞
i=1 Xi and

∞∑
i=1

X̂i ≤sm

∞∑
i=1

Xi.
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Proof. For Claim (i), we apply the same argument as in the proof of Corollary

4.3.1, this time with the sm ordering. That
∑N

i=1 X̂i is an independent version of

∑N
i=1 Xi has already been established in the proof of Corollary 4.3.1.

To establish Claim (ii), we invoke the weak convergence property of the sm

ordering [Lemma 4.3.4]. By Claim (i), for each N = 1, 2, . . ., we have
∑N

i=1 X̂i ≤sm∑N
i=1 Xi and

∑N
i=1 X̂i is an independent version of

∑N
i=1 Xi. By Lemma 4.3.4, we

need only show
∑N

i=1 X̂i =⇒N
∑∞

i=1 X̂i in order to establish
∑∞

i=1 X̂i ≤sm
∑∞

i=1 Xi.

Since
∑N

i=1 Xi =⇒N
∑∞

i=1 Xi, we have for each k = 1, . . . , n,
∑N

i=1Xik =⇒N

(
∑∞

i=1 Xi)k, whence

N∑
i=1

X̂ik =st

N∑
i=1

Xik =⇒N (
∞∑
i=1

Xi)k.

Upon noting that (
∑∞

i=1 Xi)k =st
∑∞

i=1 X̂ik for all k = 1, 2, . . . , n and that the rvs

∑∞
i=1 X̂i1,

∑∞
i=1 X̂i2, . . . and

∑∞
i=1 X̂in are independent rvs, we conclude that

N∑
i=1

X̂i =⇒N

∞∑
i=1

X̂i

and
∑∞

i=1 X̂i is an independent version of
∑∞

i=1 Xi.

Finally, it is useful to extend some of these definitions to sequences of rvs.

Definition 4.3.3 With ≤ denoting either ≤sm,≤dcx or ≤idcx, we say that the two

IR-valued sequences X = {Xn, n = 1, 2, . . .} and Y = {Yn, n = 1, 2, . . .} satisfy

the relation X ≤ Y if for all n = 1, 2, . . ., it holds that

(X1, . . . , Xn) ≤ (Y1, . . . , Yn).
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Definition 4.3.4 For sequences of IR-valued rvs X = {Xn, n = 1, 2, . . .} and

X̂ = {X̂n, n = 1, 2, . . .}, we say that X̂ is an independent version of X if the rvs

{X̂n, n = 1, 2, . . .} are mutually independent with X̂n =st Xn, n = 1, 2, . . ..

4.4 The orthant orderings

In addition to the supermodular and directionally convex orderings, we consider

another class of orderings, called the orthant orderings, defined as follows:

Definition 4.4.1 The IRn-valued rvs X and Y are said to be ordered according

to

(i) the upper orthant ordering, written X ≤uo Y, if for any t in IRn,

P [X > t] ≤ P [Y > t]; and

(ii) the lower orthant ordering, written X ≤lo Y, if for any t in IRn,

P [X ≤ t] ≥ P [Y ≤ t].

The orthant orderings has been treated by Shaked an Shanthikumar [45].

However, the definition of the lower orthant ordering is not consistent in the

literature. For example, some authors [32] define the lower orthant ordering in

the opposite way. Here, we use the definition found in [45].

Now, we show the relationship between the orthant orderings and supermod-

ular ordering but first, a definition:

Definition 4.4.2 A function ϕ : IRn → IR is said to be ∆-monotone if for all

x in IRn, k = 1, . . . , n, any subset J = {i1, . . . , ik} ⊂ {1, . . . , n} and every

ε1, . . . , εk > 0, it holds that

�ε1
i1 . . .�εk

ik
ϕ(x) ≥ 0.
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It has been shown by Rüschendorf [43] that the integral ordering generated by

∆-monotone functions is equivalent to the upper orthant ordering.

Proposition 4.4.1 For IRn-valued rvs X and Y, the conditions (i)-(ii) below

are equivalent, where

(i) X ≤uo Y;

(ii) The inequality (4.1) holds for all ∆-monotone functions ϕ : IRn → IR,

provided the expectations exist.

For t in IRn, the indicator functions IRn → {0, 1} : x → 1 [x > t] and IRn →
{0, 1} : x → 1 [x ≤ t] are supermodular. Hence, we have the implications

X ≤sm Y ⇒ X ≤uo Y and X ≤sm Y ⇒ X ≥lo Y. (4.4)

If X ≤uo Y and Y ≤lo X, then the marginals of X and Y must be equal, i.e.,

Xi =st Yi, i = 1, . . . , n. Thus, X and Y are ordered according to the supermod-

ular ordering only if X and Y have the same marginals.

It is known that for bivariate rvs (IR2-valued rvs) X and Y, if the marginals of

X and Y are equal, then the supermodular ordering is equivalent to the orthant

orderings [32].

Lemma 4.4.1 Let X and Y be IR2-valued rvs with equal marginals, i.e., X1 =st

Y1 and X2 =st Y2. Then, the conditions (i)-(iii) below are equivalent, where

(i) X ≤sm Y;

(ii) X ≤uo Y;

(iii) X ≥lo Y.
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Proof. It is clear from (4.4) that (i) implies (ii) and (iii). The implication

from (ii) to (i) is shown by Tchen [50] for the case of rvs with finite-lattice pmf.

However, we use another method to prove this implication. For any IR2-valued

rvs X and Y, assume that X ≤uo Y. By Proposition 4.3.1, in order to show (i),

it is enough to show that X ≤ism Y because X and Y have same marginals. To

do so, we recall from Proposition 4.4.1 that the uo ordering can be generated via

∆-monotone functions. Thus, if every ism function ϕ : IR2 → IR is ∆-monotone,

then

X ≤uo Y ⇒ X ≤ism Y. (4.5)

Let ϕ : IR2 → IR be an ism function. By Definition 4.4.2, we must show that

for any subset J = {i1, i2} ⊂ {1, 2} and ε1, ε2 > 0,

�ε1
i1 �ε2

i2 ϕ(x) ≥ 0, x = (x1, x2) ∈ IR2. (4.6)

Since �ε1
1 �ε2

2 ϕ(x) = �ε2
2 �ε1

1 ϕ(x), we need only consider the following three

cases:

(a) J = {1}

(b) J = {2}

(c) J = {1, 2}

Using the definition of difference operator, we can rewrite (4.6) in Cases (a) and

(b) as

ϕ(x1 + ε1, x2) − ϕ(x1, x2) ≥ 0 and ϕ(x1, x2 + ε2) − ϕ(x1, x2) ≥ 0, (4.7)
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respectively. Since ϕ is increasing, the conclusion (4.7) is satisfied. For Case (c),

we again use the definition of difference operator to rewrite (4.6) as

ϕ(x1 + ε1, x2 + ε2) + ϕ(x1, x2) ≥ ϕ(x1 + ε1, x2) + ϕ(x1, x2 + ε2). (4.8)

Clearly, (4.8) holds since ϕ is supermodular. Therefore, ϕ is also ∆-monotone

and the conclusion (4.5) holds in the bivariate case. Applying Proposition 4.3.1,

we obtain the implication (ii) to (i).

It remains to show that (ii) and (iii) are equivalent. Fix (x0, x1) in IR2. If the

marginals of X and Y are equal, then we have

P [X0 > x0, X1 > x1] + P [X0 > x0, X1 ≤ x1]

= P [Y0 > x0, Y1 > x1] + P [Y0 > x0, Y1 ≤ x1] (4.9)

and

P [X0 ≤ x0, X1 ≤ x1] + P [X0 > x0, X1 ≤ x1]

= P [Y0 ≤ x0, Y1 ≤ x1] + P [Y0 > x0, Y1 ≤ x1] . (4.10)

Upon combining (4.9) and (4.10), it holds that

P [Y0 > x0, Y1 > x1] − P [X0 > x0, X1 > x1]

= P [X0 > x0, X1 ≤ x1] − P [Y0 > x0, Y1 ≤ x1]

= P [Y0 ≤ x0, Y1 ≤ x1] − P [X0 ≤ x0, X1 ≤ x1] (4.11)

and we conclude that X ≤uo Y if and only if X ≥lo Y.
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4.5 Positive dependence

Positive dependence in a collection of rvs can be captured in several ways. Asso-

ciation of rvs is one of the most useful such characterizations. It was introduced

by Esary, Proschan and Walkup [13] and has proved useful in various settings

[3, 4, 10, 20].

Definition 4.5.1 The IR-valued rvs {X1, . . . , Xn} are said to be associated if,

with X = (X1, . . . , Xn), the inequality

E [f(X)g(X)] ≥ E [f(X)]E [g(X)]

holds for all non-decreasing functions f, g : IRn → IR for which the expectations

exist and are finite.

Here, we focus on a stronger notion of positive dependence, known as stochas-

tic monotonicity in sequence (SSI). The concept of positive dependence using the

SSI property can by found in [4, 29, 33].

Definition 4.5.2 The IR-valued rvs {X1, . . . , Xn} are said to be sequentially

stochastically increasing (SSI) if for each k = 1, 2, . . . , n− 1, the family of condi-

tional distributions [Xk+1|X1 = x1, . . . , Xk = xk], (x1, . . . , xk) ∈ IRk, is stochasti-

cally increasing in (x1, . . . , xk).

More precisely, this definition states that for each k = 1, . . . , n− 1, for x and

y in IRk with x ≤ y, it holds that

E [ϕ(Xk+1)|(X1, . . . , Xk) = x] ≤ E [ϕ(Xk+1)|(X1, . . . , Xk) = y] (4.12)

for all increasing functions ϕ : IR → IR. In particular, if the rvs {X1, . . . , Xn} are

IN-valued rvs, then the SSI property requires that for each k = 1, . . . , n − 1, for
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x and y in INk with x ≤ y, it holds that

P [Xk+1 > m|(X1, . . . , Xk) = x] ≤ P [Xk+1 > m|(X1, . . . , Xk) = y] . (4.13)

for all m in IN. Note that in the SSI definition, we need to consider only

(x1, . . . , xk) for which P [X1 = x1, . . . , Xk = xk] > 0.

These definitions can be extended to sequences in a natural way along the

lines of Definition 4.3.3:

Definition 4.5.3 A sequence of IR-valued rvs {Xn, n = 1, 2, . . .} is said to be

SSI (resp. associated) if for each n = 1, 2, . . ., the rvs {X1, . . . , Xn} are SSI

(resp. associated).

It is well known that if the IR-valued rvs {X1, . . . , Xn} are SSI, then they are

necessarily associated [4, Thm. 4.7, p. 146] but the converse is not true. The

next theorem was established in [29], and relates the SSI property of rvs to the

supermodular ordering. This fact will prove crucial for subsequent developments

in this thesis.

Theorem 4.5.1 If {Xn, n = 1, 2, . . .} is SSI and {X̂n, n = 1, 2, . . .} is the inde-

pendent version of {Xn, n = 1, 2, . . .}, then

(X̂1, X̂2, . . . , X̂k) ≤sm (X1, X2, . . . , Xk), k = 1, 2, . . . (4.14)

i.e., for any supermodular function ϕ : IRk → IR,

E
[
ϕ(X̂1, . . . , X̂k)

]
≤ E [ϕ(X1, . . . , Xk)] .

The following consequence of Theorem 4.5.1 is immediate in view of (4.2).

Corollary 4.5.1 Under the assumptions of Theorem 4.5.1, the comparison (4.14)

also holds in the dcx and idcx orderings.
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Chapter 5

The Buffer Sizing Problem

Consider a discrete-time single server queue with infinite buffer capacity and

constant service rate of c cells/slot (packets/slot). Under the first-come first-

serve discipline, this queueing system can be used to represent an infinite-buffer

multiplexer. We are interested in the effect of positive correlations in a stationary

input stream {At, t = 0, 1, . . .} on the buffer occupancy level Qt at the end of

timeslot [t − 1, t) for t = 1, 2, . . .. By formalizing this problem with the help of

the notion of stochastic orderings, we can show the following: For i = 1, 2, let

{Ai
t, t = 0, 1, . . .} and {Qi

t, t = 0, 1, . . .} be the input traffic i and its corresponding

buffer content sequence. If the input traffic 1 is less “dependence” than the input

traffic 2 in the sense of the idcx ordering (or its close cousin, the sm ordering),

i.e.,

{A1
t , t = 0, 1, . . .} ≤idcx {A2

t , t = 0, 1, . . .},

then Q1
t ≤icx Q

2
t for each t = 1, 2, . . .. This last statement implies that for each

t = 1, 2, . . ., Q1
t is less than Q2

t in both “size and variability.” More generally,

since Q1
t and Q2

t are non-negative rvs, for k ≥ 1, the kth moment of Q1
t is less

than the kth moment of Q2
t .

In this chapter, we first discuss the Lindley recursion and the aforementioned
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comparison result in the transient state (t = 1, 2, . . .). We then translate the

transient result into the steady state comparison of the buffer sizes (t→ ∞).

5.1 The Lindley recursion

Let {At, t = 0, 1, . . .} be a stationary and ergodic input traffic feeding into a

discrete-time single server queue with infinite buffer capacity and let Qt be the

number of cells remaining in the buffer at the end of timeslot [t − 1, t). At the

start of timeslot [t, t+1), At new cells have arrived so that there are Qt +At cells

ready for transmission in that slot. With the multiplexer releasing c cells/slot,

the sequence of buffer contents {Qt, t = 0, 1, . . .} satisfies the Lindley recursion

Q0 = q; Qt+1 = (Qt + At − c)+, t = 0, 1, . . . (5.1)

for some fixed initial condition q. It is well known [27] that if the mean input

rate is less than the service rate, i.e., E [A0] < c, then this queueing system will

be stable in the sense that Qt =⇒t Q for some IR-valued rv Q. If the input traffic

is a reversible sequence, then the rv Q can be represented as

Q =st [ sup
t=0,1,...

{
t∑

s=0

As − c(t+ 1)}]+. (5.2)

From (5.1), it is plain that for each t = 1, 2, . . ., the buffer content Qt is a

function of the input traffic A0, . . . , At−1 (and of the initial condition q). Thus,

there exists a mapping Tt : IRt × IR → IR such that Qt = Tt(A0, . . . , At−1, Q0).

This function Tt is readily obtained by iterating the mapping T : IR2 → IR defined

by

T (a, q) := (q + a− c)+, (a, q) ∈ IR2, (5.3)

through the Lindley recursion since

Qt+1 = T (At, Qt), t = 0, 1, . . . .
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As we would like to apply Theorem 4.5.1 (in fact its Corollary 4.5.1) to the

buffer sizing problem, we need to establish that the mappings {Tt, t = 1, 2, . . .}
are idcx.

Proposition 5.1.1 For each t = 1, 2, . . . and q ∈ IR, the mapping IRt → IR :

(a0, . . . , at−1) → Tt(a0, . . . , at−1, q) is idcx.

Proof. We establish the proof by induction (on t). For t = 1, T1 = T and from

(5.3), a → T (a, q) is increasing and directionally convex in a since convexity in

one dimension implies directional convexity.

