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The semiconductor industry is a capital-intensive industry with rapid time-

to-market, short product development cycles, complex product ows and other

characteristics. These factors make it necessary to utilize equipment e�ciently

and reduce cycle times. Further, the complexity and highly stochastic nature

of these manufacturing systems make it di�cult to study their characteristics

through analytical models. Hence we resort to simulation-based methodologies

to model these systems.



This research aims at developing and implementing simulation-based opera-

tions research techniques to facilitate System Control (through sensitivity analy-

sis) and System Design (through optimization) for semiconductor manufacturing

systems.

Sensitivity analysis for small changes in input parameters is performed using

gradient estimation techniques. Gradient estimation methods are evaluated by

studying the state of the art and comparing the �nite di�erence method and

simultaneous perturbation method by applying them to a stochastic manufac-

turing system. The results are compared with the gradients obtained through

analytical queueing models. The �nite di�erence method is implemented in a

heterogeneous simulation environment (HSE) based decision support tool for

process engineers. This tool performs heterogeneous simulations and sensitivity

analyses.

The gradient-based techniques used for sensitivity analysis form the building

blocks for a gradient-based discrete stochastic optimization procedure. This

procedure is applied to the problem of allocating a limited budget to machine

purchases to achieve throughput requirements and minimize cycle time. The

performance of the algorithm is evaluated by applying the algorithm on a wide

range of problem instances.
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Chapter 1

Introduction

1.1 Motivation

Simulation modeling is a powerful tool that can be e�ectively leveraged to model,

analyze and optimize systems. When we consider manufacturing systems and

their inherent stochastic nature, simulation is particularly useful to predict their

behavior. This research focuses on developing and applying simulation-based op-

erations research techniques to a speci�c class of manufacturing systems (semi-

conductor manufacturing systems) to analyze and study their behavior. This

aim of this research is to facilitate System Control (through sensitivity analysis)

and System Design (through optimization) of manufacturing systems through

operations research.

In the semiconductor industry, a lot of research attention is focused on the

e�ective use of equipment and reduction of cycle times as the industry invests
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large sums of money in chip-making equipment. Decision support tools which

aid managers in such semiconductor manufacturing plants can provide savings

in terms of both time and money.

Sensitivity analysis helps engineers who work with semiconductor processes

understand the processes better by giving them an indication of the magnitude

of change in the output metrics when input process parameters are changed.

Engineers can use this information to identify the direction in which the system

level metrics change when input parameters change and use it to control the

process. These analyses can be used in the design stage, to identify parameters

which are not sensitive to output metrics. Engineers can �ne-tune processes

using the other parameters which are much more sensitive and thus save time.

Sensitivity analysis of manufacturing systems has been used extensively to

measure sensitivity with respect to drastic changes. This research proposes appli-

cation of methods to measure sensitivity with respect to small changes, especially

in a Heterogeneous Simulation Environment (HSE) using standard simulation

tools. Though application of such methods with respect to manufacturing sys-

tems has been explored before, the development of such methods with a focus

on implementation in a decision support tool is a novelty.

The second area of interest is stochastic optimization, which aids manufactur-

ing systems design. We explore the problem of equipment selection in semicon-

ductor manufacturing systems using discrete stochastic optimization methods.
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This problem is of considerable interest to the semiconductor manufacturing

industry as the industry spends a large amount of money on equipment. An

optimization algorithm which allocates a given amount of money to the right

equipment which will give the required throughput with the minimum cycle

time possible will be of immense use in the design stage of the manufacturing

systems life-cycle.

Machine allocation (or equipment selection) in a manufacturing system is a

problem that has been analyzed in great detail using queueing theory and deter-

ministic programming techniques. In this research, a simulation-based approach

is taken to the problem and allocation of money to tools is considered.

1.2 Objectives of the Research

The objectives for this work include identifying and implementing techniques for

sensitivity analysis and discrete stochastic optimization. The research addresses

the following objectives:

� Evaluation of gradient estimation methods used for sensitivity analysis and

identi�cation of a suitable method for implementing in a heterogeneous

simulation environment (HSE). We compare the �nite di�erence method

and simultaneous perturbation gradient estimation methods.
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� Implementation of a sensitivity analysis method in a Heterogeneous Sim-

ulation Environment (HSE) based decision support tool.

� Development and implementation of a gradient-based discrete stochastic

optimization method that provides quality solutions to the manufacturing

systems design problem of equipment selection.

1.3 Outline of the Thesis

The thesis is organized as follows.

Chapter 2 gives an overview of semiconductor manufacturing and factory

level simulation models of semiconductor wafer fabrication plants. The chapter

also gives an overview of the current literature on the application of gradient

estimation and simulation optimization methods and the applicability of these

to manufacturing systems.

Chapter 3 compares two gradient estimation methods, the �nite di�erence

method and the simultaneous perturbation method. The methods described

are applied to a stochastic manufacturing system and gradient estimates are

obtained. A comparison of the results with analytical models is presented.

Chapter 4 describes the implementation of a gradient estimation method in

a decision support tool for process engineers. The methodology behind the se-

4



lection of the gradient estimation method for sensitivity analysis and the various

features of the sensitivity analysis tool are elaborated.

Chapter 5 formulates a manufacturing system design problem and describes

a gradient-based discrete stochastic optimization algorithm to obtain quality

solutions. A series of experiments are conducted to evaluate the algorithm's

performance.

Chapter 6 concludes the thesis, indicates the anticipated impact of method-

ologies researched in the work and gives avenues for future work.
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Chapter 2

Background

2.1 Overview of Semiconductor Manufacturing

The semiconductor industry, when considered from the perspective of manufac-

turing, is very unique with characteristics that separate it from other manufac-

turing industries. It is a capital intensive industry with very high barriers to

entry. The establishment of a fully equipped semiconductor manufacturing fa-

cility may cost more than two and a half billion dollars with possible revenues

of more than twice that per year in 1996 [16]. It also has other characteris-

tics like rapid time-to-market and short product development cycles. Some of

the factors which make it di�cult to apply operations research techniques to

semiconductor manufacturing are complex product ows, random yields, diverse

equipment characteristics, equipment down-time, production and development

in shared facilities and data availability and maintenance [33].
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The semiconductor manufacturing process can be subdivided into four basic

process steps: wafer fabrication, wafer probe, assembly (or packaging) and �nal

testing. Among these four steps, the most complex and important step is wafer

fabrication.

During the wafer fabrication process the circuitry is built on to the chip

by adding layers and patterns of metals with interconnects between the layers.

There can be hundreds of processes, that the wafer undergoes before exiting

the wafer manufacturing facility. The high-level process ow in wafer fabrica-

tion, shown in Figure 2.1 consists of cleaning, oxidation deposition, lithography,

etching, ion implantation, photoresist strip, inspection and measurement.

In the wafer probe step, individual circuits in the wafer are checked and

veri�ed whether they are working properly. The fabrication and probe steps are

called the \front-end" steps. In the assembly step the circuit is packaged and

placed on PCBs (Printed Circuit Boards).

Finally in the testing phase, each and every integrated circuit is tested so

that defect-free products are obtained. Downgrading or binning may also take

place where a product that doesn't meet the required speci�cations but meets

the speci�cations of another product is placed in the other category instead of

being scrapped.
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Figure 2.1: Overview of processes in semiconductor manufacturing
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2.2 Simulation Modeling of SemiconductorMan-

ufacturing Systems

Simulation models are developed at di�erent stages in semiconductor manufac-

turing. The three important levels are process modeling, tool modeling and

factory modeling.

2.2.1 Process Modeling

Modeling in the product development stage in semiconductor manufacturing can

be classi�ed into device modeling and process modeling. Device modeling is a

technique used by the product designer to make better chip designs and circuits

by studying the behavior of entities from transistors to full-blown computer

architectures.

In process modeling, physical processes involved in the manufacture of the

wafer are modeled through various techniques. The goal of simulation here will

be to develop tools that can predict the outcome of physical processes and help in

the development of process ow. Time-to-market will be reduced as the process

engineer can reduce development time and cost by reducing physical trial-and-

error experiments. Process modeling can be done by empirical modeling where

we use solutions of di�erential equations governing the processes or by using

simulation techniques like Monte Carlo simulation. The outputs obtained from
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process modeling include metrics like metal deposition rate, which form an input

to the tool modeling and factory modeling stages in simulation modeling of man-

ufacturing systems. Meyyappan [22] gives an introduction to the fundamentals

of process modeling in semiconductor manufacturing.

