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Abstract

Control and communication issues are traditionally
“decoupled” in discussions of decision and control prob-
lems, as this simplifies the analysis and generally works
well for classical models. This fundamental assump-
tion deserves re-examination as control applications
spread into new areas where system complexity is sig-
nificant. Such areas include the coordinated control
of aerial vehicles (UAV’s), MEMS devices, multi-joint
manipulators and other settings where many systems
must share the attention of a decision-maker. We
consider a new class of sampled-data systems (termed
“computer-controlled systems”) that offer the possibil-
ity of jointly optimizing between control and communi-
cation goals. Computer-controlled LTI systems can be
viewed as linear operators between appropriate inner-
product spaces. The generalized inverses of these oper-
ators are used to solve a class of finite-horizon tracking
problems.

1 Introduction

With the increased adoption of digital computers as
tools for automatic control, sampled-data systems have
become ubiquitous. Such systems typically include
a digital controller interfaced to a continuous-time
physical plant. The use of a digital controller lim-
its controller-plant communication in the sense that
communication only occurs at discrete times. An ad-
ditional constraint emerges if the communication bus
that is available to the controller has fewer channels
than the number of inputs of the plant. In that case,
the controller must choose which inputs to update at a
particular time. In practice, one usually ensures that
the controller generates commands with a “sufficiently
high” frequency (in a Nyquist sense) so that the effects
of communication constraints on the control problem
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become less pronounced. However, this “decoupling”
of the control and communication problems must be
re-examined as we seek to understand control problems
such as the coordination of swarms of vehicles, MEMS
arrays and other systems in which inputs/outputs must
share the attention of a decision-maker. It is exactly
this “sharing of attention” that must be addressed if
such systems are to be used efficiently and effectively.

We investigate a class of sampled-data systems with
communication constraints for which control and com-
munication are intrinsically coupled. For such sys-
tems, we consider the problem of tracking a-priori
known, finite-horizon outputs. This is essentially a
feed-forward control problem, also known as “preview
tracking” (see [16], [15], [9] and references therein).
Our approach is novel in that it focuses on achieving
optimal tracking performance with no assumptions on
the controller’s bandwidth and on bringing forth the
explicit dependence of the optimal control on controller-
plant communication. Using an operator-theoretic ap-
proach to computer-controlled systems (see also [12]),
we pose the problem of finite-horizon tracking as a
least-squares matching problem and obtain the solu-
tion by constructing a class of generalized inverses for
computer-controlled systems. These ideas will be made
precise in Sec. 2. Previous work on systems with com-
munication constraints can be found in [1], [17], [3] and
[11]. The issues of distributed computation, control
and estimation with limited bandwidth are addressed
in [4], [18]. For modeling and analysis of sampled-data
systems, see [2], [8], [19] and [12]. In the context of con-
trol systems, models for “attention” were introduced in
[5] and [6]. For some of the early work on the use of
generalized inverses in systems theory see [14], [20].

2 A Prototype Computer-Controlled System

In this section, we propose a model for computer-
controlled systems based on the idea of an “attention
sequence” (originally introduced in [5]) which is used
to direct communications between controller and sys-
tem. With respect to notation, we use £*(N) to de-
note the space of finite sequences of vectors in R* with



u = {u(1),u(2),...,u(N)} being a typical element of
¢%(N). Elements of individual vectors in a sequence
are denoted by subscripts (e.g. u(2);). The space
of square-integrable R”-valued continuous signals on
[0, T is denoted by L5[0,T]. Norms in these two spaces
are those induced by the usual inner products:

(u, U>em(N) Zk o T( ) (k) and

<y7 LY[0,T] = f()

for u,v € £™(N) and y,z € Lg[O,T]. By Rat™*P(n)
we understand the space of m x p matrices whose ele-
ments are proper rational functions with denominators
of degree n.

Consider a continuous-time LTT system that is driven
by a computer or other digital controller (Fig. 1).

e The controller cannot provide continuous inputs to
the LTT system; instead, commands are sent to the
system every A time units, via a zero-order-hold stage.
e The dimension of the communication bus that carries
controller-generated inputs may be less than the input
dimension of the LTI plant. As a result, the controller
must choose which of the input signals to update at
every step.
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Figure 1: A computer-controlled LTI system

We will use b to denote the “size” of the communica-
tion bus with u € ¢°(N) being a controller-generated
sequence on that bus. We will ignore quantization ef-
fects associated with the communication bus.

