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ABSTRACT

Title of Dissertation: SYNCHRONIZATION AND CHANNEL

PARAMETER ESTIMATION IN

WIRELESS COMMUNICATIONS

Yimin Jiang, Doctor of Philosophy, 2000

Dissertation directed by: Professor John S. Baras

Department of Electrical and Computer Engineering

This dissertation is devoted to the design and analysis of synchronization and

channel parameter estimation schemes in wireless communications. Intrigued

by the observation that the information is conveyed through wireless channels

by uniformly spaced pulses that are some kind of "distorted" convolution of

data symbols and a shaping pulse, we try to set up a frame work to study

synchronization and channel parameter estimation problems in the frequency

domain.

The dissertation consists of four major parts. Many issues in digital com-

munications and signal processing involve the analysis of the inverse of Toeplitz

matrices. In the �rst part, the convergence of the inverse of Toeplitz matrices

and its application are presented. Under the condition that the z-transform of



the sequence with which the Toeplitz matrices are associated has no zero on the

unit circle, we show that the inverse converges to a circular matrix in the weak

sense. Furthermore, for the �nite boundary quadratic form, a suÆcient condition

under which the convergence can be strengthened into the strong sense and an

upper bound of the approximation residue error are derived. It is well known

that a circular matrix can be eigendecomposed by the discrete Fourier transform

(DFT) which provides the desired frequency domain approach.

In practical systems, synchronization parameters such as timing and carrier

phase o�sets, and channel response in fading channels are acquired with the help

of a training sequence (TS) that is known to the receiver, which is called the

data-aided (DA) estimation. In the second part, the performance limit that is

the Cramer-Rao lower Bound (CRB) for the DA joint carrier phase and tim-

ing o�sets estimation with an arbitrary TS is derived using the properties of

Toeplitz matrices. Unlike the CRB derived in the literature, the bound derived

in this dissertation reveals the close relation between a TS and its resultant per-

formance limit, therefore it provides a quantitative approach to design TS for

the acquisition of synchronization parameters.

Following the estimation theorem, we derive a maximum likelihood (ML)

slow frequency-selective fading channel estimator using the frequency domain

approach introduced by the properties of Toeplitz matrices in the third part. In

the fourth part, a carrier frequency o�set estimator and a joint carrier phase and

timing o�set estimators with moderate complexities are proposed. Their systolic

VLSI implementations are also presented. The performance of the proposed

estimators approaches their corresponding performance limits.
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Chapter 1

Introduction

The next generation wireless communication networks carry the dream of "any-

where, anytime" information access to anyone. The �eld is growing at an ex-

plosive rate, stimulated by a host of important emerging applications ranging

from third-generation mobile telephony [1, 2, 3, 4], wireless personal communi-

cations [5, 6, 7, 8], to wireless tactical military communications [4] and mobile

satellite communications [9]. These and other newly envisioned networks have

both profound social implications and enormous commercial potential. For sys-

tem planners and communication engineers, the projections of rapidly escalating

demand for such wireless services present major challenges, and meeting these

challenges will require sustained technical innovation on many fronts [10].

The fast increasing demand for mobile and portable communication ulti-

mately calls for optimally utilizing the available bandwidth. This goal is only

attainable by digital communication systems capable of operating close to the

information theoretic limits [11]. The implementation of such systems has been

made possible by the enormous progress in semiconductor technology that al-

lows the communication engineer to economically implement "systems on silicon"
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which execute [12]:

� Advanced compression algorithms to drastically reduce the bit rate re-

quired to represent a voice or video signal with high quality.

� Sophisticated algorithms in the receiver for power control, channel estima-

tion, synchronization, equalization, and decoding.

� Complex protocol to manage traÆc in networks.

� User-friendly graphical man-machine interface.

With the rapid advance of VLSI technology, communication engineers today can

trade the physical performance measures bandwidth and power eÆciency for sig-

nal processing complexity. As a consequence, the design process is characterized

by a close interaction of architecture and algorithms design, as opposed to a

separation between theory and implementation in the traditional way.

As communication engineers with digital communications and signal process-

ing background, we are particular interested in physical layer techniques. The

reason is that many of the main technical challenges in wireless communications

stem from the physical layer, for example, the communication channels over

which radio-frequency (RF), infrared, underwater acoustic, and other wireless

systems must operate are all complex and highly dynamic. These channels su�er

from numerous physical impairments that severely impact system performance,

important examples of which include fading due to multipath propagation and

interference from extra-network sources. In this work we focus on the design,

analysis and eÆcient VLSI architecture of synchronization and channel param-

eter estimation schemes in wireless communications.
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1.1 Synchronization and Channel Estimation:

Key Problems

In some books on digital communications, synchronization and channel estima-

tion are addressed super�cially. This must give the reader the impression that

these tasks are trivial and that the error performance is always close to the lim-

iting case of perfect channel knowledge and synchronization. In fact this is not

an accurate perception for the following reasons [12, 13]:

� Error performance: Synchronization and channel estimation are critical to

error performance;

� Design e�ort: A large amount of design time is spent in solving these

problems;

� Implementation: A very large portion of the receiver hardware and software

is dedicated to synchronization and channel estimation.

Therefore one question comes out naturally: what are key problems in synchro-

nization and channel estimation?

In synchronous digital transmissions the information is conveyed by uniformly

spaced pulses and the received signal is completely known except for the data

symbols and a group of variables referred to as reference parameters. Although

the ultimate task of receivers is to produce an accurate replica of the transmitted

symbol sequence with no regard to synchronization parameters, it is only by

exploiting knowledge of the latter that the detection process can properly be

performed.

3



For example, in a baseband pulse amplitude modulation (PAM) system the

received waveform is �rst passed through a matched �lter and then is sampled at

the symbol rate. A circuit that is able to predict the optimum sampling epochs

is called a timing synchronizer and is a vital part of any synchronous receiver.

Coherent demodulation is used with wireless communications. This means that

the baseband data signal is derived making use of a local reference with the same

frequency and phase as the incoming carrier. This requires accurate frequency

and phase measurements insofar as phase errors introduce crosstalk between

the in-phase and quadrature channels of the receiver and degrade the detection

process. Hence it is clear that measuring reference parameters is a vital function

in wireless communication systems. This function is called synchronization.

Wireless channels are complex and highly dynamic [10, 14, 15]. Signal fading

due to multipath propagation is a dominant source of impairment in wireless

communication systems, often severely impacting performance, e.g., the dis-

persive Rayleigh-fading environment [15] causes intersymbol interference (ISI).

Fading in signal strength arises primarily from multipath propagation of a trans-

mitted signal due to re
ections o� physical objects, which gives rise to spatially

distributed standing wave patterns of constructive and destructive interference.

These standing wave patterns depend not only on the geometry of the constituent

propagation paths from transmitter to receiver but on the carrier frequency of

the transmitted signal as well. As a result, signal strength varies both with spa-

tial location and with frequency. What is more important, when the receiver is

in motion through the standing wave pattern, time variation in signal strength

exists. The e�ect of fading can be substantially handled through the use of

diversity techniques via appropriately designed signal processing algorithms at
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both the transmitter and receivers. Practical, high-performance systems require

that such diversity techniques be eÆcient in their use of resources such as power,

bandwidth, and the hardware, and that they usually meet tight computational

and delay constraints. To make full use of diversity techniques, channel estima-

tion that estimates the impaired channel response caused by multipath fading

according to some models is necessary in coherent communication, e.g., when

the minimum mean square error (MMSE) combiner is applied to detect data

symbols.

In this thesis we consider synchronization and channel estimation as a pa-

rameter estimation problem and approach it with the techniques of estimation

theory [16, 17]. Synchronization parameters such as timing and carrier frequency

and phase o�set, and channel response are focused. Although digital synchro-

nization and channel estimation methods are well presented in the literature

[12, 13], there are still a lot of interesting issues that remain unsolved. For ex-

ample, in practical wireless systems (including satellite communication systems),

synchronization and channel estimation are conducted with the help of a training

sequence that is known to the receiver, which is called data-aided (DA) estima-

tion. How to design training sequence to expedite such parameter acquisitions

is an open problem. The sequence design problem is related to the performance

limits of DA estimation. In order to simplify the computation, some assumptions

on the training sequence are made in the literature [12, 13].

We focus on two issues in this thesis: estimation performance limits and esti-

mation algorithms with moderate implementation cost. Because time, phase and

frequency are continuous-valued parameters, it is natural to evaluate the syn-

chronization accuracy in terms of bias and estimation variance. The Cramer-Rao
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lower bound (CRB) [16] that establishes a fundamental lower limit to the vari-

ance of any unbiased estimator usually serves as a benchmark for performance

evaluation purposes. When nuisance parameters are involved in estimation, the

CRB is sometimes diÆcult to obtain. The modi�ed CRB (MCRB) [13, 18] can

be used as a substitute.

It is widely recognized that maximum likelihood (ML) estimation techniques

provide a systematic and simple guide to develop synchronization and channel

estimation algorithms. In fact, ML methods o�er two major advantages [13]:

� they easily give rise to appropriate circuit con�gurations;

� they provide optimum and near optimum performance under some circum-

stances.

We follow the ML approach in this work primarily. An inevitable problem in-

volved in the ML method is the Toeplitz matrix. The following section addresses

this issue.

1.2 Toeplitz Matrices

Toeplitz matrices are often encountered in digital communications and signal

processing problems, e.g., the correlation matrix of any wide sense stationary

process (WSS) is Toeplitz. Many issues in signal processing involve the analysis

of the inverse of Toeplitz matrices. As an example, the solution of Yule-Walker

equations involves the calculation of the inverse [19]. A lot of e�orts in the

signal processing �eld have been undertaken to develop eÆcient algorithms to

compute the inverse of the Toeplitz matrix [20, 21]. However the �eld lacks the

theoretic result to analyze this topic. Therefore good approximations are desired
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in order to expedite the analysis of the problems involving the inverse of Toeplitz

matrices.

One widely used technique is to replace the Toeplitz matrix with a circu-

lar matrix, based on the well-known fact that a Toeplitz matrix asymptotically

converges to a circular matrix in the weak sense [22, 23]. This often leads to con-

siderable simpli�cation since the inverse of a circular matrix is still circular while

the inverse of a Toeplitz matrix is in general no longer Toeplitz. Furthermore,

the circular matrix can be eigendecomposed by the discrete Fourier Transform

(DFT). This often yields additional insight in the frequency domain. However,

most applications involve quadratic forms, thus a convergence in the strong sense

is required to replace the matrix with a circular matrix. A widely used asser-

tion is that as long as the original Toeplitz matrices are based on a sequence of

�nite order, the inverses of these matrices can be asymptotically replaced with

a circular matrix with negligible amount of leakage at the boundary [24, 12].

1.3 Key Contributions

Intrigued by the observation that the transmitted signal in digital communica-

tions is some kind of convolution of data symbols and shaping pulses, we try to

set up a frame work to solve synchronization and channel parameter estimation

problems in the frequency domain. Based on the previous work, we provided

the condition under which the inverse of Toeplitz matrices that are involved in

many signal processing problems can be substituted by a circular matrix asymp-

totically [25]. The eigendecomposition of circular matrices is equivalent to the

DFT that provides us the desired frequency domain approach. This dissertation
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makes the following technical contributions [26, 27].

1.3.1 On the Inverse of Toeplitz Matrices

We show that the widely used assertion (proposed by Kobayashi in [24]) that the

original Toeplitz matrix is based on a sequence of �nite order then the inverse

can be substituted by a circular matrix asymptotically is in general incorrect. It

is demonstrated here by an example that the inverse of Toeplitz matrices may

not converge even in the weak sense to a Toeplitz matrix and the boundary

leakage can be signi�cant. Furthermore, we show that under the condition that

the z-transform of the sequence with which the Toeplitz matrices are associated

has no zero on the unit circle, the inverse converges in the weak sense to a cir-

cular matrix. Moreover, for �nite boundary problems, the convergence can be

strengthened into strong convergence (in the quadratic form sense). A suÆcient

condition for the strong sense convergence is given and an upper bound for the

approximation error is proposed. The strong sense convergence theory plays a

pivotal role in this dissertation. The eigendecomposition of circular matrices

introduces a series of frequency domain approaches that shed light on new anal-

ysis methods and algorithms in synchronization, channel estimation and linear

prediction.

1.3.2 The Performance Limits of Synchronization

In this dissertation we derive a closed-form Cramer-Rao lower bound (CRB) for

the data-aided (DA) timing (or joint with carrier phase) estimation. For the

DA parameter estimation, the CRB typically varies with the training sequence

(TS). This indicates that di�erent training sequences o�er fundamentally di�er-
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ent performance. In the literature [12, 13, 28, 29, 30, 31, 18] the widely cited

closed-form CRB for timing and phase recovery was derived under the assump-

tion that the TS is independently identically distributed (i.i.d.) and the length

of TS is suÆciently long. We found that the CRB for some particular TS could

be signi�cantly lower than that with the long i.i.d. assumption. Therefore the

widely cited CRB in previous works hides the fundamental link between a TS

and its corresponding performance limit. A closed-form formula of the CRB for

timing and phase recovery with respect to any TS with arbitrary data pattern

and length is derived in this dissertation. The bound reveals the close relation

between the TS and the fundamental limit on timing and phase synchroniza-

tion. The eigendecomposition of the inverse of Toeplitz matrix is applied in the

computation of the bound.

The similar methodology can be expanded to calculate the performance lim-

its of synchronization in fading channel. It is mathematically intractable to

deal with the fading noise that is a nuisance parameter for synchronizer. For-

tunately, the modi�ed CRB (MCRB) [13, 18] provides people a tool to handle

such nuisance noise. In this dissertation, the MCRB for DA timing estimation

is derived.

1.3.3 Training Sequence Design for Synchronization

The CRB's provide communication engineers a guideline to design training se-

quences. Training sequences are widely used in practical wireless systems to

expedite the synchronization and channel estimation. For example, in TDMA

systems, preamble is added in front of payload data in its frame structure; in

CDMA systems, a pilot channel provides the receiver with known data patterns
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to recover channel parameters. This dissertation illustrates TS design for timing

recovery in a general Gaussian channel. This is accomplished by minimizing the

derived CRB's with respect to the TS parameters. Such methods have not been

developed in earlier studies of these questions, and the results we obtain appear

here for the �rst time.

1.3.4 Practical Synchronization and Channel Parameter

Estimators

Following the ML approach, we derived several practical synchronization and

channel parameter estimators using properties of Toeplitz matrices. The systolic

structure is studied, which sheds insight on the VLSI implementation of several

synchronization circuits.

This dissertation addresses the channel estimation problem for slow frequency-

selective fading channels using training sequences and the ML approach. Tradi-

tional works assumed symbol period spaced delay-tapped line model and additive

Gaussian noise (AWGN). Because of pre-�ltering in the receiver front end, if the

sampling rate is larger than one sample per symbol or the sampling epoch is

unknown (i.e., the timing information is unavailable), the AWGN model is not

valid anymore. A more general ML channel estimation method using the dis-

crete Fourier transform (DFT) is derived given the colored Gaussian noise and

over-sampling. A similar idea can be adopted to derive the ML joint timing and

phase estimator.

A fundamental question addressed in this dissertation is the real-time im-

plementation of the resulting algorithms with resulting good performance on

relatively inexpensive hardware complexity. Although the algorithms we derive

10



and investigate were known before, we have provided useful extensions here. But

primarily we have successfully addressed the hardware design problems already

mentioned.

Based on the likelihood function, ML estimators were derived in the liter-

ature [12, 32] etc. Most estimators are computationally intense therefore un-

suitable for VLSI implementations in practical systems in real-time. Several

simpli�ed quasi-ML estimators with VLSI implementations are proposed in this

dissertation. For example, the carrier frequency estimation is conducted based

on the auto-correlation of the input signal and on the linear regression of the

auto-correlation phase [33, 34, 35].

Global maximum (peak) search is a key issue in many ML estimation prob-

lems. The central part around the global maximum of an objective function to

be optimized can often be modeled by a quadratic function if it is close enough

to the true peak. The peak of a quadratic function exists and is easy to compute.

The curve-�tting algorithm is based on the observations: (1) the central part

of an objective function is located through some coarse search method; (2) the

quadratic function can be obtained through three adjacent samples on the ob-

jective curve around the peak using Lagrange interpolation; (3) the ML estimate

can be computed through the coeÆcients of the quadratic function. A generic

quasi-ML joint carrier phase and timing estimator based on the curve-�tting

technique is proposed in this dissertation. Related publications resulting from

the work described in this dissertation are [36, 34, 35].

These estimators exhibit good performance (in terms of near-zero bias and

estimation variance approaching the CRB's at low signal to noise ratio (SNR))

with moderate implementation cost.
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1.4 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 addresses the

convergence properties of the inverse of Toeplitz matrices and their application

in evaluating the likelihood function and signal processing. The CRB for joint

carrier phase and timing o�sets estimation, the MCRB for timing recovery in

fading channel and training sequence design are proposed in Chapter 3. Chapter

4 derives a ML channel estimator for slow frequency-selective fading channel

environments using the frequency domain approach introduced by the property

of Toeplitz matrices. A simpli�ed carrier frequency estimator and a joint carrier

phase and timing o�sets estimator are presented in Chapter 5. Systolic structure

is also studied and the VLSI implementations of these estimators are discussed.

Chapter 6 summarizes the dissertation and suggests future research.
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Chapter 2

On the Convergence of the Inverse of

Toeplitz Matrices and Its Applications

2.1 Introduction

Toeplitz matrices play a vital role in digital communications and signal process-

ing. In fact many issues in these �elds involve the analysis of the inverse of

Toeplitz matrices. We are going to address this problem in this chapter.

A family of Toeplitz matrices Tn is de�ned by a sequence of complex numbers

fti; i = � � � ;�1; 0; 1; � � � g

such that the element of Tn at the ith row and jth column is equal to ti�j, i.e.,

Tn = fti�jg: (2.1)

Furthermore, we restrict our discussion to the case that t
�i = t�i , the conjugate of

ti. With this restriction, Tn becomes Hermitian. Toeplitz matrices in this form

play pivotal role in many signal processing issues. Often, what is really relevant

is the inverse of such a matrix rather than the matrix itself. For instance, if ti
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represents the correlation of a stationary random process, the inverse of Tn is

associated with the joint probability density function of n consecutive samples

of the random process.

One of the diÆculties in analyzing the inverse matrix arises from the fact that

the inverse of a Toeplitz matrix is no longer Toeplitz, though it was shown in [20,

21] that such an inverse can be decomposed into multiplication and summation

of Toeplitz matrices. One widely used technique to tackle the problem is to

substitute the Toeplitz matrix Tn with a circular matrix. Such a circular matrix

can be de�ned by the discrete Fourier transform (DFT) of the sequence ftng.
Let F (z) denote the z-Transform of ftng, i.e.,

F (z) =
1X

k=�1

tkz
�k;

and F(�) , F (ej�) be the discrete-time Fourier transform (DTFT) of ftng. Let
Un denote the unitary matrix de�ned as

Un =
1p
n

2
66666664

1 1 � � � 1

1 e�j(2�=n) � � � e�j(2�(n�1)=n)

...
...

. . .
...

1 e�j(2�(n�1)=n) � � � e�j(2�(n�1)(n�1)=n)

3
77777775

(2.2)

andDn denote the diagonal matrix with the ith diagonal element �i;n = F(2�i=n),

i.e.,

Dn =

2
66666664

�0;n 0 � � � 0

0 �1;n � � � 0

...
...

. . .
...

0 0 � � � �n�1;n

3
77777775
: (2.3)
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Then the matrix Cn = UH
n DnUn is a circular matrix [22, 23]. Substituting Tn

with Cn is based on the well-known fact that Tn converges to Cn in the weak sense

as long as jF (z)j is bounded on the unit circle [22, 23]�. The weak convergence

is based on the weak norm de�ned for an n� n matrix A = faijg as

vuutn�1
n�1X
i=0

n�1X
j=0

jaijj2:

It has been observed that in many applications such a substitution leads to

very useful and dramatic simpli�cation to the problem at hand. This is due

to the fact that the inverse of a circular matrix is still circular, whereas the

inverse of a Toeplitz matrix is in general no longer Toeplitz. Furthermore, DFT-

based eigendecomposition of Cn often leads to additional insight in the frequency

domain.

