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Abstract

A scheme|inspired from an old idea due to Mayne and Polak

(Math. Prog., vol. 11, 1976, pp. 67{80)|is proposed for extending to

general smooth constrained optimization problems a previously pro-

posed feasible interior-point method for inequality constrained prob-

lems. It is shown that the primal-dual interior point framework allows

for a signi�cantly more e�ective implementation of the Mayne-Polak

idea than that discussed an analyzed by the originators in the context

of �rst order methods of feasible direction. Strong global and local

convergence results are proved under mild assumptions. In particular,
the proposed algorithm does not su�er the W�achter-Biegler e�ect.
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1 Introduction

Consider the problem

min
x2Rn

f (x)

s.t. cj (x) = 0; j = 1; :::; me

dj (x) � 0; j = 1; :::; mi

(P )

where f : Rn ! R; cj : Rn ! R; j = 1; :::; me and dj : Rn ! R;
j = 1; :::; mi are smooth. No convexity assumptions are made. A num-
ber of primal-dual interior-point methods have been proposed to tackle such
problems; see, e.g., [1, 2, 3, 4, 5, 6, 7]. While all of these methods make use
of a search direction generated by a Newton or quasi-Newton iteration on a
perturbed version of some �rst order necessary conditions of optimality, they
di�er in many respects. For example, some algorithms enforce feasibility of
all iterates with respects to inequality constraints [1, 2, 4, 5], while others,
sometimes referred to as \infeasible", sidestep that requirement via the intro-
duction of slack variables [3, 6, 7]; as for equality constraints, some schemes
include them \as is" in the perturbed optimality conditions [1, 2, 3, 4, 6]
while some soften this condition by making use of two sets of slack vari-
ables [7] or by introducing a quadratic penalty function, yielding optimality
conditions involving a perturbed version of \c(x) = 0" [5]; also, some pro-
posed algorithms (e.g., [2, 6]) involve a trust region mechanism. In many
cases (e.g. [2, 4, 7], promising numerical results have been obtained. In some
cases (e.g., [1, 2, 3]), convergence properties have been proved under certain
assumptions. Often however global and fast local convergence are proved for
two di�erent versions of the algorithm; in particular, it is not proved that the
line search eventually accepts a step size close enough to one to allow fast
local convergence, i.e., a Maratos-like e�ect is not ruled out. An exception
is [2], but rather strong assumptions are used there.

Recently, W�achter-Biegler [8] showed that many of the proposed algo-
rithms su�er a major drawback in that, for problems with two or more
equality constraints and a total number of constraints in excess of the di-
mension of the space, the constructed primal sequence is likely to converge
to spurious, infeasible points. They produced a simple, seemingly innocuous
example where such behavior is observed when starting from rather arbitrary
initial points. Where global convergence had been proved, they pinpointed
rather strong assumptions that essentially make the proposed algorithm un�t
for the solution of problems with such number of constraints.

2



In this paper, we propose a primal-dual interior point algorithm of the
\feasible" type for which global and fast local convergence are proved to hold
(i) for one, single version of the algorithm, and (ii) under rather mild assump-
tions. In particular, it involves a scheme to circumvent Maratos-like e�ects
and does not su�er the W�achter-Biegler e�ect. A distinguishing feature of the
proposed algorithm is that it makes use of both a barrier parameter and an
\exterior" penalty parameter, both of which are adaptively adjusted to insure
global and fast local convergence. (In [2] two such parameters are use as well,
but the latter is kept �xed and assumed to be large enough.) The algorithm
originates in two papers dating back more than one and two decades, respec-
tively: [9] and [10]. The former proposed a feasible interior point method
for inequality constrained problems, with strong convergence properties; the
latter o�ered a scheme for extending to problems with equality constraints
algorithms that generate feasible iterates for inequality constrained problems.
These two ideas are discussed next.

In the 1980s, a feasible-iterate algorithm for solving (P ) was proposed
for the case without equality constraints, based on the following idea. First,
given strictly feasible estimates x̂ of a solution and ẑ of the corresponding
Karush-Kuhn-Tucker (KKT) multiplier vector, compute the Newton (or a
quasi-Newton) direction (�x;�z) for the solution of the equalities in the
KKT �rst order necessary conditions of optimality. Note that, if the Hessian
(or Hessian estimate) is positive de�nite, the primal direction �x is a direc-
tion of descent for f but that it may not allow a reasonably long step to be
taken inside the feasible set. Second, motivated by this observation, solve
again the same system of equations, but with the right-hand side perturbed
so as to tilt the primal direction away from the constraint boundaries into the
feasible set. The perturbation should be small enough that the tilted primal
direction remains a descent direction for f and its size should decrease as
a solution is approached, i.e., as k�xk decreases, so that a solution point
located on the constraint boundaries can be reached. Third, bend the primal
direction by means of a second order correction, and perform a search on the
resulting arc, with f as a merit function. Bending is necessary if a Maratos-
like e�ect is to be avoided, i.e., if a full step of one is to be allowed by the line
search criterion close to the solution. These ideas were put forth in [9]. It was
shown there that, under standard assumptions, global convergence as well as
local superlinear convergence can be achieved if the amounts of tilting and
bending are appropriately chosen. The central idea in the algorithm of [9]
originated in earlier work by Herskovits and others [11, 12, 13]; see [14] for a
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detailed historical account. Ideas were also borrowed from [15] and [16].
In the mid-seventies Mayne and Polak proposed an ingenious scheme to

