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We study the convergence properties of the projected stochastic approximation (SA) algo-

rithm used to �nd the root of an unknown steady state function of a parameterized family of

Markov chains. The analysis is based on the ODE Method and we develop a set of application-

oriented conditions which imply almost sure convergence and are veri�able in terms of typically

available model data. Speci�c results are obtained for geometrically ergodic Markov chains

satisfying a uniform Foster-Lyapunov drift inequality.

Stochastic optimization is a direct application of the above root �nding problem if the SA is

driven by a gradient estimate of steady state performance. We study the convergence properties

of an SA driven by a gradient estimator which observes an increasing number of samples from

the Markov chain at each step of the SA's recursion. To show almost sure convergence to the

optimizer, a framework of veri�able conditions is introduced which builds on the general SA

conditions proposed for the root �nding problem.

We also consider a diÆculty sometimes encountered in applications when selecting the set

used in the projection operator of the algorithm. There often exists a well behaved positive

recurrent region of the state process parameter space where the convergence conditions are sat-

is�ed; this being the ideal set to project on. Unfortunately, the boundaries of this projection set

are usually not known a priori when implementing the SA. Therefore, we consider the conver-

gence properties when the projection set is chosen to include regions outside the well behaved

region. Speci�cally, we consider an SA applied to an M/M/1 which adjusts the service rate

parameter when the projection set includes parameters which cause the queue to be transient.



Finally, we consider an alternative SA where the recursion is driven by a sample average of

observations. We develop conditions implying convergence for this algorithm which are based

on a uniform large deviation upper bound and we present specialized conditions implying this

property for �nite state Markov chains.
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Chapter 1

Introduction

In many contexts, it is necessary to �nd parameter values �? which satisfy a nonlinear equation

of the form

h(�) = 0; � 2 � (1.1)

for some mapping h : � ! IRp where � is a subset of IRp. A typical example arises when

optimizing a performance measure J : � ! IR; a task often equivalent to setting the gradient

of J to zero. At other times it is desirable to maintain system performance at some given level

J?, and this points to solving (1.1) with h(�) = J(�)� J?.

The overwhelming majority of methods for solving (1.1) are recursive in nature and produce

a sequence of iterates f�n; n = 0; 1; : : :g which eventually converge to the desired value(s) �?:

Starting with an initial guess �0, the (n + 1)rst iterate �n+1 is computed on the basis of the

previous iterate �n and past values of h, say h(�i), i = 0; 1; : : : ; n, (and sometimes derivatives

of h at these points).

Unfortunately, it is often the case that h is not directly available, either because its functional

form is unknown or because evaluation is computationally prohibitive. To remedy this diÆculty,

Robbins and Monro [88] proposed the class of algorithms known as stochastic approximations

(SA). In their simplest form, such algorithms are unconstrained (i.e., � = IRp) and produce a

sequence of iterates f�n; n = 0; 1; : : :g through the recursion

�0 2 IRp; �n+1 = �n + n+1Yn+1; n = 0; 1; : : : (1.2)

for some IRp{valued \driving" process fYn; n = 0; 1; : : :g, and some sequence of step-sizes

fn+1; n = 0; 1; : : :g which satisfy standard conditions, say n # 0 and P1
n=0 n+1 =1.

It is customary to view Yn+1 as an approximation to h(�n). In their original paper, Robbins

and Monro generated random variables (rvs) fYn+1; n = 0; 1; : : :g according to
P[Yn+1 2 BjY0; : : : ; Yn] = ��n(B) n = 0; 1; : : : (1.3)

for some family of probability measures f��; � 2 IRpg on IRp with the property that

h(�) =
Z
IRp

y��(dy); � 2 �:

The key issue in the study of algorithms such as (1.2) (and variations thereof) is the convergence

of the iterate sequence f�n; n = 0; 1; : : :g to the desired value(s) �?.
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1.1 Extensions to the Robbins-Monro Algorithm

Over the years, increasingly more complex applications have lead to the use of projected versions

of the stochastic approximation scheme (1.2) which take the form

�0 2 �; �n+1 = �� f�n + n+1Yn+1g n = 0; 1; : : : (1.4)

with �� denoting the nearest-point projection on �. It also became necessary to consider

versions of (1.4) which are driven by processes fYn; n = 0; 1; : : :g with a more general statistical

structure than (1.3). For instance, several authors [62, 70, 77, 97] have considered both (1.2)

and (1.4) when

Yn+1 = H(�n; Xn+1) n = 0; 1; : : : (1.5)

for some Borel mapping H : � � X ! IRp and state process fXn; n = 0; 1; : : :g evolving on

X � IRs which is Markov in the sense that

P[Xn+1 2 Bj�i; Xi; i = 0; 1; : : : ; n] =
Z
B
P�n(Xn; dy) n = 0; 1; : : :

for some family of transition kernels fP�(x; dy); � 2 �; x 2 Xg on X. Here, the state process

sequence fXn+1; n = 0; 1; 2; : : :g can either model noise in the estimation of certain steady

state values or represent randomness in some underlying system being observed in real time or

simulated on a computer. In any event, this more general algorithm is also proposed to �nd the

zero �? of an unknown function h given by the expectation of this driving/observation function

H with respect to the P�-invariant steady state distribution ��:

h(�) =
Z
X

H(�; x)��(dx): (1.6)

In the literature, this function h is sometimes referred to as the regression function.

1.2 Typical Applications

These extended SA procedures have found applications in a wide variety of �elds where it

is desired to tune or optimize certain continuous-valued parameters of stochastic systems or

�nd roots of an unknown steady state mean function h : � ! IRp. Due to the simplicity

of the recursive step, SA's are typically implemented with very low overhead while the class

of �-dependent Markovian state processes is broad enough to include many stochastic systems

which may have a parameter dependence and/or include noise and memory e�ects. We mention

only a few of the many diverse applications of SA which have been proposed in the literature

to date:

Network Management

� Online adjustment of protocol parameters via SA is carried out within a performance

management tool for multiple access computer communication networks [67].
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� Optimal source rates for Available Bit Rate traÆc in Asynchronous Transfer Mode net-

works are found by optimizing the feedback control policy over the network via SA [7].

� Online minimization of call/connection setup time over a circuit-switched network is per-

formed via SA-based load balancing in [99].

� A real-time distributed system modeling telephone switching systems is described in [60]

where peripheral processors submit both high and low priority jobs to a single central

processor under a distributed load control algorithm. Here, each control algorithm esti-

mates the root of a unavailable nonlinear function via SA while taking observations from

the central processor's load.

� In a cellular wireless network, SA estimates blocking probabilities for an eÆcient paging

strategy [87].

Control/Optimization of Queueing Systems

� The performance of the GI/G/1 queue is optimized using an IPA gradient estimate where

the parameter � a�ects the service time distribution [20].

� Multiple queues compete for a single server in [72] where an SA is used to drive the long

run average cost to a given value.

� A simple open loop low-overhead Call Admission Control (CAC) scheme is described in

[66] which delays the customer's admission if the time since previous admission is less

than a parameter. This parameter is recursively updated via an online SA-based gradient

descent algorithm.

� A scheduling algorithm is load-balanced adaptively by �nding a root to a nonlinear steady

state equation via SA [9].

Communications

� Several examples of equalization in digital communications are considered in [5, 6, 76, 31].

� A digital phase-locked loop based on SA is proposed for carrier synchronization in burst-

mode communication architectures [51].

� In ALOHA networks, a distributed SA-based algorithm computes the retransmission prob-

abilities for each channel [52].
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Neural Networks

� SA provides online estimation of neural network weights for controlling a nonlinear stochas-

tic system [100, 101].

� An alternative SA algorithm for adjusting the neural networks is described in [96] which

incorporates some SA averaging methods.

Manufacturing Systems and Inventory Control

� An optimal stationary inventory control policy is approximated by a linear switching

curve and located via SA in [3].

� Performance of a multi-product multi-machine manufacturing system is optimized in [26]

using a Perturbation Analysis gradient estimate where performance is measured by the

cumulative system time.

� A partially observed binary replacement problem is formulated as an adaptive Markov

decision control problem, and an SA is used to estimate unknown parameters needed for

the long run average optimal control policy [1].

1.3 Research Objectives

Our main objective in this dissertation is to study the convergence of the iterates of the SA

algorithm for applications with Markov chain noise. We seek an operational framework of

conditions which are easily veri�able in terms of the available model data. Our focus tends

toward projected algorithms because, as we will soon see, these algorithms are more likely in

practice to yield a convergence result which is not conditional on any unveri�able events. Also,

we wish to emphasize we are not necessarily trying to �nd the weakest possible conditions

implying convergence; instead, we seek an operational convergence theory in terms of explicit

conditions on the model data which cover most of the Markov chains typically encountered

in applications. This does include applications where the state space is either very large,

countably in�nite, or even general. We also consider applications where the driving function H

may possess a functional dependence on the parameter � as well as applications where H may

be unbounded in the state variable, such as queue occupancy based estimates.

Our approach to showing convergence relies on the ODE method [61] which, in most of its

forms, proceeds in two separate steps. The �rst step relies on the Kushner{Clark Lemma [61]

to identify a deterministic ODE given by

_�(t) = h(�(t)); t � 0;

the stability properties of which determine the limit points of the iterate sequence f�n; n =

0; 1; : : :g. The second step, which is probabilistic in nature and depends on the algorithm,
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involves showing that asymptotically the output sequence of the original SA behaves like the

solution to the ODE. Although general conditions are given in [61] for successfully completing

this second step, these conditions are often not immediately checkable in terms of the model

data. Therefore, it is precisely our main goal to develop speci�c tools or indirect methods to

facilitate veri�cation of this second step.

A substantial body of research currently exists on adaptive algorithms and SA's, see for

example [6, 17, 18, 28, 61, 64, 70, 72], as well as the many references cited within these. We

wish to point out one e�ort [70] where the authors, by focusing on the class of �nite stateMarkov

chain state processes, show convergence criteria for the ODE method which is indeed veri�able

in terms of the state process model data. Here, we take a similar approach to accomplish our

main goal, and seek to extend the criteria in [70] to a broader class of state processes which

may have a countable or a non-�nite state space while also permitting an unbounded driving

function H.

Benveniste, M�etivier and Priouret (BMP) [6] have presented a general framework for Markov

chain state processes dependent on a parameter � which imply almost sure convergence of the

SA's iterates. Unfortunately, these general conditions are also diÆcult to verify directly since

they are based on smoothness properties of the Poisson equation solution. BMP then propose

specialized conditions for certain geometrically ergodic Markov chains which imply their more

general conditions. There still remain many problems where it is diÆcult to verify BMP's

specialized conditions, and we seek to either extend BMP's framework or �nd new tools which

may be applied to these problems.

We also note that the �nite state space results of [70] have been extended to a particular

countable state space Markov chain in [72] where the key convergence condition to be veri�ed

is Lipschitz continuity of the Poisson equation solution. While these results generalize to other

similar problems, we seek extensions to this framework by working with a weaker form of

H�older continuity on the Poisson equation solution while considering a more general class of

applications similar to those considered by BMP in [6].

We also have several secondary goals. For one, we pay particular attention to Markov

chains which possess certain Foster-Lyapunov stability or drift properties, as studied by Meyn

and Tweedie [79] and others [49], implying a geometric ergodicity. This complements the spe-

cialized results of BMP mentioned above. Second, since steady state optimization dominates

the applications for SA, we explore convergence veri�cation and particular problems encoun-

tered when the SA algorithm is driven by an estimate of the performance gradient. At present,

there exists a substantial body of literature on various forms of gradient estimation [36, 41, 44,

46, 48, 55, 63, 85] as well as treatments of stochastic optimization [19, 20, 43, 47, 75, 83, 84, 106].

We focus entirely on one particular class of gradient estimation algorithms recently proposed

by Cao and Wan [14] which we �nd well-suited for SA.

In addition, we also seek to highlight certain operational diÆculties which may be encoun-

tered when attempting to verify convergence properties of SA's applied to even simple Markov

chain problems. In particular, we �nd that the selection of an \appropriate" projection set �

can be diÆcult for many problems such as those applications with some degree of uncertainty
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in the model data. We explore issues related to the selection of an \appropriate" set � to use

in the projection operator and we consider convergence when a less than ideal projection set is

selected.

1.4 The ODE Method

As we stated above, our approach is based on the Kushner-Clark ODE method [61] so let us

briey review this method. There are two versions of this result; one for constrained algorithms

which use a projection operator and one for unconstrained algorithms which we now summarize.

The algorithm may be written in the following form which includes additional noise random

variables f�n+1; n = 0; 1; : : :g,

�n+1 = �n + n+1H(�n; Xn+1) + n+1�n+1; n = 0; 1; : : : :

= �n + n+1h(�n) + n+1"n+1 + n+1�n+1; (1.7)

where following 1.6 the main noise sequence is de�ned by

"n+1
:
= H(�n; Xn+1)� h(�n):

We also need to de�ne the times

t0 = 0 tn =
n�1X
k=0

k+1; n = 1; 2; : : : ;

and the function

m(t)
:
=

(
maxfn : tn � tg; t � 0

0; t < 0
: (1.8)

Then, the piecewise linear interpolated function �0(t) is de�ned by

�0(tn)
:
= �n;

�0(t)
:
=

(tn+1 � t)

n+1
�n +

(t� tn)

n+1
�n+1; t 2 (tn; tn+1);

for each n = 0; 1; : : :; as well as the time shifts

�n(t) =

(
�0(t+ tn); t � �tn
�0; t � �tn; n = 1; 2; : : : :

Thus, we have a sequence of functions f�n(�) : n = 0; 1; : : :g.

Lemma 1.1 (Kushner-Clark Lemma, unconstrained case) Suppose:

(KC1) h(�) : IRp ! IRp is a continuous function,

(KC2) fn; n = 1; 2; : : :g is a sequence of positive real numbers such that n+1 ! 0, andP
n=1 n+1 =1,
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(KC3) f�n; n = 1; 2; : : :g is a bounded (w.p.1) sequence of IRp-valued rvs such that �n ! 0,

w.p.1,

(KC4) f"n; n = 1; 2; : : :g is a sequence of IRp valued rvs such that for some T > 0 and all

� > 0

lim
n!1

P

8<:supj�n
max
t�T

������
m(jT+t)�1X
i=m(jT )

i+1"i+1

������ � �

9=; = 0; (1.9)

(B1) the iterates f�n; n = 0; 1; : : :g are bounded w.p. 1.

Then, there is a null set 
0 such that ! 62 
0 implies

1. f�n(�; !); n = 0; 1; : : :g is equicontinuous, and also, the limit �(�) of any convergent sub-

sequence of f�n(�; !); n = 0; 1; : : :g is bounded and satis�es the ODE

_� = h(�); t 2 (�1;1): (1.10)

2. Let �? be a locally asymptotically stable in the sense of Lyapunov solution to (1.10), with

domain of attraction DA(�?). There is a compact set Q � DA(�?) such that if �n(!) 2 Q
in�nitely often, we have

�n(!)! �? as n!1.

Proof: See [61, Theorem 2.3.1].

1.5 Projected Algorithms

The unconstrained Kushner-Clark Lemma may be considered a conditional convergence result

since in applications verifying the boundedness condition (B1) and the stability-recurrence con-

dition, Pf�n 2 Q i:o:g = 1 for some Q � DA(�?) tend to be diÆcult. There are no generally

applicable results which give veri�able conditions which readily imply (B1) and the stability

recurrence, so one is typically faced with the often diÆcult task of verifying these conditions

for each particular application (see, for example [6] [61, Section 4.7], and [31, 32]).

To remedy this situation, algorithms with a projection on a compact set � have been

proposed [61, 68] to ensure boundedness as well as assist in showing stability recurrence, i.e,

�0 2 �; �n+1 = �� f�n + n+1h(�n) + n+1"n+1 + n+1�n+1g n = 0; 1; : : : (1.11)

Also, the projection operator can often be helpful in verifying (KC1), (KC3), and (KC4) since

the parameter iterate is then known to fall within some compact set. For many applications,

it is typically not a problem to apply an \appropriately selected" projection operator.

Of course, the ideal case is to choose the compact projection set � � � so that �? 2 �, � �
DA(�?), and (KC1)-(KC4) hold when the parameter is constrained to �. For many applications,

if conditions (KC1)-(KC4) can be veri�ed and assuming some very limited knowledge of the state
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process is available, it may in fact be possible to identify an ideal projection set. In this case,

the projected version of the Kushner-Clark Lemma [61, p. 191] provides identical conditions

for a.s. convergence for algorithm (1.11) without (B1). Also, the stability-recurrence condition

may be satis�ed if we have some knowledge of the stability regions of the ODE, as is often the

case. Thus, we can choose Q = � � DA(�?), and in this setting, the constrained Kushner-Clark

Lemma tells us that unconditionally the iterate will converge to �� with probability one. This

ideal case is essentially the topic of the next two chapters as we mainly explore methods to

verify (KC4) for a given projection set �.

It is not always possible to identify an ideal projection set. An interesting situation arises in

the case that any of the conditions (KC1), (KC3), (KC4) only hold if the iterates are constrained

to some well-behaved domain Ds � IRp which is unfortunately not known when implementing

the algorithm. Due to this uncertainty, there may be no way to determine an ideal compact

projection set satisfying both � � Ds and �
? 2 �. If we take � too large, we are likely to cause

� 6� Ds while if we take � too small, it is possible to have �? 62 �. Since it is clear that such a

\too small" projection will prevent the desired convergence, we want to study the convergence

when the projection set is chosen \too large". In general this may be very diÆcult; but, we �nd

that for a particular problem, by exploiting certain structural properties of the state process

together with the dynamics of the SA algorithm, we may in fact be able to show convergence.

This last issue was motivated by a simple SA example which attempts to regulate the steady

state mean queue size of a �xed arrival rate M/M/1 queue via recursive SA updating of the

service rate parameter. If the arrival rate is unknown, an ideal projection set which constrains

the SA's iterates to a positive recurrent region is not available a priori. We then study the

convergence of an algorithm which uses a \comfortably large" but compact projection set which

includes part of the transient region. The queue may at times operate in the transient region

and the analysis becomes a bit more diÆcult for several reasons, not the least of which is the

function h(�) is not even de�ned in this transient region. Nevertheless, this example possesses

a key property; if at any time the service rate is set to a parameter which causes the M/M/1

to be transient, then the queue size tends to increase toward in�nity and the dynamics of the

SA will tend to return the queue to the possibly recurrent region. While convergence in this

setting seems intuitively reasonable given these structural properties, we establish an approach

to rigorously proving convergence. This approach should generalize to other problems with a

similar structure.

1.6 Summary of Results

The previous sections introduced the Kushner-Clark Lemma and some technical diÆculties

encountered when applying SA to actual problems. For the majority of this dissertation, we

focus on algorithms projected on compact � � IRp, thus eliminating the diÆculty related to

the boundedness condition. In Chapter 2, we temporarily put aside our concerns regarding

selection of an ideal projection set � and simply assume one is available. We then study the
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noise process f"n+1; n = 0; 1; : : :g and develop a general set of conditions which imply (KC4)

holds for a broad class of Markov chain state processes dependent on the parameter � 2 �. Our

analysis is adapted from the framework developed in BMP [6] and we o�er several extensions

and variations of their results which lead to a.s. convergence, speci�cally for the case of projected

SA's.

The extensions come about for two reasons. First, we discover that one of BMP's general

conditions, local Lipschitz continuity on the regression function h(�), is unnecessarily strong

since only continuity is required in the ODE method. Second, and perhaps more troubling

in applications, we �nd that one of BMP's specialized conditions for geometrically ergodic

Markov chains can be diÆcult to verify for many problems. We are able to suÆciently weaken

both of these conditions by slightly modifying their framework so that our new conditions are

straightforward to verify for applications of interest to us.

The new specialized conditions are developed in Chapter 3 and assume a uniform Foster-

Lyapunov drift inequality on the family of one-step Markov transition probabilities which are

derived from drift equalities recently studied by Meyn and Tweedie in [79]. These results form

a new framework of veri�able conditions given in terms of the Markov transition probabilities

and we show they ultimately imply condition (KC4) of the Kushner-Clark Lemma holds. To

demonstrate the application of these specialized conditions to a countable state Markov chain,

we carry out the veri�cation steps for an SA algorithm applied to a simple parameterized

random walk with a single reection at the origin.

We also consider stochastic optimization applications where performance is measured by a

steady state mean or long run average

J(�) = lim
N!1

1

N

N�1X
n=0

f(�;Xn);

for some given performance function f(�; �) : �� X! IR. The objective here is to �nd a point

�? such that the performance gradient rJ(�) is equal to zero through an iterative procedure

based on SA coupled with a gradient estimate bG of rJ(�), i.e.

�n+1 = ��

n
�n + n+1 bG(�n; �Xn+1)

o
; n = 0; 1; 2; : : : (1.12)

In this case, the process f �Xn; n = 1; 2; : : :g is an augmented Markov chain related to fXn; n =

1; 2; : : :g. First in Chapter 4, we propose a particular gradient estimation algorithm which is

an adaptation of an estimate studied in [14]. Then in Chapter 5, we present a series of results

which show for SA algorithms using this gradient estimate driven by f �Xn; n = 1; 2; : : :g, the
convergence can be checked, for the most part, by verifying the conditions on fXn; n = 1; 2; : : :g
as in the root-�nding problem. Thus, we have a checkable veri�cation procedure using the

specialized conditions proposed in our convergence framework of Chapters 2-3 which, if met,

implies almost sure convergence of �n to the optimizer �?.

In Chapter 6, we return to the issue set aside earlier; namely, the diÆculty in choosing

an ideal projection set �. For a simple random walk model, we demonstrate a sample path
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technique which allows one to choose the projection set to be \comfortably large" in the sense

that the conditions developed in Chapter 2 need only hold for iterates which lie in some well-

behaved subset Q of the non-ideal projection set �. This leaves a complementary region where

some of the conditions may not be satis�ed. We �nd it is still possible to prove almost sure

convergence, even though at times some sample paths cause the the state process to be unstable

or transient. Here, the analysis is problem dependent although we develop several results which

should hold for other problems with a similar structure.

Finally in Chapter 7, we consider a substantial change in direction, partly inspired by an

approach in [29] dubbed \sampling controlled SA," where we study an alternative SA algorithm

driven by sample averages. This algorithm di�ers from the traditional algorithm which simply

observes a single sample and immediately makes a parameter update by instead waiting to

collect several observations before computing a parameter update based on an average of these

observations. For the traditional SA algorithms studied in Chapter 2, we use a martingale

approach along with conditions on the solution to the Poisson equation to show convergence.

For this algorithm driven by sample averages, we instead use a large deviations approach with

an increasing observation window. We show convergence of this algorithm follows readily if a

certain uniform large deviations upper bound holds for the state process and the observation

window is lengthened towards in�nity as the recursion advances. Although there can be bene�ts

to avoiding the martingale approach for some problems with nonlinearities, this large deviations

upper bound can be diÆcult to show for several of the countable state space problems of interest.

As a result, we now feel the traditional �xed-step SA algorithm studied in the previous chapters

usually is preferable. Nevertheless, we do show this uniform large deviations bound is in fact

satis�ed for both i.i.d. state processes as well as �nite state Markov chains which are dependent

on a parameter � if only mild regularity conditions are in place. Furthermore, if the sample

average is passed through a nonlinear function g driving the recursion, then this large deviations

approach may o�er advantages since the martingale methods can break down.

As a �nal comment, the various SA's studied here may be classi�ed as to how the time

scale of the parameter updates relate to the time scale of the state process evolution. For the

traditional algorithm studied in Chapters 2, 3, and 6 a single parameter update occurs for each

transition of the state process. For the stochastic optimization algorithm of Chapter 5 and the

sample average algorithm of Chapter 7, the SA is driven by observations taken over a window

on the state process of length `n which steadily increases towards in�nity as the SA's iterates

are updated, i.e. `n !1 as n!1.

1.7 Some De�nitions and Notation

1. The set of all real numbers is denoted by IR and the set of all integers is denoted ZZ.

2. For any set X endowed with a topology, measurability is always taken to mean Borel

measurability and the corresponding Borel �{�eld, i.e., the smallest �{�eld on X generated

by the open sets of the topology, is denoted by B(X).
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3. We denote the n-step probability transition function P n(x;A) for A 2 B(X) and x 2 X.

For a probability measure � and a Borel function f : X! IR we de�ne

P n(x; f)
:
=

Z
X

P n(x; dy)f(y); n = 1; 2; : : : ; and

�(f)
:
=

Z
X

�(dx)f(x)

Also, we may �nd it convenient to occasionally use the slightly more compact operator

notation

P nf(x)
:
=

Z
X

P n(x; dy)f(y); n = 1; 2; : : : ; and

�f
:
=

Z
X

�(dx)f(x)

4. An element v of IRp is denoted by its column vector and its transpose is denoted by v0.

For elements v and w of some IRp, we write hv; wi for their usual scalar product, so that

kvk �
q
hv; vi = (

Pp
i=1 v

2
i )

1=2
denotes the Euclidean norm of v. Also, we will regularly

use the Schwarz Inequality [50, p. 2]

jv �wj := jhv; wij � kvk kwk ; v; w in IRp.

In a squared form, this inequality reads pX
i=1

viwi

!2

�
 pX
i=1

v2i

! pX
i=1

w2
i

!
; v; w in IRp.

5. For a Borel function f : X ! [1;1) we de�ne, as in [79], the f -norm of two probability

transition functions P1(x;A) and P2(x;A) as

kP1(x; �)� P2(x; �)kf :
= sup

g:jgj�f
jP1(x; g)� P2(x; g)j (1.13)

Similarly, we will often apply the same f -norm to probability measures in place of kernels

by simply de�ning a kernel from the probability measure, i.e. �(x;A) = �(A) for all

x 2 X.

6. Following the (perhaps non-standard) practice from [6], we will often write the function

H�(x) as an equivalent expression for the function H(x; �).

7. The in�mum over an empty set is taken to be 1 by convention.

8. We take e to be a column vector e = (1; 1; : : : ; 1)0 or e = (1; 1; 1; : : :)0 as is appropriate.
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Chapter 2

Convergence of Projected Stochastic Approximations

We establish a basic framework to study the convergence properties of the projected Stochastic

Approximation (SA) algorithm via the Kushner-Clark Lemma. The �rst part of this chapter

is a variation and extension of a series of results in Benveniste, M�etivier, and Priouret (BMP)

[6] which bound the noise terms for this algorithm. We make several alterations to BMP's

framework and weaken their Lipschitz condition on the regression function yet we are still able

to show almost sure convergence. The general conditions of this chapter, given in terms of the

Poisson equation solution, are not necessarily easy to check but they serve as a foundation for

the next chapter's results where specialized conditions implying these general conditions are

developed.

2.1 The Algorithm

Consider the projected stochastic approximation algorithm de�ned by the recursion:

�n+1 = ��

n
�n + n+1H(�n; Xn+1) + 2n+1�n+1(�n; Xn+1)

o
; n = 1; 2; : : :

�0 = � (2.1)

The iterates f�n; n = 0; 1; : : :g evolve in some closed projection set � � IRp and the Markovian

state process samples fXn; n = 0; 1; : : :g lie in X, some general state space. The algorithm is

driven by the functions H : � � X ! IRp and �n+1 : � � X ! IRp for n = 0; 1; : : :. The �n+1
terms essentially play the role of the �n+1 terms de�ned in the Kushner-Clark Lemma. We note

that this is the form of the recursion appearing in [6] which di�ers slightly from (1.7) studied

in [61].

The initial values of the algorithm are arbitrary, i.e. �0 = � in � and X0 = x in X. The

deterministic step-size sequence fn; n = 1; 2; : : :g is chosen to satisfy the following condition:

(S) n # 0; P1
n=0 n+1 =1;

P1
n=1 

1+b̀1
n <1; for some 0 < b̀

1 < 1.

The state process X = fXn; n = 1; 2; : : :g is formally de�ned in the next section but is

simply a �-parameterized discrete time Markov chain. The one-step transition kernel P�(x; �)
may depend on the continuous variable � and the probability distribution of the next state Xn+1
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depends on both the current state Xn and current iterate �n. We also assume that a generic

homogeneous Markov chain governed by the same one-step transition kernel P�(x; �) where the
parameter � is held �xed at any � 2 � is ergodic in the sense that there exists a P�-invariant

measure �� and

lim
n!1

E�;x [H(�;Xn)] = ��(H�)
:
= h(�); � 2 �; x 2 X: (2.2)

This algorithm (2.1) attempts to �nd points �? such that h(�?) = 0, and assuming certain

conditions are met which we will soon introduce, the algorithm is able to �nd these points �?

despite the fact that h is unknown, the current estimate �n is regularly updating to a new value,

and the Markov chain state process is not necessarily observed at any given parameter � held

�xed for a \long time".

The most common form of SA's take �n = 0 for all n = 0; 1; : : :, although there are several

possible uses for these terms being nonzero. The process f�n; n = 1; 2; : : :g can be used to model

either additional noise, a time dependent perturbation, or even an auxiliary control input to

the algorithm. For example, perturbations [6] to an SA algorithm with vector valued iterates

may be introduced if the individual vector components are updated successively rather than

simultaneously. Alternatively, if it is known that some initial (asymptotically decaying) bias

exists in an estimate H(�n; Xn) of h(�n), then it may be desirable to supply an opposing bias

through the �n term. As such, the �n term can be used to give the engineer designing an SA

procedure some limited means of control over the transient phase of the SA run. This is possible

because under the conditions we will soon propose, the �n term has no e�ect on the asymptotic

convergence of the iterates �n to �?.

2.2 The Basic Ingredients

Throughout the discussion, p and s are �xed positive integers denoting the dimensions of the

parameter and state vector spaces, respectively. We assume given a closed subset � of IRp, and

a Borel subset X of IRs. Let X1 be the in�nite Cartesian product of X with itself, and denote

by B(X1) the standard �{�eld on X1. We write a generic element � of X1 as � = (x; x1; : : :)

where x; x1; : : : are all elements of X. The coordinate process f�n; n = 0; 1; : : :g is then simply

de�ned by

�0(�) � x; �n(�) � xn; � 2 X
1; n = 1; : : : (2.3)

We postulate the existence of a family fP�;x; � 2 �; x 2 Xg of probability measures on B(X1)
such that

P�;x[�0 = x] = 1; � 2 �; x 2 X: (2.4)

For technical reasons, we need to assume a measurable functional dependence in � and x:

(P0) For every L = 1; 2; : : :, the mapping �� X! IR : (�; x)! P�;x[�n 2 Bn; n = 1; : : : ; L] is

Borel measurable for all possible choices of Borel subsets B1; : : : ; BL in B(X).
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In order to de�ne the stochastic approximation procedures, we start with a sample space


 equipped with a �{�eld of events F . The measurable space (
;F) is assumed large enough

to carry a sequence of X{valued rvs fXn; n = 0; 1; : : :g. We de�ne the �{valued rvs f�n; n =

0; 1; : : :g through the deterministic recursion:

�n+1 = ��

n
�n + n+1H(�n; Xn+1) + 2n+1�n+1(�n; Xn+1)

o
n = 0; 1; : : :

�0 = � 2 �: (2.5)

Here, H : � � X ! IRp and �n+1 : � � X ! IRp for n = 0; 1; : : : are Borel mappings for all

� in � and x in X. In (2.5), �� denotes the nearest-point projection operator on the set �.

We assume the operator �� is well de�ned and if the nearest point is not unique, then some

mechanism is in place to ensure that �� is well de�ned. If the closed set � is convex, the ��

is well de�ned without any such mechanism.

Next, we introduce the �ltration fFn; n = 0; 1; : : :g on (
;F) by setting

Fn � �f�m; Xm; m = 0; 1; : : : ; ng
= �f�0;Xm; m = 0; 1; : : : ; ng n = 0; 1; : : :

since the rvs �m, m = 1; 2; : : : ; n, are fully determined by the rvs �0, X0, and Xm; m = 1; : : : ; n.

Given a probability measure � on B(� � X), we postulate the existence of a probability

measure P on (
;F) such that

P[�0 2 A;X0 2 B] = �(A� B) (2.6)

for all Borel subsets A and B of � and X, respectively, and satisfying

P[Xn+1 2 BjFn] = P�n;Xn[�1 2 B] n = 1; : : : (2.7)

for all Borel subsets B in B(X). The existence of such a set-up is readily justi�ed by the

Daniell{Kolmogorov consistency theorem [69, p. 94] on �� X� X
1 in the usual manner.

Finally for each � 2 �, we also de�ne the one-step transition function (kernel)

P�(x;B)
:
= P�;x[�1 = B]; x 2 X; � 2 �; B 2 B(X):

We make the following additional assumptions:

(�) For each � 2 �, there exists a unique P�-invariant probability measure �� on (
;F).
(H1) For all � 2 �, H(�; �) := H�(�) is integrable under ��. Let us denote

h(�)
:
= ��(H�)

:
=
Z
X

H�(x)��(dx); � 2 �: (2.8)
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2.2.1 Fixed-� Algorithm and Generic Markov Chains

At times in our analysis, we will make comparisons of the state process de�ned above in (2.5),

(2.6) and (2.7) to a �xed-� state process which is the result of a new �xed-� algorithm whereby

�n is not computed as in (2.5) but is instead held �xed so that

�n = � 2 � for all n = 1; 2; : : :

For this �xed-� algorithm, the state process fXn; n = 0; 1; : : :g is simply a generic homogeneous

Markov chain governed by the one-step transition kernel P�(�; �) for the �xed � 2 �.

Additionally, in the same manner as we de�ned P in (2.6) and (2.7), the existence of some

other probability eP in place of P on a common measurable space also follows if we replace the

deterministic SA algorithm (2.5) with any other Fn-measurable algorithm such that �n 2 � for

all n = 0; 1; : : :, such as this �xed-� algorithm.

2.3 General Convergence Criteria

Here we list several general conditions directed at the Markovian state setup just described.

Recall, � is a given closed subset of IRp. In the next chapters as we look at speci�c applications,

we may also require that � be compact although we do not assume this in general for this

chapter.

2.3.1 Uniform Drift Conditions

This �rst condition (D0) will be a primary condition assumed for most results to follow:

(D0) There exists a function V : X! [1;1) and a constant 1 � CD <1 such that

E�;x [V (Xn)] � CDV (x); for all � in �, n = 0; 1; 2; : : :, and x in X.

These next conditions, assumed only for certain applications, are related to the stability of

the Markov chain and we may refer to them as uniform drift conditions since they are uniform

versions of a stability conditions studied extensively by Meyn and Tweedie [79]. Both (D1) and

(D2) are closely related.

(D1) There exists a function V : X ! [1;1) and two constants 0 < � < 1 and L < 1 such

that

P�V (x) � �V (x) + L for all � in � and x in X. (2.9)

(D2) There exists an extended real valued function V : X ! [1;1], a measurable set C, and

constants � > 0, b <1,

sup
�2�

��V (x) � ��V (x) + b1C(x); x 2 X:

where we de�ne ��V (x)
:
= P�V (x)� V (x).
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The condition (D0) for us is fundamental and we will either assume it holds or provide

conditions which imply (D0), such as (D1) or (D2) with V �nite. In any event, under (D0) we

implicitly de�ne the function V : X! [1;1).

2.3.2 Conditions Related to the Algorithm

For a function V : X ! [1;1) de�ned above, we assume the remaining conditions all hold for

some positive constant r such that 0 < r � 1

2(1+b̀1) whereby the real constant b̀1 lies in the

interval (0; 1) and satis�es (S).

(H2) There exists constants CH <1 and C� <1 such that for all x 2 X:

sup
�2�

kH(�; x)k � CHV
r(x);

sup
�2�

k�n(�; x)k � C�V
r(x); n = 1; 2; : : :

(P1) For all (�; x) 2 �� X, the following series converges:

��(x)
:
=

1X
n=0

�Z
X

P n
� (x; dy)H�(y)� h(�)

�
<1;

and we identify ��(x) as the solution to the Poisson equation associated with H(�; �) =
H�(�):

H�(x)� h(�) = ��(x)�
Z
X

P�(x; dy)��(y); x 2 X; � 2 �:

(P2) There exists a constant C� <1 such that

k��(x)k � C�V
r(x); for all � 2 �; x 2 X

kP���(x)k � C�V
r(x); for all � 2 �; x 2 X

(P3) There exists a constant CÆ <1 and such that

kP���(x)� P�0��0(x)k � CÆV
r(x) k� � �0kb̀1 ; for all �; �0 2 �; x 2 X.

where b̀1 2 (0; 1) is determined by (S).

We will loosely refer to algorithm (2.1) and this collection of conditions as our general

framework or general conditions.
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2.3.3 Remarks on our Conditions

The SA algorithm studied in [6] does not use a projection operator and, as a result, BMP's

results lead to an almost sure convergence which is conditional on f�n; n = 1; 2; : : :g being

almost surely bounded (as in the unconstrained Kushner-Clark Lemma). BMP then augment

their convergence theorem with an additional set of Lyapunov type stability conditions (see

[6, p. 239]) under which they show the iterates f�n; n = 1; 2; : : :g are in fact almost surely

bounded. Since we speci�cally focus on the constrained problem, such an augmentation is not

necessary. We believe that for many applications, while perhaps not necessary for convergence,

it is usually not a problem to use an \appropriately sized" compact projection and in so doing

it clearly simpli�es the convergence analysis. In this sense, our results are di�erent in that they

address a somewhat less diÆcult problem since the boundedness property does not need to be

shown if a compact projection is used. On the other hand, for those problems which do not

permit use of a compact projection operator, BMP's global convergence results [6, Thm. 17 p.

239] remain a viable approach.

Our main condition (D0) can be compared to BMP's assumption (A.5) 1 from [6]:

(A.5) For any compact subset Q of (their parameter space) D and any q > 0, there exists

�q(Q) <1 such that for all n, x 2 IRk, � 2 IRd

Ex;�

h
1f�k2Q;k�ng(1 + kXn+1kq)

i
� �q(Q)(1 + kxkq):

We note that (D0) can be weaker than (A.5) for two reasons. First, our (D0) does not require

the existence of the bound for all compact sets Q in the parameter space D but only for the

projection set �. Second, (D0) permits an arbitrary function V : X ! [1;1) in the inequality

while BMP's condition uses a function which must take the form const(1 + kxkq) for at least
suÆciently large q > 0. Additionally, this more general function V is compatible with many

of the results on V-uniformly ergodic Markov chains [79] which employ Foster-Lyapunov type

drift inequalities similar to conditions (D1) and (D2) involving V .

The other signi�cant departure from BMP's conditions in this chapter is the dropping of

BMP's local Lipschitz condition on the regression function h : �! IRp.

The remaining assumptions in our framework are essentially similar to the basic framework

developed in [6, pp 213{220], although we will discuss some additional di�erences in Section

2.5.

2.3.4 Simple Consequences Related to the Drift Inequalities

1. Under the drift condition (D1), we are assuming that V (x) � 1 for all x in X hence we

have the bound taken the supremum over arbitrary sample paths f�i; i = 1; 2; : : :g:
E�;x [V (Xn)] � sup

f�i2�;i=1;:::;n�1g
P�P�1P�2 � � �P�n�1V (x) (2.10)

1Assumption (A.5) is given here simply for reference and the reader should refer to [6] to see this assumption

in context.
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� �nV (x) + L
n�1X
i=0

�i

� V (x) +
L

1� �

�
�
1 +

L

1� �

�
V (x) for all n = 1; 2; : : : (2.11)

Therefore, if we de�ne the constant CD
:
= 1 + L

1��
so that for all n = 1; 2; : : :, then

sup
�2�

E�;x [V (Xn)] � CDV (x); x 2 X; (2.12)

and we see that (D1) implies (D0).

By the same argument under (D1), we also see that

sup
�2�

P n
� V (x) � CDV (x); n = 1; 2; : : : (2.13)

2. It follows readily from Jensen's Inequality that under (D0), which de�nes some function

V , we may also show a (D0)-like condition involving V r for any constant 0 � r � 1, i.e.

E�;x [V
r(Xn)] � (E�;x [V (Xn)])

r � Cr
DV

r(x) for all � in � (2.14)

all n = 0; 1; 2; : : :, and x in X.

3. The type of problems we consider will generally satisfy (D1), or (D2) with a �nite V . Our

general convergence results for this chapter will always assume (D0), while the conditions

(D1) or (D2) serve as tools to show (D0) in applications.

4. If the family of Markov chains given by fP�; � 2 �g are irreducible and positive recurrent

over �, then condition (D1), or condition (D2) with a �nite V , implies via Theorem 14.3.7

in [79] that

sup
�2�

��(V ) <1: (2.15)

2.3.5 Relationship between (D1) and (D2)

There is a very strong relationship between (D1) and (D2) and we use the next lemma to go

back and forth between the two. This lemma is a slight generalization of Lemma 15.2.8 in [79,

p. 370] which takes into account the uniformity over � of (D1) and (D2):

Lemma 2.1 The drift condition (D2) holds with a petite set 2 C if and only if V is unbounded

o� petite sets and (D1) holds.

Proof: See the Appendix.

2See [79] for the de�nition.
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2.4 The BMP Decomposition of the SA Algorithm

For the projected SA algorithm

�n+1 = ��

n
�n + n+1H(�n; Xn+1) + 2n+1�n+1(�n; Xn+1)

o
; n = 0; 1; : : :

we de�ne the sequence of noise terms f"n+1; n = 0; 1; : : :g so that

"n+1
:
= H(�n; Xn+1)� h(�n) + n+1�n+1(�n; Xn+1): (2.16)

We also de�ne a projection process fzn+1; n = 0; 1; : : :g as in [61, 64], so we can rewrite the

algorithm as:

�n+1 = �n + n+1H(�n; Xn+1) + 2n+1�n+1(�n; Xn+1) + n+1zn+1 (2.17)

= �n + n+1h(�n) + n+1"n+1 + n+1zn+1; n = 0; 1; 2; : : : (2.18)

Our main goal now is to study the noise sequence in a manner that allows us to show

condition (KC4) in the Kushner-Clark Lemma. We �rst perform a decomposition of the noise

terms using a variation of a method from [6, p. 220].