However, the usefulness of this theorem is severely limited due to the fol-

lowing reasons. First, the convergence of Tn to Cn in the weak sense may not

necessarily lead to the weak convergence of T�1

n to C�1

n . Secondly, many ap-

plications actually involve the quadratic form of T�1

n . Even if T�1

n converges

to C�1

n in the weak sense, substituting T�1

n with C�1

n may not warrant correct

results since the convergence of quadratic forms can only be guaranteed if the

convergence is in the strong sense, i.e., if the norm is de�ned for a Hermitian

matrix A as

k A k= max
x

xHAx

xHx
;

where the maximum is over all the vectors of the same dimension as that of A.

�In [22], Cn is de�ned through the inverse discrete Fourier transform, i.e., the ith diagonal

element of Dn is equal to F(�2�i=n) and Un is replaced by UH
n
. The current notation is more

consistent with engineering conventions.
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It can be readily veri�ed that in almost all practically interesting cases including

the case that tn has more than one but �nite nonzero terms, we cannot strengthen

the weak-sense convergence into the strong-sense convergence.

In many applications, the quadratic form xHT�1
n

x can be limited to the case

that x has only �nite nonzero terms in the middle of the vector, i.e.

x = (0; � � � ; 0; x
�L; � � � ; x0; � � � ; xL; 0; � � � ; 0)

and L does not increase with n. We refer to this structure as the �nite boundary

quadratic form.

The widely used assertion in the literature is that as long as the Toeplitz

matrix Tn is of �nite order, i.e., the associated sequence tn has only �nite nonzero

terms, replacing Tn with Cn has negligible impact for large n on the evaluation

of the �nite boundary quadratic form associated with T�1
n

[12, 24].

In this dissertation, we �rst demonstrate by a simple example that this as-

sertion is in general not correct. In this particular example it is shown that

although Tn converge to the Cn in the weak sense and Tn is invertible for all

n, T�1
n

does not converges to C�1
n

. In fact the example shows that T�1
n

cannot

converge to a Toeplitz matrix in any sense under the given condition.

In section 2.3, we show that the T�1
n

converges to C�1
n

in the weak sense

on the condition that there is no zero on the unit circle of the z-transform

of tn. Furthermore, under the same condition, we can strengthen the �nite

boundary quadratic form case from weak convergence to strong convergence;

thus, asymptotically, replacing T�1
n

with C�1
n

yields correct results.

Section 2.4 illustrates some applications of the strong sense convergence

on evaluating the probability density function of a random process with col-

ored Gaussian noise and in digital communications. The frequency domain ap-
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proaches endow us insights and simplify the problems dramatically.

2.2 An Example

We consider Toeplitz matrices fTng by limiting the nonzero terms to t0; t1; t�1

and t1 = t�
�1. The closed-form T�1

n
is given by the following lemma.

Lemma 1 Let Tn be a Hermitian Toeplitz matrix associated with the sequence

ftng of order three, i.e., tn = 0 for jnj � 2, the element at the uth row and vth

column of T�1
n

with u; v = 0; � � � ; n� 1 is equal to

(�1)u�v
tu�v1 dvdn�1�u

dn
u � v (2.4)

(�1)u�v
tv�u
�1 dudn�1�v

dn
u < v (2.5)

where dn is the determinant of Tn, which is given by

dn =
�n+12 � �n+11

�2 � �1
; (2.6)

with �1, �2 the roots of the following equation

x2 � t0x� t1t�1 = 0: (2.7)

Proof: It is straightforward to verify that the determinant dn of Tn obeys

the following recursive relation

dn = t0dn�1 � t1t�1dn�2 (2.8)

with the initial condition d0 = 1; d1 = t0. Solving the di�erence equation (2.8),

we have

dn =
�n+12 � �n+11

�2 � �1
;
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where �1 and �2 are given by (2.7). Following the matrix inverse formula, we

obtain (2.4, 2.5).

We consider the case t0 < 2jt1j. In this case, �2 and �1 are complex conjugates

with the same magnitude equal to jt1j. Let �1 = jt1jej� and �2 = jt1je�j�. We

further limit �=(2�) to be an irrational number. In this case, e(n+1)� 6= e�(n+1)�

for any n > 0. Therefore, �n+1
2 6= �n+1

1 , i.e., Tn is nonsingular. We can further

verify that (2.4) becomes

(�1)u�vej((u�v)�t)
sin(v + 1)� sin(n� u)�

jt1j sin � sin(n + 1)�

=(�1)u�vej((u�v)�t)
cos(n� u� v � 1)� � cos(n� u+ v + 1)�

2jt1j sin � sin(n+ 1)�

(2.9)

given that �t is the phase of t1. For �xed n and �xed u�v, the denominator and

the last term of the nominator are constant. Thus, for �xed n, (2.9) varies with

cos(n� u� v � 1)�. It can be shown that cos n� with (n = 1; 2; � � � ) is densely
populated over the interval (�1; 1) as long as �=(2�) is irrational. Therefore,

cos(n � u � v � 1)� will oscillate with u; v (see Appendix). For instance, the

diagonal elements with u = v, cos(n�2v�1)� will not converge to a single value

for di�erent v and large n.

Figure 2.1 shows the central diagonal elements of T�1n with t0 = 1, t1 =
p
2

and n = 200. We observe that they oscillate, which implies that the central

diagonal elements do not converge to a single value and the inverse matrix does

not converge to a Toeplitz matrix at all. Figure 2.2 shows these elements with

t0 = 1, t1 = 0:35 and n = 200. We can see that they converge to a single value

except for the boundary leakage. This shows that the inverse of Tn in some

scenarios cannot converge to a Toeplitz matrix in any sense since the diagonal

elements oscillate over a wide range of values. Thus, the assertion made in [12, 24]

is incorrect.
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Figure 2.1: The Central Diagonal Elements of T�1
n

- Oscillate Case

In the following section, we will present a condition under which the conver-

gence can be guaranteed.

2.3 A Condition for Convergence

Before presenting the main theorem, the �nite boundary strong convergence is

formally de�ned as follows.

De�nition 1 For two families of Hermitian matrices An; Bn, consider the quadratic

form

max

�
�
�
�

xH(An �Bn)x

xHx

�
�
�
�
; (2.10)

where the maximum is over all the n-dimensional vector of the form

x = (0; � � � ; 0; x
�L; � � � ; x0; � � � ; xL; 0; � � � ; 0):
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If (2.10) converges to zero for any given L, we shall say that An converges to Bn

in the �nite boundary strong sense.

If x corresponds to an observation within the window [�L; L] and with negli-

gible leakage outside the observation window, we are able to replace An with Bn

asymptotically in evaluating the quadratic forms. Many practical applications

fall into this category.

In the remaining part of this section, we will present two conditions under

which the inverse of a Toeplitz matrix converges to a circular matrix in the

weak and strong sense for the �nite boundary quadratic form respectively. The

main objective is to derive the strong convergence theorem. For completeness,

the weak convergence condition is also presented. We will start with the weak

convergence since it is obtained by directly applying the theorems in [22].

Theorem 1 Let fTng be a family of Hermitian Toeplitz matrices associated with

the sequence of ftng, and let F (z) be the the z-Transform of tn. If jF (z)j is

continuous and does not have any zero on the unit circle, T�1
n

converges to C�1
n

in the weak sense.

Proof: Assume that the eigenvalues of Tn and Cn are respectively �k;n and

�k;n for k = 0; � � � ; n� 1. Since F (z) is continuous on the unit circle it is both

upper and lower bounded. Assume that m � F (z) � M over the unit circle.

Note that F (z) takes only real values due to the Hermitian constraint. Under

this condition, it is well known that Tn converges to Cn in the weak sense [22, 23],

i.e.,

lim
n!1

�0;n + � � �+ �n�1;n

n
= lim

n!1

�0;n + � � �+ �n�1;n

n
: (2.11)
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Actually, (2.11) implies that for any function f(x) continuous over [m;M ], we

have [22, p.65]

lim
n!1

f(�0;n) + � � � + f(�n�1;n)

n
= lim

n!1

f(�0;n) + � � � + f(�n�1;n)

n
: (2.12)

Since F (z) has no zero on the unit circle, this means that m andM are either

both positive or both negative. Therefore, the function f(x) = x�1 is continuous

over [m;M ]. Substituting this into (2.12), we obtain

lim
n!1

��10;n + � � � + ��1n�1;n

n
= lim

n!1

��10;n + � � � + ��1n�1;n

n
: (2.13)

This means that T�1n converges to C�1n in the weak sense.

In order to present the more important strong sense convergence theorem,

we need to introduce the concept of partial discrete time Fourier transform. For

any integer w, we de�ne

PF(w; �) =
1X

k=w

tke
�jk�: (2.14)

In the sequel, PF(w; �) will be termed as the partial DTFT of the sequence

ftkg starting from w, based on the observation that PF(w; �) is actually the

DFTF of f� � � ; 0; tw; tw+1; � � � g. Note that PF(�1; �) is the DTFT of ftkg, i.e.,

F(�) = PF(�1; �). We further denote the ratio of partial DTFT to DTFT as

Rf (w; �), i.e.,

Rf (w; �) =
PF(w; �)

PF(�1; �)
: (2.15)

Since T�1n �C�1n is equal to T�1n (I�TnC
�1
n ), the norm of T�1n �C�1n is highly

related to (I � TnC
�1
n ). The inverse of the circular matrix can be expressed by

using �s;n, the samples of the DTFT of ftkg. The following lemma gives the

relation.
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Lemma 2 The element of I �TnC
�1

n
at the wth row and vth column is equal to

(I � TnC
�1

n
)w;v =

1

n

n�1X

s=0

��1s;ne
j2�(w�v)s=n � (PF(w + 1; 2�s=n)+

PF(n� w; 2�s=n)�):

(2.16)

Furthermore, (I � TnC
�1
n )w;v is upper bounded by

j(I � TnC
�1
n )w;vj � max

0�s�n�1

1

2
jRf(n� w; 2�(s+ 1)=n)�Rf (n� w; 2�s=n)j+

max
0�s�n�1

1

2
jRf(w + 1; 2�(s+ 1)=n)�Rf (w + 1; 2�s=n)j+

( max
0�s�n�1

jRf(w + 1; 2�s=n)j+

max
0�s�n�1

jRf(n� w; 2�s=n)j)�

j2�(w � v + n=2)=n mod 2�jn+ 2

2n
(2.17)

Proof:

The (k; l)th element of C�1n is equal to

(C�1n )k;l =
1

n

n�1X

s=0

��1s;ne
j2�(k�l)s=n (2.18)

and therefore the (w; v)th element of TnC
�1
n is equal to

(TnC
�1
n )w;v =

1

n

n�1X

m=0

tw�m

n�1X

s=0

��1s;ne
j2�(m�v)s=n

=
1

n

n�1X

s=0

��1s;ne
j2�(w�v)s=n

n�1X

m=0

tw�me
�j2�(w�m)s=n:

(2.19)

By the de�nition of �s;n,

�s;n =
1X

k=�1

tke
�j2�ks=n
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we have

n�1X

m=0

tw�me
�j2�(w�m)s=n = �s;n �

w�nX

k=�1

tke
�j2�ks=n

�

1X

k=w+1

tke
�j2�ks=n

= �s;n � PF(w + 1; 2�s=n)� PF(n� w; 2�s=n)�

(2.20)

where PF(w; �) is the partial DTFT, the second equality follows the Hermitian

assumption t�k = t�k. Equation (2.19) becomes

1

n

n�1X

s=0

��1s;ne
j2�(w�v)s=n(�s;n � PF(w + 1; 2�s=n)� PF(n� w; 2�s=n)�)

=Æ[w � v] +
1

n

n�1X

s=0

��1s;ne
j2�(w�v)s=n(PF(w + 1; 2�s=n)+

PF(n� w; 2�s=n)�):

(2.21)

The second equality follows from

1

n

n�1X

s=0

e�j2�(w�v)s=n = Æ[w � v] ,

8>><
>>:
1 w = v;

0 otherwise:

Therefore, the �rst term of (2.21) corresponds to an identify matrix for w; v =

0; � � � ; n�1. This shows that the (w; v)th element of I�TnC
�1
n can be expressed

as

(I�TnC
�1
n )w;v =

1

n

n�1X
s=0

��1s;ne
j2�(w�v)s=n(PF(w+1; 2�s=n)+PF(n�w; 2�s=n)�):

(2.22)

It is interesting to observe that PF(w; 2�s=n)��1s;n represents the ratio of the

partial DTFT to the DTFT, i.e.,

PF(w; 2�s=n)��1s;n =
PF(w; �)

F(�)

����
�=2�s=n

: (2.23)

24



For convenience, let X (w; �) denote the following

X (w; �) ,
PF(w + 1; �)

F(�)
+
PF(n� w; �)�

F(�)
(2.24)

(2.24) is equal to

X (w; �) = Rf (w + 1; �) +Rf (n� w; �)�

With this notation, (2.22) can be written as

(I � TnC
�1

n )w;v =
1

n

n�1X

s=0

X (w; 2�s=n)ej2�(w�v)s=n (2.25)

Now consider the following summation obtained by replacing s in (2.25) with

2bs=2c:

1

n

n�1X

s=0

X (w; (2�) � 2bs=2c=n)ej2�(w�v)s=n: (2.26)

The terms of (2.26) with even index s are equal to those of (2.25). It can be

readily veri�ed that the di�erence between (2.25) and (2.26) is equal to

1

n

b(n�1)=2cX

s=0

(X (w; (2�) � (2s+ 1)=n)� X (w; (2�) � 2s=n))ej2�(w�v)(2s+1)=n: (2.27)

Thus, the di�erence can be upper-bounded by

max
0�s�n�1

1

2
jX (w; (2�) � (s+ 1)=n)� X (w; (2�) � s=n)j: (2.28)

For even n, (2.26) is equal to

1

n

n=2�1X

s=0

X (w; 4�s=n)ej2�(w�v)2s=n(1 + ej2�(w�v)=n): (2.29)

For odd n, (2.26) is equal to

1

n

(n�1)=2�1X

s=0

X (w; 4�s=n)ej2�(w�v)2s=n(1 + ej2�(w�v)=n) +

1

n
X (w; (2�)(n� 1)=n)ej2�(w�v)(n�1)=n: (2.30)
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By using the inequality that j1�ejxj � jx mod 2�j, where (x mod 2�) is within

[��; �), we obtain that

j1+ ej2�(w�v)=nj = j1� ej2�(w�v+n=2)=nj � j2�(w� v+ n=2)=n mod 2�j: (2.31)

Substituting (2.31) into (2.29), (2.29) can be upper-bounded by

1

2
max

0�s�n�1
jX (w; 2�s=n)j � j2�(w � v + n=2)=n mod 2�j (2.32)

Similarly, (2.30) can be upper-bounded by

n� 1

2n
max

0�s�n�1
jX (w; 2�s=n)j � j2�(w � v + n=2)=n mod 2�j+

1

n
max

0�s�n�1
jX (w; 2�s=n)j

= max
0�s�n�1

jX (w; 2�s=n)j �
j2�(w � v + n=2)=n mod 2�j(n� 1) + 2

2n
:

(2.33)

Both (2.32) and (2.33) are smaller than

max
0�s�n�1

jX (w; 2�s=n)j �
j2�(w � v + n=2)=n mod 2�jn+ 2

2n
: (2.34)

Therefore, (I � TnC
�1
n )w;v is upper bounded by the summation of (2.28) and

(2.34).

Lemma 3 If jRf (w; �)j � B1(w) and jdRf(w; �)=d�)j � B2(w), let B1(w) ,

max� jRf (w; �)j and B2(w) , max� jdRf(w; �)=d�j we have

j(I � TnC
�1
n )w;vj �

�(B2(w + 1) +B2(n� w))

n
+ (B1(w + 1) +B1(n� w))�

j2�(w � v + n=2)=n mod 2�jn+ 2

2n
:

(2.35)

Proof: This readily follows (2.16).
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Lemma 4 The variables B1(w) de�ned in Lemma 3 is bounded by the following:

B1(w) �

P
1

k=w jtkj

min�2[0;2�) jF(�)j
: (2.36)

Proof: According to the de�nition of B1(w) that is the upper bound of

jRf(w; �)j, we have

jR(w; �)j =

����
P
1

k=w tke
�jk�

F(�)

����
�

1X
k=w

����tke
�jk�

F(�)

���� ;
(2.37)

equation (2.36) follows handily.

If we restrict the condition on the sequence ftng further, more useful prop-

erties on B1(w) and B2(w) can be obtained.

Lemma 5 If the sequence ftng satis�es the following conditions: 1) jtnj =

O(1=jnjp) with p > 2; 2) its DTFT F(�) 6= 0; 8� 2 [0; 2�) , then B2(w) is

bounded, and

B1(w) < O(1=w); w � 2: (2.38)

Proof: First we address B2(w). For arbitrary w 2 [0; n� 1],�����
� P

1

n=w tne
�j�nP

1

n=�1 tne�j�n

�0
����� =
�����
P
1

n=w

P
1

k=�1 tktn(k � n)e�j�(n+k)

(
P
1

n=�1 tne�j�n)2

�����
�

1

min�2[0;2�) jF(�)j2
� (

1X
n=w

1X
k=�1

(jtktnjjkj+ jtktnjn))

�
1

min�2[0;2�) jF(�)j2
� (2

1X
k=�1

jtkjCt):

(2.39)

The third inequality holds because jtnj = O(1=jnjp) and p� 1 > 1
1X

k=�1

jtkjjkj =
1X

k=�1

O(1=jkjp�1)

� Ct;
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which follows from the fact that the series of O(1=jkjq) with q > 1 converges. Ct

is a �nite number, therefore B2(w) is upper bounded by some �xed �nite number

B2max.

Next we address B1(w). According to Lemma 4,

B1(w) �
P
1

k=w jtkj
min�2[0;2�) jF(�)j

<
1X
k=w

G

min�2[0;2�) jF(�)j �
1

k2

<
G

min�2[0;2�) jF(�)j �
 

1X
k=w

1

k2 � 1

!

=
G

min�2[0;2�) jF(�)j �
�

1

2(w � 1)
+

1

2w

�

<
G

min�2[0;2�) jF(�)j �
1

w � 1

(2.40)

where G is a �nite positive constant such that jtnj < G=jnj2, which gives the

second inequality in (2.40); the fourth equality follows from the following partial

series sum formula with w � 2

nX
k=2

1

k2 � 1
=

3

4
� 1

2n
� 1

2(n+ 1)
:

Hence, we have B1(w) < CB1=(w � 1) with w � 2 and CB1 a positive constant.

Theorem 2 Let Tn be a family of Hermitian Toeplitz matrices associated with

the sequence ftng, and F (z) be the z-transform of ftng. If jF (z)j does not have

any zero on the unit circle, and jtnj � O(1=jnjp) with p > 2, T�1n converges to

C�1n in the �nite boundary strong sense and

k T�1n � C�1n k� O(1=
p
n): (2.41)
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Proof: Letm = minjzj=1 F (z) andM = maxjzj=1 F (z), then all the eigenval-

ues of Tn are bounded in between m and M [22, p.64]. Thus, all the eigenvalues

of T�1
n

are bounded by B = 1=m. The number B must be �nite since there is

no zero on the unit circle and F (z) is continuous on the unit circle. Therefore,

k T�1
n

k, the strong norm of T�1
n

, is bounded by B.

Let us de�ne the vector norm k x k=
p
xHx for a vector x, and the spectral

norm k A ks of a matrix A as

k A ks= max
kxk=1

k Ax k :

and

k A ks= maxf
p
� : � is an eigenvalue of AHAg (2.42)

(2.42) follows [37, p.295]. It is readily veri�ed that if A is a Hermitian matrix

k A k=k A ks [37, p.176], which is the largest eigenvalue of A and is a matrix

norm.