incorporate equalities constraints in methods of feasible directions [10]. The
idea is to keep the iterates on one side of the constraint manifolds corre-
sponding to each equality constraint by replacing those constraints with cor-
responding inequality constraints which the iterates are forced to satisfy by
the feasible direction paradigm; and to penalize departure from the constraint
boundaries associated with these �ctive inequality constraints by means of a
simple, exact di�erentiable penalty function. It is readily shown that, locally,
convergence to KKT points of the original problem takes place provided the
penalty parameter is increased to a value larger than the magnitude of the
most negative equality constraint multiplier at the solution. Accordingly,
in [10] the penalty parameter is adaptively increased based on estimates of
these multipliers. While [10] is concerned with classical �rst order feasible di-
rections methods, interestingly and somewhat premonitorily, it is pointed out
in the introduction of that paper that the proposed scheme can convert \any
[emphasis from [10]] interior point algorithm for inequality constrained op-
timization problems into an algorithm for optimization subject to combined
equality and inequality constraints." A careful examination of the proposed
algorithm however reveals two shortcomings. The �rst one concerns the com-
putation of multiplier estimates, which in [10] is done by solving a linear least
squares problem for all equality constraint multipliers and all multipliers as-
sociated with �-active inequality constraints; i.e., inequality constraints with
current value less than some �xed, prescribed � (denoted �0 in [10]). The
price to pay is that, if � is \large", the computational overhead may become
signi�cant and, moreover, the set of active constraints may be overestimated,
even in the neighborhood of a solution, leading to incorrect multiplier esti-
mates; while if � is selected to be very small, progress will be slow in early
iterations. The second shortcoming is that global convergence is proved un-
der the strong assumption that at every point in the extended feasible set
(where one-side violation of equality constraints is allowed) the gradients of
all equality constraints and of the active inequality constraints are linearly
independent. Indeed, as pointed out in [8], such assumption does not hold
in the W�achter-Biegler example, and indeed it all but rules out problems
with two or more equality constraints and a total number of constraints in
excess of n. In [13] it is suggested that the idea introduced in [10] could be
readily applied to the interior-point algorithm proposed there, but no details
are given. The Mayne-Polak idea was used in [17] in the context of feasible
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SQP. The ready availability of multiplier estimates in that context allows
an improved multiplier estimation scheme, thus improving on the �rst short-
coming just pointed out; however no attempt is made in [17] to dispense with
the strong regularity assumption.

The algorithm proposed in the present paper extends that of [9] to gen-
eral constrained problems by incorporating a modi�ed Mayne-Polak scheme
that su�ers neither of the shortcomings pointed out above. Speci�cally, (i)
it completely dispenses with a multiplier estimation scheme, and (ii) it con-
verges globally and locally superlinearly without requirement that a strong
regularity assumption be satis�ed, thus avoiding the W�achter-Biegler e�ect.

The balance of the paper is organized as follows. In Section 2 below, the
algorithm from [9] is described in \modern" terms, from a barrier function
perspective. The overall algorithm is then motivated and described in Sec-
tion 3. In Section 4, global and local superlinear convergence are proved.
Finally, Section 5 is devoted to concluding remarks. Throughout, k � k de-
notes the Euclidean norm and, given two vectors v1 and v2, inequalities such
as v1 � v2 and v1 < v2 are to be understood component-wise. Much of our
notation is borrowed from [4].

2 Problems Without Equality Constraints

We brie
y review the algorithm of [9], in the primal-dual interior-point for-
malism.

Consider problem (P ) with me = 0, i.e.,

min
x2Rn

f (x)

s.t. dj (x) � 0; j = 1; :::; mi :
(1)

The algorithm proposed in [9] for problems such as (1) can equivalently be
stated based on the logarithmic barrier function

�(x; �) = f(x)�
miX
j=1

�j log dj(x) (2)

where � = [�1; : : : ; �mi
]T 2 Rmi and the �js are positive. The barrier gradi-

ent is given by

r�(x; �) = g(x)� B(x)TD(x)�1�; (3)
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where g denotes the gradient of f , B the Jacobian of d and D(x) the diagonal
matrix diag(dj(x)).

Problem (1) can be tackled via a sequence of unconstrained minimizations
of �(x; �) with � ! 0. In view of (3), z = D(x)�1� can be viewed as an
approximation to the KKT multiplier vector associated with a solution of (1)
and the right-hand side of (3) as the value at (x; z) of the gradient (w.r.t. x)
of the Lagrangian

L(x; z) = f(x)� hz; d(x)i:

Accordingly, and in the spirit of primal-dual interior-point methods, consider
using a (quasi-)Newton iteration for the solution of the system of equations
in (x; z)

g(x)� B(x)T z = 0; (4)

D(x)z = �; (5)

i.e., �
�W B(x)T

ZB(x) D(x)

� �
�x
�z

�
=

�
g(x)�B(x)T z
��D(x)z

�
(6)

where Z = diag(zj) and where W is equal to, or approximates, the Hessian
(w.r.t. x) of the Lagrangian L(x; z). When � = 0, a primal-dual feasible
solution to (4)-(5) is a KKT point for (1). Moreover, it turns out that, under
the assumption made in [9] that W is positive de�nite, given any (x; z)
primal-dual feasible, the primal direction �x0 obtained by setting � = 0 is a
descent direction for f at x. In [9], such a property is sought for the search
direction and used in the line search. On the other hand, the components of �
should be positive enough to prevent the primal step length from collapsing,
but small enough that the fast local convergence properties associated with
the (quasi-)Newton iteration for (4)-(5) with � = 0 are preserved. This is
achieved in [9] by selecting

� = 'k�x0k�z; (7)

with ' 2 (0; 1] as large as possible subject to the constraint

hg(x);�xi � �hg(x);�x0i; (8)
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where � > 2 and � 2 (0; 1) are prespeci�ed;1 condition (8) ensures that �x
is still a descent direction for f .