Assuming condition (P1) so that the solution �� to the Poisson equation exists, then

"k+1 = fH(�k; Xk+1)� h(�k)g+ k+1�k+1(�k; Xk+1)

= f��k(Xk+1)� P�k��k(Xk+1)g+ k+1�k+1(�k; Xk+1)

= f��k(Xk+1)� P�k��k(Xk)g
+ fP�k��k(Xk)� P�k��k(Xk+1)g+ k+1�k+1(�k; Xk+1):

If m < n, the step-size weighted sum of the noise terms is formed and then rearranged:

n�1X
k=m

k+1"k+1 =
n�1X
k=m

k+1 f��k(Xk+1)� P�k��k(Xk)g

+
n�1X
k=m

k+1 fP�k��k(Xk)� P�k��k(Xk+1)g+
n�1X
k=m

2k+1�k+1(�k; Xk+1)

=
n�1X
k=m

k+1 f��k(Xk+1)� P�k��k(Xk)g

+ m+1P�m��m(Xm) +
n�1X

k=m+1

k+1
n
P�k��k(Xk)� P�k�1��k�1(Xk)

o

� nP�n�1��n�1(Xn) +
n�1X

k=m+1

(k+1 � k)P�k�1��k�1(Xk)

+
n�1X
k=m

2k+1�k+1(�k; Xk+1)
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Now de�ne for k = m;m + 1; : : : ; n� 1:

"
(1)
k+1

:
= ��k(Xk+1)� P�k��k(Xk)

"
(2)
k+1

:
= P�k��k(Xk)� P�k�1��k�1(Xk)

"
(3)
k+1

:
=

k+1 � k
k+1

P�k�1��k�1(Xk)

"
(4)
k+1

:
= k+1�k+1(�k; Xk+1)

�m;n
:
= m+1P�m��m(Xm)� nP�n�1��n�1(Xn)

and if m < n we have the decomposition which is a variant of Lemma 1 in [6, p. 222]:

n�1X
k=m

k+1"k+1 (2.19)

=
n�1X
k=m

k+1"
(1)
k+1 +

n�1X
k=m+1

k+1"
(2)
k+1 +

n�1X
k=m+1

k+1"
(3)
k+1 +

n�1X
k=m

k+1"
(4)
k+1 + �m;n

This approach taken in this decomposition is a version of the state perturbation method3

described in [64].

2.5 Variations on the BMP Lemmas

In this section, we adapt to our framework each of the Lemma's 2 through 6 in [6, pp. 223-228]

which provide a bound for each term in the decomposition (2.19). These adapted lemmas are

then collected in Proposition 2.7 of the next section to show the overall sum of the step-size

weighted noise is almost surely convergent to a �nite rv. As we will later see, this is an approach

to proving the Kushner-Clark (KC4)-type noise condition in the Kushner-Clark Lemma.

Lemma 2.2 (Variant of BMP Lemma 2) Assume (D0), (P1), (P2) hold for any positive

constant r � 1

2(1+b̀1) where the positive constant 0 < b̀
1 < 1 satis�es (S).

1. There exists a constant A1 <1 such that for each m = 1; 2; : : :

E�;x

24sup
n�m


n�1X
k=0

k+1"
(1)
k+1


2
35 � A1V (x)

m�1X
k=0

2k+1; x 2 X; � 2 �:

Moreover, A1 � 4pC2
�CD.

2.
Pn�1

k=0 k+1"
(1)
k+1 converges P�;x-a.s. to a �nite rv.

3Contrary to our nomenclature, in [64] the process f�n; n = 1; 2; : : :g is referred to as the \state process".
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Proof: Consider the sum

�Mn =
n�1X
k=0

k+1 (��k(Xk+1)� P�k��k(Xk)) ; n = 1; 2; : : :

which is a vector martingale since (by the Markov property)

E [��k(Xk+1)jFk] = P�k��k(Xk):

The vector �Mn is a p-dimensional vector, and although convergence results exist for vector

martingales [76], we �nd it simpler to consider each of the p components separately by de�ning

the ith component vector as

M (i)
n =

n�1X
k=0

k+1 (��k(Xk+1)� P�k��k(Xk))
(i) ; n = 1; 2; : : : ;

For brevity, let us now drop the (i) in this de�nition and consider any of the p components of

the vector martingale as:

Mn =
n�1X
k=0

k+1 (��k(Xk+1)� P�k��k(Xk)) ; n = 1; 2; : : :

Clearly, each component of Mn above also has the martingale property.

Incremental orthogonality and Pythagoras formula [108, p.110] yield

E�;x

h
M2

n

i
= E�;x

h
M2

1

i
+

nX
k=2

E�;x

h
(Mk �Mk�1)

2
i

=
n�1X
k=0

2k+1E�;x

h
(��k(Xk+1)� P�k��k(Xk))

2
i

=
n�1X
k=0

2k+1E�;x

h
E
h
(��k(Xk+1)� P�k��k(Xk))

2 jFk

ii

=
n�1X
k=0

2k+1E�;x

h
E
h
(��k(Xk+1))

2 jFk

i
� (P�k��k(Xk))

2
i

�
n�1X
k=0

2k+1E�;x

h
(��k(Xk+1))

2
i

� C2
�

n�1X
k=0

2k+1E�;x

h
V 2r(Xk+1)

i

� C2
�

n�1X
k=0

2k+1E�;x

h
V 1(Xk+1)

i
where we have used (P2) in the second to last line. The last line follows since 2r � 1

1+b̀1 � 1.

Applying (D0) to the last line we �nd

E�;x

h
M2

n

i
� C2

�CDV (x)
n�1X
k=0

2k+1
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The bound in the �rst part of the lemma follows from Doob's inequality

E�;x

"
sup
n�m

 �Mn

2# = E�;x

"
sup
n�m

pX
i=1

�
�M (i)
n

�2#

�
pX
i=1

E�;x

"
sup
n�m

�
M (i)

n

�2#

�
pX
i=1

4 sup
n�m

E�;x

��
M (i)

n

�2�

� 4pC2
�CDV (x)

m�1X
k=0

2k+1; x 2 X; � 2 �:

Under (S),
P1

k=0 
1+b̀1
k+1 <1 and it then follows that

P1
k=0 

2
k+1 <1 since k # 0 and there

exists a k0 such that k0 < 1, hence 2k � 1+
b̀1

k for all k � k0.

For the convergence properties in the second part of the lemma, we note that
P1

k=0 
2
k+1 <1

which implies that each component martingale of the vector martingale converges a.s. to a �nite

random variable (as well as converging in L2) since it is bounded in L2 [108].

Lemma 2.3 (Variant of BMP Lemma 3) Assume (D0), (H2), (P1), (P3) for any positive

r � 1

2(1+b̀1) where the positive constant 0 < b̀
1 < 1 is determined from (S). There exists a

constant A2 <1 such that for all m = 1; 2; : : :,

E�;x

24 m�1X
k=1

k+1
"(2)k+1

!2
35 � A2V (x)

 
m�1X
k=1

1+
b̀1

k+1

!2

; x 2 X; � 2 �:

Moreover, A2 � 4C2
Æ (CH + 1C�)

2b̀1 CD.

Proof: Under (P3),

kP���(x)� P�0��0(x)k � CÆV
r(x) k� � �0kb̀1 ; x 2 X; �; �0 2 �: (2.20)

Also, the nearest point projection term is bounded by

kzkk � kH(�k�1; Xk) + k�k(�k�1; Xk)k

which follows since �k 2 � and, at the very least, the projection term can return the iterate to

this point so �k+1 = �k 2 �. Hence for k = 1; 2; : : : we have from (H2) and the de�nition of the

SA that

k�k � �k�1k � k kH(�k�1; Xk) + k�k(�k�1; Xk) + zkk (2.21)

� 2k kH(�k�1; Xk) + k�k(�k�1; Xk)k (2.22)

� 2CHkV
r(Xk) + 2C�

2
kV

r(Xk)

� 2 (CH + 1C�) kV
r(Xk) (2.23)
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Thus by (2.20) and (2.23),

E�;x

24 m�1X
k=1

k+1
"(2)k+1

!2
35

= E�;x

24 m�1X
k=1

k+1
P�k��k(Xk)� P�k�1��k�1(Xk)

!2
35

� E�;x

24 m�1X
k=1

k+1CÆV
r(Xk) k�k � �k�1kb̀1

!2
35

� 4E�;x

24 m�1X
k=1

k+1CÆV
r(Xk) (CH + 1C�)

b̀1 b̀1k V rb̀1(Xk)

!2
35

= 4C2
Æ (CH + 1C�)

2b̀1 E�;x

24 m�1X
k=1

1+
b̀1

k V r(1+b̀1)(Xk)

!2
35

� 4C2
Æ (CH + 1C�)

2b̀1 E�;x

24 m�1X
k=1

1+
b̀1

k V 1=2(Xk)

!2
35 :

since r(1 + b̀
1) � 1=2. By treating the sum as an inner product and applying the Schwarz

inequality [50, p. 2] to the last line

E�;x

24 m�1X
k=1

k
"(2)k+1

!2
35

� 4C2
Æ (CH + 1C�)

2b̀1  m�1X
k=1

1+
b̀1

k

!
E�;x

"
m�1X
k=1

1+
b̀1

k V (Xk)

#

� 4C2
Æ (CH + 1C�)

2b̀1  m�1X
k=1

1+
b̀1

k

!
m�1X
k=1

1+
b̀1

k E�;x [V (Xk)]

� 4C2
Æ (CH + 1C�)

2b̀1  m�1X
k=1

1+
b̀1

k

!
CDV (x)

m�1X
k=1

1+
b̀1

k :

Lemma 2.4 (Variant of BMP Lemma 4) Assume (D0), (P1), (P2) for any positive con-

stant r � 1

2(1+b̀1) where the positive constant 0 < b̀
1 < 1 satis�es (S). There exists a constant

A3 <1 such that for all m = 1; 2; : : : ;,

E�;x

24 m�1X
k=1

k+1
"(3)k+1

!2
35 � A3V (x)

2
1 ; x 2 X; � 2 �:

Moreover, A3 � C2
�CD.
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Proof: Applying (P2)

E�;x

24 m�1X
k=1

k+1
"(3)k+1

!2
35 = E�;x

24 m�1X
k=1

(k � k+1)
P�k�1��k�1(Xk))

!2
35

� E�;x

24 m�1X
k=1

(k � k+1)C�V
r(Xk)

!2
35

Next, the Schwarz inequality yields

E�;x

24 m�1X
k=1

k+1
"(3)k+1

!2
35 � C2

�

 
m�1X
k=1

(k � k+1)

!
E�;x

"
m�1X
k=1

(k � k+1)V
2r(Xk)

#

� C2
�

 
m�1X
k=1

(k � k+1)

!
m�1X
k=1

(k � k+1)E�;x

h
V 1(Xk)

i

� C2
�1

m�1X
k=1

(k � k+1)CDV (x)

� C2
�CDV (x)

2
1

Lemma 2.5 (Variant of BMP Lemma 5) Assume (D0), (P1), (H2) for any positive con-

stant r � 1

2(1+b̀1) where the positive constant 0 < b̀
1 < 1 satis�es (S). There exists a constant

A4 <1 such that for all m = 1; 2; : : :,

E�;x

24 m�1X
k=0

k+1
"(4)k+1

!2
35 � A4V (x)

 
m�1X
k=0

2k+1

!2

; x 2 X; � 2 �:

Moreover, A4 � CDC
2
� .

Proof: First we have from (H2):

k+1
"(4)k+1

 = 2k+1 k�k(�k; Xk+1)k � 2k+1C�V
r(Xk+1)

Hence,

E�;x

24 m�1X
k=0

k+1
"(4)k+1

!2
35

� C2
�E�;x

24 m�1X
k=0

2k+1V
r(Xk+1)

!2
35

� C2
�E�;x

" 
m�1X
k=0

2k+1

!
m�1X
k=0

2k+1V
2r(Xk+1)

#
; m = 1; 2; : : :
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where the last line follows from the Schwarz inequality. We have r(1 + b̀
1) � 1=2, so

E�;x

24 m�1X
k=0

k+1
"(4)k+1

!2
35 � C2

�

 
m�1X
k=0

2k+1

!
E�;x

"
m�1X
k=0

2k+1V
1(Xk+1)

#

� C2
�

 
m�1X
k=0

2k+1

!
CDV (x)

m�1X
k=0

2k+1; m = 1; 2; : : :

Lemma 2.6 (Variant of BMP Lemma 6) Assume (D0), (P1), (P2) for any positive con-

stant r � 1

2(1+b̀1) where the positive constant 0 < b̀
1 < 1 satis�es (S).

1. There exists a constant A5 <1 such that for each m = 1; 2; : : :,

E�;x

"
sup

1�n�m
k�0;nk2

#
� A5V (x)

m�1X
k=0

2k+1; x 2 X; � 2 �:

Moreover, A5 � 4CDC
2
� .

2. As n!1 we have that �0;n converges a.s.

Proof: Recall that �0;n
:
= 1P�0��0(X0)� nP�n�1��n�1(Xn) for n = 1; 2; : : :.

First we have X0 = x a.s. and under (P2)

k1P�0��0(x)k2 � 21C
2
�V

2r(x)

� 21C
2
�V

1(x)

Also, for each m = 1; 2; : : :

E�;x

"
sup

1�n�m

nP�n�1��n�1(Xn)
2# � C2

�E�;x

"
sup

1�n�m
2nV

2r(Xn)

#

Thus,

E�;x

"
sup

1�n�m
k�0;nk2

#
= E�;x

"
sup

1�n�m

1P�0��0(X0)� nP�n�1��n�1(Xn)
2#

� E�;x

"
sup

1�n�m

�
2
nP�n�1��n�1(Xn)

2 + 2 k1P�0��0(x)k2
�#

� 2E�;x

"
mX
k=1

2kV
2r(Xk)C

2
�

#
+ 221C

2
�V

2r(x)

� 2C2
�

mX
k=1

2kE�;x

h
V 1(Xk)

i
+ 221C

2
�V

1(x)

� 2CDC
2
�V

1(x)
mX
k=1

2k + 221C
2
�V

1(x)

� 4CDC
2
�V (x)

mX
k=1

2k+1; m = 1; 2; : : :
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and recalling CD � 1 for the last line.

To prove the lemma's second conclusion, we have for each n = 1; 2; : : :

E�;x

�nP�n�1��n�1(Xn)
2� � 2nC

2
�E�;x

h
V 2r(Xn)

i
� 2nC

2
�CDV (x); x 2 X:

Therefore,

E�;x

"
1X
n=1

nP�n�1��n�1(Xn)
2# � C2

�CDV (x)
1X
n=1

2n <1; x 2 X;

This implies the sum
P1

n=0

nP�n�1��n�1(Xn)
2 converges to a �nite rvP�;x-a.s. Hence, limn!1

nP�n�1��n�
0 P�;x-a.s. and thus

lim
n!1

nP�n�1��n�1(Xn)
 = 0; P�;x � a:s:

Therefore,

lim
n!1

k�0;n � 1P�0��0(x)k = lim
n!1

nP�n�1��n�1(Xn)
 = 0; P�;x � a:s:

2.5.1 Remarks

The above lemmas and their proofs are similar to the development in BMP [6] despite the fact

that we have made several signi�cant changes. We acknowledge this similarity and consider

these lemmas to be variations of BMP's originals. Let us summarize how these lemmas di�er

from BMP's:

1. As previously mentioned, we have changed BMP's growth in x factor, which is of the

form const(1 + kxkq), to the more general function V (x) compatible with the theory of

V -uniformly ergodic Markov chains, and satisfying (D0). Although this change is not

essential, we �nd it convenient and several applications of interest to us at this time

satisfy the conditions for V -uniformly ergodicity, see Meyn and Tweedie [79] for many

examples. As a result, BMP's assumption (A.5) is replaced by our (D0) (which can be

weaker).

2. We have already mentioned that BMP make the assumption in their Lemma's 1 through

6 and Proposition 7 that the regression function h : �! IRp is locally Lipschitz. For our

versions of these lemmas, we do not actually assume any continuity conditions whatsoever

on h, although in later sections we shall consider either basic continuity or a H�older

continuity.

3. We identify a trade-o� through the condition r(1 + b̀
1) � 1=2 which a�ects the space

of allowable functions H(�; x) permitted by condition (H2) versus the space of allowable

step-size sequences fk+1; k = 0; 1; : : :g satisfying (S). This trade-o� will be discussed in

Section 3.8.
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4. Since our focus in applications is not on the global unconstrained convergence problem

but for projected SA algorithms on a compact projection set �, we turn our attention

to verifying our conditions over the entire compact projection set �. We also treat as

a special case the situation which arises when our conditions can only be veri�ed for a

particular subset Q of the projection set � and we develop at least one possible approach

in Chapter 6 to show an unconditional convergence in this setting. While this particular

approach is very much problem dependent, we do allow the precise boundaries of this set

Q to be unknown a priori.

5. Although we are mainly interested in the application of projected algorithms yielding an

unconditional almost sure convergence, our framework does extend to the unconstrained

case, i.e. take the projection set � to be equal to IRp, but the convergence results via the

Kushner-Clark Lemma will then be conditional.

2.6 Main Properties of the Noise

In this section, we collect the results of the previous sections Lemmas for each term in the

decomposition and show several bounds on the \step-size weighted sum of error" sequence.

This next result is a variant of BMP's Proposition 7 [6].

Proposition 2.7 Assume (D0), (P1)-(P3), (H1)-(H2) hold for some positive r � 1

2(1+b̀1) and

0 < b̀
1 < 1 satis�es (S). There exist �nite constants B1, B2, B3 such that for all m = 1; 2; : : ::

1. We have

E�;x

24sup
n�m


n�1X
k=0

k+1"k+1


2
35 � B1V (x)

 
1 +

m�1X
k=0

2
b̀1
k+1

!
m�1X
k=0

2k+1: (2.24)

2. We have

E�;x

24sup
n�m


n�1X
k=0

k+1"k+1


2
35 � B2V (x)

 
1�

b̀1
1 +

m�1X
k=0

1+
b̀1

k+1

!
m�1X
k=0

1+
b̀1

k+1 (2.25)

3. And since
P1

k=0 
1+b̀1
k+1 <1:

(a)

E�;x

24sup
n�1


n�1X
k=0

k+1"k+1


2
35 � B3V (x)

1X
k=0

1+
b̀1

k+1 : (2.26)

(b) the series
P

k k+1"k+1 converges P�;x-a.s.
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Proof: Using the BMP decomposition

E�;x

24sup
n�m


n�1X
k=0

k+1"k+1


2
35

� E�;x

"
sup
n�m

 
n�1X
k=0

k+1"
(1)
k+1

+

n�1X
k=1

k+1"
(2)
k+1

 (2.27)

+


n�1X
k=1

k+1"
(3)
k+1

+

n�1X
k=0

k+1"
(4)
k+1

 + k�0;nk
!2
35

� 8E�;x

24sup
n�m


n�1X
k=0

k+1"
(1)
k+1


2
35 + 8E�;x

24sup
n�m


n�1X
k=1

k+1"
(2)
k+1


2
35

+8E�;x

24sup
n�m


n�1X
k=1

k+1"
(3)
k+1


2
35+ 8E�;x

24sup
n�m


n�1X
k=0

k+1"
(4)
k+1


2
35

+8E�;x

"
sup
n�m

k�0;nk2
#

� 8E�;x

24sup
n�m


n�1X
k=0

k+1"
(1)
k+1


2
35 + 8E�;x

24sup
n�m

 
n�1X
k=1

k+1
"(2)k+1

!2
35

+8E�;x

24sup
n�m

 
n�1X
k=1

k+1
"(3)k+1

!2
35+ 8E�;x

24sup
n�m

 
n�1X
k=0

k+1
"(4)k+1

!2
35

+8E�;x

"
sup
n�m

k�0;nk2
#

(2.28)

By Lemmas 2.2 through 2.6 we have shown the entire expression (2.28) is bounded by a

sum of expressions which are one of the following types:

const:V (x)
m�1X
k=0

2k+1 or const:V (x)

 
m�1X
k=0

1+
b̀1

k+1

!2

:

It's clear under (S) that both of these converge.

By squaring the Schwarz inequality, i.e. 
m�1X
k=0

1+
b̀1

k+1

!2

�
 
m�1X
k=0

2
b̀1
k+1

! 
m�1X
k=0

2k+1

!
;

we have the �rst conclusion since

E�;x

24sup
n�m


n�1X
k=0

k+1"k+1


2
35

� const:V (x)
m�1X
k=0

2k+1 + const:V (x)

 
m�1X
k=0

1+
b̀1

k+1

!2

(2.29)

� const:V (x)

 
m�1X
k=0

2k+1

! 
1 +

m�1X
k=0

2
b̀1
k+1

!
: (2.30)
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The second part is a variation on the �rst part where we notice

2k+1 = 1�
b̀1

k+1 
1+b̀1
k+1 � 1�

b̀1
1 1+

b̀1
k+1 ; k = 1; 2; : : : ;

hence
m�1X
k=0

2k+1 � 1�
b̀1

1

m�1X
k=0

1+
b̀1

k+1

Thus starting from (2.29),

E�;x

24sup
n�m


n�1X
k=0

k+1"k+1


2
35

� const:V (x)
m�1X
k=0

2k+1 + const:V (x)

 
m�1X
k=0

1+
b̀1

k+1

!2

� const:1�
b̀1

1 V (x)
m�1X
k=0

1+
b̀1

k+1 + const:V (x)

 
m�1X
k=0

1+
b̀1

k+1

!2

= V (x)
m�1X
k=0

1+
b̀1

k+1

 
const:1�

b̀1
1 + const:

 
m�1X
k=0

1+
b̀1

k+1

!!

Finally, to show convergence of the series
P

k k+1"k+1, recall the decomposition:

n�1X
k=0

k+1"k+1 =
n�1X
k=0

k+1"
(1)
k+1 +

n�1X
k=1

k+1"
(2)
k+1 +

n�1X
k=1

1"
(3)
k+1 +

n�1X
k=0

k+1"
(4)
k+1 + �0;n (2.31)

From Lemmas 2.2 and 2.6, the �rst term
Pn�1

k=0 k+1"
(1)
k+1 and the last term �0;n converge a.s.

The remaining terms for i = 2; 3; 4 all satisfy

E�;x

24 1X
k=0

k+1
"(i)k+1

!2
35 <1; x 2 X; � 2 �:

Also, by Jensen's inequality, for i = 2; 3; 4,

E�;x

"
1X
k=0

k+1
"(i)k+1

#
<1; x 2 X; � 2 �:

which implies
P1

k=0 k+1
"(i)k+1 each converge a.s. to a �nite r.v. (since the series is positive

term). Thus, for each i = 2; 3; 4, the series
P

k k+1"
(i)
k+1 converges a.s. since each component

vector converges absolutely. Therefore, the series
P

k k+1"k+1 converges almost surely to a

�nite rv.

2.6.1 A Modest Extension

If we look back at the developments up to now, it's clear a result nearly identical to Proposition

2.7 is also possible if the SA recursion is modi�ed to the following form:

�n+1 = ��

�
�n + n+1H(�n; Xn+1) + 1+

b̀1
n+1 �n+1(�n; Xn+1)

�
; n = 1; 2; : : :
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The changes required to the BMP decomposition, the Lemmas and Proposition 2.7 are minimal

and obvious. We do claim this to be an extension as the �n+1 terms decay more slowly with

results nearly identical to Proposition 2.7 still achieved. In fact, this modest extension will

become critical in Chapter 5 when we consider a stochastic optimization algorithm.

2.7 Finalizing the Convergence Analysis

So far, we have shown a bound involving the error term "n under a new set of conditions recast

from BMP's framework. We have weakened the Lipschitz condition on the regression function

h(�). We have also recast the framework leading to this bound using (D0) so we can easily

apply Meyn and Tweedie's drift criteria results in the next chapter. Actually, up to this point,

dropping the Lipschitz condition on h has had absolutely no e�ect on the outcome of our results

because it has not entered into the lemma's so far. Now, as we desire to show convergence, we

shall assume at minimum a simple continuity condition on h although in the next chapter we

will strengthen this to a \H�older" form. Lipschitz continuity, as was assumed by BMP, will not

be required here. Let us de�ne the conditions:

(H3) The regression function h : �! IRp is continuous.

(H4) For some 0 < ` < 1, there exists a Ch <1 and a Æ > 0 such that:

kh(�)� h(�0)k � Ch k� � �0k` ; �; �0 2 �; k� � �0k � Æ:

Up to this point we have followed the BMP monograph [6] fairly closely and we have shown

an analogous lemma for each lemma in BMP which bounds the corresponding terms of the BMP

decomposition. To make the next step to show convergence we will not be able to continue using

a version of BMP's approach under our modi�ed framework; nor can we simply cite BMP's

�nal convergence results [6, Theorems 13-15 , pp. 236{239] since these require the regression

function h to be locally Lipschitz continuous. Attempts to relax BMP's Lipschitz condition on

h(�) by adapting their development runs into immediate diÆculties since BMP's Lemma 8 [6,

p. 231] does not appear to extend to our framework without the Lipschitz condition on h, even

under (H4). As a result, we are unable to even show that the iterates f�n; n = 1; 2; : : :g tend

to converge to the solution ��(t) of the ODE

_��(t) = h(��(t)); t � 0;

��(0) = �:

via BMP's method under (H4).

Other versions of M�etivier and Priouret's work [77, 76] can also be found in the literature.

In particular, [77] is notable as it was instrumental in linking the convergence properties of the

SA to a Lipschitz condition on the Poisson equation solution. Under our conditions, this in

itself eliminates it as a candidate for showing convergence as we are are assuming the weaker
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H�older form (P3) on the Poisson equation solution. Interestingly though, [77] does not assume

the regression function h is Lipschitz and merely assumes continuity, but unfortunately, it

also assumes the following boundedness condition on the observation/measurement function

H(�; x):

(F) For every R > 0 there exists a constant MR such that

sup
k�k�R

sup
x
kH(�; x)k �MR

We feel (F) is undesirable for some of the queueing system applications we have in mind with

driving functions H(�; �) which are unbounded in the state variable x 2 X.

2.7.1 Kushner-Clark Lemma for the Projected Algorithm

The projected version of the Kushner-Clark Lemma [61, p. 191, Thm. 5.3.1] provides a means

to show an unconditional convergence for the iterates produced by a projected algorithm. This

is precisely the approach taken in [70] to show convergence of stochastic approximation iterates

driven by �nite state Markov chains. Ma, Makowski and Shwartz. [70] cited the work of

M�etivier and Priouret [77] coupled with the Kushner-Clark Lemma applied to a projected SA

algorithm.

For some compact projection � satisfying (KC0) below, Kushner and Clark consider the

following projected recursion

�0 2 �; �n+1 = �� f�n + n+1h(�n) + n+1"n+1 + n+1�n+1g ; n = 0; 1; : : : (2.32)

We now summarize the Kushner Clark assumptions needed for this approach:

(KC0) �
:
= f� : qi(�) � 0; i = 1; : : : ; sg is the closure of its interior and is bounded. The

qi : IR
p ! IR; i = 1; 2; : : : ; s are continuously di�erentiable functions de�ning �. At each

boundary point � 2 Æ�, the gradients of the active constraints are linearly independent.
(KC1) h(�) is a continuous function.
(KC2) fn+1; n = 0; 1; : : :g is a sequence of positive real numbers such that n > 0, n ! 0,

and
P1

n=0 n+1 =1.

(KC3) f�n+1; n = 0; 1; : : :g is a bounded (w.p.1) sequence tending to zero with probability

one.

(KC4) There is a T > 0 such that for each � > 0

lim
n!1

P

24sup
j�n

max
t�T

������
m(jT+t)�1X
i=m(jT )

i+1"i+1

������ � �

35 = 0: (2.33)
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Recall the times

t0 = 0; tn =
n�1X
k=0

k+1; n = 1; 2; : : :

and then construct the piecewise linear interpolated function �0(t) by de�ning

�0(tn) = �n;

�0(t) =
(tn+1 � t)

n
�n +

(t� tn)

n
�n+1; t 2 (tn; tn+1)

for each n = 0; 1; : : :. Also, de�ne a sequence of functions f�n(�) : n = 0; 1; : : :g which are time

shifts of the piecewise linear interpolated function:

�n(t) =

(
�0(t+ tn); t � �tn
�0; t � �tn; n = 0; 1; : : :

We shall refer to the following as the Kushner-Clark Lemma for the constrained case, see

[61, p. 191].

Lemma 2.8 (Kushner-Clark) Assume (KC0)-(KC4). There is a null set 
0 such that if

! 62 
0, the following hold.

1. �0(�) is bounded and uniformly continuous on [0;1).

2. If �(�) is the limit of a convergent subsequence of f�n(�)g, then �(�) satis�es the ODE

_� = ���fh(�)g: (2.34)

where ���fh(�)g = lim0<�!0
��f�+�h(�)g��

�
.

3. The set of stationary points of (2.34) is the set of Kuhn-Tucker points, denoted KT , where

KT
:
=

8<:� : there are �i � 0 such that � h(�) +
X

i:qi(�)=0

�irqi(�) = 0

9=; :
4. Let �? denote an asymptotically stable point (which must be in KT) of (2.34) with domain

of attraction DA(�?). If Q � DA(�?) is compact and �n 2 Q in�nitely often, then �n ! �?

as n!1.

2.7.2 Conditions (KC1)-(KC4)

Continuity of h(�) on � or (KC1) is certainly implied by our H�older continuity condition (H4)

in our framework. We are assuming the �n terms are all zero as we have essentially modeled
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these terms as our �n terms4 which are included in (KC4). Thus, the signi�cant remaining issue

is to verify the noise condition (KC4).

Claim 2.9 Condition (KC4) is implied by the almost sure convergence of

lim
n!1

nX
k=0

k+1"k+1

to a �nite rv.

Proof: Observe that we prove the claim if we show for all � > 0 that

P

24lim sup
n!1

24sup
j�n

max
t�T


m(jT+t)�1X
i�m(jT )

i+1"i+1

 � �

3535 = 0

Next, notice that for any � > 0 that

lim sup
n!1

24sup
j�n

max
t�T


m(jT+t)�1X
i�m(jT )

i+1"i+1

 � �

35 � lim sup
n!1

"
sup
m;p�n


pX

i=m

i+1"i+1

 � �

#
(2.35)

Since
P1

k=0 k+1"k+1 converges almost surely to a �nite rv and thus forms a Cauchy sequence,

the probability of the right hand side of (2.35) is zero for every epsilon � > 0.

2.8 Concluding Remarks

In this chapter we have developed a general framework and suÆcient conditions to study the

convergence for SA's taking observations from a Markov chain. In some ways these conditions

are weaker than BMP's and they still imply the noise condition (KC4) so we can apply Kushner-

Clark Lemma. Unfortunately, these general conditions are not much easier to verify, since they

are in terms of Poisson's equation solution and the unknown regression function h(�). The next
chapter remedies this situation by identifying veri�able conditions in terms of the transition

probabilities which imply the general conditions of this chapter.

4There is a slight loss of generality in doing this since the �n+1 terms under (KC3) can almost surely converge

to zero at a slower rate than the convergence rate of 2
n+1�n+1 implied by (H2) and (S). We proceed nonetheless

as this construction will be useful to bound the "n noise terms and the loss in generality appears to be minimal

in applications. Note that we have o�ered a modi�ed algorithm in the extension following Proposition 2.7 which

brings the conditions slightly closer.
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Chapter 3

Convergence for Geometrically Ergodic Markov Chains

For certain geometrically ergodic Markov chains, we introduce some new specialized conditions

on the family of transition kernels fP�; � 2 �g and the driving function H(�; x) for this large

class of SA problems which ensure the more general conditions of the previous chapter are

satis�ed. We present a straightforward approach to check these specialized conditions which

imply convergence via the ODE Method. As an example, we carry out the veri�cation for an

SA applied to a �-dependent random walk with a reection at the origin.

3.1 The Specialized Conditions

As in the previous chapter, we assume (D0) which identi�es a function V : X! [1;1) as well

as (S) which identi�es a constant 0 < `1 < 1 so that
P1

n=0 
1+b̀1
n+1 <1. We also assume a �xed

positive constant r � 1

2(1+b̀1) .
De�ne now a new norm for vector valued functions f : X ! IRp by a straightforward

extension to the same norm for scalar valued functions de�ned in (1.13) and f -norm in [79]:

kP n
� (x; �)� ��(�)kV r

:
= sup

f :kfk�V r

kP n
� (x; f)� ��(f)k : (3.1)

(Here, the symbol k�k with no subscript still represents the Euclidean norm.)

The following specialized conditions are de�ned in terms of the above b̀1, r and V .
(E1) There exists constants CE <1 and 0 < � < 1 such that

sup
�2�

kP n
� (x; �)� ��(�)kV r � CEV

r(x)�n; x 2 X; n = 0; 1; 2; : : :

(H5) There exists constants C5 <1, ÆH > 0, and b̀2 2 ( b̀1; 1) such that for all �, �0 2 � with

k� � �0k � ÆH and all x 2 X, we have

kH(�; x)�H(�0; x)k � C5V
r(x) k� � �0kb̀2

(C) There exists constants CC <1, ÆC > 0, and b̀3 2 ( b̀2; 1] such that for each n = 0; 1; : : :

kP n
� (x; �)� P n

�0(x; �)kV r � n CCV
r(x) k� � �0kb̀3 ;

for all �, �0 2 � with k� � �0k � ÆC , and all x 2 X.
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3.1.1 Remarks

1. The linear growth with n of the bound in condition (C) will be very helpful in applications.

2. The assumptions (P1) and (E1) are both related to the drift criteria (D1), as explained

in [79]. These relationships will be discussed later in Sections 3.4-3.5.

3. Condition (H5) can be somewhat restrictive; for example, it is not satis�ed for H(�; x) =

1fx��g which might be used to estimate the probability of bu�er overow in a queue. It

turns out that for a certain subclass of problems, we may relax condition (H5) via an

extension to our main results coming up. Thus, (H5) serves as a condition which should

be checked �rst (since it's easily veri�ed) and only if it should fail to be satis�ed would

we look into the extension.

3.2 Consequences of the Specialized Conditions

Here, we prove three theorems which imply the most diÆcult to verify of the general conditions

proposed in the previous chapter leading to convergence for SA's; namely, conditions (H4), (P2),

and (P3). These three theorems serve as an extension to BMP's Theorem 5 in [6, Chapter 2

(Part II)], which for reference is summarized here in the appendix.

First, a simple inequality is established which is used often in the theorems to follow.

Lemma 3.1 Let � be a �xed real constant in the interval (0; 1). For every ` such that 0 < ` < 1,

there exists a constant C(`) <1 such that���x log� x��� � C(`)x`; 0 < x � 1:

Proof: See the appendix.

This �rst main result identi�es conditions to show (H4), i.e. that h(�) is H�older continuous
over all �.

Theorem 3.2 Assume (S), (D1), (C), (H2), (H5) and (E1) with b̀
2 determined from (H5).

Then, there exists a constant Ch <1 such that

kh(�)� h(�0)k � Ch k� � �0kb̀2 ; �; �0 2 �:

Proof: Fix a Æ such that Æ � minfÆC ; ÆHg and 0 < Æ � 1.

Case 1) � and �0 are chosen in � so that k� � �0k � Æ:

kh(�)� h(�0)k
= k��H� � ��0H�0k
� k��H�k+ k��0H�0k
� 2 sup

�2�
k��H�k
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� 2 sup
�2�

kP n
� (x;H�)� ��H�k+ 2 sup

�2�
kP n

� (x;H�)k ; x 2 X

= 2 sup
�2�

CH

P n
�

�
x; C�1

H H�

�
� ��

�
C�1
H H�

�+ 2 sup
�2�

CH

P n
�

�
x; C�1

H H�

�
� 2CH sup

�2�
kP n

� (x; �)� �� (�)kV r + 2CH sup
�2�

kP n
� (x; �)kV r

The �rst term is bounded using (E1) while the second term is bounded by (2.13) and Jensen's

inequality under (D1) so that

kh(�)� h(�0)k � 2CHCEV
r(x)�n + 2CHC

r
DV

r(x); x 2 X

� 2CH (CE + Cr
D)V

r(x); x 2 X:

Thus, by choosing some arbitrary x0 in X and de�ning K
:
= 2CH(CE + Cr

D)V
r(x0) so

kh(�)� h(�0)k � K

� K

Æb̀2 k� � �0kb̀2 :
Case 2) � and �0 in � are chosen so that k� � �0k < Æ � 1. Under our assumptions, for any

n = 1; 2; : : : and any x 2 X, we have

kh(�)� h(�0)k
= k��H� � P n

� H�(x) + P n
� H�(x)� P n

�0H�(x)

+P n
�0H�(x)� P n

�0H�0(x) + P n
�0H�0(x)� ��0H�0k

� k��H� � P n
� H�(x)k+ kP n

� H�(x)� P n
�0H�(x)k

+ kP n
�0H�(x)� P n

�0H�0(x)k+ kP n
�0H�0(x)� ��0H�0k

� CHCEV
r(x)�n + CHCCV

r(x)n k� � �0kb̀3
+C5 k� � �0kb̀2 P n

�0V
r(x) + CHCEV

r(x)�n

� V r(x)
�
2CHCE �n + CHCCn k� � �0kb̀3 + Cr

DC5 k� � �0kb̀2� ; x 2 X:

In the second inequality above we have applied (C), (E1), and (H5) while the last inequality

we have again applied (2.13) under (D1) with Jensen's inequality.

This last inequality is true for all n = 1; 2; : : :, hence we may choose an integer n
:
=�

log� k��kb̀3� = log� k��kb̀3 + u where the remainder u is such that 0 � u < 1 and b̀
3 is

form (C). If we let ��
:
= � � �0, the bracketed term becomes�

2CHCE�
n + CHCCn k��kb̀3 + Cr

DC5 k��kb̀2�
� 2CHCE�

log�k��k
b̀3
+ CHCC(log� k��kb̀3 + 1) k��kb̀3 + Cr

DC5 k��kb̀2
� 2CHCE k��kb̀3 + CHCC k��kb̀3 log� k��kb̀3 + CHCC k��kb̀3 + Cr

DC5 k��kb̀2
� (2CHCE + CHCC + Cr

DC5) k��kb̀2 + CHCC k��kb̀3 log� k��kb̀3
�

�
2CHCE + CHCC + Cr

DC5 + CHCCC( b̀2= b̀3)� k��kb̀2 :
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Here, we have used Lemma 3.1 in the last inequality with 0 < b̀
2= b̀3 < 1 and C( b̀2= b̀3) < 1 a

constant.

Finally, since we are free to choose any x 2 X, we choose a minimizing x in V (x) for the

tightest bound. Unifying the two cases, there exists a Ch <1 such that

kh(�)� h(�0)k � Ch k� � �0kb̀2 ; �; �0 2 �:

The next theorem identi�es suÆcient conditions which imply (P2).

Theorem 3.3 Assume (S), (P1), (E1), and (H2). Then for all �; �0 2 �, and x 2 X

k��(x)k � C�V
r(x); (3.2)

kP���(x)k � C�V
r(x); (3.3)

where C� � CHCE(1� �)�1.

Proof: For ��(x) =
P1

n=0 (
R
P n
� (x; dy)H�(y)� h(�)) we have:

k��(x)k =


1X
n=0

�Z
P n
� (x; dy)H�(y)� h(�)

�
�

1X
n=0

Z P n
� (x; dy)H�(y)� ��(H�)


� CH

1X
n=0

kP n
� (x; �)� ��(�)kV r by (H2) and de�nition of norm k�kV r

� CHCE

1X
n=0

V r(x)�n from assumption (E1)

=
CHCE

1� �
V r(x); � 2 �; x 2 X:

Similarly,

kP���(x)k =


1X
n=1

�Z
P n
� (x; dy)H�(y)� h(�)

�
� CHCE

1X
n=1

V r(x)�n

=
CHCE �

1� �
V r(x)

� CHCE

1� �
V r(x); � 2 �; x 2 X:

The following theorem, which is probably the most signi�cant of the three theorems here,

shows that the Poisson equation solution �� is also H�older continuous under a set of assumptions

which include our (C). The proof is lengthy because we have written out most of the steps in

detail.
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Theorem 3.4 Assume (S), (H2), (H5), (P1), (E1), (C), and (D1) with the constants b̀1 de-

termined from (S), b̀2 determined from (H5) and b̀3 determined from (C). Then there exists a

constant CÆ <1 such that for all �; �0 2 �; x 2 X

k��(x)� ��0(x)k � CÆV
r(x) k� � �0kb̀1 ; (3.4)

kP���(x)� P�0��0(x)k � CÆV
r(x) k� � �0kb̀1 : (3.5)

Proof: Pick a Æ such such Æ � minfÆC ; ÆHg and 0 < Æ � 1. Again, we let �� = � � �0 and

consider the two cases of k��k � Æ and k��k > Æ separately.

We now show the Poisson equation solution satis�es (3.4). The case k��k > Æ follows

trivially from Theorem 3.3:

k��(x)� ��0(x)k � k��(x)k+ k��0(x)k
� 2

CHCE

1� �
V r(x)

� 2

Æb̀1 CHCE

1� �
V r(x) k��kb̀1 ; �; �0 2 �; k��k � Æ: (3.6)

Now consider the case k��k � Æ such that �; �0 2 �,

k��(x)� ��0(x)k
=


1X
n=0

�Z
P n
� (x; dy)H�(y)� h(�)

�
�

1X
n=0

�Z
P n
�0(x; dy)H�0(y)� h(�0)

�
�

1X
n=0

Z P n
� (x; dy)H�(y)� h(�)�

Z
P n
�0(x; dy)H�0(y) + h(�0)

 (3.7)

�
N�1X
n=0

kP n
� (x;H�)� h(�)� P n

�0(x;H�0) + h(�0) + P n
� (x;H�0)� P n

� (x;H�0)k

+
1X

n=N

kP n
� (x;H�)� ��(H�)� P n

�0(x;H�0) + ��0(H�0)k (3.8)

where we have introduced some canceling terms in the last inequality. Continuing from (3.8)

k��(x)� ��0(x)k

�
N�1X
n=0

fkP n
� (x;H�)� P n

� (x;H�0)k+ kP n
� (x;H�0)� P n

�0(x;H�0)k+ kh(�)� h(�0)kg

+
1X

n=N

kP n
� (x;H�)� ��(H�)k+

1X
n=N

kP n
�0(x;H�0)� ��0(H�0)k

�
N�1X
n=0

fkP n
� (x;H� �H�0)k+ kP n

� (x;H�0)� P n
�0(x;H�0)k+ kh(�)� h(�0)kg

+ 2 sup
�2�

1X
n=N

kP n
� (x;H�)� ��(H�)k (3.9)
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We look at several of the above terms. First, from (H5) followed by (2.13) under (D1) (and

using Jensen's Inequality)

kP n
� (x;H� �H�0)k � C5 k� � �0kb̀2 P n

� (x; V
r); n = 0; 1; : : : ; x 2 X

� C5 k� � �0kb̀2 Cr
DV

r(x); x 2 X:

Second, from (H2) and (C),

kP n
� (x;H�0)� P n

�0(x;H�0)k � CH kP n
� (x; �)� P n

�0(x; �)kV r

� nCCCHV
r(x) k� � �0kb̀3 ; n = 0; 1; : : : ; x 2 X:

Third, from Theorem 3.2 there exists a Ch <1 such that

kh(�)� h(�0)k � Ch k� � �0kb̀2 :
Fourth, from (H2) and (E1)

kP n
� (x;H�0)� ��(H�0)k � CECH�

nV r(x); n = 0; 1; : : : ; x 2 X

Substituting these bounds into (3.9) we �nd

k��(x)� ��0(x)k

�
N�1X
n=0

�
C5 k��kb̀2 Cr

DV
r(x) + nCCCHV

r(x) k��kb̀3 + Ch k��kb̀2�

+ 2 sup
�2�

1X
n=N

CECH�
nV r(x)

= NC5 k��kb̀2 Cr
DV

r(x) +
N(N � 1)

2
CCCH k��kb̀3 V r(x) +NCh k��kb̀2

+ 2CECH
�N

1� �
V r(x)

� V r(x)

(
(Cr

DC5 + Ch)N k��kb̀2 + CCCH

2
N(N � 1) k��kb̀3 + 2CECH

�N

1� �

)

since V r � 1.

