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Abstract

A system which embeds watermarks in n-dimensional i.i.d. Gaussian images

and distributes them in compressed form is studied. The performance of the

system in the presence of Gaussian attacks is considered, and the region of

achievable watermarking and quantization rates is established under constraints

on image distortion and watermark detectability. The performance of related

schemes is also discussed.

1 Introduction

Over the last decade, considerable attention has been devoted to information hid-

ing as a means of preserving ownership of intellectual property in multimedia data.

Numerous articles (e.g. see [1, 2, 3]) and books (e.g. [4, 5]) explain the basics of in-

formation hiding (commonly referred to as watermarking), explore its many practical

applications, and evaluate the performance of various watermarking schemes under a

variety of attack scenarios.

Two key issues in the design of watermarking schemes are:
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� Transparency: The hidden message should not interfere perceptually with the

host signal (or covertext [6]). The quality of the watermarked data must thus

be comparable to that of the covertext, a requirement which is often expressed

in terms of a distortion constraint.

� Robustness: The message must be detectable in the watermarked image (the

covertext is assumed to be an image in the sequel, though similar techniques

can be applied to other types of multimedia data), even after degradation due

to malicious attacks or other processing (quantization, D/A conversion, etc).

In the private detection scenario, the original image is available to the detector;

in the public scenario, it is not.

Information hiding has also been studied from an information-theoretic perspec-

tive, notably in [7, 8, 9, 10, 11, 12, 6, 13, 14]. The model treated in this paper, which

involves joint watermarking and image compression, has received less attention in the

literature. A brief summary of our model follows.

Due to bandwidth or storage constraints, a watermarked image is quantized to RQ

bits per image dimension, corresponding to a source codebook index. The informa-

tion is then delivered to the customer, who is assumed to have access to the source

codebook. The compression scheme complies with the aforementioned transparency

and robustness requirements, in that a distortion (�delity) constraint is met, and

the watermark is detectable from the reproduced (quantized), and possibly degraded,

version of the image.

Previous work involving this model [9, 14], focused on the case where the water-

marked/compressed image was not subject to attacks (compression inherently intro-

duces degradation, but cannot be construed as a malicious attack of the type studied

in, e.g., [7, 13]). It was shown that, when the original image is i.i.d. Gaussian and

an average quadratic distortion constraint is satis�ed, the region of allowable rates

(RQ; RW ) (for the no-attack case) is given by

RQ � 1

2
log

�
PI
D

�

RW � RQ � 1

2
log

�
PI
D

�

where RQ is the quantization rate, RW is the watermarking rate, PI is the image

variance (per dimension or pixel) and D is the average quadratic distortion between
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the original image and the watermarked/compressed image. Since this result is sub-

sumed in the analysis of this paper, no further discussion is in order here except for

the following observation. The rates above are compatible with a naive encoding

scheme whereby nRW bits are used to encode the watermark index and n(RQ�RW )

bits to represent the original image, where

RQ �RW >
1

2
log

�
PI
D

�
:

By standard rate-distortion theory for i.i.d. Gaussian sources, there are enough bits

to represent the image with average distortion equal to D. Yet this scheme is entirely

inadequate from a watermarking (or information hiding) perspective, since the image

representation does not contain the watermark in any form whatsoever.

An interesting compression/watermarking scheme developed by Chen and Wornell

[12] is Quantization Index Modulation (QIM), where an ensemble of quantizers|each

corresponding to a particular watermark index|is used for compressing the image.

The regular version of QIM, in which the watermarked image is communicated to the

user as an index in a source codebook, is of relevance to our work and will be studied

further in Section 4.

In summary, this paper contains �nal versions of results in [9, 14], together with

extensions to the important case where the compressed images are subjected to addi-

tive memoryless Gaussian attacks. The main contribution is a coding theorem which

establishes the region of all achievable rate pairs (RQ; RW ) such that the average per-

symbol quadratic distortion between the original and the compressed image does not

exceed a threshold D, and the watermark index is detectable with high probability in

a private scenario, i.e., assuming that the original image is available to the detector.

Achievability results are also presented for regular QIM in the public scenario, as well

as for certain additive watermarking schemes.

The paper is organized as follows. The description and interpretation of the rate

regionRD;DA consisting of achievable (RQ; RW ) pairs is given in Section 2. The coding

theorem that establishes RD;DA is proved in Section 3. Achievability results for other

schemes that combine watermarking and compression are presented in Section 4.