Then inequality:

k T�1
n

� C�1
n

k = max
kxk=1

k (T�1
n

� C�1
n

)x k

= max
kxk=1

k T�1
n

(I � TnC
�1
n

)x k

�k T�1
n

k � max
kxk=1

k (I � TnC
�1
n

)x k

(2.43)

where the �rst equality follows the fact that T�1
n

and C�1
n

are Hermitian, the

third inequality is due to the property of the matrix norm. We further obtain

k T�1
n

� C�1
n

k� B k (I � TnC
�1
n

) ks : (2.44)

Since we are interested in the case that x is limited to n�dimensional vectors

of type x = (0; � � � ; 0; x�L; � � � ; x0; � � � ; xL; 0; � � � ; 0), which is equivalent to set-

ting the �rst and the last bn�(2L+1)
2

c columns of (I � TnC
�1
n

) to 0 in evaluating
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k (I�TnC
�1

n
)x k for arbitrary x with vector norm 1. Denote the matrix obtained

in this way as Qn, i.e.,

Qn =

�
0 D 0

�
(2.45)

Block D ranges from Column bn�(2L+1)
2

c to Column bn+(2L�1)
2

c.

In order to prove that we can strengthen the weak convergence into strong

convergence for �nite boundary problem, we only need to show that k Qn ks! 0

as n ! 1, which is equivalent to showing that the maximum eigenvalue of

QH
n Qn goes to 0 as n!1. We have

QH
n Qn =

2
66664

0

D
H

0

3
77775
�
0 D 0

�
=

2
66664
0 0 0

0 D
H
D 0

0 0 0

3
77775 (2.46)

Using the theorem in [37, p.346], let qwv be the fw; vgth element of QH
n Qn. The

largest eigenvalue of QH
n Qn is bounded by

k QH
n Qn k� min

(
max
i

n�1X
j=0

jqijj;max
j

n�1X
i=0

jqijj

)
(2.47)

There are only (2L+1)2 nonzero elements inDH
D, the number does not increase

as n increases. Therefore, if we can show that all the nonzero elements of Qn

converge to zero, this leads to the conclusion that the summation of all the

elements of QH
n Qn converges to zero. It further leads to the result that k Qn k

converges to zero.

To complete the proof, the (q; r)th element of DH
D is upper bounded by
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the following (using Lemma 3),

j(DH
D)jq;r �

n�1X

w=0

�
�(B2(w + 1) +B2(n� w))

n
+ (B1(w + 1) +B1(n� w))�

j2�(w � q + n=2)=n mod 2�jn+ 2

2n

�
�

�
�(B2(w + 1) +B2(n� w))

n
+ (B1(w + 1) + B1(n� w))�

j2�(w � r + n=2)=n mod 2�jn+ 2

2n

�
;

(2.48)

where q; r = bn�(2L+1)
2

c � � � bn+(2L�1)
2

c.

Therefore it is readily veri�ed that for large n (compared with L) the sum-

mations in (2.48) are bounded by the following (using Lemma 4 and 5)

n�1X
w=0

�
�(B2(w + 1) +B2(n� w))

n

�2

� O(1=n)

and

n�1X
w=0

�(B2(w + 1) +B2(n� w))

n
� (B1(w + 1) +B1(n� w))�

j2�(w � r + n=2)=n mod 2�jn+ 2

2n
< O(1=n)

and

n�1X
w=0

(B1(w + 1) +B1(n� w))2 �
j2�(w � q + n=2)=n mod 2�jn+ 2

2n
�

j2�(w� r + n=2)=n mod 2�jn+ 2

2n
< O(1=n):

That means

j(DH
D)q;rj � O(1=n) (2.49)

which implies
n�1X
j=0

jqijj;

n�1X
i=0

jqijj � (2L+ 1)O(1=n): (2.50)
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Since L does not increase with n, we have

k Q ks=
p
k QHQ k � O(1=

p
n)

and

k T�1n � C�1n k� O(1=
p
n): (2.51)

The above shows that the summation of the absolute value of the elements

of QHQ approaches to zero for large n, which means that Qn converges to the

all-zero matrix in the strong sense. This concludes the proof.

If the sequence ftng is �nite order, we have the following corollary.

Corollary 1 Let fTng be a family of Hermitian Toeplitz matrices associated

with the sequence ftng of �nite order, i.e., ts = 0 for jsj > W [23, p.23], and

F (z) be the z-transform. If jF (z)j does not have any zero on the unit circle, T�1n

converges to C�1n in the �nite boundary strong sense and

k T�1n � C�1n k� O(1=n): (2.52)

Proof: Follow the same strategy of Theorem 2, use the observation B1(w) =

0 and B2(w) = 0 for w > W .

Remarks: Clearly, the condition on the sequence ftng (O(1=jnjp) or �nite

order) is suÆcient but not necessary. Theorem 2 and Corollary 1 provide the

upper bound of the residue error of the circular matrix approximation. In fact,

it may converge much faster.

Example: Consider again the example given in Section 2.2. The z-transform

of tn becomes

t
�1z + t0 + t1z

�1
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The transform has a zero on the unit circle if and only if t0 � 2jt1j. Under this

condition, we have shown in Section 2.2 that T�1
n

cannot converge to a Toeplitz

matrix. Note that only in the case that t0 = 2jt1j, Tn becomes singular.

2.4 Some Applications

In this section, we discuss a few potential applications. The theorems presented

in the previous section provide us with a simple way to diagonalize the inverse

of a Toeplitz matrix. In fact, in the literature, the substitution of the inverse of

a Toeplitz matrix by a circular matrix has been widely used and yielded many

useful results. The theorems �ll the gap in this applications and avoid potential

erroneous results by ignoring the condition that the z-transform of the sequence

which de�nes a Toeplitz matrix has no zero on the unit circle. They also provide

the upper bound of the residue error as a function of the rank of the Toeplitz

matrix, which could serve as a guideline in some applications.

2.4.1 Evaluating the Likelihood Function of a Discrete-

Time Stationary Process

Statistical techniques play a pivotal role in designing state-of-the-art commu-

nication systems. In contemporary digital transceivers, almost all the signals

are represented in digital forms. The input analog signals are sampled at cer-

tain sampling rate to obtain discrete-time samples. If the noise incurred in the

channel is modeled as general additive Gaussian noise, not necessarily white, it

is often mathematically intractable to design good algorithms. The diÆculty

lies in the fact that the likelihood function for the non-white Gaussian noise is
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complicated. The convergence theorem provides us a tool to simplify it.

Assume the received signal is modeled as the follows:

y(t) = s(A; t) +N(t); (2.53)

where y(t) is the received signal, s(A; t) is the transmitted signal, A is the in-

formation of interest, N(t) is noise, typically modeled as general Gaussian noise

with zero mean and auto-correlation function gN(t� u) given that the Gaussian

process is stationary. The signal y(t) is sampled every Ts seconds; we obtain the

following vectors

y = s(A) +N; (2.54)

where

y = [y
�n=2; � � � ; yn=2�1]

s(A) = [s
�n=2(A); � � � ; sn=2�1(A)]

N = [N
�n=2; � � � ; Nn=2�1]

with yk = y(kTs), sk(A) = S(A; kTs) and Nk = N(kTs). The n � n auto-

correlation matrix K of the noise vector N is Toeplitz based on the stationary

assumption. The fw; vgth element of K is equal to gN((w � v)Ts). In prac-

tice, the autocorrelation function usually decreases exponentially; let us assume

gN(nTs) = O(1=jnjp) (p > 2) here. The likelihood function of s(A) is given by

f(rjs(A)) =
exp

�
�1

2
(y � s(A))HK�1(y � s(A))

	

(2�)n=2jKj1=2
: (2.55)

It was diÆcult to evaluate (2.55) because K�1 is hard to obtain analytically.

It is natural to diagonalize the matrix K so that the coeÆcients in the new

coordinates are independent [16]. The circular matrix approximation of K�1
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is desired because it is well known that the eigendecomposition of a circular

matrix is equivalent to the DFT which provides a frequency domain approach

to evaluate the likelihood function. Sometimes it is reasonable to assume that

the signal s(A; t) is very small when jtj > ts (i.e., the �nite boundary condition

for the quadratic form) because it could be under the system designers' control.

We have the following corollary.

Corollary 2 If the z-transform F (z) of the sequence fgN(kTs)g is continuous

and has no zeros on the unit circle, i.e.,

F (z) =
1X

k=�1

gN(kTs)z
�k

as n becomes large enough the likelihood function (2.55) can be approximated by

the following

lim
n!1

f(yjs(A)) �

lim
n!1

(2�)�n=2jKj�1=2 exp

�
�
1

2
(Un(y � s(A)))HD�1n (Un(y � s(A)))

� (2.56)

where

Dn = diag(F(2�0=n); � � � ;F(2�(n� 1)=n))

F(�) =
1X

k=�1

g(kTs)e
�j�k:

F(�) is the discrete-time Fourier transform of fg(kTs)g, Un(y � s(A)) is the n

point DFT of (y � s(A)).

Proof: Applying the �nite boundary strong convergence theorem of the

inverse of a Toeplitz matrix, we have

K�1 � UH
n D

�1

n Un;

(2.56) holds handily.
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Remarks:

� A hidden assumption, that y satis�es the �nite boundary condition is

adopted during the proof above. It sounds unreasonable to neglect the

received signal (that accommodates noise information) outside the obser-

vation window. Actually it does not matter in communication receiver

design when we use maximum likelihood (ML) or maximum a posteriori

(MAP) approaches. Because we are only interested in the information in

s(A), the term yHK�1y in the RHS of (2.56) does not a�ect the �nal result.

The following inequality (property of vector norm) holds

k yHK�1s(A) k�k y kk K�1s(A) k;

where k y k is bounded, and for large n

k K�1s(A) k�k UH
n
D�1
n
Uns(A)) k;

and we have

yHK�1s(A) � (Uny)
HD�1

n
(Uns(A)):

� According to Theorem 2, Corollary 1, (2.47) and (2.48), the quadratic

form's (s(A)HK�1s(A)) convergence speed is lower-bounded. It could also

be obtained from numerical evaluation. The convergence speed is an impor-

tant factor during system design when the DFT diagonalization is desired.

It provides us the necessary number of zeros to be packed with the use-

ful information s(A) to make the leakage tolerable. From our numerical

evaluation, if K is modeled as a �nite order Toeplitz matrix with small

W , the e�ective length (2L+1) of the �nite boundary vector s(A) is large

(2L+ 1 > W ), the quadratic form converges quickly as n > (2L + 1), i.e.,

the number of packed zeros is small or unnecessary.
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� Since gN(t) is the auto-correlation function, its Fourier transform is the

power spectrum density (PSD) of the noise process N(t) and is non-

negative. One question comes up naturally: if y(t) is over-sampled, F (z)

has zeros on the unit circle though F(�) does not have zeros in the fre-

quency band of interests, does Corollary 2 still hold? The answer is pos-

itive. It is a classical question related to the likelihood function. If y(t)

is over-sampled, K is singular for large n, which implies that some rows

are the linear combination (interpolation in digital signal processing) of

other rows, and K�1 does not exist. To prevent such situation from hap-

pening, decimation (down-sampling) or the technique mentioned in [16,

p.289] can be applied to give us mathematical convenience and guarantee

our operations will be meaningful. We are only interested in the passband

of F(�). For those processes that have zeros in the passband, a similar

technique (adding small white noise) could be applied with the cost being

slow convergence.

2.4.2 Application on Digital Communications in Nonwhite

Gaussian Noise

The DFT in (2.56) associated with the eigendecomposition of a circular matrix

leads naturally to the frequency domain analysis, which often yields additional

insight and simpli�cation. In a communication system, in addition to the de-

sired signal at the receiver, there is always noise that can be characterized as a

Gaussian process. Due to the pre-�lter in the receiver front-end for eliminating

out of band noise and interference, the noise n(t) in digital receiver is nonwhite

(colored) in general, especially when there is more than one sample per sym-
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bol (over-sampling). In fact over-sampling is widely used in the receiver front-

end [12], such as synchronization, detection, channel estimation, fractionally-

spaced equalizer, etc. In order to simplify the calculations, some analyses simply

assume that the noise is white. This may lose potential insight or even lead to

erroneous results. Another approach is to exploit pre-whitening [16]. However,

pre-whitening the noise may lead to large inter-symbol interference and needs

the pre-knowledge of the correlation properties of the random process. Further-

more, digital �lters are often one of the most power consuming components in

the digital receiver. The eigendecomposition in (2.56) decorrelates the noise in

the frequency domain. This eliminates the need for pre-whitening.

Furthermore, the DFT matrix is not varied with a particular Toeplitz matrix.

This means that the decorrelation can be achieved without pre-knowledge of the

random process. It is useful in linear estimation and predication problems [19],

because the DFT approximation often leads to a simple and robust estimator

structure. A similar idea was adopted in the robust channel estimation algorithm

for OFDM systems when solving the Yule-Walker equations [38]. Furthermore,

the theorems derived here provide an analytic tool to design the training signal

and to calculate the upper bound of the approximation residue error.

In addition, sometimes transmitted signals are some kind of convolution

between the data sequence and the shaping pulse, the frequency domain ap-

proach transforms this convolution to multiplication in some data-aided applica-

tions [12]. The following chapters illustrate its applications on the computation

of the Cramer-Rao lower Bound for the data-aided estimation and the derivation

of channel estimation algorithms in wireless communications.
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2.5 Conclusions

The convergence issue of the inverse of Toeplitz matrices was addressed in this

chapter. Through a simple example, we illustrated that a widely used assertion

is incorrect in general and therefore we propose a related convergence problem.

We showed that under the condition that the z-transform of the sequence with

which the Toeplitz matrices are associated has no zero on the unit circle, the

inverse converges in the weak sense to a circular matrix. What is more, for the

�nite boundary quadratic form problem, the convergence can be strengthened

into strong sense.

The eigendecomposition of a circular matrix is equivalent to DFT, which

introduces the frequency domain approach in statistical signal processing and

digital communications.

Appendix

This appendix shows that fm� mod 1;m = 1; 2; � � � g are densely populated over

[0; 1] for irrational �. This assertion can be proved as follows. First of all, for

any integer m 6= n, (m� n)� mod 1 cannot be zero, otherwise, (m� n)� = k for

some integer k, i.e, � = (m� n)=k, a rational number. This means that n� mod

1 takes in�nite possible values between 0 and 1. Therefore, for any small number

�, we can �nd m,n such that j(m� n)�mod1j � �. Note that k((m� n)�mod1)

partitions (0; 1) at equal spacing less than �. This implies that for any number

between 0 and 1, there is an integer k such that k(m� n)� mod 1 is less than �.

This proves the assertion.
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Chapter 3

Performance Limits of the Data-Aided

Synchronization and Training Sequence

Design

3.1 Introduction

The Cramer-Rao lower bound (CRB) is a general lower bound on the minimum

mean square error (MMSE) of any unbiased estimator [16]. The CRB usu-

ally serves as a benchmark for the performance of an actual unbiased estimator.

Therefore it has received considerable attention in the literature. In some practi-

cal systems, synchronization parameters such as timing and carrier phase o�sets

are acquired with the help of a training sequence (TS) that is known to the re-

ceiver, which is called DA estimation. In the DA case, the CRB generally varies

with the TS, which implies that di�erent training sequences o�er fundamentally

di�erent performance. Therefore it is very important to compute the CRB for

any particular TS to understand the fundamental limit that a particular TS has.

However, in the literature [12, 28, 29, 30, 31, 18, 39], the closed-form CRB
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for DA timing and/or carrier phase recovery for an arbitrary TS is not available.

The authors of [12] gave a summary of the CRB for carrier frequency, phase and

timing o�sets estimation. The CRB for joint timing and carrier phase recovery

was �rst introduced by Moeneclaey in [29, 30], and it was further discussed in

his publications [31] and [28]. It is diÆcult to evaluate the bound when the TS

is arbitrary. Moeneclaey simpli�ed the calculation by the adoption of the strong

law of large numbers and the assumption that the TS is zero mean, i.i.d., and

suÆciently long. This method reduces the calculation dramatically, but it also

hides the interaction between the TS and the estimation performance, therefore

limiting the usage of the CRB. In order to deal with the estimation problem in

the presence of nuisance parameters, D'Andrea et al. proposed the modi�ed CRB

(MCRB) in [18]. It was pointed out in [28] that the CRB's derived previously in

[29, 31] are actually MCRB's. A modi�ed CRB that considers the case where the

symbol timing estimate is restricted to a �nite interval of one symbol duration

and the inter-symbol interference (ISI) is omitted was derived in [39].

In principle, it is possible to use brute-force numerical approach to compute

the CRB for any given TS. Such brute-force computation involves the evaluation

of derivative numerically and matrix inversion. Besides the computational com-

plexity, the brute-force approach does not provide any insight on the interaction

between a TS and the resultant CRB. In this chapter, a closed-form CRB for

the DA joint carrier phase and timing o�sets estimation is derived with respect

to arbitrary TS. The only assumption is that the derivative of the shaping pulse

exists (i.e., the pulse is suÆciently smooth). The bound reveals the close rela-

tion between the TS and the performance limit on timing and phase recovery,

and therefore it provides insight on sequence design. The research result on the
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inverse of Toeplitz matrices of Chapter 2 is applied in the computation. The fre-

quency domain approach introduced by the eigendecomposition of the circular

matrix expedites the calculation of the bound.

Similar methods can be applied in computing the performance limit for DA

synchronization in a fading channel. Fading noise that is a nuisance parameter

gives extra burden. Fortunately the modi�ed CRB (MCRB) [13, 18] can be

computed instead in this scenario. The MCRB for timing estimation in Rayleigh


at fading channel is derived in chapter as well.

The rest of the chapter is organized as follows. In Section 3.2, the research

results on Toeplitz matrices are revisited, the DA CRB (denoted as CRBDA) for

joint timing and carrier phase estimation is derived. Section 3.3 evaluates the

bound. We show that the CRB's derived in [12, 28, 29, 30, 31] are special cases

of the CRB derived here. Section 3.4 presents the MCRB for timing estima-

tion in a 
at fading channel. Training sequence design for timing acquisition is

proposed in Section 3.5. Optimal training sequences for timing recovery under

the energy constraint are derived for both over and under sampling scenarios. A

DA maximum likelihood (ML) joint carrier phase and timing o�sets estimator

will be discussed in Chapter 4. Computer simulation shows that the estimation

variance meets the CRBDA (derived here) with di�erent shaping functions and

training sequences. The timing estimation variance with some training sequences

is signi�cantly lower than the CRB derived in the literature [12, 28, 29, 30, 31]

(the performance di�erence is several dB sometimes).
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Figure 3.1: Modeling of Channel and Matched Filter

3.2 The Calculation of the DA Cramer-Rao Lower

Bound in a Gaussian Channel

The baseband received signal is modeled as:

x(t) =
p
Es

N=2�1X

m=�N=2

amg(t�mT � �T )ej� + n(t) (3.1)

where g(t) = gT (t)
c(t)
f(t) (without loss of generality let us assume that g(t)

is real), gT (t) is the transmitter shaping function, c(t) is the channel response,

f(t) is the pre�lter, n(t) is the additive white Gaussian noise (AWGN) with

two-sided power spectral density (PSD) N0=2, T is the symbol interval, famg,

m 2 Z (Z the set of integers) is the training sequence drawn from the complex

plane with E[am] = 0 and E[jamj
2] = 1. � is the carrier phase o�set. The delay

jitter �T models the absence of symbol synchronization between transmitter

and receiver, it is assumed that � 2 [�0:5; 0:5). Table 3.1 summarizes these

notations. The received signal x(t) is passed through a matched �lter with

response g(�t) as shown in Figure 3.1. We assume that channel and pre�lter are

perfect, i.e., g(t) is equal to the transmitter shaping function gT (t). The output

y(t) of the matched �lter is sampled at the rate of 1=Ts, typically T = LTs,

with L an integer. In the DA case, the TS famg (m = �N=2; � � � ; N=2 � 1) is

known between the transmitter and receiver. The implicit assumption is that

the timing o�set � remains �xed over the duration of observation.

