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Abstract|This paper concerns the Cramer-Rao

lower bound (CRB) for the data-aided (DA) timing

and/or phase recovery, i.e., the synchronization pa-

rameter acquisition is aided by a training sequence

known to the receiver. For the DA parameter esti-

mation, the CRB typically varies with the training

sequence. This indicates that di�erent training se-

quences o�er fundamental di�erent performance. In

this manuscript, we derive a closed-form formula of

the CRB for timing and phase recovery with respect

to any particular training sequence. The bound illus-

trates the close relation between the training sequence

and the fundamental limit on timing and phase syn-

chronization. It provides additional insights on the

training sequence design.

I. Introduction

The Cramer-Rao lower bound (CRB) is a general lower
bound on the minimum mean square error (MSE) of
any unbiased estimator [1]. The CRB usually serves as
a benchmark for the performance of actual estimator.
Therefore it receives considerable attention in the liter-
ature. In practical systems, synchronization parameters
such as timing and carrier phase o�sets are usually ac-
quired with the help of training sequence (TS), which is
the DA estimation. In the DA case, the CRB generally
varies with the TS, which implies that di�erent TS o�ers
fundamental di�erent performance. Therefore it is very
important to compute the CRB for any particular TS to
understand the fundamental limit that a particular TS
has.
However, in the literature ([2] - [6]), the closed-form

CRB for DA timing and/or carrier phase recovery for an
arbitrary TS is not available. The authors of [2] gave a
summary of the CRB's for carrier frequency, phase and
timing o�sets estimation. The CRB for joint timing and
carrier phase recovery was �rst introduced by Moeneclaey
in [3], it was further discussed in his publications [4] and
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[5]. It is mathematically intractable to evaluate the bound
when the TS is arbitrary. Moeneclaey simpli�ed the cal-
culation by the adoption of the strong law of large num-
ber and the assumption that the TS is zero mean, i.i.d.,
and suÆciently long. This method reduces the calculation
dramatically, but it also covers the interaction between TS
and estimation performance, therefore limits the usage of
the CRB. In order to deal with the estimation problem
in the presence of nuisance parameters, D'Andrea et al.
proposed the modi�ed CRB (MCRB) in [6]. It is pointed
out in [5] that the CRB's derived previously in [3] - [4] are
actually MCRB's.

In principle, it is possible to use brute-force numerical
approach to compute the CRB for any given TS. Such
brute-force computation involves the evaluation of deriva-
tive numerically and matrix inversion. Besides the compu-
tational complexity, brute-force approach does not provide
any insight on the interaction between TS and the resul-
tant CRB. In this manuscript, a closed-form CRB (de-
noted as CRBDA) for the DA joint carrier phase and tim-
ing o�sets estimation is derived with respect to arbitrary
TS. The only assumption is that the derivative of shaping
pulse exists (i.e., the pulse is suÆciently smooth). The
bound reveals the close relation between TS and perfor-
mance limit. We found that the CRBDA for some particu-
lar sequence could be signi�cantly lower than that of oth-
ers. Therefore it provides us insight on the sequence de-
sign. Some recent research result on the inverse of Toeplitz
matrices [7] is applied in the computation. The frequency
domain approach introduced by the Toeplitz matrix ex-
pedites the calculation of the bound.

The rest of the paper is organized as follows. In Section
II., the problem is formulated mathematically at �rst. The
CRBDA's for joint timing and phase estimation under the
condition of over-sampling (e.g., two samples per symbol
for raised-cosine shape) and under-sampling are presented.
Section III. evaluates the CRBDA's. Some comparisons
between the bounds proposed here and those derived in [2]
[3]-[5] are also discussed. In Section IV., several examples



are illustrated. Section V. concludes the paper.

II. The Cramer-Rao lower Bounds

The baseband received signal is modeled as:

x(t) =
p
Es

N=2�1X
m=�N=2

amg(t�mT � �T )ej� + n(t) (1)

where g(t) = gT (t) 
 c(t) 
 f(t) (without loss of gener-
ality let us assume that g(t) is real), gT (t) is the trans-
mitter shaping function, c(t) is the channel response, f(t)
is the pre�lter, n(t) is the additive white Gaussian noise
(AWGN) with two-sided power spectral density N0=2, T
is the symbol interval, famg, m 2 Z (Z the set of inte-
gers) is the data sequence drawn from complex plain with
E[am] = 0 and E[jamj

2] = 1. � is the carrier phase o�set,
the delay jitter �T models the absence of symbol synchro-
nization between transmitter and receiver, it is assumed
that � 2 [�0:5; 0:5). The received signal x(t) is passed
through a matched �lter with response g(�t) as shown in
Fig. 1. The output y(t) of the matched �lter is sampled
at the rate of 1=Ts, typically T = LTs, with L an integer.
The TS famg (m = �N=2; � � � ; N=2�1) is known between
the transmitter and receiver. The implicit assumption is
that the timing o�set � remains �xed over the duration of
observation.