In [9] the line search criterion includes a decrease of f and strict feasibility.
It involves a second order correction �~x to allow a full (quasi-)Newton step
to be taken near the solution. With index sets I and J de�ned by

I = fj : dj(x) � zj +�zjg;

J = fj : zj +�zj � �dj(x)g;

�~x is the solution of the linear least squares problem

min
1

2
h�~x;W�~xi s.t. dj(x +�x) + hrdj(x);�~xi =  ; 8j 2 I (9)

where

 = max

�
k�xk� ;max

j2I

���� �zj

zj +�zj

����
�

k�xk2
�
; (10)

where � 2 (2; 3) and � 2 (0; 1) are prespeci�ed. If J 6= ; or (9) has no
solution or k�~xk > k�xk, �~x is set to 0. Note that I estimates the active
index set and that J (multipliers of \wrong" sign) should be empty near the
solution when strict complementarity holds. An (Armijo-type) arc search is
then performed as follows: given � 2 (0; 1), compute the �rst number � in
the sequence f1; �; �2; : : : g such that

f
�
x + ��x+ �2�~x

�
� f (x) + ��hrf(x);�xi (11)

dj
�
x + ��x+ �2�~x

�
> 0; 8j (12)

dj
�
x + ��x+ �2�~x

�
� dj(x); j 2 J (13)

where � 2 (0; 1=2) is prespeci�ed and where the third inequality is introduced
to prevent convergence to points with negative multipliers. The next primal
iterate is then set to

x+ = x + ��x+ �2�~x:

1Note that �x depends on ' a�nely and thus �x is computed at no extra cost once (6)
has been solved with, say, � = k�x0k�z.

7



Finally, the dual variable z is reinitialized whenever J 6= ;; if J = ; the new
value z+;j of zj is set to

z+;j = minfzmax;maxfz
j +�zj; k�xkg;

where zmax is a prespeci�ed (large) number. Thus z+;j is allowed to be close
to 0 only if k�xk is small, indicating proximity to a solution.

It is observed in [9, Section 5] that the total work per iteration (in ad-
dition to function evaluations) is essentially one Cholesky decomposition of
size mi and one Cholesky decomposition of size equal to the number of active
constraints at the solution.2

In [9] it is shown that, given an initial strictly feasible primal-dual pair
(x0; z0) and given a sequence of symmetric matrices fWkg, uniformly bounded
and uniformly positive de�nite, the primal sequence fxkg constructed by the
algorithm just described (with Wk used as W at the kth iteration) converges
to KKT points for (1), provided the following assumptions hold: (i) fx :
f(x) � f(x0); d(x) � 0g is bounded, so that the primal sequence remains
bounded, (ii) for all feasible x the vectors rdj(x), j 2 fj : dj(x) = 0g are
linearly independent, and (iii) the set of feasible points x for which (4)-(5)
hold for some z (with no restriction on the sign of the components of z) is
�nite.3

Superlinear convergence|in particular, eventual acceptance of the full
step of one by the arc search|is also proved in [9] under appropriate second
order assumptions, provided that, asymptotically, Wk suitably approximate
the Hessian of the Lagrangian at the solution on the tangent plane to the
active constraints.

Finally, stronger convergence results hold for a variation of the present
algorithm, under weaker assumptions, in the LP and convex QP cases. In
particular, global convergence to the solution set X� takes place whenever
X� is nonempty and bounded, the feasible set X has a nonempty interior,
and for every x 2 X the gradients of the active constraints at x are linearly
independent. See [14] for details.

2There are two misprints in [9, Section 5]: in equation (5.3) (statement of Proposi-
tion 5.1) as well as in the last displayed equation in the proof of Proposition 5.1 (expression
for �0k), MkB

�1

k should be B�1

k Mk.
3Such points are referred to in [9] as stationary points.
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3 Overall Algorithm

Suppose now that me > 0. Denote by X the feasible set for (P ), i.e., let

X := fx 2 Rn : c(x) = 0; dj(x) � 0; j = 1; :::; mig: (14)

Further, let A denote the Jacobian of c, let C(x) = diag(cj(x)) and, just as
above, let B denote the Jacobian of d and let D(x) = diag(dj(x)).

In [10], Mayne and Polak proposed a scheme to convert (P ) to a sequence
of inequality constrained optimization problems of the type

min
x2Rn

f�(x)

s.t cj � 0 j = 1; :::; me;
dj � 0 j = 1; :::; mi;

(P�)

where f�(x) = f(x) + �
meP
j=1

cj(x), and where � > 0: Examination of (P�)

shows that large values of � penalize iterates satisfying cj (x) > 0 for any
j while feasibility for the modi�ed problem insures that cj(x) � 0. Thus,
intuitively, for large values of �, iterates generated by the feasible iterates
algorithm will tend towards feasibility for the original problem (P ). In fact,
the penalty function is \exact" in that convergence to a solution of (P ) is
achieved without need to drive � to in�nity. I.e., it turns out that, under
mild assumptions, for large enough but �nite values of �, solutions to (P�)
are solutions to (P ).

Let ~X and ~X0 be the feasible and strictly feasible sets for Problems (P�),
i.e., let

~X := fx 2 Rn : cj(x) � 0; j = 1; :::; me; dj(x) � 0; j = 1; : : : ; mig; (15)

~X0 := fx 2 Rn : cj(x) > 0; j = 1; :::; me; dj(x) > 0; j = 1; : : : ; mig: (16)

Also, for x 2 ~X, let Ie(x) and I i(x) be the active index sets corresponding
to c and d, i.e.,

Ie(x) = fj : cj(x) = 0g; I i(x) = fj : dj(x) = 0g:

Before proceeding, we state some basic assumptions.
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Assumption 1 X is nonempty.