Suppose we have for some t = 1, 2, . . . that the mapping (a0, . . . , at−1) →
Tt(a0, . . . , at−1) is idcx where we omit q for simplicity. By the Lindley recursion,

we obtain

Tt+1(a0, . . . , at) = (Tt(a0, . . . , at−1) + at − c)+. (5.4)

Obviously, the mapping ht : (a0, . . . , at) → at is idcx. Thus, the mapping

(a0, . . . , at) → ft+1(a0, . . . , at), given by

ft+1(a0, . . . , at) = Tt(a0, . . . , at−1) + at − c

= Tt(a0, . . . , at−1) + ht(a0, . . . , at) − c,

is idcx as the sum of idcx functions is still idcx. The function g : x → x+ is

a convex function and by Lemma 4.3.1, the mapping Tt+1 is therefore an idcx

function of (a0, . . . , at) since

Tt+1(a0, . . . , at) = g(ft+1(a0, . . . , at)).

The proof of the induction step is now completed.
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In conclusion, by virtue of Lemma 4.3.2 and Proposition 5.1.1, we have the

following comparison in the transient state.

Theorem 5.1.1 Let {A1
t , t = 0, 1, . . .} and {A2

t , t = 0, 1, . . .} be input traffic

processes to the discrete-time single server queue (5.1). If

{A1
t , t = 0, 1, . . .} ≤idcx {A2

t , t = 0, 1, . . .},

then their corresponding buffer contents {Q1
t , t = 0, 1, . . .} and {Q2

t , t = 0, 1, . . .}
are ordered in the icx ordering, i.e., for any fixed initial condition Q1

0 = Q2
0 = q,

we have

Q1
t ≤icx Q

2
t , t = 1, 2, . . . .

5.2 Steady-state results

Under some conditions on the initial condition Q0 and on the input processes,

the transient results of Theorem 5.1.1 can be translated into a steady state result.

Before doing so, we begin with a lemma on the stability of the icx ordering under

weak convergence [48].

Lemma 5.2.1 Let {Xn, n = 1, 2, . . .} and {Yn, n = 1, 2, . . .} denote two se-

quences of IR-valued rvs such that Xn =⇒n X and Yn =⇒n Y with Xn ≤icx Yn

for each n = 1, 2, . . .. If limn→∞ E [X+
n ] = E [X+] and limn→∞ E [Y +

n ] = E [Y +],

then X ≤icx Y .

Proof. It is well known [48] that for any IR-valued rvs ξ and ξ′, ξ ≤icx ξ
′ if and
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only if

E
[
(ξ − a)+

]
≤ E

[
(ξ′ − a)+

]
, a ∈ IR. (5.5)

For n = 1, 2, . . ., rewriting (5.5) for Xn and Yn, we readily get

E
[
X+

n

]
−

∫ a

0
P [Xn > t] dt ≤ E

[
Y +

n

]
−

∫ a

0
P [Yn > t] dt, a ∈ IR. (5.6)

Now let n go to infinity in (5.6). For the first term in (5.6), we use the as-

sumptions limn→∞ E [X+
n ] = E [X+] and limn→∞ E [Y +

n ] = E [Y +]. While for the

second term, we simply apply the Bounded Convergence Theorem to conclude

that limn→∞
∫ a
0 P [Xn > t] dt =

∫ a
0 P [X > t] dt and limn→∞

∫ a
0 P [Yn > t] dt =

∫ a
0 P [Y > t] dt for each a in IR since by the assumed weak convergence, we have

limn→∞ P [Xn > t] = P [X > t] and limn→∞ P [Yn > t] = P [Y > t]. Thus, we

obtain

E
[
X+

]
−

∫ a

0
P [X > t] dt ≤ E

[
Y +

]
−

∫ a

0
P [Y > t] dt, a ∈ IR,

or equivalently,

E
[
(X − a)+

]
≤ E

[
(Y − a)+

]
, a ∈ IR,

and the desired result follows.

The case of non-negative rvs is of special interest here.

Lemma 5.2.2 Let {Xn, n = 1, 2, . . .} and {Yn, n = 1, 2, . . .} denote two se-

quences of IR+-valued rvs such that Xn =⇒n X and Yn =⇒n Y with Xn ≤icx Yn

for each n = 1, 2, . . .. If limn→∞ E [Xn] = E [X] and limn→∞ E [Yn] = E [Y ], then

X ≤icx Y .

By virtue of Theorem 2.2.9 in Stoyan [48], it is now possible to show that

the steady state comparison of the buffer levels holds under the sole stationarity

assumption of the input traffic.
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Theorem 5.2.1 For each i = 1, 2, let {Qi
t, t = 0, 1, . . .} with Qi

0 = 0 be the

buffer content sequence of the discrete-time single server queue (5.1) fed by the

stationary input traffic {Ai
t, t = 0, 1, . . .} with E [Ai

0] < c. If for each t = 0, 1, . . .,

Q1
t ≤icx Q

2
t , then Q1 ≤icx Q

2 where for each i = 1, 2, Qi is the steady state buffer

contents of the sequence {Qi
t, t = 0, 1, . . .}.

Proof. Fix i = 1, 2. Recall the mapping T : IR2 → IR defined in Section 5.1 by

T (a, q) = (q + a− c)+.

Clearly, T is increasing in both arguments and Qi
t+1 = T (Ai

t, Q
i
t). Since the input

traffic {Ai
t, t = 0, 1, . . .} is stationary and Qi

0 = 0, Theorem 2.2.9 in Stoyan [48]

implies

0 = Qi
0 ≤st Q

i
t ≤st Q

i
t+1, t = 1, 2, . . . . (5.7)

More precisely, (5.7) is equivalent [45] to P [Qi
t > x] ≤ P

[
Qi

t+1 > x
]

for all t =

0, 1, . . . and x ≥ 0. From the fact that {Ai
t, t = 0, 1, . . .} is stationary with

E [Ai
0] < c, we have Qi

t =⇒t Q
i [27], whence limt→∞ P [Qi

t > x] = P [Qi > x] for

any point x of continuity of Qi. Applying the Monotone Convergence Theorem,

E
[
Qi

]
=

∫ ∞

0
P

[
Qi > x

]
dx = lim

t→∞

∫ ∞

0
P

[
Qi

t > x
]
dx = lim

t→∞E
[
Qi

t

]

and the desired result follows by Lemma 5.2.2.

The steady state result seems very attractive since the only assumptions re-

quired on the input process are stationarity and the negative drift condition

(E [A0] < c). However, the comparison will be trivial if the first moment of the

steady buffer size is infinite. Hence, it is desirable to find conditions on the input
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traffic which ensure the finiteness of this moment. We take on this issue in the

next section.

5.3 Finiteness of the first moment of steady state

buffer levels

We begin with the classical result on the standard GI|GI|1 queue by Kiefer and

Wolfowitz [21].

Theorem 5.3.1 Consider a GI|GI|1 queue with a sequence of i.i.d. service time

{σn, n = 0, 1, . . .} with generic rv σ and a sequence of i.i.d. interarrival time

{τn+1, n = 0, 1, . . .} with generic rv τ . If E [σ] < E [τ ], then E [W ] < ∞ if and

only if E [σ2] <∞, where

W = [ sup
t=0,1,...

t∑
i=0

(σi − τi+1)]
+ (5.8)

is the stationary waiting time of the GI|GI|1 queue.

In the sequel, we write W (σ, τ) to denote the stationary waiting time rv (5.8)

associated with the standard GI|GI|1 queue with generic service time σ and

interarrival time τ .

Consider a discrete-time single server queue (5.1) fed by the i.i.d. sequence

{At, t = 0, 1, . . .}. From (5.2) and (5.8), the input traffic {At, t = 0, 1, . . .} is

identified with the sequence of i.i.d. service time in the GI|GI|1 queue, thus

Q =st W (A0, c). Hence, by Theorem 5.3.1, the moment E [Q] <∞ if and only if

E [A2
0] <∞. Since the independent version of any stationary input traffic is i.i.d.,

the first moment of its steady state buffer levels is finite if and only if the second

moment of the input traffic is finite. For other input processes, we refer to the
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conditions for finite moments of waiting time of a G|G|1 queue in [12], however,

these conditions are not very useful here with the traffic models of interest.

In the following sections, we consider conditions for the finiteness of the first

moment of steady state buffer levels under each of the three traffic models, namely

FGN(H) traffic models, on-off sources, and M |G|∞ input processes.

5.3.1 FGN

Let {AH
t , t = 0, 1, . . .} be the FGN(H) traffic model defined in Section 3.1. Since

the FGN(H) traffic model is reversible, by using the representation (5.2) for the

steady state buffer levels, we have for fixed x > 0,

P [Q > x] = P

[
sup

t=0,1,...
(

t∑
s=0

AH
s − c(t+ 1)) > x

]

≤
∞∑
t=0

P

[
t∑

s=0

AH
s − c(t+ 1) > x

]

≤
∞∑
t=0

e−θ(x+c(t+1))E
[
eθ

∑t

s=0
AH

s

]
, θ > 0,

where the last inequality follows by Chernoff bound argument. Therefore, for

some θ > 0, we obtain

E [Q] =
∫ ∞

0
P [Q > x] dx ≤

∫ ∞

0

∞∑
t=0

e−θ(x+c(t+1))E
[
eθ

∑t

s=0
AH

s

]
dx

=
C(θ)

θ
(5.9)

where we have set

C(θ) =
∞∑
t=0

e−θc(t+1)E
[
eθ

∑t

s=0
AH

s

]

and E [Q] ≤ ∞ if C(θ) <∞.

Recall that for each t = 0, 1, . . ., AH
t = m+NH

t where m is the average traffic

rate, NH
t = BH

t+1−BH
t and {BH

t , t ≥ 0} indicates the FBM with Hurst parameter
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H . Thus,
t∑

s=0

AH
s = m(t+ 1) +BH

t+1, t = 0, 1, . . . ,

and because {BH
t , t ≥ 0} is a Gaussian process, we simply have

C(θ) =
∞∑

t=0

e−θc(t+1)E
[
eθ(m(t+1)+BH

t+1)
]

=
∞∑

t=0

e−θ(c−m)(t+1)e−
1
2
θ2σ2(t+1)2H

. (5.10)

Under the stability assumption m < c, it can be shown that for θ > 0 and

0.5 ≤ H < 1,

lim
t→∞ exp{−θ(c−m) − 1

2
θ2σ2[(t+ 1)2H − t2H ]} = 0 < 1,

whence by d’Alembert’s test, the series in (5.10) converges and C(θ) < ∞ for

θ > 0. Applying this finding to (5.9), we conclude the following:

Lemma 5.3.1 Under the stability assumption E [A0] < c, if the input traffic

{At, t = 0, 1, . . .} fed to the discrete-time single server queue (5.1) is the FGN(H)

traffic model with 0.5 ≤ H < 1, then E [Q] <∞ where Q is the steady state buffer

level.

5.3.2 On-off sources

Consider the stationary version {At, t = 0, 1, . . .} of the on-off sources (I, B)

described in Section 3.2. Assume that the server capacity is smaller than peak

rate of the source (i.e., c < 1) so that Qt is not identically zero for all t = 1, 2, . . ..

It is well-known that the stationary on-off process is reversible, thus we can write

(5.2) for the steady state buffer level of the on-off source (I, B) as

Q =st ( sup
t=0,1,...

{
t∑

s=0

As − c(t+ 1)})+. (5.11)
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We first show that Q can be related to the stationary waiting time of a

GI|GI|1 queue [28]. Define a sequence of mutually independent IR-valued rvs

{Xn, n = 0, 1, . . .} by

Xl := (1 − c)Bl − cIl, l = 0, 1, . . . , (5.12)

and set

M := ( sup
n=1,2,...

n∑
l=1

Xl)
+ (5.13)

where the rvs {Il, Bl, l = 0, 1, . . .} are as specified in the construction of the

stationary on-off source {At, t = 0, 1, . . .}. While Xl =st (1 − c)B − cI for all

l = 1, 2, . . ., we have

X0 =st (1 − c)B̂U + ((1 − c)B − cÎ)(1 − U) (5.14)

where U is a Bernoulli rv with parameter p independent of B, B̂ and Î. Note

from its definition (5.13) that M is identified with the stationary waiting time

W ((1 − c)B, cI).

Proposition 5.3.1 It holds that

Q =st (X0 +M)+ (5.15)

with the rv X0 taken independent of the rv M .

Proof. Recall the sequence of epochs {Tn = 0, 1, . . .} marking the beginning of

the (n+ 1)th on-off cycle. Fix n = 0, 1, . . ., from (5.12), we readily get

Xn =
Tn+1−1∑
s=Tn

As − c(Tn+1 − Tn)

≥
t∑

s=Tn

As − c(t− Tn + 1), Tn ≤ t < Tn+1, (5.16)
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where the last inequality follows from the specification that each cycle consists

of an idle period followed by an active period. The inequality (5.16) also implies

that

n∑
l=0

Xl =
Tn+1−1∑

s=0

As − cTn+1 ≥
t∑

s=0

As − c(t+ 1), Tn ≤ t < Tn+1. (5.17)

Combining the last inequality with (5.11) yields

Q =st ( sup
t=0,1,...

{
t∑

s=0

As − c(t+ 1)})+

=st ( sup
n=0,1,...

( sup
Tn≤t<Tn+1

{
t∑

s=0

As − c(t+ 1)}))+

=st ( sup
n=0,1,...

n∑
l=0

Xl)
+.

It is easy to show that

Q = (X0 + max(0, sup
n=1,2,...

n∑
l=1

Xl))
+

and the conclusion (5.15) thus follows.

From the relationship (5.15) between Q, X0 and M =st W ((1 − c)B, cI), we

obtain the following:

Lemma 5.3.2 Under the stability assumption E [A0] < c, if the input traffic

{At, t = 0, 1, . . .} fed to the discrete-time single server queue (5.1) is the station-

ary on-off source (I, B), then E [Q] < ∞ if and only if E [B2] < ∞, where Q is

the steady state buffer level.

Proof. Suppose that E [Q] < ∞. Using the relationship (5.15), both E [X0]

and E [M ] must be finite. Since M =st W ((1 − c)B, cI), we have from Theorem

5.3.1 that E [B2] <∞.
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Conversely, assume that E [B2] < ∞. This condition ensures that E [B],

E
[
B̂

]
and E [M ] are finite (from [40] and Theorem 5.3.1). Upon noting that B

and M are non-negative rvs, from (5.15) and (5.14), we have

E [Q] =
∫ ∞

0
(pP

[
(1 − c)B̂ +M > x

]
+ (1 − p)P

[
(1 − c)B − cÎ +M > x

]
)dx

= p((1 − c)E
[
B̂

]
+ E [M ])

+(1 − p)
∞∑

y=1

(
∫ ∞

0
P [(1 − c)B +M > x+ cy] dx)

P [I ≥ y]

E [I]

= p((1 − c)E
[
B̂

]
+ E [M ])

+(1 − p)
∞∑

y=1

(
∫ ∞

cy
P [(1 − c)B +M > x] dx)

P [I ≥ y]

E [I]

≤ p((1 − c)E
[
B̂

]
+ E [M ]) + (1 − p)((1 − c)E [B] + E [M ])

and the conclusion E [Q] <∞ follows.