43



gT (t) transmitter shaping function

c(t) channel response

f(t) pre�lter response

n(t) AWGN noise with PSD N0=2

T symbol interval

famg data sequence with E[am] = 0 and E[jamj
2] = 1

� carrier phase o�set

� timing o�set

N training sequence length

L sampling rate in samples per symbol

Table 3.1: Notations

3.2.1 Problem Formulation

The output of the matched �lter is

y(t) =
p
Es

N=2�1X
m=�N=2

amr(t�mT � �T )ej� +N(t); (3.2)

where

r(t) =

Z
1

�1

g(t+ u)g(u)du

N(t) =

Z
1

�1

n(t+ u)g(u)du:

Therefore,

yk =
p
Es

N=2�1X
m=�N=2

amr(kTs �mT � �T )ej� +Nk (3.3)

with Nk = N(kTs) that is a sequence of Gaussian random variables with zero

mean and the auto-correlation function

Ry[k � l] = E[NkN
�

l ] =
No

2
r((k � l)Ts): (3.4)
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We can rewrite (3.3) in terms of matrix and vector product. First let us de�ne

the following vectors

y = [ y
�K=2 � � � y0 � � � yK=2�1 ]T (3.5)

a = [ a
�N=2 � � � a0 � � � aN=2�1 ]T

N = [ N
�K=2 � � � N0 � � � NK=2�1 ]T

where K = L(N + R), R models the signal y(t) beyond the TS portion in

the ideal case in which a shaping pulse r(t) modulated only by the TS a is

transmitted and used to estimate the parameters. The observation window K

is long enough to store the statistical information of y(t). Because the CRB is

a performance lower bound, therefore the estimation performance should not be

better than the ideal case. Let us de�ne a K�N matrix R(�) with the fm;ngth

element equal to r((m�K=2)Ts � (n�N=2)T � �T ), for m = 0; 1; � � � ; K � 1,

n = 0; 1; � � � ; N � 1. With these notations, (3.3) can be written as

y =
p
EsR(�)ae

j� +N: (3.6)

The likelihood function for � and � is formulated as follows. The mean of y

given a, � and � is

my(a; �; �) = E[yja; �; � ] =
p
EsR(�)ae

j�: (3.7)

The auto-covariance matrix of the vector y is

cov[yja; �; � ] =
No

2
�; (3.8)
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where � is a K �K matrix de�ned as

� =

2
66666664

r(0Ts) r(�Ts) � � � r(�(K � 1)Ts)

r(Ts) r(0Ts) � � � r(�(K � 2)Ts)

...
...

. . .
...

r((K � 1)Ts) r((K � 2)Ts) � � � r(0Ts)

3
77777775

(3.9)

where the fk;mgth element is equal to rkm = r[(k � m)Ts]. Therefore � is a

Toeplitz matrix (for a stationary random process). The likelihood function for

�; � given a is

f(yja; �; �) =
exp

n
�1

2
(y �my)

H
�
No

2
�
�
�1

(y �my):
o

(2�)K=2jNo

2
�j1=2

(3.10)

The log likelihood function is given by

l(yja; �; �) = log(f(yja; �; �)) (3.11)

= �
1

No

�
�yHQmy �mH

y Qy +mH
y Qmy

�
�

 
1

No

yHQy + log

"
(2�)K=2

????No

2
�

????
1=2
#!

;

where Q is the inverse matrix of � with the assumption that its inverse exists.

The CRBDA's are the diagonal elements of the inverse of the Fisher informa-

tion matrix J [16] for the joint estimation f�; �g, where J is de�ned as

J =

2
64 J�� J��

J�� J��

3
75 (3.12)

whose element is given by (let � = [�1 �2] with �1 = � and �2 = �)

J�i�j = E

�
�
@2l(yja; �; �)

@�i@�j
;

�
(3.13)

where E denotes the expectation with respect to y, � and � if � and � are

random, or it denotes the expectation with respect to y if they are deterministic
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[16]. Let us average J�i�j with respect to y �rst. If the result depends on � and

� then we shall compute them further based on the condition whether � and �

are deterministic or not. The variable J�i�j is as follows (see Appendix)

J�i�j =
1

N0

"
@mH

y

@�i
Q
@my

@�j
+
@mH

y

@�j
Q
@my

@�i

#
(3.14)

=
2

N0

<

"
@mH

y

@�i
Q
@my

@�j

#
:

According to (3.7), the following holds

@my

@�
= j

p
EsR(�)ae

j�

@my

@�
=

p
Es

@R(�)

@�
aej�:

Therefore from (3.13), we can get

J�� =
2Es

N0

aHR(�)HQR(�)a (3.15)

J�� =
2Es

N0

<

�
(�j)aHR(�)HQ

@R(�)

@�
a

�
(3.16)

J�� = J�� (3.17)

J�� =
2Es

N0

aH
@R(�)H

@�
Q
@R(�)

@�
a: (3.18)

The CRBDA's for the DA joint estimation of carrier phase and timing o�sets are

given by

E
h
(�� �̂)2

i
� CRBDA(�) ,

J��

J��J�� � J2��
(3.19)

E
�
(� � �̂)2

�
� CRBDA(�) ,

J��

J��J�� � J2��
: (3.20)

3.2.2 Results from Toeplitz Matrices

Computing (3.15 -3.18) with an arbitrary TS a is quite diÆcult. In order to

simplify the computation, J�i�j is approximated by being averaged over the TS a
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Figure 3.2: Packing Zero's with the Training Sequence famg

when a is zero mean, i.i.d. and the number of training symbols N large enough

in the literature [12, 28, 29, 31, 18], which follows from the strong law of large

number.

We are intrigued by the fact that yk is some sort of convolution of the TS a and

the shaping pulse r(kTs), which implies multiplication in the frequency domain,

therefore the frequency domain approach seems to be a natural solution. Before

we introduce this method, let us reexamine the results about Toeplitz matrices

derived in Chapter 2 and [25].

The auto-covariance matrix � (de�ned in (3.9) ) is a Toeplitz matrix for a sta-

tionary random process. The evaluation of (3.15 -3.18) involves the convergence

issue of the inverse of the Toeplitz matrix � in the strong sense (quadratic form).

The �nite boundary strong sense convergence theorem (Theorem 2), Corollary

1 and 2 can be applied here. Before we apply the theorems, let us examine the

conditions of these theorems �rst:

� In our problem, r(t) is the autocorrelation function of the noise process

N(t), e.g., r(t) is a raised-cosine shaping pulse. The discrete-time Fourier

transform (DTFT) of the sequence fr(kTs)g should be non-negative in its

passband, in fact it is positive for the raised-cosine shaping pulse.

� In a typical communication receiver, the shaping pulse fr(kTs)g usually

degrades faster than O(1=jkj2), e.g., the magnitude of the raised-cosine

pulse converges to zero at a speed faster than O(1=jkj3). In engineering
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practice, it is under the system designer's control to make the training por-

tion (i.e., my (3.7)) satisfy the �nite boundary condition through packing

zeros along with the training sequence famg. As explained in Chapter 2

and [25], the value of R is determined by the residue error of the (circular

matrix) approximation. Figure 3.2 shows the training signal for timing

and phase recovery. In Chapter 2 an upper bound for the quadratic-form-

approximation error is derived. One reason we introduce R is for math-

ematical convenience and it coincidentally models the ideal case in which

all the information about y(t) is collected to estimate the parameters. The

training sequence length N can be relaxed to an arbitrary number with

the help of R. In the literature, Moeneclaey assumed large N in order to

apply the strong law of large numbers.

Therefore the scenario meets the conditions to apply the strong sense convergence

theorem.

3.2.3 The Derivation of the Cramer-Rao Lower Bound

According to Theorem 2, the inverse matrix Q can be approximated by a circular

matrix UH
KD

�1UK . The matrix UK is the discrete Fourier transform (DFT)

matrix (de�ned in (2.2)), which introduces the frequency domain approach in

which we are interested. The matrixD is a diagonal matrix with the ith diagonal

element equal to F(2�i=K) and we introduce a new variable W with W , UK .

The DTFT F(!) of r(kTs) (k = � � � ;�1; 0; 1; � � � ) is rede�ned as:

F(!) =
1X

k=�1

r(kTs)e
�j!k (3.21)
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First, let us consider WR(�)a, with its mth element equal to

1p
K

K=2�1X

k=�K=2

N=2�1X

n=�N=2

r(kTs � nT � �T )ane
�j2�mk=Kej�(m); (3.22)

where �(m) is a �xed phase shift independent of both � and � . According to

our assumption that r(kTs) is assumed to be zero for large jkj with negligible

leakage, the summation with respect to k in (3.22) can be extended to �1 and

1 for large K. Thus, the mth element of WR(�)a becomes

1p
K

N=2�1X

n=�N=2

1X

k=�1

r(kTs � nT � �T )ane
�j2�mk=Kej�(m): (3.23)

Let R(!) be the Fourier transform of r(t), i.e.,

R(!) =

Z
1

�1

r(t)e�j!tdt

and we observe that R(!) is the power spectrum density (PSD) of the noise

process N(t) and is non-negative. Then R̂n;� (!), the DTFT of r(kTs � nT �
�T ); k = � � � ;�1; 0; 1; � � � , is given by

R̂n;� (!) =
1

Ts

1X
k=�1

R
�
!

Ts
� 2�k

Ts

�
e�j(�+n)T (!=Ts�2�k=Ts): (3.24)

Clearly, R̂0;0(!) = F(!) as previously de�ned by (3.21). Equation (3.23) be-

comes

1p
K

N=2�1X
n=�N=2

R̂n;�

�
2�m

K

�
ane

j�(m)

=
1

Ts
p
K

1X
k=�1

R
�
2�m

KTs
� 2�k

Ts

�
A
�

2�m

N +R
� 2�kL

�

e�j(�(2�m=(N+R)�2�kL)+�(m));

(3.25)

where A(!) is the DTFT of a, which is de�ned by A(!) =
PN=2�1
�N=2 ane

�j!n.

Similarly, the DTFT of _r(kTs � nT � �T ) (where the derivative is with respect
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to �) is

R̂
0

n;� (!) =
�T

Ts

1X

k=�1

j

�
!

Ts
�

2�k

Ts

�
:R

�
!

Ts
�

2�k

Ts

�
e�j(�+n)T (!=Ts�2�k=Ts)(3.26)

Let us de�ne a new variable

RA(m; k) ,
1

Ts
R

�
2�m

KTs
�

2�k

Ts

�
A

�
2�m

N +R
� 2�kL

�
: (3.27)

The variable J�� from (3.15) becomes

J�� =
2Es

N0K

K�1X
m=0

P
1

k;l=�1RA(m; k)RA(m; l)�ej2��(k�l)L

F(2�m=K)
; (3.28)

J�� from (3.16) becomes

J�� =�
2EsT

N0K

<

8<
:

K�1X
m=0

P
1

k;l=�1

�
2�m
KTs

� 2�k
Ts

�
RA(m; k)RA(m; l)�ej2��(k�l)L

F(2�m=K)

9=
;

(3.29)

and J�� from (3.18) becomes

J�� =
2EsT

2

KN0

K�1X
m=0

P
1

k;l=�1

�
2�m
KTs

� 2�k
Ts

��
2�m
KTs

� 2�l
Ts

�
RA(m; k)RA(m; l)�ej2��(k�l)L

F(2�m=K)
:

(3.30)

Let us discuss di�erent scenarios according to the sampling rate L. We are

interested in the case when L is an integer, because of its popularity.

The Over-Sampling Case

In the over-sampling case, L is no less than the Nyquist frequency, i.e., 1=Ts � 2B

for B the bandwidth of r(t). There is no aliasing in F(!) in the frequency do-

main. It is straightforward to verify that J��, J�� and J�� (3.28-3.30) are inde-

pendent of � and � , therefore they are the same whether � and � are deterministic
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or not. They are given by

J�� =
2Es

N0K

K=2�1X

m=�K=2

RAo(m) (3.31)

J�� = �
2Es

N0K

K=2�1X

m=�K=2

�
2�m

N +R

�
RAo(m) (3.32)

J�� =
2Es

N0K

K=2�1X
m=�K=2

�
2�m

N +R

�2

RAo(m) (3.33)

where RAo(m) (the subscript o refers to over-sampling) is de�ned as

RAo(m) ,
1

Ts
R

�
2�m

KTs

� ����A
�

2�m

N +R

�����
2

: (3.34)

Basically RAo(!) , R(!)jA(!)j2 is the PSD of the signal output from the

matched �lter.

The Under-Sampling Case

In the under-sampling case, L is less than the Nyquist frequency, i.e., 1=Ts < 2B,

There is aliasing in the frequency domain. In this scenario J��, J�� and J�� (3.28-

3.30) are independent of � but depend on � , and they should be averaged with

respect to y and � . In practice, � can be modeled by a uniformly distributed

random variable in the receiver front-end. In a typical communication system,

one-sample-per-symbol sampling rate (L = 1, K = N +R) is usually used. The

following holds for arbitrary integers k and l

Z 1=2

�1=2

ej2��(k�l)d� = Æ[k � l];
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where Æ[n] = 1, if n = 0, and Æ[n] = 0, otherwise. Therefore J��, J�� and J�� in

the under-sampling case become

J�� =
2Es

N0K

K=2�1X

m=�K=2

RAu(m)

F(2�m=K)
(3.35)

J�� = �
2Es

N0K

K=2�1X

m=�K=2

�
2�m

N +R

�
RAu(m)

F(2�m=K)
(3.36)

J�� =
2Es

N0K

K=2�1X
m=�K=2

�
2�m

N +R

�2
RAu(m)

F(2�m=K)
(3.37)

where RAu(m) (the subscript u refers to under-sampling) is de�ned as

RAu(m) ,
1X

k=�1

1

T 2
s

R

�
2�m

KTs
�

2�k

Ts

�2 ����A
�

2�m

N +R

�����
2

: (3.38)

In the calculation of (3.38), we use the fact that A(! � 2�k) = A(!) with k an

integer, therefore we can separate A(!) and the aliased R(!)2. In practice, a

shaping pulse is always band-limited. Typically its e�ective bandwidth B ranges

from 1=2T to 1=T , therefore the variable k in (3.24) is usually from -1 to 1. If the

sampling rate L is not an integer, the computation becomes more complicated

because A(!) can not be separated from the aliased R(!)2.

3.3 Evaluating the Bounds

The CRBDA for phase and timing estimation is given by (3.19) (3.20). In the

following presentation, we evaluate the bounds through evaluating J��, J�� and

J�� separately.
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3.3.1 J�� : the Cost of Two Unknown Parameters

Since J2�� � 0, from (3.19-3.20) it is clear that

J��
J��J�� � J2��

�
J��

J��J��
=

1

J��
(3.39)

J��
J��J�� � J2��

�
J��

J��J��
=

1

J��
(3.40)

It is easy to verify that the CRB for timing/phase estimation with known

phase/timing o�set is equal to 1=J�� (1=J��) respectively, therefore J�� serves

as the cost when both phase and timing o�sets are unknown. There are two

observations:

� The cost could be reduced to zero in the following manner. In the over-

sampling case J�� is given by (3.32). According to the assumption that r(t)

is real, which means that R(!) is an even function; (2�m=(N +R)) is an

odd function; if jA(!)j is an even function, which is a suÆcient condition,

J�� = 0. In the under-sampling case, the same result holds.

� As pointed in [12, p.329], the random data TS could make J�� = 0. A

more general suÆcient condition is proposed here. In fact, any real TS a

could make J�� be equal to zero.

In the following presentation, we assume that J�� is equal to zero.

3.3.2 The CRBDA for Phase Estimation

The CRB for phase estimation is equal to

CRBDA(�) =
1

J��
(3.41)

where J�� is given by (3.31) and (3.35).
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In the over-sampling case J�� is given by (3.31). According to Parseval's

relation, for an orthogonal transform like K-point DFT, RAo(m) becomes

K=2�1X

m=�K=2

1

Ts
R

�
2�m

KTs

� ����A
�

2�m

N +R

�����
2

= K

K=2�1X
l=�K=2

R(l)A(l) (3.42)

where R(l) and A(l) are the inverse DFT (IDFT) ofR(2�m=KTs) andA(2�m=(N+

R)) respectively. It is straightforward to show that

R(l) =
1

K

K=2�1X
m=�K=2

1

Ts
R

�
2�m

KTs

�
ej2�ml=K = r(lTs): (3.43)

Similarly A(l) is given by

A(l) =
1

K

K=2�1X
k=�K=2

������
N=2�1X
n=�N=2

ane
�j2�kn=N

������
2

ej2�kl=K (3.44)

=

N=2�1X
n=�N=2

N=2�1X
m=�N=2

ana
�

mÆ[l � L(n�m)]:

Therefore J�� is equal to

J�� =
2Es

N0

K=2�1X
l=�K=2

r(lTs)

N=2�1X
n=�N=2

N=2�1X
m=�N=2

ana
�

mÆ[l � L(n�m)] (3.45)

=
2Es

N0

N=2�1X
n=�N=2

janj
2:

The second quality in (3.45) follows for the Nyquist shape r(lTs) that is given

by the following

r(lTs) =

8><
>:

1 l = 0

0 l is other multiple of L:

For PSK type modulation, (3.45) becomes

CRBDA(�) =

�
2EsN

N0

�
�1

(3.46)
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From (3.46), the CRBDA(�) is independent of the speci�c shaping pulse and

TS if the Nyquist shaping pulse and PSK modulation are applied. Actually

CRBDA(�) is the same as the bound for phase estimation in the literature [12].

However the literature [12] does not address the CRB for phase estimation when

both phase and timing are unknown in the under-sampling case.

We still focus our discussion on one sample per symbol (L = 1) and the

Nyquist shaping pulse that has the following Fourier transform (FT)

X

k

R(! � 2�k=T ) = T;

which implies the DTFT of fr(kT )g F(!) = 1. Because of its popularity, let us

limit our discussion on the raised-cosine shaping pulse whose FT is

R(!) =

8>>>><
>>>>:

T 0 � j!j � �(1� �)=T;

T

2

h
1� sin

�
T j!j��
2�

�i
�(1� �)=T � j!j � �(1 + �)=T;

0 otherwise

(3.47)

when rollo� factor � ranges from 0 to 1, the e�ective bandwidth of r(t) ranges

from 1=2T to 1=T . Therefore for the Nyquist shaping pulse in the under-sampling

case, from (3.35) we have

CRBDA(�)

=

(
2Es

N0(N +R)

K�1X
m=0

1X
k=0

1

T 2
R

�
2�m

(N +R)T
�

2�k

T

�2 ����A
�

2�m

N +R

�����
2
)�1 (3.48)

In summary, we have the following theorem:

Theorem 3 In a DA joint timing and carrier phase o�sets estimator, let fang

(n = �N=2; � � � ; N=2 � 1) be the training sequence, r(t) be the shaping pulse,

A(!) be the discrete-time Fourier transform of fang, and R(!) be the Fourier

transform of r(t).
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If the shaping pulse r(t) is a Nyquist pulse with the maximum frequency

between half symbol rate and one symbol rate, the mean square estimation error

for phase � is lower bounded by the following CRB:

E[(�̂� �)2] �

8<
:2Es
N0

N=2�1X
n=�N=2

janj
2

9=
;
�1

(3.49)

when the sampling rate is no less than two samples per symbol, or

E[(�̂� �)2] �

(
2Es
N0K

K�1X
m=�K

1

T 2
R

�
2�m

KT

�2 ����A
�
2�m

K

�����
2
)
�1

(3.50)

when the sampling rate is one sample per symbol. In (3.50) K = N +R, where

R is a large number needed for (3.50) to converge.

The following observations can be made:

� The bound CRBDA(�) in the under-sampling case (3.50) with unknown

timing information depends on both rollo� factor (shaping pulse) and the

TS a.