Definition 1 A computer-controlled LTT system
is a triple (G(s), A, b) € RatP*™(n) x Ry x N where:
e G(s) is the transfer function of an n-order LTI
system with input v(t) € R™ and output y(t) € RP.
The LTI system is driven by a digital controller through
a zero-order-hold stage.

e b < m is the dimension of the communication bus
connecting the controller to the zero-order hold.

. % is the controller rate.

In this work we will take the underlying system to be
LTI. However, computer-controlled systems need not
always be linear and one could amend Def. 1 (and
Fig. 1) by replacing G(s) by a non-linear system. We
will use the terms “narrow” and “wide” to describe the
communication bus when b < m and b = m respec-
tively. When the communication bus is narrow, one
possibility is to choose a sequence of operations for the
switch (see Fig. 1) that selects which system inputs are
to be updated at a particular time.

Definition 2 By an attention sequence of length N
and width m, we understand an element of

= {(c(0),0(1),....,0(N — 1)) : 0(3) € {0,1}"}

EmXN

i.e. an ordered set of N elements of {0,1}™.

In the context of a computer-controlled system, the
vectors o (i) of an attention sequence o are to be inter-
preted as indicating which elements of the system in-
put v(t) are to be updated by the controller at t = i A,
t =0,...,N — 1. The attention sequence and switch
essentially implement a de-multiplexer.

Definition 3 Consider a computer-controlled LTI sys-
tem with b,m € N being the dimensions of the commu-
nication bus and system input respectively (b < m). An
attention sequence o € E™" s admissible if:

e At least one but no more than b of the system inputs
are updated by the controller at every step:
0<|le@®|*<b Vi=0,...,N—1

e The controller communicates with all inputs of the
linear system: Span{c(0),...c(N —1)} = R™

It should be noted that computer-controlled LTI sys-
tems are time-varying because they incorporate a zero-
order-hold stage and because controller-plant commu-
nication is time-dependent.

3 An N-step Look-ahead Tracking Problem

Armed with the definitions of Sec. 2 we can now for-
mulate the following output tracking problem:

Problem Statement 1 Given a computer-controlled
LTI system (G(s),A,b), an integer N > 0, a desired
output yq € LE]0, NA], and an admissible attention se-
quence o € EmXN, find the input sequence u € £™(N)

that minimizes ||ya — y||.

Before we present the solution to the above problem, re-
call that an LTI system preceded by a zero-order hold,
can be regarded as a linear, time-varying operator that
maps input sequences to outputs:

Definition 4  Given an LTI system G(s) ¢€
RatP*™(n), an input-sampling period A, and an in-
teger N > 0, we define the input-output map of
(G(s),A,N) to be Ag,a,n)(t) : £™(N) — L5[0, NA]
with

N—1

y(t) = Ma,amBu= Y ¢alt —kA)u(k) (1)

k=0

foru € £™(N), y € LY[0, NA], where
2

min(t,A)
) CeAt-TBdr >0
t: 0 2
éa(t) { ; R C)

and the triple (B, A,C) € R™ " x R™" x R"*? is q
state-space realization of G(s).



A similar formulation (applied to sampled-data sys-
tems) is found in [12]. The function @A is the response
of the G(s) to a unit pulse of duration A. Without loss
of generality, we assume z(0) = 0 for the state of the
LTI system. We note that the range space of Ag A, n)
is infinite-dimensional. It is clear from Eq. 1 that the
range of A contains only those elements in E5[0, NA]
that are linear combinations of ¢ and its A-translates,
therefore A is not surjective. Having chosen inner prod-
ucts in £™(N) and L5[0,T] , the following can be easily
verified:

Observation 1 The adjoint operator of A (Def. 4) is

L2[0, NA] — (™(N)
NA

PA(t—jA)y(t)dt  (3)

Aa.an
(Ay)(G) =

for0<j<N-1, yelLb0,NA].

In the following, we will sometimes abuse the notation
by writing A (A*) as an abbreviation for A(g(s),a,n)(t)
(A?G(S)A,N)(t)); we always have in mind that A, A* are
defined for a particular choice of G(s), A and N. We

now focus on the controller-plant communication.