Finally, conclusions and directions for further research are given in Section 5.

3



In

Watermark
Index

W

Quantized
Watermarked Image

Image

Yn

V

Z

n

Watermark
Encoder

W

Detected Watermark
Index

Watermark
Decoder

Original

n

Noise

Figure 1: The watermarking/authentication system with quantization

2 The Rate Region

The watermarking/quantization system under consideration is shown in Figure 1. In

the embedding process, W is the watermark index which is uniformly distributed

over a set of size 2nRW ; In is the i.i.d. n-dimensional Gaussian image of (per-symbol)

variance PI ; and Ŷ n is the watermarked/quantized image which can be found in an

source codebook of size 2nRQ. The attack is modeled as additive i.i.d. Gaussian noise

V n of (per-symbol) variance DA, and is assumed independent of Ŷ n. The watermark

decoder outputs Ŵ , its estimate ofW . The transparency and robustness requirements

are expressed via the following constraints:

n�1EjjIn � Ŷ njj2 � D; and (1)

PrfŴ 6= Wg ! 0; as n!1 (2)

The converse and achievability results of Section 3 establish the following region

RD;DA of achievable rates (RQ; RW ):

RD;DA =

(
(RQ; RW ) :

RQ � 1

2
log

�
PI
D

�

RW � max
2

h
PI
D
;2
2RQ

imin

(
RQ � 1

2
log();

1

2
log

 
1 +

PW ()

DA

!))

where

PW ()
�
=
(PI +D)� 2PI + 2

q
PI(D � PI)( � 1)

2
(3)

RD;DA is the shaded region in Figure 2. Its upper boundary is composed of:
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Figure 2: The rate region RD;DA of achievable rate pairs (RQ; RW ).

� The segment AB on the straight line RW = RQ � 1
2
log

�
PI
D

�
.

� The curved segment BC de�ned by the equation

RW = max
2[PI=D;22RQ]

min

(
RQ � 1

2
log();

1

2
log

 
1 +

PW ()

DA

!)

for RQ in the interval [1
2
log

�
PI
D
+ PI�D

DA

�
; 1
2
log

�
1 + PI+D

DA
+ PI

D

�
], i.e., the pro-

jection of BC on the RQ-axis. As we shall see later, RW is also given by the

root of a cubic equation.

� A half-line parallel to the RQ-axis with vertex C. The RW -ordinate is given by
1
2
log

�
1 + D

DA

�
.

Two key conclusions can be drawn from Figure 2:

� For quantization rates RQ 2
h
1
2
log

�
PI
D

�
; 1

2
log

�
PI
D
+ PI�D

DA

�i
, the watermarking

rate RW can be as high as RQ� 1
2
log

�
PI
D

�
, which is the maximum watermarking

rate for the case of no attack (DA=0). In other words, at low quantization rates,

Gaussian attack noise does not degrade the performance of the system.

� When RQ � 1
2
log

�
1 + PI+D

DA
+ PI

D

�
, the maximumwatermarking rate is constant

and equal to 1
2
log

�
1 + D

DA

�
. This expression makes sense in the case RQ =1,

where the distortion in the original image is solely due to watermarking, and
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where D represents the \signal" power in the AWGN Gaussian attack channel of

variance DA|hence the familiar expression for the capacity of that channel. It

is surprising that in the case RQ <1, there exists a quantization rate threshold

above which quantization does not hinder the detection of the watermark, i.e.,

the watermarking rate can be as high as in the case of no compression.

3 The Coding Theorem

The coding theorem which establishes the region of all achievable rate pairs (RQ; RW ),

consists of a converse and a direct (achievability) part.

The converse part states that no rate pairs (RQ; RW ) 62 RD;DA are achievable.

Proof: (Converse) Let � > 0. We assume that the watermark index W is uniformly

distributed in f1; : : : ; 2nRW g, PrfW 6= Ŵg < � and the following distortion constraint

is satis�ed:
1

n

nX
i=1

E(Ii � Ŷi)
2 � D (4)

We know from rate-distortion theory [15] that (since In is Gaussian distributed) RQ

should be at least as high as the rate-distortion function of a Gaussian source with

average distortion D. Hence,

RQ � 1

2
log

�
PI
D

�
(5)

First, we have the following chain of inequalities:

RW = n�1H(W jIn; V n) (6)

= n�1I(W ; Ŷ njIn; V n) + n�1H(W jIn; Ŷ n; V n)