2.2.2 Tool Modeling

In semiconductor manufacturing, a special type of tool called a cluster tool

is used for some processes. According to the Semiconductor Equipment and

Materials International (SEMI), a cluster tool [31] is de�ned as \an integrated,

environmentally isolated manufacturing system consisting of process, transport,

and cassettes of modules mechanically linked together". Typically, a cluster

tool can perform di�erent processes incorporating many process variabilities and

intricacies of wafer moves between di�erent chambers in the tool.

Cluster tool modeling addresses the scheduling of di�erent processes in the

cluster tool which also depends on the robot handler moves in the cluster tool.

Push and pull scheduling rules [23] form the basis for cluster tool modeling while

sophisticated scheduling algorithms are also being researched. The reader is re-

ferred to Wood [34], Srinivasan [31], and Nguyen [23] for cluster tool performance

modeling and scheduling.
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2.2.3 Factory Modeling

Some of the factors which lead to the development of simulation models are in-

tractability of detailed analytical models of semiconductor processes, uncertain-

ties inherent in manufacturing systems, improvement in computational power

available to do simulation and the development of easy-to-use simulation tools

like Arena, Promodel, AutoSched and Factory Explorer.

While some models are used in the planning and design stage, some models

are also used in day-to-day operations, but these models address only system

level changes. Hence a simulation model is useful in two situations: systems

modeling and design and system control.

Factory modeling comes into play during di�erent phases in the life-cycle of

semiconductor factories. The di�erent phases in the life-cycle of a semiconductor

factory include design, production ramp, early high volume production (when

demand is greater than supply) and late commodity production (when demand

is falling).

In this work, the focus is on combining advanced operations research tech-

niques with simulation models to evaluate the performance of semiconductor

manufacturing facilities.
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2.2.4 Factory Explorer

Factory Explorer R1 [8] is the simulation tool which has been extensively used in

this work. It is a discrete event simulation software which was developed specif-

ically for modeling semiconductor manufacturing systems. Factory Explorer has

an analytical engine, which predicts metrics like bottleneck resources, tool uti-

lization and cost data, and a simulation engine, which estimates cycle time, work

in process and other metrics. The input and output of data in Factory Explorer

is through Microsoft Excel R2 spreadsheets.

2.3 Equipment Selection in Manufacturing Sys-

tems Design

Equipment selection (or machine allocation) problems form a separate class of

problems in the domain of manufacturing systems design. By equipment selec-

tion, we mean the selection of tools for workstations in a manufacturing system

given a choice of tool types. Allocation and selection of tools in manufacturing

systems is a widespread problem in manufacturing plants as there are systems

like exible manufacturing systems (FMS) and cellular manufacturing systems

1Registered trademark of Wright, Williams and Kelley Inc.

2Registered trademark of Miscrosoft Inc.
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which are smaller manufacturing systems where tool selection has to be done

and these systems themselves are components of the factory.

These problems have been addressed using analytical models, queueing the-

ory and deterministic programming techniques like integer programming. The

machine allocations were done with speci�c objectives like minimizing WIP,

maximizing throughput, minimizing cost. Equipment selection problems can be

generally classi�ed using system and problem characteristics like having a �xed

number of machines to allocate, using minimum cost allocation, obtaining an

optimal output metric or obtaining a �xed output metric.

Frenk, Labb�e, Van Vliet and Zhang [10] proposed algorithms for machine al-

location problems where the WIP (work-in-process) was required to be less than

a certain level. They developed system models using queueing networks analysis

and proposed algorithms that will allocate machines for these systems. Shan-

tikumar and Yao [28] formulated the server allocation problem as a deterministic

nonlinear integer program and modeled the problem using a closed queueing net-

work. They also developed a greedy heuristic to provide an approximate solution

to the problem.

2.4 Sensitivity Analysis

One of the important applications of large-scale simulation models is sensitivity

analysis, which can refer to either large-scale changes in the system or small

13



changes made to some of the parameters governing the system. Some examples

of drastic changes are changes in scheduling rules or changes to the number of

tools in a workstation. These types of analyses can be performed using meth-

ods like design of experiments, which uses regression analysis to build a meta

model of the system. The reader is referred to Kleijnen [18] for one such imple-

mentation. Some examples of small changes will be perturbations of processing

times of workstations or changes in setup times at individual workstations. Some

techniques that can be used to perform this type of analysis are gradient-based

methods like �nite di�erences or perturbation analysis. An overview of gradient

estimation is presented next.

2.5 Gradient Estimation

2.5.1 Overview

Gradient estimation is an important technique that can be utilized to estimate

the impact of change in input parameters on output metrics in stochastic pro-

cesses. If the response of the output metrics with respect to the input parameters

is continuous in nature, then the gradient of the output metric is obtained as

a partial derivative of the response function. Gradient estimation for applica-

tions like optimization and sensitivity analysis can be done through a number of

14



methods. For a more detailed overview of gradient estimation and the methods

involved, the reader is referred to Banks [5], Fu [9] and L'Ecuyer [20].

Some of the methods for gradient estimation are �nite di�erence method,

perturbation analysis, likelihood ratio method, frequency domain experimen-

tation and simultaneous perturbation method. While some methods like the

perturbation analysis method require knowledge of the system being simulated

which requires obtaining output or change in the input when the simulation is in

progress, other methods like the �nite di�erence methods take a black-box type

approach to system being simulated for estimating the gradient.

In this overview, some of the methods that require knowledge of simulation

internals are presented. The two methods to be compared are presented in

Chapter 3.

2.5.2 Perturbation Analysis

Perturbation Analysis [14] includes methods such as In�nitesimal Perturbation

Analysis (IPA) and Smoothed Perturbation Analysis (SPA). IPA [32] reformu-

lates the problem of estimating the gradient with respect to the input parameters

as the problem of estimating the gradient of an expected value involving a ran-

dom variable whose distribution does not depend on the input vector, �.

Perturbation analysis makes use of the concept of sample path analysis to

estimate the gradient. The underlying assumption of IPA is that small changes

15



in the metric being measured do not cause changes in the event schedule, unlike

drastic changes like changes in dispatching rule. IPA estimates the gradient by

accumulating the in�nitesimal changes over the simulation. For example, an

estimate of the gradient of system time with respect to the mean processing

time in a G/G/1 queue,is the following:

 
dT

d�

!
IPA

=
1

N

MX
m=1

nmX
i=1

iX
j=1

dX(j;m)

d�
(2.1)

With exponential service times,

dX

d�
=

X

�
(2.2)

for in�nitesimal changes in X,

where

X(j;m) = Processing time of the jth customer in the mth busy period.

T = System time.

� = Mean processing time.

N = Total number of customers served.

i = Counter for summation over customers.

nm = Number of customers during the mth busy period.

M = Number of busy periods.
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2.5.3 Frequency Domain Experimentation

The frequency domain experimentation involves oscillating the value of the input

parameter in a sinusoidal fashion during a single run, which will give an output

function, a superposition function of the di�erent inputs. This output function

can be used for gradient estimation. This method is described in detail by

Jacobson [15].

2.6 Stochastic Optimization

Stochastic optimization is implemented when the process that has to be opti-

mized is stochastic in nature. The reader is referred to Banks [5] and Fu [9] for

a review of simulation optimization techniques. Simulation-based stochastic op-

timization techniques are still complex, in spite of advances in computing. They

have to be chosen carefully and adapted, according to the problem on hand.

Stochastic optimization methods can be classi�ed based on the type of de-

cision variables and the way the optimization process works. Stochastic opti-

mization techniques can be classi�ed into iterative and non-iterative. Based on

the type of decision variables, they are classi�ed into continuous and discrete

stochastic optimization techniques. A description of the iterative process and

non-iterative process is provided followed by a classi�cation of some of the tech-

niques based on the type of the decision variable.
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2.7 Iterative Procedure

In the iterative stochastic optimization process, the optimizer uses the simulator

iteratively to obtain the value of the objective, f(t), which is being optimized,

in order to evaluate the solution space of decision variables. The process is

illustrated in Figure 2.2,where t is the initial feasible decision variable vector

and t0 is the new decision variable suggested by the optimizer, which is evaluated

using the function measurements f(t). Gradient-based stochastic approximation

methods are examples of iterative procedures.