� Because
P

kR(! � 2�k=T ) � R(!), therefore R(!)=T � 1 holds for

the Nyquist pulse. Compared with J�� in the over-sampling case (3.31),

CRBDA(�) with L = 1 is larger than that with L � 2, i.e., the phase es-

timation has worse performance limit due to the aliasing in the frequency

domain.

� Increasing the rollo� factor introduces more aliasing in the frequency do-

main, then the phase estimation performance degrades. As a special case,

when � = 0, CRBDA(�) with L = 1 is the same as that of over-sampling

case (L � 2) because there is no aliasing at this point.
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� Because R models the ideal case, in the numerical evaluation of the bound,

it should be chosen to make the bound converge, i.e., when R is larger than

some value the bound should not change.

3.3.3 The CRBDA for Timing Estimation

The CRBDA for timing estimation in the joint estimation is given by

CRBDA(�) =
1

J��
(3.51)

where J�� is given by (3.33) and (3.37). Similarly, we have the following theorem

with the assumption that fang and r(t) are real.

Theorem 4 In a DA joint timing and phase o�set estimator, let fang (n =

�N=2; � � � ; N=2� 1) be the training sequence, r(t) be the shaping pulse, A(!) be

the discrete-time Fourier transform of fang, R(!) be the Fourier transform of

r(t), and L be the sampling rate in samples per symbol.

If the shaping pulse r(t) is a Nyquist pulse with the maximum frequency

between half symbol rate and one symbol rate, the mean square estimation error

for timing o�set � is lower bounded by the following CRB:

E[(�̂ � �)2] �8<
:

2Es

N0(N +R)

2
4 K=2�1X
m=�K=2

�
2�m

N +R

�2
1

T
R

�
2�m

(N +R)T

� ����A
�

2�m

N +R

�����
2

3
5
9=
;
�1

(3.52)

when the sampling rate is no less than two sample per symbol, where K = L(N+
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R); or

E[(�̂ � �)2] �(
2Es

N0(N +R)

"
K�1X
m=�K

�
2�m

N +R

�2 1

T 2
R

�
2�m

(N +R)T

�2 ����A
�

2�m

N +R

�����
2
#)

�1

(3.53)

when the sampling rate is one sample per symbol, and K = N + R, where R is

a large number that makes (3.52, 3.53 ) converge.

Similarly because R(!)=T � 1 for the Nyquist pulse, CRBDA(�) with L � 2

(3.52) is smaller than that with L = 1 (3.53) because there is no aliasing.

In previous works, the CRB for timing estimation was derived in the literature

[31] for both over and under-sampling cases. When the sampling rate L � 2, the

CRB (denoted as CRBRD(�)) with the assumption that the TS is i.i.d. random

data and the sequence length N is long enough is given by

CRBRD(�) =
1

T 2

�
2Es
N0

N

Z
1

�1

4�2f 2R(2�f)df

�
�1

(3.54)

In the under-sampling case with L = 1 and the Nyquist pulse, CRBRD(�) is

given by

CRBRD(�) =
1

T 2

�
2Es
N0

N
1

T

Z
1

�1

_r2(t)dt

�
�1

: (3.55)

In the following subsection, we shall show that (3.51) and (3.54) are special

cases of our bound with the same i.i.d. random data and large N assumption.

Equations (3.51) and (3.54) provide people little insight on the e�ects of TS on

the bound.
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3.3.4 The Ideal Case: R!1

Let �f = 1=(N + R), because N and R are bounded, as either of them goes

to 1, we have the following integral expressions for the bounds. When L = 1,

CRBDA(�) is

CRBDA(�) =

(
2Es

N0T 2

Z
1

�1

R

�
2�f

T

�2

jA(2�f)j2 df

)
�1

; (3.56)

CRBDA(�) is

CRBDA(�) =

(
2Es

N0T 2

Z
1

�1

4�2f 2R

�
2�f

T

�2

jA(2�f)j2df

)
�1

: (3.57)

For L � 2, because the phase bound has closed form in ( 3.46), we only address

the timing bound that is

CRBDA(�) =

�
2Es

N0T

Z
1

�1

4�2f 2R

�
2�f

T

�
jA(2�f)j2df

�
�1

: (3.58)

Equations (3.56-3.57) are actually the ultimate bounds for arbitrary TS with

length N and in�nite observation length, i.e., R goes to 1. Equations (3.48-

3.53) provide a way to evaluate the bounds numerically. The di�erence between

the bounds obtained from (3.48-3.53) and the asymptotic ones from (3.56-3.58)

reveals the residue error caused by �nite R. In practice, R should be chosen to

make (3.48-3.53) converge. In our numerical evaluation of the bounds R � 100

is suÆcient in most cases.

Let us revisit the bounds derived by Moeneclaey. For zero mean, i.i.d. TS a,
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as the length N goes to 1, the PSD of a is

�
�
�
�
A
�

2�m

N +R

�����
2

=

N=2�1X
n=�N=2

N=2�1X
k=�N=2

ana
�

ke
�j(2�m(n�k)=(N+R))

�
N=2�1X
n=�N=2

N=2�1X
k=�N=2

E[ana
�

k]e
�j(2�m(n�k)=(N+R))

=

N=2�1X
n=�N=2

N=2�1X
k=�N=2

Æ[n� k]e�j(2�m(n�k)=(N+R))

= N:

(3.59)

The second equality in (3.59) follows from the strong law of large numbers.

Substituting jA(2�f)j2 with N in (3.58), we can see that the CRBRD(�) in the

over-sampling case is equivalent to (3.58) with the long random data assumption.

In the under-sampling case, applying Parseval's relation, for real r(t) we get

1

T

Z
1

�1

_r(t)2dt =

Z
1

�1

�
2�fR

�
2�f

T

��2
df:

Therefore the CRBRD(�) for both cases derived in the previous literature are the

special cases of our bound derived in this paper with zero mean, i.i.d. and long

random data assumption.

3.3.5 Several Example Cases

The CRBDA's give us insight on the e�ect of the training data pattern on the

estimation performance limit. We are going to address several data patterns

based on QPSK signaling.

� CW Pattern

The continuous wave (CW) pattern is the TS with data pattern ak =
p
2=2(1 + j), (for k = �N=2 � 1; � � � ; N=2). It is usually used in the
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rollo� factor � J��=(2Es=N0)

0.25 2.8328

0.50 3.0417

0.75 3.5326

1.00 5.5439

Table 3.2: Normalized CRBDA(�) of CW with N = 20 and L = 2

rollo� factor � J��=(2Es=N0)

0.25 2.8330

0.50 3.0416

0.75 3.5329

1.00 5.5449

Table 3.3: Normalized CRBDA(�) of CW with N = 50 and L = 2

rollo� factor � J��=(2Es=N0)

0.25 2.8330

0.50 3.0416

0.75 3.5329

1.00 5.5450

Table 3.4: Normalized CRBDA(�) of CW with N = 100 and L = 2
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burst preamble in TDMA networks to expedite carrier acquisition. Equa-

tion (3.33) is adopted to calculate J�� in the over-sampling case. Table

3.2, 3.3 and 3.4 show the normalized J�� . We can see that J��=(2Es=No)

is independent of the sequence length N , e.g., as rollo� factor � = 0:5,

J��=(2Es=No) = 3:04, which does not increase as N increases. As N goes

to1, if we ignore R when calculatingA(!), we can get the following DFT,

�
�
�
�
A
�
2�m

N

����� �
8>><
>>:
N if m = 0,

0 if m = �N=2; � � � ;�1; 1; � � � ; N=2� 1:

(3.60)

Therefore J�� � 0, i.e., CRBDA(�) � 1, the CW pattern provides little

timing information. We have two observations:

{ As heuristically explained in [12, p.336], the CW pattern is not suit-

able for timing recovery. The bound CRBDA(�) provides an analytical

explanation.

{ If we consider the �nite TS length N case, with the help of the ex-

tended observation window length R the transition from pure noise

to CW portion in y(t), and from CW to fade gives us some timing

information. This explains the reason why J�� 6= 0, and J�� doesn't

increase as N increases.

� Alternating One-Zero Pattern

The alternating one zero pattern is the TS with data pattern ak =
p
2=2(1+

j), k is even, and ak = �p2=2(1 + j), k is odd. It is widely used as the

preamble in TDMA frame structure for timing recovery. The CRBDA(�)

supports it through the fact that it has much smaller estimation variance
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compared with the pseudo-random data pattern. Equations (3.52-3.53) are

applied to evaluate the bound. The spectrum jA(!)j of a is a tone type

with central frequency at half symbol rate. When the sequence length N

is small, the side-lobe around half symbol rate is signi�cant; as N increase,

the side-lobe reduces. Hence for very sharp rollo� factor (i.e., � � 0), the

CRB is very sensitive to the interpolation length R. As N goes to 1, for

8� > 0 we can drop R and obtain jA(!)j that is equal to the following

�
�
�
�
A

�
2�m

N

����� �
8>><
>>:
N if m = N=2,

0 if m = 0; � � � ; N=2� 1; N=2 + 1; � � � ; N � 1:

(3.61)

For the raised cosine shape 1=TR(1=2T ) = 1=2 with 8�. Hence for N large

enough and L � 2, the CRB for timing estimation is

CRBDA(�) �

�
2�2

Es

N0

N

�
�1

(3.62)

When the sampling rate L = 1, the CRB for timing estimation is 3dB

worse than that with L � 2 (3.61):

CRBDA(�) �

�
�2
Es

N0

N

�
�1

(3.63)

the CRB for phase estimation is

CRBDA(�) �

�
Es

N0

N

�
�1

: (3.64)

Figure 3.3 shows the normalized CRB for timing estimation (CRBDA(�)�

(2NEs=N0)) with L = 1. As N increase the normalized CRBDA(�) con-

verges to 2=�2 (� 0:203, according to (3.63)) for � > 0. The CRBDA(�)

with L = 1 is close to the bound with L � 2 as � � 0 (because there is

little aliasing in the frequency domain). Since the side-lobe e�ect reduces
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as N increases for � > 0, the normalized CRBDA(�) converges to 0.203

quickly, which is shown in Figure 3.3. Figure 3.4 shows the normalized

CRB for phase estimation (CRBDA(�) � (2NEs=N0)) with L = 1. Simi-

larly, as N increases the normalized CRBDA(�) converges to 2 (according

to (3.64)) for � > 0. Figure 3.5 shows the normalized CRBDA(�) in the

over-sampling case with L = 2. First we observe that the performance

increases as rollo� factor � increases (increasing signal bandwidth). It also

shows that as N increases, the side-lobe of jA(!)j reduces, the normalized

CRBDA(�) converges to 1=�2 (� 0:101, according to (3.62)).

� Pseudo-Random Data Pattern

The pseudo-random data pattern (e.g., M-sequence, unique word (UW))

is used to do joint timing and phase estimation in some systems. A 64-
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symbol UW is selected to evaluate the CRB. The normalized CRBDA(�) is

shown in Figure 3.6 for L = 1; 2. There are several observations based on

this result:

{ The timing estimation performance of the pseudo-random data pat-

tern is worse than that of the one-zero pattern in both the over and

under-sampling cases. For example, when L = 1 and � = 0:5, the

normalized CRBDA(�) of the one-zero pattern is 0.203 and that of the

UW pattern is 0.396.

{ In the under-sampling case, unlike the one-zero pattern whose jA(!)j

is a tone in the frequency domain, the PSD of the pseudo-random pat-

tern is relatively 
at. As the rollo� factor � increases, there are two

factors in
uencing performance: increasing � increases bandwidth,
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which tends to improve performance; however at the same time, in-

creasing � results in more aliasing, which tends to decrease perfor-

mance. Hence there is a certain � which causes worst performance.

{ In the over-sampling case, the estimation performance increases as

the rollo� factor increases because there is no aliasing.

Figure 3.7 shows the normalized CRBDA(�). In the under-sampling case,

according to (3.48) increasing the rollo� factor increases aliasing therefore

decreases the estimation performance. One interesting issue is that the

phase estimation performance of the UW is better than that of the one-

zero pattern in this case. In the over-sampling case, the performance is

independent of the rollo� factor and the TS for the Nyquist pulse (3.46).

3.4 The MCRB for DA Timing Estimation in

Flat Fading Channel

In this section, we are going to address the performance limit of timing estimation

in fading channels. The derivation of the bound for joint timing and phase

estimation follows the same strategy as before.

3.4.1 Problem Formulation

The complex baseband signal is modeled as:

x(t) =
p
Es

N=2�1X

n=�N=2

h(t)amg(t�mT � �T ) + n(t) (3.65)
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where h(t) is the fading induced multiplicative noise, other signals are the same

as those de�ned in Table 3.1. There is an assumption on h(t): h(t) is a complex-

valued stationary Gaussian process with zero mean and unit variance. The

autocorrelation function of h(t) is de�ned as rh(v) = E[h(t)h(t � v)�], and its

PSD Sh(!) is the Fourier transform of rh(v).

Similarly the received signal x(t) is passed through a matched �lter with

response g(�t) as shown in Figure 3.1. The output y(t) of the matched �lter

is sampled at the rate of 1=Ts with T = LTs. In this section, we assume that

the sampling rate L is no less than the Nyquist sampling rate because of its

popularity; the under-sampling case follows the same methodology applied in

this section and Section 3.2. The signal y(t) is equal to

y(t) =x(t)
 g(�t)

�

p
Es

N=2�1X

n=�N=2

h(t)amr(t�mT � �T ) +N(t)
(3.66)

where r(t) = g(t)
 g(�t) and N(t) = n(t) 
 g(�t). Since the vast majority of

wireless systems operating over fading channels are designed so that fading rates

remain well below the symbol rate, the approximation h(t + u) � h(t) can be

taken to be valid within the duration of the pulse g(�t) whose main lobe spans

the region �T < t < T [12, p.589]. Use the notations y, a, N and R(�), and

de�ne a diagonal matrix H as

H = diag[h
�K=2; � � � ; hK=2�1]

where hk = h(kTs).

Our objective is to estimate the timing o�set � from K = L(N +R) samples

of y(t) without knowing h(t). In this case, h(t) is a nuisance parameter. Before
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deriving the performance limit, let us address the modi�ed Cramer-Rao lower

bound (MCRB) �rst.

3.4.2 The Modi�ed Cramer-Rao Lower Bound

In our problem because h(t) is a nuisance parameters, it is mathematically in-

tractable to calculate the CRB. To cope with this situation, the modi�ed CRB

(MCRB) [13] [18] was proposed. First, let us revisit the de�nition of the CRB

when a nuisance parameter is present. The CRB is de�ned as

CRB(�) =
1

Er

2
64�

@2

@�2
ln f(r;�)

3
75

(3.67)

where r is the observation vector, � is a deterministic/random parameter we

want to estimate, r = s(�; u) + n, u = [u0; � � � ; uP�1] is a random nuisance

vector parameter with a priori f(u). The expectation Er[�] is with respect to

the pdf f(r;�), which is obtained as

f(r;�) = Eu[f(rju;�)]; (3.68)

where Eu[�] denotes the expectation with respect to the a priori f(u). In the

equations above f(r;�) and f(rju;�) are the likelihood functions of � and of �

and u respectively. Because of the expectation in (3.67) and (3.68), the CRB

is often very hard to compute in the case of the estimation in the presence of

nuisance parameters. In [18], the MCRB has been investigated. This bound on

the variance of any unbiased estimator is given by

Er[(�̂(r)� �)2] � MCRB(�) (3.69)
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where

MCRB(�) =

�
Eu

�
Erju

�
�

@2

@�2
ln f(rju;�)

����1

(3.70)

and Erju[�] denotes the expectation with respect to f(rju;�). It has been shown

that

MCRB(�) � CRB(�) (3.71)

in [18], which indicates that MCRB(�) is a looser lower bound than CRB(�).

3.4.3 The Calculation of the MCRB

In our problem, y is the r in (3.67), H is the nuisance variable u, and � is the

variable � we want to estimate. The mean of y given a, H and � is

my(a;H; �) = E[yja;H; � ] =
p
EsHR(�)a: (3.72)

The log likelihood function is the same as (3.11) except for di�erent my (3.72).

The modi�ed Fisher information is given by

J� = EH

�
EyjH

�
�
@2

@� 2
l(yja;H; �)

��

= EH

"
2

N0

<

"
@mH

y

@�
Q
@my

@�

##

= EH [J�
0]:

(3.73)

Substituting (3.72) into (3.73), we get

J
0

� =
2Es

N0

aH
@R(�)H

@�
HHQH

@R(�)

@�
a: (3.74)

Apply the �nite boundary strong sense convergence theorem, replace Q with

WHD�1W , where D and W remain the exactly same as those in Section 3.2,

rewrite (3.74) as the following

J
0

� =
2Es

N0

aH
@R(�)H

@�
HHWHD�1WH

@R(�)

@�
a: (3.75)
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The modi�ed Fisher information becomes

J� =
K�1X

m=0

2EsT
2

KN0F(2�m=K)

EH

2
4
������

K=2�1X
k=�K=2

N=2�1X
n=�N=2

h(kTs) _r(kTs � nT � �T )ane
�j2�mk=K

������

23
5

(3.76)

where the derivative is with respect to t, and F(!) is the DTFT of fr(kTs)g.

The expectation in (3.76) is equal to

N=2�1X
n;p=�N=2

K=2�1X
k;l=�K=2

EH [h(kTs)h
�(lTs)] _r(kTs � nT � �T )

_r(lTs � pT � �T )ana
�

pe
�j2�(k�l)m=K

=

N=2�1X
n;p=�N=2

K�1X
Æ=�K+1

X
k2f(Æ)

rh(ÆTs) _r(kTs � nT � �T )

_r((k � Æ)Ts � pT � �T )ana
�

pe
�j2�Æm=K

�

N=2�1X
n;p=�N=2

K�1X
Æ=�K+1

rh(ÆTs)q(ÆTs � (n� p)T )ana
�

pe
�j2�Æm=K

=
K�1X

Æ=�K+1

rh(ÆTs)

2
4

N=2�1X
n;p=�N=2

q(ÆTs � (n� p)T )ana
�

p

3
5 e�j2�Æm=K

(3.77)
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where Æ = k � l and the function f(Æ) in the �rst equality is equal to

f(Æ) =

8>><
>>:

[�K=2; Æ +K=2� 1] �(K � 1) � Æ < 0

[Æ �K=2; K=2� 1] 0 � Æ � (K � 1)

(3.78)

which is shown in Figure 3.8. The variable q(t) in (3.77) is de�ned as

q(t) = _r(t)
 _r(�t) =

Z
1

�1

_r(�) _r(� � t)d�:

The second equality follows from the equivalence theorem of digital and analog

signal processing [12, p.259,p.337] for large K (i.e., R), Nyquist sampling rate

L � 2 and time-limited shaping pulse r(t) with negligible boundary leakage, i.e.,

X
k2f(Æ)

_r(kTs � nT � �T ) _r(kTs � ÆTs � pT � �T )

�

1X
k=�1

_r(kTs � nT � �T ) _r(kTs � ÆTs � pT � �T )

=q(ÆTs � (n� p)T ):

The DFT I(m) of the inner summation in the third equality of (3.77) is equal

to

I(m) =
K�1X

Æ=�K+1

2
4 N=2�1X
n;p=�N=2

ana
�

pq(ÆTs � (n� p)T )

3
5 e�j2�Æm=K

�

N=2�1X
n;p=�N=2

ana
�

p

1X
Æ=�1

q(ÆTs � (n� p)T )e�j2�Æm=K

=Q

�
2�m

K

� N=2�1X
n=�N=2

ane
�j2�nmL=K

N=2�1X
p=�N=2

a�pe
j2�pmL=K

=Q

�
2�m

K

� ����A
�
2�mL

K

�����
2

(3.79)

where we use the fact that L is no less than the Nyquist sampling rate, A(!) is
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the DTFT of fang, and Q(!) is the DTFT of fq(ÆTs)g, i.e.,

Q(!) =
1X

Æ=�1

q(ÆTs)e
�j!Æ

=
���R0

(!)
���2

=

 
1X

k=�1

�
!

Ts
� 2�k

Ts

�
1

TS
R
�
!