A. Problem Formulation

The sampled output of the matched �lter is

yk =
p
Es

N=2�1X
m=�N=2

amr(kTs �mT � �T )ej� +Nk (2)

where r(t) = g(t)
 g(�t), N(t) = n(t)
 g(�t) and Nk =
N(kTs) that is a sequence of Gaussian random variables
with zero mean and the auto-correlation function

Ry[k � l] = E[NkN
�

l ] =
N0

2
r((k � l)Ts) (3)

We can rewrite Eq. 2 in terms of matrix and vector prod-
uct. First, let us de�ne the following vectors

y = [ y
�K=2 � � � y0 � � � yK=2�1 ]T (4)

a = [ a
�N=2 � � � a0 � � � aN=2�1 ]T

N = [ N
�K=2 � � � N0 � � � NK=2�1 ]T

where K = L(N + R), R models the signal y(t) be-
yond the TS portion in ideal case in which a shaping
pulse r(t) modulated only by the TS a is transmitted
and used to estimate the parameters. Let us de�ne a
K by N matrix R(�) with the fm;ngth element equal to
r((m�K=2)Ts�(n�N=2)T��T ), form = 0; 1; � � � ;K�1,

n = 0; 1; � � � ; N � 1. With these notations, Eq. 2 can be
written as

y =
p
EsR(�)ae

j� +N (5)

The likelihood function of � and � is formulated as the
following. The mean of y given a, � and � is

my(a; �; �) = E[yja; �; � ] =
p
EsR(�)ae

j� (6)

The auto-covariance matrix of vector y is

cov[yja; �; � ] =
N0

2
� (7)

where � is a K by K matrix with the fk;mgth element
equal to rkm = r[(k�m)Ts], therefore � is a Toeplitz ma-
trix (for a stationary random process). The log likelihood
function of �, � given a is

l(yja; �; �) = �
1

N0

[�yHQmy �mH
y Qy + (8)

mH
y Qmy] + Cl

where Q is the inverse matrix of � with the assumption
that its inverse exists, and Cl is a constant independent
of my.
The CRBDA's are the diagonal elements of the inverse

of Fisher information matrix J [1] for the joint estimation
f�; �g. J is de�ned as

J =

�
J�� J��
J�� J��

�
(9)

whose element is given by (let � = [�1 �2] with �1 = � and
�2 = �)

J�i�j = E

"
�
@2l(yja; �; �)

@�i@�j

#
(10)

where E denotes the expectation with respect to y and �
if � is random, or it denotes the expectation with respect
to y if � is deterministic [1].

B. The CRBDA for the Over-Sampling Case

It can be shown that

J�� =
2Es

N0

aHR(�)HQR(�)a (11)

J�� =
2Es

N0

<

�
(�j)aHR(�)HQ

@R(�)

@�
a

�
(12)

J�� = J�� (13)

J�� =
2Es

N0

aH
@R(�)H

@�
Q
@R(�)

@�
a (14)



The CRBDA's for the DA joint estimation of carrier phase
and timing o�sets are given by

E
h
(�� �̂)2

i
� CRBDA(�) ,

J��
J��J�� � J2��

(15)

E
�
(� � �̂ )2

�
� CRBDA(�) ,

J��
J��J�� � J2��

(16)

Let us focus our discussion on the band-limited shaping
pulse. We �rst consider the case that L is no less than
Nyquist frequency, i.e., 1=Ts � 2B for B the bandwidth
of r(t). In this case, there is no aliasing in the frequency
domain, J��, J�� and J�� are independent of � . It can be
shown that they are equal to

J�� =
2Es

N0K

K=2�1X
m=�K=2

RAo(m) (17)

J�� = �
2Es

N0K

K=2�1X
m=�K=2

�
2�m

N +R

�
RAo(m) (18)

J�� =
2Es

N0K

K=2�1X
m=�K=2

�
2�m

N +R

�2

RAo(m) (19)

where RAo(m) (the subscript o refers to over-sampling)
is de�ned as

RAo(m) ,
1

Ts
R

�
2�m

KTs

� ����A
�

2�m

N +R

�����
2

(20)

with R(!) the Fourier transform (FT) of r(t), and A(!)
the discrete time Fourier transform (DTFT) of a, which is

de�ned by A(!) =
PN=2�1

n=�N=2 ane
�j!n. Basically RAo(!)

is the power spectrum density (PSD) of the signal output
from the matched �lter.