Assumption 2 f , ci, i = 1 : : : ; me and di, i = 1; : : : ; mi are continuously
di�erentiable.

Assumption 3 4 For all x 2 ~X, (i) the set frcj(x) : j 2 Ie(x)g[frdj(x) :
j 2 I i(x)g is linearly independent; (ii) if for scalars yj, j = 1; : : : ; me, with
yj � 0 for all j 62 Ie(x), and zj � 0 for all j 2 I i(x), it holds that

meX
j=1

yjrcj(x)�
X

j2Ii(x)

zjrdj(x) = 0; (17)

then it must be the case that yj = 0, j = 1; : : : ; me and z
j = 0, j 2 I i(x).

Note that Assumption 1 implies that ~X is nonempty and, together with
Assumptions 2 and 3(i), that ~X0 is nonempty.

Our regularity assumption, Assumption 3, is considerably milder than
linear independence of the gradients of all ci's and all active di's. W�achter
and Biegler observed in [8] that the latter assumption is undesirable, in that
whenever there are two or more equality constraints and the total number
of constraints exceeds n, it is typically violated over entire submanifolds of
~X n X. On the other hand, as shown in the next lemma (proved in the
appendix), Assumption 3(ii) is equivalent to the existence at every x 2 ~X
of a direction of strict descent for the violated equality and active inequality
constraints in the tangent space to the non-violated equality constraints.
(Note that at points x 2 ~X where such direction does not exist, the problem
is \locally infeasible" (as observed in [8]) in which case failure of any local
search algorithm is to be expected when the initial point is in the \region of
attraction" of such x.)

Lemma 1 Suppose Assumption 2 holds. Then Assumption 3(ii) is equiva-
lent to the following statement (S): for every x 2 ~X, there exists v 2 Rn

such that

hrci(x); vi = 0 8i 2 Ie(x);

hrci(x); vi < 0 8i 62 Ie(x);

hrdi(x); vi > 0 8i 2 I i(x):

4It is readily checked that, under Assumption 3(i), Assumption 3(ii) is una�ected if
\zj = 0, j 2 I i(x)" is deleted.
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W�achter and Biegler [8] exhibited a simple optimization problem on which
many recently proposed interior-point methods converge to infeasible points
at which such direction v exists, in e�ect showing that convergence of these
algorithms to KKT points cannot be proved unless a strong assumption is
used that rules out such seemingly innocuous problems. On the other hand,
it is readily checked that directions v as in Lemma 1 do exist at all spurious
limit points in that example. Indeed, in the problem from [8], for some a; b,
c1(x) = x21�x2+a, c2(x) = �x1+x3+b, d1(x) = x2, and d2(x) = x3 and the
spurious limit points are of the form [�; 0; 0]T with � < 0; v = [2; 1; 1]T meets
the conditions at such points. (Our c2(x) is the negative of that in [8] because
in our framework the ci's are nonnegative in ~X.) We will see that, indeed,
the algorithm proposed below performs satisfactorily on this example.

Before presenting our algorithm, we brie
y explore a connection between
Problems (P ) and (P�). A point x is a KKT point of (P ) if there exist
y 2 Rme , z 2 Rmi such that

g (x)� A (x)T y �B (x)T z = 0; (18)

c (x) = 0; (19)

d (x) � 0; (20)

zjdj (x) = 0; j = 1; :::; mi; (21)

zj � 0; j = 1; :::; mi: (22)

Following [9] we term a point x stationary for (P ) if there exist y 2 Rme ,
z 2 Rmi such that (18)-(21) hold (but possibly not (22)). Next, for given �,
a point x 2 ~X is a KKT point of (P�) if there exist y 2 Rme , z 2 Rmi such
that

g(x) + A(x)T(�e)� A(x)Ty � B(x)Tz = 0; (23)

c(x) � 0; (24)

d(x) � 0; (25)

yjcj(x) = 0; j = 1; :::; me (26)

yj � 0; j = 1; :::; me (27)

zjdj(x) = 0; j = 1; :::; mi (28)

zj � 0; j = 1; :::; mi; (29)

where e 2 Rme is a vector whose components are all 1. x is stationary
for (P�) if there exist y 2 Rme , z 2 Rmi such that (23)-(26) and (28) hold
(but possibly not (27) and (29)).

11



The following proposition, found in [10], is crucial to the development
and is repeated here for ease of reference.

Proposition 2 Let � be given. If x is a KKT point for (P�) with multiplier
vectors y and z and c(x) = 0, then x is a KKT point for (P ) with multipliers
vectors y��e and z. If x is stationary for (P�) with multiplier vectors y and
z and c(x) = 0, then it is stationary for (P ) with multipliers vectors y � �e
and z.

Proof: Using the fact that c(x) = 0, equations (23)-(29) imply

g(x)� A(x)T(y � �e)�B(x)Tz = 0 (30)

c(x) = 0 (31)

d(x) � 0 (32)

zjdj(x) = 0 (33)

zj � 0 (34)

Thus x is a KKT point for (P ) with multipliers y � �e 2 Rme and z 2 Rmi :
The second assertion follows similarly. 4

The proposed algorithm is based on solving Problem (P�) for �xed values
of � > 0 using the interior-point method outined in Section 2. The key issue
will then be how to adaptively adjust � to force the iterate to asymptotically
satisfy c(x) = 0.