This last inequality is true for all integers N � 1 and we now set

N =
�
log� k��kb̀3� =

2666 ln k��k
b̀3

ln �

3777 = ln k��kb̀3
ln �

+ u � 1

where the remainder is such that 0 � u < 1. Thus, the bracketed expression becomes(
(Cr

DC5 + Ch)N k��kb̀2 + CCCH

2
(N � 1)N k��kb̀3 + 2CECH

�N

1� �

)
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�
�
(Cr

DC5 + Ch)(log� k��kb̀3 + 1) k��kb̀2
+

CCCH

2
log� k��kb̀3 (log� k��kb̀3 + 1) k��kb̀3 + 2CECH

�log�k��k
b̀3+1

1� �

9>=>;
� (Cr

DC5 + Ch) k��kb̀2 log� k��kb̀3 + (Cr
DC5 + Ch) k��kb̀2

+
CCCH

2
k��kb̀3 �log� k��kb̀3� log� k��kb̀3 + CCCH

2
k��kb̀3 log� k��kb̀3

+ 2CECH
k��kb̀3
1� �

�
�
Cr
DC5 + Ch +

CCCH

2

�
k��kb̀2 log� k��kb̀3

+
CCCH

2
k��kb̀3 �log� k��kb̀3� log� k��kb̀3 +

 
Cr
DC5 + Ch +

2CECH

1� �

!
k��kb̀2

We have 0 < b̀
1 < b̀

2 < b̀
3 � 1 which are determined from (S) and (H5) and (C) so from

Lemma 3.1,

k��kb̀2 log� k��kb̀3 =
b̀
3b̀
2

k��kb̀2 log� k��kb̀2
�

b̀
3b̀
2

C( b̀1= b̀2) k��kb̀1
Also from Lemma 3.1 and this last line,

k��kb̀3 �log� k��kb̀3� log� k��kb̀3 � C( b̀2= b̀3) k��kb̀2 log� k��kb̀3
�

b̀
3b̀
2

C( b̀1= b̀2)C( b̀2= b̀3) k��kb̀1
Finally, since 0 < b̀

1 < b̀
2 < 1, we clearly have

k��kb̀2 � k��kb̀1 ; for k��k � Æ � 1.

Thus, for this case k��k � Æ � 1 such that �; �0 2 �, there exists a C 0
� <1 such that

k��(x)� ��0(x)k = C 0
�V

r(x) k��kb̀1 :
Unifying the bounds for the case k��k � Æ with the case for k��k > Æ we have

k��(x)� ��0(x)k � C�V
r(x) k� � �0kb̀1 �; �0 2 �; x 2 X

for a suitably large constant C� <1.
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Finally, (3.5) can be computed similarly or we can simply note that we have

kP���(x)� P�0��0(x)k
=


1X
n=1

�Z
P n
� (x; dy)H�(y)� h(�)

�
�

1X
n=1

�Z
P n
�0(x; dy)H�0(y)� h(�0)

�
�

1X
n=1

�Z P n
� (x; dy)H�(y)� h(�)

�
�
�Z

P n
�0(x; dy)H�0(y)� h(�0)

�
�

1X
n=0

�Z P n
� (x; dy)H�(y)� h(�)

�
�
�Z

P n
�0(x; dy)H�0(y)� h(�0)

�
and the last line is bounded from (3.7).

Remark: At the end of their paper[70], Ma, Makowski, and Shwartz made a H�older general-

ization to their main (Lipschitz) conditions for the �nite state Markov chain case they consider.

While similar in some ways, our approach here is substantially di�erent from theirs and provides

extensions to the non-�nite state space case.

3.2.1 Possible Extensions

We mention two possible extensions:

Super-linear Condition (C)

From the proof of Theorems 3.2 and 3.4, it is evident that condition (C) can be further weakened

to allow faster than linear growth in n, such as np for some �xed p > 1 by repeatedly applying

Lemma 3.1. The revised condition is then

(C') There exist constants p � 1, CC < 1, ÆC > 0 and b̀
3 2 ( b̀2; 1] such that for each

n = 0; 1; : : :

kP n
� (x; �)� P n

�0(x; �)kV r � np CCV
r(x) k� � �0kb̀3 ;

for all �, �0 2 � with k� � �0k � ÆC , and all x 2 X.

At present, we are not aware of any applications which might bene�t from such an extension

so we merely mention it as a corollary. The details of the proof are similar to Theorem 3.4.

Corollary 3.5 Assume (S), (H2), (H5), (P1), (E1), (C'), and (D1) with the constants b̀1
determined from (S), b̀2 determined from (H5) and b̀3 determined form (C'). Then, there exists

a constant C� <1 such that for all �; �0 2 �; x 2 X

kh(�)� h(�0)k � Ch k� � �0kb̀2
k��(x)� ��0(x)k � CÆV

r(x) k� � �0kb̀1 ;
kP���(x)� P�0��0(x)k � CÆV

r(x) k� � �0kb̀1 :
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Weakening of (H5)

We pointed out earlier that (H5) can be restrictive. For some applications, the result of Theorem

3.4 can be improved by noting that

kP���(x)� P�0��0(x)k
=


1X
n=1

�Z
P n
� (x; dy)H�(y)� h(�)

�
�

1X
n=1

�Z
P n
�0(x; dy)H�0(y)� h(�0)

�
=


1X
n=0

�Z
P n
� (x; dy)P�(y;H�)� h(�)

�
�

1X
n=0

�Z
P n
�0(x; dy)P�0(y;H�0)� h(�0)

� :
In order to show (3.5), we can replace condition (H5) in Theorem 3.4 with the following condi-

tion:

(H6) There exists constants C5 <1 and ÆH > 0 such that for all �, �0 2 � with k� � �0k � ÆH
and all x 2 X, we have

kP�(x;H�)� P�0(x;H�0)k � C5V
r(x) k� � �0kb̀2 :

With (H6) replacing (H5) we can show (3.5) by the same method as Theorem 3.4. The advantage

of making this replacement is in some applications where (H5) does not hold, we may be able to

show (H6) if the one-step transition kernel P� has a suÆcient smoothing e�ect when integrated

with H�. A similar observation was also noted in [6] for their framework.

3.3 Comparison to BMP's Results

In BMP's framework[6, p. 216], verifying the convergence properties of the SA involves verifying

their condition (A.4) which says:

(A.4) There exists a function h on �, and for each � 2 � a function ��(�) on X such that

(i) h : �! IRp is locally Lipschitz;

(ii) (I � P�)�� = H� � h(�) for all � 2 �;

(iii) for all compact subsets Q of �, there exist constants C3, C4, q3, q4, � 2 [1
2
; 1], such

that for all �; �0 2 Q

k��(x)k � C3 (1 + kxkq3) (3.10)

kP���(x)� P�0��0(x)k � C4 k� � �0k� (1 + kxkq4) (3.11)

We now compare how one may verify (A.4) BMP's framework versus our conditions (H3),

(P1)-(P3) in our framework. In BMP's framework, their Theorem 5 (summarized in the Ap-

pendix here) identi�es a set of conditions which imply (A.4) holds. We make two main points

comparing BMP's Theorem 5 to the last three theorems under our specialized conditions.
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The �rst point is that BMP's local Lipschitz continuity condition on h, condition (A.4)-(i),

is stronger than what is required for the Kushner-Clark Lemma. In Theorem 3.2 we weaken

this by showing a collection of completely veri�able conditions which imply (H4) which in turn

implies (H3). Condition (H4) is simply H�older continuity

kh(�)� h(�0)k � Ch k� � �0k` ; for all �; �0 2 � and k� � �0k � Æ, (3.12)

for some 0 < ` < 1 and Æ > 0. We found this seemingly minor change from BMP's local

Lipschitz condition on h(�) to the H�older form (H4) actually paid substantial dividends as the

conditions assumed in Theorem 3.2 are weaker than BMP's Theorem 5.

The second point compares the following assumption which is made by BMP in their The-

orem 5 [6].

Assumption For some compact subset Q � �, there exists constants K <1 and Np1(g) <

1 such that for all n = 1; 2; : : :

kP n
� g(x)� P n

�0g(x)k � KNp1(g) k� � �0k (1 + kxkq); �; �0 2 Q; x 2 X; (3.13)

for any function g belonging to a particular class of functions denoted Li(p1). (See the appendix

or [6] for de�nitions of Np1(g) and Li(p1) although they are not particularly important to the

discussion here.)

Theorems 3.2-3.4 show that, in our framework which include some reasonable assumptions also

made by BMP, h is shown H�older continuous while (3.13) is weakened to our condition (C), i.e.

for all n = 1; 2; : : :

kP n
� (x; �)� P n

�0(x; �)kV r � n CCV
r(x) k� � �0kb̀3 ; for all �, �0 2 � and x 2 X.

If we may neglect any di�erences brought about by the substitution of V r(x) in our frame-

work for (1 + kxkq) in BMP's, our condition (C) is in general substantially weaker than (3.13)

since it allows linear growth with n = 1; 2; : : :. We will �nd in practice (C) is much easier to

verify than (3.13) and we will show later a simple birth-death Markov chain example where (C)

is easily checked with very little work while it is unclear how one would verify (3.13).

To summarize, the main point we wish to make for this chapter is that (H5) and (C) together

with (E1) form the basis of a new collection of specialized conditions for geometrically ergodic

Markov chain state processes which o�er signi�cant advantages in terms of ease of veri�cation

over those presented in BMP's Theorem 5.

3.4 SuÆcient Conditions for (E1)

In this section we summarize some ergodicity results from Chapters 15 and 16 of Meyn and

Tweedie [79] which form a critical link to condition (E1). The next condition, taken verbatim

from [79], states that a generic Markov chain X = fXn; n = 0; 1; : : :g described by a Markov

transition function P (x;A) for A 2 B(X) undergoes a geometric drift towards a subset C of X.

Condition (V4) is simply a �xed-� version of (D2). Recall that �V (x) = PV (x)� V (x).
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(V4) There exists an extended real valued function V : X! [1;1], a measurable set C, and

constants � > 0, b <1,

�V (x) � ��V (x) + b1C(x); x 2 X:

We also need to de�ne the (scalar) V -norm [79, Chapter 16] of two kernels

�1(x;A); �2(x;A) A 2 B(X); x 2 X

as

jjj�1(x; �)� �2(x; �)jjjV :
= sup

x2X

k�2(x; �)� �2(x; �)kV
V (x)

: (3.14)

Here, the norm k�kV in the numerator of (3.14) is the version for scalar valued functions f : X!
IR de�ned in (1.13). As in (1.13), we can also apply (3.14) to measures such as the invariant �

by simply de�ning the kernel �(x;A)
:
= �(�) for all x 2 X; A 2 B(X).

It follows immediately from Theorem 16.0.1 of [79, p. 383] that for any � 2 � such that

a generic �xed-� Markov chain is �-irreducible, aperiodic and satis�es a (V4) condition, there

exists an 0 < �� < 1 and an R� <1 such that

jjjP n
� � ��jjjV � R��

n
� ; n = 1; 2; : : : : (3.15)

In order to verify condition (E1), we seek an extension of (3.15) which holds for vector

valued functions f : X! IRp dominated in Euclidean norm by V r (instead of V ), and which is

uniform over all � in �, i.e. an R <1 and a 0 < � < 1 such that

sup
�2�

jjjP n
� � ��jjjV r � R�n; n = 1; 2; : : : :

The extension to (�nite dimension) vector valued functions f : X ! IRp is straightforward

if we use for the numerator of (3.14) the norm de�ned in (3.1). Fix any � 2 �. For vector

valued functions f = (f (1); f (2); : : : ; f (p))0 such that kfk � V r, each vector component is also

dominated by V r in absolute value, i.e.
���f (i)��� � V r for i = 1; : : : ; p. Hence,

kP n
� � ��kV r = sup

f :kfk�V r

kP n
� (x; f)� ��(f)k

= sup
f :kfk�V r

 pX
i=1

���P n
� (x; f

(i))� ��(f
(i))
���2!1=2

�
0B@ pX
i=1

sup
jf(i)j�V r

���P n
� (x; f

(i))� ��(f
(i))
���2
1CA
1=2

(3.16)

Let us now assume that there exists an R� < 1 and a 0 < �� < 1 such that (3.15) holds for

each vector component of f : X! IRp such that
���f (i)��� � V r., i.e.

sup
x2X

supjf(i)j�V r

���P n
� (x; f

(i))� ��(f
(i))
���

V r(x)
� R��

n
� ; i = 1; : : : ; p; n = 1; 2; : : : : (3.17)
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Substituting this in (3.16),

kP n
� (x; �)� ��kV r �

 pX
i=1

R2
��

2n
� V

2r(x)

!1=2

=
p
pR��

n
�V

r(x)

so for vector valued functions f such that kfk � V r we have

jjjP n
� � ��jjjV r = sup

x2X

kP n
� (x; �)� ��kV r

V r(x)

� p
pR��

n
� :

This shows that it is suÆcient to check (E1) by checking each component function f (i) such

that
���f (i)��� � V r for i = 1; : : : ; p.

Thus, there are two remaining issues to address and the uniformity over � 2 � is addressed

�rst, i.e. we need to �nd \uniform" upper bounds R; � for R� � R and �� � � < 1 over all

� in �. Since these bounds do not need to be particularly tight, we seek a loose bound which

holds under the broadest possible conditions. While bounds such as these are an active area of

research [4, 80, 91, 104], we feel that [80] o�ers a promising approach because it allows compu-

tation of bounds on the convergence rate parameters based on the drift equation (D2) provided

certain additional conditions are met. Hence, if these conditions are met, the uniformity of the

convergence rate bound over � follows immediately from the uniformity of (D2).

We note that BMP avoid the uniformity issue by simply assuming in their Theorem 5,

condition (i), that for all functions g in a class of functions Li(p1) (see appendix for de�nition)

that

kP n
� g(x1)� P n

� g(x2)k � K�n(1 + kx1kq1 + kx2kq2); (3.18)

for all � 2 �; x1; x2 2 X, and n � 0. It's clear that (3.18) is related to the geometric ergodicity

of the chain, and in fact, a uniform \(E1)-type" condition follows readily from (3.18) via BMP's

Lemma 1 [6, p 252]; but, the uniformity over � 2 � in this \(E1)-type" condition is inherited

from the assumed uniformity over � 2 � in (3.18). Although we could take this approach, we

feel it is less than completely satisfactory due to the possibly diÆcult task of �nding or proving

existence of a �nite K in (3.18) for all � 2 �. We take a more direct approach which is enabled

by some recent results on bounding and actually computing the geometric convergence rate

parameters of certain Markov chains.

Next, we summarize the results from [80] to address the uniformity issue above while the

the following section addresses the second remaining issue of the \smaller" dominating function

V r.

3.4.1 Computable Bounds for (E1)

This section summarizes results by Meyn and Tweedie [80] which yield a computable bound on

the convergence rate parameters for certain �xed-� Markov chains satisfying a (V4) condition.
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If (V4) is strengthened to a uniform (D2) condition, then these results can be very useful for

verifying (E1).

Theorem 3.6 (Meyn and Tweedie [80]) Suppose that for some atom � 2 B(X) we have

constants � < 1, b <1 and a function V � 1 such that

PV � �V + b1�: (3.19)

Let # = 1�M�1
� , where

M� =
1

(1� �)2

h
1� �+ b+ b2 + ��(b(1� �) + b2)

i
(3.20)

and

�� = sup
jzj�1

�����
1X
n=0

h
P n(�; �)� P n�1(�; �)

i
zn
����� (3.21)

Then, X is V -uniformly ergodic, and for any � > #,

jjjP n � �jjjV �
�

�� #
�n; n = 1; 2; : : : (3.22)

The value of this bound is that it is given in terms of the drift parameters and the Markov

transition probabilities. As is apparent from this result, the key challenge lies in bounding the

quantity ��. In the special case that the chain is strongly aperiodic, Meyn and Tweedie also

prove the following.

Theorem 3.7 (Meyn and Tweedie [80]) Suppose that (3.19) holds for an atom � 2 B(X),
and also that the atom is strongly aperiodic, i.e. for some Æ > 0,

P (�; �) > Æ

Then

�� � 32� 8Æ2

Æ3

 
b

1� �

!2

: (3.23)

Meyn and Tweedie make very clear that this bound is not particularly tight. While other

authors have shown tighter results, they usually take into account the speci�c structure of the

chain to achieve it. A loose bound is adequate for our needs.

A similar result has also been extended to the general strongly aperiodic case where the

drift inequality holds instead for a set C 2 B(X).

Theorem 3.8 (Meyn and Tweedie [80]) Suppose that C 2 B(X) satis�es

P (x; �) � Æ�(�); x 2 C;
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for some Æ > 0 and probability measure � concentrated on C, and that there is a drift to C in

the sense that for some �C < 1, some bC <1 and a function V � 1,

PV � �CV + bC1C ; (3.24)

where C; V also satisfy

V (x) � �C <1; x 2 C:
Then X is V -uniformly ergodic and

jjjP n � �jjjV � (1 + C)
�

�� #
�n; n = 1; 2; : : : ;

for any � > # = 1�M�1
C , for

MC =
1

(1� ��)2

h
1� ��+�b+ �b2 + ��C(�b(1� ��) + �b2)

i
de�ned either in terms of the constants

C = Æ�2[4bC + 2Æ�C�C ];

�� =
�C + C
1 + C

< 1;

�b = �C + C <1

and the bound

��C � 4� Æ2

Æ5

 
bC

1� �C

!2

or in the case where

�
:
= inf

x2C
P (x; C)� Æ > 0

in terms of the constants

b�C =
bC + Æ(�C�C � �(V ))

1� Æ

C =
(1� Æ)b�C

Æ�
;

b�� = �(V )� �C

�� =
�C + C
1 + C

< 1;

�b = b�� + C <1

and the bound

��C =
1� �2

2Æ4�

 
bC

1� �C

!2

:
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Thus, we have immediately that for uniformly strongly aperiodicMarkov chains which satisfy

either a common drift inequality

P�V � �V + b1�; � 2 �

such that

sup
�2�

P�(�; �) > Æ

or if

P�V � �CV + bC1C ; � 2 �

and

sup
�2�

P�(x; �) > Æ�(�); x 2 C

for some 0 < Æ <1, then we have a uniform bound and (E1) follows.

While it remains an active area of research, e�orts to extend these convergence rate bounds

beyond the strongly aperiodic case have fallen short of a completely computable bound, al-

though Meyn and Tweedie do present a somewhat less explicit result which contains one possi-

bly unbounded parameter, the �� term. Nevertheless, sometimes additional information on the

chain can be exploited to bound this quantity �� in certain circumstances. Examples of these

techniques appear in [80]. The result is:

Theorem 3.9 (Meyn and Tweedie [80]) Suppose again that (3.24) holds and

that there exists an atom � such that for some N � 1 and ÆC > 0,

NX
j=1

P j(x; �) � ÆC ; x 2 C:

De�ne the constants

ÆN = ÆC=N
2;

bk = bC(1 + Æ�1N )k; k = 0; � � � ; N;

�k = 1� (1� �C)=
k�1Y
i=0

(1 + bi=ÆN); x = 0; � � � ; N:

Then, there exists a function VN with

V � VN � V + bN

such that

PVN � �NVN + bN1�:

Thus, Theorem 3.6 holds using �N , bN and with VN in place of V , so that in terms of V we

have

jjjP n � �jjjV � [1 + bN ]
�

#� �
�n; n = 1; 2; : : : ;

for � > # where # is de�ned in Theorem 3.6 using �N , bN .
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3.4.2 Condition (D2) and Exponents of V

Under (D2) with �nite function V , the following result shows that we also have a similar (D2)

drift condition for each of the \smaller" functions V r for each real exponent 0 � r � 1, i.e. we

show if there exists two constants 0 < � < 1 and b <1 and a set C such that

P�V (x) � �V (x) + b1fCg for all � in � and x in X,

then there exists two constants 0 < �r < 1 and br <1 such that

P�V
r(x) � �rV

r(x) + br1fCg for all � in � and x in X. (3.25)

It is important to note that C is the same set in both inequalities.

It should be clear that this allows us to verify (E1) by using (3.25) with the computable

bounds of the previous section.

Theorem 3.10 If (D2) holds for V : X! [1;1) and some set C, then (D2) also holds for the

function V r under the same petite set C where r is any positive real in the interval [0; 1].

Proof: Suppose (D2) holds for the function V : X! [1;1) and if we let � = 1� �, then

P�V � �V + b1fCg; for all � 2 �.

Consider any rational q = n=d in the interval [0; 1] so that V q = V n=d for some integers

n � d. We have from Jensen's inequality

P�V
q � (P�V )

n=d

�
�
�V + b1fCg

�n=d
� �n=dV n=d +

b1fCg
�(d�n)=d

(claim proven below)

= �n=dV q +
b1fCg
�(d�n)=d

; for all � 2 � (3.26)

where the last inequality step follows from a claim we now prove.

The inequality �
�V + b1fCg

�n=d � �n=dV n=d +
b1fCg
�(d�n)=d

is valid if and only if �
�V + b1fCg

�n �  
�n=dV n=d +

b1fCg
�(d�n)=d

!d
: (3.27)

Using the binomial expansion, the left hand side of (3.27) can be rewritten

�
�V + b1fCg

�n
=

nX
k=0

(�V )n�k
�
b1fCg

�k �n
k

�
(3.28)
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and the right hand side of (3.27) can be rewritten 
�n=dV n=d +

b1fCg
�(d�n)=d

!d
=

dX
k=0

�
�n=dV n=d

�d�k  b1fCg
�(d�n)=d

!k  
d

k

!
; n � d:

=
dX

k=0

�
n(d�k)

d
�

k(d�n)
d V

n(d�k)
d bk1fCg

 
d

k

!
; n � d

=
dX

k=0

�n�kV
n(d�k)

d bk1fCg

 
d

k

!
; n � d: (3.29)

We now compare the summands on the right hand sides of (3.28) and (3.29) for each

k = 0; 1; 2; : : : ; n. When k = 0, we trivially �nd that the summands are equal. Examining the

case when k = 1; : : : ; n, we �nd:

1. The exponent satis�es n � k � n(d�k)
d

for all positive integers n � d and k = 1; : : : ; n.

Since V � 1 we have

V n�k � V
n(d�k)

d :

2. For n � d and all k = 1; : : : ; n,�
n

k

�
=

n!

k!(n� k)!
� d!

k!(d� k)!
=

 
d

k

!
:

These two inequalities imply the individual summands of (3.28) and (3.29) obey the inequality:

(�V )n�k bk1fCg

�
n

k

�
� �n�kV

n(d�k)
d bk1fCg

 
d

k

!
; k = 0; 1; : : : ; n:

For the case k = n + 1; : : : ; d, since the summands on the right hand side of (3.29) are all

positive, the claim is now proven and (3.26) holds, i.e. for any rational q = n=d 2 Q we have

P�V
q = �qV q +

b1fCg
�(1�q)

; for all � 2 �: (3.30)

Now let qi be any sequence of rationals in the interval (0; 1) which converge to the real

number r 2 (0; 1), i.e. r = limi!1 qi. Then by the Dominated Convergence Theorem since

V qi � V for all i = 1; 2; : : : and P�V (x) < V (x) + b <1 for any x 2 X and � 2 �, we have the

following for all � 2 �

P�(V
r) = P�( lim

i!1
V qi)

= lim
i!1

P�(V
qi)

� lim
i!1

 
�qiV qi +

b1fCg
�1�qi

!

= �rV r +
b

�1�r
1fCg;

where the inequality follows from (3.30). Finally, the case for r = 0 and r = 1 follow trivially.
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Remark

This last result extends Theorem 15.2.9 of [79, p. 371] which covers the case r = n=d = 1=2 to

arbitrary reals r 2 [0; 1].

3.5 The Poisson Equation: SuÆcient Conditions for (P1)

In this section, we briey review a result which provides suÆcient conditions for (P1), the

existence of a family of solutions f��; � 2 �g to the Poisson equation with \forcing" function

H� : X! IRp:

��(x)� P���(x) = H�(x)� ��(H�); x 2 X; � 2 �: (3.31)

Let us now consider separately each of the p component vectors in (3.31) while �xing an

arbitrary � 2 �:

�
(i)
� (x)� P��

(i)
� (x) = H

(i)
� (x)� ��(H

(i)
� ); x 2 X; i = 1; : : : ; p: (3.32)

Then, following [79], let us de�ne a new �xed-� drift property:

(V3) For a function f : X! [1;1), a set C 2 B(X), a constant, b <1, and an extended-real

valued function V (x) : X ! [1;1]

�V (x) � �f(x) + b1C(x); x 2 X:

We note that (V3) reduces to (V4) if we take the function f equal to �V .

Our condition (P1) is veri�ed rather easily once the following result is at hand:

Theorem 3.11 (Meyn and Tweedie) Suppose that fXn; n = 0; 1; : : :g is a  -irreducible,

and that (V3) holds with V everywhere �nite, f � 1, and C petite. If �(V ) <1 then for some

R <1 and any jHj � f , the Poisson equation (3.32) admits a solution � satisfying the bound

j�j � R(V + 1).

Proof: See [79, p. 433]

We immediately see under (H2) and a (D2) condition involving V r that integrability of V r

with respect to the invariant measure is the key additional condition to be veri�ed to show

(P1).

Consider the typical case involving a family of irreducible aperiodic Markov chains given

by one step transitions kernels fP�; � 2 �g. If condition (D2) holds with a �nite V , we then

have sup�2� ��(V ) < 1 which follows from (2.15). We also have ��(V
r) < 1 for each � 2 �

by Jensen's inequality as well as a (D2) condition holding for the function V r by Theorem

3.10. Thus, for forcing functions satisfying
���H(i)

�

��� � V r for each i = 1; : : : ; p, or a quasi (H2)

condition, we have immediately from Theorem 3.11 that for each � 2 � the Poisson equation

(3.32) admits a solution �� which satis�es the bound����(i)� ��� � R�(V
r + 1); i = 1; : : : ; p (3.33)
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for some R� <1. Clearly, the constant CH in (H2) will proportionately scale this bound and

(3.33) thus complements our Theorem 3.3. (Note that we do not have a uniform bound for

sup�2�R� <1 from these results.)

Alternatively, the key condition sup�2� ��(V
r) <1 also follows readily from (D0) and (E1)

since for any n

sup
�2�

�� (V
r) � sup

�2�
kP n

� (x; �)� ��(�)kV + sup
�2�

P n
� (x; V ); x 2 X

� CE�
nV (x) + CDV (x); x 2 X

< 1:

Uniqueness of the Poisson equation solution up to a constant for each � 2 � also follows

from Proposition 17.4.1 in [79] if we assume the Markov chain is positive Harris for all � 2 �.

Meyn and Tweedie's Proposition 17.4.1 in [79] states that, for some constant c, and any two

solutions b�1 and b�2 such that �(jb�1j + jb�2j) < 1, then b�1 = b�2 + c for a.e. x 2 X with respect

to �. Thus we see that under these circumstances, that (P1) holds.

For another approach, Makowski and Shwartz [73] also present veri�able conditions for

existence and uniqueness (up to a constant) of the Poisson equation solution for countable state

space Markov chains. Additionally, their continuity results over � for the solution �� allow

direct veri�cation of the uniform bound condition (P2) for compact �.

3.6 SuÆcient Conditions for (C)

Here, we consider the following key assumption related to the �-dependence of the transition

probabilities:

(M) There exists a ÆM > 0, CP <1, and an b̀3 2 ( b̀2; 1] such that,

jP�(x;A)� P�0(x;A)j � CPP�(x;A) k� � �0kb̀3 ; for each x 2 X, A 2 B(X)

for all �, �0 in � such that k� � �0k � ÆM .

It's clear that condition (M) disallows the possibility the probability of any transition of the

Markov chain which is positive can go to zero as � ranges over the set �. We also note that an

assumption similar to (M) was used in [73] to prove a Lipschitz condition on the �-parameterized

solution to Poisson's Equation.

The next result identi�es suÆcient conditions for (C).

Theorem 3.12 Under (M),(D1), we have for all �, �0 in � such that k� � �0k � ÆM , x in X,

kP n
� (x; �)� P n

�0(x; �)kV r � n2CPC
2r
D V

r(x) k� � �0kb̀3 ; for all n = 1; 2; : : :.
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Proof: For all �, �0 in � with k� � �0k � ÆM , x in X and all n = 1; 2; : : :,

kP n
� (x; �)� P n

�0(x; �)kV r

= sup
kfk�V r

kP n
� (x; f)� P n

�0(x; f)k

= sup
kfk�V r

P n
� (x; f)�

n�1X
i=1

P n�i
� P i

�0(x; f) +
n�1X
i=1

P n�i
� P i

�0(x; f)� P n
�0(x; f)


�

nX
i=1

sup
kfk�V r

P n�i+1
� P i�1

�0 (x; f)� P n�i
� P i

�0(x; f)


�
nX
i=1

sup
kfk�V r

P n�i
� (P� � P�0)P

i�1
�0 (x; f)


where P� � P�0 is a signed measure. Then, the summands can be bounded by �rst using a

Hahn-Jordan decomposition followed by application of our conditions:

sup
kfk�V r

P n�i
� (P� � P�0)P

i�1
�0 (x; f)


= sup

kfk�V r

P n�i
� (P� � P�0) (x; P

i�1
�0 f)


� sup

kfk�V r

P n�i
� (P� � P�0)

+ (x; P i�1
�0 f)� P n�i

� (P� � P�0)
� (x; P i�1

�0 f)


� sup
kfk�V r

P n�i
� (P� � P�0)

+ (x; P i�1
�0 f)

 + sup
kfk�V r

P n�i
� (P� � P�0)

� (x; P i�1
�0 f)


� sup

kfk�V r

CP k� � �0kb̀3 P n�i+1
� (x; P i�1

�0 f)


+ sup
kfk�V r

CP k� � �0kb̀3 P n�i+1
� (x; P i�1

�0 f)


� 2CP k� � �0kb̀3 P n�i+1
� (x; P i�1

�0 V r)

� 2CP k� � �0kb̀3 P n�i+1
� (x; Cr

DV
r)

� 2CP k� � �0kb̀3 C2r
D V

r(x):

The last two lines each follow from (D1) and (2.13).

Hence, for all n = 0; 1; 2; : : :,

kP n
� (x; �)� P n

�0(x; �)kV r

�
nX
i=1

sup
kfk�V r

P n�i
� (P� � P�0)P

i�1
�0 (x; f)


� n2CPC

2r
D k� � �0kb̀3 V (x) x 2 X; �; �0 2 �; k� � �0k � ÆM ,

which satis�es assumption (C).
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Figure 3.1: Relationship of various conditions and results.

3.7 Summary: Relationship among Conditions

The above Figure 3.1 indicates the relationship of many of the conditions we've presented within

our framework which lead to the almost sure convergence of SA's. The arrows in this �gure

merely indicate that some relationship exists among the conditions and they do not necessarily

represent an unconditional implication. For details on each relationship, the reader should refer

to the particular result indicated under the arrow. Assumed throughout is either the constrained

54



or unconstrained SA with condition (S) on the step-size sequence fn+1; n = 0; 1; : : :g.
It's clear from this diagram that the conditions (H2), (H5), (D2) and (M) to the upper

left of the diagram are suÆcient conditions leading to convergence of SA's under the setting of

these last two chapters. Also, bear in mind the relationships between (D1) and (D2) which are

not represented here.

3.8 Design Issue: Selection of the Exponent r

Suppose we assume (D1) with V unbounded o� petite sets so (D2) holds as well. Given, any

r � 1, we then showed that (D2) also holds for the smaller functions V r, and subject to the

constraint r � 1

2(1+b̀1) , we �nd that the selection of r a�ects the analysis only in subtle ways.

First, under condition (E1) we have a test function V r for which there exists a constant

CE <1 and 0 < � < 1 such that

sup
�2�

kP n
� (x; �)� ��(�)kV r � CEV

r(x)�n; x 2 X; n = 0; 1; 2; : : : (3.34)

The choice of r such that 0 < r � 1

2(1+b̀1) clearly a�ects the bound in (E1) since V r appears on

both sides of (3.34). Nevertheless, choosing r smaller or larger in this range does not appear to

have much e�ect on the overall convergence properties for the SA as seen in our analysis.

Second, we've shown in Section 3.5 that under (D1) and (E1),

sup
�2�

��V
r � CL <1:

and this holds independently of r � 1.

Third, choosing a larger r within the constraint r � 1

2(1+b̀1) permits use of a larger class of

observation functions H(�; x) as seen in (H2) and (H5). Thus, it's clear that for the greatest

generality, r should be chosen so that r = 1

2(1+b̀1) . Thus, if we take r = 1

2(1+b̀1) then there is

a tradeo� in the choice of r versus the choice of b̀1; with the r mainly a�ecting the space of

permissible observable functions H satisfying (H2) and (H5) while b̀1 is also a�ecting (H5) and
the class of deterministic step-size sequences fn+1; n = 0; 1; : : :g meeting the condition (S).

3.9 Bernoulli Random Walk with �-Dependent Transitions

In the following example we demonstrate the use of our specialized conditions for an SA algo-

rithm which attempts to regulate the mean number in an unbounded random walk with a single

reection at the origin. This discrete time Markov chain may be used to model the M/M/1

queue with adjustable service rate. We verify the conditions (D1)-(D2) and (M) on the Markov

chain transition function and verify conditions (H2) and (H5) on the observation function.

These conditions imply the remaining conditions in our general convergence framework.

55



3.9.1 The Model

The random walk fXn; n = 0; 1; : : :g on the countable space ZZ+ is governed by a family of one

step transition probabilities fP�; � 2 �g where we shall conveniently let � = [1=2 + �1; 1� �2]

for some small �1; �2 > 0 so that 1=2 < 1=2 + �1 < 1� �2 < 1. The transition probabilities are

de�ned for each � 2 � by

P�(x; x+ 1) = 1� �; x � 0

P�(x; x� 1) = �; x > 0

P�(0; 0) = �:

and zero otherwise.

In this case, the steady state probabilities are analytically known and given by

��(n) = (1� ��)�
n
� ; � 2 �; n = 0; 1; : : :

��
:
=

1� �

�
:

The expected value of the random walk in steady state serves as our objective function:

J(�) = E�� [X] =
1X
n=0

n��(n)

=
��

1� ��
; � 2 �: (3.35)

3.9.2 The SA Algorithm

Our goal is for the SA algorithm to locate the value �? such that the mean number in the system

is some particular value, say L and we shall apply the projected SA with driving function

H(�; x)
:
= x� L

so that we �nd the zero of h(�) = J(�)� L.

Observations of the number in the system are made at each transition of the Markov chain

and the next parameter iterate is computed from a projected SA which immediately updates

the transition probabilities for the next state transition. This very simple recursion is given by

�n+1 = �[1=2+�1;1��2] f�n + n+1(Xn+1 � L)g ; n = 0; 1; : : :

�0 = � (arbitrary in �)

starting from any initial state value X0 = x 2 X

Next, we verify in turn the specialized conditions which imply through this and last chapters

results and the Kushner-Clark Lemma that �n ! �? Px;�- almost surely where J(�?) = L.
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3.9.3 Veri�cation of (D1) and (D2)

Let us try verifying (D1) for the test function V (x) = Ksx where s and K are some yet to be

determined scalar parameters such that s > 1 and 1 � K <1. We seek an s and K such that

the uniform drift (D1) (or (D2)) holds over �. Recall:

(D1) P�V (x) � �V (x) + L; for all � 2 �; x 2 X:

For x > 0,

P�V (x) = �Ksx�1 + (1� �)Ksx+1

= f�s�1 + (1� �)sgKsx
= f�s�1 + (1� �)sgV (x); s > 1; � 2 �: (3.36)

Let us de�ne the bracketed term as the function �(s; �)
:
= �s�1 + (1� �)s which is de�ned on

s � 1 and 1=2 < � < 1, and sketched in Figure 3.2. Setting the partial derivative given by

0.5
0.6

0.7
0.8

0.9
1

�1
2

3
4

s

0.5

1

1.5

2

�(s; �)

Figure 3.2: Surface plot of the function �(s; �).

@�(s; �)

@�
= ��s�2 + 1� �; � 2 �; s � 1;

equal to zero, we �nd that for each � 2 �, the minimum of �(�; �) is achieved when

s = bs(�) :=
s

�

1� �
; � 2 �:

Let us now review some facts about the function �(�; �):
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1. Substituting in s = bs(�) from above:

�(bs(�); �) = �

s
1� �

�
+ (1� �)

s
�

1� �

= 2
q
(1� �)�; 1=2 < � < 1:

2. The function �(bs(�); �) is monotone decreasing on � and lim�&1=2 �(bs(�); �) = 1.

3. We have �(bs(1=2 + �1); 1=2 + �1) < 1 for small �1 > 0.

4. We have:

�(bs(1=2 + �1); �) = �

vuut1=2� �1
1=2 + �1

+ (1� �)

vuut1=2 + �1
1=2� �1

� �(bs(1=2 + �1); 1=2 + �1); for all � 2 [1=2 + �1; 1� �2]:

Therefore, for the case x > 0 we have (3.36), and let us now �x s = bs(1=2+�1) = r
1=2+�1
1=2��1

> 1

which yield the easy bounds:

P�V (x) =

8<:�
vuut1=2� �1
1=2 + �1

+ (1� �)

vuut1=2 + �1
1=2� �1

9=;V (x)
�

8<:(1=2 + �1)

vuut1=2� �1
1=2 + �1

+ (1=2� �1)

vuut1=2 + �1
1=2� �1

9=;V (x)
� 2

q
(1=2� �1)(1=2 + �1)V (x); for all � 2 [1=2 + �1; 1� �2]:

So for the case x > 0, (D1) is satis�ed with

� = 2
q
(1=2� �1)(1=2 + �1) < 1: (3.37)

Now consider the case x = 0: We have

P�V (0) = �s0 + (1� �)s

= �V (0) + (1� �)s; s > 1:

Again, we �x s =
r

1=2+�1
1=2��1

> 1 so that

P�V (0) = �V (0) + (1� �)

vuut1=2 + �1
1=2� �1

� �V (0) + �K + (1� �)

vuut1=2 + �1
1=2� �1

� �V (0) + max

8<:K;
vuut1=2 + �1
1=2� �1

9=;
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Thus, letting L = max
�
K;
r

1=2+�1
1=2��1

�
, we have for veri�ed (D1) with � as given in (3.37), K

arbitrary in 1 � K <1 and

V (x) = Ksx = K

 
1=2 + �1
1=2� �1

!x=2
; x 2 X:

Furthermore, it's easy to check that we have also shown (D2) with petite set C = fx = 0g
and the parameters

� = 1� �

b = L:

3.9.4 Veri�cation of (M)

For this random walk example, (M) is very simple to check since there are only three classes of

transitions to check; jump up, jump down, and the null transition 0 ! 0. For the �rst class,

veri�cation reduces to checking for all x � 0:

jP�(x; x + 1)� P�0(x; x+ 1)j = j� � �0j
� P�(x; x + 1)

�2
j� � �0j ; for all �; �0 2 �,

where � = [1=2 + �1; 1 � �2]. We are assuming �1; �2 > 0 and this demonstrates that this

condition cannot be weakened.

Veri�cation of the other classes of transitions,

jP�(x; x� 1)� P�0(x; x� 1)j and jP�(0; 0)� P�0(0; 0)j ;
follows similarly. Thus, (M) is veri�ed with b̀3 = 1.

3.9.5 Veri�cation of (E1)

Veri�cation of (E1) involves �nding computable bounds for the geometric convergence rate of

the Markov chain. The structure of the chain suggests taking the recurrent atom � to be the

0 state. The easiest approach is simply to appeal to Theorem 3.7 since this chain is strongly

aperiodic for all � 2 � and satis�es (D2), i.e.

P�V � �V + L1fx=0g; for all � 2 �;

with

V (x) = Ksx = K

 
1=2 + �1
1=2� �1

!x=2
; x 2 X; 1 � K <1

� = 2
q
(1=2� �1)(1=2 + �1)

L = K(1=2 + �1) +
q
(1=2� �1)(1=2 + �1):

59



Then, Theorem 3.10 implies (D2) holds with V r for the choice r = 1

2(1+b̀1) so there exists a

�r < 1 and a Lr <1 such that

P�V
r � �rV

r + Lr1fx=0g; for all � 2 �;

Thus, the bound (3.23) becomes

�� � sup
�2�

32� 8Æ2

Æ3

�
Lr

1� �r

�2
<1

which holds for this example with

P�(�; �) > Æ = 1=2 + �1; � 2 �:

Hence, (E1) follows from Theorem 3.6 and Theorem 3.7.

An Alternative Method

While the above is adequate and perhaps the most straightforward method to show (E1), an

alternative approach which may yield a tighter bound on �� is to work directly with (3.21), i.e.

��
:
= sup

jzj�1

�����
1X
n=0

h
P n(�; �)� P n�1(�; �)

i
zn
����� : (3.38)

Following [79], for an atom � and some probability P� de�ne the renewal function u(n)
:
=

P�(Xn = �) and the renewal variation

V ar(u) =
1X
n=0

ju(n)� u(n� 1)j : (3.39)

Again, taking the atom � to be the state x = 0, clearly for any � 2 �,

�0(�) = sup
jzj�1

�����
1X
n=0

h
P n
� (0; 0)� P n�1

� (0; 0)
i
zn
�����

�
1X
n=0

���P n
� (0; 0)� P n�1

� (0; 0)
���

:
= V ar�(u);

where �0(�) and V ar�(u) are a �-parameterized extensions of (3.38) and (3.39), respectively.