C. The CRBDA for the Under-Sampling Case

In the under-sampling case, i.e., 1=Ts < 2B, there is
aliasing in the frequency domain, then the CRBDA gener-
ally depends on the speci�c value of � if it is deterministic.
In practice, � can be modeled by a uniformly distributed
random variable in the receiver front-end. In this case
J��, J�� and J�� should be averaged with respect to both
y and � . In a typical communication system, let L = 1,
i.e., one symbol rate sampling, then K = N + R, the
following integral holds for arbitrary integer k and l

Z 1=2

�1=2

ej2��(k�l)d� = Æ[k � l]:

After some arithmetic, J��, J�� and J�� become

J�� =
2Es

N0K

K=2�1X
m=�K=2

RAu(m)

F(2�m=K)
(21)

J�� = �
2Es

N0K

K=2�1X
m=�K=2

�
2�m

N +R

�
RAu(m)

F(2�m=K)
(22)

J�� =
2Es

N0K

K=2�1X
m=�K=2

�
2�m

N +R

�2
RAu(m)

F(2�m=K)
(23)

where RAu(m) (the subscript u refers to under-sampling)
is de�ned as

RAu(m) ,
1X

k=�1

1

T 2
s

R

�
2�m

KTs
�

2�k

Ts

�2 ����A
�

2�m

N +R

�����
2

;
(24)

and F(!) is the DTFT of fr(nTs)g, i.e.,

F(!) =
1X

n=�1

r(nTs)e
�j!n =

1

Ts

1X
k=�1

R

�
!

Ts
�

2�k

Ts

�

(25)

In the calculation of Eq. 24, we use the fact that A(! �
2�k) = A(!), therefore we can separate A(!) and the
aliasedR(!)2. In practice, a shaping pulse is always band-
limited. Typically its e�ective bandwidth B ranges from
1=2T to 1=T , k in Eq. 25 is usually from -1 to 1.

III. Evaluating the Bounds

Before evaluating the CRBDA's, we discuss the role of
R in our computation �rst. As we explained in Section II.,
R is used to model the signal y(t) beyond the TS portion.
As discussed in [7], R is determined by the residue error
of the approximation (a circular matrix is used to approx-
imate Q under certain condition). It gives us mathemati-
cal convenience when we apply the �nite boundary strong
sense convergence theory related to the inverse of Toeplitz
matrix derived in [7] and the discrete Fourier transform
(DFT). In numerical evaluation of the bounds, R should
be large enough to make the CRBDA's converge, typically
R � 100 is suÆcient in most cases.

A. J�� : the Cost of Two Unknown Parameters Scenario

Since J2�� � 0, from Eq. 15-16 it is clear that

J��
J��J�� � J2��

�
J��

J��J��
=

1

J��
(26)

J��
J��J�� � J2��

�
J��

J��J��
=

1

J��
(27)



It is easy to verify that the CRB for timing/phase esti-
mation with known phase/timing o�set is equal to 1=J��
(1=J��) respectively, therefore J�� serves as the cost when
both phase and timing o�sets are unknown. There are two
observations:

� The cost could be reduced to zero in the following
manner. In the over-sampling case J�� is given by
Eq. 18. According to the assumption that r(t) is
real, which means that R(!) is an even function;
(2�m=(N+R)) is an odd function; if jA(!)j is an even
function, which is a suÆcient condition, J�� = 0. In
the under-sampling case, the same result holds.

� As pointed in [2] (p.329), the random data TS could
make J�� = 0. A more general suÆcient condition is
proposed here. In fact, any real TS a could make J��
equal zero.

In the following presentation, we assume that J�� is equal
to zero.

B. The CRBDA for Phase Estimation

The CRBDA for phase estimation is CRBDA(�) =
1=J��. According to the Parseval's relation (K-point DFT
is an orthogonal transform), in the over-sampling case
when r(t) is a Nyquist shaping pulse,

CRBDA(�) =

8<
:2Es
N0

N=2�1X
n=�N=2

janj
2

9=
;
�1

(28)

In PSK type modulation, janj = 1, the CRBDA is inde-
pendent of rollo� factor (for raised-cosine shape) and TS,
which is the same as that in the literature [2] in the over-
sampling case.
Worthy of mention is that in the under-sampling case,

the bound behaves quite di�erently. For the Nyquist shap-
ing pulse when the sampling rate L = 1 (i.e., Ts = T ,
K = N + R), F(!) = T . Let us limit our discussion on
the raised-cosine pulse because of its popularity. When
the rollo� factor � ranges from 0 to 1, the e�ective band-
width of r(t) ranges from 1=2T to 1=T .

CRBDA(�) =(
2Es

N0KT 2

K�1X
m=�K

R

�
2�m

KT

�2 ����A
�

2�m

N +R

�����
2
)�1

(29)

In the joint estimation, CRBDA(�) is closely related to the
TS and shaping pulse, and larger than that in the over-
sampling case. For the raised-cosine shape, the CRBDA(�)
generally increases as the rollo� factor � increases because
increasing � causes more aliasing that hurts the estimation
performance.