For problem (P�), the barrier function (2) becomes

�(x; �; �) = f(x) + �
meX
j=1

cj(x)�
meX
j=1

�e
j ln(cj(x))�

miX
j=1

�i
j ln(dj(x)):

Its gradient is given by

r�(x; �; �) = g(x) + A(x)T(�e)� A(x)TC(x)�1�e �B(x)TD(x)�1�i: (35)

Proceeding as in Section 2, de�ne

y = C (x)�1 �e; (36)

z = D (x)�1 �i; (37)

12



and consider solving the nonlinear system in (x; y; z):

g(x) + A(x)T(�e� y)� B(x)Tz = 0; (38)

�e � C(x)y = 0; (39)

�i �D(x)z = 0; (40)

by means of the quasi-Newton iteration2
4 �W A(x)T B(x)T

Y A(x) C(x) 0
ZB(x) 0 D(x)

3
5
2
4 �x

�y
�z

3
5 =

2
4 g(x) + A(x)T(�e� y)� B(x)Tz

�e � C(x)y
�i �D(x)z

3
5 ;

(L(x; y; z; �; �e; �i))

where Y = diag(yi), Z = diag(zi) and W approximates the Hessian at
(x; y; z) of the Lagrangian associated with (P�). Properties of this linear
system of equations are summarized in the next lemma, which is standard.

Lemma 3 Suppose Assumptions 1, 2, and 3(i) hold. Given any vector x 2
~X, any positive de�nite matrix W 2 Rn�n and any nonnegative vectors
y 2 Rme and z 2 Rmi such that yj > 0 if cj(x) = 0 and zj > 0 if dj(x) = 0,
the matrix 2

4 �W A(x)T B(x)T

Y A(x) C(x) 0
ZB(x) 0 D(x)

3
5

is nonsingular. Furthermore, given � > 0, x is stationary for (P�) if and
only if there exist �y0 2 Rme , �z0 2 Rmi such that (0;�y0;�z0) solves
L(x; y; z; �; 0; 0); in such case, y+�y0 and z+�z0 are the (unique) multiplier
vectors associated with x.

System L(x; y; z; �; �e; �i) is solved �rst with (�e; �i) = (0; 0), then with
(�e; �i) set analogously to (7). Following that, a correction �~x is computed
by solving the appropriate linear least squares problem, and new iterates x+,
y+ and z+ are obtained as in Section 2.

Now for the central issue of how � is updated. As noted in the introduc-
tion, Mayne and Polak [10] adaptively increase � to keep it above the mag-
nitude of the most negative equality constraint multiplier estimate. They
use a rather expensive estimation scheme, which was later improved upon
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in [17] in a di�erent context. A simpler update rule is used here, which
involves no computational overhead. It is based on the observation that �
should be increased whenever convergence is detected to a point|a KKT
point for (P�), in view of the convergence properties established in [9] and
reviewed in Section 2|where some equality constraints is violated. Care
must be exercised because, if such convergence is erroneously signaled (false
alarm), a runaway phenomenon may be triggered, with � increasing uncon-
trollably without a KKT point of (P ) being approached. That this does
not take place is ensured by requiring that the following four conditions|all
of which are needed in the convergence proof|be all satis�ed in order for
an increase of � to be triggered (here 
1, 
2, 
3 and 
4 are prescribed pos-
itive constants): (a) �kk�x0kk < 
3, so that �k is allowed to become large
only when �x0k becomes small, indicating that a stationary point for (P�k)
is being approached; (b) minjfy

j
k + �yjkg < 
1, i.e., not all cjs are clearly

becoming active as the limit point is approached; (c) zjk +�zjk � �
2 for all
j, i.e., no zjk is diverging to �1 due to �k being increased too fast (i.e., if �k
is growing large, either zjk is positive or it is becoming negligible compared
to �k) violation of which would indicate that the limit point is not KKT; (d)
for every j 2 f1; : : : ; meg, either y

j
k +�yjk < �k or �kcj(xk) < 
4, i.e., if �k is

becoming large and cj is not becoming active then the associated multiplier
has already settled down to a reasonably small value.

We are now ready to state the algorithm. Note that, departing from [9],
we allow the initial guess x0 to lie on the boundary of ~X.

Algorithm A.

Parameters. � 2 (0; 1=2), � 2 (0; 1), 
1 > 0, 
2 > 0, 
3 > 0, 
4 > 0, � > 2,
� 2 (0; 1), wmax > 0, � > 1, � 2 (2; 3), � 2 (0; 1).

Data. x0 2 ~X, W0 2 Rn�n, positive de�nite, �0 > 0, yi0 2 (0; wmax), i =
1; : : : ; me, z

i
0 2 (0; wmax), i = 1; : : : ; mi

Step 0: Initialization. Set k = 0:

Step 1: Computation of search arc:

i: Compute (�x0k;�y
0
k;�z

0
k) by solving L(xk; yk; zk; �k; 0; 0). If �x

0
k = 0 then:

if xk 2 ~X n ~X0, stop, else set �yk = �y0k, �zk = �z0k, xk+1 = xk, and go to
Step 3ii.

ii: Compute (�x1k;�y
1
k;�z

1
k) by solving L(xk; yk; zk; �k; k�x

0
kk

�yk; k�x0kk
�zk).
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iii: Set

'k =

(
1 if hrf�k(xk);�x

1
ki � �hrf�k(xk);�x

0
ki

(1� �)
hrf�k (xk);�x0

k
i

hrf�k (xk);�x0
k
��x1

k
i

otherwise.