      Discrete Event Simulator
f(t)t

t
0

t’

                   Optimizer
t

opt

Figure 2.2: Iterative stochastic optimization process

18



2.8 Non-iterative Procedure

In a non-iterative stochastic optimization process (Figure 2.3), we make all the

required function evaluations using simulation or other means before the op-

timization method is used. Using these function evaluations, we optimize the

process. Sample path optimization is an example of a non-iterative procedure.

      Discrete Event Simulator

                   Optimizer

f(t)

t
0

t
Optimal

Figure 2.3: Non-iterative stochastic optimization process
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2.9 Continuous Optimization Techniques

Continuous optimization problems are problems whose decision variables are

continuous in nature. Two classes of methods, which are applied to continuous

optimization problems, are stochastic approximation and sample path optimiza-

tion.

2.9.1 Stochastic Approximation

Stochastic approximation is usually applied in conjunction with a gradient esti-

mation method to choose the next set of values for the decision variables in an

iterative process which will �nally lead to an optimal solution.

Finite Di�erence Stochastic Approximation (FDSA), which uses �nite di�er-

ences to make gradient estimates, was introduced by Kiefer and Wolfowitz [17]

and has been applied extensively for continuous optimization.

The reader is referred to Spall [29] for an overview of the implementation

of the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm

which uses simultaneous perturbation for gradient estimation. The reader is

referred to Chapter 3 for a detailed description of the �nite di�erences and the

simultaneous perturbation gradient estimation methods.
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2.9.2 Sample Path Optimization

In this technique, the original stochastic optimization problem is converted into

an approximate deterministic optimization problem. This step is followed by

application of regular deterministic programming methods to the deterministic

problem in order to obtain an optimal solution. The reader is referred to Robin-

son [26] for an analysis of sample-path optimization and Rubinstein [27] for an

overview on the application of sample path optimization using the LR method.

2.10 Discrete Stochastic Optimization Techniques

Discrete optimization has been predominantly carried out using random search

techniques through a combinatorial solution space of discrete decision variables.

Gradient-based methods have also been applied, where the decision to move in

the solution space is based on the gradients of the objective function. This re-

search explores the application of gradient-based techniques rather than random-

search techniques since a gradient-based technique will be more suitable for the

approach taken to the problem on hand. For discrete stochastic optimization,

researchers have previously proposed random search techniques, conventional

techniques like branch-and-bound [25] and variants of continuous optimization

techniques.
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2.10.1 Random Search Techniques

Random search techniques are discrete optimization techniques that move from

one feasible point to another in search of the optimal solution. There are a

variety of random search techniques that vary in the choice of the neighborhood

structure, the decision strategy when moving from the current alternative �n to

the next alternative �n+1, and the method for obtaining estimates of the optimal

solution. Andrad�ottir proposed two algorithms, one of which converges to a

local solution [3] while the other algorithm converges to a global solution [4].

Yan and Mukai [35] proposed the stochastic ruler algorithm where estimates of

the objective function are compared with a uniform random variable U called

the stochastic ruler. Andrad�ottir and Alrefaei [2] developed a variant of the

stochastic ruler algorithm. They also developed a simulated annealing algorithm

for the discrete stochastic optimization problem [1]. Genetic algorithms and tabu

search are some other techniques which fall under this category.

2.10.2 Gradient-based Discrete Optimization Techniques

Gradient-based optimization techniques can be applied to discrete optimization

problems. SPSA has been recently applied to discrete stochastic optimization

problems by Gerencs�er, Hill and V�ag�o [11]. They proposed a �xed gain version

of the SPSA method and applied it to a class of discrete resource allocation

problems formulated by Cassandras, Dai and Panayiotou [6].
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2.11 Summary

An overview of simulation-based operations research techniques has been pre-

sented in the context of semiconductor manufacturing. Simulation modeling is a

very integral part of the semiconductor manufacturing process at various stages.

Some of the techniques discussed can be applied to semiconductor manufacturing

to aid in decision making, process control and manufacturing systems design.
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Chapter 3

Comparing Gradient Estimation

Methods

3.1 Introduction

In the previous chapter, introduction to some of the gradient estimation methods

was provided. This chapter presents the �nite di�erence (FD) method and the

simultaneous perturbation (SP) method. These two methods, unlike methods

presented in the previous chapter, do not require knowledge of the underlying

simulation and hence can be utilized with any discrete event simulation model.

Let us consider a stochastic process that has a certain number of input pa-

rameters and output metrics, which help us determine the performance of the

process. The output metrics are obtained either through experiments, simulation

or some other process as depicted in Figure 3.1.
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--
Simulation
experiment

Output metricsInput parameters

Figure 3.1: Simulation box

The sensitivity of the output metrics to the input processes is very helpful in

determining the impact of the input parameters on the output processes. The

output metric can be expressed as a function of the input parameters:

f = f(�1; �2; : : : ; �n); (3.1)

where f is the output metric written as a function of �i; i = 1; 2; : : : ; n, the input

parameters.

The aim is to estimate the gradient of the output metric, g, where

gi(�) =
@f(�)

@�i
(3.2)

gives the partial derivative of f with respect to the ith input parameter.

3.2 Finite Di�erence Method

In a one-dimensional case, the derivative of a function f is given by

g(�) = lim
c!0

f(� + c)� f(� � c)

2c
: (3.3)
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When the step size c, is small, we can reasonably estimate the gradient by

estimating the function f at � + c and � � c.

The FD method of estimating the gradient is given by

ĝi(�) =
f̂(� + ciei)� f̂(� � ciei)

2ci
; (3.4)

where

ci = step size,

ei = unit vector in the ith direction.

Thus we can estimate the gradient by conducting one simulation with input

parameter � + ciei and obtain an estimate of f(� + ciei) and conduct another

simulation at � � ciei and obtain an estimate of f(� � ciei). Equation 3.4 gives

the gradient with respect to one input parameter. The gradient can be estimated

for i = 1; 2; : : : ; p parameters by 2p simulations with step size ci and unit vector

ei for i = 1; 2; : : : ; p. One of the problems with the �nite di�erence estimator is

that when the step size is small, the variance of the estimators becomes large

and when the step size increases, the bias of the estimate increases. So choice

of simulation parameters like number of replications and choice of the estimator

parameters like step size should be done carefully.
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3.3 Simultaneous Perturbation Method

The SP gradient estimation method uses just two simulations for estimating all

the gradients. The SP gradient estimator for a process with n input parameters

and one output metric, f is given as follows:

ĝi(�) =
f̂(� + C�)� f̂(� � C�)

ci�i
; (3.5)

where

� = n-dimensional random perturbation i.i.d vector,

C = Diagonal matrix with step sizes for input parameters along the diagonal.

The reasoning behind the representation of the step size as a diagonal matrix

is explained with the help of Equation 3.6, where ci is the i
th diagonal element

in C:

f̂(� + C�) = f̂

0
BBBBBBBBBBBBB@

2
66666666666664

�1

�2

::

�n

3
77777777777775
+

2
66666666666664

c1 0 0 :: 0

0 c2 0 :: 0

:: :: :: :: ::

0 0 0 :: cn

3
77777777777775

2
66666666666664

�1

�2

::

�n

3
77777777777775

1
CCCCCCCCCCCCCA

(3.6)

Each element of � is independently generated from a probability distribution

with mean zero and �nite second inverse moment, precluding a uniform or normal

distribution. The rationale behind proper choice of � is explained in detail

by Spall [30]. The method di�ers from the FD method in that all the input

parameters are simultaneously perturbed during a single simulation. In the two
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simulation runs that are needed to estimate the gradient using the SP method,

the perturbations in parameter values will be equal and opposite in sign. Hence,

only the denominator of equation 3.5 di�ers for each component will be varying

as � varies while the numerator will remain the same. Also the step size, ci

may remain the same for di�erent input parameters or scaled for di�erent input

parameters, if the input parameters vary greatly in magnitude.

3.4 Problem Statement

We consider the problem of estimating sensitivity of the steady-state average

cycle time (CT) to the processing times (PT) of each operation in the manufac-

turing system. The manufacturing system is a ow shop with no reentrant ow.

The manufacturing system produces just one product. This problem is impor-

tant, because the impact of processing times on total cycle time will give the

people who work with the system information on the importance of the process

parameters. The manufacturing system has seven workstations. The seven work-

stations are Coater, Stepper, Developer, Exposer, Printer, Reader and Writer.

Table 3.1 gives the number of tools at each workstation and the mean processing

time of that operation at that workstation.