From [80], for any � 2 � we have the following bound on V ar�(u):

V ar�(u) � 1=2

(
1

(� � (1� �))2(1� �)
� 1

)

= 1=2

(
1

(2� � 1)2(1� �)
� 1

)
; � 2 �:

Hence,

�0(�) � sup
�2[1=2+�1;1��2]

V ar�(u) <1; � 2 � = [1=2 + �1; 1� �2]:
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3.9.6 Veri�cation of (H2) and (H5)

Above we have shown that

V (x) = Ksx = K

 
1=2 + �1
1=2� �1

!x=2
; x 2 X:

for some arbitrary 1 � K <1 is a solution to (D1) and (D2).

Verifying (H2) and (H5) is a simple matter of �rst selecting an exponent r � 1

2(1+b̀1) where
0 < b̀

1 < 1 satis�es (S) and there is no loss in generality in taking r = 1

2(1+b̀1) . Then any

functions H(�; x) : � � X ! IRp and �(�; x) : � � X ! IRp satisfy (H2) if for some �nite

constants CH ; C� they satisfy for all x 2 X

sup
�2�

kH(�; x)k � CHV
r(x);

sup
�2�

k�(�; x)k � C�V
r(x);

and satisfy (H5) if for some constants C5 <1 and b̀2 2 ( b̀1; 1)
kH�(x)�H�0(x)k � C5V

r(x) k� � �0kb̀2 ;
for all �; �0 2 � such that k� � �0k < ÆH . It is immediately clear that the functions

H(�; x) = x� L; x 2 ZZ
+; � 2 �

�(�; x) = 0; x 2 ZZ
+; � 2 �

meet these conditions for any positive r = 1

2(1+b̀1) with some suitably large constant CH <1.

3.10 GSMP's and Continuous Time Markov Chains

The conditions we developed in this dissertation are for discrete time Markov chains but this

framework can be extended to continuous time chains and Generalized Semi-Markov Processes

(GSMP's) if discrete time conversion techniques [33, 56] are used. We note that a similar

approach was also taken by [22].
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Chapter 4

A Steady State Gradient Estimate for Markov Chains

This chapter studies gradient estimation for steady state performance of stochastic systems

modeled as Markov chains which have a dependence on a parameter �. A particular gradient

estimate is considered for use with the stochastic approximation procedures.

4.1 Introduction

Suppose steady-state performance is given by

J(�) = ��(f�); � 2 �

where f�(x) : �� X ! IR is a given performance function and �� is the invariant distribution

at parameter � for an irreducible positive recurrent Markov chain. Both f� and �� may depend

on � in �. The main goal in stochastic optimization is to minimize (or maximize) the objective

function J(�) over parameters � 2 �. We assume this optimizer �? can be found by locating

the �xed point �? 2 � such that

rJ(�?) = 0:

Throughout this chapter and the next, we assume a compact parameter set � which is a

subset of IRp and a Markov chain X = fXn 2 X; n = 0; 1; : : :g taking values on a now assumed

countable state space X. Here X is governed by a family of one-step transition probabilities

fP�; � 2 �g and is irreducible and positive recurrent for each parameter � 2 �. Let the one

step transition probability matrix be given by P� = [px;y(�)]x;y. The performance function

f�(x) = f(�; x) : �� X! IR is assumed di�erentiable with respect to � for each x 2 X.

4.2 Gradient Estimation and Stochastic Approximations

Consider how one might estimate both J(�) and rJ(�) and, for simplicity, let us temporarily

assume � is scalar valued. If we are able to solve for �� directly from the stationary equation

�� = ��P� and the normalizing equation ��e = 1, then we can simply calculate the steady state

performance as

J(�) =
X
x2X

��(x)f(�; x):
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If, in addition, we are able to interchange the limit and expectation, the performance derivative

may be given by
J(�)

d�
=
X
x2X

��(x)
df(�; x)

d�
+
X
x2X

d��(x)

d�
f(�; x):

Unfortunately, for many systems of interest, eÆciently solving for �(�), yet alone d��(x)
d�

, is

simply not possible, especially if the state space X is large or countably in�nite.

Because of this diÆculty, we are motivated to compute J(�) via a long run sample average.

By the Strong Law of Large Numbers (SLLN) for Markov chains [79, p. 411, Thm. 17.0.1] it

follows that for each �xed � 2 � and initial state X0 = x

lim
N!1

1

N

N�1X
k=0

f(�;Xk) = ��(f�) P�;x-a.s.,

:
= J(�);

provided that fXn; n = 0; 1; : : :g is a positive Harris recurrent chain and ��(jf�j) <1. Chains

on a countable state space are always Harris recurrent if they are recurrent, [79, p. 201],

thus this condition reduces to checking for or assuming positive recurrence. Both the positive

recurrence and the integrability condition ��(jf�j) < 1 seem completely reasonable and are

satis�ed uniformly over � in many interesting applications.

Suppose now the derivative (or gradient) can be computed similarly through a long run

sample average so that

lim
N!1

1

N

N�1X
n=0

g(�;Xn) =
dJ(�)

d�
; P�;x � a:s:

for some function g we have not de�ned yet. Then, we have a gradient estimation algorithm

well suited for stochastic approximation since the estimate is taken from a single sample path

and is related to the steady-state mean:

lim
N!1

1

N

N�1X
n=0

g(�;Xn) = ��(g(�; �)); P�;x-a.s.

If such an estimate can be identi�ed, we have an viable approach to stochastic optimization via

SA with convergence following from the framework for the zero-�nding problem of the previous

chapters. Furthermore, we have an obvious function to drive the SA algorithm, i.e.

�n+1 = �� f�n � n+1g(�n; Xn+1)g ; n = 0; 1; : : : (4.1)

This algorithm is particularly useful if the function g should meet the convergence criteria for

SA's which is truly veri�able in terms of the known model data. The key here is �nding such

functions g(�; x) where
dJ(�)

d�
= �� (g(�; �)) ; � 2 �:
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4.2.1 Overview of Gradient Estimation for Markov Chains

Over the past several decades, many techniques have been proposed for various stochastic

systems to estimate the gradient (or derivative) with respect to some parameter vector � =

(�1; : : : ; �p) of steady state performance,

rJ(�) =
"
@J(�)

@�1
;
@J(�)

@�2
; : : : ;

@J(�)

@�p

#0
; � 2 � � IRp:

Examples include In�nitesimal Perturbation Analysis (IPA), Likelihood Ratio, Conditional

Monte Carlo, Finite Di�erence, etc. and each method o�ers certain strengths for speci�c classes

of problems. The last decade in particular has seen an explosion of research on single sample

path gradient estimation which is well summarized in the recent book [36]. Let us briey review

a few selected highlights of gradient estimation research.

The longstanding alternative to the single sample path approach to gradient estimation is

Finite Di�erence (FD) estimates [23, 45] of the form:

bJ(� + Æ�i=2; N)� bJ(� � Æ�i=2; N)

Æ�i
; for each i = 1; 2; : : : ; p, (4.2)

for some small Æ > 0 and some convenient estimate of performance, such as

bJ(�;N) =
1

N

N�1X
n=0

f(�;Xn): (4.3)

In a simulation environment, the use of common random numbers [23] to estimate the two

terms bJ(� � Æ�i=2; N) involves running the two simulations with the same random number

generator \seed" and same initial state X0 = x. The use of common random numbers have

been shown to reduce the variance of FD estimates but this is generally not possible when the

system under study is observed in real time from a physical system and neither the \seed" nor

the initial conditions can be selected arbitrarily. Using FD estimates in an SA algorithm with

a shrinking step-size n ! 0 and di�erence Æn ! 0 is known as the Kiefer-Wolfowitz procedure.

One drawback to the original Kiefer-Wolfowitz procedure is the need to run the simulation

twice for each component of the parameter vector in order to construct each gradient estimate.

Recently, this requirement can be relaxed somewhat by using any one of the \random directions"

methods [61, 102]. In any event, there is an obvious motivation to develop single sample path

approaches which promise increased eÆciency in general, as well as clear improvements for

observation based gradient estimation.

The Likelihood Ratio (LR) method [44, 46, 48, 86, 94] is often proposed for chains which

possess structural parameters, i.e. chains where the transition probabilities are dependent on

the parameter. This parameter dependence is sometimes restricted to chains which do not cause

any transition probabilities pxy(�) to increase from zero or decrease to zero (i.e. the chain \has

no opening/closing arcs"). Unfortunately, the original LR method is less well suited for steady

state estimation since it has been recognized [44, 86] that it su�ers from unbounded variance

64



which grows linearly with the length of the observation interval. More recently, several special

techniques [109, 35] have been suggested to bound this variance.

IPA has been quite successful when the parameter varies the timing of events in a Discrete

Event Dynamic System (DEDS) modeled as a Generalized Semi Markov Process (GSMP).

Unfortunately, IPA is not generally capable of handling all types of parameter dependence

[10, 54, 107] such as structural parameters where the tunable parameter continuously varies the

transition probabilities (routing probabilities) of the GSMP.

On the other hand, Conditional Monte Carlo and SPA [35, 36, 37] gradient estimates often

succeed where IPA fails by taking advantage of the smoothing properties of the conditional

expectation. Also, we note that [13] has shown connections between conditional Monte Carlo

and the LR method for steady state gradient estimation.

Glasserman [42] has proposed a technique to compute gradient estimates for continuous-time

Markov chains which satisfy certain structural conditions. He has also proposed an extension to

this method to compute gradients for discrete-time Markov chains [40] with respect to structural

parameters. He considers the discrete-time chain as a skeleton of a continuous-time chain and

uses his structural conditions to �nd the performance gradient with respect to the exponential

holding times. In e�ect, he is converting the structural parameter to a timing parameter. Then

using discrete-time conversion [33, 56], Glasserman's estimate is converted back to discrete-time

where it is observed that the resulting estimator is actually a LR gradient estimate.

Recently, Dai and Ho [22, 24] proposed a class of derivative estimators they named Structural

In�nitesimal Perturbation Analysis (SIPA) which handles structural parameters under certain

conditions. SIPA estimates model perturbations in transition probabilities and utilize additional

auxiliary simulated Markov chains which run in parallel to the nominal chain being simulated

or observed to construct a derivative estimate. We also note that Fu and Hu have pointed out

that SIPA is simply an implementation of Conditional Monte Carlo.

Dai and Ho's work appears to have inspired Cao et al. [12, 15] to develop some related

sensitivity estimates based on some concepts they introduce called realization factors and per-

formance potentials. Several implementations of speci�c gradient estimates derived from Cao

and Chen's theoretical results are proposed and studied in [14]. We shall focus on one of these

estimates in particular and identify some convenient alterations which adapt this estimate for

use with SA.

4.2.2 Summary of Results

After reviewing Cao, Chen and Wan's approach to sensitivity analysis, we will propose a par-

ticular single sample path gradient estimation algorithm which observes the Markov chain for

a �xed number of samples, say m samples, at the current iterate �n and computes the estimate.

This estimate then may used in an SA to update the parameter to �n+1 where the next gradient

estimate is constructed over the next m samples, and so on. The algorithm is very simple, has

low computational overhead, and can be used with SA in either a pure simulation or a real-time

online observation setting. No auxiliary simulations are required for this gradient estimate, as
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is the case with SIPA estimates. Unfortunately, this estimate is in general biased for any �nite

m and, as such, will not in general yield convergence to the desired optimizer �?. We have a

solution for this problem in the next chapter so this chapter focuses entirely on developing this

gradient estimate.

We also reconsider a theoretical result by Cao and Chen [12] which provides three alterna-

tive expressions for the performance gradient under certain speci�c conditions. We propose two

variations on their result under conditions which are more aligned with the framework of Chap-

ters 2-3 for proving convergence of SA's. Speci�cally, we assume the family of parameterized

Markov chains satis�es either form of the uniform drift criteria (D1) or (D2).

Also note, in previous chapters we used the subscript position on � to index the sequence of

parameter iterates generated by the SA algorithm, but for this chapter, the subscript position

may also index the individual components of the parameter vector, i.e. for � 2 � � IRp we have

� = (�1; �2; : : : ; �p)
0. For all � in �, de�ne a small change in the ith component by ��i, and we

only consider perturbed parameters �0 = �+��i which fall in �. For an arbitrary perturbation

in � which is not restricted to the ith component we shall omit the subscript i and simply write

�0 = � +��.

4.3 Cao-Chen-Wan Sensitivity Analysis

Cao and Chen in [12] address the general goal of sensitivity analysis for both continuous and

discrete time Markov chains and they develop several useful tools for this problem. Their

setting is somewhat di�erent than we have proposed up to now so let us next summarize1

their results. Later we shall propose some alterations motivated by the SA based constrained

stochastic optimization problem using algorithm (4.1).

4.3.1 Continuous-Time Markov Chains

Suppose fXt : t � 0g is a continuous time Markov process on a countable state space X

with in�nitesimal generator A = [axy]x;y. The process is assumed regular, positive recurrent,

irreducible while the in�nitesimal generator A obeys the conditions:

axx < 0; 8x
axy � 0; x 6= y

sup
x
jaxxj < 1:

Without loss of generality, this in�nitesimal generator may be normalized [27] so that supx jaxxj �
1.

Because they are seeking sensitivity estimates to a perturbation in the rates of the in�nites-

imal generator, the perturbed generator takes the form

AÆ = A + ÆQ (4.4)

1We have altered some parts of their notation slightly.
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for some perturbation matrix Q and some small Æ > 0. The matrix Q is assumed to obey the

equation Qe = 0. In this setting, they consider the sensitivity of the invariant distribution to

a �xed perturbation de�ned by Q of the generator \in the direction of Q", i.e.

@�

@Q
= lim

Æ!0

�Æ � �

Æ
:

Also, the derivative of the generator \in the direction of Q" follows readily from (4.4):

@A

@Q
= lim

Æ!0

AÆ � A

Æ
= Q:

Suppose now that performance is de�ned by a given function f : X! IR. Then, under the

assumption that @J
@Q

=
�
@�
@Q

�
f (where

�
@�
@Q

�
f =

P
x2X

@�(x)
@Q

f(x)), they calculate the performance

gradient using f once a few more quantities are de�ned.

Let the Markov chain sample path with initial state x 2 X be given by fX(x)
t ; t � 0g :

=

fXtjX0 = x; t � 0g. They de�ne the perturbation realization factor:

dxy
:
= lim

T!1

(
Ey

"Z T

0
f(X

(y)
t )dt

#
�Ex

"Z T

0
f(X

(x)
t )dt

#)
; x; y 2 X

and form the matrix D = [dxy]xy. Also, the (nonunique) performance potential gx is chosen for

all x 2 X such that

dxy = gy � gx; x; y 2 X:

Cao and Chen point out that the performance potential is only unique up to an additive constant

and if we take J = �(f) they de�ne it by

gx
:
= lim

T!1

(
Ex

"Z T

0
f(Xt)dt

#
� TJ

)
:

For some �nite T > 0, an estimate of the performance potential can be given by

bgx(T ) = Ex

"Z T

0
f(Xt)dt

#
� TJ ;

but, since we intend to estimate the perturbation realization factor it is suÆcient to use

bgx(T ) = Ex

"Z T

0
f(Xt)dt

#

owing to the nonuniqueness of this potential relative to additive constants. Finally, let

g = [g0; g1; g2; � � � ]0 :
This next lemma is taken verbatim from [12] and proved in Theorems 31 and 33 of [59]. Let

us �rst de�ne the matrix M = [mxy]x;y with mxy being the mean �rst passage time from state

x to state y and note that a Markov process is designated strong ergodic if �M is �nite [59].
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Lemma 4.1 (Kemeny and Snell) If the Markov process is strong ergodic, then the inverse

(A� e�)�1 = �
1X
k=0

(P � e�)k (4.5)

exists where P = I + A.

For an in�nitesimal generator A, Cao and Chen [12] use a group inverse [78] de�ned as

A# :
= (A� e�)�1 + e� (4.6)

which is clearly related to the fundamental matrix Z
:
= (A� e�)�1.

The next result appears in [12] and relates the quantities we have just de�ned to the per-

formance gradient.

Theorem 4.2 (Cao and Chen) Assume the Markov chain X = fXt; t � 0g is strong ergodic
and

�(jf j) = X
x2X

�(x) jf(x)j <1:

The derivative of the steady-state probability is

@�

@Q
= ��QA#:

Furthermore, if ( @�
@Q
)f =

�
@
@Q

�
(�f) and the results of all operators are �nite, then the per-

formance derivative can be calculated by using the group inverse of A, denoted A#, or the

realization matrix D, or the potential vector g:

@J

@Q
= ��QA#f

= �QD0�0

= �Qg:

Proof: See [12]

This is a nice result but it does appear diÆcult to verify the condition ( @�
@Q
)f =

�
@
@Q

�
(�f)

without imposing assumptions such as �nite state space or a bounded performance function. We

want to avoid these conditions so we seek alternative means.

4.3.2 Discrete-Time Markov Chains

Similar results are presented for the case when the state process is a discrete-time Markov

chain with one-step probability transition matrix P . Their proposed method [12] is to apply

the above continuous time results in Theorem 4.2 by simply converting the discrete time chain to

continuous time, i.e. by considering the discrete time chain as a uniformized embedded Markov

chain in the Markov process with in�nitesimal generator A = P�I. Consider a perturbation to
the nominal transition matrix P given by PÆ = P + ÆQ for some small Æ > 0. Since A = P � I,
the change in A is also ÆQ and results similar to Theorem 4.2 for discrete time Markov chains

follow readily. See [12, 14] for details.
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4.4 A Framework for Discrete Time Gradient Estimation

We have several goals in adapting Cao-Chen's theorem above to yield a similar expression for

rJ(�). First and foremost, the result should be based on conditions which are checkable within

the SA framework we have developed in Chapters 2-3. Second, we must allow a �-dependence

in the performance function f�(x). Third, we must allow a more general (nonlinear) dependence

on the transition probabilities.

Here, we carry out these alterations within the specialized framework of discrete time

Markov chains which possess the uniform drift criteria (D2).

4.4.1 Conditions on the Transition Probabilities

We make these assumptions on the family of transition probabilities fP�; � 2 �g:
(G1) For P� = [px;y(�)]x;y, let the gradient

rpx;y(�) =
"
@px;y(�)

@�1

@px;y(�)

@�2
� � � @px;y(�)

@�p

#0
exist for each x; y 2 X and � 2 �. i.e.

lim
��i!0

px;y(� +��i)� px;y(�)

��i
=
@px;y(�)

@�i
:

(G2) For each � 2 �, there exists some Æ > 0 and constant K2 < 1 such that the following

uniform bound holds for all � +�� 2 �, such that k��k < Æ, and x; y 2 X:

jpx;y(� +��)� px;y(�)j � K2px;y(�) k��k :
Note that G(2) is a special case of Chapter 3's condition (M).

Consequences of (G1)-(G2)

1. Note that (G1) and (G2) clearly imply that:

If px;y(�) = 0 for any x; y 2 X and � 2 �, then rpx;y(�) = 0: (4.7)

2. For each � 2 � and i = 1; 2; : : : ; p; the existence of a K2 <1 such that:�����@px;y(�)@�i

����� � K2px;y(�); x; y 2 X: (4.8)

Also we readily see from (4.8) that

krpx;y(�)k =

0@ pX
i=1

�����@px;y(�)@�i

�����
2
1A1=2

;

=
p
pK2px;y(�)

= fK2px;y(�); (4.9)

where we de�ne fK2
:
=
p
pK2.
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3. Since the partial derivatives exist under (G1), let us de�ne the following di�erence

rx;y(�;��i)
:
= px;y(� +��i)� px;y(�)� @px;y(�)

@�i
��i:

It then follows readily from (G2) and (4.8) that for each point � 2 � and each component

i = 1; : : : ; p there exists some K 00
2 <1 and Æ > 0 such that

jrx;y(�;��i)j � K 00
2 px;y(�) j��ij ; � +�� 2 �; j��ij < Æ; x; y 2 X: (4.10)

Finally, let us de�ne the following notation for each i = 1; 2; : : : ; p

Ri(�;��i)
:
= [rx;y(�;��i)]x;y

Q�;i
:
=

@P�
@�i

=

"
@px;y(�)

@�i

#
x;y

:

4.4.2 Conditions on the Performance Function

We have previously de�ned the performance function f�(x) = f(�; x) : ��X! IR. Recall that

r is a real number such that 0 < r � 1

2(1+b̀1) where b̀1 is de�ned in (S) and V satis�es either

(D0), (D1) or (D2), one (or more) of which will always be assumed when using the following

conditions.

(F1) There exists a constant C1 <1 such that jf�(x)j � C1V
r(x) for all x 2 X and � 2 �.

(F2) The function f�(x) is di�erentiable with respect to each component �i; i = 1; 2; : : : ; p for

all � 2 �; x 2 X.

(F3) For each � 2 �, there exists a Æ > 0 and some C 0
3 <1 such that

jf�+��(x)� f�(x)j � C 0
3 k��kV r(x); k��k � Æ; x 2 X:

A Consequence of (F2)-(F3)

Clearly, for each � 2 � there exists a constant C3 < 1 such that
���@f�(x)

@�i

��� � C3V
r(x) for all

x 2 X, and i = 1; : : : ; p.

4.4.3 Realization Factors and Performance Potentials

We next restate some of Cao and Chen's de�nitions de�ned earlier for continuous time Markov

chains (realization factor, performance potential, etc.) to discrete time chains. These rede�ned

quantities will now permit the performance function to depend on � 2 �, as well as the one

step transition kernels fP�; � 2 �g.
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Let fXfyg
n g = fXnjX0 = y; n � 0g be a Markov chain sample path starting in state y and

de�ne the �rst passage time from state y to state x as

Lfyg(x)
:
= inffnjXfyg

n = x; n � 0g:
With that, for all �xed � 2 �, Cao and Chen [12] have de�ned the realization factor and using

a coupling argument have shown the following equalities under their conditions:

dxy(�)
:
= lim

n!1

(
E�;y

"
nX

k=0

f�(X
fyg
k )

#
� E�;x

"
nX

k=0

f�(X
fxg
k )

#)

= E�;y

24Lfyg(x)�1X
k=0

f�(X
fyg
k )

35�E�;y

h
Lfyg(x)

i
J(�); x; y 2 X

= E�;y

24Lfyg(x)�1X
k=0

f�(X
fyg
k )� J(�)

35
Additionally, they have de�ned what they call a performance potential

gx(�)
:
= lim

n!1

(
E�;x

"
nX

k=0

f�(X
fxg
k )

#
� nJ(�)

)
; x 2 X:

which obeys

dxy(�) = gy(�)� gx(�) (4.11)

As in Section 4.3, let us de�ne for each � 2 � the matrix D�
:
= [dxy(�)] and column vector

g� = [gx(�)]x2X. Note we have generalized Cao and Chen's original de�nitions to allow for

dependence on � over �.

For an estimate of the performance potential taken from a �nite number of steps N we can

use

bgx(�;N) = E�;x

"
N�1X
k=0

f�(X
fxg
k )�NJ(�)

#
or, owing to the nonuniqueness relative to additive constants, it suÆces to use

bgx(�;N) = E�;x

"
N�1X
k=0

f�(X
fxg
k )

#

to estimate the realization factor. Let us also de�ne bg�;N = [bgx(�;N)]x2X.

Note: Observe that the following is one form of the Poisson equation solution which con-

verges under appropriate conditions [79, Theorem 17.4.2]

gx(�)
:
= lim

n!1
Ex;�

"
nX

k=0

�
f�(X

fxg
k )� J(�)

�#

= lim
n!1

nX
k=0

Ex;�

h
f�(X

fxg
k )� J(�)

i
:

Additionally, the Poisson equation solution is unique (under certain conditions) up to an ad-

ditive constant via Theorem 17.4.1 in [79]. Hence, the \performance potential" is simply a

Poisson equation solution under these particular conditions.
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4.4.4 Two Results on the Fundamental Matrix

Our �rst result depends on the existence of the fundamental matrix and the following lemma

provides conditions for its existence. Before we begin, recall we have de�ned the matrix M =

[mx;y]x;y with mx;y being the mean �rst passage time from state x to state y and a Markov

chain is labeled strong ergodic if �M is �nite [59]. We have the following lemma for discrete

time Markov chains governed by P which admits an invariant �.

Lemma 4.3 (Kemeny-Snell) If the Markov chain is strong ergodic, then the fundamental

matrix

Z
:
=

1X
k=0

(P � e�)k (4.12)

exists and Z is both a left and right inverse operator for (I � P + e�). Thus

Z =
1X
k=0

(P � e�)k = (I � P + e�)�1: (4.13)

Proof: See [59, Thms. 31, 33].

Unfortunately, strong ergodicitymay be diÆcult to verify directly but there is one case where

it is readily known, and that is the case of �nite state, irreducible, positive recurrent chains.

We will also �nd useful the following result by Glynn and Meyn for general state space

Markov chains, although we shall only apply these results for chains restricted to a countable

state space. Recall that L1V
:
= fh : supx2X

jh(x)j
V (x)

<1g.

Lemma 4.4 (Glynn and Meyn [49]) Assume:

1. fP� : � 2 �g is a family of Markov transition functions where � denotes some open subset

of Euclidean space.

2. Each of the corresponding Markov chains is ��-irreducible.

3. For each �0 2 �, the following drift criterion holds for some Æ > 0 in some open ball

BÆ(�0) containing �0

P�V � �V + b1C ; � 2 BÆ(�0) = f� 2 IRp : k� � �0k < Æg:
for some common petite set C.

4. P� ! P�0 as � ! �0 in the induced operator norm jjj�jjjV , i.e.
lim
�!�0

jjjP� � P�0 jjjV = lim
�!�0

sup
h2L1

V

jhjV =1

j(P� � P�0)hjV = 0 (4.14)

Let f�� : � 2 �g denote the collection of invariant probabilities and, assuming the inverse is

well de�ned, let fZ� = (I � P� + ��)
�1 : � 2 �g denote the collection of fundamental kernels

where ��(x;A) = ��(A); x 2 X; A 2 B(X). With these assumptions:
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1. Each of the kernels fZ�; P�;�� : � 2 �g is a bounded linear transformation from L1V to

L1V .

2. The invariant probabilities converges in V -total variation norm, i.e.

lim
�!�0

k�� � ��0kV = 0 (4.15)

3. We have

lim
�!�0

jjjZ� � Z�0jjjV = 0 (4.16)

hence if f 2 L1V , then Poisson's equation solution, given by bg� = Z�f , converges in the

L1V norm as �! �0, i.e.

lim
�!�0

sup
x2X

jZ�(x; f)� Z�0(x; f)j
V (x)

= 0 (4.17)

Proof: The �rst conclusion is reached via [49, Theorem 2.3] and the second and third follow

via a generalization of Schweitzer's result [95, Theorem2]. For details, see [49, Section 4.2].

4.5 Gradient Estimation for Discrete Time Markov Chains

In this section, we rework Cao and Chen's Theorem 4.2 specializing it to discrete time chains

where transition probabilities are dependent on a parameter vector � and satisfying a uniform

drift criteria (D2). We apply some recent results on the smoothness of solutions to Poisson's

equation for Markov chains which satisfy a uniform drift criteria (D2) and thus present an

alternative version of Cao and Chen's Theorem 4.2. This new version allows the performance

function to be unbounded and to have a functional dependence on �, hence our theorem o�ers

an extension to Cao and Chen's theorem under the special case of chains satisfying a uniform

drift criteria (D2). Our version is directed at the SA framework of the previous two chapters.

We shall also present a second variant of this main result which, like Cao and Chen's version,

provides various expressions for the steady-state performance gradient. While, the �rst theorem

assumes the existence of the fundamental matrix (or strong ergodicity), the second theorem

assumes the existence of a solution to the Poisson equation. This second version sometimes

has advantages if strong ergodicity cannot be proven (as is often the case with countable state

space chains) since it may be possible to prove existence of the solution to the Poisson equation

by other means. Speci�cally, solutions to the Poisson equation can sometimes be established

via probabilistic methods such as those presented in [73] or under drift conditions as in [79].

4.5.1 The (First) Main Result

For this section we assume the existence of the fundamental matrix Z� where Lemma 4.3 gives

suÆcient conditions for it to exist at any �xed � 2 �. Consider the following �-parameterized
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group inverse we de�ne as

P#
�

:
= �e�� + (I � P� + e��)

�1

= �e�� + Z�

= �e�� +
1X
k=0

(P� � e��)
k:

This is simply the sum of a (negative) invariant matrix e�� and the fundamental matrix. Since

we have

Z�
:
=

1X
k=0

(P� � e��)
k = I +

1X
k=1

(P k
� � e��);

we immediately get

P#
� =

1X
k=0

(P k
� � e��):

Then, it's not too diÆcult to verify

(I � P�)P
#
� = P#

� (I � P�) = I � e��: (4.18)

Theorem 4.5 Assume:

1. We have a family of discrete-time countable state positive recurrent irreducible Markov

chains governed by one-step transition matrices fP�; � 2 �g where f��; � 2 �g denotes

the corresponding collection of invariant probabilities.

2. The fundamental matrix

Z� =
1X
k=0

(P� � e��)
k

exists and is the left and right inverse operator for (I � P� + e��) for all � 2 �.

3. The matrix Q�;i
:
=
h
@px;y
@�i

(�)
i
x;y

is such that Q�;ie = 0 for each i = 1; : : : ; p.

4. Conditions (D2), (G1)-(G2), (F1)-(F3) all hold.

Then, for each i = 1; 2; : : : ; p, the partial derivatives are given by

@J(�)

@�i
= ��

 
@f�
@�i

!
+ ��Q�;iP

#
� f�

= ��

 
@f�
@�i

!
+ ��Q�;ig�

= ��

 
@f�
@�i

!
+ ��Q�;i��: � 2 �:

where f��; � 2 �g is any of the Poisson equation solutions (which are unique only up to a

constant).

Proof: See the appendix.
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Remark

In [12, 15], the authors also show the following equality (under their conditions) involving the

realization matrix D:

��Q�;iP
#
� f� = ��Q�;iD

0
��

0
� = ��Q�;ig�; � 2 �:

4.5.2 An Alternate Version using the Poisson Equation

We now rework the last result except here we do not explicitly assume strong ergodicity or the

existence of the fundamental matrix Z�. Instead, we rely simply on the existence of a solution

�� : X! IR to the Poisson equation for each � 2 �. We note that this was also assumed in our

general SA framework of Chapter 2, i.e. condition (P1), so we are not adding any additional

conditions by this. Chapter 3 provided suÆcient conditions for (P1) hence those results may

be applied here as well.

On a countable state space, the solution �� as well as performance function f� may be

represented as column vectors, so the Poisson equation can be stated as a matrix equation

f� � e��(f�) = �� � P���

= (I � P�)��; � 2 �: (4.19)

Observe that the last term on the left hand side is simply J(�) = ��(f�) converted to a vector,

the steady state performance.

Theorem 4.6 Assume:

1. We have a family of discrete-time countable state positive recurrent irreducible Markov

chains governed by one-step transition matrices fP�; � 2 �g where f��; � 2 �g denotes

the corresponding collection of invariant probabilities.

2. The matrix Q�;i
:
=
h
@px;y
@�i

(�)
i
x;y

is such that Q�;ie = 0 for each i = 1; : : : ; p.

3. For each � 2 �, the Poisson equation (4.19) admits a solution denoted ��.

4. There exists a constant C <1 with

sup
�2�

j��(x)j � CV r(x); for all x 2 X, (4.20)

5. For each x 2 X, the solution ��(x) is continuous on �.

6. The conditions (D2), (G1)-(G2), (F1)-(F3) all hold.
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Then, for each i = 1; 2; : : : ; p, the partial derivatives

@J(�)

@�i
= ��

 
@f�
@�i

!
+ ��Q�;i�� (4.21)

= ��

 
@f�
@�i

!
+ ��Q�;ig�: � 2 �: (4.22)

where f��; � 2 �g is any of the Poisson equation solutions (which are unique only up to a

constant).

Proof: See the appendix.

4.6 A Biased Gradient Estimate for Stochastic Approximation

We now consider a speci�c biased gradient estimation algorithm in the discrete time setting

which is adapted from Cao and Wan's \3c estimator" in [14]. Cao and Wan have shown [14]

that for some �xed positive integer m that

lim
M!1

1

M �m

M�1X
k=m

8<:
@
@�i
pXk�m;Xk�m+1

(�)

pXk�m;Xk�m+1
(�)

9=;
m�1X
j=0

f�(Xk�j) = ��Q�;ibg�;m P�;x � a:s:

(4.23)

for the case when the performance function f�(�) does not depend on �. Also, they suggest

simply using the �nite sample average on the left hand side in (4.23), i.e. a large �xed integer

M such that M >> m, as a performance gradient estimate. Our setting is slightly more

general in that it allows performance functions to depend on �. As such, under the conditions

of Theorem 4.5 or Theorem 4.6, we have shown a similar conclusion as Cao and Chen's result

in Theorem 4.2. Let us de�ne the bias

�i;m(�)
:
= ��Q�;ibg�;m � ��Q�;ig�

so that either Theorem 4.5 or Theorem 4.6, the limit (4.23), and a simple application of the

SLLN for Markov chains yields

@J(�)

@�i
+ �i;m(�) = ��(

@f�
@�i

) + ��Q�;ibg�;m
= lim

M!1

1

M �m

M�1X
k=m

@f�
@�i

(Xk) (4.24)

+ lim
M!1

1

M �m

M�1X
k=m

8<:
@
@�i
pXk�m;Xk�m+1

(�)

pXk�m;Xk�m+1
(�)

9=;
m�1X
j=0

f�(Xk�j) (4.25)

P�;x � a:s:
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Note the similarity in the form of this estimate to the standard LR estimates [44, 46, 48];

with the main di�erence being that these estimates have a truncated inner sum window length

of size m.

We now propose some alterations to (4.24)-(4.25) which are motivated by SA. The quantities

inside the �rst limit (4.24) can be rewritten:

lim
M!1

1

M �m

M�mX
k=1

@f�
@�i

(Xk) = lim
N!1

1

Nm�m

Nm�mX
k=1

@f�
@�i

(Xk) (4.26)

= lim
N!1

1

N � 1

N�1X
n=1

0@ 1

m

m�1X
j=0

@f�
@�i

(Xnm�j)

1A :
The left hand side of (4.26) converges a.s. via the SLLN for Markov chains, and the right hand

side is simply a subsequence so it also converges to the same limit.

The quantities inside the second limit (4.25) can be reindexed as well:

lim
M!1

1

M �m

M�1X
k=m

8<:
@
@�i
pXk�m;Xk�m+1

(�)

pXk�m;Xk�m+1
(�)

9=;
m�1X
j=0

f�(Xk�j) (4.27)

= lim
N!1

1

N � 1

N�1X
n=1

0@ 1

m

m�1X
l=0

8<:
@
@�i
pXnm�m+l;Xnm�m+l+1

(�)

pXnm�m+l;Xnm�m+l+1
(�)

9=;
m�1X
j=0

f�(Xnm+l�j)

1A
= ��Q�;ibg�;m; P�;x � a:s: (4.28)

= E��

24 @
@�i
pX0;X1(�)

pX0;X1(�)

m�1X
j=0

f�(Xm�j)

35 : (4.29)

to a form similar to (4.26).

We now claim that we also have convergence to the same steady state expectation (4.29) if

we replace the inner average over m terms by only the �rst term in the average, i.e.

lim
N!1

1

N � 1

N�1X
n=1

0@ @
@�i
pXnm�m;Xnm�m+1(�)

pXnm�m;Xnm�m+1(�)

m�1X
j=0

f�(Xnm�j)

1A
= E��

24 @
@�i
pX0;X1(�)

pX0;X1(�)

m�1X
j=0

f�(Xm�j)

35 ; P�;x � a:s: (4.30)

4.6.1 m-Window Process

Now for a �xed window size m, let us de�ne fYn; n = m;m + 1; : : :g as the vector formed by

the m+ 1 most recent samples of fXn; n = 0; 1; : : :g, i.e.
Yn

:
= (Xn; Xn�1; : : : ; Xn�m); n � m;

and let fZn; n = 1; : : :g be the m-skeleton of fYn; n = m;m + 1; : : :g:
Zn

:
= Ymn

= (Xmn; Xmn�1; : : : ; Xmn�m) ; n � 1;
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which we will refer to as the m-window process.

Clearly, both of the processes fYn; n = m;m+1; : : :g and fZn; n = 1; 2; : : :g are Markov if

fXk; k = 0; 1; : : :g is Markov. In fact, them-window process de�ned by Zn = fXmn; Xmn�1; : : : ; Xmn�mg
is Markov with transition function �P� given by

�P�[Zn+1 2 Bm � Bm�1 � : : :� B0jZn = (x0; x�1; : : : ; x�m)]

= P�[Xmn+m 2 Bm; : : : ; Xmn+1 2 B1; Xmn 2 B0jXmn = x0; : : : ; Xmn�m = x�m]

= P�[Xmn+m 2 Bm; : : : ; Xmn+1 2 B1; Xmn 2 B0jXmn = x0]

= P�[Xmn+m 2 Bm; : : : ; Xmn+1 2 B1jXmn = x0]1B0(x0)

=
X
Bm

X
Bm�1

: : :
X
B1

mY
l=1

P�[Xmn+l = xljXmn+l�1 = xl�1]1B0(x0)

for Bl 2 B(X), for l = 0; 1; : : : ; m. Also, it should be obvious that the invariant distribution for

fZn; n = 1; 2; : : :g, denoted ���, is given by

���(Bm �Bm�1 � : : :�B0) =
X
Bm

X
Bm�1

: : :
X
B0

mY
l=1

P�[Xl 2 xljXl�1 = xl�1]��(x0)

4.7 A Modi�ed Gradient Estimate

Now, in the same manner as Cao and Wan [14] used to show almost sure convergence of (4.23)

we also have convergence via the Strong Law of Large Numbers for Markov Chains applied to

fZn; n = 0; 1; : : :g so that

lim
N!1

1

N � 1

N�1X
n=1

0@ @
@�i
pXnm�m;Xnm�m+1(�)

pXnm�m;Xnm�m+1(�)

m�1X
j=0

f�(Xnm�j)

1A
= E���

24 @
@�i
pX0;X1(�)

pX0;X1(�)

m�1X
j=0

f�(Xm�j)

35 ; P�;x � a:s: (4.31)

De�ne for each � 2 � and each i = 1; : : : ; p the function bGi : �� X
m+1 ! IR as

bGi(�; Zn)
:
=

1

m

m�1X
j=0

@f�
@�i

(Xnm�j) +

8<:
@
@�i
pXnm�m;Xnm�m+1(�)

pXnm�m;Xnm�m+1(�)

9=;
m�1X
j=0

f�(Xnm�j);

n = 1; 2; : : : ;

and this will serve as our gradient estimate based on an observed window of m + 1 samples

Zn = (Xmn; Xmn�1; : : : ; Xmn�m).

Next, we note for the estimate function bGi(�; �) : Xm+1 ! IR, we have

E�

h bGi(�; Zn+1)jZn

i
= E�

h bGi(�;Xmn+m; : : : ; Xmn+1; Xmn)jXmn; : : : ; Xmn�m

i
= E�

h bGi(�;Xmn+m; : : : ; Xmn+1; Xmn)jXmn

i
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and for any n = 1; 2; : : :

E��� [
bGi(�; Zn+1)]

=
X

z02Xm+1

E�

h bGi(�; Zn+1)jZ0 = z0
i
���(z0)

=
X
Xm+1

E�

h bGi(�;Xmn+m; : : : ; Xmn+1; Xmn)jX0 = x0; : : : ; X�m = x�m
i
���(z0)

=
X
Xm+1

E�

h bGi(�;Xmn+m; : : : ; Xmn+1; Xmn)jX0 = x0
i
���(z0 = (x0; x�1; : : : ; x�m))

=
X
x02X

E�

h bGi(�;Xmn+m; : : : ; Xmn+1; Xmn)jX0 = x0
i
��(x0)

= E�� [
bGi(�;Xmn+m; : : : ; Xmn+1; Xmn)]

= E�� [
bGi(�; Zn+1)]

This with (4.31) shows the claim (4.30). Hence for each � 2 � and for arbitrary n = 1; 2; : : ::

��

 
@f�
@�i

!
+ ��Q�;ibg�;m

= E��

240@ 1

m

m�1X
j=0

@f�
@�i

(Xnm�j)

1A+

8<:
@
@�i
pXnm�m;Xnm�m+1(�)

pXnm�m;Xnm�m+1(�)

9=;
m�1X
j=0

f�(Xnm�j)

35 ;
and although there is a bias, this does suggest a possible function to drive the stochastic

approximation algorithm for optimization.

Let us write

bG(�; Zn)
:
=

h bG1(�; Zn); bG2(�; Zn); � � � ; bGp(�; Zn)
i0

�m(�) = [�1;m(�); �2;m(�); : : : ; �p;m(�)]
0

and, as we have discussed, we have

lim
N!1

1

N

NX
n=1

bG(�; Zn) = E��

h bG(�; Z1)
i
; P�;x � a:s:

= rJ(�) + �m(�); � 2 �:

Thus, if an algorithm of the form

�n+1 = ��

n
�n � n+1 bG(�n; Zn+1)

o
; n = 0; 1; : : : (4.32)

with a �xed m is used, we see that due to a possibly nonzero bias term, in general the iterates

will not be convergent to the optimal �? such that rJ(�?) = 0. The next chapter resolves this

issue with a �? convergent algorithm.
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Chapter 5

Stochastic Optimization of Steady State Performance

We develop an SA algorithm which is appropriate for the gradient estimate of the last chapter.

Since that estimate was biased for any �xed observation window, we use a sequence of increasing

window lengths to achieve convergence to the optimal parameter.

5.1 Introduction

Consider the projected stochastic approximation algorithm de�ned by the recursion

�n+1 = ��

�
�n + n+1H`n+1(�n; �Xn+1) + 1+

b̀1
n+1 ��n+1(�n; �Xn+1)

�
; n = 0; 1; 2; : : :

�0 = � (5.1)

which takes observations from the state process over a window

�Xn+1
:
=
�
Xn+1;0; Xn+1;1; : : : ; Xn+1;`n+1

�
; n = 0; 1; : : :

Within this (n+ 1)th window, the state process fXn+1;k; k = 0; 1; : : : ; `n+1g is simply a Markov

chain taking values on X and governed by one-step transition kernel (or matrix) P�n from the

family fP�; � 2 �g. Each observation window is initialized with the last sample of the previous

window, i.e. Xn+1;0 = Xn;`n, and the �rst observation window is initialized at X1;0 = x 2 X.