iv: Set

�xk = (1� 'k)�x
0
k + 'k�x

1
k;

�yk = (1� 'k)�y
0
k + 'k�y

1
k;

�zk = (1� 'k)�z
0
k + 'k�z

1
k:

v: Set

Iek = fj : cj(xk) � yjk +�yjkg;

I ik = fj : dj(xk) � zjk +�zjkg;

Jek = fj : yjk +�yjk � �cj(xk)g;

J ik = fj : zjk +�zjk � �dj(xk)g:

vi: Set �~xk to be the solution of the linear least squares problem

min
1

2
h�~x;Wk�~xi s.t. cj(xk +�xk) +rcj(xk)

T�~xk =  k; 8j 2 Iek (41)

dj(xk +�xk) +rdj(xk)T�~xk =  k; 8j 2 I ik(42)

where

 k = max

�
k�xkk

� ;max
j2Ie

k

���� �yj

yj +�yj

����
�

k�xkk
2;max

j2Ii
k

���� �zj

zj +�zj

����
�

k�xkk
2

�
:

(43)

If Jek [ J
i
k 6= ; or (41)-(42) has no solution or k�~xkk > k�xkk, set �~xk to 0.

Step 2. Arc search. Compute �k; the �rst number � in the sequence
f1; �; �2; :::g satisfying

f�k(xk + ��xk + �2�~xk) � f�k(xk) + ��hrf�k(xk);�xki

cj(xk + ��xk + �2�~xk) > 0; 8j

dj(xk + ��xk + �2�~xk) > 0; 8j

cj(xk + ��xk + �2�~xk) > cj(xk); 8j 2 Jek
dj(xk + ��xk + �2�~xk) > dj(xk); 8j 2 J ik
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Step 3. Updates.

i: Set

xk+1 = xk + �k�xk + �2k�~xk:

If Jek [ J
i
k = ;, set

yjk+1 = minfwmax;maxfy
j
k +�yjk; k�xkkgg; j = 1; : : : ; me;

zjk+1 = minfwmax;maxfz
j
k +�zjk; k�xkkgg; j = 1; : : : ; mi;

otherwise, set yk+1 = y0 and zk+1 = z0. Select Wk+1, positive de�nite.

ii: If the following four conditions are satis�ed: (i) minjfy
j
k+�yjkg < 
1, (ii)

�kk�x
0
kk < 
3, (iii) z

j
k +�zjk � �
2 for all j, (iv) for every j 2 f1; : : : ; meg,

either yjk +�yjk < �k or �kcj(xk) < 
4; then set

�k+1 = ��k;

else set �k+1 = �k.

iii: Set k = k + 1 and go back to Step 1.
Note that, in view of the stopping criterion in Step 1i and of the arc search
rule in Step 2, with the only possible exception of the initial guess x0, all
iterates belong to ~X0, the strictly feasible set for all (P�)s.

4 Convergence Analysis

We just observed that xk 2 ~X0 for all k > 0. Thus the algorithm can stop
at Step 1i only for k = 0. In view of Lemma 3, under Assumptions 1, 2,
and 3(i), this can happen only if x0 is stationary for Problem (P�0). It may
or may not be KKT for (P ). If it is not, a di�erent starting point should be
used. In the sequel, we implicitly assume that x0 does not meet the stopping
criterion in Step 1i.

Proposition 4 Under Assumptions 1{3, Algorithm A is well de�ned and
constructs an in�nite sequence.
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Proof: We �rst show that the algorithm cannot loop inde�nitely through
the cycle Step 1i{Step 3ii{iii. Indeed, in view of Lemma 3 and of the stopping
criterion in Step 1i, branching from Step 1i to Step 3ii at iteration k can take
place only if xk is stationary for (P�k) and xk 62

~X0, implying that

(rf�k(xk) =)rf(xk) + �k

meX
j=1

rcj(xk) = 0; (44)

and �x0k = 0, yk + �yk = 0, zk + �zk = 0. The latter implies that all
conditions in Step 3ii are met, so that �k+1 > �k. Also, xk+1 = xk. Cycling
can take place only if, again, �x0k+1 = 0, which would imply

rf(xk) + �k+1

meX
j=1

rcj(xk) = 0: (45)

However, since �k+1 > �k, (44) together with (45) imply

meX
j=1

rcj(xk) = 0

in contradiction with Assumption 3(ii), proving the claim. The proposi-
tion then directly follows from Proposition 3.3 of [9]. (Assumptions A4
through A6 of [9] are not needed for that proposition.) 4

The next lemma is central to this analysis. Its proof relies on an additional
assumption, on the sequence fWkg.

Assumption 4 If the sequence fxkg generated by Algorithm A is bounded,
then there exists constants �2 � �1 > 0 such that, for all k,

�1 kxk
2 � hx;Wkxi � �2 kxk

2 8x 2 Rn:

Lemma 5 Suppose Assumptions 1{4 hold. If the in�nite sequence fxkg gen-
erated by Algorithm A is bounded, then �k is increased only �nitely many
times.
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Proof: By contradiction. Suppose �k is increased in�nitely many times,
i.e., there exists an in�nite index set K such that �k+1 > �k for all k 2 K:
The criteria that trigger �k to increase must thus be satis�ed for all k 2 K,
i.e.,

min
j
fyjk +�yjkg < 
1; 8k 2 K (46)

�kk�x
0
kk < 
3; 8k 2 K (47)

zjk +�zjk � �
2 8j; 8k 2 K; (48)

and for every j 2 f1; : : : ; meg, either

yjk +�yjk < �k 8k 2 K (49)

or

�kcj(xk) < 
4 8k 2 K: (50)