The product, which is being manufactured is a wafer, which enters the factory

in lots of 1 unit each. The lots enter with a mean interarrival time of 4 hours. The

interarrival times and the processing times are exponentially distributed. This
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Tool Group Number of tools Processing Time

(in Hrs)

Coater 2 5

Stepper 1 1

Developer 2 5

Exposer 2 6

Printer 1 3

Reader 1 2

Writer 2 7

Table 3.1: Tool groups in the model and their parameters

aids in building simple analytical models to evaluate the system. The input

model is depicted in Figure 3.2. We will use the Factory Explorer simulation

tool [8] to simulate the system and obtain estimates of the average total cycle

time of each tool.

3.5 Gradient Estimate using Finite Di�erence

Method

Gradient measurement using FD method can be done through several sub-

methods like the forward di�erence, backward di�erence and central di�erence

methods. We will use the central di�erence method because the gradient es-

timate from the central di�erence method will usually have less bias than the

forward or backward di�erence.
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Figure 3.2: Input model - manufacturing system
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The FD estimator for the above function is

(ĝi(�))N =
1

N

NX
j=1

 
f̂j(� + ciei)� f̂j(� � ciei)

2ci

!
; (3.7)

where

ĝi = Estimate of the ith component of the gradient vector,

f̂j = jth estimate of the function, which is obtained from simulation,

ci = Step size for the ith parameter,

� = Vector of baseline input parameters,

N = Number of replications,

ei = Unit vector in direction i.

The simulation tool used for conducting simulations considers the time du-

ration for which the system is simulated rather than the number of customers,

so we simulate the system for 87600 hours (10 years). To obtain an estimate

of precision, we perform N = 20 replications. The cycle time and gradient es-

timates, along with standard error, for one parameter over 20 replications are

given in Table 3.2. Since the model has seven input parameters we need a total

of 280 simulation runs.

An important parameter in the FD method is the step size. In the FD

method, a large step size yields estimates with high bias, but a small step size

yields estimates with high variances. For this model, we consider a step size

ci = �i=100. This step size is relatively small, but using a higher number of

replications can reduce the variance.
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Replication Average cycle Average cycle Gradient

time-lower time-higher

1 81.164 81.539 3.75

2 77.400 77.779 3.79

3 78.186 78.566 3.80

4 83.612 83.938 3.26

5 74.415 74.898 4.83

6 77.952 78.677 7.25

7 77.179 77.394 2.15

8 78.973 80.158 11.85

9 79.944 80.447 5.03

10 76.042 76.326 2.84

11 78.114 79.271 11.57

12 77.876 77.857 -0.19

13 73.183 73.015 -1.68

14 79.941 79.987 0.46

15 78.657 79.044 3.87

16 75.986 77.418 14.32

17 78.534 78.605 0.71

18 76.034 76.623 5.89

19 75.508 75.391 -1.17

20 76.261 76.851 5.90

Average 4.411

Standard error 0.955

Half width of con�dence interval 2.415

Con�dence interval (1.986,6.837)

Table 3.2: Table showing cycle time and gradient estimates estimated by �nite

di�erence method for the process coater
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Based on the chosen values that de�ne the logistics of the simulation and

input parameters, the gradients for the average total cycle time with respect to

the mean processing parameters are estimated and 99% con�dence intervals are

constructed as ( �X � h; �X + h), where

S =

sPN
i=1X

2
i �N �X2

N � 1
(3.8)

where

Xi = Gradient estimate at replication i.

�X = Mean gradient estimate over N replications. ( �X = (
PN

i=1X=N))

h = tN�1;1��=2
Sp
N

(3.9)

where

tN;� = The critical value from a t-distribution with n degrees of freedom,

� = 0.01, if 99% is the con�dence needed in the estimate.

The con�dence interval is given by ( �X�h; �X +h). Table 3.3 gives the summary

data for the FD method including the cycle time and gradient estimates. Fig-

ure 3.3 gives a graphical representation of the gradient results compared with

the gradients from the analytical method.

An important conclusion that can be obtained from the �nite di�erence

method is that changes in average cycle times of the manufacturing system when

mean processing times of a particular machine are varied are almost equal to the

change in the average cycle time of that particular machine. This is facilitated
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Figure 3.3: Plot comparing �nite di�erence method and analytical models

by the �nite di�erence method where we estimate the average cycle time on a

per-parameter basis. This is reected in the data in Table 3.4.

3.6 Gradient Estimate using Simultaneous Per-

turbation Method

The SP gradient is estimated for the ith parameter as follows. g is the n-

dimensional vector of gradients

(ĝi(�))N =
1

N

NX
j=1

 
f̂j(� + c�j)� f̂j(� � c�j)

2ci�ji

!
; (3.10)

where

ĝi = Estimate of the gradient for the ith input parameter,

N = Number of replications,

34



T
o
ol

C
oa
te
r

S
te
p
p
er

D
ev
el
op
er

E
x
p
os
er

P
ri
n
te
r

R
ea
d
er

W
ri
te
r

N
u
m
b
er

2

1

2

2

1

1

2

of
to
ol
s

M
ea
n
p
ro
ce
ss
in
g

5

1

5

6

3

2

7

ti
m
e-
b
as
el
in
e

P
ro
ce
ss
in
g

4.
95

0.
99

4.
95

5.
94

2.
97

1.
98

6.
93

ti
m
e-
lo
w
er

A
ve
ra
ge
cy
cl
e

77
.7
48

77
.9
90

77
.7
95

77
.5
38

77
.5
58

77
.9
26

76
.0
15

ti
m
e-
lo
w
er

M
ea
n
p
ro
ce
ss
in
g

5.
05

1.
01

5.
05

6.
06

3.
03

2.
02

7.
07

ti
m
e-
u
p
p
er

A
ve
ra
ge
cy
cl
e

78
.1
89

78
.0
26

78
.1
71

78
.5
04

78
.4
82

78
.0
91

80
.3
00

ti
m
e
-
u
p
p
er

G
ra
d
ie
n
t

4.
41
1

1.
84
0

3.
76
2

8.
05
2

15
.3
98

4.
10
9

30
.6
02

C
on
�
d
en
ce

(1
.9
86
,

(1
.7
53
,

(3
.2
62
,

(6
.4
47
,

(1
3.
31
2,

(3
.8
52
,

(2
6.
12
1,

In
te
rv
al

6.
83
7)

1.
92
7)

4.
26
2)

9.
65
7)

17
.4
83
)

4.
36
5)

35
.0
83
)

T
ab
le
3.
3:
S
u
m
m
ar
y
d
at
a
fo
r
�
n
it
e
d
i�
er
en
ce
m
et
h
o
d

35



Tool Change in average Change in total Di�erence

cycle time at tool average cycle time

Coater 0.381 0.441 0.060

Stepper 0.036 0.037 0.001

Developer 0.379 0.376 -0.002

Exposer 0.913 0.966 0.053

Printer 0.982 0.924 -0.058

Reader 0.161 0.164 0.003

Writer 4.285 4.284 0.000

Table 3.4: Table comparing the change in CT at a tool and the change in total

CT when the PT for that tool is varied between the upper and lower levels

� = Baseline mean processing time vector of size n,

�j = a n-dimensional random perturbation i.i.d vector, which keeps changing

for every jth replication,

ci = step size for the ith input parameter.

The implementation of the gradient estimator has been studied in depth

in [29] as part of a study on stochastic optimization using simultaneous per-

turbation stochastic approximation. The gradient for all input parameters can

be calculated with only two simulations with one replication of the estimation

process.

The � vector considered here is obtained from a Bernoulli distribution. It

consists of n i.i.d symmetric Bernoulli random variables Xi. PfXi = �1g = 0:5.

The step size considered here is ci = �=100. Setting ci as a function of �i takes

care of the di�erences in the magnitudes of the processing times. Table 3.5 gives
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Number Mean processing Con�dence

Tools of Tools time (Hours) Gradient Interval

Lower Upper

Coater 2 4.95 5 5.05 5.574 (-4.780,15.928)

Stepper 1 0.99 1 1.01 -22.743 (-74.512,29.027)

Developer 2 4.95 5 5.05 3.809 (-6.545,14.162)

Exposer 2 5.94 6 6.06 11.631 (3.003,20.259)

Printer 1 2.97 3 3.03 13.664 (-3.592,30.921)

Reader 1 1.98 2 2.02 11.146 (-14.738,37.031)

Writer 2 6.93 7 7.07 34.979 (27.583,42.374)

Table 3.5: Summary data for simultaneous perturbation method

the summary data for the SP method including the cycle time and gradient

estimates.