Lemma 1 Consider a computer-controlled LTI system
and let b,m € N be the dimensions of the communica-
tion bus and system input respectively, with b < m. An
admissible attention sequence o € E™N together with
an integer N > 0 define a 1-to-1 attention map

Dy, ny(0) : £°(N) — £€™(N) (4)
such that for u € °(N) and 0 <k < N:
D(b,m,N) (U)u(k% 75 D(b’m’N)(O')’LL(k — l)i (5)

for at most b indices i € 1,...,m. If we identify ele-
ments in £™(N) with vectors in R™" then

Dp.m,n)(0) = D(0) € RN (6)
Lif L(LLJ)L%J,

3. (o) — o(L5 " Dpim =1

Dij() and Zqi’i’") U(L%J)q = B3(4,0) @

0 otherwise

for1 <i< Nm,1<j<Nb, and 5(3,j) = Z—L]_HJ]
for i, j integers.

Proof:  Let u € £°(N) be a controller-generated in-
put sequence. The elements of u(i) will be used to up-
date the inputs of the zero-order-hold stage according
to o so that u' € £™(N) will be the corresponding se-
quence appearing at the zero-order-hold stage, after de-
multiplexing. Because of the communication constraint
b < m, the controller can only update b of the m el-
ements of u'(k) for k = 0,..,N — 1, according to o.
Therefore, the only possible input sequences u' satisfy:

u' (k)i # u'(k — 1), (®)

for at most b indicesi € 1,..,m

For the elements of the attention sequence, we can write
o(k) = >k, ex; where e; is the standard basis in R™
b = >, 0(k)i and 1 < k;j < m such that o(k); = 1
Then,

bi
(k) = enu (k) = E(k)u(k) (9)
j=1
where E(k) 2 [ er, | er | | enm | €

{0,1}™*. It is now clear that u and u' are related by a
linear map and that all elements of u' except u'(0) are
determined by u together with the binary matrices E(k).
This relation can be expressed as u' = D pm ny(0)u
where without loss of generality we have assumed that
of u'(0); = 0 for i such that o(0); = 0. The ad-
missibility of o guarantees that at least one but no
more than b elements of u'(k) will be updated for every
k=0,..,N — 1. Equivalently, the matrices E(k) have
mazimum column-rank. Therefore, for u,v € (°(N),
u# v = Du# Dv and D is 1-to-1. As with A, we
have used D to abbreviate Dy, n(c). Identify €°(N)
with RN . Then v = [uT (1), ...,uT(N)|T. The matriz
15(0) which realizes D, can now be constructed as:

D@)=[a() | a@ | = | a¥)] (0

where a(i) = E(i) ® va ej, e; are the standard basis
vectors in RY and ® denotes the Kronecker product.
Equation 7 follows from D(o). m

We note that D as described in Eq. 10 leaves undeter-
mined m — b elements of the initial input «/(0) € R™.
Those elements of u/(0) can be taken to have fixed ini-
tial values. If the onset of a control task can be delayed
until all initial inputs have been communicated then we
can modify the attention sequence by setting ¢(0); = 1
for all 0 < i < m. The following result gives the so-
lution to the N-step look-ahead tracking problem for
an LTI computer-controlled system by constructing a
generalized inverse for that system.

Theorem 1 Let (G(s),A,b) be a computer-controlled
LTI system with G(s) € RatP*™(n), m <p and
rank(G(s)) = m. Then the solution to the N-step look-
ahead tracking problem is:

= (DTA*AD) DT A* (yq — yic) (11)

where A(t) is the input-output map of (G(s),A,N),
D(o) is the attention map defined by the sequence o
and y;c 1s the effect of the initial conditions of G(s).

Proof: At first, assume zero initial conditions for
the state £(0) of the LTI system G(s). Input sequences
generated by the controller are mapped to outputs of

(G(s),A,b) by

(AD) : (*(N) — L5[0,NA]
y(t) = A(t)Du (12)



For o admissible, D is 1-to-1. It is enough to show
that A is 1-to-1 as well. Then, AD will be 1-to-1,
DTA*AD will be invertible and u, can be obtained as
the least-squares solution of the equation ADu = yq.
To show A is 1-to-1, it’s enough to show that the scalar
v = Hzgz_ol ot — kA)u(k:)H = ||Aul| is strictly posi-
tive for ||lul| # 0. Then v* = (u, A*Auw)gmny > 0 for
all nonzero u and therefore A is kernel-free. We note
that the function ¢a(t) and its A-translates are a ba-
sis for the range space of A and independent, in the
sense that none of them can be expressed as a linear
combination of the others. To show vy > 0, choose any
nonzero u € £{™(N). Let 0 < j < N —1 be the smallest
index such that u(k) =0 for 0 < k <j, or j =0 of no
such indez exists. Then, v > ||pa(t — jA)u(j)| Lzj0,a]
because da(t — jA) is outside the span of the other
translates of da(t). If the transfer function G(s) has
rank m, the non-zero input u(j) will produce a non-
zero output so [[Pa(t — jA)u(j)| z0,a] > 0 and v > 0.
We conclude that AD is 1-to-1 and has a generalized
inverse given by