Ts
� 2�k

Ts

�!2

where R0

(!) is the DTFT of f _r(kTs)g. Let the DFT of frh(ÆTs)g be

H(m) =
1

Ts

1X
k=�1

Sh

�
2�m

KTs
� 2�k

Ts

�

According to the property of DFT, the DFT of a product of two sequences is

the circular convolution of their respective DFT [40, p.546], therefore (3.77) is

equal to

J (m) ,
1

K

K=2�1X
l=�K=2

Q
�
2�l

K

�
A
�

2�l

N +R

�
H[((m� l))K]: (3.80)

The MCRB for timing estimation is

MCRB(�) =

8<
:2EsT

2

KN0

K=2�1X
m=�K=2

J (m)

F(2�m=K)

9=
;
�1

: (3.81)

Typically the PSD of fading noise h(t) is a narrow low-pass function in the

frequency domain. From Jakes' model [14]

rn(v) = J0(v!d)

where J0(x) is the zeroth-order Bessel function of the �rst kind, and its Fourier

transform is

Sh(!) =

8>><
>>:

2
!d

1p
1�(!=!d)2

if j!j � !d

0 otherwise

(3.82)
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In the above expression !d = 2�fd, and fd is the Doppler frequency, which is

related to the vehicle speed v and the carrier frequency fc by

fd =
vfc

c

where c is the speed of light. For example, for a system with carrier frequency

fc = 2GHz, fd = 184Hz when the user is moving at 60 mi/h. In a more simpli�ed

case, the time-domain correlation could be ideal !d-band-limited, i.e.,

Sh(!) =

8>><
>>:

�
!d

if j!j � !d

0 otherwise

(3.83)

Any !d-band-limited function Sh(!) should satisfy

1

2�

Z !d

�!d

Sh(!)d! = 1

3.5 Training Sequence Design for Timing Ac-

quisition

Because CRBDA(�) reveals the close relation between the TS and the fundamen-

tal limit of timing estimation performance, therefore it sheds insight on the TS

design. Our goal is to �nd a certain data pattern a that minimizes CRBDA(�)

under some constraints. Minimizing CRBDA(�) is equivalent to maximizing J�� .

The sequel illustrates a simple example on the TS design with energy constraint.

Because J�� is equal to zero if the TS is real, we limit our discussion in a real

sequence.

Suppose that the sequence length N is long enough, which means that we

can drop R with negligible loss, the sequence fang has the following energy
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constraint:
N=2�1X

n=�N=2

janj
2 = Ea (3.84)

i.e.,
N=2�1X

m=�N=2

����A
�
2�m

N

�����
2

= NEa

The variable J�� is di�erent in under and over sampling cases, therefore, we are

going to address the TS design in two scenarios.

Theorem 5 If the sampling rate of a timing recovery system with the Nyquist

pulse is one sample per symbol, the optimal TS under the condition of (3.84) is

the sequence fang that has the following N-point DFT

����A
�
2�m

N

����� =
8>><
>>:

p
NEa=2 if m = �mv

0 otherwise

(3.85)

where mv 2 [0; N=2] is de�ned as

mv , arg maxm

1X
k=0

1

T 2

�
2�m

N
� 2�k

�2

R

�
2�m

NT
�

2�k

T

�2

(3.86)

Proof: In the under-sampling case, the optimal sequence should be equal

to

ajop = arg max
N�1X
m=0

1X
k=0

1

T 2

�
2�m

N
� 2�k

�
2

R

�
2�m

NT
�

2�k

T

�
2
����A
�
2�m

N

�����
2

(3.87)

When the sampling rate L is equal to one, the sampling period 2� of r(t) is equal

to the period of A(!) in the DFT spectrum.

Because both r(t) and fang are real, (2�m=N)2R(2�m=NT )2 and jA(2�m=N)j

78



are both non-negative and even. It is easy to verify that

1X

k=0

�
2�m

N
� 2�k

�2

R

�
2�m

NT
�

2�k

T

�2

=
1X

k=0

�
2�(N �m)

N
� 2�k

�2

R

�
2�(N �m)

NT
�

2�k

T

�2

for m 2 [0; N=2], i.e., the function above is symmetric about N=2. Let mv be

the m de�ned in (3.86) and the maximum be Rmax, then the following holds

RHS of (3.87) �
N�1X
m=0

Rmax

����A
�
2�m

N

�����
2

= RmaxNEa

(3.88)

Therefore the optimal sequence should be a tone with the normalized frequency

at mv=N ; (3.85) can be derived readily.

In the over-sampling scenario, it is a little bit di�erent. We have the following

theorem:

Theorem 6 If the sampling rate of a timing recovery system is larger than the

Nyquist sampling rate, the optimal TS under the condition of (3.84) is the se-

quence fang that has the following N-point DFT

����A
�
2�m

N

����� =
8>><
>>:

p
NEa=2 if m = �mv

0 otherwise

(3.89)

where mv 2 [0; N=2] is de�ned as

mv , arg maxm

1X
k=0

1

T

�
2�m

N
� 2�k

�2

R

�
2�m

NT
�

2�k

T

�
(3.90)

Proof: In over-sampling case (e.g., L = 2), the optimal should be equal to

ajop = arg max

K=2�1X
m=�K=2

1

T

�
2�m

N

�2

R

�
2�m

NT

� ����A
�
2�m

N

�����
2

(3.91)
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The proof is similar to that of Theorem 5. When the sampling rate L is larger

than the Nyquist sampling frequency, the period of A(!) is equal to the normal-

ized symbol rate (that is normalized to the sampling rate) in the DFT spectrum.

Since fang is real, jA(!)j is an even function, i.e.,

�
�
�
�
A

�
2�m

N

����� =
����A
�
2�(N �m)

N

�����
we have

K=2�1X
m=�K=2

�
2�m

N

�2

R

�
2�m

NT

� ����A
�
2�m

N

�����
2

=
N�1X
m=0

1X
k=0

�
2�m

N
� 2�k

�2

R

�
2�m

NT
�

2�k

T

� ����A
�
2�m

N
� 2�k

�����
2

=
N�1X
m=0

1X
k=0

�
2�m

N
� 2�k

�
2

R

�
2�m

NT
�

2�k

T

� ����A
�
2�m

N

�����
2

(3.92)

where the �rst equality holds because:(1) the sampling rate L � 2; (2) the term

of the summation is equal to zero when m = 0; (3) r(t) is real and band-limited,

R(2�=T ) = 0.

The remaining of the proof follows the proof idea of Theorem 5.

If the shaping pulse r(t) is a low-pass Nyquist pulse, we have the following

important corollary.

Corollary 3 In the over-sampling case, if the shaping pulse r(t) is a band-

limited low-pass Nyquist pulse, the optimal TS under the condition of (3.84) is

the alternating one-zero sequence, i.e., fang is equal to

an =

r
Ea

N
(�1)n (3.93)

Proof: According to Theorem 6, the optimal sequence fang should be a

tone with the normalized frequency at �mv=N with mv de�ned in (3.90), i.e.,
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mv is the m 2 [0; N=2] that maximizes

�
2�m

N

�
2

R

�
2�m

NT

�
+

�
2�(N �m)

N

�
2

R

�
2�(N �m)

NT

�
: (3.94)

In this corollary, we are going to prove that mv = N=2 for band-limited

(within 1=2T and 1=T ) low-pass Nyquist pulse. If r(t) is a Nyquist pulse, the

following holds
1X

k=�1

R(! � 2�k) = T

for band-limited real r(t), we have

R

�
2�m

NT

�
+R

�
2�(N �m)

NT

�
= T

which implies that we can de�ne a function w(m) , R(2�m=NT ) � T=2 for

m 2 [0; N=2], and

R

�
2�m

NT

�
=

T

2
+ w(m)

R

�
2�(N �m)

NT

�
=

T

2
� w(m)

Equation (3.94) becomes

�
2�

N

�
2
�
(m2 + (N �m)2)

T

2
+ w(m)(m2 � (N �m)2))

�
(3.95)

For 0 � m � N=2, the �rst item in the parenthesis in (3.95) has the maximum

value when m = N=2, i.e.,

arg maxmm
2 + (N �m)2 = N=2;

and w(m) � 0 since r(t) is a low-pass function with R(2�m=NT )jm=N=2 = T=2,

therefore the second item is bounded by zero, i.e.,

w(m)(m2 � (N �m)2) � 0

81



with equality at m = N=2. Therefore, we have proven that

mv = N=2

and the optimal TS is the alternating one-zero sequence de�ned in (3.93).

This corollary tells us that the alternating one-zero pattern is the optimal TS for

low-pass Nyquist pulses that are widely used in contemporary digital receivers

for timing recovery purpose. The one zero pattern can achieve the minimum

estimation variance. Therefore we have the following theorem.

Theorem 7 In a DA timing recovery system, if the shaping pulse r(t) is a band-

limited low-pass Nyquist pulse and the sampling rate is no less than the Nyquist

sampling rate, the mean square estimation error of timing o�set � for long TS

with length N is lower bounded by the following

E[(�̂ � �)2] �

�
2�2

Es

N0

N

�
�1

(3.96)

given any TS, the equality is achievable when the TS is the alternating one-zero

sequence.

Table 3.5 shows the mv and Rmax that is the maximum value of

1

T 2

1X
k=0

�
2�m

N
� 2�k

�
2

R

�
2�m

NT
�

2�k

T

�
2

(3.97)

where the raised-cosine shaping pulse is adopted. Figure 3.9 shows (3.97) with

di�erent rollo� factors, where 1 on the x axis corresponds to one symbol rate.

From these numerical results we can see that the optimal TS in the under-

sampling case should be a tone with the normalized frequency ranging from 0.40

symbol rate to 0.50 symbol rate.
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rollo� factor � mv=N Rmax

0.1 0.45 7.99

0.2 0.42 6.64

0.3 0.40 5.56

0.4 0.44 4.96

0.5 0.50 4.94

0.6 0.50 4.94

0.7 0.50 4.94

0.8 0.50 4.94

0.9 0.50 4.94

1.0 0.50 4.94

Table 3.5: The Normalized Frequency that Maximizes
P

1

k=0
(2�(f �

k))2R(2�f=T � 2�k=T )2 with L = 1 (1=T � 1)
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rollo� factor � Normalized mv Rmax

0.1 0.50 9.87

0.2 0.50 9.87

0.3 0.50 9.87

0.4 0.50 9.87

0.5 0.50 9.87

0.6 0.50 9.87

0.7 0.50 9.87

0.8 0.50 9.87

0.9 0.50 9.87

1.0 0.50 9.87

Table 3.6: The Normalized Frequency that Maximizes
P

1

k=0
(2�(f �

k))2R(2�f=T � 2�k=T ) with L = 2 (1=T � 1)
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Figure 3.9: The Spectrum of Aliased (2�f)2=TR(2�f=T )2 with L = 1

Figure 3.10 shows the spectrum of (2�f)2R(2�f=T ) with the raised-cosine

shaping pulse and di�erent rollo� factors. According to Corollary 3, the optimal

TS for the low-passed Nyquist shaping pulse is the alternating one-zero sequence,

Table 3.6 supports it through numerical evaluation. This example explains the

reason why the one-zero pattern outperforms the pseudo-random data pattern

in timing acquisition.

The TS design method illustrated above is simpli�ed. In practice, there are

several important factors that have to be taken into account, e.g., other con-

straints besides energy constraint; the sequence a obtained from these methods

is generally non-binary, quantization is an important issue; if N is not long

enough, R has to be included, the side-lobe e�ects need further attention.
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Figure 3.10: The Spectrum of (2�f)2=TR(2�f=T ) with L = 2

3.6 Conclusions

The performance limits - the CRB and MCRB for the DA synchronization pa-

rameter estimation were derived and discussed in depth in this chapter. Both

Gaussian channel and 
at fading channel cases were addressed. It will be shown

in Chapter 5 that there is a joint timing and phase estimator whose performance

approaches the CRB proposed in this chapter for di�erent rollo� factors and

TS's.

The close relation between the TS and the fundamental performance lim-

its sheds insight on the TS design for synchronization. The optimal TS's for

timing acquisition in di�erent scenarios were proposed. In this work, we have

proven that the alternating one-zero TS pattern could achieve minimum timing
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estimation variance for the band-limited low-pass Nyquist shaping pulses in the

over-sampling case, which is widely encountered in modern digital receivers.

Appendix

Calculating Jij

According to (3.13), we can get the following

@2l(yja; �; �)

@�i@�j
= �

1

N0

"
�yHQ

@2my

@�i@�j
�

@2mH
y

@�i@�j
Qy +

@2mH
y

@�i@�j
Qmy+ (3.98)
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y Q
@2mH
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@�i@�j

#
;

follow (3.7),

Ey[y] = my (3.99)

Jij is given by the following equation

Jij = Ey

�
�
@2l(yja; �; �)

@�i@�j

�
(3.100)

=
1

N0

"
@mH

y

@�i
Q
@my

@�j
+
@mH

y

@�j
Q
@my

@�i

#

Because the auto-covariance matrix � is a Hermitian matrix, its inverse Q is also

Hermitian [37, p.169], the following holds 
@mH

y

@�i
Q
@my

@�j

!
�

=
@mH

y

@�j
Q
@my

@�i
(3.101)

�nally

Jij =
2

N0

<

"
@mH

y

@�i
Q
@my

@�j

#
(3.102)
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Chapter 4

ML Slow Frequency-Selective Fading

Channel Estimation Using the

Frequency Domain Approach

For burst-transmission digital communication systems, channel estimation is re-

quired for maximum-likelihood sequence estimation receivers [12] [41]. A typical

data burst consists of several blocks of user data and a predetermined training

sequence (TS) which is used to estimate the channel impulse response. Channel

estimation problems are widely addressed in the literature [42, 43, 44, 45, 46].

Estimation can be implemented using a Wiener �lter or the discrete Fourier

transform (DFT). For example, [42, 43, 44] consider channel estimation given a

known TS. The authors of [42] addressed the problem of selecting the optimum

TS for channel estimation by processing in the frequency domain. Optimum

unbiased channel estimation given white noise is considered in [43] following

a maximum-likelihood approach. Following the least-squares (LS) philosophy,

[44] presents algorithms for optimal unbiased channel estimation with aperiodic

spread spectrum signals for white or nonwhite noise.
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Previous works [42] - [44] assumed a symbol period delay-tapped line model

or AWGN noise [42]. Because of pre-�ltering in the receiver front end, this model

is not accurate enough and will cause aliasing or leakage on the spectrum. Since

typical pulse shaping rollo� factors in wireless communication range between 0.2

and 0.7, a sampling frequency larger than one symbol rate is required to prevent

aliasing. Typically a nominal sampling rate of two samples per symbol period

is used in wireless receivers [12]. When the sampling rate is higher than one

sample per symbol or timing information is unknown, AWGN model is not valid.

Therefore a more general model is desired to accommodate the colored Gaussian

noise and a higher sampling rate. Felhauer proposed a whitening matched �lter

approach in [44] to deal with the colored noise, which actually follows the general

idea in Van Trees' classical work in [16]. In this paper, we will show that a direct

optimum estimator can be derived without preliminary processing [16, p.289].

In what follows we take a ML approach and derive an optimal channel esti-

mation algorithm in the frequency domain. Since we know the auto-covariance

matrix of a colored Gaussian noise is a Toeplitz matrix which was thoroughly

studied in Chapter 2. Let us revisit some of the results we obtained in that

chapter. It is well known that the inverse of a Toeplitz matrix is not Toeplitz

generally. Kobayashi showed that the inverse of a Toeplitz matrix was asymp-

totically Toeplitz [24], and a similar methodology was adopted in Meyr's book

[12]. However we found that it was incorrect in general and that there were

some conditions required in order to apply this idea in our work [25, 26]. The

condition is that the z transform of the sequence with which a Toeplitz matrix

is associated has no zeros on the unit circle. In another word, the discrete time

Fourier transform (DTFT) of this function has no zeros within the frequency
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Figure 4.1: Modeling of Slow Frequency-Selective Fading Channel and Matched
Filter

band that is smaller than the sampling rate. If the above condition is satis�ed,

the inverse of a Toeplitz matrix converges to a circular matrix in the "�nite

boundary strong sense". It is well understood that the eigendecomposition of a

circular matrix is equivalent to discrete Fourier transform (DFT).

This chapter illustrates the application of the eigendecomposition of the

Toeplitz inverse matrix in wireless communications. The DFT approximation

introduces the frequency domain approach that can simplify the design signi�-

cantly. The rest of the chapter is organized as follows. Section 4.1 describes the

channel model and derives the likelihood function. The ML channel estimator

is presented in Section 4.2. Section 4.3 addresses one special case, the ML joint

carrier phase and timing o�set estimator. Some computer simulation results are

shown in Section 4.3 too. Section 4.4 concludes this chapter.

4.1 Problem Formulation

Without limitations on the number of paths and delay of each path in our prob-

lem, the following channel model is assumed:

h(t) =

M�1X

l=0

hlÆ(t� �lT ) (4.1)
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where M is the total number of paths, which is unknown, hl and �l are the

attenuation and delay factor of path l respectively, T is the symbol period. In

our model, a slow and frequency selective fading channel is assumed, i.e., hl and

�l remain constant within the observation window, �l is comparable with symbol

period. The baseband received signal is modeled as the following:

x(t) =
p
Es

M�1X

l=0

N=2�1X

n=�N=2

hlang(t� nT � �lT ) + n(t) (4.2)

where fang is the TS, n(t) is the AWGN noise with two-sided power spectrum

density (PSD) N0=2. The received signal x(t) is passed through a matched �lter

with response g(�t), then sampled at the rate 1=Ts with Ts = T=L (L is the

sampling rate in samples per symbol). The output of the matched �lter is de�ned

as y(t) that is given by:

y(t) =
p
Es

M�1X

l=0

N=2�1X

n=�N=2

hlanr(t� nT � �lT ) +N(t) (4.3)

where r(t) = g(t)
 g(�t), N(t) = n(t)
 g(�t).

The likelihood function of fhl; �lg is the pdf of a Gaussian random variable.

The mean of yk given fhl; �lg is

my(k) =
p
Es

M�1X

l=0

N=2�1X

n=�N=2

hlanr(kTs � nT � �lT ) +N(kTs); (4.4)

where k 2 [�K=2; K=2� 1], and K = L(N + R) is the total number of digital

samples, N is used to model the central portion of the TS, R is used to model

the signal y(t) beyond the TS portion in the ideal case in which a shaping pulse

r(t) modulated only by the TS is transmitted and used to estimate the channel

91



response, which is shown in Figure 3.2. De�ne vectors y, a and N as (3.5), i.e.,

y = [ y
�K=2 � � � y0 � � � yK=2�1 ]T

a = [ a
�N=2 � � � a0 � � � aN=2�1 ]T

N = [ N
�K=2 � � � N0 � � � NK=2�1 ]T

The auto-covariance matrix of vector y is

cov[yjh; � ] =
N0

2
� (4.5)

where � is a K by K Hermitian and Toeplitz matrix de�ned as (3.9).

Similarly, the log likelihood function is given by

l(yjh; � ) = log(f(yjh; �)) (4.6)

= �
1

No

�
�yHQmy �mH

y Qy +mH
y Qmy

�
�

 
1

No
yHQy + log

"
(2�)K=2

????No

2
�

????
1=2
#!

where Q is the inverse of �.

4.2 ML Channel Estimator in the Frequency

Domain

The auto-covariance matrix � (de�ned in (3.9) ) is a Toeplitz matrix for a sta-

tionary random process. The derivation of the ML channel estimator involves

the convergence issue of the inverse of the Toeplitz matrix � in the strong sense

(quadratic form). The �nite boundary strong sense convergence theorem (The-

orem 2), Corollary 1 and 2 can be applied here. As explained in Chapter 3,

in typical communication receivers, the shaping pulse fr(kTs)g usually degrades
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faster than O(1=jkj2), e.g., the magnitude of the raised-cosine pulse converges

to zero at the speed faster than O(1=jkj3). In engineering practice, it is under

the system designer's control to make the training portion my satisfy the �-

nite boundary condition through packing zeros along with the training sequence

fang.