The SP gradient estimation is done for N = 140 replications. This facilitates

comparison between SP and FD. While the SP method take two simulations to

estimate the gradient for seven parameters, the FD method needs 14 simulations.

Hence when we have N = 20 replications for the �nite di�erence method, we

can have N = 140 replications for the SP method.

Figure 3.4 gives a graphical representation of the gradient results compared

with the gradients from the analytical method, to be described in the next

section.
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Figure 3.4: Plot comparing simultaneous perturbation method and analytical

models

3.7 Analytical Veri�cation

The gradients obtained by the FD and SP methods were compared to partial

derivatives, which are calculated exactly. In the model considered, we have

workstations with one or two tools each. Each station acts as an M/M/11 or

M/M/2 queuing system. The cycle times at each tool can be calculated using

exact models for M/M/1 and M/M/2 systems, since both interarrival times

and processing times are exponential. The utilization, cycle time and gradient

formulae for M/M/1 and M/M/2 queues are given below. For a derivation of

1M/D/1,M/U/1,M/D/2 are also analytically tractable.
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the formulae, the reader can refer to [7] and [24].

M/M/1:

ui = rati; (3.11)

CTi =
ti

(1� ui)
; (3.12)

@(CTi)

@(ti)
=

1

(1� ui)2
; (3.13)

where

u = Utilization of tool at workstation i,

ra = Arrival rate = (1/Mean inter-arrival time),

ti = Mean processing time of operation at workstation i,

M/M/2:

ui =
rati
2
; (3.14)

CTi =
ti

(1� u2i )
; (3.15)

@(CTi)

@(ti)
=

(1 + u2i )

(1� u2i )
2
; (3.16)

where

u = Utilization of the tool,

ra = Arrival rate = (1/Mean inter-arrival time),

ti = Mean processing time of operation at workstation i,

Table 3.6 gives the analytical cycle times and gradients.

39



A
rr
iv
al
R
at
e

N
u
m
b
er

M
ea
n

A
ve
ra
ge

P
ar
ti
al

T
o
ol

(J
ob
s/
H
ou
r)

of
to
ol
s

P
ro
ce
ss
in
g

U
ti
li
za
ti
on

C
y
cl
e
ti
m
e

D
er
iv
at
iv
e

T
im
e(
H
ou
rs
)

(H
ou
rs
)

C
oa
te
r

0.
25

2

5

62
.5

8.
20
5

3.
74
5

S
te
p
p
er

0.
25

1

1

25
.0

1.
33
3

1.
77
8

D
ev
el
op
er

0.
25

2

5

62
.5

8.
20
5

3.
74
5

E
x
p
os
er

0.
25

2

6

75
.0

13
.7
14

8.
16
3

P
ri
n
te
r

0.
25

1

3

75
.0

12
.0
00

16
.0
00

R
ea
d
er

0.
25

1

2

50
.0

4.
00
0

4.
00
0

W
ri
te
r

0.
25

2

7

87
.5

29
.8
67

32
.1
42

T
ab
le
3.
6:
S
u
m
m
ar
y
d
at
a
fo
r
an
al
y
ti
ca
l
m
o
d
el
s

40



3.8 Discussion

The FD method provided reasonably good estimates for the gradient of average

total cycle time with respect to the mean processing times, while the SP method

did not perform as well as the FD method. It gave poor con�dence limits for

the gradients, though the mean gradient was quite accurate for some of the

parameters. This could be due to the fact that the estimate for one value depends

on the way in which one variable a�ects the others during cycle time estimation,

which results in the high noise levels in the measurements of the gradients. When

we compare the gradient estimates of both the methods against the exact method

we can see that, the FD method has performed signi�cantly better than the SP

method.

3.9 Summary

Two gradient estimation techniques, the �nite di�erences and the simultaneous

perturbation method, are described. The methods described are used to analyze

a stochastic manufacturing system, and gradients are estimated. The results are

compared to the gradients calculated from analytical queueing system models.

These gradient methods are of signi�cant use in complex manufacturing sys-

tems like semiconductor manufacturing systems where we have a large number

of input parameters that a�ect the cycle time. Gradient estimation methods will
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help us estimate the impact of these input parameters on average cycle time and

identify the parameters that have the maximum impact on average cycle time.

42



Chapter 4

Implementing Gradient Estimation

4.1 Introduction

In the semiconductor industry, the ratio of number of process engineers to num-

ber of industrial engineers is around 10:1. The process engineer has to go to

the industrial engineer to consult on decision making regarding changes in the

process parameters with which he is working. This may turn out to be a time-

consuming process leading to loss of productivity. If the process engineer is

provided with a decision support tool which will enable him deal with such sit-

uations, he will be able to make decisions faster regarding operational process

parameters which will eventually result in higher production.

Implementation of sensitivity analysis as part of a software tool for semicon-

ductor manufacturing systems allows process engineers to gauge the impact of

the process parameters they are working with on the overall performance met-

rics of the semiconductor fabrication facility. Such a software tool will aid in

intelligent decision making.
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4.2 Motivation for a Sensitivity Analysis Tool

Sensitivity analysis, as described in Chapter 2, for stochastic systems like semi-

conductor manufacturing systems can either mean impact of high level changes

like changes in scheduling rules or can mean perturbations in process parame-

ters. Design of experiments and other methodologies can be utilized to estimate

the e�ect of large changes in process metrics. These techniques do not perform

well for small changes in process metrics. Here the aim is to look at perturba-

tions in process parameters and their e�ect on system level output metrics like

cycle time. The added motivation for gradient estimation methods, integral to

sensitivity analysis, is their use in simulation optimization, which will ultimately

provide more value.
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4.3 Architecture of Factory Administrator

When we consider modeling today in the semiconductor industry, we normally

have three layers of di�erent systems (Figure 4.1) which are modeled indepen-

dently. The process models look at the material processes. The raw process

times are calculated from these process models. The next layer is the cluster

tool layer. Modeling of cluster tools is done where each cluster tool can perform

one or more processes. We obtain the lot process times from these models. The

�nal model will be the system level model where we include all the individual

tool models to form a system level model, which will provide us with system

level metrics.

An integrated model (Figure 4.2) called the Factory Administrator has been

developed which will directly output the system level metrics when changes

are made either to the tool design parameters or to the process parameters.
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Integration gives us the power of viewing system level performance while having

control over all input parameters.

An integrated model is very essential for sensitivity analysis because sensi-

tivity analysis involving process models is done by running multiple simulations

using the integrated model with process, tool and factory parameters.
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4.4 Description of Factory Administrator

The Factory Administrator [13] has a front-end GUI (Graphical User interface)

which has been developed using Delphi R1. The architecture is presented in

Figure 4.3. The user does all transactions on the model using this front end

shown in Figure 4.4. The process models are Response Surface Models (RSM)

which have been embedded in Excel. The process parameters for each process

are displayed in a worksheet in Excel, which is read by Delphi and displayed

to the user, when he wants to use the process parameters for any particular

process. Any change to be performed on the process parameters is done in the

Delphi front-end which then updates the Excel spreadsheets. The raw processing

times are calculated using the updated process parameters according to Response

Surface Models (RSM) and updated in the spreadsheet.

The lot processing time for each tool is estimated using the cluster tool

simulators. There are �ve types of cluster tool simulators available (Push, Pull,

Optimal, Cyclic and Fixed Sequence). The JAVA R2 cluster tool simulator has

been integrated in the Factory Administrator. The lot processing times can thus

be obtained from the Delphi front end itself.

The lot processing times are input into the factory simulation model which

is a workbook in Excel. The factory model is developed with Factory Explorer,

1Registered trademark of Inprise Inc.

2Registered trademark of Sun Microsystems Inc.
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which communicates with the user using Excel and simulates using a back-end

discrete event simulation engine. Factory Explorer gives its output as a text

�le, which is read by the Delphi front-end. The front-end GUI then picks the

required output metrics and displays them to the user.

Thus the user can make changes to the process parameters and then run the

factory simulator directly to see the system level performance measure changes.

4.5 Selection of the Gradient Estimation Method

Several methods were considered for gradient estimation including �nite dif-

ference method, simultaneous perturbation method, perturbation analysis and

frequency domain experimentation. Some of the constraints that are applicable

to the integration of gradient estimation methods in the Factory Administrator

include

� Computing e�ciency - The method used should not be computationally

very intensive. Optimal use of computing power should be made so that accurate

results are obtained within less time.