5.3.3 M |G|∞ input traffic

Consider a discrete-time single server queue (5.1) fed by an M |G|∞ input traffic

(λ, S) {At, t = 0, 1, . . .} with E [A0] < c. Since the M |G|∞ process is reversible

[37], we have the representation (5.2). Upon combining the decomposition (3.11)

and Proposition 3.3.2 via (5.2), we obtain

Q =st ( sup
t=0,1,...

{
t∑

s=0

A(0)
s +

t∑
s=0

A(a)
s − c(t+ 1)})+

=st ( sup
t=0,1,...

{
B∑

i=1

min(t+ 1, Ŝi) +
t∑

s=1

Bs∑
i=1

min(t− s + 1, Ss,i) − c(t+ 1)})+

≤st ( sup
t=0,1,...

{
B∑

i=1

Ŝi +
t∑

s=1

Bs∑
i=1

Ss,i − c(t+ 1)})+. (5.18)

The last inequality follows from the fact that min(t + 1, Ŝi) ≤st Ŝi and min(t −
s+ 1, Ss,i) ≤st Ss,i.
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We again show that Q can be related to the stationary waiting time of a

GI|GI|1 queue [25]. Upon defining the IR-valued rvs {Yn, n = 0, 1, . . .} and Z by

Y0 :=
B∑

i=1

Ŝi − c, Yn :=
Bn∑
i=1

Sn,i − c, n = 1, 2, . . . ,

and

Z := ( sup
t=1,...

t∑
s=1

Ys)
+, (5.19)

respectively, we rewrite (5.18) as

Q ≤st ( sup
t=0,1,...

{Y0 +
t∑

s=1

Ys})+ =st (Y0 + Z)+. (5.20)

It is clear from (5.19) that Z is identified with the stationary waiting timeW (S, c),

i.e., Z =st W (S, c).

Using the relationship (5.20) between Q, Y0 and Z, we obtain a sufficient

condition for the finiteness of the first moment of Q.

Lemma 5.3.3 Under the stability assumption E [A0] < c, if the input traffic

{At, t = 0, 1, . . .} fed to the discrete-time single server queue (5.1) is the M |G|∞
input process (λ, S) with E [S2] <∞, then E [Q] <∞ where Q is the steady state

buffer level.

Proof. If E [S2] is finite, then E [S] and E
[
Ŝ

]
are finite, and from Theorem

5.3.1, we obtain E [Z] = E [W (S, c)] <∞. Note that the inequality (5.20) implies

E [Q] ≤ E
[
(Y0 + Z)+

]
≤ E [|Y0|] + E [Z]

≤ λE [S]E
[
Ŝ

]
+ c+ E [Z] ,

where we have used the facts that Z, S and Ŝ are non-negative rvs and E [|Y0|] <
E [B]E

[
Ŝ

]
+c with E [B] = λE [S]. The conclusion E [Q] <∞ readily follows.
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Chapter 6

FGN

6.1 Main results

From its definition in Chapter 3, the FGN(H) traffic model with Hurst parameter

0.5 ≤ H < 1 is a Gaussian process {AH
t , t = 0, 1, . . .} with average traffic rate m,

and autocovariance function

ΓH(k) =
σ2

2
(|k + 1|2H − 2|k|2H + |k − 1|2H), k = 0, 1, . . . . (6.1)

It is plain that the independent version of FGN(H) traffic models must be an

i.i.d. Gaussian process {Ât, t = 0, 1, . . .} with E
[
Ât

]
= m for each t = 0, 1, . . ..

Since ΓH(0) = σ2, its autocovariance function is given by Γ̂(k) = σ2δ(k) where

δ(k) = 1 when k = 0 and δ(k) = 0 when k �= 0. Equivalently, this independent

process is simply the FGN(0.5) traffic model.

It is easily seen that for t = 1, 2, . . ., [AH
t |AH

0 , . . . , A
H
t−1] is normally dis-

tributed. Since a Gaussian rv is stochastically increasing in the mean [45],

we can establish the SSI property, if we can show that the conditional mean

E
[
AH

t |AH
0 = a0, . . . , A

H
t−1 = at−1

]
is an increasing function in (a0, . . . , at−1) for

each t = 1, 2, . . .. Although the autocovariance function is explicitly given, we
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were unable to obtain a usable closed-form expressions for these conditional means

due to the complicated structure of the involved matrices (and of their inverses).

Instead, we turn to the comprehensive characterization of stochastic orderings

given by Müller [31, Thm. 3.8] for Gaussian rvs.

Theorem 6.1.1 Let X and Y be IRn-valued rvs such that X =st N (µ,Σ) and

Y =st N (µ′,Σ′). Then X ≤dcx Y if and only if µ = µ′ and Σij ≤ Σ′
ij for all

1 ≤ i, j ≤ n.

From (6.1), with 0.5 ≤ H < 1, it follows that ΓH(0) = σ2 and ΓH(k) ≥ 0

for all k = 1, 2, . . .. Moreover, E
[
Ât

]
= E [At] = m for all t = 0, 1, . . .. As a

direct application of (4.2) and Theorem 6.1.1, we conclude that the independent

version (i.e., the FGN(0.5) traffic model) is indeed a lower bound process for the

FGN(H) traffic model with 0.5 ≤ H < 1.

Theorem 6.1.2 Let {AH
t , t = 0, 1, . . .} be a FGN traffic model with parameter

0.5 ≤ H < 1. Its independent version {Ât, t = 0, 1, . . .} coincides with the

FGN(0.5) traffic model, and satisfies

{Ât, t = 0, 1, . . .} ≤idcx {AH
t , t = 0, 1, . . .}.

Moreover, their corresponding buffer contents {QH
t , t = 0, 1, . . .} and {Q̂t, t =

0, 1, . . .} are ordered in the icx ordering, i.e., for any fixed initial condition Q̂0 =

Q0 = q, we have

Q̂t ≤icx Q
H
t , t = 0, 1, . . . .

Furthermore, by virtue of Theorem 6.1.1, it is possible to compare two FGN

traffic models with Hurst parameter H and H ′ in [0.5,1) such that H ′ < H . To

do so, we need to verify that when H ′ < H , ΓH′(k) ≤ ΓH(k) for all k = 0, 1, . . .

as established in the next lemma.
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Lemma 6.1.1 For each k = 0, 1, . . ., the mapping H → ΓH(k) given by (6.1) is

monotone increasing in H on [0.5,1).

Proof. For k = 0, ΓH(0) = σ2 for all 0.5 ≤ H < 1. Fix k = 1, 2, . . .. Suppose

0.5 ≤ H ′ < H < 1. We will show that ΓH′(k) ≤ ΓH(k), or equivalently,

|k + 1|2H − |k + 1|2H′
+ |k − 1|2H + |k − 1|2H′ ≥ 2|k|2H − 2|k|2H′

. (6.2)

Clearly, (6.2) holds for k = 1.

Now, for k > 1, define the mapping f : IR+ → IR : x → x2H − x2H′
and note

that (6.2) can be rewritten as

f(k + 1) + f(k − 1) ≥ 2f(k), k > 1. (6.3)

Thus, it is enough to show that f is convex on [1,∞) in order to show that

ΓH′(k) ≤ ΓH(k), k = 2, 3, . . .. To do so, we evaluate the second derivative of f ,

namely

df 2(x)

dx2
= 2x−2[H(2H − 1)x2H −H ′(2H ′ − 1)x2H′

], x ≥ 1. (6.4)

As 0.5 ≤ H ′ < H < 1, H(2H − 1) > H ′(2H ′ − 1) and 2H > 2H ′. Therefore,

we obtain df2(x)
dx2 > 0 whenever x ≥ 1 and the mapping f is indeed convex on

[1,∞). In conclusion, (6.2) (or equivalently, ΓH′(k) ≤ ΓH(k)) is satisfied for all

k = 1, 2, . . ., whence, Γ(k) is monotone increasing on [0.5,1).

By Lemma 6.1.1 and Theorem 6.1.1, we conclude that

{AH′
t , t = 0, 1, . . .} ≤idcx {AH

t , t = 0, 1, . . .} if 0.5 ≤ H ′ < H < 1. (6.5)

The following theorem is now a simple consequence of (6.5) and of Theorem 5.1.1.
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Theorem 6.1.3 Let {AH′
t , t = 0, 1, . . .} and {AH

t , t = 0, 1, . . .} be the FGN(H ′)

and FGN(H) traffic models, respectively, with 0.5 ≤ H ′ < H < 1. Then, we have

the comparison

{AH′
t , t = 0, 1, . . .} ≤idcx {AH

t , t = 0, 1, . . .},

and their corresponding buffer contents {QH′
t , t = 0, 1, . . .} and {QH

t , t = 0, 1, . . .}
are ordered in the icx ordering, i.e., for any fixed initial condition QH′

0 = QH
0 = q,

we have

QH′
t ≤icx Q

H
t , t = 0, 1, . . . .

From Theorem 6.1.2 we can conclude, as expected, that the long-range de-

pendent traffic (0.5 < H < 1) requires more buffer space than the short-range

dependent traffic (H = 0.5). Moreover, when H ′ < H , ΓH′(k) ≤ ΓH(k), i.e.,

FGN(H) is more correlated than FGN(H ′), and by Theorem 6.1.3, the more

correlated the traffic, the more buffer space is required to meet the same QoS

requirement.

6.2 Simulation results

In this section, we use simulations to verify the comparison results of Theorem

6.1.2 and 6.1.3. To do so, we begin with the description of the experiments

which will also be used in Chapter 9 and Section 11.4. In order to illustrate

“size and variability” concepts of the icx ordering, we compare the first and

second moments of the buffer levels corresponding to the input traffics. For each

simulation, we generate N independent sample paths of the input traffic and feed

them through the discrete-time single server queue (5.1) with multiplexer release

rate c packets/slot to obtain the buffer content sequences {qt,i, t = 0, 1, . . .} for
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each sample path i = 1, . . . , N where we have set q0,i = 0 for all i = 1, . . . , N .

For fixed t = 0, 1, . . ., the first and second moments of buffer occupancy levels

are calculated by 1
N

∑N
i=1 qt,i and 1

N

∑N
i=1 q

2
t,i, respectively. In the sequel, we will

refer to the sequences { 1
N

∑N
i=1 qt,i, t = 0, 1, . . .} and { 1

N

∑N
i=1 qt,i, t = 0, 1, . . .} as

the first and second moments of buffer sizes.

In the case of FGN(H) traffic models, we verify the comparison results by

showing that the first and second moments of the buffer sizes corresponding to the

FGN(H) traffic models are monotone in the Hurst parameter. Throughout this

section, we fix the multiplexer release rate c = 6 and the number of sample paths

N=10,000 and generate the FGN(H) traffic models for H = 0.5, 0.6, 0.7, 0.8

and 0.9 using the method described in [41]. Regardless of the value of H , each

sample path has mean traffic rate m = 5 and variance σ2 = 5. Figure 1-4

compare 4 pairs of the first moment of buffer sizes for FGN(H) traffic models with

H = 0.5, 0.6, 0.7, 0.8 and 0.9. It is clear that the first moments are monotone in H

and the FGN(0.5) traffic model provides the lower bound as it is an independent

version. By the same manner, we compare 4 pairs of second moments of buffer

sizes for FGN(H) traffic models with H = 0.5, 0.6, 0.7, 0.8 and 0.9 in Figure 5-8.

Again, the monotonicity in H of the second moments holds and the FGN(0.5)

traffic model indeed yields the smallest second moment.
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Figure 1: The first moments of the buffer sizes for the FGN(0.5) (the independent

version) and FGN(0.6) traffic models
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Figure 2: The first moments of the buffer sizes for the FGN(0.6) and FGN(0.7)

traffic models
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Figure 3: The first moments of the buffer sizes for the FGN(0.7) and FGN(0.8)

traffic models
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Figure 4: The first moments of the buffer sizes for the FGN(0.8) and FGN(0.9)

traffic models
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Figure 5: The second moments of the buffer sizes (in logscale) for the FGN(0.5)

(the independent version) and FGN(0.6) traffic models
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Figure 6: The second moments of the buffer sizes (in logscale) for the FGN(0.6)

and FGN(0.7) traffic models
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Figure 7: The second moments of the buffer sizes (in logscale) for the FGN(0.7)

and FGN(0.8) traffic models
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Figure 8: The second moments of the buffer sizes (in logscale) for the FGN(0.8)

and FGN(0.9) traffic models
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Chapter 7

Stationary On-off Sources

The discrete-time on-off source {At, t = 0, 1, . . .} is a {0, 1}-process with At = 0

(respectively, At = 1) if there is no packet (respectively, a packet) generated

during timeslot [t, t+ 1). Then, the independent version {Ât, t = 0, 1, . . .} of the

on-off process is simply an independent sequence of {0, 1}-valued rvs with

P
[
Ât = 1

]
= 1 −P

[
Ât = 0

]
= p, t = 0, 1, . . .

where p is the average rate of source given in (3.5). It is easily seen that {Ât, t =

0, 1, . . .} is also an on-off process with geometric on period and off period, i.e.,

the corresponding on period duration rv B (respectively, off period duration rv

I) is geometrically distributed with parameter p (respectively, 1 − p), i.e.,

B =st G(p) and I =st G(1 − p).

In other words, {Ât, t = 0, 1, . . .} can be interpreted as the discrete-time station-

ary on-off process (G(1 − p),G(p)).

In order to establish the comparison between the on-off source and its inde-

pendent version, we are interested in finding conditions for the SSI property, i.e.,

conditions on the rvs I and B so that for all t = 0, 1, . . ., the inequalities

P
[
At+1 = 1|At = xt

]
≤ P

[
At+1 = 1|At = yt

]
(7.1)
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hold whenever xt ≤ yt in {0, 1}t+1 with

P
[
At = xt

]
> 0 and P

[
At = yt

]
> 0. (7.2)

As we proceed by evaluating the relevant conditional probabilities, in all cases

we rely on the basic observation that

P
[
At+1 = 1|At = xt

]
=

P [At = xt;At+1 = 1]

P [At = xt]
(7.3)

for every xt in {0, 1}t+1 for which P [At = xt] > 0.

7.1 Expressions for stationary on-off sources

In this section, we focus on evaluating (7.3) when {At, t = 0, 1, . . .} is a stationary

on-off source. Let hB(t) and rB(t), t = 1, 2, . . . , TB, be the failure rate function

and residual life function of rv B, respectively. Similarly for rv B̂, I and Î, we

define hB̂(t), rB̂(t), t = 1, 2, . . . , TB, hI(t), rI(t), hÎ(t) and rÎ(t), t = 1, 2, . . . , TI .

We first find the expression (7.3) of the stationary on-off source for the case t = 0.