As per Step 1i of the algorithm, the following holds, with y0k = yk +�y0k and
z0k = zk +�z0k:

Wk�x
0
k + g(xk) + A(xk)

T(�ke� y0k)� B(xk)
Tz0k = 0 (51)

YkA(xk)�x
0
k + C(xk)y

0
k = 0 (52)

ZkB(xk)�x
0
k +D(xk)z

0
k = 0 (53)

Since f�kg tends to in�nity, it follows from (46) that f�ke � y0kg tends to
in�nity on K. Consequently, the sequence f�kg, with

�k = max
����k � y01;k

�� ; : : : ; ���k � y0me;k

�� ; ��z01;k�� ; : : : ; ��z0mi;k

�� ; 1	 ;
tends to in�nity on K as well. De�ne

ŷjk =
�k � y0j;k
�k

; j = 1; : : : ; me;

ẑjk =
z0j;k
�k

; j = 1; : : : ; mi

for k 2 K. By construction
��ŷjk�� � 1 for j = 1; :::; me and

��ẑjk�� � 1 for
j = 1; : : : ; mi for all k 2 K: Since in addition the sequence fxkgk2K is
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bounded by assumption, there must exist an in�nite index set K0 � Kand
vectors x� 2 Rn; ŷ� 2 Rme ; and ẑ� 2 Rmi such that

lim
k!1
k2K0

xk = x�

lim
k!1
k2K0

ŷk = ŷ�

lim
k!1
k2K0

ẑk = ẑ�:

Further it follows from (48){(50) that z� � 0 and, for every j 2 f1; : : : ; meg,
either ŷ�;j � 0 or cj(x

�) = 0 (or both), implying that ŷ�;j � 0 for all j 62
Ie(x�). Boundedness of fxkg and the continuity assumptions imply that
fAT(xk)g and fB

T(xk)g are bounded. In view of (47) and of Assumption 4,
dividing (51) by �k and taking the limit as k goes to in�nity, k 2 K0, yields

A(x�)Tŷ� � B(x�)Tẑ� = 0: (54)

Since K0 � K; (47) implies that �x0k
k2K0

! 0. Further, fYkg and fZkg are
bounded by construction. Thus dividing (53) by �k and taking the limit as

k
k2K0

! 1 yields:

D (x�) ẑ� = 0

Thus ẑ�j = 0 for all i 62 I i(x�). Since ŷ� is nonzero, (54) contradicts Assump-
tion 3(ii). 4
In the sequel, we denote by �� the �nal value of �k.

Algorithm A now reduces to the algorithm described in Section 2 applied
to Problem (P��). It is shown in [9] that, under Assumptions 1{4, if the
sequence fxkg constructed by Algorithm A is bounded, then all its accumu-
lation points are stationary for (P��). To conclude that they are KKT points
for (P��), an additional assumption is used, under which it also follows that
the entire sequence fxkg converges. (See the proof of Theorem 3.11 in [9] for
the latter fact, which was inadvertently omitted from the statement of that
theorem.) Recall that �� is of the form �0�

` for some nonnegative integer `.

Assumption 5 For � 2 f�0�` : ` a nonnegative integerg, all stationary
points of (P�) are isolated.
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For convergence to KKT points of (P ) to follow, the fact that condition (i)
in Step 3ii of Algorithm A must eventually be violated if �k stops increasing
is crucial. A glance at the four conditions in that step suggests that this will
be the case if the dual variables converge to the KKT multipliers for (P��).
To prove that this indeed occurs, one more assumption is used.

Assumption 6 For � 2 f�0�
` : ` a nonnegative integerg, strict comple-

mentarity holds at all KKT points of (P�).

Proposition 6 Suppose Assumptions 1{6 hold. If the in�nite sequence fxkg
generated by Algorithm A is bounded, then it converges to a KKT point x�

of (P��). Moreover, with y� and z� the associated KKT multiplier vector for
c(x) and d(x),

(i) f�xkg ! 0 as k !1, fyk+�ykg ! y� as k !1 and fzk+�zkg !
z� as k !1;

(ii) for k large enough, Jek = ; = J ik, I
e
k = Ie(x�), and I ik = I i(x�);

(iii) if y�;j � wmax for all j, then fykg ! y� as k ! 1; if z�;j � wmax for
all j, then fzkg ! z� as k !1.

Proof: Follows from Proposition 4.2 in [9], noting that, except for strict
complementarity which is guaranteed by our Assumption 6, Assumption A8
of [9] is used in the proofs of Lemma 4.1 of [9] and Proposition 4.2 of [9]
only to infer that x� is an isolated KKT point, a fact which in the present
situation follows from Assumption 5. 4

Theorem 7 Suppose Assumptions 1{6 hold. If the in�nite sequence fxkg
generated by Algorithm A is bounded, then it converges to a KKT point x�

of (P ). Moreover, in such case, fyk+�yk��eg converges to �y� and fzk+�zkg
converges to z�, where �y� and z� are the multiplier vectors associated to x�

for problem (P ).