Following the �nite strong sense convergence theorem, we can replace the

inverse matrix Q by a circular matrix C�1 , UH
KD

�1UK . The matrix UK is

the DFT matrix (de�ned in (2.2)), which introduces the frequency domain ap-

proach. The matrix D is a diagonal matrix with the ith diagonal element equal

to F(2�i=K). The DTFT F(!) of r(kTs) (k = � � � ;�1; 0; 1; � � � ) is de�ned as:

F(!) =
1X

k=�1

r(kTs)e
�j!k: (4.7)

In order to emphasize the digital implementation, we use the notation G[m]

to stand for the mth element of the DFT of the sequence fgkg, which is di�erent

from last two chapters. De�ne a new variable Fr[k] as the kth diagonal element

of D (k = 0; � � � ; K � 1), i.e.,

Fr[k] =
1

Ts

1X

l=�1

R

�
2�k

KTs
�

2�l

Ts

�
(4.8)

where R(!) is the Fourier transform of r(t).

The ML estimate of the channel response fh; �g is

(h; �) = argmax
h;�

l(yjh; �): (4.9)

Because all the information related to the channel response is in my, therefore

(h; �) = argmax
h;�

�
�

1

No

�
�yHQmy �mH

y Qy +mH
y Qmy

��
(4.10)
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After some arithmetic, we get

UKmy =

r
Es

K
� (4.11)

where � is a K � 1 vector with mth element equal to (when K is large enough,

and the sampling rate L satis�es the Nyquist sampling theorem)

�[m] =

K=2�1X
k=�K=2

M�1X
l=0

N=2�1X
n=�N=2

hlanr(kTs � nT � �lT )e
�j2�mk=K

�
M�1X
l=0

N=2�1X
n=�N=2

hlanFr[m]e�j2�m(n+�l)=(N+R)

=
M�1X
l=0

Fr[m]A[m]hle
�j2�m�l=(N+R)

= Fr[m]A[m]H[m]

(4.12)

where A[m] (A[m] =
PN=2�1

n=�N=2 ane
�j2�mn=(N+R)) is the N + R point DFT of

the TS fang, H[m] =
PM�1

l=0 hle
�j2�m�l=(N+R) that is the DFT of the channel

response.

Similarly, we can get

yHQmy =

p
Es

K

K=2�1X
m=�K=2

Fy[m]�Fr[m]A[m]H[m]

Fr[m]

=

p
Es

K

K=2�1X
m=�K=2

Fy[m]�A[m]H[m]

(4.13)

where Fy[m] is the K-point DFT of y, i.e.,

Fy[m] =

K=2�1X
k=�K=2

y(kTs)e
�j2�mk=K: (4.14)

Also we have

mH
y Qmy =

Es

K

K=2�1X
m=�K=2

Fr[m]jA[m]j2jH[m]j2: (4.15)
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Therefore, the ML estimate of the channel response is given by

(h; � ) = arg max
h;�

f
p
Es

N0K

K=2�1X

m=�K=2

[Fy[m]A[m]�H[m]� + Fy[m]�A[m]H[m]

�
p
EsFr[m]jA[m]j2jH[m]j2]g

(4.16)

The summation in the parenthesis on the RHS of (4.16) can be reorganized as

RHS =

K=2�1X
m=�K=2

[Fy[m]A[m]�H[m]� + Fy[m]�A[m]H[m]

�
p
EsFr[m]jA[m]j2jH[m]j2 � jFy[m]j2p

EsFr[m]
+

jFy[m]j2p
EsFr[m]

]

=

K=2�1X
m=�K=2

"
jFy[m]j2p
EsFr[m]

�
 
E1=4
s

p
Fr[m]A[m]H[m]� Fy[m]

E
1=4
s

pFr[m]

!
�

 
E1=4
s

p
Fr[m]A[m]�H[m]� � Fy[m]�

E1=4
s

pFr[m]

!#

=

K=2�1X
m=�K=2

2
4 jFy[m]j2p

EsFr[m]
�
�����E1=4

s

p
Fr[m]A[m]H[m]� Fy[m]

E
1=4
s

pFr[m]

�����
2
3
5

(4.17)

Because Fy[m] and Fr[m] are not related to fh; �g, therefore, the ML estimate

of channel response becomes

(h; �) = arg min
h;�

K=2�1X
m=�K=2

�����E1=4
s

p
Fr[m]A[m]H[m]� Fy[m]

E
1=4
s

pFr[m]

�����
2

= arg min
h;�

K=2�1X
m=�K=2

�����
p
EsFr[m]A[m]H[m]� Fy[m]

E
1=4
s

pFr[m]

�����
2

:

(4.18)

In summary, the ML estimate of fh; �g is the fh; �g that has the following DFT

H[m] =

8>><
>>:
Fy[m]=(

p
EsFr[m]A[m]) if Fr[m] 6= 0;

0 if Fr[m] = 0:

(4.19)

We have the following Remarks:
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� People are only interested in the channel response within the passband of

the shaping function, i.e., when Fr[m] 6= 0, (4.19) follows.

� If there is no noise, i.e., N0 = 0, it is straightforward to verify that the real

channel response H[m] is exactly equal to (4.19). Therefore the channel

estimator (4.19) is unbiased.

� Because H[m] is just the DTFT of h and � , there are a lot of possible

h and � that have the same H[m]. If the time domain response is more

important, H[m] can be treated as an intermediate result. With the help

of some physical modeling on h and � , the time domain response can be

obtained from H[m] .

� According to the �nite boundary strong sense convergence theorem, when

K ! 1, the inverse matrix Q approaches a circular matrix. How to

handle it in practice? Two observations based on (4.19) can be made:

(1) if the sampling rate L is larger than the Nyquist sampling rate, all

the information related to the channel response is preserved; (2) the DFT

Fy[m] of y is given by (4.14), yk can be approximated as zero with negligible

leakage when jkj is outside the training window ([�N=2; N=2�1]) if the TS

lengthN is long enough, i.e., R can be dropped with negligible performance

loss. In practice, when N is not large enough to make y contain most

information about h, � and noise N , proper number (R) of zeros can

be packed along with the TS to provide the channel estimator enough

statistical information of the noise process N .

� If the PSD of N has no cross zero points within the frequency band of

interests, the ML channel estimator is given by (4.19). Compared with
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other frequency domain estimation methods mentioned in [42], a higher

sampling rate is adopted in our algorithm, and the colored noise is com-

pensated in the denominator in (4.19). We also observe that the TS length

N has to be large enough to apply the old estimation algorithms.

4.3 A Special Case and Simulation Results

The frequency domain approach introduced by the circular matrix approximation

simpli�es the estimator design. The sequel illustrates a special case of the channel

estimator - joint timing and carrier phase o�sets estimator.

4.3.1 The Data-Aided ML Joint Timing and Carrier Phase

O�sets Estimator

As a special case, let us assume:(1) M = 1, which means there is only one

path; (2) h0 = ej�. With these assumptions, the frequency-selective fading

channel estimation problem becomes the joint carrier phase and timing o�sets

estimation problem. Timing and carrier phase recoveries are very important

synchronization functions in coherent demodulation. The variables � and � are

used to model the carrier phase and timing o�sets between the transmitter and

receiver respectively.

The channel response H[m] is equal to ej�e�j2��m=(N+R). If there is no noise

the following holds

e�j(2��m=(N+R)+�) =
Fy[m]p

EsFr[m]A[m]
: (4.20)

The RHS of (4.20) is equivalent to an exponential wave, our objective is to

estimate the frequency and phase of this exponential wave. Therefore the timing
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estimation problem becomes a frequency estimation problem, which has been

studied for many years. For example, the linear regression on the phase of the

RHS is proportional to � [47].

Another estimator can be derived from (4.10). It is easy to verify that the

ML estimator is equivalent to the following

(�; �) = arg max
�;�

�
1

N0

<(yHQmy)

�

= arg max
�;�

8<
:
p
Es

N0K
<
0
@ej�

K=2�1X
k=�K=2

Fy[k]
�A[k]e�j2�k�=(N+R)

1
A
9=
;

= arg max
�;�

8<
:
p
Es

N0K
<
0
@ K=2�1X

k=�K=2

Fy[k]A[k]�ej(2�k�=(N+R)��)

1
A
9=
;

(4.21)

De�ne �(�)

�(�) =
1

K

K=2�1X
k=�K=2

Fy[k]A[k]�ej2�k�=(N+R): (4.22)

The two-dimensional maximization can be downsized to one-dimension search

(�; �) = arg max
�;�

�j�(�)j< �e�j(��arg(�(�)))� :	 (4.23)

From (4.22), the variable �(�) is the cross-correlation between the time-shifted

y and the TS a in the frequency domain. The ML timing o�set estimate is given

by

�̂ = arg max
�
j�(�)j (4.24)

i.e., it is the � that maximizes the magnitude of the cross-correlation between

the time-shifted y and the TS, and the ML phase o�set estimate is given by

�̂ = arg(�(�̂)): (4.25)

Parseval's relation serves as a bridge to connect the time domain processing

and the frequency domain processing. Since the K-point DFT is an orthonormal
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transform, we can apply Parseval's relation, and (4.22) becomes the following:

�(�) =

N=2�1X

n=�N=2

y(nT + �T )a�n (4.26)

Therefore the ML estimate of � is the argument that maximizes the magnitude of

the cross-correlation between the received samples and TS in either the frequency

domain or the time domain. In fact the ML estimator (4.26) was proposed in

[12], which was derived based on other techniques.

4.3.2 Simulation Results

Computer simulations were conducted to test the ML channel estimator in this

chapter. The simulation result of the DA ML joint timing and phase estimator

will be addressed in Chapter 5 .

An M -sequence with length 63 was used in our slow frequency-selective fad-

ing channel estimator simulation. M sequence is good for channel estimation,

because its PSD (i.e. jA[m]j) is a constant except for the DC component. For

more information on the TS design, refer to [42]. The square root raised-cosine

shaping pulse with rollo� factor 0.75 was adopted in both the transmitter and

the receiver. In our case, K = 63L, and from the simulation we �nd that this K

is large enough to apply our theorem. A carrier at 800 MHz was assumed, and

we used a 6-ray typical urban (TU) channel model. Di�erent sampling rates (L)

were tested.

Computer simulation results are shown in Figure 4.2, 4.3 and 4.4, where x-

axis is the spectrum with 63L equal to 2�, the y-axis is the normalized magnitude

response of H[m]Fr[m]. Figure 4.2 shows the averaged estimation result (over

500 tests) at 0dB and L = 4. It is shown that the estimator is unbiased. Figure
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Figure 4.2: Channel Estimation Result Averaged over 500 Tests, 4 Samples Per
Symbol

4.3 shows similar results with lower sampling rate (L = 2). We can see that

higher sampling rate does not provide extra information when it is larger than

the Nyquist sampling rate. Figure 4.4 shows one shot test result at 0dB.

We also ran computer simulations for the ML joint timing and phase esti-

mator derived here. In engineering practice, a simpli�ed algorithm that uses

curve-�tting technique based on (4.26) was used in our simulation [36]. The

detailed algorithm and its performance will be addressed in the next chapter.

4.4 Conclusions

In this chapter, the ML channel estimator with the general Gaussian noise and

over-sampling assumption was derived in the frequency domain. The derivation
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was based on the �nite boundary strong sense convergence theorem for the inverse

of Toeplitz matrices. With the help of this theorem, many good algorithms that

take advantage of the transform domain approach can be derived. As a special

case, the ML joint carrier phase and timing o�sets estimator was presented.
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Chapter 5

Data-Aided ML Synchronization

Parameter Estimators with Systolic

VLSI Implementations

This chapter will address the design and VLSI implementations of synchroniza-

tion parameter estimators in practice.

5.1 Introduction

Fast estimation of synchronization parameters such as carrier frequency, phase

and timing o�sets is a crucial step in the demodulation process of burst modems.

Powerful and generic parameter estimators are necessary for high-performance

"universal" digital receivers that can accommodate several modulation schemes

(e.g., BPSK, QPSK, OQPSK, 8PSK) and modes. In this chapter, we present

an approximate maximum likelihood (ML) carrier frequency o�set estimator for

both the MPSK data modulated (non-data-aided (NDA)) and the data-aided

(DA) cases, a DA ML joint carrier phase and timing o�sets estimator, and their
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systolic VLSI implementations for PSK burst modems. The performance of

these estimators approaches the Cramer-Rao lower bounds (CRB) at low signal

to noise ratio (SNR). Compared with theoretic solutions the estimators proposed

here are much simpler and easier to implement using current VLSI technology.

The rest of the chapter is organized as follows. Section 5.2 presents the carrier

frequency estimator for MPSK modems. The DA ML joint carrier phase and

timing o�sets estimator is addressed in Section 5.3. Section 5.4 concludes this

chapter.

5.2 Quasi-ML Carrier Frequency O�set Esti-

mator

Carrier frequency estimator is a very important module in digital receivers. The

presence of large frequency o�sets and low SNR can make frequency estimation

quite diÆcult. Several carrier frequency o�set estimation methods are discussed

in [33, 48]. The optimal ML frequency estimator is well known to be given

by the location of the peak of a periodogram [32]. However the computation

requirements make this approach prohibitive even with an FFT implementation.

Therefore simpler approximation methods are desired.

A frequency estimator based on power spectral density estimation, was �rst

proposed by Fitz [49] for an unmodulated carrier. For a MPSK modulated signal,

the non-linear method in [50] can be used to remove data modulation. A variant

of this algorithm was proposed by Luise [51]. The performance of these methods,

at low SNR, is close to the CRB for a carrier with unknown frequency and

phase. The maximum frequency o�set that can be estimated by Fitz algorithm
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is Rs=(2MW ), where Rs is the symbol rate, W is the maximum auto-correlation

lag and M is the number of phase states in MPSK. Under the assumption that

the carrier phase has a constant slope equal to the angular frequency o�set,

Tretter [52] proposed a frequency estimator by performing linear regression or

a line-�t operation on the received signal phase values. This algorithm is ML

at high SNR. This algorithm can estimate a maximum frequency of Rs=(2M)

and performs well at high SNR values. Phase change over time is proportional

to the frequency o�set. Kay [53] used the same idea and proposed a frequency

estimator by weighting the sum of phase di�erences over consecutive symbols,

which is equivalent to Tretter's algorithm. Chuang [54] also presented algorithms

based on di�erential symbol estimates.

In this section, we revisit the algorithms of Kay [53] and Chuang [54] and

present our frequency estimator. An eÆcient VLSI implementation for the fre-

quency estimator is also proposed.

5.2.1 The Derivation of the Frequency Estimator

In order to simplify our presentation, the following assumptions are made for

the development of the algorithm:

� The symbol timing is known.

� Discrete time samples are taken from the output of a pulse shape matched

�lter, one sample per symbol.

� The pulse shape satis�es the Nyquist Criterion for zero inter-symbol inter-

ference.
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Let us assume that we have a block of N symbols. The kth complex sample

derived from the matched �lter can be expressed as

rk =
p
Esake

j(2��fkT+�0) + nk; k = 0; � � � ; N � 1 (5.1)

where ak is the MPSK data symbol and jakj = 1, �f is the frequency o�set, T

is the symbol interval, �0 is the carrier phase, and nk represents additive white

Gaussian noise (AWGN) with two-sided PSD N0=2.

At �rst, the following method is used to remove data modulation from com-

plex sample rk, obtaining

Sk = F (rk)e
jG�arg(rk) (5.2)

where

F (rk) =

8>><
>>:
jrkj

w; w even � M; in the NDA case;

rka
�

k in the DA case:

The algorithm in [50] is adopted in the NDA case, w = 0 is preferred. In the

DA case, the training symbol ak correlates rk to remove data modulation. The

G in (5.2) is given by

G =

8>><
>>:
M in the NDA case

1 in the DA case

According to the work done by Tretter [52], the noise term nk in rk can be

represented as phase noise at high SNR's:

rk =
p
Ese

j(2��fkT+�k+�0+Vk)

where �k is the data modulation, which is a multiple of 2�=M , and Vk is the

equivalent phase noise. Therefore, the phase 
k of Sk can be modeled as


k , arg(Sk) = G(2��fkT + �0 + Vk): (5.3)
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If we di�erentiate 
k, we obtain

Æk , 
k+1 � 
k = G(2��fT + Vk+1 � Vk): (5.4)

Furthermore, Æk is passed through an exponential function exp[j(�)], and af-

ter applying Viterbi's feed-forward phase estimator [50], we arrive at Chuang's

frequency estimator [54]:

�̂f =
1

2�GTs
tan�1

 PN�2
k=0 sin ÆkPN�2
k=0 cos Æk

!
: (5.5)

Based on the weighting sum of the phase di�erence Æk, Kay's algorithm [53] is

given by

�̂f =
1

2�GTs

N�2X
k=0

Ækwk; (5.6)

where the weighting function wk is de�ned as

wk =
1:5N

N2
� 1

(
1�

�
k � (N=2� 1)

N=2

�2)
: (5.7)

Our frequency estimator is based on the auto-correlation of rk (Chuang's algo-

rithm) and Kay's algorithm. Given 
k in (5.3), let us de�ne the auto-correlation

R(m) as follows:

R(m) ,
1

N �m

N�1X
k=m

ej(
k�
k�m)

=
1

(N �m)Eq
s

N�1X
k=m

SkS
�

k�m

(5.8)

and m = 1; � � � ; L with L an integer less than N � 1. The variable q is equal

to 0 in the NDA case and 1 in the DA case. At high SNR, R(m) represents the

average phase change over m symbols with the �rst term averaged over N � 1

terms. This can be modeled as

R(m) � ej(2�G�fT ) + noise(m):
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From simulation we �nd that for N large enough the noise(m) can be approx-

imated by white Gaussian noise. The sequence fR(m)g can be treated as a

continuous wave (with frequency G�f) which is passed through a noise removal

process. At high SNR, many good frequency estimation methods have been

derived, e.g., Kay's algorithm. Let us de�ne the following process:

�(m) = arg[R(m)]; m = 1; � � � ; L (5.9)

and

�(m) =

8>><
>>:
�(1); m = 0

(�(m+ 1)� �(m)) mod (2�) 1 � m < L

(5.10)

We then borrow from Kay's frequency estimator; that is the weighting sum of

phase di�erence. Because R(m1) is calculated based on more data than R(m2)

when m1 < m2, after some arithmetic we derived the following carrier frequency

o�set estimator:

�̂f =
1

2�GT

L�1X
m=0

w�

m
�(m) (5.11)

where

w�

m
=

3[(2L+ 1)2 � (2m + 1)2]

[(2L+ 1)2 � 1](2L+ 1)
; m = 0; � � � ; L� 1:

The maximum frequency o�set that the algorithm can digest is 1=(2GT ), i.e., in

the DA case it is 0.5 symbol rate Rs (in fact much less than that), and in the

NDA case it is Rs=(2M).

The weighting function is shown in Figure 5.1. It is easy to see that the weight

w�

m
decreases as m increases. That is because as m gets larger and larger, the

number of terms required to compute R(m) reduces and makes �(m) less and

less accurate. Mengali [55] proposed a frequency estimator based on modeling
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the noise process noise(m) and Kay's algorithm. Compared with Mengali's al-

gorithm, our estimator adopts di�erent weighting function, L can be less than

N=2 (e.g., in the DA case, when N = 96, L = 32 the estimator's performance

meet the CRB at SNR=0dB).

5.2.2 The Systolic VLSI Implementation of the Frequency

Estimator

Because the frequency estimator derived in the last subsection utilizes correla-

tion, a lot of concurrency in the computation can be exploited. Systolic struc-

ture [56, 57, 58, 59] has a simple and regular design, uses concurrency and com-

munication instead of high speed component, and balances computation with

I/O. Therefore it is a good candidate for VLSI implementations. There are two
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criteria for the design of systolic structures:

� The design makes multiple use of each input data item.

� The design uses extensive concurrency.