Lemma 7.1.1 For the stationary on-off source (I, B), we have

P [A1 = 1|A0 = 0] = hÎ(1) (7.4)

and

P [A1 = 1|A0 = 1] = rB̂(1) = 1 − hB̂(1). (7.5)

Proof. The conclusions (7.4) and (7.5) are easy consequences of the facts

P [A1 = 1|A0 = 0] =
P [A0 = 0, A1 = 1]

P [A0 = 0]
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=
P [I0 = 1, B0 ≥ 1]

P [I0 ≥ 1]

=
P [I0 = 1, B0 ≥ 1|I0 > 0]

P [I0 ≥ 1|I0 > 0]

=
P

[
Î = 1

]
P

[
Î ≥ 1

]P [B ≥ 1]

with P [B ≥ 1] = 1, and

P [A1 = 1|A0 = 1] =
P [A0 = 1, A1 = 1]

P [A0 = 1]

=
P [I0 = 0, B0 ≥ 2]

P [I0 = 0, B0 ≥ 1]

=
P [B0 ≥ 2|I0 = 0]

P [B0 ≥ 1|I0 = 0]

=
P

[
B̂ ≥ 2

]
P

[
B̂ ≥ 1

] .

To describe the results when t = 1, 2, . . ., we associate with any xt in {0, 1}t+1

the index �(xt) of “last change” given by

�(xt) := min {r = 0, 1, . . . , t : xr = . . . = xt} .

If �(xt) > 0, then

x�(xt)−1 �= x�(xt) = . . . = xt, (7.6)

while if �(xt) = 0, then

x0 = x1 = . . . = xt.

Fix t = 1, 2, . . . throughout.

Proposition 7.1.1 For the stationary on-off source (I, B), for each xt in {0, 1}t+1
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with xt = 1, we have

P
[
At+1 = 1|At = xt

]
=




rB(t− �(xt) + 1) if �(xt) > 0

rB̂(t+ 1) if �(xt) = 0

(7.7)

provided P [At = xt] > 0.

Proof. With xt = 1, we already note the relations

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At+1 = 1

]

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At = 1

]

If �(xt) > 0, then with some rv B independent of {As, 0 ≤ s < �(xt)}, we

conclude that

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), B ≥ t− �(xt) + 2

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
B ≥ t− �(xt) + 2

]
(7.8)

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), B ≥ t− �(xt) + 1

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
B ≥ t− �(xt) + 1

]
. (7.9)
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The first half of (7.7) follows readily by combining (7.8) and (7.9) through (7.3).

On the other hand, if �(xt) = 0, then xt = (1, . . . , 1) and it holds that

P
[
At = xt, At+1 = 1

]
= P [A0 = . . . = At = At+1 = 1]

= P
[
B̂ ≥ t+ 2

]
(7.10)

and

P
[
At = xt

]
= P [A0 = . . . = At = 1]

= P
[
B̂ ≥ t+ 1

]
. (7.11)

The second half of (7.7) is obtained by combining (7.10) and (7.11) via (7.3).

Proposition 7.1.2 For the stationary on-off source (I, B), for each xt in {0, 1}t+1

with xt = 0, we have

P
[
At+1 = 1|At = xt

]
=




hI(t− �(xt) + 1) if �(xt) > 0

hÎ(t+ 1) if �(xt) = 0

(7.12)

provided P [At = xt] > 0.

Proof. The proof follows a pattern similar to that of Proposition 7.1.1. With

xt = 0, we obtain the relations

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At = 0, At+1 = 1

]
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and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At = 0

]
.

If �(xt) > 0, then with some pair of independent rvs I and B which are

independent of {As, 0 ≤ s < �(xt)}, we conclude that

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), I = t− �(xt) + 1, B ≥ 1

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
I = t− �(xt) + 1

]
P [B ≥ 1] (7.13)

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), I ≥ t− �(xt) + 1

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
I ≥ t− �(xt) + 1

]
. (7.14)

Combining (7.13) and (7.14) through (7.3) we get the first half of (7.12).

On the other hand, if �(xt) = 0, then xt = (0, . . . , 0) and it holds that

P
[
At = xt, At+1 = 1

]
= P [A0 = . . . = At = 0, At+1 = 1]

= P [I0 = t+ 1, B0 ≥ 1]

= P [I0 > 0]P
[
Î = t+ 1

]
P [B ≥ 1] (7.15)

and

P
[
At = xt

]
= P [A0 = . . . = At = 0]

= P [I0 ≥ t+ 1]

= P [I0 > 0]P
[
Î ≥ t+ 1

]
. (7.16)
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We conclude to the second half of (7.12) by combining (7.15) and (7.16) via (7.3).

7.2 The SSI conditions

With the help of results from Section 7.1, we are ready to find the SSI conditions

for the stationary on-off source. The following proposition states conditions on I

and B for a discrete-time stationary on-off source to have the SSI property.

Proposition 7.2.1 The discrete-time stationary on-off source (I, B) satisfies the

SSI property if the conditions (i)-(vi) below hold, where

(i) The rvs I and B are DFR;

(ii) For all s = 1, 2, . . . , TI and t = 1, 2, . . . , TB,

hI(s) + hB(t) ≤ 1; (7.17)

(iii) For all s = 1, 2, . . . , TI and t = 1, 2, . . . , TB,

hÎ(s) + hB̂(t) ≤ 1; (7.18)

(iv) The rvs Î and B̂ are DFR;

(v) For all t = 1, 2, . . . , TI − 1,

hÎ(t+ 1) ≤ 1 − hB(1); (7.19)

(vi) For all t = 1, 2, . . . , TB − 1,

hB̂(t+ 1) ≤ 1 − hI(1). (7.20)
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The following consequences of the conditions (i)-(vi) are worth noting before

we embark on a proof of Proposition 7.2.1. By Lemma 2.2.1, condition (iv)

implies that

hB̂(t+ 1) ≤ hB(t), t = 1, 2, . . . , TB − 1

and

hÎ(t+ 1) ≤ hI(t), t = 1, 2, . . . , TI − 1.

Together, condition (i) and the last remarks yield

hB̂(t+ 1) ≤ hB(s) s = 1, . . . , t with t < TB (7.21)

and

hÎ(t+ 1) ≤ hI(s), s = 1, . . . , t with t < TI . (7.22)

Moreover, for t < TI , conditions (i) and (v) imply

hÎ(t+ 1) + hB(s) ≤ 1, s = 1, . . . , TB, (7.23)

while for t < TB, conditions (i) and (vi) give

hB̂(t+ 1) + hI(s) ≤ 1, s = 1, . . . , TI . (7.24)

Proof. For each t = 0, 1, . . ., we need to show that (7.1) holds for distinct

elements xt and yt in {0, 1}t+1 such that xt ≤ yt and (7.2) is satisfied.

For t = 0, (7.2) automatically holds here since P [A0 = 1] = 1−P [A0 = 0] = p

with 0 < p < 1. By Lemma 7.1.1 we see that (7.1) reduces to hÎ(1) ≤ 1 − hB̂(1)

which is equivalent to (iii) with s = t = 1.

For t = 1, 2, . . ., three cases present themselves, depending on whether (a)

xt = yt = 1; (b) xt = yt = 0; and (c) xt = 0 < yt = 1. Recall that in all cases,
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we are only interested in the event that (7.2) is satisfied. We consider each one

of three cases in turn:

Case (a) – With xt = yt = 1, the condition xt ≤ yt implies �(yt) ≤ �(xt).

If �(yt) > 0, then �(xt) > 0 as well. By Proposition 7.1.1, the inequality (7.1)

reduces to

hB(t− �(yt) + 1) ≤ hB(t− �(xt) + 1) (7.25)

with t − �(xt) + 1 ≤ t − �(yt) + 1 ≤ TB. The inequality (7.25) does hold when

B is DFR. If �(yt) = 0, then �(xt) > 0 (for otherwise xt = yt) and Proposition

7.1.1 this time shows that (7.1) is equivalent to

hB̂(t+ 1) ≤ hB(t− �(xt) + 1) with 1 ≤ t− �(xt) + 1 ≤ t < TB.

This last inequality is satisfied as a consequence of (i) and (iv) (as indicated by

(7.21)).

Case (b) – With xt = yt = 0, the condition xt ≤ yt now implies �(xt) ≤ �(yt).

If �(xt) > 0, then �(yt) > 0 and by Proposition 7.1.2, the inequality (7.1) reduces

to

hI(t− �(xt) + 1) ≤ hI(t− �(yt) + 1) (7.26)

with t − �(yt) + 1 ≤ t − �(xt) + 1 ≤ TI . The inequality (7.26) is implied by the

fact that the rv I is DFR under (i). If �(xt) = 0, then �(yt) > 0 (for otherwise

xt = yt) and Proposition 7.1.2 shows that (7.1) is equivalent to

hÎ(t+ 1) ≤ hI(t− �(yt) + 1) with 1 ≤ t− �(yt) + 1 ≤ t < TI .

This last inequality is satisfied as a result of (i) and (iv) (as indicated by (7.22)).

Case (c) – With xt = 0 < yt = 1, four possible scenarios need to be considered

when invoking Propositions 7.1.1 and 7.1.2 to rewrite the inequality (7.1) in
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reduced form: First, if �(xt) = �(yt) = 0, then (7.1) can be rewritten as

hÎ(t+ 1) ≤ 1 − hB̂(t+ 1), t < min(TI , TB), (7.27)

and this inequality does hold by virtue of (iii). If �(xt) = 0 and �(yt) > 0, then

(7.1) becomes

hÎ(t+ 1) ≤ 1 − hB(t− �(yt) + 1) with 1 ≤ t− �(yt) + 1 ≤ t < TI . (7.28)

If �(xt) > 0 and �(yt) = 0 , then (7.1) reads

hI(t− �(xt) + 1) ≤ 1 − hB̂(t+ 1), with 1 ≤ t− �(xt) + 1 ≤ t < TB. (7.29)

Under the enforced assumptions, the validity of (7.28) and (7.29) is guaranteed

under the observations (7.23) and (7.24) that flow from conditions (i), (v) and

(vi). If �(xt) > 0 and �(yt) > 0, then (7.1) is equivalent to

hI(t− �(xt) + 1) ≤ 1 − hB(t− �(yt) + 1) (7.30)

with 1 ≤ t− �(xt) + 1 ≤ min(TI , t) and 1 ≤ t− �(yt) + 1 ≤ min(TB, t). The last

inequality is satisfied by condition (ii). The proof is now complete.

Upon combining Proposition 7.2.1 and Corollary 4.5.1 with Theorem 5.1.1,

we have

Theorem 7.2.1 Let {At, t = 0, 1, . . .} be a discrete-time stationary on-off source

(I, B) satisfying the conditions of Proposition 7.2.1. Its independent version

{Ât, t = 0, 1, . . .} is a sequence of i.i.d. {0, 1}-valued rvs with P
[
Ât = 1

]
= p

for all t = 0, 1, . . ., and we have the comparison

{Ât, t = 0, 1, . . .} ≤idcx {At, t = 0, 1, . . .}.
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Moreover, their corresponding buffer contents {Q̂t, t = 0, 1, . . .} and {Qt, t =

0, 1, . . .} are ordered in the icx ordering, i.e., for any fixed initial condition Q̂0 =

Q0 = q, we have

Q̂t ≤icx Qt, t = 0, 1, . . . .

7.3 Equivalent conditions

The conditions (i)-(vi) in Proposition 7.2.1 are stated so as to simplify the proof

of the SSI property of the stationary on-off source (I, B). In fact, these conditions

can be rewritten in a more compact way as will be shown in Lemma 7.3.1. In

addition, we can relax some conditions to achieve another set of weaker conditions

in Lemma 7.3.2 that still ensures the SSI property. These two sets of conditions

will prove useful when applying the SSI conditions to specific distributions in

Chapter 9.

Lemma 7.3.1 The conditions (i)-(vi) in Proposition 7.2.1 are equivalent to the

following conditions:

(A.1) The rvs I and B are DFR;

(A.2) P [I = 1] + P [B = 1] ≤ 1;

(A.3) The rvs Î and B̂ are DFR;

(A.4) 1
E[I]

+ 1
E[B]

≤ 1.

Proof. First, conditions (A.2) and (A.4) are simply

hI(1) + hB(1) ≤ 1 (7.31)
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and

hÎ(1) + hB̂(1) ≤ 1, (7.32)

respectively. Hence, it is easily seen that conditions (A.1)-(A.4) are implied by

conditions (i)-(vi).

Now, we show that conditions (A.1)-(A.4) imply conditions (i)-(vi). By (7.31)

and (A.1), condition (ii) holds. In the same way, combining (A.3) with (7.32)

implies condition (iii). Fix t = 1, 2, . . . , TI − 1, by Lemma 2.2.1, we have

hÎ(t+ 1) ≤ hI(t) ≤ hI(1) ≤ 1 − hB(1)

upon using (7.31), whence condition (v) holds. Using the same argument, it is a

simple matter to that show condition (vi) holds since for fixed t = 1, 2, . . . , TB−1,

hB̂(t+ 1) ≤ hB(t) ≤ hB(1) ≤ 1 − hI(1)

from Lemma 2.2.1 and (7.31).

When TB and TI are larger than 1 (as is the case in most situations of interest),

we have a weaker set of conditions as demonstrated below.

Lemma 7.3.2 The following conditions (B.1)-(B.5) ensure the SSI property of

the stationary on-off source (I, B), where

(B.1) The rvs I and B are DFR;

(B.2) hI(1) + hB(2) ≤ 1 and hI(2) + hB(1) ≤ 1;

(B.3) The rvs Î and B̂ are DFR;

(B.4) 1
E[I]

+ 1
E[B]

≤ 1;
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(B.5) hÎ(2) ≤ 1 − hB(1) and hB̂(2) ≤ 1 − hI(1).

Proof. The proof here is a simple modification of the proof of Proposition

7.2.1. We first note as in the proof of Lemma 7.3.1 that conditions (B.3) and

(B.4) imply condition (iii). Therefore, the SSI property holds for t = 0,

Consider three cases when t = 1, 2, . . . as in the proof of Proposition 7.2.1.

Case (a) and Case (b) hold with the DFR properties of I, B, Î and B̂. For Case

(c) that xt = 0 < yt = 1, since conditions (B.3) and (B.4) imply condition (iii),

the inequality (7.27) does hold. Upon combining (B.5) and the DFR properties

of I, B, Î and B̂, we have (7.28) and (7.29).

Lastly, it remains to show the last requirement of Case (c), i.e., when �(xt) > 0

and �(yt) > 0, which is summarized in the inequality (7.30) as

hI(t− �(xt) + 1) ≤ 1 − hB(t− �(yt) + 1)

with 1 ≤ t− �(xt) + 1 ≤ min(TI , t) and 1 ≤ t− �(yt) + 1 ≤ min(TB, t). However,

it is not possible to have �(xt) = �(yt) = k for any k > 0. Hence, from (7.30), the

requirement hI(1) + hB(1) ≤ 1 which occurs when �(xt) = �(yt) = t is unneces-

sary and can be eliminated. It can be verified that the inequality (7.30) without

the case �(xt) = �(yt) = t is implied by invoking the DFR properties of I and B

with conditions (B.2). Therefore, conditions (B.1)-(B.5) ensure the SSI property

of the stationary on-off source (I, B).
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Chapter 8

Non-stationary On-off Sources

We now consider the non-stationary on-off source (I, B) and show that the SSI

conditions are much weaker than those of the stationary on-off source (I, B). In

analogy with the stationary on-off source (I, B), we first find the expression (7.3)

for the non-stationary on-off source (I, B) and then derive the corresponding SSI

conditions.