C. The CRBDA for Timing Estimation

Similarly, in the over-sampling case (L � 2), the
CRBDA for timing estimation is

CRBDA(�) =

8<
: 2Es
N0K

K=2�1X
m=�K=2

�
2�m

N +R

�2

1

Ts
R

�
2�m

KTs

� ����A
�

2�m

N +R

�����
2
)
�1

(30)

Unlike CRBDA(�), CRBDA(�) is closely related to the TS
and rollo� factor. In the under-sampling case (L = 1), the
timing bound is

CRBDA(�) =

8<
: 2Es
N0K

K=2�1X
m=�K=2

�
2�m

N +R

�2

1

T 2
R

�
2�m

KT

�2 ����A
�

2�m

N +R

�����
2
)
�1

(31)

The widely used CRB for timing estimation was de-
rived in the literature [4] for both over and under-sampling
cases. As explained before, the assumption that the TS
was i.i.d. random data and suÆciently large N was ap-
plied to simplify the computation. In the next subsection,
we will show that the bounds derived in [4] are the spe-
cial cases of the CRBDA(�) (Eq. 30 - 31) under the same
assumption.

D. Asymptotic Bounds

Let �f = 1=(N + R), because N and R are tied, as
either of them goes to 1, we have the following integral
expressions of the bounds. When L = 1, we have

CRBDA(�) =

(
2Es
N0T 2

Z
1

�1

R

�
2�f

T

�2
jA(2�f)j2 df

)
�1

(32)

and

CRBDA(�) =(
2Es
N0T 2

Z
1

�1

4�2f2R

�
2�f

T

�2
jA(2�f)j2df

)
�1

(33)

For L � 2, we have

CRBDA(�) =

�
2Es
N0T

Z
1

�1

4�2f2R

�
2�f

T

�
jA(2�f)j2df

�
�1

(34)

For zero mean, i.i.d. TS a, as N goes to 1, it can be
shown that jA(!)j2 � N using the strong law of large
number. It is straightforward to verify that the CRB's
derived in [4] are the special cases of our bounds.
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IV. Several Examples

The CRBDA's give us insight on the e�ect of training
data pattern on the estimation performance limit. We
are going to address several data patterns with QPSK
modulation to illustrate the application of the bounds.
1) CW Pattern: The continuous wave (CW) pattern

is the TS with data pattern ak =
p
2=2(1 + j), (for

k = �N=2 � 1; � � � ; N=2). As heuristically explained in
[2] (p.336), the CW pattern is not suitable for timing re-
covery. The bound CRBDA(�) provides analytical expla-
nation. For large N , the spectrum jA(!)j of a is approx-
imately a tone at DC. It is easy to verify that J�� � 0,
which means CRBDA(�) � 1, i.e., there is little timing
information in the CW sequence.
2) Alternating One-Zero Pattern: The one zero pat-

tern is the TS with data pattern ak =
p
2=2(1 + j), k

is even, and ak = �p2=2(1 + j), k is odd, which is
widely used as preamble in TDMA frame structure for
timing recovery. Actually the CRBDA(�) of one-zero pat-
tern is much smaller that of the pseudo-random data pat-
tern. For large N the spectrum jA(!)j of a is a tone
at N=2 in the frequency domain. When L � 2, we
have CRBDA(�) � f2�2NEs=N0g�1; when L = 1, we
have CRBDA(�) � f�2NEs=N0g�1 that is around 3dB
worse than the over-sampling bound and CRBDA(�) �
fNEs=N0g�1. Fig. 2 shows the normalized CRBDA(�)
(CRBDA(�) � 2NEs=N0) with L = 1; 2. As N increases,
the normalized bound converges to 2=�2 and 1=�2 respec-
tively. The estimation variance in the under-sampling case
approaches that in the over-sampling case as � � 0 be-
cause there is little aliasing at that point.
3) Pseudo Random Data Pattern: The pseudo random

data pattern (e.g., M -sequence, unique word (UW)) is
used to do joint timing and phase estimation in some sys-
tems. A 64-symbol UW is selected to evaluate the CRB.
The normalized CRBDA(�) is shown in Fig. 3 for L = 1; 2.
When L = 1, increasing � tends to improve the perfor-
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mance, however at the same time causes more aliasing that
hurts the performance, therefore there is a certain � which
achieves the worst performance; when L = 2, CRBDA(�)
decreases as � increases because there is no aliasing. We
also observe that the bound is larger than that of one-zero
pattern in both over and under sampling cases.

V. Conclusions

In this paper, we derive the closed-form formulas of
CRBDA's for carrier phase and timing synchronization
with respect to arbitrary training sequence in both under
and over sampling cases. These bounds provide additional
insights on the sequence design.
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