� n�1I(W ; Ŷ njIn; V n) + n�1H(W jIn; Zn) (7)

� n�1I(W ; Ŷ njIn; V n) + � (8)

= n�1H(Ŷ njIn; V n)� n�1H(Ŷ njW; In; V n) + �

� n�1H(Ŷ njIn) + � (9)

= n�1H(Ŷ n)� n�1(H(Ŷ n)�H(Ŷ njIn)) + �

� RQ � n�1I(Ŷ n; In) + � (10)

� RQ � 1

2
log

�
PI
D

�
+ � (11)

where (6) holds because In; V n are independent of W , (7) follows from

H(W jIn; Ŷ n; V n) = H(W jIn; Zn; Ŷ n; V n) � H(W jIn; Zn), (8) is a consequence of
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Fano's inequality, (9) holds because H(Ŷ njW; In; V n) = 0 (since Ŷ n is a function of

W; In), (10) follows from RQ � n�1H(Ŷ n) and (11) holds because n�1I(Ŷ n; In) is

always greater than or equal to, the rate-distortion function of a Gaussian source of

power PI and average distortion D.

We next have:

RW = n�1H(W jIn) (12)

= n�1I(W ;ZnjIn) + n�1H(W jIn; Zn)

� n�1I(W ;ZnjIn) + � (13)

= n�1h(ZnjIn)� n�1h(ZnjIn;W ) + �

= n�1h(ZnjIn)� n�1h(V njIn;W ) + � (14)

= n�1h(Ŷ n � �In + V njIn)� n�1h(V n) + � (15)

� n�1h(Ŷ n � �In + V n)� 1

2
log(2�e)DA + �

� 1

2
log(2�e)(G+DA)� 1

2
log(2�e)DA + � (16)

=
1

2
log

�
1 +

G

DA

�
+ � (17)

where (12) holds because In is independent ofW , (13) follows from Fano's inequality,

(14) holds because Ŷ n is a function of In;W , (15) follows from the independence of

V n and In;W and (16) holds because the Gaussian distribution provides an upper

bound on the entropy of a continuous variable with variance G+DA, where

G
�
= min

�2R

1

n

nX
i=1

E(Ŷi � �Ii)
2

=
1

n

nX
i=1

E(Ŷi � �0Ii)
2

Figure 3 shows the space L2 of second moments. We can easily compute that

�0 =
1

n

nX
i=1

IiŶi
PI

and together with (4) we get

�0 � PI + PŶ �D

2PI
> 0 (18)

where PŶ
�
= 1

n

Pn
i=1E(Ŷ

2
i ). Also, from the Pythageorean theorem we have

�20PI +G = PŶ (19)
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Figure 3: The 2nd moment space L2 spanned by vectors In; Ŷ n, shown for three

di�erent values of �. The circle C is the locus of all Ŷ n such that n�1EjjIn� Ŷ njj2 =
d � D. As � increases from 0, G monotonically increases (case (a)) until it reaches

its highest value d (case (b)) and then starts decreasing monotonically (case (c)).

Finally, it can be easily shown that

1

n
I(In; Ŷ n) � 1

2
log

 
1

sin2(�)

!

=
1

2
log

�
PŶ
G

�
(20)

Hence, from (10) and (20) we have

RW � RQ � 1

2
log

�
PŶ
G

�
+ � (21)

Let us de�ne 
�
= PŶ =G � 1. Then, by (21) and the fact that the minimum value

1
n
I(In; Ŷ n) can take is 1

2
log

�
PI
D

�
, we obtain

PI
D
�  � 22RQ (22)

Moreover, (18) and (19) give

G( � 1) = �20PI �
(PI + G�D)2

4PI

from which (solving for G) we get

G 2
�
(PI+D)�2PI�2

p
PI(D�PI )(�1)

2
;
(PI+D)�2PI+2

p
PI(D�PI)(�1)

2

�
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and, therefore,

G � PW () (23)

where PW () was de�ned in Section 2. So, combining (17), (21), (22) and (23) we

obtain

RW � max
2

h
PI
D
;2
2RQ

imin

(
RQ � 1

2
log();

1

2
log

 
1 +

PW ()

DA

!)
+ � (24)

By taking �! 0 in (24), and together with (5) we obtain the required result.

Behavior of PW (): Let's assume that d = D. From (20), we get that  = sin�2(�).