8.1 Expressions for non-stationary on-off sources

Here, we evaluate (7.3) when {At, t = 0, 1, . . .} is a non-stationary on-off source

(I, B). As described in Section 3.2, we always have I0 =st I so that P [A0 = 0] =

1. This observation leads to the following analog of Lemma 7.1.1.

Lemma 8.1.1 For the non-stationary on-off source (I, B), we have

P [A1 = 1|A0 = 0] = hI(1). (8.1)

Proof. As in the proof of Lemma 7.1.1, the conclusion (8.1) is an easy conse-
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quence of the facts

P [A1 = 1|A0 = 0] =
P [I0 = 1, B0 ≥ 1]

P [I0 ≥ 1]

= P [I0 = 1] = hI(1)

with P [B0 ≥ 1] = P [I0 ≥ 1] = 1

In the non-stationary case, the analogs of Propositions 7.1.1 and 7.1.2 can be

expressed more compactly as the next proposition shows:

Proposition 8.1.1 Fix t = 1, 2, . . .. For the non-stationary on-off source (I, B),

for each xt in {0, 1}t+1 with P [At = xt] > 0, we have the following: If xt = 1,

then

P
[
At+1 = 1|At = xt

]
= rB(t− �(xt) + 1), �(xt) ≥ 1 (8.2)

and if xt = 0, then

P
[
At+1 = 1|At = xt

]
= hI(t− �(xt) + 1), �(xt) ≥ 0. (8.3)

Proof. A careful inspection of the proofs of Propositions 7.1.1 and 7.1.2 shows

that both (8.2) and (8.3) hold when �(xt) > 0. Hence, only the case �(xt) = 0

needs to be considered.

With �(xt) = 0 and xt = 1, xt = (1, . . . , 1). This event cannot occur since

I0 =st I implies A0 =st 0. With �(xt) = 0 and xt = 0, xt = (0, . . . , 0), thus (7.15)

and (7.16) now become

P
[
At = xt, At+1 = 1

]
= P [A0 = . . . = At = 0, At+1 = 1]
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= P [I0 = t+ 1, B0 ≥ 1]

= P [I = t+ 1]P [B ≥ 1] (8.4)

and

P
[
At = xt

]
= P [A0 = . . . = At = 0]

= P [I0 ≥ t+ 1]

= P [I ≥ t+ 1] . (8.5)

We conclude to the desired result by combining (8.4) and (8.5) via (7.3).

8.2 The SSI conditions

We now turn to the SSI property for the non-stationary on-off source (I, B). The

analog of Proposition 8.2.1 relies on Proposition 8.1.1 and is given next.

Proposition 8.2.1 The non-stationary on-off source (I, B) satisfies the SSI prop-

erty if the conditions (i)-(ii) below hold, where

(i) The rvs I and B are DFR;

(ii) For all s = 1, 2, . . . , TI and t = 1, 2, . . . , TB,

hI(s) + hB(t) ≤ 1. (8.6)

Proof. For each t = 0, 1, . . ., we need to show that (7.1) holds for distinct

elements xt and yt in {0, 1}t+1 satisfying (7.2) and such that xt ≤ yt.
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For t = 0, x0 = 0 and y0 = 1 and there is no need for comparison here since

P [A0 = y0] = 0.

For t = 1, 2, . . ., as in the proof of Proposition 7.2.1, three cases present

themselves, depending on whether (a) xt = yt = 1; (b) xt = yt = 0; and (c)

xt = 0 < yt = 1.

Case (a) – With xt = yt = 1, the condition xt ≤ yt implies �(yt) ≤ �(xt). By

Proposition 8.1.1, the inequality (7.1) can be rewritten as

hB(t− �(yt) + 1) ≤ hB(t− �(xt) + 1) (8.7)

with t− �(xt) + 1 ≤ t− �(yt) + 1 ≤ TB. It is plain that (8.7) holds because B is

assumed DFR.

Case (b) – With xt = yt = 0, the condition xt ≤ yt implies �(xt) ≤ �(yt). By

Proposition 8.1.1, the inequality (7.1) reduces to

hI(t− �(xt) + 1) ≤ hI(t− �(yt) + 1) (8.8)

with t− �(yt) + 1 ≤ t− �(xt) + 1 ≤ TI , and the validity of (8.8) is implied by the

fact that the rv I is DFR under (i).

Case (c) – With xt = 0 < yt = 1, invoking Proposition 8.1.1 we can rewrite

(7.1) in reduced form as

hI(t− �(xt) + 1) ≤ 1 − hB(t− �(yt) + 1) (8.9)

with 1 ≤ t− �(xt) + 1 ≤ min(TI , t+ 1) and 1 ≤ t− �(yt) + 1 ≤ min(TB, t). The

validity of (8.9) is guaranteed under (ii). The proof is now complete.

It is easy to verify that condition (ii) can be implied by invoking the DFR

properties of I and B with

hI(1) + hB(1) ≤ 1. (8.10)
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Thus, a set of equivalent conditions emerges as we recall that (8.10) is equivalent

to the condition (C.2) below.

Lemma 8.2.1 The conditions (i)-(ii) in Proposition 8.2.1 are equivalent to the

conditions (C.1)-(C.2) below, where

(C.1) The rvs I and B are DFR;

(C.2) P [I = 1] + P [B = 1] ≤ 1;

Moreover, in Case (c) of the proof of Proposition 8.2.1, �(xt) �= �(yt) = k for

all k ≥ 0. In analogy with Lemma 7.3.2 when TI , TB > 1, the requirement (8.9)

can be relaxed by eliminating the event �(xt) = �(yt) = t. As a result, we get a

weaker set of conditions that still ensure the SSI property.

Lemma 8.2.2 The following conditions (D.1)-(D.2) ensure the SSI property of

the non-stationary on-off source (I, B), where

(D.1) The rvs I and B are DFR;

(D.2) hI(1) + hB(2) ≤ 1 and hI(2) + hB(1) ≤ 1;

The proof of Lemma 8.2.2 is omitted as it is similar to that of Lemma 7.3.2.
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Chapter 9

Simulation Results for On-off Sources

In this chapter, we show simulation results comparing the first and second mo-

ments of the buffer levels of a single on-off source with the SSI property and

those of its independent version. The on- and off-period durations used here

are two specific types of distributions, namely the geometric and discrete-Pareto

distributions, defined in Section 2.3.

The following sections discuss the SSI conditions and show simulation re-

sults of three on-off sources models, namely the on-off source (G(ρI),G(ρB)),

(G(ρI),P(αB)) and (P(αI),P(αB)). It is known [19] that on-off sources with

a discrete-Pareto distributed on-period exhibits long-range dependence. For all

simulations in this chapter, the simulation descriptions are specified in Section

6.2.

9.1 The on-off source (G(ρI),G(ρB))

From Section 2.3, the geometrically distributed rvs I, Î, B and B̂ are DFR. Ap-

plying conditions (A.1)-(A.4), it remains to show that conditions (A.2) and (A.4)

are satisfied. Since P [I = 1] = 1
E[I]

and P [B = 1] = 1
E[B]

, both (A.2) and (A.4)
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reduce to

ρI + ρB ≥ 1. (9.1)

Thus, (9.1) is the only required SSI condition for the on-off source (G(ρI),G(ρB)).

Note that using conditions (B.1)-(B.5) yields the same conclusion (9.1).

By selecting ρI = ρB = 0.8, (9.1) is satisfied and we have E [B] = E [I] =

5. As a result, the traffic rate p is 0.5 and the independent version is simply

the on-off source (G(0.5),G(0.5)). In this simulations, we use the number of

sample path N=10,000 and fix the multiplexer release rate at c = 0.6. Figures

9 and 10 show the first and second moments of the buffer sizes of the on-off

source (G(0.8),G(0.8)) and of its independent version. Both the first and second

moments of the buffer fed by the on-off source (G(0.8),G(0.8)) are larger than

those of its independent version as expected.

9.2 The on-off source (G(ρI),P(αB))

The rvs I, Î, B and B̂ are DFR [Section 2.3]. Again, we apply the conditions

(A.1)-(A.4). It can be shown that (A.2) and (A.4) are equivalent to

ρI ≥ 1 − 2−αB (9.2)

and

ρI ≥ 1

E [B]
, (9.3)

respectively, where E [B] =
∑∞

k=1 k
−αB . Combining (9.2) and (9.3) gives the SSI

condition

ρI ≥ max(1 − 2−αB ,
1

E [B]
) (9.4)

for the on-off source (G(ρI),P(αB)). Conclusion (9.4) can also be reached by

using conditions (B.1)-(B.5).
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Figure 9: The first moments of the buffer sizes of the on-off source (G(0.8),G(0.8))

and of its independent version (the on-off source (G(0.5),G(0.5)))

To meet condition (9.4), we select the on-off source (G(0.678),P(1.4)) in our

experiment. It can be shown that E [B] = 3.10555 and therefore, p = 0.5. The

independent version is again the on-off source (G(0.5),G(0.5)). We fix N=10,000

and set the multiplexer release rate at c = 0.6. The comparisons of the first and

second moments of the buffer sizes of the on-off source (G(0.678),P(1.4)) and of

its independent version are illustrated in Figures 11 and 12, respectively. It can

be seen that both moments the buffer sizes of the on-off source (G(0.678),P(1.4))

grow with t corresponding to the results in Section 5.3.2 that the steady state

mean buffer size E [Q] is infinite. The simulation results are as expected since the
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Figure 10: The second moments of the buffer sizes (in logscale) of the on-off source

(G(0.8),G(0.8)) and of its independent version (the on-off source (G(0.5),G(0.5)))

first and second moments of the buffer level of the on-off source (G(0.678),P(1.4))

are greater than those of its independent version. Furthermore, both the first

and second moments of the buffer level of the on-off source (G(0.678),P(1.4)) are

clearly larger than those of the on-off source (G(0.8),G(0.8)) shown in Figure 9

and 10, even though both processes have the same traffic rate p = 0.5.
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Figure 11: The first moments of the buffer sizes of the on-off

source (G(0.678),P(1.4)) and of its independent version (the on-off source

(G(0.5),G(0.5)))

9.3 The on-off source (P(αI),P(αB))

Since both I and B have discrete-Pareto distributions, the rvs I, Î, B and B̂

are automatically DFR. We first try to satisfy the conditions (A.1)-(A.4). The

condition (A.2) implies

2−αI + 2−αB ≥ 1 (9.5)

which is not valid for 1 < αI , αB ≤ 2. Therefore, we turn to the weaker conditions

(B.1)-(B.5). Using the expressions (2.9) and (2.11) of discrete-Pareto rvs, we
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Figure 12: The second moments of the buffer sizes (in logscale) of the on-

off source (G(0.678),P(1.4)) and of its independent version (the on-off source

(G(0.5),G(0.5)))

rewrite (B.2) and (B.5) as

2−αI + (
3

2
)−αB ≥ 1 and 2−αB + (

3

2
)−αI ≥ 1, (9.6)

and

2−αI ≥ 2−αB∑∞
k=2 k

−αB
and 2−αB ≥ 2−αI∑∞

k=2 k
−αI

, (9.7)

respectively. By simple algebra, we require three following SSI conditions for the

on-off source (P(αI),P(αB)):

(P.1) 1
E[B]

+ 1
E[I]

≥ 1;
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(P.2) 2−(αI+αB) ≥ max(2−αI − 3−αI , 2−αB − 3−αB);

(P.3) 1
E[I]−1

≤ 2−(αB−αI ) ≤ E [B] − 1.

In the simulation of the on-off source (P(αI),P(αB)), choosing αI = αB = 1.2

ensures conditions (P.1)-(P.3). Since B =st I in this case, p = 0.5 and its

independent version is clearly the on-off source (G(0.5),G(0.5)). We again fix

the number of sample path at N=10,000 and the multiplexer release rate at

c = 0.6. From Figures 13 and 14, the first and second moments of the buffer

level fed by the on-off source (P(1.2),P(1.2)) are indeed larger than those of

its independent version. Moreover, both moments of the buffer sizes the on-off

source (P(1.2),P(1.2)) grow with t as expected from the results in Section 5.3.2

that E [Q] = ∞. While the traffic rate of the on-off source (P(1.2),P(1.2)) and

the on-off source (G(0.678),P(1.4)) are equal (p = 0.5), both the first and second

moments of the buffer level of the on-off source (P(1.2),P(1.2)) are higher than

those of the on-off source (G(0.678),P(1.4)) shown in Figure 11 and 12.
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Figure 13: The first moments of the buffer sizes of the on-off source

(P(1.2),P(1.2)) and of its independent version (the on-off source (G(0.5),G(0.5)))
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Figure 14: The second moments of the buffer sizes (in logscale) of the on-off source

(P(1.2),P(1.2)) and of its independent version (the on-off source (G(0.5),G(0.5)))
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Chapter 10

Multiplexing On-off Sources

As multiplexing is a major function in communication networks, multiplexed

traffic processes naturally arise at routers and at multiplexer buffers. With each

on-off source representing a traffic stream, we construct the multiplexed traffic by

superposing the on-off sources. We show under some conditions on the on- and

off-period duration distributions that the comparison between the multiplexed on-

off sources and its independent version in the idcx ordering, and the comparison

of their corresponding buffer levels in the icx ordering hold. We separate our

discussion in two cases, namely the finite number of on-off sources and the infinite

number of on-off sources.

10.1 Finite number of on-off sources

Consider N independent on-off sources but not necessarily identically distributed.

For each i = 1, 2, . . . , N , let {Ai
t, t = 0, 1, . . .} denote the stationary on-off source

(I i, Bi) with rate pi =
E[Bi]

E[Bi]+E[Ii]
. The multiplexing of these N on-off processes

results in the process {MN
t , t = 0, 1, . . .} where

MN
t =

N∑
i=1

Ai
t, t = 0, 1, . . . . (10.1)
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The process {MN
t , t = 0, 1, . . .} is also stationary with traffic intensity

∑N
i=1 pi.

We are interested in establishing a comparison between the multiplexed pro-

cess {MN
t , t = 0, 1, . . .} and its independent version. For each i = 1, 2, . . . , N ,

we assume the rvs I i and Bi defining the on-off process {Ai
t, t = 0, 1, . . .} to sat-

isfy the conditions in Proposition 7.2.1. Thus, {Ai
t, t = 0, 1, . . .} is SSI and the

comparison

{Âi
t, t = 0, 1, . . .} ≤idcx {Ai

t, t = 0, 1, . . .} (10.2)

holds by Theorem 7.2.1 where {Âi
t, t = 0, 1, . . .} is the independent version of

{Ai
t, t = 0, 1, . . .}. This independent version is simply the sequence of i.i.d. {0, 1}-

valued rvs with P
[
Âi

t = 1
]

= pi for all t = 0, 1, . . ., or equivalently, the on-off

process (G(1 − pi),G(pi)).