� Knowledge of simulation - The simulation tool which is being used does

not provide data when the simulation is being run. Real time data cannot be

obtained from the Factory Explorer simulation tool. Hence the methodology

should have a black-box type approach towards the simulation tool.
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� Consistency and unbiasedness of the estimate - The estimates of

the output which we obtain from the machine should be unbiased and should

provide reliable estimates of the output metric. This will be aided by the ability

of the tool to use common random numbers which will reduce variability.

The advantages and disadvantages of some of the methods used are illustrated

in Table 4.1. After comparing the advantages and disadvantages of the various

methods, �nite di�erences and the simultaneous perturbation were compared

for performance (as Chapter 3 describes). Since �nite di�erences gave tighter

con�dence intervals for the gradient obtained, the �nite di�erences method was

chosen for implementation in the Factory Administrator.

4.6 Implementation

The �nite di�erence (FD) method depends on a number of parameters like the

process parameter on which sensitivity analysis is being performed, the time

duration for which the simulation is being run, the number of replications for

which the simulation is run, the step size and other factors.

Gradient measurement using FD method can be done through several sub-

methods like the forward di�erence, backward di�erence and central di�erence

methods. We will use the central di�erence method, because the gradient esti-
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Fixed Scaled

Step 5 1%

Actual 470 470

Upper 475 474.7

Lower 465 465.3

Table 4.2: Step sizes for process parameter - temperature in Celsius

mate from the central di�erence method will usually have lesser bias than the

forward or backward di�erence.

The user �rst chooses the parameter on which he wishes to perform sensitivity

analysis, then he chooses the way the step size is determined. There are two ways

in which the step size is determined.

� Fixed step size The user can choose a �xed step size which he sets himself.

� Scaled step size Here the user can select the percentage of the process

parameter to be used as the step size.

Table 4.2 provides an example for step size selection. Then the user has

to choose the number of replications and the time period (Number of years)

for which the simulation is being run. The user also chooses the percentage

con�dence level (95%, 97.5% and 99%), for the gradient estimate. These factors

have an impact on the precision of the gradient estimate obtained. A snapshot

of the Factory Administrator is shown in �gure 4.4.

After the user has selected the necessary parameters, which are needed to

conduct sensitivity analysis, the process is started. The simulation is conducted

51



F
ig
u
re
4.
4:
S
n
ap
sh
ot
of
th
e
fa
ct
or
y
ad
m
in
is
tr
at
or

52



with many replications with the process parameter at the upper level. The

cycle time for each replication is obtained and stored in an array. Then the

simulation is run with the process parameter at the lower level. Again the cycle

time for each replication is obtained. The gradient estimate is now made for

each individual replication. The con�dence interval is built using the gradient

estimates obtained over replications. The mean gradient estimate along with the

half width of the con�dence interval is displayed to the user. In a single click,

the user can run the process simulation, cluster tool simulation and the factory

simulation together and thus perform analysis on the sensitivity of system level

measures to the process parameters.

4.7 Example

In this section, an example simulation model used to demonstrate the HSE-

based decision support tool is described. The simulation model has one product,

Wafer1. The initial input rate of 2000 wafers/week, which is ramped to 5000

wafers/week by the end of two years. The wafers enter the manufacturing sys-

tem in lots of twenty. There are three types of tools CLEAN, TI LINER and

W CVD. The wafer goes through these three tools seven times, for one contact

layer and six via layers. The process parameters for TI LINER include thick-

ness, pressure, power and spacing. The process parameters for W CVD include

thickness, pressure, temperature, mass ow of H2 and mass ow of WF6. Some
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of the cluster tool parameters are pump-down time, OD (Orient and Degas) time

and Robot move time. Sensitivity analysis can be performed for performance

metrics like Cycle time over any of these input parameters.

4.8 Summary

The implementation of a gradient estimation method for sensitivity analysis as

a decision support tool has been described in this chapter. This tool will help

evaluate the impact of process parameters on system-level outputs in a system

and hence e�ect improvements in the utilization of tool resources.
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Chapter 5

Stochastic Optimization

5.1 Introduction

This chapter describes a methodology to acquire quality solutions for the prob-

lem of allocating machines in a manufacturing system. The goal is to leverage

the existing gradient estimation techniques used for sensitivity analysis and build

an optimization algorithm which will �nd optimal allocation of machines in the

system. The machine allocation problem studied here is one of vital importance

to the semiconductor industry, which invests a great deal of money in equip-

ment. Selecting the proper set of tools is important to satisfying throughput

requirements and budget requirements and minimizing average cycle time.

5.2 General Formulation

We formulate the problem as follows. The objective is to minimize E[T ], the

average cycle time of wafers through the factory. The decision variables Xij are
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the number of tools of type j purchased at each workstation Wi. Xij must be a

non-negative integer.

We have a manufacturing system with n workstations Wi; i = 1; 2; : : : ; n. For

each workstation Wi, there are zi types of tools available. Each workstation can

have tools from one or more types. The total number of decision variables is p.

p =
nX
i=1

zi (5.1)

The cost of one tool of type j for workstation Wi is Cij, and the capacity of one

such tool is �ij(wafers per unit time). The decision-maker has a �xed budget

of M dollars for purchasing tools, so that the total tool cost cannot exceed M .

Also, the manufacturing system must achieve a throughput of � (wafers per unit

time). If �i is the capacity at workstation i, then �i =
Pzi

j=1Xij�ij and �i must

be greater than �. We can write the constraints as follows:

ziX
j=1

Xij�ij > � for all i; (5.2)

nX
i=1

ziX
j=1

XijCij �M: (5.3)

Note that �nding a solution that satis�es Equations (5.2) and (5.3) is equivalent

to solving the knapsack problem.
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Workstations

Tool CLEAN Ti LINER W CVD

Con�guration i = 1 i = 2 i = 3

j = 1 $10,000 $20,000 $44,000

j = 2 $5,500 $28,000 $31,000

j = 3 $6,000 $30,000 $30,000

j = 4 $11,000 $19,000 $46,000

Table 5.1: Tool costs Cij

Workstations

Tool CLEAN Ti LINER W CVD

Con�guration i = 1 i = 2 i = 3

j = 1 6.25 12.5 25

j = 2 3.125 18.125 18.75

j = 3 3.75 20 17.5

j = 4 6.875 12.5 24.375

Required throughput 50

All numbers in wafers/hour

Table 5.2: Tool capacities �ij

5.3 Example

The factory has three workstations CLEAN, TI LINER and W CVD. Table 5.1

lists the costs for each tool type. Table 5.2 lists the single-tool capacity of each

tool type.

The required throughput from the system is 50 wafers/hour and the budget

constraint is $400,000.
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Workstations

Tool CLEAN Ti LINER W CVD

Con�guration i = 1 i = 2 i = 3

j = 1 3 0 0

j = 2 0 0 4

j = 3 5 5 0

j = 4 6 0 0

Table 5.3: A Feasible solution matrix Xij

The solution � must satisfy throughput constraints:

6:25X11 + 3:125X12 + 3:75X13 + 6:875X14 > 50; (5.4)

12:5X21 + 18:125X22 + 20X23 + 12:5X24 > 50; (5.5)

25X31 + 18:75X32 + 17:5X33 + 24:375X34 > 50; (5.6)

In addition, � must satisfy the budget constraint:

10; 000X11 + 5500X12 + 6000X13 + 11000X14 + 20000X21 + (5.7)

28000X22 + 30000X23 + 19000X24 + 44000X31 +

31000X32 + 30000X33 + 46000X34 � 400; 000;

Table 5.3 describes one feasible solution for this example. The total cost of

the manufacturing system is $400,000, and the workstations have the following

capacities:

�1 = 3�11 + 5�13 + 6�14 = 78:75 wafers/hour,

�2 = 5�23 = 100 wafers/hour,
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�3 = 4�32 = 75 wafers/hour.

The average cycle time of the system can be estimated by simulation. The wafers

arrive in one lot of 25 wafers every 0.5 hours. The interarrival times and the

processing times are exponentially distributed. The mean processing time on

a tool of type j at workstation i is 25/�ij. The number of lots that visit each

tool in a workstation is proportional to the tool's capacity. The manufacturing

system is simulated for a period of one year with ten replications. Using this

model, the mean cycle time for each lot has been estimated to be 7.70 hours,

and the 99% con�dence interval is 7:699� 0:038.