In Figure 3, it is shown that G (which is equal to PW () for d = D) is a continuous

function of � that increases monotonically as � increases from 0 to arctan(
q
D=PI),

and decreases monotonically when � > arctan(
q
D=PI). Observe that since PI � D,

� is always between 0 and �=2 (hence sin�2(�) is a monotonically decreasing func-

tion). Now, since sin and log are continuous and monotonous functions, it is obvious

that 1
2
log(1 + PW ()

DA
) has the following behavior: (a) it increases monotonically and

continuously for  2 [PI
D
; 1+ PI

D
], and (b) it decreases monotonically and continuously

for  > 1 + PI
D
. Obviously, the highest value of PW () is D, achieved for  = 1 + PI

D
.

So, when  = PI
D

then 1
2
log(1 + PW ()

DA
) = 1

2
log(1 + D

DA
(1� D

PI
)) and when  = 1+ PI

D

then 1
2
log(1 + PW ()

DA
) = 1

2
log(1 + D

DA
).

Behavior of the upper bound (24): By replacing  with 22� (where � 2 [1
2
log(PI

D
); RQ]),

(24) can be written as

RW � max
�2

h
1

2
log(

PI
D

);RQ

imin

(
RQ � �;

1

2
log

 
1 +

PW (22�)

DA

!)
(25)

We consider the following ranges for RQ: (i) RQ 2 [1
2
log(PI

D
); 1

2
log(PI

D
+ PI�D

DA
)]. In this

case, � 2 [1
2
log(PI

D
); 1

2
log(PI

D
+ PI�D

DA
)]. This corresponds to the situation described in

Figure 4(a), and it is obvious that the maximization in (24) is accomplished for � =
1
2
log(PI

D
). Therefore, (25) is equal to RQ � 1

2
log(PI

D
) in this case, and corresponds to

the linear segment (A;B) of Figure 2. (ii)RQ 2 [1
2
log(PI

D
+PI�D

DA
); 1

2
log(1+PI

D
+PI+D

DA
)].

Then, as shown in Figure 4(b), the maximin of (25) is attained at the root of the

equation RQ � � = 1
2
log(1 + PW (�)

DA
). Then, (25) gives the curved line segment (B;C)

of Figure 2. Note that, by virtue of the converse, (25) has to be a concave function

of RQ (we will show in the sequel that this upper bound is also achievable). (iii)

RQ � 1
2
log(1 + PI

D
+ PI+D

DA
). Then, the minimum in (25) is always less than (or equal
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to) the value of 1
2
log(1 + PW (�)

DA
) at � = 1

2
log(1 + PI

D
), which is equal to 1

2
log(1 + D

DA
)

(see Figure 4(c)). Hence, (25) is equal to 1
2
log(1 + D

DA
) in this case, and corresponds

to the horizontal half-line which starts at point C in Figure 2. This upper bound

RW � 1
2
log(1 + D

DA
) could also have been obtained using a plausible argument; that

RW cannot be higher than the capacity of an AWGN channel with signal power D

and noise power DA, obtained when RQ =1.

Note: In the special case DA = 0 (no attack) only the proof for the linear leftmost

boundary RW � RQ � 1=2 log(PI=D) makes sense; the proofs of the other upper

bounds give in�nite results and should be ignored. The converse then coincides with

the channel-coding part of the converse found in [16], or the converse of [14] for

RF = 0.

We are now going to prove that RD;DA is achievable.

Proof: (Achievability) Let � > 0. We are going to prove that RD;DA is achievable

using a random coding argument. Let W be the watermark index, uniformly dis-

tributed in f1; : : : ; 2nRW g, and let Ŵ be the output of the decoder. We assume that

the quantizer operates at a rate RQ � 1
2
log

�
PI
D

�
.

First, we will show that the region that lies below the curved line segment (B;C)

of Figure 2 is achievable. Consequently, we assume that

RQ 2
�
1

2
log

�
PI
D

+
PI �D

DA

�
;
1

2
log

�
1 +

PI +D

DA
+
PI
D

��

Our approach uses an idea similar to the private version of the regular QIM [12]:

generation of 2nRW quantizers, each one indexed by a di�erent watermark.