Since (10.2) holds for all i = 1, 2, . . . , N , by applying Corollary 4.3.1, we

obtain

{
N∑

i=1

Âi
t, t = 0, 1, . . .} ≤idcx {

N∑
i=1

Ai
t, t = 0, 1, . . .} (10.3)

where {∑N
i=1 Â

i
t, t = 0, 1, . . .} is the independent version of {∑N

i=1A
i
t, t = 0, 1, . . .}.

Upon combining (10.3) with Theorem 5.1.1, we conclude the following result.

Theorem 10.1.1 Let {MN
t , t = 0, 1, . . .} be the process (10.1) obtained by mul-

tiplexing the N independent stationary on-off sources {Ai
t, t = 0, 1, . . .}, i =

1, . . . , N , with (I i, Bi) satisfying the conditions of Proposition 7.2.1. Its inde-

pendent version {M̂N
t , t = 0, 1, . . .} is the sequence of i.i.d. {0, 1, . . . , N}-valued

rvs {∑N
i=1 Â

i
t, t = 0, 1, . . .} where for each i = 1, . . . , N , {Âi

t, t = 0, 1, . . .} is a

sequence of i.i.d. {0, 1}-valued rvs with P
[
Âi

t = 1
]

= pi for all t = 0, 1, . . . and

we have the comparison

{M̂N
t , t = 0, 1, . . .} ≤idcx {MN

t , t = 0, 1, . . .}.
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Moreover, their corresponding buffer contents {Q̂t, t = 0, 1, . . .} and {Qt, t =

0, 1, . . .} are ordered in the icx ordering, i.e., for any fixed initial condition Q̂0 =

Q0 = q, we have

Q̂t ≤icx Qt, t = 0, 1, . . . .

Now, we consider the special case when the processes {Ai
t, t = 0, 1, . . .}, i =

1, 2, . . . , N , are i.i.d., i.e., they are N independent stationary on-off processes

(I, B) with a common rate of p = E[B]
E[B]+E[I]

. We refer to {MN
t , t = 0, 1, . . .} as the

superposition of N i.i.d. on-off sources (I, B). If I and B satisfy the conditions

in Proposition 7.2.1, the comparison (10.2) holds for each i = 1, . . . , N , with

{Âi
t, t = 0, 1, . . .} being a sequence of i.i.d. {0, 1}-valued rvs with P

[
Âi

t = 1
]

= p

for all t = 0, 1, . . .. Using the argument in Theorem 10.1.1, M̂N
t =

∑N
i=1 Â

i
t for

all t = 0, 1, . . . and the independent version {M̂N
t , t = 0, 1, . . .} is therefore a

sequence of i.i.d. binomial rvs with parameter (N, p). The comparison can be

summarized as follows:

Corollary 10.1.1 Let {MN
t , t = 0, 1, . . .} be the superposition of N i.i.d. on-off

sources (I, B) with I and B satisfying the conditions of Proposition 7.2.1. Its

independent version {M̂N
t , t = 0, 1, . . .} is a sequence of i.i.d. binomial rvs with

parameter (N, p), and we have the comparison

{M̂N
t , t = 0, 1, . . .} ≤idcx {MN

t , t = 0, 1, . . .}.

Moreover, their corresponding buffer contents {Q̂t, t = 0, 1, . . .} and {Qt, t =

0, 1, . . .} are ordered in the icx ordering, i.e., for any fixed initial condition Q̂0 =

Q0 = q, we have

Q̂t ≤icx Qt, t = 0, 1, . . . .
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10.2 Infinite number of on-off sources

In this section, we investigate the comparison results for the superposition of

N i.i.d. on-off sources {MN
t , t = 0, 1, . . .} as the number N of sources grows

unboundedly large. This time, for each N = 1, 2, . . ., the stationary on-off sources

{A(N,i)
t , t = 0, 1, . . .}, i = 1, . . . , N , are mutually independent with same on- and

off-period durations distributions (IN , B) as in the special case of Section 10.1.

The traffic intensity of the process {MN
t , t = 0, 1, . . .} is given by NE[B]

E[B]+E[IN ]
and

we define the arrival rate

λN =
N

E [B] + E [IN ]
. (10.4)

Likhanov, Tsybakov and Georganas [24] have shown that asN goes to infinity,

if B is kept unchanged and limN→∞ λN = λ, then the limiting process of {MN
t , t =

0, 1, . . .} approaches the M |G|∞ input process (λ,B).

Theorem 10.2.1 Let {MN
t , t = 0, 1, . . .} be the superposition of N i.i.d. on-

off sources (IN , B). If limN→∞ λN = λ and limN→∞ P [IN ≤ k] = 0 for each

k = 0, 1, . . ., then

{MN
t , t = 0, 1, . . .} =⇒N {Mt, t = 0, 1, . . .}, (10.5)

where {Mt, t = 0, 1, . . .} is the M |G|∞ process (λ,B).

Notice from Theorem 10.2.1 that the on-period duration B is simply the

session duration in the M |G|∞ process and the limiting process does not depend

on the fine details of off-period duration distributions. As a result, in order to

ensure the assumptions of Theorem 10.2.1, we can construct the sequence of

processes {MN
t , t = 0, 1, . . .}, N = 1, 2, . . ., that converges in distribution to the
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M |G|∞ process (λ,B) by fixing B and selecting IN such that λN = λ for all

N = 1, 2, . . ., and for fixed k = 0, 1, . . ., limN→∞ P [IN ≤ k] = 0.

By defining the M |G|∞ input process using this limiting approach, we can in

principle establish the lower bound comparison of the M |G|∞ input process by

making use of the comparison for single on-off sources (as in Corollary 10.1.1).

Since the limiting process does not depend on the off-period duration distribution,

we expect that in order to have the comparison with its independent version, the

conditions on the M |G|∞ process must be relaxed from that of the original

single on-off process given in Proposition 7.2.1. This is indeed the case as the

next theorem indicates.

Theorem 10.2.2 Let {Mt, t = 0, 1, . . .} be an M |G|∞ input process (λ,B) such

that B and B̂ are DFR rvs. Its independent version {M̂t, t = 0, 1, . . .} is a

sequence of i.i.d. Poisson rvs with mean λE [B] and we have the comparison

{M̂t, t = 0, 1, . . .} ≤idcx {Mt, t = 0, 1, . . .}.

Moreover, their corresponding buffer contents {Q̂t, t = 0, 1, . . .} and {Qt, t =

0, 1, . . .} are ordered in the icx ordering, i.e., for any fixed initial condition Q̂0 =

Q0 = q, we have

Q̂t ≤icx Qt, t = 0, 1, . . . .

Proof. The key of the proof is as follows: Consider the setup of Theorem 10.2.1.

If we can ensure that each on-off process (IN , B) is SSI for all N = 1, 2, . . .,

then the sm comparison of the superposition of N i.i.d. on-off sources {MN
t , t =

0, 1, . . .} with its independent version holds for N = 1, 2, . . .. By invoking the

weak convergence lemma for the sm ordering [Lemma 4.3.4], we can obtain the
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sm comparison of the limiting process {Mt, t = 0, 1, . . .} with its independent

version. Throughout the proof, we will refer to the SSI conditions (A.1)-(A.4)

given in Lemma 7.3.1 for a single on-off source.

Fix N = 1, 2, . . .: For each t = 0, 1, . . ., we have MN
t =

∑N
i=1A

(N,i)
t where

{A(N,i)
t , t = 0, 1, . . .} is the on-off source (IN , B). As mentioned earlier, we can

construct {MN
t , t = 0, 1, . . .} by choosing a sequence of off-period duration rvs

{IN , N = 1, 2, . . .} such that λN = λ for all N = 1, 2, . . ., and for fixed k =

0, 1, . . ., limN→∞ P [IN ≤ k] = 0. Consequently, we take IN =st G(1 − λ
N−λE[B]

)

for all N = 1, 2, . . .. Clearly, such a sequence {IN , N = 1, 2, . . .} satisfies the

requirements of Theorem 10.2.1 and

{MN
t , t = 0, 1, . . .} =⇒N {Mt, t = 0, 1, . . .}, (10.6)

where {Mt, t = 0, 1, . . .} is the M |G|∞ input process (λ,B).

Now, we consider the SSI conditions (A.1)-(A.4) of the on-off processes defined

above. For each N = 1, 2, . . ., IN and ÎN are DFR. Thus, by taking the rvs B

and B̂ to be DFR, conditions (A.1) and (A.3) are satisfied. Conditions (A.2) and

(A.4) require that

P [IN = 1] + P [B = 1] ≤ 1

and

1

E [IN ]
+

1

E [B]
≤ 1,

respectively. But for fixed k = 0, 1, . . ., it holds that limN→∞ P [IN ≤ t] = 0 so

that limN→∞ 1
E[IN ]

= 0, whence conditions (A.2) and (A.4) are indeed satisfied if

N > N∗ for some N∗ > 0.

For fixed N > N∗, IN and B satisfy conditions (A.1)-(A.4), {A(N,i)
t , t =

0, 1, . . .} is SSI for each i = 1, . . . , N , and by Theorem 4.5.1, we get

{Â(N,i)
t , t = 0, 1, . . .} ≤sm {A(N,i)

t , t = 0, 1, . . .} (10.7)
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where {Â(N,i)
t , t = 0, 1, . . .} denotes the independent version of {A(N,i)

t , t = 0, 1, . . .}.
Upon combining (10.7) and Corollary 4.3.2, we obtain

{M̂N
t , t = 0, 1, . . .} ≤sm {MN

t , t = 0, 1, . . .}. (10.8)

Before applying the weak convergence lemma for the sm ordering, it remains

to show that

{M̂N
t , t = 0, 1, . . .} =⇒N {M̂t, t = 0, 1, . . .}. (10.9)

For each t = 0, 1, . . ., M̂N
t is a binomial rv with parameter (N, λE[B]

N
). It is well-

known that M̂N
t converges in distribution to a Poisson rv with mean λE [B],

which is equivalent to the marginal of the original M |G|∞ process (λ,B) (See

Section 3.3 and Section 11.1). Thus, (10.9) is satisfied with {M̂t, t = 0, 1, . . .}
identified as the independent version of the M |G|∞ process {Mt, t = 0, 1, . . .}.
By applying Lemma 4.3.4 and making use of (10.6) and (10.9), we conclude that

{M̂t, t = 0, 1, . . .} ≤sm {Mt, t = 0, 1, . . .}.

Because this comparison also holds in the idcx ordering, the second half of the

result is now immediate from Theorem 5.1.1 and the proof is complete.
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Chapter 11

M |G|∞ Input Traffic

11.1 Lower bounds for M |G|∞ input traffic

As stated in Section 3.3, an M |G|∞ input process is characterized by a pair

of parameters (λ, S). We now argue that the independent version of an M |G|∞
input process (λ, S) is also anM |G|∞ input process, say (λ0, S0), where λ0 and S0

are properly selected. Indeed, if we take S0 ≡ 1, then each customer (each session)

requires exactly one timeslot of service before leaving the system at the end of

that slot. Therefore, the number of customers in the system at the beginning

of timeslot [t, t + 1) is simply the number of customers who arrive in timeslot

[t − 1, t) independently of arrivals in past and future timeslots. Let {Ât, t =

0, 1, . . .} denoted the M |G|∞ input process (λ0, S0 ≡ 1) as specified above. From

the discussion above, the rvs {Ât, t = 0, 1, . . .} are mutually independent, in

agreement with Claim (ii) of Proposition 3.3.1 which yields in that case

cov(Ât, Ât+h) = λ0P
[
Ŝ0 > h

]
= λ0δ(0, h), h = 0, 1, . . . ,

for all t = 0, 1, . . . where δ(s, t) = 1 if s = t, otherwise δ(s, t) = 0. By Claim (i)

of Proposition 3.3.1, for t = 0, 1, . . ., the rv Ât is a Poisson rv with parameter λ0.
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Thus, the marginals of the sequence {At, t = 0, 1, . . .} for the given M |G|∞ input

process (λ, S) will coincide with those of the independent version {Ât, t = 0, 1, . . .}
provided λ0 = λE [S]. In conclusion, the independent version of M |G|∞ input

process (λ, S) is simply the M |G|∞ input process (λE [S] , 1).

We now turn to finding conditions under which an M |G|∞ input process is

SSI. Unfortunately, we are unable to directly establish the SSI property of the

M |G|∞ input process, although this process is associated [37, 40]. However,

as we shall see shortly, it is still possible to show that the independent version

of M |G|∞ input processes does act as a lower bound. To do so, note from

Theorem 5.1.1 that the desired result will be obtained if theM |G|∞ input process

is shown to be greater in the idcx ordering than its independent version. By

Corollary 4.3.2, the sm ordering is stable under convolution (thus independent

summation), thereby suggesting the following approach: We first seek to identify

an additive independent decomposition of the M |G|∞ input process, each with

SSI property. The independent version of each component then acts as a lower

bound process to the corresponding component in the sm ordering. Finally,

the sum of the independent versions of the decomposed processes is statistically

indistinguishable from {Ât, t = 0, 1, . . .} and satisfies

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .}

The desired comparison result is formalized through the following theorem.

Theorem 11.1.1 Let {At, t = 0, 1, . . .} be an M |G|∞ input process (λ, S). Its

independent version {Ât, t = 0, 1, . . .} is the M |G|∞ input process (λE [S] , 1)

and we have the comparison

{Ât, t = 0, 1, . . .} ≤idcx {At, t = 0, 1, . . .}.
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Moreover, their corresponding buffer contents {Q̂t, t = 0, 1, . . .} and {Qt, t =

0, 1, . . .} are ordered in the icx ordering, i.e., for any fixed initial condition Q̂0 =

Q0 = q, we have

Q̂t ≤icx Qt, t = 0, 1, . . . .

Note that the conclusion of Theorem 11.1.1 holds for any session duration

distribution S. This is in sharp contrast with Theorem 10.2.2 which requires

the rvs S and Ŝ of an M |G|∞ input process to be DFR for the comparison to

hold. This limitation can be traced back to the method of proof of Theorem

10.2.2, namely the use of the results for on-off sources via a limiting process. The

independent decomposition approach used in Section 11.2 yields the comparison

result without any condition on S, thereby achieving the same result under a

weaker condition.