We proposed the systolic VLSI implementation for carrier frequency estima-

tor in [33, 35, 60]. The calculation of fR(m)g (5.8) is a hardware intensive task

which requires (2N � L � 1)L=2 complex multiplication and (2N � L � 3)L=2

additions. The systolic VLSI implementation for the frequency estimator in the

NDA case is shown in Figure 5.2.

There are two possible schemes for calculating fR(m)g as shown in Figure

5.2:

Scheme 1 : Equation (5.3) is used to remove data modulation ak and get 
k,

which is implemented via a lookup table (LUT), and the �rst equality in (5.8) is

used to calculate R(m). Another LUT is used to calculate the term ej(
i�
i�m).
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If a higher speed clock is available, these LUTs can be shared on a time division

basis.

Scheme 2 : Mth power method is used to remove data modulation [50], and

complex multiplication and accumulations are used to get R(m), i.e.,

Si =
rM
i

jrijM

and R(m) is given by the second equality of (5.8).

It is easy to verify that Scheme 1 and Scheme 2 are equivalent. If a higher

speed clock is available, the complex multipliers can also be shared on a time

division basis. In both schemes, fR(m)g will be available on the clock cycle

following the one latching the Nth data symbol into the estimator. Frequency

o�set can then be calculated via (5.11). One advantage of this structure is that it

is scalable. If we want to increase L to get a better performance, more elements

can be added at the right hand side in Figure 5.2.

The VLSI structure for the DA frequency estimator is the same as the NDA

case except a correlator (multiplier) is used to remove the data symbol to get Si.

5.2.3 Performance and Simulation Results

At high SNR, some approximation methods can be used to analyze the variance

of �̂f . This is similar to works presented in [50, 52, 53]. Unfortunately at low

SNR, the analytical performance approximation is intractable. Hence we resort

to computer simulation results.

Two performance indexes are of interest, one is the range over which the

frequency estimator is unbiased and its performance degradation is small. The

second is the variance of the unbiased estimate �̂f compared with the CRB.
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The CRB for DA frequency estimation is given by [32] as follows:

E[(�fT � �̂fT )2] � 6

�
4�2

Es

N0
N(N2

� 1)

�
�1

: (5.12)

Cowley [61] derived a modi�ed CRB for the frequency estimators based on a

block of BPSK or QPSK symbols at low SNRs. The bound for QPSK is given

by the following:

E[(�fT � �̂fT )2] � 6

�
4�2N(N2

� 1)
Es

N0
FQ

�
N0

Es

��
�1

(5.13)

where FQ(�
2) is de�ned as

FQ(�
2) ,

Z Z �
sinh2

�
1+x
�2

�
y2

�2
+ sinh2

�
y
�2

�
(1+x)2

�2

�
e�(x

2+y2)=(2�2)

�
cosh

�
1+x
�2

�
+ cosh

�
y
�2

��2 �

2sinh
�
1+x
�2

�
sinh

�
y
�2

�
(1 + x) y

�2
e�(x

2+y2)=(2�2)

�
cosh

�
1+x
�2

�
+ cosh

�
y
�2

��2 dxdy

Figure 5.3 shows the root mean square (RMS) frequency estimation error

in the NDA case with rollo� factor 0.25 squared root raised-cosine shaping,

N = 100, L = 32 and frequency o�set equal to 5 percent symbol rate. The

simulation result is compared with CRB (5.12) and MCRB (5.13). From the

simulation we can see that the estimation performance of the NDA case is close

to CRB when SNR � 6dB. If SNR < 6dB, the RMS estimation error increases

dramatically as SNR decreases.

Figure 5.4 shows the performance comparison of three algorithms in the NDA

case; one is the algorithm derived in this work (5.11), one is the algorithm derived

by Chuang (5.5) and the other is the algorithm derived by Tretter or Kay (5.6).

From simulation we can draw the following conclusion: the line-�t algorithm

(derived by Tretter [52]) is biased at low SNR and numerically error prone after

the Mth nonlinear processing to remove the data modulation; the algorithm
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Figure 5.4: Performance Comparison of Three Algorithms in the NDA Case

based on phase di�erence (5.5) is unbiased at low SNR but the variance is large

because it does not use linear regression method to calculate the slope of a line,

which is optimal in the sense of least squares; the algorithm in our work is much

better than these two when SNR is larger than some threshold.

Figure 5.5 shows the frequency estimation range of our algorithm in the NDA

case. The estimation range increases as SNR increases, which is intuitive. At

6dB, the frequency o�set estimation range is about 7% of symbol rate, at 8dB,

it increases to 9%.

Figure 5.6 shows the RMS frequency estimation error with �f = 0:13Rs

in the DA case, which is compared with CRB (5.12). From the simulation we

can see that the estimation RSM error is very close to the CRB even at 0db,

the performance degradation caused by timing error is very small. The real
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Figure 5.5: Frequency O�set Estimation Range at Di�erent SNR in the NDA
Case

frequency estimation range at 0dB is around 20% symbol rate in the DA case,

which is much better than that of the NDA case due to the noise introduced by

the data removal process.

5.3 Quasi-ML Joint Carrier Phase and Timing

O�sets Estimator

The ML phase estimator is derived by Viterbi and Viterbi [50]. The litera-

ture [12, 62] gives good surveys on symbol timing recovery. Because of its im-

portance in digital communications, timing recovery receives a lot of attention,

e.g., [63] derived a quasi-ML non-DA timing estimator based on a cyclosta-

tionary approach; [64] proposed a near optimal timing estimator with eÆcient
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implementation.

The DA ML joint carrier phase and timing o�sets estimator (4.22, 4.24,

4.25, 4.26) was derived in Chapter 4 using the frequency domain approach.

The same result was also derived by Meyr in their book [12, p.296] using other

method. Implementing this estimator is however hardware intensive in either

the frequency domain or the time domain. Before we derive the practical joint

timing and phase estimator, let us review the problem and conditions.

5.3.1 The Derivation of the Joint Timing and Phase Es-

timator

The baseband received signal is passed through a matched �lter in the receiver

front end, which is shown in Figure 5.7. The sampled signal yk out of the matched

�lter is given by

yk =
p
Es

N=2�1X

n=�N=2

anr(kTs � nT � �T )ej� +Nk (5.14)

where � and � are timing and phase o�sets respectively, Ts = T=L with L the

sampling rate in samples per symbol, all the other notations are the same as

those de�ne in Chapter 3, refer to Table 3.1 for details.

Let us de�ne �(�) as

�(�) =

N=2�1X

n=�N=2

y(nT + �T )a�n: (5.15)
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The ML joint timing and phase estimator is given by

�̂ = arg max
�

j�(�)j (5.16)

and

�̂ = arg[�̂(�)] (5.17)

i.e., the ML timing estimate is the argument that maximize the magnitude of

the cross-correlation between the time-shifted yk and the training sequence fakg.

Rempel [65] showed that the performance of the ML timing estimate would

approach the CRB if the auto-correlation function of the pulse shape is quadratic.

In fact the auto-correlation function of many pulse shapes are approximately

quadratic near their central peak, i.e., the central part of j�(�)j can be modeled

as a quadratic function if �̂ is close to the real timing o�set � enough. The peak

of a quadratic function always exists and is easy to compute. The curve-�tting

algorithm is based on this observation: (1) the central part of j�(�)j is located

through some coarse search method; (2) the quadratic function can be obtained

through three adjacent samples on j�(�)j around the peak using Lagrange inter-

polation; (3) the ML estimate can be computed through the coeÆcients of the

quadratic function.

Let �̂ be the timing o�set estimate, we get

�(�̂) =
p
Es

N=2�1X

n=�N=2

N=2�1X

m=�N=2

ama
�

nr((n�m)T + (�̂ � �)T )ej� +

N=2�1X

n=�N=2

Nn

�
p
Es

N=2�1X

n=�N=2

janj
2r((�̂ � �)T )ej� +

N=2�1X

n=�N=2

Nn:

(5.18)

The second approximation assumes that the estimation error �̂ � � is small

enough and the inter-symbol-interference (ISI) is ignored. Without loss of gen-
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erality, assume that the real timing o�set � is 0, then the timing estimate �̂ is

the estimation error. We can evaluate j�(�̂)j numerically. Let the shaping pulse

r(t) be a raised-cosine function with rollo� factor �, i.e.,

r(t) =
sin(�t=T )

�t=T

cos(��t=T )

1� 4�2t2=T 2
:

If �̂ is close to zero enough and let us ignore the noise, we obtain

j�(�̂)j �
p
EsN

�
1�

�2�̂ 2

6

�
(5.19)

where PSK modulation is assumed, i.e., janj = 1. Figure 5.8 shows the result of

the numerical evaluation of j�(�̂)j which follows a quadratic form. From (5.19)

we can use a second order polynomial to approximate the magnitude of the

correlation j�(t)j as a function of the sampling time t (let t = �T ) given that

these sampling points are close enough to the ideal sampling point (i.e., t is close
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enough to 0). Using a general form of the second order polynomial

j�(t)j = b2t
2 + b1t + b0 (5.20)

(5.20) suggests that a joint phase and timing estimator can be derived based on

three adjacent samples of j�(t)j. These samples are the closest ones to the ideal

sampling point as shown in Figure 5.9. In order to meet the condition that t

is close enough to the ideal sampling point 0, two measures are adopted: (1)

the sampling rate L is large enough (simulation shows that L = 4 can achieve

good performance); (2) locating the largest available magnitude x1 through peak

search.

Let us de�ne the sampling time of x1 as nominal 0 on the time axis. Therefore

the sampling epochs of x0 and x2 are �Ts and Ts respectively. A Lagrange

interpolating polynomial can be adopted based on the value of xk (k = 0; 1; 2):

j�(t)j =
2X

k=0

xk

2Y
i=0;i6=k

t� ti

tk � ti

=b2t
2 + b1t+ b0

(5.21)

where

b2 =
2X

n=0

xnQ
2

l=0;l 6=n(tn � tl)

b1 =�
2X

n=0

xn

P
2

l=0;l 6=n tlQ
2

l=0;l 6=n(tn � tl)

b0 =
2X

n=0

xn

Q
2

l=0;l 6=n tlQ
2

l=0;l 6=n(tn � tl)

(5.22)

Using the fact that t0 = �Ts; t1 = 0; t2 = Ts, we can get

b2 =
1

T 2
s

�x0
2
� x1 +

x2

2

�

b1 =
1

Ts

�x2
2
�

x0

2

�

b0 = x1
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The ML timing o�set estimator (5.16) is the �̂ which maximizes j�(�)j. It is easy

to compute the ideal sampling time of the peak of j�(t)j from a second order

polynomial, i.e.

tpeak = �
b1

2b2
=

(x0 � x2)Ts

2x0 � 4x1 + 2x2
(5.23)

therefore, the ML estimate of � is

�̂ = �
tpeak

T
=

x2 � x0

L(2x0 � 4x1 + 2x2)
: (5.24)

The phase estimator is shown in (5.17). Interpolation techniques can be applied

to correct the timing o�set before phase estimation. This however, introduces an

additional delay in the demodulation process. Simulations show that using the

time for the non-ideal sample of x1 is suÆcient for meeting the CRB (sampling

time of x1 is t1). This leads to

�̂ = arg [�(t1)]: (5.25)

The same algorithm can be applied to OQPSK modulation with minor modi�-

cations [36].
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5.3.2 VLSI Implementation

The VLSI structure is shown in Figure 5.10 and in [36, 34, 66]. The multi-

sample correlator generates output at a higher rate than one sample per sym-

bol. A systolic VLSI implementation of the correlator is shown in Figure 5.11

for both QPSK and OQPSK cases, where xij denotes the ith symbol (i =

�N=2; � � � ; N=2� 1), jth sample (j = 0; 1; 2; 3) of the output from the matched

shaping �lter. In QPSK/OQPSK case, aIj = �1, aQj = �1, only adders are

necessary therefore the computational complexity is relatively small especially

when using the correlator as soft-decision unique word (UW) detector. Through

the peak search module, we can locate x0, x1 and x2. An Arctan LUT is used

when estimating the phase o�set.

5.3.3 Performance Bounds and Simulation Results

One important contribution of this work is the CRB for DA joint timing and

phase estimation. They are shown in Theorem 3 and 4. As we know the

CRBDA(�) is independent of the training sequence pattern in the over-sampling

case with the Nyquist pulse and PSK modulation. However the CRBDA(�) is

closely related to the training sequence fakg.

Two data patterns have been investigated in our simulation: the alternating

one-zero pattern and a unique word pattern. A 48-symbol UW was selected.

The parameters for the computer simulations for QPSK and OQPSK signaling

were N = 48 and L = 4 in an AWGN channel. Figure 5.12 shows the saw tooth

characteristic of (5.24) under no noise conditions with random phase. From the

simulations we can see that the estimator (5.24) is unbiased. Peak search (i.e.,

locating x1) resolves the m=4 (m = �1;�2) ambiguity.

123



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

T
im

in
g 

O
ffs

et
 E

st
im

at
e

Timing offset τ, (the symbol period is 1), no noise, uknown phase

Timing Offset Detector Characteristic with Random Phase (No Noise)

Figure 5.12: Timing O�set Estimate �̂ vs. Timing O�set �

0 1 2 3 4 5 6
10

−2

10
−1

Signal to Noise Ratio E
b
/N

o
 (dB), N=48,α=0.5

R
oo

t M
ea

n 
S

qu
ar

ed
 T

im
in

g 
O

ffs
et

 E
st

im
at

io
n 

E
rr

or

Timing Offset Estimation Simulation: rolloff factor 0.5

CRLB
10

  
CRLB

UW
  

STD
10

   
STD

QPSK
 

STD
OQPSK

Figure 5.13: Timing O�set Estimation Performance of QPSK/OQPSK (one-zero
pattern vs. UW pattern, � = 0:5)

124



0 1 2 3 4 5 6
10

−2

10
−1

EbNo(dB), N=48, QPSK/OQPSK, random phase, random timing, α=0.5

R
oo

t M
ea

n 
S

qu
ar

ed
 P

ha
se

 E
rr

or
 in

 R
ad

ia
n

Phase Estimation Performance of QPSK/OQPSK

CRLB
DA

  
STD

QPSK
 

STD
OQPKS

Figure 5.14: Phase O�set Estimation Performance of QPSK/OQPSK (UW Pat-
tern, � = 0:5)

125



Di�erent rollo� factors for the raised-cosine shaping function were also tested.

Simulation shows that the RMS timing estimation error of QPSK meets the

CRBDA(�) for all the rollo� factors and data patterns. Simulation also supports

that for the one-zero pattern the RMS timing error is independent of rollo�

factor, while for the UW pattern it decreases as � increases. This is in agreement

with the evaluation of the CRBDA(�). The performance of di�erent data patterns

varies signi�cantly, sometimes the di�erence is as large as 4dB (shown in Figure

5.13). Therefore we found a joint timing and phase estimation algorithm that can

meet the CRB for di�erent data patterns and shaping functions, which supports

the validity of our theorems.

For the OQPSK case the timing estimation performance degrades slightly

compared with QPSK due to the crosstalk between the in-phase and the quadra-

ture channels in the presence of timing and phase o�sets. Figure 5.13 shows the

timing o�set estimation performance with � = 0:5, where the one-zero pattern

of QPSK and UW pattern of QPSK/OQPSK are illustrated. Figure 5.14 shows

the phase estimation performance. The RMS phase estimation error meets the

CRBDA(�) for phase estimation in the QPSK case while it degrades slightly in

the OQPSK case.

5.4 Conclusions

In this chapter, we presented a carrier frequency estimation method for MPSK

signals and its systolic VLSI implementations in both the NDA and the DA

cases. The performance of this estimator is close to the CRB for frequency

estimation when SNR is no less than 6dB in the NDA case and 0dB in the DA
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case. The estimation range is �7% symbol rate at 6dB in the NDA case, and

�20% symbol rate at 0dB in the DA case. The data modulation removal process

introduces a signi�cant amount of noise in the NDA case, and therefore makes

several frequency estimators perform badly at low SNR.

We also presented a simpli�ed DA ML joint carrier phase and timing o�sets

estimator and its systolic VLSI implementation for both QPSK and OQPSK

modulations in this chapter. Intrigued by the observation that the central part

around the global maximum of an optimization objective function can often be

modeled by a quadratic function, if it is close enough to the true peak, a two

stage searching algorithm is proposed in this work: 1) a coarse search method is

adopted to roughly locate the global maximum; 2) a �ne search method using

Lagrange interpolation is adopted to locate the true global maximum. The pro-

posed curve-�tting algorithm has superior timing and carrier phase estimation

performance that approaches the CRB derived previously for the DA case at low

SNR. The achievable timing estimation performance shows the validity of the

theorems derived in Chapter 3.
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Chapter 6

Conclusions

In this dissertation, synchronization and channel parameter estimation problems

have been investigated in depth. Intrigued by the simple observation that the

information is conveyed through wireless channels by uniformly spaced pulses

that are some kind of "distorted" convolution of data symbols and a shaping

pulse, we studied the estimation problems in the frequency domain and derived

several useful results. Toeplitz matrices provide us a tool to connect the time

domain processing and the frequency domain processing.

Toeplitz matrices play a pivotal role in digital communications and signal

processing. Many issues in signal processing involve the analysis of their in-

verse. In Chapter 2, the convergence issue of the inverse of Toeplitz matrices

was studied in depth. Through a simple example we illustrated that a widely

used assertion was incorrect in general. We showed that under the condition that

the z-transform of the sequence with which the Toeplitz matrices are associated

has no zero on the unit circle, the inverse converges in the weak sense to a circu-

lar matrix. What is more, for the �nite boundary quadratic form problem, the

convergence can be strengthened into strong sense. The eigendecomposition of
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a circular matrix is equivalent to DFT, which introduces the frequency domain

approach that is desired in our problems.

There is a misunderstanding in the synchronization �eld: the synchroniza-

tion parameter estimation performance has little to do with a speci�c training

sequence (TS) in the data-aided (DA) PSK modulation since typically the cor-

relation method is used to remove the training sequence and the magnitude of

data symbols is constant. In Chapter 3 we showed that the general assertion

was incorrect. The performance limits - the Cramer-Rao lower Bound and mod-

i�ed CRB for the DA synchronization parameter estimation were derived and

discussed in depth in this chapter. Both the Gaussian channel and 
at fading

channel cases were addressed. The close relation between the TS and the funda-

mental performance limits sheds insight on the TS design for synchronization.

The optimal TS's for timing acquisition in di�erent scenarios were proposed. In

this work, we proved that the alternating one-zero TS pattern could achieve min-

imum timing estimation variance for the band-limited low-pass Nyquist shaping

pulses in the over-sampling case, which is widely encountered in modern digital

receivers.

In Chapter 4, following the ML approach we derived the ML channel es-

timator with the general Gaussian noise and over-sampling assumption in the

frequency domain. The derivation is based on the �nite boundary strong sense

convergence theorem for the inverse of Toeplitz matrices. With the help of this

theorem, many good algorithms that take advantages of the transform domain

approach can be derived. As a special case, the ML joint carrier phase and

timing o�sets estimator was presented.

Several practical synchronization parameter estimators were proposed in Chap-
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ter 5 with their corresponding VLSI implementations. The carrier frequency

estimation is conducted based on the auto-correlation of the input signal and

linear regression of the auto-correlation phase. The DA ML joint carrier phase

and timing o�sets estimator is based on the curve-�tting technique. The two-

stage global maximum searching method can be applied in general areas. The

performance of these estimators approaches the CRB at low signal to noise ratios.

Currently, joint carrier frequency and timing o�set estimation in fading chan-

nel is under investigation. The second order cyclostationary (CS) statistics [67,

68] can be used to design parameter estimators. The underlying common idea is

to use nonlinear combinations of the data to reveal periodic components contain-

ing synchronization parameters. Another interesting topic - the synchronization

and channel estimation problems for multicarrier systems is also under investi-

gation. Multicarrier modulation [69, 70] is popular in wireless communication

due to its good performance in fast fading environments. The synchronization

and channel estimation for OFDM have received a lot of attention in the litera-

ture [38, 71, 72]. Our research results on these topics will be reported in future

publications.
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