Generation of codebook: The encoder generates 2nRW sets, each consisting of 2nR1

sequences ~Y n each, such that

RQ = RW +R1 (26)

We denote the sequences of set w by f ~Y n
w (1); : : : ; ~Y

n
w (2

nR1)g. Each one of these se-

quences is generated i.i.d. � N (0; PŶ ). Furthermore, we require that

R1 � 1

2
log

�
PI
D

�
(27)

Embedding: Given In and W , the embedder looks into the set indexed by W and

tries to �nd a typical ~Y n
W (q) such that jn�1jjIn � ~Y n

W (q)jj2 � Dj < � (i.e., In and
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�

1

2
log

�
1 +

PW (22�)
DA

�

RQ � �

1
2
log

�
PI
D

�

RW

1
2
log

�
1 + PI

D

�

maxmin

(a)

�

1

2
log

�
1 +

PW (22�)
DA

�

1
2
log

�
PI
D

�

RW

1
2
log

�
1 + PI

D

�

maxmin

RQ � �

(b)

�

1

2
log

�
1 +

PW (22�)
DA

�

1
2
log

�
PI
D

�

RW

1
2
log

�
1 + PI

D

�

RQ � �

maxmin

(c)

Figure 4: Plots of RQ � � and 1
2
log(1 + PW (�)

DA
) and determination of the maximin

point for various values of RQ.
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~Y n
W (q) are distortion-typical). We call TI;Ŷ (�) the set of such typical sequences, that

corresponds to a joint Gaussian distribution pI;Ŷ with covariance matrix

KI;Ŷ =

2
4 PI

q
GPI( � 1)q

GPI( � 1) G

3
5

where 
�
= 22R1 and

G = PŶ (28)

If there exists such a ~Y n
W (q), then the encoder outputs Ŷ n

W = ~Y n
W (q) (if there are more

than one sequences, the encoder will pick the one with the smallest index), otherwise

the encoder outputs Ŷ n = 0.

Decoding: The decoder receives Zn = Ŷ n
W + V n. Given In, he tries to �nd a

~Y n
ŵ such that (In; ~Y n

ŵ ; Z
n) is jointly typical with respect to some trivariate Gaussian

distribution pI;Ŷ ;Z with covariance matrix

KI;Ŷ ;Z =

2
6664

PI
q
GPI( � 1)

q
GPI( � 1)q

GPI( � 1) G Gq
GPI( � 1) G G +DA

3
7775

Let T n
I;Ŷ ;Z

(�) be the set of all typical sequences with respect to pI;Ŷ ;Z. If there exists

such a ~Y n
ŵ , then the decoder outputs Ŵ = ŵ, otherwise declares an error.

Probability of error: Without loss of generality, we assume that W = 1. We have

the following error events:

� E1: Ŷ
n = 0, i.e., there exists no q 2 f1; : : : ; g such that (In; ~Y n

1 (q)) 2 TI;Ŷ
(encoding error).

� E2: There exists a ~Y n
1 (q) = Ŷ n

1 such that (In; Ŷ n
1 ) 2 TI;Ŷ but (In; Ŷ n

1 ; Z
n) 62

TI;Ŷ ;Z.

� E3: (I
n; Ŷ n

1 ; Z
n) 2 TI;Ŷ ;Z but there also exists a k > 1 such that (In; Ŷ n

k ; Z
n) 2

TI;Ŷ ;Z (decoding error).

So, the probability of error is

Pe = Pr(E1) + Pr(E2) + Pr(E3)

12



From the rate-distortion theorem [15] we know that if R1 > I(I; Ŷ ) then the proba-

bility of encoding error Pr(E1) goes to zero as n!1. From the construction of Ŷ n

we know that I(I; Ŷ ) is within o(1) of

1

2
log

 
1

sin2(�)

!
=

1

2
log

�
PŶ
G

�
(29)

(see Figure 3). Thus, from (28) and (29) we have that R1 = I(I; Ŷ ) + o(1), hence

Pr(E1)! 0 as required. Observe that (similarly to the converse part of the theorem)

the range of R1 is
1

2
log

�
PI
D

�
< R1 < RQ (30)

and hence the range of  is similar to (22).

In order to prove that Pr(E2)! 0, we need to prove the following lemma.

Lemma 1 With probability approaching unity, the triplet (In; Ŷ n
1 ; Z

n) belongs to

TI;Ŷ ;Z .

Proof: We showed above that Prf(In; Ŷ n
1 ) 2 TI;Ŷ g ! 1. Since Zn = Ŷ n

1 + V n and

V n is independent of In; Ŷ n
1 , it is straightforward to show that the empirical correla-

tions obtained from (In; Ŷ n
1 ; Z

n) are within � (or a factor thereof) of the corresponding

entries of KI;Ŷ ;Z with probability that goes to 1. Since pI;Ŷ ;Z is Gaussian with co-

variance matrix KI;Ŷ ;Z, typicality is thus immediatelly established with probability

approaching unity.