(See the next section for a complete description.)

The deterministic sequence f`n; n = 0; 1; : : :g de�nes the length `n of the nth observation

window for each step of the algorithm. As before, a compact projection set � � IRp is assumed

and the algorithm is driven by the functions H`n+1 : ��X1+`n+1 ! IRp and ��n+1 : ��X1+`n+1 !
IRp for n = 0; 1; : : :.

In this chapter, we develop conditions for convergence of the iterates f�n; n = 0; 1; : : :g when
the `n+1 increases slowly, on the order of `n � log(n); n = 1; 2; : : :. We continue to assume

the previously de�ned (S) for the step-size sequence fn+1; n = 0; 1; : : :g although we slightly

strengthen it to the form (S) below.

(S) For 0 < b̀
1 < 1 from (5.1) the following holds:

a) n > 0 and n � n+1 for all n = 1; 2; : : : ; limn!1 n = 0
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b) `n 2 ZZ
+ and `n � `n+1 for all n = 0; 1; : : : ; limn!1 `n =1

c)
P1

n=0 n+1 =1;
P1

n=1 
1+b̀1
n `4n+1 <1

d)
P1

k=1(k � k+1)`
3
k+1 <1

We note that the sequences de�ned by n =
1

n+1
and `n = max (1; bln(n)c) satis�es (S) with

any 0 < b̀
1 < 1.

5.2 Basic Ingredients

Let X1 be the in�nite Cartesian product of X with itself, and denote by B(X1) the standard
�{�eld on X

1. We write a generic element � of X1 as � = (x; x1; : : :) where x; x1; : : : are all

elements of X. The coordinate process f�`; ` = 0; 1; : : :g is then simply de�ned by

�0(�)
:
= x; �`(�)

:
= x`; � 2 X

1; ` = 1; : : :

We postulate the existence of a family fP�;x; � 2 �; x 2 Xg of probability measures on B(X1)
such that

P�;x[�0 = x] = 1; � 2 �; x 2 X:

For technical reasons, we again assume a measurable functional dependence in � and x:

(P0) For every L = 1; 2; : : :, the mapping �� X! IR : (�; x) ! P�;x[�` 2 B`; ` = 1; : : : ; L] is

Borel measurable for all possible choices of Borel subsets B1; : : : ; BL in B(X).
In order to de�ne the stochastic approximation procedures, we start with a sample space


 equipped with a �{�eld of events F . The measurable space (
;F) is assumed large enough

to carry a double array of X{valued rvs fXn;`; ` = 1; : : : ; `n; n = 0; 1; : : :g where we take the

convention that `0 = 1. We de�ne the �{valued rvs f�n; n = 0; 1; : : :g through the recursion

(5.1), and for convenience later, we de�ne Xn+1;0 = Xn;`n for all n = 0; 1; : : :.

Next, we introduce the �ltration fFn; n = 0; 1; : : :g on (
;F) by setting

Fn
:
= �f�m; Xm;`; ` = 1; : : : ; `m; m = 0; 1; : : : ; ng
= �f�0;Xm;`; ` = 1; : : : ; `m; m = 0; 1; : : : ; ng n = 0; 1; : : :

where the equality follows since the rvs �m, m = 1; 2; : : : ; n, are fully determined by the rvs �0,

X0;1, and Xm+1;`; ` = 1; : : : ; `m+1; m = 0; 1; : : : ; n� 1.

Finally, given a probability measure � on B(�� X), we postulate the existence of a proba-

bility measure P on (
;F) satisfying
P[� 2 B;X0;1 2 B1] = �(B � B1); B 2 B(�); B1 2 B(X)

and

P[Xn+1;` 2 B`; ` = 1; : : : ; `n+1jFn] = P�n;Xn;`n
[�` 2 B`; ` = 1; : : : ; `n+1]

n = 0; 1; : : : (5.2)
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for Borel subsets B1; : : : ; B`n+1 in B(X). The existence of such a set-up is readily justi�ed by

the Daniell{Kolmogorov consistency theorem [69, p. 94] on �� X� X
1 in the usual manner.

We shall also de�ne the one-step transition probability P�(x;A)
:
= Px;�[�1 = A] for all � 2 �

and A 2 B(X).

5.3 The Windowed State Process

We shall now assume a countable state space X. For a given sequence f`n+1; n = 0; 1; : : :g, we
have de�ned the windowed state process f �Xn+1; n = 0; 1; : : :g by setting

�Xn+1
:
=
�
Xn+1;0; Xn+1;1; : : : ; Xn+1;`n+1

�
; n = 0; 1; : : : : (5.3)

The state process f �Xn+1; n = 0; 1; : : :g is clearly inhomogeneous. The one-step transition prob-

abilities for the windowed process (5.3), denoted �P�n , can be de�ned in terms of the transition

probabilities P�n which govern each transition within the nth window. Clearly, the windowed

process f �Xn; n = 0; 1; 2; : : :g is Markov under our construction. We have for any �n 2 �

�P�n (�xn; �xn+1)

= �P�n
�
(xn;0; xn;1; : : : ; xn;`n); (xn+1;0; xn+1;1; : : : ; xn+1;`n+1)

�
= P�n[ �Xn+1 = (xn+1;0; xn+1;1; : : : ; xn+1;`n+1)j �Xn = (xn;0; xn;1; : : : ; xn;`n)]

= P�n[Xn+1;k = xn+1;k; k = 0; : : : ; `n+1jXn;0 = xn;0; : : : ; Xn;`n = xn;`n ]

= P�n[Xn+1;k = xn+1;k; k = 0; : : : ; `n+1jXn;`n = xn;`n ]

= 1fxn;`n=xn+1;0g

`n+1�1Y
k=0

P�n (xn+1;k; xn+1;k+1) ; n = 0; 1; : : :

Note that as expected, �P�n only depends on the last point xn;`n of the window and not the

entire window �xn.

Let us now generalize the de�nition of �P�n to allow transitions from an arbitrary size window

of size `0 to one of size `. Thus, for any parameter � 2 �, probability of any transition from

any state �x = (x0; : : : ; x`0) 2 X
`0+1 to any state �y = (y0; y1; : : : ; y`) 2 X

`+1 is given by

�P� (�x; �y)
:
= 1fx`0=y0g

`�1Y
k=0

P� (yk; yk+1) :

It should be obvious that for any �xed � 2 � and `0 2 ZZ
+, an invariant distribution for �P� (�x; �y)

is given by

���(�x) = ��(x0)
`0�1Y
k=0

P� (xk; xk+1)

where ��(�) is the invariant distribution for the one-step P�.

As a �nal point of notation, if in the above we have ` = `0 then we shall write

�P`;� (�x; �y)
:
= 1fx`=y0g

`�1Y
k=0

P� (yk; yk+1) ; � 2 �; (5.4)

for �x; �y 2 X
`+1 where �x = (x0; x1; : : : x`) and �y = (y0; y1; : : : ; y`).
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Assumed Ergodicity

Given this framework, we assume a generalized ergodicity for any generic homogeneous Markov

chain f �Xn; n = 0; 1; : : :g governed by (5.4) for any �xed ` 2 ZZ
+ and �xed � 2 � in the sense

that

lim
n!1

E�;�x0

h
H`(�; �Xn)

i
= ���(H`;�)

:
= h`(�); � 2 �; �x0 2 X

`+1: (5.5)

(Note, for this generic chain here we assume � is held �xed and not being updated by the SA

algorithm.) Additionally, we assume that

lim
`!1

h`(�) = h(�); � 2 �:

5.4 The Increasing Window Size SA Algorithm

Here we develop a general form of SA algorithm. The recursion we apply takes the form:

�n+1 = ��

�
�n + n+1H`n+1(�n; �Xn+1) + 1+

b̀1
n+1 ��n+1(�n; �Xn+1)

�
; n = 0; 1; : : :

Inserting canceling terms, we �nd

�n+1 = ��

n
�n + n+1h(�n) + n+1

�
H`n+1(�n; �Xn+1)� h`n+1(�n)

�
+ n+1

�
h`n+1(�n)� h(�n)

�
+ 1+

b̀1
n+1 ��n+1(�n; �Xn+1)

�
:

We now lump the bias term in with any applied perturbation ��n and de�ne the total perturba-

tion

�n+1(�n; �Xn+1)
:
= �

b̀1
n+1

�
h`n+1(�n)� h(�n)

�
+ ��n+1(�n; �Xn+1); (5.6)

Then we de�ne the overall noise

"n+1
:
= H`n+1(�n; �Xn+1)� h`n+1(�n) + 

b̀1
n+1�n+1(�n; �Xn+1): (5.7)

and we have the increasing window size SA algorithm

�n+1 = �� f�n + n+1h(�n) + n+1"n+1g (5.8)

= �n + n+1h(�n) + n+1"n+1 + n+1zn+1; n = 0; 1; : : : :

It should be clear from this construction that if we want the the bias term to vanish, we

will require the window sizes, de�ned by the sequence f`n+1; n = 1; 2; : : :g, to be increasing

towards in�nity. The trick here is to increase the window size slowly enough so the increasing

amount of noise can be controlled by the the SA algorithm.
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5.4.1 A Stochastic Optimization Algorithm

The above algorithm in (5.8) is given in a general form similar to the basic SA algorithm of

Chapter 2 and is designed to be used with the gradient algorithms of Chapter 4. Here we review

the speci�c optimization algorithm proposed in Chapter 4.

First we note that ��n(�; �) = 0 for all n = 1; 2; : : :. Then, let us designate the p components

of the vector H`(�; �x) as H`;i(�; �x) for i = 1; : : : ; p. Thus, for any i = 1; : : : ; p we have

H`n+1;i(�n; �Xn+1) = � bGi(�n; �Xn+1)

= �
0@ 1

`n+1

`n+1X
j=1

@f�(Xn;j)

@�i

1A� L�n;i(Xn+1;0;Xn+1;1)
`n+1X
k=1

f(Xn+1;k)

where the likelihood ratio is

L�n;i(Xn+1;0;Xn+1;1)
:
=
@P�n(Xn+1;0; Xn+1;1)=@�i
P�n(Xn+1;0; Xn+1;1)

:

If we assume all the conditions of Theorem 4.6 we may de�ne

h(�) = �rJ(�) = ���(rf�)� ��Q�g�; � 2 �;

and if we write h`(�) = [h`;1(�) : : : h`;p(�)]
0, we have for each i = 1; : : : ; p and ` = 1; 2; : : :

h`;i(�)
:
= E���

h
H`;i(�; �Xn)

i
= E���

"
�@f�
@�i

(Xn;1)� L�;i(Xn;0;Xn;1)
X̀
k=1

f(Xn;k)

#
:

5.4.2 Additive Form of the Driving Function

If we continue to consider the gradient algorithm de�ned above, observe the function H`n+1 is

additive in the sense that for any � 2 �,

H`n+1(�; �Xn+1) =
`n+1X
i=1

 r�f�(Xn;i)

`n+1
+ L�(Xn;0;Xn;1)f�(Xn;i)

!
: (5.9)

Under the conditions we will make, the norm of the likelihood ratio L�(x; y) is bounded for

all � 2 � and all x; y 2 X. Furthermore, the one-step performance is assumed dominated by

jf(x)j � C1V
r(x) where V is de�ned in the assumed (D1) or (D2) as in Chapter 2. Additionally,

we will assume kr�f�(x)k � C2V
r(x). Thus we have a bound for H` which grows with ` =

1; 2; : : ::

kH`(�; �x)k � X̀
i=1

(kr�f�(xi)k+ kL�(x0; x1)k jf(xi)j)

� X̀
i=1

CV r(xi); � 2 �; �x = (x0; x1; : : : ; x`) 2 X
`+1;

for some C <1.
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Consider applying the framework of Chapter 2 to this SA with increasing window sizes. Since

condition (H2) is clearly violated if we use an unbounded window length sequence f`n; n =

0; 1; : : :g, it should be apparent that we need to make some substantial changes to adapt the

earlier SA framework for this optimization problem.

5.5 General Convergence Criteria

We start with verifying (or assuming) either condition (D1) or (D2) involving fP�; � 2 �g for
some function V : X! [1;1). Then, we de�ne the functions

�V0(x)
:
= V (x); x 2 X;

�V`(�x)
:
= supfV (xi); i = 1; : : : ; `g; �x = (x0; x1; : : : ; x`) 2 X

`+1; ` = 1; 2; : : :

All the conditions here are analogs of those in Chapters 2 and 3 except we have added an

\over-line" to distinguish that they apply to the windowed process.

(D0) For the sequence of functions �V` : X
`+1 ! [1;1) for ` = 0; 1; 2; : : : there exists a constant

1 � CD <1 such that

E�;x

h
�V`n+1( �Xn+1)

i
� CD`n+1 �V0(x); n = 0; 1; 2; : : :

for all � in � and x in X.

For this sequence of functions �V` : X
`+1 ! [1;1); ` = 0; 1; : : :, we assume the remaining

conditions all hold for some constant r such that 0 < r � 1

2(1+b̀1) where the real constant b̀1 lies
in the interval (0; 1) and satis�es (S).

(H2) There exists constants CH <1 and C� <1 such that for all ` = 1; 2; : : :

sup
�2�

kH`(�; �x)k � CH

X̀
i=1

V r
` (xi) � CH ` �V r

` (�x);

for all �x = (x0; x1; : : : ; x`) 2 X
`+1; and

sup
�2�

k�n(�; �x)k � C� `n �V r
`n(�x); n = 1; 2; : : :

for all �x = (x0; x1; : : : ; x`n) 2 X
`n+1.

(P1) For any ` = 1; 2; : : :, the following series converges

�`;�(�x)
:
=

1X
n=0

�Z
X`+1

�P n
`;�(�x; d�y)H`;�(�y)� h`(�)

�
<1; (�; �x) 2 �� X

`+1:

We identify �`;�(�x) as the solution to the Poisson equation associated with H`(�; �),

H`;�(�x)� h`(�) = �`;�(�x)�
Z
X`+1

�P`;�(�x; d�y)�`;�(�y); �x 2 X
`+1; � 2 �:

Recall our convention that H`(�; �) = H`;�(�) and h`(�) = ���(H`;�(�)).
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(P2) There exists a constant C� <1 such that for all ` = 1; 2; : : ::

k�`;�(�x)k � C� ` �V r
` (�x); for all � 2 �; �x 2 X

`+1; �P��`;�(�x) � C� ` �V r
0 (x`0); for all � 2 �; �x = (x0; : : : ; x`0) 2 X

`0+1;

`0 = 1; 2; : : : arbitrary.

(P3) There exists a constant CÆ <1 such that for all ` = 1; 2; : : :

 �P��`;�(�x)� �P�0�`;�0(�x)
 � CÆ `

2 �V r
0 (x`0) k� � �0kb̀1 ;

for all �; �0 2 �; �x = (x0; x1; : : : ; x`0) 2 X
`0+1;

`0 = 1; 2; : : : arbitrary,

and b̀1 2 (0; 1) determined by (S).

Note, the arbitrariness of `0 is due to the Markov property of the conditional expectation;

i.e. all that it depends on is the most recent sample within the window no matter how long the

window happens to be.

5.6 Decomposition of the Increasing Window SA Algorithm

Previously in Section 5.4 we showed the stochastic optimization algorithm takes the form of

an SA. Our main goal now is to study the noise sequence in a manner that allows us to show

condition (KC4) in the Kushner-Clark Lemma. We decompose the noise so we can break this

large problem up into several manageable pieces. The decomposition is adapted from BMP's

technique used in Chapter 2 except in this case here the increasing window length creates

several diÆculties we must attend to.

Earlier in (5.7) we derived the sequence of noise terms f"k+1; k = 0; 1; : : :g given by

"k+1
:
= H`k+1(�k;

�Xk+1)� h`k+1(�k) + 
b̀1
k+1�k+1(�k;

�Xk+1):

Assuming condition (P1) so that the solution to the Poisson equation exists, then

"k+1 =
n
�`k+1;�k(

�Xk+1)� �P`k+1;�k�`k+1;�k(
�Xk+1)

o
+ k+1�k+1(�k; �Xk+1)

=
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o
+

n
�P�k�`k+1;�k(

�Xk)� �P`k+1;�k�`k+1;�k(
�Xk+1)

o
+ k+1�k+1(�k; �Xk+1)

=
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o
+

n
�P�k�`k+1;�k(

�Xk)� �P�k�`k+2;�k(
�Xk+1)

o
+

n
�P�k�`k+2;�k(

�Xk+1)� �P`k+1;�k�`k+1;�k(
�Xk+1)

o
+ k+1�k+1(�k; �Xk+1)
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If m < n, the step-size weighted sum of the noise terms is formed and then rearranged:

n�1X
k=m

k+1"k+1 =
n�1X
k=m

k+1
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o

+
n�1X
k=m

k+1
n
�P�k�`k+1;�k(

�Xk)� �P�k�`k+2;�k(
�Xk+1)

o

+
n�1X
k=m

k+1
n
�P�k�`k+2;�k(

�Xk+1)� �P`k+1;�k�`k+1;�k(
�Xk+1)

o

+
n�1X
k=m

2k+1�k+1(�k; �Xk+1)

Rearranging the terms

n�1X
k=m

k+1"k+1 =
n�1X
k=m

k+1
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o

+
n�1X

k=m+1

k+1
n
�P�k�`k+1;�k(

�Xk)� �P�k�1�`k+1;�k�1(
�Xk)

o
+ m+1

�P�m�`m+1;�m( �Xm)� n �P�n�1�`n+1;�n�1( �Xn)

+
n�1X
k=m

k+1
n
�P�k�`k+2;�k(

�Xk+1)� �P`k+1;�k�`k+1;�k(
�Xk+1)

o

+
n�1X

k=m+1

(k+1 � k) �P�k�1�`k+1;�k�1(
�Xk)

+
n�1X
k=m

2k+1�k+1(�k; �Xk+1)

Now de�ne for k = m;m+ 1; : : : ; n� 1:

"
(1)
k+1

:
= �`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

"
(2)
k+1

:
= �P�k�`k+1;�k(

�Xk)� �P�k�1�`k+1;�k�1(
�Xk)

"(3)k+1
:
=

k+1 � k
k+1

�P�k�1�`k+1;�k�1(
�Xk)

"
(4)
k+1

:
= 

b̀1
k+1�k+1(�k; �Xk+1)

"
(5)
k+1

:
= �P�k�`k+2;�k(

�Xk+1)� �P`k+1;�k�`k+1;�k(
�Xk+1)

�m;n
:
= m+1

�P`m+1;�m�`m+1;�m( �Xm)� n �P`n+1;�n�1�`n+1;�n�1( �Xn):

Thus, for m < n we have the decomposition

n�1X
k=m

k+1"k+1 =
n�1X
k=m

k+1"
(1)
k+1 +

n�1X
k=m+1

k+1"
(2)
k+1 +

n�1X
k=m+1

k+1"
(3)
k+1

+
n�1X
k=m

k+1"
(4)
k+1 +

n�1X
k=m

k+1"
(5)
k+1 + �m;n (5.10)
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5.7 New Lemmas to Bound the Noise Terms

In this section, we prove a bound for all of the noise terms in the decomposition above.

Lemma 5.1 Assume (D0), (P1), (P2) hold for any positive constant r � 1

2(1+b̀1) where the

positive constant 0 < b̀
1 < 1 satis�es (S).

1. There exists a constant A1 <1 such that for each m = 1; 2; : : :

E�;x

24sup
n�m


n�1X
k=0

k+1"
(1)
k+1


2
35 � A1

�V0(x)
m�1X
k=0

2k+1`
3
k+1; x 2 X; � 2 �:

Moreover, A1 � 4pC2
�CD.

2. The series limn!1
Pn�1

k=0 k+1"
(1)
k+1 converges P�;x-a.s. to a �nite rv.

Proof: Consider the sum

�Mn =
n�1X
k=0

k+1
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o
; n = 1; 2; : : :

which is a vector martingale since (by the Markov property)

E
h
�`k+1;�k(

�Xk+1)jFk

i
= �P�k�`k+1;�k(

�Xk):

The vector �Mn is a p-dimensional vector, and although convergence results exist for vector

martingales [76], we �nd it simpler to consider each of the p components separately by de�ning

the ith component vector as

M (i)
n =

n�1X
k=0

k+1
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o(i)
; n = 1; 2; : : : ;

For brevity, let us now drop the (i) in this de�nition and consider any of the p components of

the vector martingale as:

Mn =
n�1X
k=0

k+1
n
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

o
; n = 1; 2; : : :

Clearly, each component of Mn above also has the martingale property.

Incremental orthogonality and Pythagoras formula [108, p.110] yield

E�;x

h
M2

n

i
= E�;x

h
M2

1

i
+

nX
k=2

E�;x

h
(Mk �Mk�1)

2
i

=
n�1X
k=0

2k+1E�;x

��
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

�2�
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=
n�1X
k=0

2k+1E�;x

�
E
��
�`k+1;�k(

�Xk+1)� �P�k�`k+1;�k(
�Xk)

�2 jFk

��

=
n�1X
k=0

2k+1E�;x

�
E
��
�`k+1;�k(

�Xk+1)
�2 jFk

�
�
�
�P�k�`k+1;�k(

�Xk)
�2�

�
n�1X
k=0

2k+1E�;x

��
�`k+1;�k(

�Xk+1)
�2�

� C2
�

n�1X
k=0

2k+1`
2
k+1E�;x

h
�V 2r
`k+1

( �Xk+1)
i

� C2
�

n�1X
k=0

2k+1`
2
k+1E�;x

h
�V 1
`k+1

( �Xk+1)
i

where we have used (P2) in the second to last line. The last line follows since 2r � 1

1+b̀1 � 1.

Applying (D0) to the last line we �nd

E�;x

h
M2

n

i
� C2

�CD
�V0(x)

n�1X
k=0

2k+1`
3
k+1

The bound in the �rst part of the lemma follows from Doob's inequality

E�;x

"
sup
n�m

 �Mn

2# = E�;x

"
sup
n�m

pX
i=1

�
�M (i)
n

�2#

�
pX
i=1

E�;x

"
sup
n�m

�
M (i)

n

�2#

�
pX
i=1

4 sup
n�m

E�;x

��
M (i)

n

�2�

� 4pC2
�CD

�V0(x)
m�1X
k=0

2k+1`
3
k+1; x 2 X; � 2 �:

Under (S),
P1

k=0 
1+b̀1
k+1 `

3
k+1 < 1 and it then follows that

P1
k=0 

2
k+1`

3
k+1 < 1 since k # 0

and there exists a k0 such that k0 < 1, hence 2k � 1+
b̀1

k for all k � k0.

For the convergence properties in the second part of the lemma, we note thatP1
k=0 

2
k+1`

3
k+1 <1 which implies that each component martingale of the vector martingale

converges a.s. to a �nite random variable (as well as converging in L2) since it is bounded in

L2 [108].

Lemma 5.2 Assume (D0), (H2), (P1), (P3) for any positive r � 1

2(1+b̀1) where the positive

constant 0 < b̀
1 < 1 is determined from (S). There exists a constant A2 <1 such that for all

m = 1; 2; : : :,

E�;x

24 m�1X
k=1

k+1
"(2)k+1

!2
35 � A2

�V0(x)

 
m�1X
k=1

1+
b̀1

k `
5=2+b̀1
k+1

!2

; x 2 X; � 2 �:

Moreover, A2 � 4C2
Æ (CH + 1C�)

2b̀1 CD.
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Proof: Under (P3), �P;��`n+1;�(�x)� �P�0�`n+1;�0(�x)


� CÆ`
2
n+1

�V r
0 (x`n) k� � �0kb̀1

� CÆ`
2
n+1

�V r
`n(�x) k� � �0kb̀1 ; �x = (x0; : : : ; x`n) 2 X

`n+1; �; �0 2 �: (5.11)

Also, the nearest point projection term is bounded by

kzkk �
H`k(�k�1;

�Xk) + k�k(�k�1; �Xk)


which follows since �k 2 � and, at the very least, the projection term can return the iterate to

this point so �k+1 = �k 2 �. Hence for k = 1; 2; : : : we have from (H2) and the de�nition of the

SA that

k�k � �k�1k � k

H`k(�k�1;
�Xk) + 

b̀1
k �k(�k�1; �Xk) + zk


� 2k

H`k(�k�1;
�Xk) + 

b̀1
k �k(�k�1;

�Xk)


� 2CHk`k �V
r
`k
( �Xk) + 2C�

1+b̀1
k `k �V

r
`k
( �Xk)

� 2
�
CH + 

b̀1
1 C�

�
k`k �V

r
`k
( �Xk) (5.12)

Thus by (5.11) and (5.12),

E�;x

24 m�1X
k=1

k+1
"(2)k+1

!2
35

= E�;x

24 m�1X
k=1

k+1
 �P�k�`k+1;�k( �Xk)� �P�k�1�`k+1;�k�1(

�Xk)
!2

35
� E�;x

24 m�1X
k=1

k+1`
2
k+1CÆ

�V r
`k
( �Xk) k�k � �k�1kb̀1

!2
35

� 4E�;x

24 m�1X
k=1

k+1`
2
k+1CÆ

�V r
`k
( �Xk) (CH + 1C�)

b̀1 b̀1k `b̀1k �V rb̀1
`k

( �Xk)

!2
35

= 4C2
Æ (CH + 1C�)

2b̀1 E�;x

24 m�1X
k=1

1+
b̀1

k `2+
b̀1

k+1 V
r(1+b̀1)
`k

( �Xk)

!2
35

� 4C2
Æ (CH + 1C�)

2b̀1 E�;x

24 m�1X
k=1

1+
b̀1

k `2+
b̀1

k+1
�V
1=2
`k

( �Xk)

!2
35 :

since r(1 + b̀
1) � 1=2. By treating the sum as an inner product and applying the Schwarz

inequality [50, p. 2] to the last line

E�;x

24 m�1X
k=1

k
"(2)k+1

!2
35
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� 4C2
Æ (CH + 1C�)

2b̀1  m�1X
k=1

1+
b̀1

k `
5=2+b̀1
k+1

!
E�;x

"
m�1X
k=1

1+
b̀1

k `
3=2+b̀1
k+1

�V`k(
�Xk)

#

� 4C2
Æ (CH + 1C�)

2b̀1  m�1X
k=1

1+
b̀1

k+1 `
5=2+b̀1
k+1

!
m�1X
k=1

1+
b̀1

k `
3=2+b̀1
k+1 E�;x

h
�V`k(

�Xk)
i

� 4C2
Æ (CH + 1C�)

2b̀1  m�1X
k=1

1+
b̀1

k `
5=2+b̀1
k+1

!
CD

�V0(x)
m�1X
k=1

1+
b̀1

k `
5=2+b̀1
k+1 :

Lemma 5.3 Assume (D0), (P1), (P2) for any positive constant r � 1

2(1+b̀1) where the positive

constant 0 < b̀
1 < 1 satis�es (S). There exists a constant A3 <1 such that for allm = 1; 2; : : : ;,

E�;x

24 m�1X
k=1

k+1
"(3)k+1

!2
35 � A31 �V0(x)

m�1X
k=1

(k � k+1)`
3
k+1; x 2 X; � 2 �:

Moreover, A3 � C2
�CD.

Proof: Applying (P2)

E�;x

24 m�1X
k=1

k+1
"(3)k+1

!2
35 = E�;x

24 m�1X
k=1

(k � k+1)
 �P�k�1�`k+1;�k�1( �Xk))

!2
35

� E�;x

24 m�1X
k=1

(k � k+1)C�`k+1 �V
r
`k
( �Xk)

!2
35

Next, the Schwarz inequality yields

E�;x

24 m�1X
k=1

k+1
"(3)k+1

!2
35

� C2
�

 
m�1X
k=1

(k � k+1)

!
E�;x

"
m�1X
k=1

(k � k+1)`
2
k+1

�V 2r
`k
( �Xk)

#

� C2
�

 
m�1X
k=1

(k � k+1)

!
m�1X
k=1

(k � k+1) `
2
k+1E�;x

h
�V 1
`k
( �Xk)

i

� C2
�1

m�1X
k=1

(k � k+1)`
3
k+1CD

�V0(x)

Lemma 5.4 Assume (D0), (P1), (H2) for any positive constant r � 1

2(1+b̀1) where the positive

constant 0 < b̀
1 < 1 satis�es (S). There exists a constant A4 <1 such that for all m = 1; 2; : : :,

E�;x

24 m�1X
k=0

k+1
"(4)k+1

!2
35 � A4

�V0(x)

 
m�1X
k=0

2k+1`
3=2
k+1

!2

; x 2 X; � 2 �:

Moreover, A4 � CDC
2
� .
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Proof: First we have from (H2):

k+1
"(4)k+1

 = 1+
b̀1

k+1

�k(�k; �Xk+1)
 � 1+

b̀1
k+1 `k+1C�

�V r
`k+1

( �Xk+1)

Hence,

E�;x

24 m�1X
k=0

k+1
"(4)k+1

!2
35

� C2
�E�;x

24 m�1X
k=0

`k+1
1+b̀1
k+1

�V r
`k+1

( �Xk+1)

!2
35

� C2
�E�;x

" 
m�1X
k=0

1+
b̀1

k+1 `
3=2
k+1

!
m�1X
k=0

1+
b̀1

k+1 `
1=2
k+1

�V 2r
`k+1

( �Xk+1)

#
; m = 1; 2; : : :

where the last line follows from the Schwarz inequality. We have r(1 + b̀
1) � 1=2, so for

m = 1; 2; : : :

E�;x

24 m�1X
k=0

k+1
"(4)k+1

!2
35 � C2

�

 
m�1X
k=0

1+
b̀1

k+1 `
3=2
k+1

!
E�;x

"
m�1X
k=0

1+
b̀1

k+1 `
1=2
k+1

�V 1
`k+1

( �Xk+1)

#

� C2
�

 
m�1X
k=0

1+
b̀1

k+1 `
3=2
k+1

!
CD

�V0(x)
m�1X
k=0

1+
b̀1

k+1 `
3=2
k+1:

Lemma 5.5 Assume (D0), (P1), (P2), (S) for any positive constant r � 1.

Then, there exists a constant A5 <1 such that for all m = 1; 2; : : :,

E�;x

"
m�1X
k=0

k+1
"(5)k+1

# � A5
�V0(x)

m�1X
k=0

k+1`
2
k+21f`k+1 6=`k+2g; x 2 X; � 2 �:

If we further assume the sequences fn; n = 1; 2; : : :g and f`n; n = 1; 2; : : :g are de�ned by

n =
1

n + 1
; n = 1; 2; : : :

`n = max (1; bln(n)c) ; n = 1; 2; 3; : : : ;

then, there exists a constant A0
5 <1 such that for all m = 1; 2; : : :,

E�;x

"
m�1X
k=0

k+1
"(5)k+1

# � A0
5
�V0(x); x 2 X; � 2 �:

Proof: Recall the term

"
(5)
k+1

:
= �P�k�`k+2;�k(

�Xk+1)� �P`k+1;�k�`k+1;�k(
�Xk+1):
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This is simply the di�erence of the two Poisson equation solutions corresponding to forcing

functions H`k+1 and H`k+2 as seen through the corresponding one-step expectation operator

under �P . This di�erence, if nonzero, is cause by a di�erence in the length of the observation

windows. For any k such that `k+1 = `k+2 then "
(5)
k+1 = 0.

Therefore, we have

E�;x

"
m�1X
k=0

k+1
"(5)k+1

#

= E�;x

"
m�1X
k=0

k+11f`k+1 6=`k+2g
 �P�k�`k+2;�k( �Xk+1)� �P`k+1;�k�`k+1;�k(

�Xk+1)
#

�
m�1X
k=0

k+11f`k+1 6=`k+2gE�;x

h �P�k�`k+2;�k( �Xk+1)
+  �P`k+1;�k�`k+1;�k( �Xk+1)

i

�
m�1X
k=0

k+11f`k+1 6=`k+2gE�;x

h
C�`k+2 �V

r
`k+1

(Xk+1) + C�`k+1 �V
r
`k+1

(Xk+1)
i

� 2C�

m�1X
k=0

k+1`k+21f`k+1 6=`k+2gE�;x

h
�V r
`k+1

(Xk+1)
i

� 2C�
�V0(x)

m�1X
k=0

k+1`k+21f`k+1 6=`k+2g`k+1

� 2C�
�V0(x)

m�1X
k=0

k+1`
2
k+21f`k+1 6=`k+2g; x 2 X; � 2 �:

For the second part we look at the series

m�1X
k=0

k+1`
2
k+21f`k+1 6=`k+2g =

mX
n=1

n`
2
n+11f`n 6=`n+1g

=
mX
n=1

(max (1; bln(n+ 1)c))2
n+ 1

1f`n 6=`n+1g

The convergence of the series is determined by the tail so we may discard the �rst few terms

of the series to determine convergence. If we start at n = 10, the summands (excluding the

indicator function) are all decreasing and noting that ln(3) � 1:0986123, we can also drop the

max with 1 operator. Thus,

1X
n=10

(bln(n+ 1)c)2
n+ 1

1f`n 6=`n+1g �
1X

n=10

ln2(n + 1)

n+ 1
1fbln(n)c6=bln(n+1)cg

� X
n2IR:

ln(n+1)2f11;12;13;:::g

ln2(n+ 1)

n + 1
1fbln(n)c6=bln(n+1)cg

=
X

n2IR:

ln(n+1)2f11;12;13;:::g

ln2(n+ 1)

n + 1
:
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Now substitute m = ln(n + 1) so that n+ 1 = em,

X
n2IR:

ln(n+1)2f11;12;13;:::g

ln2(n + 1)

n+ 1
=

1X
m=11

m2e�m <1:

Lemma 5.6 Assume (D0), (P1), (P2) for any positive constant r � 1

2(1+b̀1) where the positive

constant 0 < b̀
1 < 1 satis�es (S).

1. There exists a constant A6 <1 such that for each m = 1; 2; : : :,

E�;x

"
sup

1�n�m
k�0;nk2

#
� A6

�V0(x)
m�1X
k=0

2k+1; x 2 X; � 2 �:

Moreover, A6 � 4CDC
2
� .

2. As n!1 we have that �0;n converges P�;x-a.s.

Proof: Recall that �0;n
:
= 1 �P�0�`1;�0( �X0)� n �P�n�1�`n+1;�n�1( �Xn) for n = 1; 2; : : :.

First we have �X0 = x a.s. and under (P2)1 �P�0�`1;�0(x)2 � 21`
2
1C

2
�
�V 2r
0 (x) � 21`

2
1C

2
�
�V 1
0 (x)

Also, for each m = 1; 2; : : :

E�;x

"
sup

1�n�m

n �P�n�1�`n+1;�n�1( �Xn)
2# � C2

�E�;x

"
sup

1�n�m
2n`

2
n+1

�V 2r( �Xn)

#

Thus,

E�;x

"
sup

1�n�m
k�0;nk2

#

= E�;x

"
sup

1�n�m

1 �P�0�`1;�0( �X0)� n �P�n�1�`n+1;�n�1( �Xn)
2#

� E�;x

"
sup

1�n�m

�
2
n �P�n�1�`n+1;�n�1( �Xn)

2 + 2
1 �P�0�`1;�0(x)2�

#

� 2E�;x

"
mX
k=1

2k`
2
k+1

�V 2r
`k
( �Xk)C

2
�

#
+ 221`

2
1C

2
�
�V 2r
0 (x)

� 2C2
�

mX
k=1

2k`
2
k+1E�;x

h
�V 1
`k
( �Xk)

i
+ 221`

2
1C

2
�
�V 1
0 (x)

� 2CDC
2
�
�V0(x)

mX
k=1

2k`
3
k+1 + 221`

2
1C

2
�
�V 1
0 (x)

� 4CDC
2
�
�V0(x)

mX
k=1

2k`
3
k+1; m = 1; 2; : : :
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and recalling CD � 1 for the last line.

To prove the lemma's second conclusion, we have for each n = 1; 2; : : :

E�;x

�n �P�n�1�`n+1;�n�1( �Xn)
2� � 2n`

2
n+1C

2
�E�;x

h
�V 2r( �Xn)

i
� 2n`

3
n+1C

2
�CD

�V0(x); x 2 X:

Therefore (and by the Monotone Convergence Theorem)

E�;x

"
1X
n=1

n �P�n�1�`n+1;�n�1( �Xn)
2#

= lim
m!1

E�;x

"
mX
n=1

n �P`n+1;�n�1�`n+1;�n�1( �Xn)
2#

� C2
�CD

�V0(x)
1X
n=1

2n`
3
n+1 <1; x 2 X;

This implies the sum
P1

n=0

n �P�n�1�`n+1;�n�1( �Xn)
2 converges to a �nite rv P�;x-a.s. Hence,

limn!1

n �P�n�1�`n+1;�n�1( �Xn)
2 = 0 P�;x-a.s. and thus

lim
n!1

n �P�n�1�`n+1;�n�1( �Xn)
 = 0; P�;x � a:s:

Therefore,

lim
n!1

�0;n � 1 �P�0�`1;�0(x)
 = lim

n!1

n �P�n�1�`n+1;�n�1( �Xn)
 = 0; P�;x � a:s:

5.8 Almost Sure Convergence of the Increasing Window SA

In Chapter 2 we showed convergence via the Kushner-Clark Lemma based on the outcome of

a similar set of lemmas which bounded the terms in the decomposition there. Based on the

conditions we've made in the above lemmas, we have immediately that condition (KC4) of the

Kushner Clark Lemma holds for the SA with increasing window-size.

Of course we will also require

(H3) The function h : �! IRp is continuous.

Thus, if the remaining conditions in the Kushner-Clark Lemma hold then the almost sure

convergence of the iterates follows immediately.

The next step is to develop some methods to verify (H3) and the various conditions we've

made in the above lemmas.

5.9 A Framework for Geometrically Ergodic Markov Chains

As in Chapter 3, we shall de�ne some new specialized conditions in terms of the previously

de�ned b̀1, r and functions �V` : X
`+1 ! [1;1); ` = 0; 1; : : :.
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5.9.1 A Norm for the Class of Gradient Estimates

First we de�ne a norm which utilizes the additive boundedness property of the gradient estimate

function. Recall the assumptions we have made for the optimization problem:

De�nition 1 For the n-step probability transition kernel (matrix) P`;�(�x; �) and its invariant

measure ���(�), both on B(X`+1), and some function V : X! [1;1) let us de�ne the norm over

all functions fi(�x) = fi(xi) where �x = (x0; x1; : : : ; x`) 2 X
`+1 for each i = 1; 2; : : ::

 �P`;�(�x; �)� ���(�)

�V`

:
= sup

fi : X! IRp; i = 1; : : : ; `

kfi(xi)k � V (xi)

 �P`;�(�x;X̀
i=1

fi)� ���(
X̀
i=1

fi)


:
= sup

fi : X! IRp; i = 1; : : : ; `

kfi(xi)k � V (xi)


Z
X`+1

�P`;�(�x; d�y)
X̀
i=1

fi(yi)�
Z
X`+1

���(d�x)
X̀
i=1

fi(xi)


=

X̀
i=1

sup
fi : X! IRp

kfi(xi)k � V (xi)

Z
X`+1

�P`;�(�x; d�y)fi(yi)�
Z
X`+1

���(d�x)fi(xi)
 ;

` = 1; 2; : : : ; �x 2 X
`+1: (5.13)

At �rst it may appear that this norm is not general enough to include the class of gradient

estimates we have suggested in (5.9).

Claim 5.7 Under the assumptions for some C0 <1, C1 <1, and C2 <1:

1. sup�2� kL�(x0; x1)k � C0; x0; x1 2 X

2. sup�2� jf�(xi)j � C1V
r(xi); xi 2 X; i = 1; : : : ; `;

3. sup�2� krf�(xi)k � C2V
r(xi); xi 2 X; i = 1; : : : ; `;

the norm (5.13) is equivalent to the norm which includes the class of gradient functions we have

de�ned in (5.9).

Proof:

sup
�gi : X! IRp : kgi(xi)k � C2V (xi); i = 1; : : : ; `

fi : X! IR : jfi(xi)j � C1V (xi); i = 1; : : : ; `
�L : X2 ! IRp :

�L(x0; x1) � C0

 �P n
�

 
�x;
X̀
i=1

�gi
`
+ �Lfi

!
� ���

 X̀
i=1

�gi
`
+ �Lfi

!

� X̀
i=1

sup
�gi : X! IRp : kgi(xi)k � C2V (xi);

fi : X! IR : jfi(xi)j � C1V (xi);
�L : X2 ! IRp :

�L(x0; x1) � C0

 �P n
�

�
�x; �gi + �Lfi

�
� ���

�
�gi + �Lfi

�

=
X̀
i=1

sup
�gi : X! IRp : kgi(xi)k � C2V (xi);

 �P n
� (�x; �gi)� ��� (�gi)
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+
X̀
i=1

sup
fi : X! IR : jfi(xi)j � C1V (xi);
�L : X2 ! IRp :

�L(x0; x1) � C0

 �P n
�

�
�x; �Lfi

�
� ���

�
�Lfi
� :

Now, for any i = 1; : : : ; ` we check a summand of the last term and notice

sup
fi : X! IR : jfi(xi)j � C1V (xi);
�L : X2 ! IRp :

�L(x0; x1) � C0

 �P n
�

�
�x; �Lfi

�
� ���

�
�Lfi
�

= sup
fi : X! IR : jfi(xi)j � C1V (xi)

sup
�L : X2 ! IRp :

�L(x0; x1) � C0

 �P n
�

�
�x; �Lfi

�
� ���

�
�Lfi
�

= 2C0 sup
fi : X! IR : jfi(xi)j � C1V (xi)

��� �P n
� (�x; fi)� ��� (fi)

��� :
Thus,

sup
�gi : X! IRp : kgi(xi)k � C2V (xi); i = 1; : : : ; `

fi : X! IR : jfi(xi)j � C1V (xi); i = 1; : : : ; `
�L : X2 ! IRp :

�L(x0; x1) � C0

 �P n
�

 
�x;
X̀
i=1

�gi
`
+ �Lfi

!
� ���

 X̀
i=1

�gi
`
+ �Lfi

!