5.4 Solution Approach

The budget and throughput constraints bound the set of feasible solutions. Pur-

chasing too few tools will give insu�cient capacity, but the budget constraint

means that the tools must be selected carefully. To �nd a good solution to the

problem, we will begin by using a heuristic to �nd a low-cost, feasible solution.

Then, we will use a gradient-based search procedure to �nd better solutions.

The gradient gives us information about adding tools that reduce the cycle time

the most.

We have developed a search algorithm that uses gradient information to

direct the search through the discrete solution space. The emphasis here is on
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using gradient estimation methods as they build on sensitivity analysis modules

that were developed. The gradient, estimated by forward di�erences, provides

a search direction. The gradient estimation uses forward di�erences to avoid

violating the throughput constraints. For example, if Xij = 0 at some point of

the iteration, then we cannot use central di�erences as we have to estimate cycle

times at Xij = �1 and Xij = 1. Though simultaneous perturbation method's

advantage of being computationally e�cient is useful, it was not applicable for

the same reason. The search algorithm proposed also doesn't allow increasing

one tool while simultaneously decreasing another tool. The gradient can be

estimated through forward di�erences, where we have to estimate cycle times at

Xij = 0 and Xij = 1. The search modi�es the search direction to avoid reducing

the number of tools or trying to add any tools that are too expensive. The

search then determines the maximum step that remains feasible with respect to

the budget constraint. Finally, the search moves to a nearby integer point that

is feasible.

5.4.1 Notation

The following notation is used for the algorithm:

k = Iteration number,

c = Size of the perturbation,

f̂r(�k) = Average cycle time at point �k obtained by the rth simulation run,
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N = Number of replications,

eq = Unit vector in direction q,

�k = Solution after iteration k. �k = (X11; : : : ; Xnzn),

Uij = Capacity per dollar of tools of type j at workstation i,

ak = Step size at iteration k,

TxU = Greatest integer less than or equal to x,

VxW = Smallest integer greater than or equal to x.

5.4.2 Description of the Algorithm

The algorithm follows �ve steps.

Step 1: Initialization.

k = 0.

c = 1.

Initialize the solution vector �0 according to the following heuristic:

Heuristic for initial feasible solution vector:

For each workstation i = 1; : : : ; n:

Calculate Uij = �ij=Cij for each tool type.

Let U�

i = maxfUi1; : : : ; Uizig.

Let yi equal the number of tool types j such that Uij = U�

i .

For these yi tool types, let Xij = V�=(yi�ij)W.
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Workstations

Tool CLEAN Ti LINER W CVD

Con�guration i = 1 i = 2 i = 3

j = 1 6.25 6.25 5.68

j = 2 5.68 6.47 6.05

j = 3 6.25 6.67 5.83

j = 4 6.25 6.58 5.30

Table 5.4: Uij in 10�4 wafers/(dollar hours)

Workstations

Tool CLEAN Ti LINER W CVD

Con�guration i = 1 i = 2 i = 3

j = 1 3 0 0

j = 2 0 0 3

j = 3 5 3 0

j = 4 3 0 0

Table 5.5: Solution matrix Xij after step 1a

For the other zi � yi tool types, let Xij = 0.

If
Pn

i=1

Pzi
j=1XijCij > M , stop.

Step 2: Gradient Estimation.

For each component of �k,q = 1; : : : ; p, estimate ĝq(�k) as follows.

With N = 10,

(ĝq(�k))N =
1

N

NX
r=1

 
f̂r(�k + ceq)� f̂r(�k)

c

!
: (5.8)

Note that this will require N(p+ 1) simulation runs.
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Figure 5.1: Representation of the search algorithm

Step 3: Solution update.

Let B =M �Pn
i=1

Pzi
j=1XijCij.

Let dij = ĝq(�k) where Xij is the q-th component of �k.
1

If dij > 0, let dij = 0. This avoids reducing any Xij.

If Cij > B, let dij = 0. This avoids adding any tools that are too expensive.

Let

a =
�BPn

i=1

Pzi
j=1 dijCij

(5.9)

1Note ĝq is a vector representation of the gradient whereas dij is the matrix representation.

q =
Pi�1

l=1 zl + j
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if some dij < 0. Otherwise a = 0.

Create �k+1 by adding T�adijU to Xij.

If all T�adijU= 0, then identify the smallest (most negative) dij and create

�k+1 by adding 1 to Xij.

�k+1 is feasible with respect to the throughput and budget constraints, since

all dij � 0 and

nX
i=1

ziX
j=1

(Xij + T�adijU)Cij �M � B � a
nX
i=1

ziX
j=1

dijCij =M: (5.10)

Step 4: If �k+1 = �k, then stop. Else, add 1 to k and go to Step 2.

5.4.3 Example

The algorithm is applied to the example manufacturing system considered.

Step 1: Initialize the solution vector �0 as follows.

Table 5.4 shows Uij for each tool type.

For workstation 1,

U�

1 = 6:25.

U11 = U13 = U14 = U�

1 .

y1 = 3.

X11 =V�=3�11W =V50=18:75W= 3.

X13 =V�=3�13W =V50=11:25W= 5.

X14 =V�=3�14W =V50=20:625W= 3.
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For workstation 2,

U�

2 = 6:67.

U23 = U�

2 .

y2 = 1.

X23 =V�=�23W =V50=20W= 3.

For workstation 3,

U�

3 = 6:05.

U32 = U�

3 .

y3 = 1.

X32 =V�=�32W =V50=18:75W= 3.

All other Xij = 0.

Pn
i=1

Pzi
j=1XijCij = 276; 000, which is less than M .

Step 2: We use the forward di�erence formula to estimate the gradients.

The estimated gradients are illustrated in Table 5.6.

The number of simulation runs for this gradient computation will be (12+1)10 =

130.

Step 3: Update the solution.

B = 400,000 - 276,000 = 124,000.

dij = 0 for X12; X13; X21; X24, since ĝq(�k) > 0.
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Tool type Cycle time Cycle time Gradient

higher(in hours) lower(in hours)

X11 12.627 13.923 -1.296

X12 13.355 13.923 -0.568

X13 13.147 13.923 -0.776

X14 12.555 13.923 -1.368

X21 12.811 13.923 -1.112

X22 12.480 13.923 -1.443

X23 12.342 13.923 -1.581

X24 12.703 13.923 -1.220

X31 11.125 13.923 -2.798

X32 11.250 13.923 -2.673

X33 11.320 13.923 -2.603

X34 11.075 13.923 -2.848

Table 5.6: Gradient estimation

dij =ĝq(�k) for every other tool because ĝq(�k) � 0 and Cij < B.

a =
124; 000

(1:296(10; 000) + 0:568(5; 500) + 0:776(6; 000) + 1:368(11; 000)

+1:112(20; 000) + 1:443(28; 000) + 1:581(30; 000) + 1:220(19; 000)

+2:798(44; 000) + 2:673(31; 000) + 2:603(30; 000) + 2:848(46; 000))

(5.11)

a = 0.212

The approximated gradients and the updated solution vector are shown in Ta-

ble 5.7.
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Tool type �k �adij T�adijU �k+1

X11 3 0.275 0 3

X12 0 0.121 0 0

X13 5 0.165 0 5

X14 3 0.290 0 3

X21 0 0.236 0 0

X21 0 0.306 0 0

X21 3 0.336 0 3

X21 0 0.259 0 0

X31 0 0.594 0 0

X32 3 0.567 0 3

X33 0 0.553 0 0

X34 0 0.605 1 1

Table 5.7: Solution update

Since all T�adijU are zero, we increment Xij with the highest gradient by one.

Step 4: Since �k+1 6= �k, k = k + 1 = 2 and we go to Step 2.

5.5 Experiments

5.5.1 Architecture

The administrator, the input template �les, the output �les and the simula-

tion model �les are the four components of the experimental architecture. The

administrator controls the other three components. It also executes the search

algorithm. This architecture along with the simulation engine (Factory Explorer)

is depicted in Figure 5.2.

The input template �les contain the input data for a number of simulation
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models. The administrator reads the input data from the input template �le and

runs the heuristic to �nd the initial feasible solution. This is used to populate the

simulation model �le. During the search algorithm, the administrator updates

the simulation models, executes the simulation engine, and reads the simulation

output �les. When the search ends, the administrator outputs the search results.

5.5.2 Description of the Input Template Files

The input template �le contains input data for a series of experiments. There

are two such input template �les. Each �le speci�es 160 problem instances.