Hence, Pr(E2)! 0 as n!1.

The probability of error Pr(E3), is upper-bounded as follows:

Prf9w 6= 1 : (In; Ŷ n
w ; Z

n) 2 TI;Ŷ ;Zg

�
2nRWX
w=2

Prf(In; Ŷ n
w ; Z

n) 2 TI;Ŷ ;Zg

� 2nRW Prf(In; Ŷ n
2 ; Z

n) 2 TI;Ŷ ;Zg] (31)

where the last inequality is due to the symmetry of the construction of the Ŷ n se-

quences. It can be easily shown that the quantity Prf(In; Ŷ n
2 ; Z

n) 2 TI;Ŷ ;Zg is upper-
bounded by 2�n(I(Z;Ŷ2jI)��), since

� (In; Ŷ n
2 ) 2 TI;Ŷ ; and
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� by construction, given In, Zn = Ŷ n
1 + V n is independent of Ŷ n

2 .

It can be easily shown that I(Z; Ŷ2jI) = 1
2
log

�
1 + G

DA

�
. So, in order for (31) to

vanish asymptotically, it su�ces

RW � 1

2
log

�
1 +

G

DA

�
� � (32)

The quantity G has the same operational meaning as in the converse; based on Figure

3 it is de�ned as G = min�2R
1
n

Pn
i=1E(Ŷi � �Ii)

2. Together with (28) and assuming

that (4) is satis�ed with equality, we get the quadratic equation

G+
1

4PI
(PI �D + G)2 � G = 0

which has the root (the maximum of the two)

G =
(PI +D)� 2PI + 2

q
PI(D � PI)( � 1)

2
= PW () (33)

We then substitute (33) into (32) to get:

RW � 1
2
log

�
1 + PW ()

DA

�
� o(1) (34)

where  satis�es equation (26). It can be shown relatively easily that when

RQ 2
�
1

2
log

�
PI
D

+
PI �D

DA

�
;
1

2
log

�
1 +

PI +D

DA

+
PI
D

��

then there is always a  (that equals the solution to a 3rd degree polynomial equation)

that satis�es both (26) and (34) (case (b) in Figure 4). In this case, (34) coincides

with (24) (the \curved" segment (B;C) of Figure 2 is achieved). In order to achieve

the rest of RD;DA, we observe the following:

� When RQ = R�
Q

�
= 1

2
log

�
PI
D
+ PI�D

DA

�
then (34) shows that RW = R�

W
�
=

1
2
log

�
1 + D

DA
+ D2

PIDA

�
is achievable. This particular (R�

Q; R
�
W ) pair (point B

of �gure 2) lies on the RW = RQ � 1
2
log

�
PI
D

�
line.

� When RQ = R��
Q

�
= 1

2
log

�
1 + PI+D

DA
+ PI

D

�
then RW = R��

W
�
= 1

2
log

�
1 + D

DA

�
is achievable. The (R��

Q ; R
��
W ) pair (point C of �gure 2) lies on the RW =

1
2
log

�
1 + D

DA

�
line.

� The whole line RQ � 1
2
log

�
PI
D

�
, RW = 0 is trivially achievable (by just com-

pressing In up to average distortion D). Call this line L0.

14



It is straightforward to see now that by timesharing an (R�
Q; R

�
W )-rate code with a

(R��
Q ; R

��
W )-rate code and a code with rates that lie on the L0 line, we can achieve the

whole rate region RD;DA (it can be easily veri�ed that the codes obtained from the

timesharing satisfy the distortion constraint (1)).

We proved that if (RQ; RW ) 2 RD;DA then the average probability of error, over the

ensemble of the random codes, vanishes asymptotically with n. Hence, we argue that

there exist deterministic codes that achieve RD;DA with arbitrarily small probability

of error (averaged over all the messages). Finally, we conclude the proof by making the

maximal probability of error arbitrarily small, through an appropriate expurgation of

the codebook.

4 Performance of Other Schemes

In this section we will present achievability results for certain schemes that combine

watermarking and compression. Speci�cally, we investigate the relationship between

watermarking and quantization rates in the presence of additive memoryless Gaussian

noise, for the following systems:

� Regular Quantization Index Modulation (QIM) [12], where no knowledge of the

original image is available at the decoder (public version).

� Additive watermarking, where the embedder computes the weighted sum of

the original image and a watermark-dependent signal and then compresses the

result using a universal (watermark non-speci�c) quantizer. A private detection

scenario is assumed in this case.