11.2 Proof of Theorem 11.1.1

We first identify the independent decomposition and then use it to show the com-

parison of the M |G|∞ input process with its independent version. Recall from

(3.7) that the stationary M |G|∞ input traffic (λ, S) admits the decomposition

At = A
(0)
t + A

(a)
t , t = 0, 1, . . .

with

A
(0)
t =

B∑
i=1

1
[
Ŝi > t

]
(11.1)

where {Ŝi, i = 1, 2, . . . , B} are i.i.d. {1, 2, . . .}-valued rvs distributed according to

the forward recurrence time associated with S and independent of the Poisson rv

B with mean λE [S].
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In addition, we have the decomposition

A
(a)
t =

∞∑
r=1

A
(r)
t , t = 0, 1, . . . , (11.2)

where for each r = 1, 2, . . ., {A(r)
t , t = 0, 1, . . .} is the process corresponding to

those Br customers who arrive in timeslot [r − 1, r). Formally,

A
(r)
t = 1 [t ≥ r]

Br∑
i=1

1 [Sr,i > t− r] , t = 0, 1, . . . . (11.3)

Note that A
(0)
0 =st B and A(r)

r =st Br for all r = 1, 2, . . .. The processes {A(0)
t , t =

0, 1, . . .} and {A(r)
t , t = 0, 1, . . .}, r = 1, 2, . . ., are mutually independent and

display very similar structures. To exploit this observation, we shall make use of

the following general result:

Proposition 11.2.1 Let K be an IN-valued rv and let {ξ, ξi, i = 1, 2, . . .} be a

sequence of i.i.d. {1, 2, . . .}-valued rvs. If K is independent of {ξi, i = 1, 2, . . .},
then the process {∑K

i=1 1 [ξi > t] , t = 0, 1, . . .} is SSI.

Proof. For each t = 0, 1, . . ., set Xt =
∑K

i=1 1 [ξi > t]. Since ξi > 0 for all

i = 1, 2, . . ., X0 =st K and we have [Xt|X0 = x0] =st
∑x0

i=1 1 [ξi > t] for all t > 0

and x0 = 0, 1, . . .. Let Xt denote (X1, . . . , Xt) and set xt = (x1, . . . , xt) in IRt. In

order to show the SSI property, we need to consider the conditional distribution

[Xt+1|Xt = xt, X0 = x0]. It is plain that

P
[
Xt+1 = x|Xt = xt, X0 = x0

]
=

P [Xt+1 = x,Xt = xt|X0 = x0]

P [Xt = xt|X0 = x0]
(11.4)

provided P [Xt = xt|X0 = x0] > 0. In particular, this requires x0 ≥ x1 ≥ . . . ≥
xt ≥ x.
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As we now consider the evaluation of P [Xt = xt|X0 = x0], we pick integers

x0 ≥ x1 ≥ . . . ≥ xt ≥ x and note that

Xs −Xs+1 =
K∑

i=1

1 [ξi > s] −
K∑

i=1

1 [ξi > s+ 1]

=
K∑

i=1

1 [ξi = s+ 1] , s = 0, 1, . . . .

Consequently, the conditions X0 = x0, Xs = xs, s = 1, 2, . . . , t, together are

equivalent to

X0 = x0,
K∑

i=1

1 [ξi = s+ 1] = xs − xs+1, s = 0, 1, . . . , t− 1.

In other words, given X0 = x0, the event Xt = xt will take place if (x0−x1) among

the rvs ξi, i = 1, . . . , x0, take value 1, (x1 − x2) among the rvs ξi, i = 1, . . . , x0,

take value 2, . . ., and xt among the rvs ξi, i = 1, . . . , x0, take value greater than

t. As a result, [Xt|X0 = x0] is a multinomial distribution given by

P
[
Xt = xt|X0 = x0

]
(11.5)

=
x0!

xt!(xt−1 − xt)! · · · (x0 − x1)!
· P [ξ > t]xt P [ξ = t]xt−1−xt · · ·P [ξ = 1]x0−x1 .

Similarly,

P
[
Xt+1 = x,Xt = xt|X0 = x0

]
(11.6)

=
x0!

x!(xt − x)! · · · (x0 − x1)!
·P [ξ > t+ 1]x P [ξ = t+ 1]xt−x · · ·P [ξ = 1]x0−x1 .

Upon combining (11.4), (11.5) and (11.6), we obtain

P
[
Xt+1 = x|Xt = xt, X0 = x0

]

=
xt!

x!(xt − x)!

P [ξ > t+ 1]x P [ξ = t+ 1]xt−x

P [ξ > t]xt

=
xt!

x!(xt − x)!
P [ξ > t+ 1|ξ > t]x P [ξ = t+ 1|ξ > t]xt−x ,
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and [Xt+1|Xt = xt, X0 = x0] is a binomial distribution with parameter (N, p)

where N = xt and p = P [ξ > t+ 1|ξ > t]. Since for a given p, the binomial

distribution is stochastically increasing in the parameter N [45] and [Xt+1|Xt =

xt, X0 = x0] depends only on xt, it is clear that for each t = 1, 2, . . ., [Xt+1|Xt =

xt, X0 = x0] is stochastically increasing with respect to the past sequence (xt, x0),

whence {Xt, t = 0, 1, . . .} is SSI.

Consequently, we have the two following lemmas.

Lemma 11.2.1 {A(0)
t , t = 0, 1, . . .} is SSI.

Proof. Recall that A
(0)
t =

∑B
i=1 1

[
Ŝi > t

]
for each t = 0, 1, . . . and A

(0)
0 =st B is

Poisson distributed with mean λE [S]. With the rvs {Ŝi, i = 1, 2, . . .} being i.i.d.

{1, 2, . . .}-valued rvs, {A(0)
t , t = 0, 1, . . .} possesses the SSI property by Proposi-

tion 11.2.1 (with K = B).

Lemma 11.2.2 For each r = 1, 2, . . ., {A(r)
t , t = 0, 1, . . .} is SSI.

Proof. Fix r = 1, 2, . . ., it can be seen from the definition of the process

that A(r)
r =st Br and A

(r)
t =st 1 [t ≥ r]

∑Br
i=1 1 [Sr,i > t− r] for each t = 0, 1, . . .

where the rvs {Sr,i, i = 1, 2, . . .} are i.i.d. {1, 2, . . .}-valued rvs. Because Ar
t =

0 when t < r, it is enough to consider [A
(r)
t+1|A(r)

t . . . , A(r)
r ] as we note that

[A
(r)
t+1|A(r)

t , . . . , A
(r)
0 ] =st [A

(r)
t+1|A(r)

t . . . , A(r)
r ] whenever t ≥ r.

For t ≥ r, A
(r)
t =

∑Br
i=1 1 [Sr,i > t− r] so that in the notation of Proposi-

tion 11.2.1, A
(r)
t is equivalent to

∑K
i=1 1 [ξi > u] with u = t − r where K and
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{ξi, i = 1, 2, . . .} are identified with Br and {Sr,i, i = 1, 2, . . .}, respectively.

Hence, {A(r)
t , t = 0, 1, . . .} is SSI by Proposition 11.2.1.

By virtue of Lemma 11.2.1 and 11.2.2, we can now prove Theorem 11.1.1.

Proof of Theorem 11.1.1 From Lemma 11.2.1 and Theorem 4.5.1, we have

that

{Â(0)
t , t = 0, 1, . . .} ≤sm {A(0)

t , t = 0, 1, . . .}

where {Â(0)
t , t = 0, 1, . . .} is the independent version of {A(0)

t , t = 0, 1, . . .}. On

the other hand, by Lemma 11.2.2 and Theorem 4.5.1, for each r = 1, 2, . . .,

{Â(r)
t , t = 0, 1, . . .} ≤sm {A(r)

t , t = 0, 1, . . .}

where again {Â(r)
t , t = 0, 1, . . .} denotes the independent version of {A(r)

t , t =

0, 1, . . .}. It is always possible to construct all rvs on a single probability triple

so that the independent versions are mutually independent. Hence, under the

enforced independence assumptions, upon invoking Claim (ii) of Corollary 4.3.2

and the pointwise convergences limR→∞(
∑R

r=1A
(r)
t +A

(0)
t ) = At for all t = 0, 1, . . .,

we obtain the comparison

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .},

where for each t = 0, 1, . . ., Ât = limR→∞(
∑R

r=1 Â
(r)
t + Â

(0)
t ).

Recall from Corollary 4.3.2 that {Ât, t = 0, 1, . . .} is the independent version

of {At, t = 0, 1, . . .}, whence it must be the M |G|∞ input process (λE [S] , 1)

described in Section 11.1. Because the sm ordering implies the idcx ordering, we
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have {Ât, t = 0, 1, . . .} ≤idcx {At, t = 0, 1, . . .} as desired and the buffer compari-

son follows from Theorem 5.1.1.

11.3 Effects of session-duration variability

Besides the comparison with its independent version, it is also desirable to estab-

lish the comparison between two M |G|∞ processes with the same marginals but

different correlation structures. More precisely, we expect that if S(1) ≤cx S
(2),

then the M |G|∞ process (λ, S(2)) exhibits more dependence than the M |G|∞
process (λ, S(1)) in the sense of the sm ordering. In this section, we show that

such a comparison can be indeed obtained in the case of two-dimensional rvs.

For i = 1, 2, let {Ai
t, t = 0, 1, . . .} be the M |G|∞ input process (λ, S(i)).

Assuming S(1) ≤cx S
(2), we have E

[
S(1)

]
= E

[
S(2)

]
and V ar(S(1)) ≤ V ar(S(2)),

i.e., S(1) has less variability than S(2). Hence, for each t = 0, 1, . . ., A1
t =st A

2
t

from Claim (i) of Proposition 3.3.1. Moreover, for h = 1, 2, . . .,

P
[
Ŝ(1) > h

]
=

∑∞
t=h+1 P

[
S(1) ≥ t

]
E [S(1)]

≤
∑∞

t=h+1 P
[
S(2) ≥ t

]
E [S(2)]

= P
[
Ŝ(2) > h

]
,

or equivalently, Ŝ(1) ≤st Ŝ
(2) where for i = 1, 2, the rv Ŝ(i) denotes the forward

recurrence of rv S(i). Thus, by Claim (ii) of Proposition 3.3.1, we have for each

h = 1, 2, . . .,

cov(A1
t , A

1
t+h) = λE

[
S(1)

]
P

[
ˆS(1) > h

]

≤ λE
[
S(2)

]
P

[
ˆS(2) > h

]
= cov(A2

t , A
2
t+h).

In conclusion, the M |G|∞ process (λ, S(1)) has the same marginals as theM |G|∞
process (λ, S(2)) but its correlation function is smaller than that of the theM |G|∞
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process (λ, S(2)), i.e., the M |G|∞ process (λ, S(2)) is more positively correlated

than the M |G|∞ process (λ, S(1)).

As in the case of independent version, if we can establish the comparison in

either the sm or idcx ordering between {A1
t , t = 0, 1, . . .} and {A2

t , t = 0, 1, . . .},
i.e.,

{A1
t , t = 0, 1, . . .} ≤idcx {A2

t , t = 0, 1, . . .}, (11.7)

then the comparison of their corresponding buffer contents is made possible by

Theorem 5.1.1. Unfortunately, we are unable to show (11.7) in this case. However,

we can establish the sm comparison in the case of two-dimensional marginals, i.e.,

(A1
0, A

1
t ) ≤sm (A2

0, A
2
t ), t = 1, 2, . . . , (11.8)

by using the facts on orthant orderings which were developed in Section 4.4.

Since A1
0 =st A

2
0 and A1

t =st A
2
t , t = 1, 2, . . ., by virtue of Lemma 4.4.1,

showing (11.8) is equivalent to showing

(A1
0, A

1
t ) ≥lo (A2

0, A
2
t ), t = 1, 2, . . . , (11.9)

or equivalently,

P
[
A1

0 ≤ x0, A
1
t ≤ x1

]
≤ P

[
A2

0 ≤ x0, A
2
t ≤ x1

]
, x0, x1 = 0, 1, . . . , (11.10)

for all t = 1, 2, . . ..

Note that the comparison between the M |G|∞ process (λ, S(1)) and the

M |G|∞ process (λ, S(2)) when S(1) ≤cx S
(2) is not a generalized version of the

comparison with the independent version developed in Section 11.1. The rea-

son is that for any M |G|∞ process (λ, S), its independent version is given by

the M |G|∞ process (λE [S] , 1), thus both processes are not identified with the

assumptions of M |G|∞ process (λ, S(1)) and M |G|∞ process (λ, S(2)).
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11.3.1 Expressions for M |G|∞ processes

Before we proceed to establish (11.10), we first concentrate on finding the expres-

sions of P [A0 ≤ x0, At ≤ x1] for each t = 1, 2, . . ., when {At, t = 0, 1, . . .} is an

M |G|∞ process (λ, S).

Fix t = 1, 2, . . .: Recall from Section 3.3 the independent decomposition

At = A
(0)
t + A

(a)
t

where A
(0)
t =

∑B
i=1 1

[
Ŝi > t

]
and A

(a)
t is a Poisson rv with mean λ

∑t
s=1 P [S > s].

For each i = 1, 2, . . ., define ξi(pt) = 1
[
Ŝi > t

]
where pt = P

[
Ŝ > t

]
. Clearly, the

rvs {ξi(pt), i = 1, 2, . . .} are i.i.d. Bernoulli rvs with mean pt. Upon noting that

A0 =st B is Poisson distributed with mean λE [S], we rewrite A
(0)
t as

A
(0)
t =

A0∑
i=1

ξi(pt)

provided the rvs {ξi(pt), i = 1, 2, . . .} are independent of A0. Set qt = 1 − pt =∑t

s=1
P[S>s]

E[S]
. Thus, the rvs A

(0)
t and A

(a)
t are simply independent Poisson rvs with

mean λE [S] pt and λE [S] qt, respectively. As a result, we have the expression

P [A0 ≤ x0, At ≤ x1] = P


A0 ≤ x0,

A0∑
i=1

ξi(pt) + A
(a)
t ≤ x1


 , (11.11)

where the rvs A0, {ξi(pt), i = 1, 2, . . .} and A
(a)
t are mutually independent.

11.3.2 The comparison

From the discussion above, when S(1) ≤cx S
(2), we have Ŝ(1) ≤st Ŝ

(2) with

p1
t = P

[
Ŝ(1) > t

]
≤ P

[
Ŝ(2) > t

]
= p2

t , t = 1, 2, . . . .

Therefore, for each t = 1, 2, . . . if (11.11) is monotone increasing in pt, then the

comparison (11.10) holds. The desired monotonicity is made possible by the

following fact:
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Proposition 11.3.1 Fix 0 ≤ p ≤ 1 and write q = 1 − p. Let N0 and N1 be

independent Poisson rvs with mean λ and λq, respectively. Let {ξi(p), i = 1, 2, . . .}
be a sequence of i.i.d. Bernoulli rvs with mean p independent of N0 and N1. Then,

for any x0, x1 = 0, 1, 2 . . ., it holds that

d

dp
P


N0 ≤ x0,

N0∑
i=1

ξi(p) +N1 ≤ x1




= λP [N0 = x0] (
x0∑

j=0

P

[
x0∑
i=1

ξi(p) = j

]
P [N1 = x1 − j]) (11.12)

where P [N1 = k] = 0 for k < 0.

The proof of Proposition 11.3.1 is given in the next section. However, from

it, we can already conclude to the following.