� (C2 + 2C0C1)
X̀
i=1

sup
fi : X! IRp : kfi(xi)k � V (xi)

 �P n
� (�x; fi)� ��� (fi)

 :

5.9.2 Specialized Conditions

(E1) There exists constants CE <1 and 0 < � < 1 such that for

�x = (x0; x1; : : : ; x`) 2 X
`+1,

sup
�2�

 �P n
`;�(�x; �)� ���(�)


�V r
`

�
(
CE ` �V r

` (�x)�
n; n = 0; ` = 1; 2; : : :

CE ` V r(x`)�
n; n = 1; 2; : : : ; ` = 1; 2; : : :

(H5) There exists constants C5 <1, ÆH > 0, and b̀2 2 ( b̀1; 1) such that for all �, �0 2 � with

k� � �0k � ÆH and all �x = (x0; x1; : : : ; x`) 2 X
`+1, we have

kH`(�; �x)�H`(�
0; �x)k � C5 k� � �0kb̀2 X̀

i=1

V r(xi)

� C5
�V r
` (�x)` k� � �0kb̀2 ; ` = 1; 2; : : : :

(C) There exists constants CC < 1, ÆC > 0, and b̀
3 2 ( b̀2; 1] such that for each n = 0; 1; : : :

and ` = 1; 2; : : :  �P n
� (�x; �)� �P n

�0(�x; �)

�V r
`

� n`2CCV
r(x`0) k� � �0kb̀3 ;

for all �, �0 2 � with k� � �0k � ÆC , and all �x = (x0; x1; : : : ; x`0) 2 X
`0+1.
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5.10 Consequences of the Specialized Conditions

Here, we prove three theorems which imply (H3), (P2), and (P3).

Before we begin, let us state a simple bound which follows by iterating (D1) as in 2.10 which

we will use later.

sup
�2�

�P n
�
�V`(�x) � sup

�2�

�P n
�

 X̀
i=1

V (�i)
!
(�x)

� `CDV (x`0)

� `CD
�V`(�x); �x = (x0; x1; : : : ; x`0) 2 X

`0+1: (5.14)

Note in the above we take the convention that for a vector �x = (x0; : : : ; x`) 2 IR` and some real

valued function f on the reals, that f(�i) refers to the function f(xi) over all xi 2 IR.

In order to prove (H3) we will need the following H�older continuity result on the functions

h`. The method is proof is nearly identical to the proof of Theorem 3.2.

Lemma 5.8 Assume (D1), (C), (H2), (H5) and (E1) with b̀
2 determined from (H5). Then,

there exists a constant Ch <1 such that

kh`(�)� h`(�
0)k � `2Ch k� � �0kb̀2 ; �; �0 2 �; ` = 1; 2; : : : :

Proof: See the appendix.

Theorem 5.9 Assume (D1), (C), (H2), (H5), (E1), (H2), (E1), (P1), (G1), (G2) plus irre-

ducibility and positive recurrence over �. Then:

1. The function h : �! IRp given by

h(�) = �r�J(�) = ���(r�f�)� ��Q�g�; � 2 �

is continuous.

2. There exists a 0 < � < 1 and a C <1 such that

sup
�2�

kh`(�)� h(�)k � C�`; ` = 1; 2; : : :

Proof:

Part 1: Note if p > 1 the likelihood ratio L� is a p-dimensional column vector.

h`(�) = E���

h
H`;�( �Xn)

i
= E���

"
1

`

X̀
i=1

r�f�(Xn;i) + L�(Xn;0; Xn;1)
X̀
k=1

f�(Xn;k)

#

= E�� [r�f�(Xn;1)] +E��

"
L�(Xn;0; Xn;1)

X̀
k=1

f�(Xn;k)

#
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= E�� [r�f�(Xn;1)] +
X
i

��(i)
X
j

P�(i; j)L�(i; j)E�

"X̀
k=1

f�(Xn;k)jXn;1 = j

#
= E�� [r�f�(Xn;1)]

+
X
i

��(i)
X
j

P�(i; j)L�(i; j)E�

"X̀
k=1

f�(Xn;k)� ��(f�)jXn;1 = j

#
:

The last step follows since for any �nite constant c we have
P

j P�(i; j)L�(i; j)c = 0 uniformly

over all i and � 2 �.

Now we recognize the conditional expectation on the right,

E�

"X̀
k=1

f�(Xn;k)� ��(f�)jXn;1 = x

#
; ` = 1; 2; : : :

as a sequence which converges to the Poisson equation solution ��(x), i.e.

f�(x)� ��(f�) = ��(x)� P���(x); x 2 IR

Let us de�ne the sequence of functions

�`;�(x) = E�

"X̀
k=1

f�(Xn;k)� ��(f�)jXn;1 = x

#
; ` = 1; 2; : : : ;

so we have

��(x) = lim
`!1

�`;�(x) = lim
`!1

E�

"X̀
k=1

f�(Xn;k)� ��(f�)jXn;1 = x

#

=
1X
n=0

E� [f�(Xn;k)� ��(f�)jXn;0 = x] :

Under (H2) and (E1) we have the bound

j��(x)j � CH

1X
`=0

P `
� (x; �)� ��(�)


V r
� CHCEV

r(x)
1X
`=0

�`

Now for all m > ` look at the sequence

sup
�2�

j�m;�(x)� �`;�(x)j = sup
�2�

������
mX

k=`+1

E� [f�(Xn;k)� ��(f�)jXn;1 = x]

������
� CH sup

�2�

1X
`=`+1

P `
� (x; �)� ��(�)


V r

� CHCEV
r(x)

�`+1

1� �

and thus by the Cauchy criterion we have for each �xed x 2 X a uniform convergence of

lim`!1 �`;�(x) = ��(x).

99



Again we consider any m > ` and look at

sup
�2�

khm(�)� h`(�)k = sup
�2�


X
i

��(i)
X
j

P�(i; j)L�(i; j) (�m;�(j)� �`;�(j))


By condition (4.9) under (G1) and (G2) we have kL�(i; j)k � fK2 <1 so that

sup
�2�

khm(�)� h`(�)k = sup
�2�


X
i

��(i)
X
j

P�(i; j)L�(i; j) (�m;�(j)� �`;�(j))


� fK2 sup

�2�

X
i

��(i)
X
j

P�(i; j) j�m;�(j)� �`;�(j)j

� fK2 sup
�2�

X
j

��(j) j�m;�(j)� �`;�(j)j

� fK2 sup
�2�

X
j

��(j)CHCEV
r(x)

mX
k=`

�k

� fK2CHCE
�`

1� �
sup
�2�

X
j

��(j)V
r(j)

Since sup�2� ��(V
r) <1 by (2.15) we have shown that the sequence of functions h`(�) are

also uniformly convergent, and by Lemma 5.8 they are each continuous, hence the limit h(�) is

also continuous.

Part 2: We can see from the above that the convergence rate of h`(�) to h(�) is exponential.

The next theorem identi�es suÆcient conditions which imply (P2).

Theorem 5.10 Assume (D1), (P1), (E1), and (H2). Then there exists a C� < 1 such that

for all �; �0 2 �, and `; `0 = 1; 2; : : :

k�`;�(�x)k � C� ` �V r
` (�x); �x 2 X

`+1 (5.15) �P��`;�(�x) � C� ` V
r(x`0); �x = (x0; x1; : : : ; x`0) 2 X

`0+1: (5.16)

Proof: First note that for all �x = (x0; x1; : : : ; x`0) 2 X
`0+1 where `0 is an arbitrary positive

integer that
�P��`;�(�x) = �P��`;�(x`0) = �P`;��`;�(x`0)

Therefore, �P��`;�(�x) =
 �P`;��`;�(x`0)

=


1X
n=1

�P n
`;�(x`0; H`;�)� �`;�(H`;�)


�

1X
n=1

 �P n
`;�(x`0; H`;�)� ���(H`;�)
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� CH

1X
n=1

 �P n
`;�(x`0 ; �)� ���(�)


�V r
`

� CH

X̀
i=1

1X
n=1

P `(n�1)+i
� (x`0; �)� ��(�)


V r

� CH

X̀
i=1

1X
n=1

CE�
`(n�1)+iV r(x`0)

� CH`
1X
n=1

CE�
`(n�1)V r(x`0)

� `CHCEV
r(x`0)

1X
k=0

�`k

� `CHCEV
r(x`0)

1X
k=0

�k

= `CHCEV
r(x`0)

1

1� �
; �x = (x0; x1; : : : ; x`0) 2 X

`0+1; � 2 �;

(5.17)

and for all ` = 1; 2; : : :.

For �`;�(�x) =
P1

n=0

�R �P n
`;�(�x; dy)H`;�(y)� h`(�)

�
we have:

k�`;�(�x)k =


1X
n=0

�Z
�P n
`;�(�x; dy)H`;�(y)� h`(�)

�
�

1X
n=0

Z �P n
`;�(�x; dy)H�(y)� �`;�(H`;�)


� kH`;�(�x)� �`;�(H`;�)k+

1X
n=1

Z �P n
`;�(�x; dy)H�(y)� �`;�(H`;�)


the last term is bounded above in (5.17). Thus by (H2) we have for all ` = 1; 2; : : :

k�`;�(�x)k � CH` �V
r
` (�x) + sup

�2�
���

 X̀
i=1

V r(�i)
!
+ `CHCEV

r(x`)
1

1� �

� C�` �V
r
` (�x); �x = (x0; x1; : : : ; x`) 2 X

`+1

for some C� <1. The middle term in the �rst line is bounded as in (2.15) under the assumed

irreducibility and positive recurrence.

Theorem 5.11 Assume (S), (H2), (H5), (P1), (E1), (C), and (D1) with the constants b̀
1

determined from (S), b̀2 determined from (H5) and b̀3 determined from (C). Then there exists

a constant CÆ <1 such that for all `; `0 = 1; 2; : : :, �; �0 2 �; �x = (x0; x1; : : : ; x`) 2 X
`0+1

 �P��`;�(�x)� �P�0�`;�0(�x)
 � CÆ`

2 �V r(x`0) k� � �0kb̀1 : (5.18)
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Proof: Pick a Æ such such Æ � minfÆC ; ÆHg and 0 < Æ � 1. Again, we let �� = � � �0 and

consider the two cases of k��k � Æ and k��k > Æ separately.

The case k��k > Æ follows trivially from Theorem 5.10: �P���(�x)� �P�0�`;�0(�x)
 �  �P���(�x) +  �P�0�`;�0(�x)

� 2C�` �V
r(x`0)

� 2

Æb̀1C�`V
r(x`0) k��kb̀1 ; �; �0 2 �; k��k � Æ: (5.19)

Now consider the case k��k � Æ such that �; �0 2 �, �P��`;�(�x)� �P�0�`;�0(�x)
 =  �P��`;�(x`0)� �P�0�`;�0(x`0)


=

 �P`;��`;�(x`0)� �P`;�0�`;�0(x`0)
 (5.20)

=


1X
n=1

�
�P n
`;�(x`0; H`;�)� h`(�)

�
�

1X
n=1

�
�P n
`;�0(x`0 ; H`;�0)� h`(�

0)
�

�
1X
n=1

 �P n
`;�(x`0 ; H`;�)� h`(�)� �P n

`;�0(x`0 ; H`;�0) + h`(�
0)
 (5.21)

�
N�1X
n=1

 �P n
`;�(x`0 ; H`;�)� �P n

`;�0(x`0 ; H`;�0) + �P n
`;�(x`0 ; H`;�0)� �P n

`;�(x`0 ; H`;�0)


+
N�1X
n=1

kh`(�0)� h`(�)k

+
1X

n=N

k �P n
`;�(x`0 ; H`;�)� ���(H�)� �P n

`;�0(x`0 ; H`;�0) + ��`;�0(H`;�0)k (5.22)

where we have introduced some canceling terms in the last inequality. Continuing from (5.22) �P`;��`;�(x`0)� �P`;�0�`;�0(x`0)


�
N�1X
n=1

n �P n
`;�(x`0 ; H`;�)� �P n

`;�(x`0 ; H`;�0)
+  �P n

`;�(x`0; H`;�0)� �P n
`;�0(x`0 ; H`;�0)

o

+
N�1X
n=1

kh`(�)� h`(�
0)k

+
1X

n=N

 �P n
`;�(x`0 ; H`;�)� ��`;�(H`;�)

+ 1X
n=N

 �P n
`;�0(x`0 ; H`;�0)� ��`;�0(H`;�0)


�

N�1X
n=0

n �P n
`;�(x`0 ; H`;� �H`;�0)

+  �P n
`;�(x`0 ; H`;�0)� �P n

`;�0(x`0 ; H`;�0)
o

+
N�1X
n=0

kh`(�)� h`(�
0)k+ 2 sup

�2�

1X
n=N

 �P n
`;�(x`0 ; H`;�)� ��`;�(H`;�)

 (5.23)

We look at several of the above terms. First, from (H5) followed by (5.14) under (D1) (and

using Jensen's Inequality) �P n
`;�(�x;H`;� �H`;�0)

 � `C5 k� � �0kb̀2 �P n
`;�(�x; �V

r
` ); n = 1; 2; : : : ; �x 2 X

`+1
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� C5`
2 k� � �0kb̀2 Cr

DV
r(x`); �x 2 X

`+1:

Second, from (H2) and (C), �P n
`;�(�x;H`;�0)� �P n

`;�0(�x;H`;�0)
 � CH

 �P n
`;�(�x; �)� �P n

`;�0(�x; �)

�V r
`

� n`2CCCHV
r(x`) k� � �0kb̀3 ;

n = 1; 2; : : : ; �x 2 X
`+1; ` = 1; 2; : : : :

Third, from Theorem 5.8 there exists a Ch <1 such that

kh`(�)� h`(�
0)k � `2Ch k� � �0kb̀2 ; �; �0 2 �; ; ` = 1; 2; : : : :

Fourth, from (H2) and (E1) �P n
`;�(�x;H`;�0)� ��`;�(H`;�0)

 � CECH`�
nV r(x`); n = 1; 2; : : : ; �x 2 X

`+1

` = 1; 2; : : : :

Substituting these bounds into (5.23) we �nd �P`;��`;�(�x)� �P`;��`;�0(�x)


�
N�1X
n=1

�
`2C5 k��kb̀2 Cr

DV
r(x`) + n`2CCCHV

r(x`) k��kb̀3 + Ch`
2 k��kb̀2�

+ 2` sup
�2�

1X
n=N

CECH�
nV r(x`)

� `2NC5 k��kb̀2 Cr
DV

r(x`) + `2
N(N � 1)

2
CCCH k��kb̀3 V r(x`) +NCh k��kb̀2

+ `2CECH
�N

1� �
V r(x)

� `2V r(x)

(
(Cr

DC5 + Ch)N k��kb̀2 + CCCH

2
N(N � 1) k��kb̀3 + 2CECH

�N

1� �

)
since V r � 1. Now the bracketed expression can be bounded by the same technique as in the

proof of Theorem 3.4 to yield (5.18).

5.11 Veri�cation of the Specialized Conditions for the Windowed

Process

In this section, we develop tools to verify the various conditions outlined in the previous section

which imply convergence of the SA when driven by this gradient estimate. We present a series

of results which show that under most conditions, the specialized conditions (D0), (H2), (H5),

(C), (E1), and (P1) for the windowed process can be veri�ed by checking these conditions for the

original single step Markov chain. Furthermore, Theorems 5.8, 5.10, and 5.11 also imply (P2),

(P3), and (H3). Hence, all the conditions implying the (KC4) noise condition for increasing

window SA algorithm are satis�ed. The following sections identify what modest additional

conditions are required for this approach.
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5.11.1 Condition (D0)

The next theorem shows that (D0) follows from (D1) for the standard single-step Markov chain

governed by one step transition function P�.

Theorem 5.12 Suppose there exists a function V : X ! [1;1) and a family of one-step

transition functions fP�; � 2 �g such that (D1) holds. De�ne for ` = 1; 2; : : : the functions

�V`(�x)
:
= �V (x0; x1; : : : ; x`)

:
= supfV (xj) : j = 1; : : : ; `ng

�V0(x)
:
= V (x)

for �x = (x0; x1; : : : ; x`) 2 X
`+1 and x 2 X. Then, the windowed Markov chain f �Xn : n =

0; 1; : : :g has the (D0) property.

Proof: We have

E�

h
�V`( �Xn+1)jX0 = x

i
= E�

"
sup

i=1;:::;`
fV (Xn+1;i)gjX0 = x

#

� E�

"X̀
i=1

V (Xn;i)jX0 = x

#

=
X̀
i=1

E� [V (Xn;i)jX0 = x]

Then we can write any of the expectations E� [V (Xn;i)jX0 = x] ; i = 1; : : : ; ` as an iterated

conditional expectation. Each single-step conditional expectation is bounded by (D1), so if Xn;i

is m steps from X0, we can write m iterations.

E� [V (Xn;i)jX0 = x] � sup
f�i2�;i=1;:::;m�1g

P�P�1P�2 � � �P�m�1V (x) (5.24)

� �mV (x) + L
m�1X
i=0

�i

�
�
1 +

L

1� �

�
V (x) (5.25)

and this bound holds for any m = 1; 2; : : :. If we de�ne CD
:
= 1 + L

1��
we conclude

E�

h
�V`( �Xn+1)jX0 = x

i
= `CDV (x); n = 0; 1; 2; : : :

which is (D0) if we substitute in the sequence f`n+1; n = 0; 1; 2; : : :g for `.

5.11.2 Condition (H2)

Recall the gradient estimate we have proposed using in the SA algorithm. For some �xed

integer `, if we take

�xn = (xn;0; xn;1; : : : ; xn;`) 2 X
`+1;
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and if we make the convention that 0
0
= 0, then

bGi(�; �x)
:
=

0@1
`

X̀
j=1

@f�
@�i

(xj)

1A+

8<:
@
@�i
px0;x1(�)

px0;x1(�)

9=;
0@ `nX
j=1

f�(xj)

1A ;
�xn 2 X

`+1; n = 1; 2; : : : ; � 2 �; i = 1; : : : ; p:

Applying conditions (G2), (F1), (F3) to this gradient estimate, we have for each i =

1; 2; : : : ; p

��� bGi(�; �x)
��� � 1

`

X̀
j=1

�����@f�@�i
(xj)

�����+
������
@
@�i
px0;x1(�)

px0;x1(�)

������
X̀
j=1

jf�(xj)j

� 1

`n
C3

X̀
j=1

V r(xj) +K2

X̀
j=1

V r(xj)

= (C3 +K2C1)
X̀
j=1

V r(xj)

� C 0
H

X̀
j=1

V r(xj); � 2 �; �x = (x0; x1; : : : ; x`) 2 X
`+1;

where we let C 0
H = C3 +K2C1. Finally, in IRp, since the norm kxk1 =

Pp
i=1

���x(i)��� is equivalent
to the Euclidean norm, this implies there exists a constant CH <1 such that

 bG(�; �x) � CH

X̀
j=1

V r(xj); � 2 �; �x 2 X
`+1:

This shows that the function �V r provides a uniform upper bound on the windowed gradient

estimate hence the �rst part of (H2) is veri�ed.

The second part of (H2) involves the �n term de�ned in (5.6).. From Theorem 5.9 there

exists some C <1 and a 0 < � < 1 such that


b̀1
n k�n(�; �)k � sup

�2�
kh`n(�)� h(�)k � C�`n = Ce�Æ`n ; n = 1; 2; : : :

by taking �Æ = ln(�) so that

k�n(�; �)k � Ce�Æ`n

b̀1n ; n = 1; 2; : : :

Suppose now we use the sequences de�ned by

n =
1

n+ 1
; `n = b� ln(n+ 1)c; n = 1; 2; : : :

for some chosen � > 0. Then

��n(�; �) � Ce�Æ� ln(n+1)

(n+ 1)�b̀1 =
C

(n+ 1)�Æ�b̀1 ; n = 1; 2; : : : : (5.26)
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and we clearly need 0 < b̀
1 � �Æ to satisfy (H2). For any b̀1 satisfying (S), this can be achieved

through appropriate choice of � using a bound on � obtained from the results in Section 3.4.1

and computing Æ = � ln(�). Alternatively, we can simply note the step-size and observation

window size sequences we are using satisfy (S) for any b̀1 in 0 < b̀
1 < 1. Hence, we conclude

that a suÆciently small b̀1 exists so that (5.26) is bounded for all n = 1; 2; : : :.

5.11.3 Condition (C)

To show (C), let us rework Theorem 3.12 for the window process and its transition kernels

f �P�; � 2 �g with the goal of identifying conditions on the one-step transition kernel P .

For some �xed positive integer `, we have de�ned

�V`(�x)
:
= sup

i=1;2;:::;`
fV (xi)g; �x 2 X

`+1

where �x = (x0; x1; x2; : : : x`) 2 X
`+1. We also have for all exponents 0 < r � 1

�V r
` (�x) = sup

i=1;2;:::;`
fV r(xi)g; �x 2 X

`+1

Note that �V (�x) and �V r(�x) do not depend on x0.

Theorem 5.13 Assume (D1) and (G2). Then, for all �, �0 in � such that k� � �0k � ÆM , �x

in X`+1, �P n
`;�(�x; �)� �P n

`;�0(�x; �)

�V r
`

� n2`2K2C
2
DV

r(x`) k� � �0kb̀3 ; for all n = 1; 2; : : :.

Proof: Consider any �; �0 2 � with k� � �0k � Æm, any �x = (x0; x1; � � � ; x`) in X`+1. Below let

f : X`+1 ! IRp. We have for all n = 1; 2; : : : �P n
`;�(�x; �)� �P n

`;�0(�x; �)

�V r
`

= sup
kfk� �V r

`

 �P n
`;�(�x; f)� �P n

`;�0(�x; f)


= sup
kfk� �V r

`

 �P n
`;�(�x; f)�

n�1X
i=1

�P n�i
`;�

�P i
�0(�x; f) +

n�1X
i=1

�P n�i
`;�

�P i
�0(�x; f)� �P n

`;�0(�x; f)


�

nX
i=1

sup
kfk� �V r

`

 �P n�i+1
`;�

�P i�1
`;�0 (�x; f)� �P n�i

`;�
�P i
`;�0(�x; f)


�

nX
i=1

sup
kfk� �V r

`

 �P n�i
`;�

�
�P`;� � �P`;�0

�
�P i�1
`;�0 (�x; f)

 (5.27)

where �P`;� � �P`;�0 is a signed measure.
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Continuing from (5.27) we �nd �P n
`;�(�x; �)� �P n

`;�0(�x; �)

�V r

�
nX
i=1

sup
kfk� �V r

`

 �P n�i
`;�

�
�P`;� � �P`;�0

�
�P i�1
`;�0 (�x; f)


�

nX
i=1

0@ sup
kfk� �V r

`

 �P n�i
`;�

�
�P`;� � �P`;�0

�+ �P i�1
`;�0 (�x; f)

 (5.28)

+ sup
kfk� �V r

`

 �P n�i
�

�
�P`;� � �P`;�0

�� �P i�1
`;�0 (�x; f)


1A

Consider now

����� �P`;� � �P`;�0
��

(�x; �y)
���� � 1fx`=y0g

������
mY
j=1

P`;�(yj�1; yj)�
mY
j=1

P`;�0(yj�1; yj)

������ ; �x; �y 2 X
`+1

and using the same expansion as above, we �nd����� �P`;� � �P`;�0
��

(�x; �y))
����

� 1fx`=y0g
X̀
k=1

0@k�1Y
j=1

P�0(yj�1; yj)

1A jP�(yk�1; yk)� P�0(yk�1; yk)j
Ỳ

j=k+1

P�(yj�1; yj)

� 1fx`=y0g
X̀
k=1

0@k�1Y
j=1

P�0(yj�1; yj)

1A k��kb̀3 K2P�(yk�1; yk)

0@ Ỳ
j=k+1

P�(yj�1; yj)

1A
� 1fx`=y0g k��kb̀3 K2

X̀
k=1

0@k�1Y
j=1

P�0(yj�1; yj)

1A0@Ỳ
j=k

P�(yj�1; yj)

1A
Returning to (5.29) we thus get �P n

`;�(�x; �)� �P n
`;�0(�x; �)


�V r
`

� k��kb̀3 K2

nX
i=1

X̀
k=1

sup
kfk� �V r

`

 �P n�i
`;� P k�1

�0 P `�k+1
�

�P i�1
`;�0 (�x; f)


� k��kb̀3 K2

nX
i=1

X̀
k=1

�P n�i
`;� P k�1

�0 P `�k+1
�

�P i�1
`;�0 (�x;

�V r
` )

� k��kb̀3 K2

nX
i=1

X̀
k=1

�P n�i
`;� P k�1

�0 P `�k+1
�

�P i�1
`;�0

0@�x;X̀
j=1

V r(�j)
1A

� k��kb̀3 K2CDn`
2V r(x`); �x = (x0; x1; : : : ; x`) 2 X

`+1:

where the last line again follows from iterating (D1) as in (2.11) or (5.25).
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5.11.4 Condition (E1)

Theorem 5.14 Assume (E1) holds for the family fP�; ��; � 2 �g with some function V : X!
[1;1). Then (E1) is also satis�ed for the windowed Markov chain f �Xn : n = 1; 2; : : :g where

�Xn = (Xn;0; Xn;1; : : : ; Xn;`) (5.29)

which is governed by f �P�; � 2 �g. Furthermore, the � in (E1) is the same as that in (E1).

Proof: Under (E1) for the single-step chain governed by fP�; ��; � 2 �g there exists some

CE <1 and � < 1 such that

sup
�2�

kP n
� (x; �)� ��(�)kV r � CEV

r(x)�n; x 2 X; n = 0; 1; : : : :

Then for ` = 1; 2; : : : and n = 1; 2; : : :

sup
�2�

 �P n
`;�(�x; �)� ���(�)


�V r
`

= sup
�2�

 �P n
`;�(x`; �)� ���(�)


�V r
`

� X̀
i=1

sup
�2�

Pm(n�1)+i
� (x`; �)� ��(�)


V r(�)

� CEV
r(x0)

X̀
i=1

�`(n�1)+i

� CEV
r(x0)�

`n
X̀
i=1

�i�`

� CEV
r(x0)`�

`n

� CEV
r(x0)`�

n(`�1)�n

� CEV
r(x`)`�

n; �x = (x0; x1; : : : ; x`) 2 X
`+1:

For the case n = 0, we have

sup
�2�

 �P n
`;�(�x; �)� ���(�)


�V r
`

� CE` �V
r
` (�x):

5.11.5 Condition (P1)

Here, we check condition (P1) for the full form of the gradient estimate. For each i = 1; : : : ; p

we must check the existence of the solution ��
(i)
`;� : �� X

`+1 ! IR for the Poisson equation with

forcing function bGi;�(�x):

bGi;�(�x)� ���( bGi;�) = �
(i)
`;�(�x)�

X
�y2Xm+1

�P`;�(�x; �y)�
(i)
`;�(�y); �x 2 X

`+1; � 2 �;

where bGi;�(�x) = bGi(�; �x) is the function used in the gradient estimate (4.32).
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Condition (P1) follows from(E1) and (H2), both shown above, since for each i = 1; : : : ; p

they imply convergence of the sum for each ` = 1; 2; : : :

��
(i)
`;�(�x)

:
=

1X
n=0

0@ X
�y2Xm+1

�P n
`;�(�x; d�y)

bGi;�(�y)� ��( bGi;�)

1A
� CH

1X
n=0

 �P n
`;�(�x; �)� ���(�)


�V r
`

< 1; �x 2 X
`+1; � 2 �:

5.11.6 Condition (H5)

To satisfy (H5) , there must exist constants b̀2 in ( b̀1; 1), Æ > 0, and C5 < 1 so that for all �,

�0 2 � such that k� � �0k � Æ, we have for ` = 1; 2; : : :

 bG(`; �; �x)� bG(`; �0; �x) � C5

X̀
i=1

V r(xi) k� � �0kb̀2 ;
for all �x = (x0; x1; : : : ; x`) 2 X

m+1:

We shall propose two additional conditions which assume a common b̀
2 in ( b̀1; 1) in both

conditions:

(F4) There exists constants C4 <1, Æ4 > 0 and b̀2 in ( b̀1; 1) such that:�����@f�+��(x)@�
� @f�(x)

@�

����� � C4 k��kb̀2 V r(x)

for all x 2 X and �; �0 2 � with k��k � Æ4.

(G3) There exists constants K4 <1, ÆG > 0 and b̀2 in ( b̀1; 1) such that for all i = 1; : : : ; p and

all parameters �; �0 2 � such that k��k � ÆG the transition probabilities partials satisfy����� @@�i px;y(�)� @

@�i
px;y(�

0)

����� � K4 k��kb̀2 px;y(�); x; y 2 X: (5.30)

Theorem 5.15 Assume (F1)-(F4), (G1)-(G3). Then, the gradient estimatebG(`; �; �x) satis�es (H5) in the form (5.30).

Proof: First let Æ5 be de�ned as the minimum of 1, Æ4, ÆG, and Æ which exists from (F3).

We shall treat the two main terms of the gradient estimate separately. Under (F4), the �rst

term of bG, given by

bG(1)(`; �; �x)
:
=

1

`

X̀
j=1

@f�
@�

(xj); �x = (x0; x1; : : : ; x`) 2 X
`+1; � 2 � (5.31)
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readily satis�es (H5) for all �; �0 2 � with k� � �0k � Æ5.

Consider now the second term of the estimate:

bG(2)(`; �; �x)
:
=
rpx0;X1(�)

pX0;X1(�)

0@X̀
j=1

f�(Xj)

1A ; �x 2 X
`+1: (5.32)

Recalling our convention that 0
0
= 0, we have for all parameters k� � �0k � Æ5 and all

�x = (x0; x1; : : : x`) 2 X
`+1

 bG(2)(`; �; �x)� bG(2)(`; �0; �x)
 �


(rpx0;x1(�)
px0;x1(�)

� rpx0;x1(�0)
px0;x1(�

0)

)0@X̀
j=1

f�(xj)

1A
+

rpx0;x1(�
0)

px0;x1(�
0)

8<:
0@X̀
j=0

f�(xj)

1A�
0@X̀
j=1

f�0(xj)

1A9=;


� C1

rpx0;x1(�)px0;x1(�)
� rpx0;x1(�0)

px0;x1(�
0)

 X̀
j=1

V r(xj) (5.33)

+ K2

������
X̀
j=1

(f�(xj)� f�0(xj))

������ : (5.34)

Next, we note that condition (G3) implies that if px;y(�) = 0 for some �, then rpx;y(�) = 0

in a ÆG neighborhood of �, hence we can safely rewrite the factor:rpx0;x1(�)px0;x1(�)
� rpx0;x1(�0)

px0;x1(�
0)


�

rpx0;x1(�)�rpx0;x1(�0)
px0;x1(�)

+
rpx0;x1(�0)px0;x1(�)

� rpx0;x1(�0)
px0;x1(�

0)


=

p
pK4 k��kb̀2 + krpx0;x1(�0)k

px0;x1(�
0)

jpx0;x1(�0)� px0;x1(�)j
px0;x1(�)

� p
pK4 k��kb̀2 + fK2K3 k� � �0k

� K 0 k��kb̀2 ; k��k � Æ5;

for some constant K 0 <1. Above, we have applied (G3) to bound the �rst term; and applied

(4.9) and (G2) to bound the second term.

The term (5.34) is bounded easily from (F3) so there exists an L <1 such that������
X̀
j=1

(f�(xj)� f�0(xj))

������ � L k��kX̀
j=1

V r(xj)

� L k��kb̀2 X̀
j=1

V r(xj); k��k � Æ5:

Therefore, for all � in � with k��k � Æ5 we combine the bounds for (5.33) and (5.34) bG(2)(`; �; �x)� bG(2)(`; �0; �x)
 � k��kb̀2 (C1K

0 + L)
X̀
j=1

V r(xj);

�x = (x0; x1; : : : ; x`) 2 X
`+1:
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5.12 Example: Optimization of the Tandem M/M/1

We now demonstrate the SA-based stochastic optimization procedure we have just outlined in

a very simple optimization problem. The performance measure, or objective function, we wish

to minimize is the steady state total number of customers in the tandem queue consisting of

two in�nite bu�er M/M/1 queues in series with adjustable service rates.

The �rst queue has a �xed arrival rate of � = 1 and a parameterized service rate of

�1(�) = �; � 2 (1; 3)

while the second queue, which takes customers exiting the �rst queue, has a service rate of

�2(�) = 4� �; � 2 (1; 3):

For this problem, since the arrival rate to the second queue also occurs at rate �, the objective

function has a simple closed form solution

J(�) =
�

�1(�)� �
+

�

�2(�)� �
; � 2 (1; 3);

and this is plotted in �gure 5.1 as a function of �. In this case, it's obvious the minimizing
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Figure 5.1: Steady state total number of customers in the tandem queue.

parameter is �? = 2, but nevertheless, let us perform a computer simulation of this tandem

queue to see how the proposed derivative estimate performs when coupled with SA.

This simple optimization problem was also used by Meketon [75] who performed a nearly

identical optimization problem (in an interesting survey paper on approaches to optimization)

in which Meketon proposed SA with an IPA gradient estimate.
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Looking closely at Meketon's simulation data in his graph [75], it is not in fact clear or

convincing that those iterates are indeed converging to the optimal value in Meketon's simulated

run, (with �? = 3 in this case). This is because for one, the simulation ends with the iterate at

3:24 with a slight upward drift, and second, the iterates remain on the high side of �? = 3 for

all but the initial transient portion of the run. These observations could suggest a small bias

present in this particular IPA estimate although it's certainly not clear from one simulation

run. In any event, further study of this problem seems warranted.

Before we get to our simulation results let us remark that there are two aspects that could

possibly make this a challenging system to to optimize via this SA method. First, the measure-

ments we will be taking for our derivative estimate are unbounded as each queue has an in�nite

bu�er and as such, it can lead to derivative estimates which are also unbounded. It's reasonable

to conclude that unusually large derivative estimate could cause the next iterate to be forced

a large distance from the previous one, and, if this were to occur when our parameter has es-

sentially reached �?, then the \progress" the iterate had made towards the goal is undermined

and the iterate essentially must start over. Second, notice from Figure 5.1 that the objective

function is quite \at" in the vicinity of �? = 2 so the performance derivative we will be esti-

mating will not o�er very much direction as the iterates approach this value �?. The trajectory

of the mean ODE _�(t) = � d
d�
J(�(t)) would thus approach �? slowly as well, and we know from

the ODE Method [61] to expect the iterates �n to approach the ODE trajectory. Thus, if we

observe that the convergence is slow as the iterate nears �?, then this at least partially should

be attributed to the \atness" of the objective function we are seeking to optimize.

5.12.1 The Simulation Model and Optimization Algorithm

The sample path of the tandem M/M/1 queue is given by f(X(1)
t ; X

(2)
t ); t � 0g where X

(i)
t

represents the number of customers present in queue i at time t and is modeled as a continuous

time Markov chain having in�nitesimal generator A� = [ax;y(�)]x;y. This system is uniformizable

with the in�nitesimal rates bounded uniformly over all � 2 �:

a
:
= sup

�2�
sup
x2X

jax;x(�)j <1; � 2 �:

Hence, we can uniformize [41, p. 118][92] and thus subordinate the continuous time Markov

chain to a Poisson process of �xed rate a. Our approach will be to estimate the objective

function by simulating the continuous time Markov chain as a discrete time Markov chain

using the equal holding time method [56]. This has the advantage that it is not necessary

to generate exponential holding times in the simulation. Thus, for each � 2 �, we get a =

�+�1(�)+�2(�) = 5 and the resulting discrete time Markov chain f(X(1)
n ; X(2)

n ); n = 0; 1; : : :g,
is governed by the one-step transition probabilities P� = I + A�=a; � 2 �.

Let us consider the probabilities corresponding to each transition event. Note the the

simulation method has created some null events, i.e. transitions which result in revisiting the

previous state with positive probability.
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arrival at queue 1: For (x(1); x(2)) 2 f0; 1; : : :g2,

P�

h
(X

(1)
n+1; X

(2)
n+1) = (x(1) + 1; x(2))

��� (X(1)
n ; X(2)

n ) = (x(1); x(2))
i
=
�

5

arrival at queue 2/departure from queue 1:

For x(1) = 1; 2; : : : ; x(2) = 0; 1; : : :,

P�

h
(X

(1)
n+1; X

(2)
n+1) = (x(1) � 1; x(2) + 1)

��� (X(1)
n ; X(2)

n ) = (x(1); x(2))
i

=
�1(�)

5

=
�

5

null departure from queue 1: For x(2) = 1; 2; : : :

P�

h
(X

(1)
n+1; X

(2)
n+1) = (0; x(2))

��� (X(1)
n ; X(2)

n ) = (0; x(2))
i
=
�1(�)

5
=
�

5
;

null departure from empty state:

P�

h
(X

(1)
n+1 = 0; X

(2)
n+1) = (0; 0)

��� (X(1)
n ; X(2)

n ) = (0; 0)
i

=
�1(�) + �2(�)

5

=
4

5
; (5.35)

non-null departure from queue 2: For x(1) = 0; 1; : : : ; x(2) = 1; 2; : : :

P�

h
(X

(1)
n+1; X

(2)
n+1) = (x(1); x(2) � 1)

��� (X(1)
n ; X(2)

n ) = (x(1); x(2))
i

=
�2(�)

5

=
4� �

5

All remaining transitions have probability zero. The above events with nonzero probability can

be represented by the following symbols:

A = Arrival at Queue 1

D1 = Departure from Queue 1 (and Arrival at Queue 2)

N1 = Null Departure from Queue 1

D2 = Departure form Queue 2

N2 = Null Departure from Queue 2

In the state (X(1)
n ; X(2)

n ) = (0; 0), we do not distinguish between events N1 and N1 since the

outcome is identical, and for greater eÆciency, we simulate N1 [N2 at probability in (5.35).
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For all states other than the zero state (0; 0), the likelihood ratios are computed:

d
d�
P�[A]

P�[A]
=

0

1=5
= 0

d
d�
P�[D1]

P�[D1]
=

d
d�
P�[N1]

P�[N1]
=

1=5

�=5
=

1

�

d
d�
P�[D2]

P�[D2]
=

d
d�
P�[N2]

P�[N2]
=

�1=5
(4� �)=5

=
1

� � 4

For the zero state (0; 0), the likelihood ratios are

d
d�
P�[A]

P�[A]
=

0

1=5
= 0;

d
d�
P�[N1 [N2]

P�[N1 [N2]
=

0

4=5
= 0:

With that, we �nd the gradient estimate is

bG(�; �Xn+1)
:
=

(
d
d�
P�(Xn+1;0; Xn+1;1)

P�(Xn+1;0; Xn+1;1)

) `n+1X
j=1

�
X

(1)
n+1;j +X

(2)
n+1;j

�
; n = 1; 2; : : :

where we take a window �Xn+1 =
�
Xn+1;0; : : : ; Xn+1;`n+1

�
.

A computer simulation was performed with this Markov chain using the projected algorithm:

�n+1 = �[1:1;2:9]

n
�n � n+1 bG(�n; �Xn+1)

o
; n = 0; 1; : : :

�0 = 1:25

�X0 = (0; 0)

We chose the rather arbitrary step-size sequence n = 1=(5+4n) for n = 1; 2; : : : and observation

window sequence `n = 6 ln(n) + 5 for n = 1; 2; : : : which satis�es (S). The results of the

simulation are in Figures 5.2 and 5.3.

5.12.2 Simulation Results

Figure 5.2 shows the the early response of the stochastic optimization algorithm in two graphs;

the lower graph shows the evolution of the service rate parameter �n at the �rst queue while

the upper graph shows the computed theoretical objective function at each parameter value,

i.e.

J(�n) =
�

�n � �
+

1

(4� �n)� �
; n = 1; 2; : : :

During this early response, it's clear the noise is forcing the parameter over a wide range of

values within the projection. The long term response of the algorithm in Figure 5.3 suggests

asymptotic convergence of the iterates �n = �(1)n to the theoretically optimal value �? = 2.

114



0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

Parameter Updates

S
er

vi
ce

 R
at

e 
at

 Q
ue

ue
 1

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

O
bj

ec
tiv

e 
F

un
ct

io
n

Stochastic Optimization, Initial Response

Figure 5.2: Early response of the simulated stochastic optimization algorithm.

5.12.3 Convergence Veri�cation Procedure

In order to verify the conditions for convergence, we would start with showing (D1) or (D2) for

the one-step chain for some function V which we need to �nd. Then we would check conditions

(M), (E1), and (H2) as we did in Chapter 3 for the simple random walk example. Note that

(G2) is equivalent to (M) here. For this example here, it can be veri�ed that (D1) and (D2)

follow (in the same manner as the random walk example) if we take

V (x(1); x(2)) = Kes(x
(1)+x(2))

for some constants K <1 and s > 0.

Then we check the conditions for the windowed chain used in the optimization algorithm.

The results of this chapter then imply (D0), (H2), (C), (E1), (P1) all hold for the windowed

chain. The additional conditions (F1)-(F4) and (G1)-(G3) also follow readily and allow us to

verify (H5). The steps involved in checking these conditions are nearly identical to those carried

out for the random walk example and the additional conditions (F1)-(F4) and (G1)-(G3) are

straightforward to check.
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Figure 5.3: Long term response of the simulated stochastic optimization algorithm.

116



Chapter 6

An Algorithm for a Partially Transient Markov Chain

6.1 Introduction

The results of this chapter were �rst motivated by a diÆculty we encountered when applying a

projected SA to the M/M/1 queue. Consider an M/M/1 which has a �xed but unknown arrival

rate �arrival and we wish to iteratively approximate the location of the particular service rate

parameter �? = �? which achieves some given level of service de�ned by the steady-state mean

queue size (or perhaps the steady-state mean waiting time). Since the arrival rate is unknown,

we are unable to identify a compact projection set � to use with the SA algorithm which ensures

the service rate iterates f�n = �n; n = 0; 1; : : :g remains within the positive recurrent region

(�arrival;1), i.e. we want to choose � � (�arrival;1). Unfortunately, if a non-ideal projection

set is instead chosen which includes any part of the transient or null recurrent region [0; �arrival],

the framework developed in Chapter 2 breaks down for several reasons, one of which is simply

the regression function h(�) is only de�ned on the interval (�arrival;1) and we require existence

as well as continuity of h on �.

Now consider the general SA problem and let us assume that all of the general conditions

of Section 2.3 which lead to convergence of SA's (including positive recurrence) are satis�ed

over some subset Ds of IR
p. Except for unconstrained SA applications where the recurrence

condition of the Kushner-Clark Lemma can be independently veri�ed, the projected SA frame-

work presented in Chapter 2 is most easily applied for cases where it's possible to identify

an compact ideal projection set �ideal which contains �� and lies within the ODE's domain

of attraction DA(�?). Since SA's are proposed for many \blind" equalization and regulation

problems with unknown quantities, choosing an ideal projection set �ideal for which �
? 2 �ideal,

�ideal � DA(�?), and �ideal � Ds can be diÆcult or impossible. As a result, this diÆculty

often leads to a tradeo� in the choice of a suitable projection set � which approximates �ideal.