(AD)# = (DTA*AD) DT A* (13)

If (0) # 0, matters must be modified by tracking yq —
Yic instead of yq, where

t
yic(t) £ CeAtz(0) + / CeA'"TBadt, te[0,NA]
0

(14)
and @ € R™ s the initial conditions for the m — b
elements of u(0) that are not updated at t = 0. m

Equation 13 can be considered an analogue of the well-
known formula for the left pseudo-inverse of an opera-
tor M : R" — R™, with m > n, rank(M) = n:

M# = (MTM)flMT

In practice G(s) should be stable or stabilized by feed-
back. Although we do not address feedback here, re-
sults on the stabilization of computer-controlled sys-
tems can be found in [5], [11] and [10]. We note that the
solution to the N-step look-ahead problem depends on
the choice of attention sequence, corresponding to the
fact that control and communication are intrinsically
coupled in computer-controlled systems. Choosing the
attention sequence now offers the possibility of jointly
optimizing between control and communication:

Problem Statement 2 Given a computer-controlled
LTI system (G(s),A,b), a desired output y; €
LB0,NA], and N € N*, find the input u € {™(N)

ENXm

and the attention sequence o € that minimize

lya — yllLzjo,na)-
The number of possible attention sequences is finite

and therefore the minimum exists, although it may not
be unique. This problem has not been solved and —

except for trivial cases — cannot be “split” into sepa-
rate sub-problems, one involving optimal control, the
other optimal communication. Changes in the atten-
tion sequence result in changes in the optimal input
sequence.

4 A Motion Control System with Limited
Communication

Figure 2-a shows the Harvard Robotics Lab planar ma-
nipulator. The manipulator consists of two robotic fin-
gers, each having two joints. The joints are driven by
motors that contain integrated PID controllers, oper-
ating at 4K Hz. A computer communicates with the
motors through an RS-232 serial port. All four mo-
tors are connected to the same serial port so that the
computer can address one motor at a time, at a rate
of 20Hz. Possible motor commands include position
and velocity setpoints, sensing of position or velocity
as well as setting coefficient values for the local PID
controller. Deformable tactile sensors are attached to
the fingertips [7]. The sensors can localize contact with
an accuracy of 1.5mm and can provide a rough estimate
of local curvature at a contact at a rate of 10Hz. An
overhead camera tracks objects on a table, at a rate
of 30H z. The position of an object can be determined
within 3mm, limited by the resolution of the overhead

camera.

Object Trajectory

7" solid: actual
dash: desired

Figure 2: (a): Planar manipulator, (b) Kinematic explo-
ration

The manipulator uses joint, visual and tactile feedback
to locate, grasp and move objects along user-specified
trajectories [10]. For the experiments described here,
we used a 50gr spherical object and required that it
follow a “figure-8” path:

z4(t) 4.2 cos(t)
ya(t) = 4.5+ 1.7sin(2¢), te€0,1]sec (15)

with x4,ys measured in cm. Using the kinematics of
the manipulator (see for example [13], [10] and refer-
ences therein), the trajectory was first sampled using
a sequence of forty uniformly spaced setpoints and the
manipulator moved the object through each setpoint.
Figure 2-b shows the trajectory that was traced by the
geometric center of the object. The dashed and solid



curves represent the desired and actual paths respec-
tively. This kinematic exploration of the desired tra-
jectory produced a set of desired joint position and ve-
locity signals. Those signals were used together with a
linear model of each joint, to arrive at a set of actuator
commands (shown in Fig. 3-a) which would produce
the desired joint velocities and ultimately the trajec-
tory of Eq. 15. The four inputs were labeled as follows:
1-left proximal, 2-left distal, 3-right proximal, 4-right
distal. We used the local PID controllers (embedded
in each actuator) to implement a feedback lineariza-
tion scheme, modeling each joint as a linear system.
Coupling effects among joints were ignored.