Two di�erent methods were used to create the problem instances. The primary

di�erence is the correlation of capacity and cost. In practice, we would expect

a faster (high capacity) tool to be more expensive. In the real world, we would

ideally expect the cost of a tool type to increase when it can process faster. In

Problem Set 1, the capacity is not correlated to the cost, while in Problem Set

2, they are correlated and the capacity is chosen based on the cost.

Problem Set 1

The input is built using the following generation parameters:

P = Cost factor for tool types = $1000,

� = 100 wafers/hours,

n = Number of workstations = 5,

r = Expected number of tools per workstation = 2 or 10,
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zi = Number of tool types per workstation = 2 or 5,

� = Lower bound of cost range = 0.5 or 0.8,

� = Multiplier for budget = 1 or 3.

For each combination of parameter values, we generate ten instances. For each

instance, the tool capacities and costs are generated by using the following pro-

cedure.

For i = 1 to n

For j = 1 to zi

Choose aij 2 [0; 2]

Let �ij = aij(�=r)

Choose bij 2 [�; 1]

Let Cij = bijP

M = �nrP

We have four parameters to vary. They are r, zi, � and �. Each of these

parameters can take two values. Hence we have sixteen combinations of these

parameters.

Problem Set 2

The input is built using the following generation parameters:

P = Cost Factor for tool type = $1000,

� = 100 wafers/hours,

n = Number of workstations = 5,
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r = Expected number of tools per workstation = 2 or 10,

zi = Number of tool types per workstation = 2 or 5,

e = Shape of the correlation = 0.5 or 1,

� = Lower bound of cost range = 0.5,

� = Multiplier for budget = 1 or 3.

For each combination of parameter values, we generate ten instances. For each

instance, the tool capacities and costs are generated by using the following pro-

cedure.

For i = 1 to n

For j = 1 to zi

Choose bij 2 [�; 1]

Let aij = 2(bij)
e

Let �ij = aij(�=r)

Let Cij = bijP

M = �nrP

5.5.3 Description of the Optimization Process

The administrator takes the �ij and Cij values from the input template �le along

with n and zi. Using these parameters the administrator runs the heuristic for

the initial solution vector and determines the Xij values. All the parameters gen-

erated are now used to populate the simulation models. The simulation models
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require parameters like name of the process step, name of the tool used, number

of tools used and the percentage of lots which visit each tool in a workstation.

The nomenclature of di�erent process steps is done using the workstation

numbers. For example, the step at workstation 1 is named as \n1". Similarly

the tool type j = 2 at workstation 1 is named as \n1j2". Further the tool

processing times are generated using �ij. After the model has been populated,

the administrator uses the simulation engine to run simulations using the model.

The simulation engine then outputs the performance metrics to a text �le. The

text �le is read by the administrator to obtain the necessary output metrics and

based on the output metrics, the administrator decides the next iteration step.

5.5.4 Description of the Simulation Model

We have one product, Wafer, which enters the system at one lot of 25 wafers every

0.25 hours. The interarrival times and the processing times are exponentially

distributed. The mean processing time on a tool of type j at workstation i is

25/�ij. The number of lots that visit each tool in a workstation is proportional

to the tool's capacity. �ij and Cij are obtained from the input �les. While the

initial number of tools at each workstation is obtained from the heuristic, the

updated number of tools are obtained from the search algorithm. Each lot will

visit each workstation starting with workstation 1 and ending with workstation
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5. Each replication in a simulation run is conducted for one year, which means

that approximately 35000 lots are processed in every replication.

5.5.5 Output Files

After an instance has been solved, the administrator outputs a few important

metrics: total cost of the tools, the bottleneck workstation and its capacity and

the estimated cycle time of that con�guration (The bottleneck is the workstation

with the smallest total capacity). These statistics are gathered after the initial

heuristic has been completed and after the search algorithm completes its run.

Three performance metrics are calculated to estimate the performance of the

algorithm:

Cost Metric =
Costx � Costy

M
(5.12)

Capacity Metric =
Capacityx � Capacityy

�
(5.13)

Cycle T imeMetric =
Cycle T imex
Cycle T imey

(5.14)

where x means after the search and y means after the heuristic (before the

search).
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Figure 5.3: Cost metric vs capacity metric for problem set 1
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Figure 5.4: Cost metric vs capacity metric for problem set 2
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Figure 5.5: Cost metric vs cycle time metric for problem set 1
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Figure 5.6: Cost metric vs cycle time metric for problem set 2
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Figure 5.7: Capacity metric vs cycle time metric for problem set 1
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Figure 5.8: Capacity metric vs cycle time metric for problem set 2
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Figure 5.9: Cycle time metric over replications

5.6 Experiment Results

The performance metrics discussed above provide insight into the performance

about the algorithm. The cost metric describes how much more money has

been spent to purchase extra capacity and reduce cycle time. The bottleneck

capacity metric describes of how much capacity has been added with respect to

�. Similarly cycle time reduction is described by the cycle time metric.

The correlation between capacity and cost is an important factor as we can

see in Tables 5.8 and 5.9. Each row in these tables has the average performance

for the instances with feasible solutions. We can see that when the capacity

is correlated to the cost, we get signi�cant reduction in cycle time with less
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additional capacity and less money compared to the case when the capacity and

the cost are not correlated.

From Figures 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8, we can observe that the search

algorithm is able to reduce cycle time signi�cantly. On some problem sets the

average reduction is over 70%.

An important trend of interest is the impact of � on the performance of

the algorithm. Even with � = 1, we can see good improvement in cycle time

performances, while � = 3 did not improve very much on � = 1 for Problem Set

1.

Figure 5.9 illustrates the sensitivity of cycle time reduction to the budget

constraint. The �gure uses the cycle time metric for 10 instances obtained using

Problem set 2 for a speci�c con�guration (n = 5, r = 10, zi = 5, e = 0.5). Note

that, for � = 1, the heuristic found feasible solutions in only six instances. When

� = 1, the average capacity metric is 0.057, and the cycle time metric ranges

from 0.4 to 0.9. However, when � = 3, the average capacity metric is 0.733,

and the cycle time metric is always near 0.233. The additional funds are able to

purchase more equipment and reduce cycle times dramatically.

5.7 Summary

An equipment selection problem was formulated with minimizing cycle time as

the objective and with constraints on the budget and minimum throughput on
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the system. A search algorithm has been presented where we �nd an initial

solution through a heuristic and then develop the solution further by using a

gradient-based search. The search algorithm was then evaluated using test cases

generated using an experimental design architecture. It can be seen from the

experiments that the algorithm performs quite well over a range of problem

instances.
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Chapter 6

Summary and Conclusions

6.1 Summary

The analysis of various performance metrics of stochastic systems such as semi-

conductor manufacturing fabs with respect to input parameters is a complicated

process. Analytical models can be developed when the number of workstations

is small and process ows are simple. But in many manufacturing systems,

especially semiconductor manufacturing systems, complex product ows and a

large number of process steps make analytical models intractable and simulation

models inevitable. In this research, simulation models have been integrated with

operations research techniques to provide valuable insight into the characteristics

of the manufacturing system and help design these systems. Comparison of two

gradient estimation techniques, �nite di�erences and simultaneous perturbation,

was performed using an analytical queueing system model as a benchmark. One

of these techniques, �nite di�erences, is then implemented in a decision support

tool with a Heterogeneous Simulation Environment (HSE) for process engineers.
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A gradient-based stochastic optimization procedure was then implemented to ob-

tain quality solutions to the manufacturing system design problem of equipment

selection.

6.2 Anticipated Impact

Advanced simulation modeling tools will have impact in the future as comput-

ing power increases and simulation-based optimization and sensitivity analysis

techniques become more easily applicable.

Sensitivity analysis aids process control by providing a better picture of pro-

cess parameters with respect to output metrics and thus helping the process

engineer evaluate the status of the process he is controlling with regard to the

semiconductor fabrication plant. It facilitates interactive decision making in-

volving both industrial and process engineers.

Discrete stochastic optimization can be used to optimize real world stochas-

tic systems. When we consider the application of the optimization technique

described here, it is applicable to equipment selection for any manufacturing

system. It can help reduce costs in the design stage itself by providing savings

both in terms of budget and reduced cycle time.
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6.3 Future Work

Future work can involve integration of optimization techniques in decision-making

tools for managers, which can be an advanced version of the decision support tool

for process engineers. The application of the stochastic optimization procedure

to a general class of resource allocation procedures could be studied. Further,

the algorithm can be benchmarked for performance by making a comparison

with other techniques including random search and simulated annealing.
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