Although our focus is on achievability results, the rate region RD;DA can be taken

as an outer bound on the achievable rate region of both schemes considered in this

section.

A. Regular Quantization Index Modulation, Public Scenario

We consider the regular version of QIM [12] (distinct from distortion-compensated

QIM) since we require the output of the embedding process to be a quantized image

(corresponding to an index in a source codebook).

Essentially, here we have an ensemble of 2nRW quantizers and their codebooks.

Each quantizer corresponds to a di�erent watermark index and covers the entire im-

age space. The watermark W is embedded into an original image In by quantizing In

15



using the W th quantizer, yielding a representation vector Ŷ n. Detection of the water-

mark W in a (possibly corrupted) image Zn entails mapping Zn to a representation

vector taken from the union of the 2nRW codebooks; the index of the codebook which

contains that vector becomes the estimate Ŵ of the watermark W .

As discussed in [12], achievable pairs (RQ; RW ) for regular QIM (also called \hid-

den" QIM) under constraints (1) and (2) can be found using a well-known formula

due to Gel'fand and Pinsker [17]:

RQ = I(Ŷ ;Z) = I(Ŷ ; Ŷ + V ) (35)

RW = I(Ŷ ;Z)� I(Ŷ ; I) (36)

where I and V are independent Gaussian variables distributed as before, and Ŷ is

such that E(Ŷ � I)2 � D (also note that Z = Ŷ + V ).

We have investigated the behavior of (36) as RQ varies, expressing RW in terms

of RQ and the system parameters PI , D and DA. In the random coding argument

for (35) and (36), all codewords are i.i.d. Gaussian with variance PŶ . Hence (35)

becomes

RQ =
1

2
log

�
1 +

PŶ
DA

�

and therefore

PŶ = DA(2
2RQ � 1) (37)

Also, (36) gives

RW = RQ � 1

2
log

 
PIPŶ

PIPŶ � (E(IŶ ))2

!
(38)

From (1) we get PI + PŶ � 2E(IŶ ) � D, so, since D � PI, (38) is maximized when

E(IŶ ) = (PI + PŶ �D)=2 for all PŶ . Hence, (38) becomes

RW = RQ � 1

2
log

 
PIPŶ

PIPŶ � 1
4
(PI + PŶ �D)2

!

and by substituting (37) we obtain

RW = RQ � 1

2
log

 
PIDA(2

2RQ � 1)

PIDA(22RQ � 1)� 1
4
(PI +DA(22RQ � 1)�D)2

!
(39)

where RQ is assumed to lie in a subinterval of

"
1

2
log

 
1 +

(
p
PI �

p
D)2

DA

!
;
1

2
log

 
1 +

(
p
PI +

p
D)2

DA

!#

16



Additive

Public QIM 

RD;DA

1

2
log

�
PI
D

�

1

2
log

�
1 + D

DA

�
RW

RQ

Figure 5: Upper boundaries of the achievable rate regions for the public QIM and the

private additive schemes. RD;DA gives an outer bound to the achievable rate regions

of these schemes.

which ensures that the argument of log(�) in (39) is no less than unity and that the

resulting value of RW is nonnegative (the exact expression for the range of RQ can be

obtained by solving a 3rd degree polynomial). Figure 5 shows the achievable region

described by (39).

As can be seen from Figure 5, the watermarking rate RW obtained using i.i.d.

Gaussian codebooks is positive only for a �nite range of values ofRQ. This is explained

by the fact that as the quantization rate increases, the quantization cells shrink and

thus it becomes increasingly likely that a corrupted image will be mistaken for an

image generated by another quantizer (resulting in a di�erent watermark index at

the decoder). Moreover, when QIM is applied to �ngerprinting, there is an additional

drawback: each user, who receives a di�erent �ngerprinted version of an image, will

need to be provided a di�erent source codebook in order to do the decoding. This

entails higher cost and complexity than using a universal quantizer (or quantization

algorithm) which is easily accessible by all users.

The two above problems can be circumvented with the use of additive schemes

(e.g. see [9, 14]). The analysis of such an additive scheme follows.