Choosing � to be \small" makes it more likely that � � Ds but can result in �? 62 � which

prevents convergence to �?. Choosing � \large" makes it more likely that �? falls in � but can

result in � not being a subset of Ds. Our goal in this chapter is to develop an approach to

proving convergence when � is chosen \large" which takes into account the possibility that �

is not a subset of Ds. In this case, there may be a region within � where some of the general

convergence conditions of Section 2.3 are not satis�ed.
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For the particular M/M/1 queue example above, we may easily choose a \large" compact

set � � �ideal given by � = [0;M ] where M is chosen so large that we are absolutely con�dent

�? << M . We wish to study the behavior and convergence properties of this algorithm which

generates iterates �n = �n controlling the service rate which may fall in the transient/null-

recurrent region [0; �arrival] as well as the positive-recurrent region (�arrival;M ] of �.

In general, we study an extension to the framework in Chapter 2 where we wish to apply

SA to a system where it is only assumed the convergence conditions are satis�ed when the

parameter � is restricted to some compact and strict subset Q of Ds \ �. We �nd that the

SA with \large projection set" can be applied to Markov chains which may contain a transient

region within � and the desired a.s. convergence can still be shown provided one additional

condition is satis�ed; that, almost surely, the iterate �n always returns to this compact subset Q

if it should ever leave Q. In this setting, the general conditions of Section 2.3 are only required

to hold on a localized subset Q of Ds \� and we do not require that the regression function h

be de�ned outside the subset Ds, i.e. we take h : Ds ! IRp.

For the M/M/1 example above, we show that this key recurrence condition on the parameter

iterates holds when the performance measure is the queue occupancy; and when combined with a

localized ODE method we prove almost sure convergence �n ! �? with no unveri�ed conditions.

While this localization approach is not new (it is discussed in [64]), we do show in detail how

the various steps may be carried out for a particular system and we feel this o�ers several

insights as well as tools which should apply to other systems with properties similar to this

M/M/1 example. The particular property that we exploit is that if any iterate should cause

the queue to be set to operate in the transient region, the queue tends to grow unbounded as

long as the iterate remains in this transient region and the response of the SA algorithm driven

by the queue occupancy then tends to drive the iterate back to the positive recurrent subset Q

almost surely. This recurrence property is related to the structure of the chain and therefore

holds without a priori knowledge of the boundaries of Q or the value of �arrival.

6.2 Localized Conditions

Let us now de�ne a new set of localized conditions which will be used later to show a.s. conver-

gence of �n to �? via a localized ODE method when accompanied with a parametric recurrence

argument shown for the speci�c problem.

For this general setting, � is a compact subset of IRp used in the projection operator. The

following conditions are nearly identical to those presented in Chapter 2 except here they hold

only on a compact subset Q of � and unlike Chapter 2, here we simply require 0 � r � 1=4.

We still assume b̀1 is in (0; 1) and satis�es (S).

(D0') There exists a function V : X ! [1;1) and a constant 1 � CD < 1 such that for all

n = 0; 1; 2; : : ::

E�;x

h
1f�n2QgV (Xn)

i
� CDV (x); and (6.1)
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E�;x

h
1f�n2QgV (Xn+1)

i
� CDV (x); � 2 Q; x 2 X: (6.2)

(D1') There exists a function V : X ! [1;1) and two constants 0 < � < 1 and L < 1 such

that

P�V (x) � �V (x) + L; for all � in Q and x in X.

(�') For each � 2 Q, there exists a unique P�-invariant probability �� on (
;F).
(H1') For all � 2 Q, H(�; �) := H�(�) is integrable under ��. Let us denote

h(�)
:
= ��(H�)

:
=
Z
X

H�(x)��(dx); � 2 Q:

(H2') There exists constants CH <1 and C� <1 such that,

sup
�2Q

kH(�; x)k � CHV
r(x); for all x 2 X

sup
�2Q

k�n(�; x)k � C�V
r(x); for all x 2 X; n = 1; 2; : : :

(H4') There exists a Ch <1 and a Æ > 0 such that for some 0 < ` < 1:

kh(�)� h(�0)k � Ch k� � �0k` ; �; �0 2 Q; k� � �0k � Æ:

(P1') For all (�; x) 2 Q� X, the following series converges:

��(x)
:
=

1X
n=0

�Z
P n
� (x; dy)H�(y)� h(�)

�
<1;

and we identify ��(x) as the solution to the Poisson equation associated with H(�; �):

H�(x)� h(�) = ��(x)�
Z
P�(x; dy)��(y); x 2 X; � 2 Q:

(P2') There exist a constant C� <1 such that

k��(x)k � C�V
r(x); for all � 2 Q; x 2 X

kP���(x)k � C�V
r(x); for all � 2 Q; x 2 X

(P3') There exists a constant CÆ <1 such that

kP���(x)� P�0��0(x)k � CÆV
r(x) k� � �0kb̀1 ; for all �; �0 2 Q; x 2 X.

where b̀1 satis�es (S).
We may also have occasion to use localized versions of the specialized conditions of Chapter

3, the de�nitions of which are obvious.
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6.2.1 An Immediate Consequence

Proposition 6.1 Suppose there exists a function V : �! [1;1) such that condition (6.1) of

(D0') and (D1') both hold. Then both conditions of (D0') hold, i.e. that there exists a CD <1
such that for all n = 0; 1; 2; : : ::

E[V (Xn+1)1f�n2QgjX0 = x; �0] � CDV (x); and

E[V (Xn)1f�n2QgjX0 = x; �0] � CDV (x); for all � in Q � �, x in X.

Proof: Suppose condition (6.1) is satis�ed with C 0
D <1 Conditioning and applying (D1'):

E[V (Xn+1)1f�n2QgjX0; �0] = E[E[V (Xn+1)jXn; �n]1f�n2QgjX0; �0]

� E[(�V (Xn) + L)1f�n2QgjX0; �0]

� �E[V (Xn)1f�n2QgjX0; �0] + L

� �C 0
DV (x) + L

� (C 0
D + L)V (x)

Now de�ne CD = C 0
D + L.

6.3 A Noise Decomposition for Localized Domains

This section carries out a decomposition similar to what was used in Chapter 2 and is based

on the decomposition and framework developed in [6]. We have slightly adapted BMP's de-

composition to meet our needs for projected algorithms containing a localization Q within the

projection set. The reader will notice the form and development of the decomposition is essen-

tially identical to BMP's yet the algorithm and conditions for which the decomposition is valid

are indeed di�erent.

Consider the same �-projected stochastic approximation algorithm studied earlier in the

previous chapters. We assume existence of a compact subset Q � � which we refer to as the

localization on �. For convenience, the SA algorithm is initialized with an arbitrary parameter

�0 = � in Q. The familiar recursion is de�ned for all n = 0; 1; 2; : : : by:

�n+1 = ��

n
�n + n+1H(�n; Xn+1) + 2n+1�n+1(�n; Xn+1)

o
(6.3)

= �n + n+1H(�n; Xn+1) + 2n+1�n+1(�n; Xn+1) + n+1zn+1; (6.4)

and the deterministic step-size sequence fn; n = 1; 2; : : :g is chosen to satisfy (S).

The state process X = fXn; n = 1; 2; : : :g behaves as a controlled Markov chain (see Section

2.2) in which the one step transition kernel P�(x; �), which may depend on the continuous

variable � 2 �, is controlled by the current iterate �n so Xn+1 is governed by the one-step

probability P�n;Xn. Additionally, it is assumed that a generic time-homogeneous Markov chain

governed by the same transition kernel P�(x; �) with the parameter � held �xed at any point in

Q is ergodic in the sense that there exists a P�-invariant measure �� and

lim
n!1

E�;x [H(�;Xn)] = ��(H�)
:
= h(�); � 2 Q: (6.5)
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We assume the regression function kh(�)k < 1 for all � 2 Q, hence for any n such that

�n 2 Q, we can write (6.4) as:

�n+1 = �n + n+1h(�n) + n+1zn+1

+ n+1 fH(�n; Xn+1)� h(�n) + n+1�n+1(�n; Xn+1)g
= �n + n+1h(�n) + n+1zn+1 + n+1"n+1; (6.6)

Rearranging we �nd

n+1"n+1 = �n+1 � �n � n+1h(�n)� n+1zn+1; (6.7)

this being valid for �n 2 Q only, as we assume h is not de�ned on Qc.

Following [6], we de�ne the C2 function � : �! IR which has a bounded second derivative

and consider the following generalization of (6.7):

n+1"n+1(�)
:
= �(�n+1)� �(�n)� n+1r�(�n) � fh(�n) + zn+1g (6.8)

For the compact set Q of �, BMP also de�ne

M0
:
= sup

�2Q
j�(�)j

M1
:
= sup

�2Q
kr�(�)k

M2
:
= sup

�2Q

r2�(�)


�M2
:
= sup

�2�

r2�(�)


Given two points �; �0 2 �, there exists a remainder R(�; �; �0) such that

�(�)� �(�0) = (� � �0) � r�(�) +R(�; �; �0) (6.9)

whereby jR(�; �; �0)j � �M2 k� � �0k2.
If we take �k 2 Q (and we only know �k+1 2 �), then from (6.7), (6.8) and (6.9),

k+1"k+1(�)

= �(�k+1)� �(�k)� k+1r�(�k) � (h(�k) + zk+1)

= r�(�k) � (�k+1 � �k)� k+1r�(�k) � (h(�k) + zk+1) +R(�; �k; �k+1)

= k+1r�(�k) � fH(�k; Xk+1)� h(�k)g
+ 2k+1r�(�k) � �k+1(�k; Xk+1) +R(�; �k; �k+1) (6.10)

where

jR(�; �k; �k+1)j � �M2

k+1H(�k; Xk+1) + 2k+1�k+1(�k; Xk+1) + k+1zk+1
2

� �M2

�
2
k+1H(�k; Xk+1) + 2k+1�k+1(�k; Xk+1)

�2
= 4 �M2

2
k+1 kH(�k; Xk+1) + k+1�k+1(�k; Xk+1)k2 : (6.11)
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For the �xed compact set Q and for each i = 0; 1; 2; : : : let us de�ne the ith exit time and

the ith entrance time, respectively

�i(Q)
:
= inffn � �i�1(Q) : �n 62 Qg (6.12)

�i(Q)
:
= inffn � �i(Q) : �n 2 Qg; i = 1; 2; : : : ; (6.13)

where by convention we de�ne �0 = �0 = 0. Recall our assumption that �0 2 Q.
For some i = 1; 2; : : :, let us take �i�1(Q) � k < �i(Q) so (6.10) is valid, and assuming

condition (P1') so that the solution to the Poisson equation exists on Q, we reformulate (6.10)

using some new terms e"(i)k+1 (de�ned below in 6.15):

"k+1(�) = r�(�k) � fH(�k; Xk+1)� h(�k)g+ e"(4)k+1

= r�(�k) � f��k(Xk+1)� P�k��k(Xk+1)g+ e"(4)k+1

= r�(�k) � f��k(Xk+1)� P�k��k(Xk)g
+r�(�k) � fP�k��k(Xk)� P�k��k(Xk+1)g+ e"(4)k+1

= e"(1)k+1 +r�(�k) � fP�k��k(Xk)� P�k��k(Xk+1)g+ e"(4)k+1

We retain BMP's notation and de�ne the function  �(x)
:
= r�(�) � P���(x). For any

i = 1; 2; : : :, and for m;n such that �i�1(Q) � m < n � �i(Q), the weighted sum of the noise

terms is formed and then rearranged:

n�1X
k=m

k+1"k+1(�)

=
n�1X
k=m

k+1
�e"(1)k+1 + e"(4)k+1

�
+

n�1X
k=m

k+1 f �k(Xk)�  �k(Xk+1)g

=
n�1X
k=m

k+1
�e"(1)k+1 + e"(4)k+1

�
+ m+1 �m(Xm) +

n�1X
k=m+1

k+1
n
 �k(Xk)�  �k�1(Xk)

o

+
n�1X

k=m+1

(k+1 � k) �k�1(Xk)� n �n�1(Xn)

We thus have the following decomposition (which is quite similar in appearance to BMP's

Lemma 1 [6, p. 222]):

n�1X
k=m

k+1"k+1(�) (6.14)

=
n�1X
k=m

k+1e"(1)k+1 +
n�1X

k=m+1

k+1e"(2)k+1 +
n�1X

k=m+1

k+1e"(3)k+1 +
n�1X
k=m

k+1e"(4)k+1 + e�m;n

where

e"(1)k+1
:
= r�(�k) � f��k(Xk+1)� P�k��k(Xk)g
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e"(2)k+1
:
=  �k(Xk)�  �k�1(Xk)

e"(3)k+1
:
=

k+1 � k
k+1

 �k�1(Xk)

e"(4)k+1
:
= k+1r�(�k) � �k+1(�k; Xk+1) +

R(�; �k; �k+1)

k+1e�m;n
:
= m+1 �m(Xm)� n �n�1(Xn): (6.15)

6.3.1 A Partial Decomposition

In the coming sections, we shall also be interested in convergence properties of the following

partial decomposition sum for any n = 1; 2; : : ::

En
:
=

n�1X
k=0

k+1e"(1)k+11f�k2Qg +
n�1X
k=1

k+1e"(2)k+11f�k2Qg1f�k�12Qg

+
n�1X
k=1

k+1e"(3)k+11f�k2Qg1f�k�12Qg +
n�1X
k=0

k+1e"(4)k+11f�k2Qg: (6.16)

Note we take the convention that any summation
Pj

i is de�ned to be zero if i > j.

The decomposition is termed partial because the �nal e� term in (6.14) is not present here and

we will account for it separately when we work with this form of the decomposition. Observe

that for any i = 1; 2; : : :,

n�1X
k=m

k+1"k+1(�) = En � Em + e�m;n; �i�1(Q) = m < n � �i(Q): (6.17)

6.4 Localized Versions of the BMP Lemmas

This section presents a series of �ve lemmas, analogous to those in Chapter 2 which bound each

term in the decomposition of "(�) under localized conditions and with the greater generality of

passing the noise through the function � which was introduced in this chapter's decomposition.

Since the proofs of these lemmas are similar to the versions in Chapter 2, we have placed them

in the appendix.

Lemma 6.2 (Variant of BMP Lemma 2) Assume (D0'), (P1'), (P2') for some positive

r � 1=4 and a set Q � � so that � = �(Q).

1. There exists a constant A1 <1 such that for each m = 1; 2; : : :

E�;x

24sup
n�m

1fn��g

�����
n�1X
k=0

k+1e"(1)k+1

�����
2
35 � A1V (x)

m�1X
k=0

2k+1; x 2 X; � 2 Q:

Moreover, A1 � 4C2
�M

2
1CD.

2. On f�(Q) =1g, Pn�1
k=0 k+1e"(1)k+1 converges P�;x-a.s. and in L2 if

P1
k=0 

2
k+1 <1.
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3. The sum
Pn�1

k=0 k+11f�k2Qge"(1)k+1 converges P�;x-a.s. and in L2 if
P1

k=0 
2
k+1 <1.

Proof: See the appendix.

Lemma 6.3 (Variant of BMP Lemma 3) Assume (D0'), (H2'), (P1'), (P2'), (P3') for

some positive r � 1
4
and a set Q � �.

1. There exists a constant A2 <1 such that for all m = 1; 2; : : :,

E�;x

24 m^��1X
k=1

k+1
���e"(2)k+1

���!2
35 � A2V (x)

 
m�1X
k=1

1+
b̀1

k

!2

; x 2 X; � 2 Q;

where, A2 � CD

0@8M2
2C

2
� (CH + 1C�3)

2

 
21


(1+b̀1)
1

!2

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀11A.
2. There exists a constant B2 <1 such that for all m;n = 1; 2; : : : such that m > n,

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(2)k+1

���!2
35 � B2V (x)

 
n�1X
k=m

1+
b̀1

k

!2

;

x 2 X; � 2 Q;

where, B2 � CD

0@8M2
2C

2
� (CH + 1C�3)

2

 
21


(1+b̀1)
1

!2

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀11A.
Proof: See the appendix.

Lemma 6.4 (Variant of BMP Lemma 4) Assume (D0'), (P1'), (P2') for some positive

r � 1
4
and Q � �.

1. There exists a constant A3 <1 such that for all m = 1; 2; : : : ;,

E�;x

24 m^��1X
k=1

k+1
���e"(3)k+1

���!2
35 � A3V (x)

2
1 ; x 2 X; � 2 Q:

Moreover, A3 �M2
1C

2
�CD.

2. There exists a constant B3 <1 such that for all m;n = 1; 2; : : : ; with m < n,

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(3)k+1

���!2
35 � B3V (x)

2
m; x 2 X; � 2 Q:

Moreover, B3 �M2
1C

2
�CD.

Proof: See the appendix.
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Lemma 6.5 (Variant BMP Lemma 5) Assume (D0'), (P1'), (H2') for some positive r � 1
4

and Q � �.

1. There exists a constant A4 <1 such that for all m = 1; 2; : : :,

E�;x

24 m^��1X
k=0

k+1
���e"(4)k+1

���!2
35 � A4V (x)

 
m�1X
k=0

2k+1

!2

; x 2 X; � 2 Q:

Moreover, A4 � CD(C�3 + 2M2C
2
H + 221C

2
�3)

2.

2. There exists a constant B4 <1 such that for all m = 0; 1; 2; : : : with integer n > m

E�;x

24 n�1X
k=m

k+11f�k2Qg
���e"(4)k+1

���!2
35 � B4V (x)

 
n�1X
k=m

2k+1

!2

; x 2 X; � 2 Q:

Moreover, B4 � CD(C�3 + 2M2C
2
H + 221C

2
�3)

2.

Proof: See the appendix.

Lemma 6.6 (Variant of BMP Lemma 6) Assume (D0'), (P1'), (P2') for some r � 1
4
and

Q � �.

1. There exists a constant A5 <1 such that for each m = 1; 2; : : :,

E�;x

"
sup

1�n�m
je�0;nj2

#
� A5V (x)

m�1X
k=0

2k+1; x 2 X; � 2 Q:

Moreover, A5 � 4CDM
2
1C

2
� .

2. On f�(Q) =1g, e�0;n converges a.s. and in L2 if
P
2k+1 <1.

Proof: See the appendix.

6.5 Main Properties of the Noise

In this section, we collect the results of each lemma for each term in the decomposition of "(�)

and show several bounds related to the \step-size weighted sum of error" sequence (6.15). We

let �(Q) = �1(Q).

Proposition 6.7 (BMP Prop. 7) Assume (D0'), (P1')-(P3'), and (H1')-(H2') hold for some

positive r � 1
4
and Q � �. There exist constants B1, B2, B3, B4 such that for all m = 1; 2; : : ::

1. We have

E�;x

24sup
n�m

1fn��(Q)g

�����
n�1X
k=0

k+1"k+1(�)

�����
2
35 � B1V (x)

 
1 +

m�1X
k=0

2
b̀1
k+1

!
m�1X
k=0

2k+1: (6.18)
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2. We have

E�;x

24sup
n�m

1fn��(Q)g

�����
n�1X
k=0

k+1"k+1(�)

�����
2
35 � B2V (x)

 
1�

b̀1
1 +

m�1X
k=0

1+
b̀1

k+1

!
m�1X
k=0

1+
b̀1

k+1 (6.19)

3. On f�(Q) =1g, and if
P1

k=0 
1+b̀1
k+1 <1:

(a)

E�;x

24sup
n�1

�����
n�1X
k=0

k+1"k+1(�)

�����
2
35 � B3V (x)

1X
k=0

1+
b̀1

k+1 : (6.20)

(b) the series
P1

k=0 k+1"k+1(�) converges P�;x-a.s. and in L2.

4. If
P1

k=0 
1+b̀1
k+1 <1,

(a) The partial decomposition sum En, de�ned in (6.16), converges P�;x-a.s and in L2.

(b) For any m < n, the remainder term e�m;n1f�m2Qg1f�n�12Qg converges to 0, P�;x-a.s.

as m;n!1.

Proof: Parts 1-3 follow similarly to the proof of Proposition 2.7 using the localized variants of

the BMP Lemmas.

Part 4-a. We have for n = 1; 2; : : :,

En
:
=

n�1X
k=0

k+1e"(1)k+11f�k2Qg +
n�1X
k=1

k+1e"(2)k+11f�k2Qg1f�k�12Qg

+
n�1X
k=1

k+1e"(3)k+11f�k2Qg1f�k�12Qg +
n�1X
k=0

k+1e"(4)k+11f�k2Qg: (6.21)

The �rst summation term in (6.21) converges almost surely and in L2 by Lemma 6.2. It's

also clear the remaining three summation terms all converge almost surely and in L2 from the

bounds in Lemmas 6.3, 6.4 and 6.5. (See the proof of Proposition 2.7 for details on how this is

shown.)

Part 4-b. In the original derivation, e�m;n was only de�ned for �i�1 � m < n � �i for any

i = 1; 2; : : : but we now extend the de�nition to arbitrary m = 0; 1; 2; : : : and n > m so that

e�m;n
:
= m+1 �m(Xm)� n �n�1(Xn):

From the Monotone Convergence Theorem we get

E�;x

"
1X

m=1

���1f�m2Qgm+1 �m(Xm)
���2#

�
1X

m=1

2m+1E�;x

h
1f�m2Qg j �m(Xm)j2

i
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�
1X

m=1

2m+1E�;x

h
1f�m2Qg kr�(�m)k2 kP�m��m(Xm)k2

i
�

1X
m=1

2m+1M
2
1C

2
�E�;x

h
1f�m2QgV

2r(Xm)
i

�
1X

m=1

2m+1M
2
1C

2
�CDV (x) <1:

Therefore, the series
P1

m=1

���1f�m2Qgm+1 �m(Xm)
���2 converges almost surely which implies

1f�m2Qgm+1 �m(Xm) �! 0 (6.22)

almost surely under P�;x.

Similarly

E�;x

"
1X
n=1

���1f�n�12Qgn �n�1(Xn)
���2#

�
1X
n=1

2nE�;x

�
1f�n�12Qg

��� �n�1(Xn)
���2�

�
1X
n=1

2nE�;x

�
1f�n�12Qg kr�(�n�1)k2

P�n�1��n�1(Xn)
2�

�
1X

m=1

2nM
2
1C

2
�E�;x

h
1f�n�12QgV

2r(Xn)
i

�
1X

m=1

2nM
2
1C

2
�CDV (x) <1;

The series
P1

n=1

���1f�n�12Qgn �n�1(Xn)
���2 also converges almost surely which implies

lim
n!1

1f�n�12Qgn �n�1(Xn) = 0; P�;x � a:s:

Finally, the convergence to zero follows readily since���e�m;n1f�m2Qg1f�n�12Qg
���

=
���m+11f�m2Qg1f�n�12Qg �m(Xm)� n1f�m2Qg1f�n�12Qg �n�1(Xn)

���
�

���m+11f�m2Qg �m(Xm)
���+ ���n1f�n�12Qg �n�1(Xn)

��� :

6.6 Application: Tuning the M/M/1 with Unknown Arrival Rate

As we stated in the introduction, we carry out the convergence analysis speci�cally for the

M/M/1 queue with in�nite bu�er, unknown arrival rate �arrival > 0, and controlled service rate

�(�) = � which is constrained (projected) on the set � = [0;M ] with M <1 arbitrarily large.
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The performance measure of interest is the steady state mean queue size which, for this model,

can be computed analytically if �arrival and �(�) are both known and �arrival
�(�)

< 1:

E�� [X] =
�arrival

�(�)� �arrival
: (6.23)

Our goal is to �nd the particular service rate �(�?) which achieves a steady state queue size of

N? customers in queue and in service.

We choose to model the M/M/1 queue size by uniformizing the continuous time Markov

chain for the M/M/1 and simulating a corresponding discrete time chain [56] which is the

following birth-death chain (a random-walk with a reection at the origin). For each x =

0; 1; : : :, the one-step transition probabilities are:

P�[Xn+1 = x+ 1jXn = x] =
�arrival

�arrival + �
;

P�[Xn+1 = (x� 1)+jXn = x] =
�

�arrival + �
; � 2 [0;M ]; (6.24)

with zero probability for all remaining transitions. This chain possesses a null transition from

state 0 to state 0.

We apply a projected SA

�n+1 = �� f�n + n+1H(�n; Xn+1)g ; n = 0; 1; : : :

�0 = � 2 �

X0 = x 2 X

with projection set � = [0;M ] and driving function H(�; x) = x � N?. Additionally, we shall

assume an explicit step size sequence fn; n = 1; 2; : : :g given by n = 1
n
for all n = 1; 2; : : :. It's

clear that at certain times the chain may in fact be operating at a parameter in the transient

region so that �arrival
�(�)

> 1.

Here, M serves to model the maximum mean service rate available in the queue and we

choose M < 1 simply to achieve the boundedness condition required for the Kushner-Clark

Lemma. The use of a bounded service rate limitM is not seen as a signi�cant limitation because

M may be chosen arbitrarily large. Alternatively, this �xed upper bound on the projection set

could likely be relaxed using a randomly increasing bound as in Chen's algorithm [17, 18], but

we shall not explore this option as it is the e�ects of the transient region at the other extreme

of � we wish to study here.

A similar birth-death chain was studied earlier in Chapter 3 in which the transition prob-

abilities had a linear dependence on � instead of the nonlinear dependence given by (6.24).

In that earlier case, an ideal compact projection set was used with the SA which maintained

positive recurrence for that Markov chain and the specialized conditions of Chapter 3 were ex-

plicitly veri�ed which implied the more general convergence conditions of Section 2.3. In this

case here, we do not assume accurate knowledge of the arrival rate �arrival hence such an ideal
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projection set cannot be identi�ed. Nevertheless, a compact subset Q � (�arrival;M ] does exist

for which the specialized conditions hold if the iterates were constrained to Q and this is easily

shown as in Chapter 3 with only a slight modi�cation to account for the nonlinear dependence

of the probabilities (6.24).

Unlike most applications of SA, the regression function for this example is analytically

known, i.e.

h(�) =
�arrival

� � �arrival
�N?; � > �arrival; (6.25)

and we de�ne �? as the point h(�?) = 0. We shall show that the algorithm above yields

convergence of �n to �? almost surely. Finally, we understand that it's very unlikely for SA

to be proposed for the M/M/1 problem which we have stated here since since h is known and

there are better methods to �nd �?. Nevertheless, this example serves as a test case to explore

the e�ect of the transient region within the projection set on a tractable problem possessing

an unbounded state space. It is our belief that many of the techniques presented below should

extend to other problems where the regression function is not known.

6.7 Veri�cation of (D0') for the Birth-Death Chain

We start with the veri�cation of (D1') for this problem and recall we have shown in Section

3.9.3 that the test function V (x) = Ksx satis�ed a (D1') condition. Actually, for the remainder

of this chapter, we wish to change the form of V by de�ning a Æ
:
= Æ(s) > 0 such that

V (x) = Ksx = KeÆx:

Let us de�ne Q � � to be the interval Q = [q;M ] for some satisfactory q > �arrival such that

�arrival < q < ��. Recall from Section 3.9.3 that in proving the local (D1') condition we found

what amounts to conditions on � in (D1') and the boundaries of Q for each Æ > 0 (or s > 1),

i.e.

P�V � �V + L; � 2 Q
Unfortunately, condition (D1') alone is not adequate for our main convergence theorems of this

chapter and we next consider techniques involving excursions of the parameter from Q into the

region Qc \� to show the stronger (D0').

6.7.1 Last Exit and Return Decomposition

Let us �x an integer n = 1; 2; : : : and we assume �0 2 Q. For any sample path f�i; i =

0; 1; : : : ; ng 2 Fn let us de�ne a partition on the the event f�n 2 Qg. The �rst set in the

partition is de�ned as those sample paths f�i; i = 1; : : : ; ng which remain in Q for all of the

�rst n steps, denoted An
:
= f�i 2 Q; i = 0; 1; : : : ; ng. Next, for any sample path in the

complementary event Ac
n we de�ne the last exit time rv

� = �(Q)
:
= supf1 � k � n� 1 : �k 62 Q; �k�1 2 Qg:
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Then we de�ne the �rst return time after � as

� = �(Q)
:
= inffk > � : �k 2 Qg

With these de�nitions, we de�ne the remaining sets in the partition:

Bn
�;�

:
= f���1 2 Q; �j 62 Q; j = �; � � � ; � � 1; �k 2 Q; k = �; : : : ; ng; 1 � � < � � n:

It's clear that these events are disjoint, that An � f�n 2 Qg, Bn
�;� � f�n 2 Qg for 1 � � < � � n,

and that

f�n 2 Qg = An [
[

1��<��n

Bn
�;�; n = 1; 2; : : :

First notice we have from (D1')

E[V (Xn+1)1f�n2QgjX0; �0] = E[E[V (Xn+1)jXn; �n]1f�n2QgjX0; �0]

� E[(�V (Xn) + L)1f�n2QgjX0; �0]

� �E[V (Xn)1f�n2QgjX0; �0] + L: (6.26)

Then, using the decomposition above

E[V (Xn)1f�n2QgjX0; �0] = E[V (Xn)1fAngjX0; �0] +
X

1��<��n

E[V (Xn)1fBn
�;�gjX0; �0] (6.27)

and we will now attempt to bound the quantities on the right hand side.

6.7.2 Sample Paths which remain in Q

The �rst term of (6.27) is evaluated as follows. For any n = 1; 2; : : :

E
h
V (Xn)1fAngjX0 = x; �0

i
= E

h
V (Xn)1f�i2Q;i=1;:::;ngjX0 = x; �0

i
� E

h
V (Xn)1f�i2Q;i=1;:::;n�1gjX0 = x; �0

i
= E

h
E[V (Xn)jXn�1; �n�1]1f�i2Q;i=1;:::;n�1gjX0 = x; �0

i
� E

h
(�V (Xn�1) + L)1f�i2Q;i=1;:::;n�1gjX0 = x; �0

i
= �E

h
V (Xn�1)1f�i2Q;i=1;:::;n�1gjX0 = x; �0

i
(6.28)

+ LP[f�i 2 Q; i = 1; : : : ; n� 1gjX0 = x; �0]

� �E
h
V (Xn�1)1f�i2Q;i=1;:::;n�2gjX0 = x; �0

i
+ L

= �E
h
E[V (Xn�1)jXn�2; �n�2]1f�i2Q;i=1;:::;n�2gjX0 = x; �0

i
+ L

� �E
h
(�V (Xn�2) + L)1f�i2Q;i=1;:::;n�2gjX0 = x; �0

i
+ L

= �2E
h
V (Xn�2))1f�i2Q;i=1;:::;n�2gjX0 = x; �0

i
(6.29)
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+ L+ �LP[f�i 2 Q; i = 1; : : : ; n� 2gjX0; �0]

� �2E
h
V (Xn�2))1f�i2Q;i=1;:::;n�3gjX0 = x; �0

i
+ L(1 + �)

...

� �nV (x) + L(1 + �+ �2 + � � �+ �n�1); x 2 X; �0 2 Q: (6.30)

6.7.3 Sample Paths which leave Q and return

For the second term of (6.27) we now consider sample paths that leave Q and return by time

n, i.e. 1 � � < � � n. First we �nd that

E[V (Xn)1fBn
�;�gjX�; ��]

= E
h
V (Xn)1f�i2Q;i=�+1;:::;ngjX�; ��

i
1f���12Q;�i 62Q;i=�;:::;��1;��2Qg

� E
h
V (Xn)1f�i2Q;i=�+1;:::;n�1gjX�; ��

i
1f���12Q;�i 62Q;i=�;:::;��1;��2Qg:

Then, in nearly the same manner as the last section we have for n = �; � + 1; : : :

E
h
V (Xn)1f�i2Q;i=�+1;:::;n�1gjX�; ��

i
= E

h
E[V (Xn)jXn�1; �n�1]1f�i2Q;i=�+1;:::;n�1gjX�; ��

i
� E

h
(�V (Xn�1) + L)1f�i2Q;i=�+1;:::;n�1gjX�; ��

i
= �E

h
V (Xn�1)1f�i2Q;i=�+1;:::;n�1gjX�; ��

i
+ LP[f�i 2 Q; i = � + 1; : : : ; n� 1gjX�; ��]

� �E
h
V (Xn�1)1f�i2Q;i=�+1;:::;n�2gjX�; ��

i
+ L

= �E
h
E[V (Xn�1)jXn�2; �n�2]1f�i2Q;i=�+1;:::;n�2gjX�; ��

i
+ L

� �E
h
(�V (Xn�2) + L)1f�i2Q;i=�+1;:::;n�2gjX�; ��

i
+ L

= �2E
h
V (Xn�2))1f�i2Q;i=�+1;:::;n�2gjX�; ��

i
+ L+ �LP[f�i 2 Q; i = � + 1; : : : ; n� 2gjX�; ��]

� �2E
h
V (Xn�2))1f�i2Q;i=�+1;:::;n�3gjX�; ��

i
+ L(1 + �)

...

� �n��V (X�) + L(1 + �+ �2 + � � �+ �n���1):

Let us denote the set

C�;�
:
= f���1 2 Q; �i 62 Q; i = �; : : : ; � � 1; �� 2 Qg:

Therefore,

E[V (Xn)1fBn
�;�gjX0; �0]

= E[E[V (Xn)1fBn
�;�gjX�; ��]jX0; �0]
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� E
h�
�n��V (X�) + L(1 + �+ �2 + � � �+ �n���1)

�
1fC�;�gjX0; �0

i
= �n��E[V (X�)1fC�;�gjX0; �0] (6.31)

+ L(1 + �+ �2 + � � �+ �n���1)P[fC�;�gjX0; �0] (6.32)

6.7.4 An Intermediate Expression

Using (6.30) and (6.32) we are now able to bound (6.27) as follows. For n = 1; 2; : : :

E[V (Xn)1f�n2QgjX0; �0]

= E[V (Xn)1fAngjX0; �0] +
X

1��<��n

E[V (Xn)1fBn
�;�gjX0; �0]

� V (x) + L(1 + �+ �2 + � � �+ �n�1)

+
X

1��<��n

�n��E[V (X�)1fC�;�gjX0; �0]

+ L(1 + �+ �2 + � � �+ �n���1)
X

1��<��n

P[fC�;�gjX0; �0] (6.33)

� V (x) + 2L(1 + �+ �2 + � � �+ �n�1)

+
X

1��<��n

�n��E[V (X�)1fC�;�gjX0; �0]; X0 2 X; �0 2 Q: (6.34)

The last line follows since the probabilities in the sum (6.33) are over mutually exclusive events,

hence the sum is bounded by one.

Our approach to evaluating the �nal sum in (6.34) is to rewrite the above expression in the

form below and develop a bound for the probability inside the integral:

E[V (Xn)1f�n2QgjX0 = x; �0]

� V (x) +
2L

1� �

+
X

1��<��n

�n��
Z 1

0
P[V (X�)1fC�;�g � t; jX0 = x; �0]dt (6.35)

We also note from (6.26) that

E[V (Xn+1)1f�n2QgjX0 = x; �0]

� �E[V (Xn)1f�n2QgjX0 = x; �0] + L

= �V (x) + 2L(�+ �2 + �3 + � � �+ �n)

+ �
X

1��<��n

�n��
Z 1

0
P�0;x[V (X�)1fC�;�g � t; ]dt+ L

� V (x) +
2L

1� �

+
X

1��<��n

�n��
Z 1

0
P�0;x[V (X�)1fC�;�g � t; ]dt: (6.36)

Hence, we have a common intermediate expression, i.e. (6.35) and (6.36), bounding both

expectations in (D0').
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6.7.5 A Key Sample Path Property

�

X

0
0

�?

N?

M

d a

c
�

b

�

q�arrival

Figure 6.1: A sample path in C�;� with a \loop".

We now develop a key sample path property for events C�;� by considering the example

shown in Figure 6.1 where we have one particular such sample path. This sample path has

several points in time which are marked in Figure 6.1 and formally de�ned as follows:

a = inffn � � + 1 : Xn � N?g
b = inffn � a+ 1 : Xn < N?g

c = inffn � b + 1 :
b�1X
i=a

i(Xi �N?) � �
nX
i=b

i(Xi �N?)g

d = inffn � c+ 1 : Xn � N?g

We note that for this example, the sample path segment does not come in contact with the

projection boundary, hence we have zi = 0; i = �; : : : ; u� 1. (We shall address sample paths

involving projections in the next example.)

Also, observe that in general we have C�;� �
nP��1

i=� i(Xi �N?) < 0
o
since

�arrival > ���1 = ���1 +
��1X
i=�

i(Xi �N?) +
��1X
i=�

izi

� �arrival +
��1X
i=�

i(Xi �N?):

The last line following because zi � 0 on i = �; : : : ; � � 1 for all sample paths in C�;�.
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The key to bounding the integrand in (6.36) is the following sample path property for paths

in C�;� which allows us to show(
��1X
i=�

i(Xi �N?) < 0

)
�
(

1

� � �

��1X
i=�

(Xi �N?) < q

)
:

Claim 6.8 For any sample path in C�;�, we have

��1X
i=�

(Xi �N?) � (� � �)q: (6.37)

Proof: We �rst consider the step-size weighted sum sample path segments a ! b � 1 and

b! c� 1. By the de�nitions of the point c, we have

�
c�1X
i=b

i(Xi �N?) �
b�1X
i=a

i(Xi �N?) � �
cX
i=b

i(Xi �N?)

so there exists a real number � 2 [0; 1] such that

b�1X
i=a

i(Xi �N?) = �
c�1X
i=b

i(Xi �N?)� �c(Xc �N?) (6.38)

Now, since (X �N?) � 0 for all i = a; : : : ; b� 1, we have

b�1X
i=a

i(Xi �N?) � b�1
b�1X
i=a

(Xi �N?) � b
b�1X
i=a

(Xi �N?): (6.39)

Also, since (X �N?) < 0 for all i = b; : : : ; c, we have

�
c�1X
i=b

i(Xi �N?)� �c(Xc �N?) � �b
c�1X
i=b

(Xi �N?)� �b(Xc �N?): (6.40)

Therefore, by applying the two inequalities (6.39) and (6.40) to (6.38) we have

b
b�1X
i=a

(Xi �N?) �
b�1X
i=a

i(Xi �N?) = �
c�1X
i=b

i(Xi �N?)� �c(Xc �N?)

� �b
c�1X
i=b

(Xi �N?)� �b(Xc �N?)

or
b�1X
i=a

(Xi �N?) � �
c�1X
i=b

(Xi �N?)� �(Xc �N?): (6.41)

If we compare this with (6.38), this says the result of removing the step-sizes from the weighted

sum of these particular segments does not result in an increase in the sum and we have

b�1X
i=a

(Xi �N?) +
c�1X
i=b

(Xi �N?) + �(Xc �N?) � 0: (6.42)
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Next, we consider the remaining sample path segments � ! a�1, c! d�1, and d! u�1.

We have

a�1X
i=�

(Xi �N?) + (1� �)(Xc �N?) +
d�1X
i=c+1

(Xi �N?) +
��1X
i=d

(Xi �N?)

� 1

�

a�1X
i=�

i(Xi �N?) + (1� �)
c
�
(Xc �N?)

+
1

�

d�1X
i=c+1

i(Xi �N?) +
1

��1

��1X
i=d

i(Xi �N?)

� � 1

�

��1X
i=d

i(Xi �N?) +
1

�

��1X
i=d

i(Xi �N?)

� (
1

�
� 1

�
)q

= (� � �)q:

The last line follows because we are assuming the explicit step size sequence i =
1
i
for i =

1; 2; : : :.

Thus we have shown (6.37) for this particular sample path. Furthermore, it's not diÆcult to

see that more complicated sample paths involving more \loops" can be considered via the same

approach of canceling the upper portions of any loops (de�ned as the segment with Xi > N? at

all points in the segment) with some segment which follows (in time) the upper loop segment.

After all such possible upper and lower loop segments have been canceled in this manner (and

possibly using various linear combination factors, �i 2 (0; 1] in i = 1; 2; : : : to apportion certain

single lower summands among the upper loops as we used in the �rst example), what remains

are segments whose sum with the step sizes removed is bounded by ( 1
�
� 1

�
) times the maximum

distance to Q which is q for this problem.

Additionally, sample paths in C�;� which contact the leftmost projection boundary also

satisfy (6.37). This can be seen by the simple loop-less sample-path of Figure 6.2. Let us

rede�ne the point a as the �rst point in time where a positive projection occurs, i.e. a =

inffn � � : zn > 0g. Also, we rede�ne b = inffn > a : Xn > N?g.
Let us see what happens to the sum

P��1
i=� (Xi �N?). Observe that the projection terms zi

must be non-negative for all sample paths in C�;�. Then, the segments � ! a and b ! � � 1

are compared in nearly the same manner as the previous example so that

a�1X
i=�

(Xi �N?) +
��1X
i=b

(Xi �N?) �
 
1

�
� 1

�

!
��1X
i=b

i(Xi �N?) � (� � �)q

while the segment
Pb�1

i=a(Xi �N?) < 0. Thus,

��1X
i=�

(Xi �N?) � (� � �) q:
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�
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q�arrival

Figure 6.2: A sample path in C�;� with a positive projection term.

6.7.6 Stochastic Comparison Argument

We shall make two stochastic comparisons. First, we consider a generic (and time homo-

geneous) Markov chain ffXi; i = �; : : : ; �g which shares a common probability space with

fXi; i = �; : : : ; �g, which is driven by the same family of one step transition matrices fP�; � 2 �g
but having a �xed � set to the boundary of Q, i.e. � = q, and which is initiated with the same

state as the nominal chain fXi; i = �; : : : ; �g at time � , i.e. fX� = X� . Under this construction,

it's clear that for all y 2 IR,

P

"
1

� � �

��1X
i=�

(Xi �N?) < yjX� = x; �� = �

#

� P

"
1

� � �

��1X
i=�

(fXi �N?) < yjfX� = X� = x

#
:

It is immediate the nominal chains sample path segment fXi; i = �; : : : ; �� 1g has parameters

�i < q for all i = �; : : : ; � � 1.