Lemma 11.3.1 For any x0, x1 = 0, 1, . . ., we have

d

dpt
P [A0 ≤ x0, At ≤ x1] (11.13)

= λE [S]P [A0 = x0] (
x0∑

j=0

P

[
x0∑
i=1

ξi(pt) = j

]
P

[
A

(a)
t = x1 − j

]
) ≥ 0.

Proof. It can be seen that {ξi(pt), i = 1, 2, . . .}, A0 and A
(a)
t are identified

with {ξi(p), i = 1, 2, . . .}, N0 and N1 of Proposition 11.3.1, respectively, and the

expression (11.13) is simply a rewrite of (11.12) and clearly non-negative.

From Lemma 11.3.1, it is plain that the probability P [A0 ≤ x0, At ≤ x1] is

monotone increasing in pt = P
[
Ŝ > t

]
and the comparison (11.10) holds. We

summarize these findings in the next theorem.
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Theorem 11.3.1 For i = 1, 2, let {Ai
t, t = 0, 1, . . .} be an M |G|∞ input process

(λ, S(i)). If S(1) ≤cx S
(2), then it holds that

(A1
0, A

1
t ) ≤sm (A2

0, A
2
t )

for all t = 1, 2, . . ..

11.3.3 Proof of Proposition 11.3.1

We begin with some definitions and expressions. First, define the function f :

IR2 × [0, 1] → [0, 1] by

f(x0, x1, p) = P


N0 ≤ x0,

N0∑
i=1

ξi(p) +N1 ≤ x1


 .

Next, recall that

P [N0 = x] = e−λλ
x

x!
, x = 0, 1, . . . ,

and that for fixed 0 ≤ p ≤ 1 and n = 1, 2, . . .,

P

[
n∑

i=1

ξi(p) = k

]
=

n!

(n− k)!k!
pkqn−k, k = 0, . . . , n.

If k �= 0, 1, . . . , n, we always have P [
∑n

i=1 ξi(p) = k] = 0 and similarly if j < 0,

we have P [N0 = j] = P [N1 = j] = 0.

We note two important relations: For x = 0, 1, . . .,

d

dp
P [N1 ≤ x] = λe−λq

x∑
k=0

(λq)k

k!
− λe−λq

x∑
k=1

(λq)k−1

(k − 1)!

= λe−λq (λq)x

x!

= λP [N1 = x] (11.14)

and for fixed 0 ≤ p ≤ 1 and n = 1, 2, . . .,

d

dp
P

[
n∑

i=1

ξi(p) = k

]
=

n!

(n− k)!k!
[kpk−1qn−k − (n− k)pkqn−k−1]
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=
n!

(n− k)!(k − 1)!
pk−1qn−k − n!

(n− 1 − k)!k!
pkqn−1−k

= n(P

[
n−1∑
i=1

ξi(p) = k − 1

]
− P

[
n−1∑
i=1

ξi(p) = k

]
) (11.15)

for each k = 0, 1, . . . , n.

Now, we are ready to establish Proposition 11.3.1. The proof proceeds by

induction on x0. Fix 0 ≤ p ≤ 1 and x1 = 0, 1, . . ., and set q = 1 − p: For x0 = 0,

∑x0
i=1 ξi(p) =st 0 and by independence, we have

d

dp
f(0, x1, p) =

d

dp
P [N0 = 0]P [N1 ≤ x1]

= λP [N0 = 0]P [N1 = x1]

where the last equality follows from (11.14) upon noting that P [N0 = k] , k =

0, 1, . . ., does not depend on p. Hence, (11.12) holds when x0 = 0.

Suppose that (11.12) does hold for some x0 = x, i.e.,

d

dp
f(x, x1, p) = λP [N0 = x] (

x∑
j=0

P

[
x∑

i=1

ξi(p) = j

]
P [N1 = x1 − j]).

For x0 = x+ 1, we have

f(x+ 1, x1, p) = f(x, x1, p) + P


N0 = x+ 1,

N0∑
i=1

ξi(p) +N1 ≤ x1




= f(x, x1, p) + P [N0 = x+ 1]P

[
x+1∑
i=1

ξi(p) +N1 ≤ x1

]

= f(x, x1, p) + g(x+ 1, x1, p)

where we have set

g(x+ 1, x1, p) = P [N0 = x+ 1]P

[
x+1∑
i=1

ξi(p) +N1 ≤ x1

]

= P [N0 = x+ 1]
x+1∑
j=0

P

[
x+1∑
i=1

ξi(p) = j

]
P [N1 ≤ x1 − j] .
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Then,

d

dp
g(x+ 1, x1, p) = γ1(x+ 1, x1, p) + γ2(x+ 1, x1, p)

where we have defined

γ1(x+ 1, x1, p) = P [N0 = x+ 1]
x+1∑
j=0

P [N1 ≤ x1 − j]
d

dp
(P

[
x+1∑
i=1

ξi(p) = j

]
)

(11.16)

and

γ2(x+ 1, x1, p) = P [N0 = x+ 1]
x+1∑
j=0

P

[
x+1∑
i=1

ξi(p) = j

]
d

dp
(P [N1 ≤ x1 − j]).

(11.17)

Thus, we obtain

d

dp
f(x+ 1, x1, p)

=
d

dp
f(x, x1, p) +

d

dp
g(x+ 1, x1, p)

=
d

dp
f(x, x1, p) + γ1(x+ 1, x1, p) + γ2(x+ 1, x1, p). (11.18)

In fact, as we show next, γ1(x+1, x1, p) = − d
dp
f(x, x1, p) and γ2(x+1, x1, p) =

d
dp
f(x+ 1, x1, p): From (11.16) and (11.15), it follows that

γ1(x+ 1, x1, p) = P [N0 = x+ 1]
x+1∑
j=0

P [N1 ≤ x1 − j] ·

(x+ 1)(P

[
x∑

i=1

ξi(p) = j − 1

]
−P

[
x∑

i=1

ξi(p) = j

]
)

= (x+ 1)P [N0 = x+ 1] (
x+1∑
j=0

P [N1 ≤ x1 − j] ·

P

[
x∑

i=1

ξi(p) = j − 1

]
−

x+1∑
j=0

P [N1 ≤ x1 − j]P

[
x∑

i=1

ξi(p) = j

]
)

but since P [
∑x

i=1 ξi(p) = −1] = P [
∑x

i=1 ξi(p) = x+ 1] = 0, we obtain

γ1(x+ 1, x1, p) = (x+ 1)P [N0 = x+ 1] (
x+1∑
j=1

P [N1 ≤ x1 − j] ·
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P

[
x∑

i=1

ξi(p) = j − 1

]
−

x∑
j=0

P [N1 ≤ x1 − j]P

[
x∑

i=1

ξi(p) = j

]
)

= (x+ 1)P [N0 = x+ 1] (
x∑

j=0

P [N1 ≤ x1 − j − 1] ·

P

[
x∑

i=1

ξi(p) = j

]
−

x∑
j=0

P [N1 ≤ x1 − j]P

[
x∑

i=1

ξi(p) = j

]
)

= −(x+ 1)P [N0 = x+ 1]
x∑

j=0

P

[
x∑

i=1

ξi(p) = j

]
P [N1 = x1 − j]

= − d

dp
f(x, x1, p) (11.19)

where we have the last equality because (x + 1)P [N0 = x+ 1] = λP [N0 = x].

Moreover, from (11.14) and (11.17), we obtain

γ2(x+ 1, x1, p) = λP [N0 = x+ 1]
x+1∑
j=0

P

[
x+1∑
i=1

ξi(p) = j

]
P [N1 = x1 − j] . (11.20)

Finally, upon combining (11.19) and (11.20) via (11.18), we conclude to the

expression

d

dp
f(x+ 1, x1, p) = λP [N0 = x+ 1]

x+1∑
j=0

P

[
x+1∑
i=1

ξi(p) = j

]
P [N1 = x1 − j]

and the proof of the induction step is completed.

11.4 Simulation results

In this section, we verify the comparison in Theorem 11.1.1 (and in Theorem

10.2.2) by simulation experiments. To do so, we choose to compare the first and

second moments of the buffer sizes of the M |G|∞ input process (λ, S) and of

its independent version (M |G|∞ process (λE [S] , 1)) where the experiment de-

scription is specified in Section 6.2. Here, the session durations have two types

of distributions, namely, geometric and discrete-Pareto. The details on the ge-

ometric rv G(ρ) and discrete-Pareto rv P(α) can be found in Section 2.3. It is
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known that the M |G|∞ process with discrete-Pareto session duration exhibits

long-range dependence [38] and the steady state mean buffer size E [Q] is infinite

[23]. For all simulations in this section, we fix the number of sample path at

N = 10, 000 and the multiplexer release rate at c = 0.6.

In the case S =st G(ρ), we select ρ = 0.8 and λ = 1. Thus, λE [S] = 5

and its independent version is simply the M |G|∞ process (5, 1). The first and

second moments of the corresponding buffer sizes are shown in Figure 15 and 16,

respectively. The results clearly agree with the comparison in Theorem 11.1.1

since both the first and second moments of the buffer level of the M |G|∞ process

(1,G(0.8)) are larger than those of its independent version.

Now, consider the case S =st P(1.4) and λ = 1.61. Since α = 1.4, from

(2.9), we have E [S] = 3.10555 and thus λE [S] = 5. Again, the independent

version is an M |G|∞ process (5, 1). In Figures 17 and 18, we show the first and

second moments of the buffer sizes of the M |G|∞ process (1.61,P(1.4)) and of

its independent version. Both moments of the buffer sizes of the M |G|∞ process

(1.61,P(1.4)) grow with t in agreement with the fact that E [Q] = ∞. It is

clear that the first and second moments of the buffer fed by the independent

version is smaller than those of the M |G|∞ process (1.61,P(1.4)). Hence, we

can use the independent version as a lower bound in the sense of the icx ordering.

While both M |G|∞ process (1.61,P(1.4)) and M |G|∞ process (1,G(0.8)) have

the same mean traffic rate at 5, the M |G|∞ process (1.61,P(1.4)) yields higher

mean buffer levels than the M |G|∞ process (1,G(0.8)).
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Figure 15: The first moments of the buffer sizes of the M |G|∞ process (1,G(0.8))

and of its independent version M |G|∞ process (5, 1)
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Figure 16: The second moments of the buffer sizes (in logscale) of the M |G|∞
process (1,G(0.8)) and of its independent version M |G|∞ process (5, 1)
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Figure 17: The first moments of the buffer sizes of the M |G|∞ process

(1.61,P(1.4)) and of its independent version M |G|∞ process (5, 1)
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Figure 18: The second moments of the buffer sizes (in logscale) of the M |G|∞
process (1.61,P(1.4)) and of its independent version M |G|∞ process (5, 1)
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Appendix A

Self-similarity

In this appendix, we briefly discuss various definitions and properties of self-

similar processes. More information about self-similarity can be found in the

monograph [44].

Let {Xt, t = 0, 1, . . .} be any sequence of IR-valued rvs. For each m = 1, 2, . . .,

define the process {X(m)
t , t = 0, 1, . . .} by

X
(m)
t ≡ 1

m

m−1∑
k=0

Xmt+k, t = 0, 1, . . . , (A.1)

to be the m-averaged process associated with {Xt, t = 0, 1, . . .}. Also, let the

process {X̆(m)
t , t = 0, 1, . . .} defined by

X̆
(m)
t ≡ m1−HX

(m)
t =

1

mH

m−1∑
k=0

Xmt+k, t = 0, 1, . . . , (A.2)

be the m-normalized process where 0 < H < 1 is the index of normalization.

Definition A.1 A strictly stationary process {Xt, t = 0, 1, . . .} is said to be

strictly self-similar with Hurst parameter H (0 < H < 1), if for each m = 1, 2, . . .,

we have

{X̆(m)
t , t = 0, 1, . . .} =st {Xt, t = 0, 1, . . .} (A.3)

where {X̆(m)
t , t = 0, 1, . . .} is the m-normalized process (A.2) with index of nor-

malization H.
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From the definition, the self-similar process {Xt, t = 0, 1, . . .} has the same

probabilistic structure as its scaled and normalized version {X̆(m)
t , t = 0, 1, . . .}. If

we assume that the moments E [Xt] exist for all t = 0, 1, . . . and {Xt, t = 0, 1, . . .}
is strictly self-similar process, it is clear from (A.2) and (A.3) that E [Xt] =

0 necessarily for all t = 0, 1, . . .. This strictly self-similarity property is too

restrictive for processes {Xt, t = 0, 1, . . .} which are positive and non-degenerate

since neither the process itself nor the centered process {Xt−E [Xt] , t = 0, 1, . . .}
can be strictly self-similar. The next definition introduces the broader class of

exactly second-order self-similar processes.

Definition A.2 A wide-sense stationary process {Xt, t = 0, 1, . . .} is said to be

exactly second-order self-similar with Hurst parameter H (0 < H < 1), if for

each m = 1, 2, . . . we have

var[X̆
(m)
t ] = var[Xt], t = 0, 1, . . . , (A.4)

where {X̆(m)
t , t = 0, 1, . . .} is the m-normalized process (A.2) with index of nor-

malization H.

Since {Xt, t = 0, 1, . . .} is wide-sense stationary, it is easy to see that both

{X(m)
t , t = 0, 1, . . .} and {X̆(m)

t , t = 0, 1, . . .} are also wide-sense stationary pro-

cesses with correlation functions

Γ(m)(h) ≡ cov[X
(m)
t , X

(m)
t+h ] and γ(m)(h) ≡ Γ(m)(h)

Γ(m)(0)
, h = 0, 1, . . . ,

and

Γ̆(m)(h) ≡ cov[X̆
(m)
t , X̆

(m)
t+h ] and γ̆(m)(h) ≡ Γ̆(m)(h)

Γ̆(m)(0)
, h = 0, 1, . . . ,

respectively. Moreover, the following conditions (i)-(iii) below are equivalent [53],

where
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(i) Γ̆(m)(0) = Γ(0), m = 1, 2, . . . (Eq. (A.4));

(ii) Γ(m)(0) = Γ(0)m−2(1−H), m = 1, 2, . . .;

(iii) For fixed Hurst parameter H ;

Γ(h) = Γ(0)γH(h), h = 0, 1, . . . (A.5)

where the mapping γH : IN → IR+ is given by

γH(h) ≡ 1

2
(|h+ 1|2H − 2|h|2H + |h− 1|2H), h = 0, , . . . . (A.6)

With 0.5 < H < 1, the mapping γH is strictly decreasing and integer-convex

with γH(0) = 1, and behaves asymptotically as

γH(h) ∼ H(2H − 1)h2H−2 (h→ ∞)

so that under (A.6) {Xt, t = 0, 1, . . .} exhibits long-range dependence.

Exact second-order self-similarity is sometimes too restrictive for some appli-

cations. The last definition relaxes the notion to a much larger class of processes.

Definition A.3 A process {Xt, t = 0, 1, . . .} is said to be asymptotically second-

order self-similar if

lim
m→∞ γ

(m)(h) = γH(h), h = 1, 2 . . . , (A.7)

for some 0 < H < 1, in which case we still refer to H as the Hurst parameter of

the process.
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