B. Additive Watermarking, Private Scenario

In general, additive watermarking entails the computation of

Y n = �In + �Xn(W )
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where �; � are non-zero scalars, W is the index of the watermark and Xn(W ) is a

n-dimensional signal that does not depend on the original image In. Since we require

the output of the encoder to be a compressed image Ŷ n, we use a universal quantizer

f (that does not depend on the watermark embedded) to produce

Ŷ n = f(Y n)

such that the distortion constraint (1) is satis�ed. The decoder, given Zn; In tries to

detect W with vanishing probability of error.

We will use a random coding argument. The watermarker generates a channel

codebook which consists of 2nRW signals Xn(1); : : : ; Xn(2nRW ), each one i.i.d. Gaus-

sian distributed with variance PX . Since the distortion constraint is between In and

Ŷ n (and not between Y n and Ŷ n) we consider a quantizer that scales Y n by 1=�

before quantizing. Furthermore, we assume that PX is a free parameter in our model,

hence, we can equivalently set

Ŷ n = f(In +Xn(W ))

The source codebook consists of 2nRQ sequences ~Y n(1); : : : ; ~Y n(2nRQ), whose compo-

nents are i.i.d. N (0; PŶ ). For the embedding, Ŷ = ~Y n(q), where q is the smallest

index such that the pair (Y n; ~Y n(q)) is typical with respect to a joint Gaussian dis-

tribution pY;Ŷ . If no such q can be found, then the encoder declares an error. The

distribution pY;Ŷ has zero mean and covariance matrix

KY;Ŷ =

2
4 PI + PX

PI+PX
2PI

(PI + PŶ � d)
PI+PX
2PI

(PI + PŶ � d) PŶ

3
5

where d = n�1EjjIn � Ŷ njj2. By setting

RQ = I(Y ; Ŷ ) + � =
1

2
log

 
(PI + PX)PŶ

jKY;Ŷ j
!
+ � (40)

it can be shown that the distortion constraint (1) is satis�ed. For the detection of

the watermark, given Zn = Ŷ n + V n and In, the detector tries to �nd a w such that

(In; Xn(w); Zn) are typical with respect to a joint i.i.d. distribution pI;X;Z. This

distribution is Gaussian with covariance matrix

KI;X;Z =

2
6664

PI 0
PI+PŶ�d

2

0 PX
PX(PI+PŶ �d)

2PI
PI+PŶ �d

2

PX(PI+PŶ �d)

2PI
PŶ +DA

3
7775
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It can be proved that if RW = I(X; I; Z)� � then the probability of decoding error

goes to zero as n!1. Solving (40) for PX and substituting into I(X; I; Z), we get

an achievable rate:

RW =
1

2
log

 
22RQ(2d(PI + PŶ )� d2 � (PI � PŶ )

2 + 4DAPI
4PI(22RQDA + PŶ )

!
� o(1) (41)

Then, (41) is maximized for d = D and PŶ = �22RQDA +q
(22RQDA +D)2 + PI(PI + 2DA(22RQ � 2)� 2D), and becomes:

RW = 1
2
log

0
BB@

22RQ

�
(4PI (D+DA)�

�
D+PI+22RQDA�

p
(22RQDA+D)2+PI(PI+2DA(2

2RQ�2)�2D)

�
2
�

4PI

p
(2

2RQDA+D)2+PI(PI+2DA(2
2RQ�2)�2D)

1
CCA

(42)

where RQ � 1
2
log

�
PI
D

�
. The region of achievable rate pairs (RQ; RW ) can be seen

in Figure 5. As expected, when RQ ! 1, Ŷ n becomes negligibly di�erent from

Y n = In +Xn and therefore RW approaches the capacity of an AWGN channel.

5 Conclusions

In this paper, we considered a system that watermarks n-dimensional i.i.d. Gaussian

images and distributes them in compressed form, such that an average distortion

constraint is met. We assumed that the watermarked images are further corrupted

by Gaussian attacks. By means of a coding theorem, we established the region of

achievable watermarking and quantization rates such that the error probability in

decoding the embedded message in a watermarked/quantized image approaches zero

asymptotically in n. We also presented achievability results for the public version

of the regular Quantization Index Modulation scheme, as well as for additive water-

marking/quantization schemes.

There are a number of possible extensions to the problem considered in this paper.

For example, it would be interesting to establish the rate region in the case where

both a watermark (identifying the agent) and a �ngerprint (identifying the user) are

embedded sequentially into an image by independent encoders. We suspect that, in

the presence of attacks, the resultant rate region could be di�erent than the rate

region obtained from joint embedding, as is the case in a multiple-access channel.

Moreover, we are investigating more general attack scenarios (e.g., combining our

model with the one in [13]).
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