Proof: We know from Proposition 6 that (i) fxkg ! x�, a KKT point
for (P��); (ii) f�xkg ! 0; (iii) fyk + �ykg ! y� � 0, the multiplier vector
associated with c(x) � 0, and (iv) fzk+�zkg ! z� � 0, the multiplier vector
associated with d(x) � 0. Thus conditions (ii), (iii) and (iv) in Step 3(ii) if
Algorithm A are all satis�ed for k large enough. Since �k = �� for k large
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enough, it follows from Step 3(ii) of Algorithm A that condition (i) must fail
for k large enough, i.e., yk + �yk � 
1e for k large enough, implying that
y� � 
1e. On the other hand, since 
1 > 0, it follows from complementary
slackness that c(x�) = 0. Since the algorithm generates feasible iterates, we
are guaranteed that dj(x

�) � 0, j = 1; :::; mi. Application of Proposition 2
concludes the proof of the �rst claim. The second claim then follows from
Proposition 2 and Proposition 6(i). 4

Finally, rate of convergences results are inherited from the results in [9].
We report them here for ease of reference. Let x� be the KKT point for (P )
and (P��) to which, in view of Theorem 7, the sequence fxkg is guaranteed
to converge under Assumptions 1{6, and let y� and z� be the associated
multipliers for (P��). The Lagrangian associated with (P ) is given by

L(x; �y; z) = f(x)� h�y; c(x)i � hz; c(x)i:

Assumption 7 f , cj, j = 1; : : : ; me, and dj, j = 1; : : : ; mi are three times
continuously di�erentiable. Furthermore, the second order su�ciency condi-
tion holds (with strict complementarity under Assumption 6) for (P ) at x�,
i.e., r2Lxx(x

�; �y�; z�) is positive de�nite on the subspace fv s:t: hrcj(x�); vi =
0 8j; hrdj(x

�); vi = 0 8j 2 I i(x�)g.

It is readily checked that the second order su�ciency condition for (P��) is
identical to that for (P ).

As a �nal assumption, superlinear convergence requires that the sequence
fWkg asymptotically carry appropriate second order information.

Assumption 8

kNk(Wk �r2
xxL(x

�; �y�; z�))Nk�xkk

k�xkk
! 0 as k !1 (55)

where

Nk = I � ĜT
k

�
ĜkĜ

T
k

��1
Ĝk

with

Ĝk = [rcj(xk); j = 1; : : : ; me;rdj(xk); j 2 I
i(x�)]T 2 R(me+jI(x�)j)�n;
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Theorem 8 Suppose Assumption 1{8 holds and suppose that yj;� � wmax,
j = 1; : : : ; me, and z

j;� � wmax, j = 1; : : : ; mi. Then the arc search in Step 2
of Algorithm A eventually accepts a full step of one, i.e., �k = 1 for all k
large enough, and fxkg converges to x� two-step superlinearly, i.e.,

lim
k!1

kxk+2 � x�k

kxk � x�k
= 0:

As can be expected, if Assumption 8 is strengthened to

kNk(Wk �r2
xxL(x

�; y�; z�))�xkk

k�xkk
! 0 as k !1;

Q-superlinear convergence follows.

5 Concluding Remarks

An interior-point algorithms for the solution of general nonconvex constrained
optimization problems has been proposed an analyzed. Global convergence
and local superlinear convergence have been proved under mild assumptions.
In particular, it was pointed out that the proposed algorithm does not su�er
the W�achter-Biegler e�ect. (This indeed has been veri�ed on the W�achter-
Biegler example, with a = b = 1, using a preliminary MATLAB implemen-
tation the algorithm. Fast convergence was observed to the global solution
[1; 2; 0]T.) Numerical testing is underway.

While the present paper focussed on applying a version of the Mayne-
Polak scheme to the algorithm of [9], there should be no major di�culty
in similarly extending other feasible interior-point algorithms for inequality
constrained problems to handle general constrained problems.

6 Appendix

Proof of Lemma 1

Proof: First suppose that (S) holds but Assumption 3(ii) does not. From
the latter, there exist yj, j = 1 : : : ; me and z

j, j 2 I i(x), not all zero, with
yj � 0 for all j 62 Ie(x) and zj � 0 for all j, such that (17) holds. With v as
implied by the former, it follows thatX

j 62Ie(x)

yjhrcj(x); vi �
X

j2Ii(x)

zjhrdj(x); vi = 0;
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where we have used the fact that hrcj(x); vi = 0 for all j 2 Ie(x). Every
term in the sum is nonpositive, which implies that all must be zero. The
strict inequalities in (S) then contradicts the fact that not all yj's and zj's
are zero, proving the claim. To prove converse, let us suppose (S) does not
hold and proceed to proof that Assumption 3(ii) must be violated. Let P
denote projection onto the subspace N = fv : hrcj(x); vi = 0 8j 2 Ie(x)g.
Since (S) does not hold, there cannot exist v̂ 2 Rn such that P v̂ (which is in
N ) satis�es

hrcj(x); P v̂i < 0 8j 62 Ie(x)

and

�hrdj(x); P v̂i < 0 8j 2 I i(x):

or equivalently,

hPrcj(x); v̂i < 0 8j 62 Ie(x)

and

�hPrdj(x); v̂i < 0 8j 2 I i(x):

In other words, the set fPrcj(x); j 62 Ie(x)g[f�Prdj(x); j 2 I i(x)g cannot
be strictly separated from the origin, i.e., it is positively linearly dependent.
Thus the origin is contained in the convex hull of that set, i.e., there exist
yj � 0, j 62 Ie(x), and zj � 0, j 2 I i(x), not all zero, such thatX

j 62Ie(x)

yjPrcj(x)�
X

j2Ii(x)

zjPrdj(x) = 0

or equivalently, such thatX
j 62Ie(x)

yjrcj(x)�
X

j2Ii(x)

zjrdj(x) ? N ;

i.e., X
j 62Ie(x)

yjrcj(x)�
X

j2Ii(x)

zjrdj(x) 2 span(frcj(x) : j 2 I
e(x)g):

This contradicts Assumption 3(ii), and the proof is complete. 4
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