4.1 Dynamic Performance

Figure 2-b shows good tracking performance in a geo-
metric sense, meaning that the object came very close
to the desired locus of points but it did so moving slowly
(approximately 10sec to complete the figure-8). If we
require that the trajectory of Eq. 15 be followed in real
time, then the inputs of Fig. 3-a must be applied to
the motors. Of course, those inputs are not feasible
because they require communication rates higher than
the available 20H z (5 commands/sec per actuator, on
average). We now need a method for computing the in-
put sequence that results in minimum deviation from
the desired trajectory. Depending on the required mo-
tions of the fingers, some joints may require more fre-
quent communication than others. Therefore, we do
not expect uniform sampling of all actuators to be an
optimal strategy. We present the results obtained us-
ing two different attention sequences. Theorem 1 was
used to compute the optimal input velocities for each
attention sequence (A = 0.05, N = 20). The optimal
inputs were applied to the motors and the resulting
object trajectory was recorded and compared with the
desired one. We computed the tracking error as the
magnitude of the total area between the desired and
actual trajectories. In addition, the “joint tracking er-
ror” was computed as the Ls error between the desired
and actual joint trajectories.

4.2 Uniform Attention
We selected the attention sequence

g = (617627637647617""64) (16)

using basis vectors to indicate which actuator is up-
dated at each step. To obtain a basis for comparison,
we first computed an input sequence by “averaging”
each ideal input signal (Fig. 3-b) over the time intervals
between consecutive updates of that input. Fig. 3-b
shows the object trajectory achieved using those aver-
ages as inputs. The tracking error was 12.1cm? while
the joint tracking error was 0.32.

Next, the optimal inputs for the figure-8 trajectory
were computed and transmitted to the motors. In this
case (Fig. 4-a), the area tracking error was 5.48cm?,

3 \ay (b)
Solid: ul

Dash: u2 -
Dash/Dot: u3 ,” N
Dot: u4 ;

®  ~

y (cm)
S
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dash: desired
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@
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0'4I'ime ((S))G X (cm)

Figure 3: (a) Ideal (continuous-time) inputs (b) Object
trajectory using “averaging”

an improvement by a factor of 2 over “averaging”. The
joint tracking error was 0.16. We observe that the ob-
ject’s actual trajectory was not a closed curve. This
is because our least-squares formulation of the trajec-
tory tracking problem did not include constraints on
the final conditions of the control system.

4.3 Non-uniform Attention

The figure-8-tracking experiment was performed again,
this time using an attention sequence that devotes
10%, 35%, 15% and 40% to inputs 1,2,3 and 4 respec-
tively:

g = (637647617627647647627647617627647627
63764762764762763764762) (17)

Notice that distal joints (inputs 2 and 4) are updated
more frequently than proximal joints. We arrived at
this choice of communication sequence by observing the
ideal (but infeasible) actuator inputs (in Fig. 3-a). For
each time interval of length A = 0.05sec, we allocated
communication cycles using as a guide the amount of
rotation required by each joint over that interval.

(@) (b)

o
o

y (cm)
Lf‘\ a
o

£
y (cm)

EN

w
w

solid: actual
dash: desired

0 2 0
X (cm) X (cm)

Figure 4: Object trajectory with (a) Uniform and (b)
Non-uniform attention

When averaging was used, tracking performance was
similar to that obtained with uniform attention. When
the optimal inputs were used, tracking performance
was slightly improved over what was achieved with uni-
form attention. The area tracking error was 3.15cm?
while the joint tracking error dropped to 0.06. The
corresponding object trajectory is shown in Fig. 4-b.



We were unable to find an attention sequence that
significantly improved over uniform attention. Most
likely, this is because the manipulation task that was
investigated required significant motions from all four
joints. The closed kinematic chain between fingers and
object ensured that all joints required inputs of com-
parable magnitudes and frequency contents.

5 Conclusions and Future Work

In this paper we have proposed a model that explicitly
captures interactions between control and communica-
tion in computer-controlled LTI systems. For these sys-
tems we have computed a family of generalized inverses
using an operator-theoretic approach. The generalized
inverses were used to solve output tracking problems
that arise in systems with limited communication. Pos-
sible areas of application for this work include robotic
motion control, remotely controlled systems, mobile
communications, groups of semi-autonomous vehicles
and other areas where communication with the sys-
tem(s) of interest is limited. Current efforts are fo-
cused on exploring models for “closed-loop” controller-
plant communication. Our formulation allows for pos-
ing joint communication/control optimization prob-
lems and for improved tracking performance by choice
of an appropriate attention sequence. The price for
this, is the apparent difficulty in optimizing with re-
spect to the attention sequence that specifies controller-
plant communication. Finding optimal or near-optimal
attention sequences for output tracking problems is the
subject of ongoing work.
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