Next, we employ a second stochastic comparison argument by de�ning a third Markov chain

fffX i; i = �; : : : ; �g which also shares a common probability space with fXi; i = �; : : : ; �g and

ffXi; i = �; : : : ; �g. This third Markov chain fffXi; i = �; : : : ; �g is simply a version of ffXi; i =

�; : : : ; �g with �xed parameter � = q which evolves on a bounded state space f0; 1; 2; : : : ; Bg.
The transition probabilities are that of ffXi; i = �; : : : ; �g except we have inserted a reection

at the boundary B, i.e. the nonzero transition probabilities from state B are changed to:

P[
ffXi+1 = BjffXi = B] =

�arrival
�arrival + q
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P[
ffXi+1 = B � 1jffXi = B] =

q

�arrival + q
:

Next we observe that for any sample path inCn
�;� we must necessarily haveX� 2 f0; 1; : : : ; bN?cg

so if B is chosen to satisfy B > bN?c, we can make comparisons of these three chains given

that they have the same starting value, i.e
ffX� = fX� = X� . With this construction, it's clear

we have for all y 2 IR

P

"
1

� � �

��1X
i=�

(Xi �N?) < yjX� = x; �� = �

#

� P

"
1

� � �

��1X
i=�

(fXi �N?) < yjfX� = x

#

� P

"
1

� � �

��1X
i=�

(
ffX i �N?) < yjffX� = x

#
;

for all x 2 f0; 1; : : : ; bN?cg.
To see where we are going with this, we remark that the sample mean of fffX i; i = �; : : : ; �g is
readily known to possess a large deviations upper bound.

6.7.7 Large Deviations Bound

By the mean ergodic theorem for Markov chains, there exists some real F = F (q; B) such that

lim
�!1

1

� � �

��1X
I=�

ffX i = F (q; B) P� a:s: (6.43)

The function F (q; B) has known properties, i.e. for all �xed q 2 (�arrival;M ], F (q; B) is an

increasing function of B; while for all �xed 1 � B < 1, F (q; B) is monotone decreasing in q.

Furthermore, limB!1 limq&�arrival F (q; B) = 1. We are free to choose a large B < 1 and a

small q > �arrival arbitrarily close to �arrival. Thus, for any given � > 0, we are able to choose

q, and B such that

F (q; B)�N? > q + �:

Therefore, the set(
1

� � �

��1X
i=�

(
ffX i �N?) < q

)
�
(

1

� � �

��1X
i=�

(
ffX i � F (q; B)) < ��

)
; (6.44)

the latter being a standard form for large deviations bounds on the sample mean of a �nite state

Markov chain. Speci�cally, this Markov chain fffX i; i = �; : : : ; � � 1g is irreducible, aperiodic,

positive recurrent and from the results of Theorem 7.10 in the next chapter there exists a

K(�) <1 and a c(�) > 0 such that

P

"
1

� � �

��1X
i=�

(
ffXi � F (q; B)) < �� j ffX� = X� = x

#
� K(�)e�c(�)(���);

for all � > � and x 2 f0; 1; : : : ; Bg.
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6.7.8 Bringing It All Together

For t > 0,

P [V (X�) � t; C�;�jX0 = x; �0] = P
�
X� � 1

Æ
ln t; C�;�jX0 = x; �0

�
� P [C�;�jX0 = x; �0] 1f�+d 1

Æ
ln te�bN?c��g

(6.45)

since X� necessarily must satisfy X� � bN?c and the fact that the value of the Markov chain

sample path fXi; i = �; : : : ; �g can only increase by � � � customers in � � � steps. Thus,

X� � bN?c + � � � and if d1
Æ
ln te > bN?c + � � � , the event fX� � d1

Æ
ln teg necessarily must

have probability zero. Now applying (6.44) to (6.45) followed by the large deviations bound,

we have

P [V (X�) � t; C�;�jX0 = x; �0]

� P

"
1

� � �

��1X
i=�

(Xi �N?) < qjX0 = x; �0

#
1f�+d 1

Æ
ln te�bN?c��g

� P

"
1

� � �

��1X
i=�

(
ffX i � F (q; B)) < ��jX0 = x; �0

#
1ft�eÆ(���+bN?c)g

� K(�)e�c(�)(���)1ft�eÆ(���+bN?c)g

Finally, using this last expression we can bound the �nal term of (6.36),

X
1��<��n

�n��
Z 1

0
P [V (X�) � t; C�;�jX0; �0] dt

� K(�)
X

1��<��n

�n��
Z 1

0
e�c(�)(���)1ft�eÆ(���+bN?c)gdt

� K(�)
X

1��<��n

�n��e�c(�)(���)eÆ(���+bN
?c)

� K(�)eÆbN
?c

nX
�=2

�n��
��1X
�=1

e(Æ�c(�))(���):

We immediately see that for this expression to be bounded for large n, we require Æ to be

such that 0 < Æ < c(�). Although, the value of c(�) is not known, we are able to select the

parameter Æ in our test function V (x) = eÆx to be an arbitrarily small value such that Æ > 0.

Hence, we have the situation that such a Æ exists but without speci�c knowledge of c(�), V

must be assumed to have an arbitrarily small parameter Æ. This will clearly have e�ects on

the remaining conditions in our framework. Nevertheless, we will �nd when we seek to verify

condition (H2') that this does not pose any problem whatsoever for our chosen driving function

H(x; �) = x � N? since for each Æ > 0 there always exists some constant CH < 1 such that

sup�2Q jH(x; �)j � CHe
rÆx for all x 2 X and some 0 < r � 1=4.
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So with an arbitrarily small Æ such that 0 < Æ < c(�), we have

X
1��<���

�n��
Z 1

0
P�0;x [V (X�) � t; C�;�] dt � K(�)eÆbN

?c
nX

�=2

�n��
��1X
�=2

e(Æ�c(�))(���)

� K(�)eÆbN
?c

nX
�=1

�n��
e(Æ�c(�))

1� e(Æ�c(�))

� K(�)eÆbN
?c
�

1

1� �

� 
e(Æ�c(�))

1� e(Æ�c(�))

!
:
= CB <1

We conclude that the common bound in (6.36) is �nite and

V (x) +
2L

1� �
+

X
1��<��n

�n��
Z 1

0
P�0;x[V (X�) � t; C�;�]dt

�
�
1 +

2L

1� �
+ CB

�
V (x)

:
= CDV (x); n = 1; 2; : : : ; �0 2 Q;

where CD <1.

6.8 Asymptotic Analysis of an SA Applied to the M/M/1 with Un-

known Arrival Rate

Here, we complete the convergence analysis for the SA algorithm applied to the simple Birth-

Death chain which models the M/M/1 with unknown arrival rate �arrival (see Section 6.6 for

details).

Recall, we have assumed that �? << M . Also, for the unknown �arrival > 0, there exist two

positive constants q1; q2 such that 0 < �arrival < q2 < q1 < �? which we use to de�ne two nested

compact sets Q1 = [q1;M ] and Q2 = [q2;M ]. While h in (6.25) is only de�ned on (�arrival;1),

the SA algorithm uses a projection set � = [0;M ]. It's clear that Q2 is a compact subset of the

domain of attraction DA(�?) = (�arrival;1) of the ODE and that �? 2 �o, the interior of �.

Since the regression function h(�) is only de�ned on the interval (�arrival;1), it's clear the

continuity condition of the Kushner-Clark Lemma is not satis�ed for this problem in the region

[0; �arrival]. Despite this diÆculty, below we demonstrate a technique leading to almost sure

convergence of the iterates to �? which among other things, depends on showing that if �n
ever leaves Q2 it almost surely returns to the smaller set Q1 in �nite time. While this return

property appears to be the key condition, we complete the convergence analysis by adapting

several arguments from [6] to this problem and applying the Kushner-Clark Lemma upon return

to Q1. The conclusion is an almost sure convergence under completely veri�able conditions.

The entire development below is carried out under the speci�c circumstances of this partic-

ular M/M/1 SA problem, therefore all assumptions of this problem are assumed for all results

of this section and not explicitly stated in each result.
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6.8.1 Parametric Recurrence

We make the convention that �0(�) = 0 and we denote the ith return time to Q1 as

�i(Q1)
:
= inffn � �i(Q2) : �n 2 Q1g; i = 0; 1; 2; : : :. (6.46)

Next, de�ne the ith exit time from Q2

�i(Q2)
:
= inffn � �i�1(Q1) : �n 62 Q2g; i = 1; 2; : : : (6.47)

If the algorithm is initialized so �0 = � 2 Q1, then �0(Q1) = 0.

Lemma 6.9 For any i = 1; 2; : : :, on the set f! : �i(Q2) <1g, we have �i(Q1) <1 P�;x-a.s.

Proof:

Let � = �i(Q2) and � = �i(Q1) for any i = 1; 2; : : :. Assume that f� <1g\f� =1g and we
now show a contradiction. The condition � <1 implies that on this set �� 2 Qc

2 \� = [0; q2).

The process f(Xn; �n); n = 0; 1; : : :g is a (non-homogeneous) Markov chain as de�ned in

Section 2.2. We will make a comparison of f(Xn; �n); n = 0; 1; : : :g to a second birth-death

Markov chain f( �Xn; �n); n = 1; 2; : : :g which is de�ned on a common probability space (
;F ;P).
The process f �Xn; n = 1; 2; : : :g has

�Xn = Xn; n = 0; 1; : : : ; �:

The chain f �Xn : n = � +1; � +2 : : :g has the �-parameter of the one step transition probability

P�;x held �xed at � = q1.

Since �k 2 [0; q1) for � � k < � = 1, we have the following strong stochastic ordering

property which is not hard to show [71] by induction via Lindley's recursion: For each k =

�; � + 1; : : :,

P

"
kX

`=�

`+1X`+1 � y

����� �0 = �;X0 = x; � <1; � =1
#

(6.48)

� P

"
kX

`=�

`+1 �X`+1 � y

����� �0 = �;X0 = x; � <1; � =1
#
;

� 2 Q2; x 2 X; y 2 IR

Recall we have de�ned the following points along the regression function h : (�arrival;M ]!
IR

h(�?)
:
= E��? [X]�N? = 0

h(q1)
:
= E�q1

[X]�N? = N(q1)�N? > 0:

The above inequality follows from the fact that d
d�
h(�) < 0 for all � 2 (�arrival;1). By adding

a constant to both sides of (6.48) and setting y = 0, we also have the following property: For
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each k = �; � + 1; : : :,

P

"
kX

`=�

`+1

 
X`+1 � N(q1) +N?

2

!
� 0

����� �0 = �;X0 = x; � <1; � =1
#

� P

"
kX

`=�

`+1

 
�X`+1 � N(q1) +N?

2

!
� 0

����� �0 = �;X0 = x; � <1; � =1
#
;

for all � 2 Q2 and x 2 X.

Now consider the trivial SA algorithm de�ned by setting �fixed = fq1g, a single point, and

�n+1 = ��fixed

n
�n + n( �Xn �N(q1))

o
; n = �; � + 1; : : :

�� = q1
�X� = X�

X0 = x:

Let us also consider the (� -delayed) step-size weighted sum of the noise process for this trivial

algorithm:

S�;k
:
=

kX
`=�

`+1"`+1 =
kX

`=�

`+1( �X` �N(q1)); k � �

From Proposition 6.7, we have S�;k converges almost surely to a �nite rv, hence

lim
k!1

jS�;kj <1; P�0;x � a:s:

and since the series
P1

`=� `+1 =1, we have

lim
k!1

S�;kPk
`=� `+1

= 0; almost surely under P�0;x. (6.49)

Hence for this �xed-� Markov chain, there exists a null set N � 
 such that for all ! 2 
 nN ,

and for all � > 0 there exists an k0(!; �) <1 such that����� S�;kPk
`=� `+1

����� < � for all k � k0(!; �).

In particular, this almost sure convergence holds for the case � = N(q1)�N?

2
> 0 and since we are

only interested in the lower bound, for all ! 2 
 nN there exists an k0(!) such that

�N(q1)�N?

2
<

S�;kPk
`=� `+1

for all k � k0(!): (6.50)

Rearranging (6.50),

kX
`=�

`+1
N? �N(q1)

2
�

kX
`=�

`+1( �X`+1 �N(q1)); for all k � k0(!)
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or equivalently we have

kX
`=�

`+1

 
�X`+1 � N(q1) +N?

2

!
� 0; for all k � k0(!):

Now let

Ak
:
=

(
! :

kX
`=�

`+1

 
X`+1 � N(q1) +N?

2

!
� 0

)
; k = �; � + 1; : : : :

�Ak
:
=

(
! :

kX
`=�

`+1

 
�X`+1 � N(q1) +N?

2

!
� 0

)
; k = �; � + 1; : : : :

De�ne Bn
:
=
T
k�nAk for n � � , with the convention that Bn = ; if n < � . Similarly, de�ne

�Bn
:
=
T
k�n

�Ak for n � � and �Bn = ; if n < � . We have Bn % B =
S1
n=�

T
k�nAk and a similar

expression involving �Bn.

Thus, for the trivial algorithm,

P
h
�Bn

��� �0; X0 = x; � <1; � =1
i
% P

h
�B
��� �0; X0 = x; � <1; � =1

i
= 1: (6.51)

But the strong stochastic ordering property (6.48) yields for each n = 1; 2; : : : ;

P [Bnj �0; X0 = x; � <1; � =1] � P
h
�Bn

��� �0; X0 = x; � <1; � =1
i
;

and with (6.51), this implies

P [Bnj �0; X0 = x; � =1; � <1]% P [Bj �� ; X� = x; � =1; � <1] = 1

Thus for the original algorithm projected on �

P [Ak a:a:j �0; X0 = x; � =1; � <1] = P�0;x [Ak a:a:j � =1; � <1] = 1;

which implies there exist a null set N � f� = 1g \ f� < 1g such that for all ! 2 f� =

1g \ f� <1g nN there exists a K(!) <1 such that

kX
`=�

`+1

 
X`+1 � N(q1) +N?

2

!
� 0; for all k � K(!).

Now for all ! 2 f� =1g\f� <1gnN , the original SA algorithm projected on � = [0;M ]

can be written

�k+1 = �� +
kX

`=�

`+1(X`+1 �N? + z`+1); k � �

= �� +
kX

`=�

`+1

 
X`+1 � N(q1) +N?

2

!
(6.52)

+
kX

`=�

`+1

 
N(q1) +N?

2
�N?

!
(6.53)

+
kX

`=�

`+1z
�
`+11f�`+X`+1�N?>Mg (6.54)

+
kX

`=�

`+1z
+
`+11f�`+X`+1�N?<0g; k � � (6.55)
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Clearly, each summand of the term (6.55) is positive, and above we have shown that except

for a null set on f� = 1g \ f� < 1g there exists a K(!) < 1 such that the sum in (6.52)

is positive for all k � K(w). Hence, on f� = 1g \ f� < 1g and for all k � K(!), we have

P�0;x-almost surely that

�k+1 � �� +
kX

`=�

`+1

 
N(q1) +N?

2
�N?

!
(6.56)

+
kX

`=�

`+1z
�
`+11f�`+X`+1�N?>Mg (6.57)

The term (6.57) is zero unless of course the algorithm, before the projection operation, would

attempt to place the next iterate at a point greater than M . In such a case, we �nd that the

projection operator would then return the next iterate to the nearest point M so that � <1;

leading to a contradiction (with � =1) for this case.

On the other hand, in the case that such a projection does not occur, then the term (6.57)

is zero and as k !1,
kX

`=�

`+1

 
N(q1) +N?

2
�N?

!
%1;

and this increasing and unbounded lower bound (6.56) forces the iterate sequence to eventually

return to Q1 = [q1;M ], hence � <1 again leads to a contradiction.

Thus we see P�;x[lim supnf�n 2 Q2g] = 1 since we have shown the iterate almost surely

returns to Q1 � Q2 if it leaves Q2.

We now carry out a second lemma which complements Lemma 6.9 and is a slight variation

of BMP's Lemma 12 in [6, p. 235].

Lemma 6.10 (Adaptation of BMP Lemma 12) On f�(Q2) =1g,

�(Q1) <1 P�;x � a:s:; for all � 2 Q2, all x 2 X.

Proof: Let us de�ne � : �! IR

�(�) =

(
(�? � �)3 + 1 � 2 [0; �?]

1 � 2 [�?;M ]

Let us assume f�(Q1) = �(Q2) =1g which implies that �k remains in the interval [q2; q1).

Thus, no projection operation can occur and

�(�m(n;T ))� �(�n) =
m(n;T )�1X

k=n

k+1
d�

d�
(�k)h(�k) +

m(n;T )�1X
k=n

k+1"k+1(�)

Also for � 2 [q2; q1), there exists an � > 0 such that d�
d�
(�)h(�) < �� < 0 and

�
m(n;T )�1X

k=n

k+1
d�

d�
(�k)h(�k) � �

m(n;T )�1X
k=n

k+1 � �(T � 1):
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Furthermore, there exists a � > 0 such that

�(�m(n;T ))� �(�n) � �
n
(�? � q2)

3 � (�? � q1)
3
o
> � > 0:

Thus,
m(n;T )�1X

k=n

k+1"k+1(�) � �(T � 1)� � � 1

with the second inequality holding for suÆciently large T and this contradicts item 3b) in

Proposition 6.7.

Thus we see that if �0 2 Q2 nQ1 then it follows that �1(Q1) <1 P�;x � a:s:

Proposition 6.11 (Adaptation of BMP Prop. 10) There exists a constant

B <1 such that for all � 2 Q1 and x 2 X

P�;x[�1(Q2) <1] � BV (x)
1X
k=0

1+
b̀1

k+1

Proof: Consider the function � : IR ! [1;1) de�ned in Lemma 6.10. For all n = 0; 1; : : : we

have

�(�n+1)� �(�n) = n+1"n+1(�) + n+1
d�

d�
(�n) fh(�n) + zn+1g

Thus on f�(Q2) <1g we have

�(��(Q2)) = �(�0) +
�(Q2)�1X
k=0

k+1
d�

d�
(�k)h(�k)

+
�(Q2)�1X
k=0

k+1
d�

d�
(�k)zk+1 +

�(Q2)�1X
k=0

k+1"k+1(�)

A few observations: First, if �0 = � 2 Q1, then �(��(Q2))� �(�0) � �(q2) � �(q1). Second,

if k < �(Q2), we have
d�
d�
(�k)h(�k) � 0. Third, the (nearest point) projection term zk+1 can be

nonzero only if �k+1 equals 0 orM . Furthermore, zk+1 can be positive only if �k+1 = 0 and thus

on k + 1 < �(Q2), we have zk+1 � 0. Thus,

(�(q2)� �(q1))1f�(Q2)<1g � 1f�(Q2)<1g

������
�(Q2)�1X
k=0

k+1"k+1(�)

������
� sup

n
1fn��(Q2)g

�����
n�1X
k=0

k+1"k+1(�)

����� :
Squaring both sides, rearranging, and taking expectation we �nd

P�;x(�(Q2) <1) �
E�;x

�
supn 1fn��(Q2)g

���Pn�1
k=0 k+1"k+1(�)

���2�
f�(q2)� �(q1)g2

� BV (x)
1X
k=0

1+
b̀1

k+1 ;

where the second inequality follows from Proposition 6.7 with some B <1.
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6.8.2 Localization and Convergence

Before proving convergence, we prove some preliminary results used in the main convergence

theorem.

Proposition 6.12 On f�1(Q2) = 1g, we have �n converges to �?, P�;x � a:s: for all � 2 Q2

and x 2 X.

Proof: This is a simple observation that on f�(Q2) = 1g the original SA algorithm has the

following equality:

�k+1 = ��

n
�k + k+1H(�k; Xk+1) + 2k+1�k+1(�k; Xk+1)

o
; k = 0; 1; : : :

= �Q2

n
�k + k+1H(�k; Xk+1) + 2k+1�k+1(�k; Xk+1)

o
:

The noise condition (KC4) follows from the example of Chapter 3 with only slight modi�cation

to account for the nonlinear transition probability dependence (6.24).

Thus, convergence follows immediately by the Kushner-Clark Lemma since h(�) exists and

is continuous on Q2 while Q2 � DA(�?), �? 2 Qo
2, and �k is obviously bounded due to the

compact projection.

Next, we de�ne two distributions Pn;�;x and �Pn;�;x as in [6, p. 233]. In general, let Pn;�;x

denote the distribution of f(�n+k; Xn+k) ; k = 0; 1; : : :g given Xn = x and �n = � produced by

the algorithm

�k+1 = ��

n
�k + k+1H(�k; Xk+1) + 2k+1�k+1(�k; Xk+1)

o
; k = n; n + 1; : : :

�n = �

Xn = x

Then �Pn;�;x is de�ned as the distribution of f(��n+k; �Xn+k); k = 0; 1; : : :g produced by the same

algorithm with a step-size sequence shifted forward by n, i.e.

��k+1 = ��

n
��k + n+k+1H(��k; �Xk+1) + 2n+k+1�k+1(

��k; �Xk+1)
o
; k = 0; 1; : : :

��0 = �

�X0 = x

It's clear that Pn;�;x is equivalent to �Pn;�;x.

For convenience, we follow the notation of [6] and de�ne a more compact way of expressing

almost sure convergence. For any � > 0 we denote the event

f�k ! �?g :
=

[
m�n

1\
k=m

fk�k � �?k � �g:

Theorem 6.13 (Adaptation of BMP Thm. 13) For all � 2 Q1 and x 2 X

Pn;�;x [f�k ! �?g] � 1�BV (x)
1X
k=n

1+
b̀1

k+1 ; n = 0; 1; : : : :
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Proof: By conditioning we have

Pn;�;x [f�k ! �?g] = Pn;�;x [f�k ! �?gj�(Q2) <1]Pn;�;x [�(Q2) <1]

+ Pn;�;x [f�k ! �?gj�(Q2) =1]Pn;�;x [�(Q2) =1]

Then by Proposition 6.12, we have

Pn;�;x [f�k ! �?gj�(Q2) =1g] = 1;

hence

Pn;�;x [f�k ! �?g] � Pn;�;x[�(Q2) =1]

= 1�Pn;�;x[�(Q2) <1]

= 1� BV (x)
1X
k=n

1+
b̀1

k+1 :

The following is an application of an argument in BMP's Theorem 15 applied to our problem.

Lemma 6.14 On the event lim supnf�n 2 Q1g, we have

lim inf
n

f�n 2 Q2g; P�;x � a:s:

Proof: Let us assume that f�n 2 Q1 i:o:g and f�n 2 Qc
2 i:o:g and we will show a contradiction.

Under these assumptions �n successively visits Q1 and Q
c
2 so let us de�ne as in (6.46)-(6.47) for

each n = 0; 1; : : ::

�n = �n(Q2)

�n = �n(Q1)

Clearly, we have

�(��n+1)� �(��n) � (�? � q2)
3 � (�? � q1)

3 > 0 for all n = 0; 1; : : :. (6.58)

Then, by the same argument from the proof of Proposition 6.11 we have

�(��n+1)� �(��n) �
�n+1�1X
k=�n

k+1"k+1(�); n = 0; 1; 2; : : :

Observe from (6.16) that

�n+1�1X
k=�n

k+1"k+1(�) = E�n+1 � E�n + e��n;�n+1 ; n = 1; 2; : : : ;
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so that

0 <
���(�? � q2)

3 � (�? � q1)
3
��� �

������
�n+1�1X
k=�n

k+1"k+1(�)

������
�

���E�n+1 � E�n

���+ ���e��n;�n+1 ��� ; n = 1; 2; : : : (6.59)

In Proposition 6.7 we showed that En converges P-a.s. to a �nite rv. Hence, by Cauchy's

criterion, with the exception of a null subset of 
, for each �1 > 0, there exists a N1 =

N1(�1; !) <1 such that

jEn � Emj < �1; for all m � N1 and all n > m. (6.60)

This certainly implies that ���E�m+1 � E�m

��� < �1for all m � N1. (6.61)

Also, from Proposition 6.7, we have �m;n1f�m2Q2g1f�n�12Q2g converges to 0 almost surely

under P�;x as m;n ! 1. Thus, except on another null set, for each �2 > 0 there exists an

N2 = N2(�2; !) <1 such that����m;n 1f�m2Q2g1f�n2Q2g

��� < �2; for all m;n � N2. (6.62)

And this implies�����m;�m+1

��� = �����m;�m+1�1 1f��m2Q2g1f��m+1�12Q2g

��� < �2; for all m � N2. (6.63)

Therefore, we �nd that except on the union of the two null sets that (6.61) and (6.63) contradicts

(6.59) if �1 and �2 are chosen small enough.

Theorem 6.15 (Adaptation of BMP Thm. 15)

P�;x [f�k ! �?g] = 1:

Proof: Together, Lemma's 6.9 and 6.10 imply that P�;x [lim supnf�n 2 Q1g] = 1.

Thus,

P�;x [f�k ! �?gc] = P�;x

�
flim sup

n
f�n 2 Q1gg

\f�k ! �?gc
�

� P�;x

�
flim inf

n
f�n 2 Q2gg

\f�k ! �?gc
�

where the last inequality follows from Lemma 6.14. Continuing, we apply [8, Thm. 4.1]

P�;x [f�k ! �?gc] � P�;x

h
flim inff�n 2 Q2gg

\f�k ! �?gc
i

� lim inf
n

P�;x

h
f�n 2 Q2g

\f�k ! �?gc
i

� lim inf
n

E�;x

h
1f�n2Q2gPn;�n;Xn [f�k ! �?gc]

i
� lim inf

n
E�;x

24B1f�n2Q2gV (Xn)
X
k�n

1+
b̀1

k+1

35
� BCDV (x) lim inf

n

X
k�n

1+
b̀1

k+1

= 0;
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where we have applied Theorem 6.13 and (D0') in the last lines.

6.9 Concluding Remarks

This chapter demonstrates an approach to showing convergence described in [64] of combining

a local Kushner-Clark ODE method with a parametric recurrence argument established to

the speci�c problem. The method of proving recurrence combines a strong stochastic ordering

property with some adapted versions of arguments in BMP. These new versions of BMP's results

serve to demonstrate a possible approach in showing the parameter returns almost surely to a

compact set. Although it is likely that this approach can be generalized to a certain extent, it is

also clear that an important element of this stability argument depends on the strong stochastic

ordering property which is speci�cally tailored to the problem at hand. This chapter outlines

an approach which may prove useful in applying SA to other problems which may contain a

region of instability or transience.
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Chapter 7

Stochastic Approximations Driven by Sample Averages

7.1 Introduction

In this chapter, we study the convergence properties of an entirely di�erent class of projected

stochastic approximations which arise naturally in problems of on-line parametric optimiza-

tion of discrete event dynamical systems, e.g., queueing systems and Petri net models [16, 2].

These algorithms are driven by sample averages de�ned on a well-structured state processes and

operate at two di�erent time scales, with state transitions occurring more frequently than pa-

rameter updates. For non-random integers f`n+1; n = 0; 1; : : :g, the stochastic approximations

of interest are of the form

�0 2 �; �n+1 = �� f�n + n+1g(�n; Yn+1)g ; n = 0; 1; : : : (7.1)

with

Yn+1 =
1

`n+1

`n+1X
`=1

f(�n; Xn+1;`) n = 0; 1; : : : (7.2)

for a state process fXn+1;`; ` = 1; : : :g taking values in some state space X, and Borel mappings

f : ��X! IRd and g : ��IRd ! IRp. In words, with iterate �n just returned by the algorithm,

we observe or simulate the (n+1)rst state process for `n+1 units of time with the understanding

that the probability of the sequence fXn+1;`; ` = 1; : : :g are fully determined by the parameter

value �n and the �nal state reached in the previous evaluation interval, i.e., Xn;`n. At the end

of the (n+1)rst evaluation interval, the sample average (7.2) is computed, and the algorithmic

step is then completed by returning iterate �n+1 according to (7.1).

Whenever such algorithms arise, we can invariably write h(�) = g(�; F (�)) for some known

mapping g and some quantity F (�) with is obtainable only through observation or simulation

the state process at operating point �. Fortunately, it is often the case that

F (�) = lim
L"1

1

L

LX
`=1

f(�; �`) P�;xa:s: (7.3)

where f�`; ` = 0; 1; : : :g is a generic X-valued random sequence modeling the time evolution of the

system, and P�;x denotes the probability measure on the set of system trajectories when starting
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in state x under parameter �. This suggest that for `n+1 large, under appropriate conditions on

g, the rvs Yn+1 given by (7.2) and g(�n; Yn+1) can be viewed as good approximations to F (�n)

and h(�n), respectively. Therefore, if the deterministic algorithm

�0 2 �; �n+1 = �� f�n + n+1h(�n)g ; n = 0; 1; : : :

converges to some �?, then we should expect the stochastic version (7.1){(7.2) to also converge,

say almost surely, to the same point as the size of the sampling window grows unbounded.

Speci�cally, we develop a framework for investigating the a.s. convergence of the iterate

sequence f�n; n = 0; 1; : : :g generated by (7.1){(7.2). We start essentially with no structural

assumptions on the probability measures fP�;x; � 2 �; x 2 Xg governing the statistical behavior
of the state process; it is only assumed that the law of large numbers such as (7.3) is in e�ect.

Our focus is on charting a sequence of basic steps to help establish a.s. convergence; these steps

point to a set of technical conditions that need to be veri�ed for each speci�c application.

Our framework for this alternative algorithm also relies on the ODE method [61] which

generally proceeds in two separate steps. The �rst step relies on the Kushner{Clark Lemma

to identify a deterministic ODE, the stability properties of which determine the limit points

of f�n; n = 0; 1; : : :g. The second step, which is probabilistic in nature and depends on the

algorithm, involves showing that asymptotically (in the mode of convergence of interest) the

output sequence of the original algorithm behaves like the solution to the ODE. Although

general conditions are given in [61] for successfully completing this last step, these conditions

are not usually checkable in terms of the model data. Nevertheless, in this chapter we show that

this second step is determined by the exponential convergence of the rvs fg(�n; Yn+1)�h(�n); n =

0; 1; : : :g, i.e., for every � > 0, the convergence

lim
n!1

P [kg(�n; Yn+1)� h(�n)k � �] = 0

takes place exponentially fast (with respect to the sequence of sample durations f`n+1; n =

0; 1; : : :g) This exponential convergence viewpoint was already implicit in the work of Dupuis

and Simha [29] who consider schemes such as (7.1){(7.2) but with constant step-sizes, i.e.,

n+1
:
= , n = 0; 1; : : :, and under the assumption that the rvs fXn+1;`; ` = 1; : : :g are i.i.d. On

the other hand, the work of Dupuis and Simha [29] does not make use of the ODE method but

instead relies on the convergence properties of a deterministic discrete time algorithm associated

with the original stochastic algorithm.

Going one step further, we give explicit conditions which ensure this exponential conver-

gence. As in [29], we do so by invoking a uniform Large Deviations upper bound for the

collection of probability measures fP�;x; � 2 �; x 2 Xg. Here, this upper bound is uniform

in both the parameter � and the initial condition x and with some functional I : IRd ! [0;1],

and takes the form

lim sup
L!1

1

L
log sup

�2�; x2X
P�;x

"
1

L

LX
`=1

f(�; �`)� F (�) 2 C
#
� �I(C) (7.4)
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for every closed subset C of IRd. We are able to �nd checkable conditions to ensure that (7.4)

holds. The approach for doing this is in the spirit of the Ellis{Gartner Theorem [30, Thm. II.2.

p.3]; in fact, we broaden the applicability of the ideas of Dupuis and Simha to more general

classes of state processes.

To demonstrate the applicability of the results obtained herein, we specialize them to two

speci�c classes of state processes. For the �rst class, the successive states form a sequence of

i.i.d. rvs as in [29] so the results are only briey outlined. In the second class, the state sequence

is a �nite state time{homogeneous Markov chain; an important class of processes often used in

applications. In both cases we identify simple and checkable conditions that ensure the validity

of a uniform Large Deviations upper bound.

The chapter is organized as follows: In Section 2 we introduce the basic building blocks

that we use in Section 3 to formally de�ne the class of stochastic approximations investigated

here. The basic convergence result is stated as Theorem 1 in Section 4. Next, exponential

convergence is shown in Section 5 to be the key condition for establishing a.s. convergence via

the ODE method. In turn, this condition of exponential convergence is related in Section 6 to

the existence of a uniform large deviations upper bounds. Conditions to ensure such uniform

large deviations upper bounds are derived in Section 7. Several speci�c situations are treated

in Sections 8 and 9, namely, the cases where the process driving the sample averages is i.i.d.

and �nite{state Markov; in all cases, we give concrete conditions for uniform large deviations

upper bounds to exist.

7.2 The Basic Ingredients

Before de�ning the stochastic approximation procedures considered here, we devote this section

to introducing the basic building blocks used in the formal de�nitions of Section 7.3. Through-

out the discussion, p, s and d are �xed positive integers. We assume given a closed convex subset

� of IRp, and a Borel subset X of IRs. Furthermore, let f : �� X! IRd and g : �� IRd ! IRp

denote �xed Borel mappings. Additional assumptions will imposed in due time.

We consider two sequences fn+1; n = 0; 1; : : :g and f`n+1; n = 0; 1; : : :g which take values

in IR+ and IN, respectively. The following assumptions are enforced:

(S') The IR+{valued sequence fn+1; n = 0; 1; : : :g is monotone decreasing with n # 0 (n " 1),

under the usual divergence condition
P1

n=0 n+1 =1:

(L) The IN{valued sequence f`n+1; n = 0; 1; : : :g is monotone increasing and for all � > 0

satis�es the condition
1X
n=0

exp(��`n+1) <1: (7.5)

Condition (L) implies that `n " 1 as n ! 1 but the reverse implication is not always true.

Indeed, in the case `n = dlogne for all n = 1; 2; : : : we see that (7.5) fails for 0 < � � 1 since

then
P
n�� =1.
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Let X1 be the in�nite Cartesian product of X with itself, and denote by B(X1) the standard
�{�eld on X

1. We write a generic element � of X1 as � = (x; x1; : : :) where x; x1; : : : are all

elements of X. The coordinate process f�`; ` = 0; 1; : : :g is then simply de�ned by

�0(�)
:
= x; �`(�)

:
= x`; � 2 X

1; ` = 1; : : :

We postulate the existence of a family fP�;x; � 2 �; x 2 Xg of probability measures on B(X1)
such that

P�;x[�0 = x] = 1; � 2 �; x 2 X:

For technical reasons, we again assume a measurable functional dependence in � and x:

(P0) For every L = 1; 2; : : :, the mapping �� X! IR : (�; x) ! P�;x[�` 2 B`; ` = 1; : : : ; L] is

Borel measurable for all possible choices of Borel subsets B1; : : : ; BL in B(X).
We also assume that a strong law of large numbers is in e�ect:

(P5) There exists a Borel mapping F : �! IRd such that for all � in � and x in X, we have

lim
L"1

1

L

LX
`=1

f(�; �`) = F (�) P�;x � a:s:

7.3 Model and Assumptions

In order to de�ne the stochastic approximation procedures, we start with a sample space 


equipped with a �{�eld of events F . The measurable space (
;F) is assumed large enough

to carry a double array of X{valued rvs fXn;`; ` = 1; : : : ; `n; n = 0; 1; : : :g where we use the

convention `0 = 1. We de�ne the �{valued rvs f�n; n = 0; 1; : : :g through the recursion

�0 2 �; �n+1 = �� f�n + n+1g(�n; Yn+1)g n = 0; 1; : : : (7.6)

where we use the notation

Yn+1
:
=

1

ln+1

`n+1X
`=1

f(�n; Xn+1;`): n = 0; 1; : : :

In (7.6), �� denotes the nearest-point projection operator on the set �; it is well de�ned since

� is assumed closed and convex.

Next, we introduce the �ltration fFn; n = 0; 1; : : :g on (
;F) by setting

Fn
:
= �f�m; Xm;`; ` = 1; : : : ; `m; m = 0; 1; : : : ; ng
= �f�0;Xm;`; ` = 1; : : : ; `m; m = 0; 1; : : : ; ng n = 0; 1; : : :

where the equality follows since the rvs �m, m = 1; 2; : : : ; n, are fully determined by the rvs �0,

X0;1, and Xm+1;`; ` = 0; 1; : : : ; `m+1; m = 1; : : : ; n� 1.
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Finally, given a probability measure � on B(�� X), we postulate the existence of a proba-

bility measure P on (
;F) satisfying

P[� 2 B;X0;1 2 B1] = �(B � B1); B 2 B(�); B1 2 B(X)

and

P[Xn+1;` 2 B`; ` = 1; : : : ; `n+1jFn]

= P�n;Xn;`n
[�` 2 B`; ` = 1; : : : ; `n+1] n = 1; : : :

for Borel subsets B1; : : : ; B`n+1 in B(X). The existence of such a set-up is readily justi�ed by

the Daniell{Kolmogorov consistency theorem [69, p. 94] on �� X� X
1 in the usual manner.

7.4 The Convergence Results

The presentation of the main convergence results is simpli�ed by the following notation: Setting

h(�)
:
= g(�; F (�)); � 2 �

we de�ne the IRp{valued rvs f"n+1; n = 0; 1; : : :g by

"n+1
:
= g(�n; Yn+1)� h(�n) n = 0; 1; : : : (7.7)

so that the recursion (7.6) now becomes

�0 2 �; �n+1 = �� f�n + n+1h(�n) + n+1"n+1g : n = 0; 1; : : : (7.8)

The relevant assumptions concerning these quantities are the following:

(H3) The mapping h : �! IRp is continuous.

(E2) The IRp{valued rvs fn+1; n = 0; 1; : : :g converge exponentially to the zero vector, in the

sense that for every � > 0, there exist a �nite integer n(�) and a positive constant K(�)

such that

P[k"n+1k � �] � exp (�`n+1K(�)) ; n � n(�):

SuÆcient conditions for (E2) are provided in Section 6 and follow from the availability of

uniform large deviations upper bounds.

With the projection operator ��, we associate the transformation ��� : �� IRp ! IRp given

by

���(�; v)
:
= lim

�#0

��f� +�vg � �

�
; � 2 �; v 2 IRp:

The limiting ODE corresponding to (7.8) is

�(0) 2 �;
d�

dt
(t) = ��� f�(t); h(�(t))g ; t � 0: (7.9)
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The unconstrained case corresponds to �
:
= IRp, in which case the recursion (7.6) reduces

to

�0 2 �; �n+1 = �n + n+1h(�n) + n+1"n+1 n = 0; 1; : : : (7.10)

and the limiting ODE corresponding to (7.10) becomes

�(0) 2 IRp;
d�

dt
(t) = h(�(t)); t � 0: (7.11)

The basic convergence result for this algorithm is contained in Theorem 7.1.

Theorem 7.1 Consider the stochastic approximation scheme (7.8) under assumptions (S'),

(L), (P0), (P5), (H3) and (E2). Let �? be a point in the interior �o which is a locally

asymptotically stable solution to (7.9), and let DA(�?) denote its domain of attraction. Assume

the following conditions hold:

(i): The IRp-valued random variables f�n; n = 0; 1; : : :g are bounded with probability one, i.e.

P[sup
n
jj�njj <1] = 1: (7.12)

(ii): There exists a compact set Q � DA(�?), such that

P[�n 2 Q i:o:]: (7.13)

Then limn!1 �n = �? P� a:s:

Theorem 7.1 is a simple consequence of the so{called ODE method as developed by Kushner

and Clark [61] once we observe the following lemma. In some cases, it can be diÆcult to validate

conditions (7.12) and (7.13) in Theorem 7.1. There is, however, one class of situations which

naturally occur in practice where (7.12) is automatically satis�ed, namely when � is a compact

subset of IRp. Furthermore, (7.13) is automatically satis�ed when DA(�?) = �.

Given the gain sequence fn+1; n = 0; 1; : : :g, recall the sequence of times ftn; n = 0; 1; : : :g
de�ned by

t0
:
= 0; tn+1

:
=

nX
i=0

i+1; n = 0; 1; : : :

and set

m(t)
:
= maxfn 2 IN : tn � tg; t � 0:

Lemma 7.2 Assume condition (S'), (L) and (E2) to be enforced. For every T > 0 and � > 0,

we have

lim
n!1

P

24sup
j�n

max
0�t�T


m(jT+t)�1X
i=m(jT )

i+1"i+1

 � �

35 = 0: (7.14)
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Proof: Fix T > 0 and � > 0. We readily observe that

P

24sup
j�n

max
0�t�T


m(jT+t)�1X
i=m(jT )

i+1"i+1

 � �

35
� P

24sup
j�n

max
0�t�T

m(jT+t)�1X
i=m(jT )

i+1jj"i+1jj � �

35
� P

24sup
j�n

m(jT+T )�1X
i=m(jT )

i+1 k"i+1k � �

35
�

1X
j=n

P

24m(jT+T )�1X
i=m(jT )

i+1 k"i+1k � �

35
�

1X
j=n

P

24 max
m(jT )�i<m(jT+T )

k"i+1k �
m(jT+T )�1X
i=m(jT )

i+1 � �

35 : (7.15)

It is plain from (5.1){(5.2) that tm(jT+T ) � jT + T and tm(jT )+1 = tm(jT ) + m(jT )+1 � jT for

all j = 0; 1; : : :. Therefore, we have

m(jT+T )�1X
i=m(jT )

i+1 = tm(jT+T ) � tm(jT )

� (jT + T )� (jT � m(jT )+1);

� T + 1 j = 0; 1; : : : (7.16)

since the gain sequence fn+1; n = 0; 1; : : :g is monotone decreasing. Combining (7.15) and

(7.16), with �0 = �
T+a1

, we get

1X
j=n

P

24 max
m(jT )�i<m(jT+T )

k"i+1k �
m(jT+T )�1X
i=m(jT )

i+1 � �

35
�

1X
j=n

P

"
max

m(jT )�i<m(jT+T )
k"i+1k � �0

#

�
1X
j=n

m(jT+T )�1X
i=m(jT )

P [k"i+1k � �0]

=
1X

i=m(nT )

P [k"i+1k � �0] : (7.17)

Next, upon invoking the exponential convergence condition (E2), we can assert the existence

of a �nite integer n(�0) and of a positive constant K(�0) such that

P[k"i+1k � �0] � exp (�`i+1K(�0)) ; i � n(�0): (7.18)

Finally, we select a �nite integer n? such thatm(n?T ) � n(�0); such a selection is always possible

since limn"1m(nT ) =1 by virtue of (S'). For all n � n?, we easily conclude from (7.17) and
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(7.18) that

P

24sup
j�n

max
0�t�T


m(jT+t)�1X
i=m(jT )

i+1"i+1

 � �

35 � 1X
i=m(nT )

exp (�`i+1K(�0)) (7.19)

and the convergence (7.14) is now an immediate consequence of (7.19) and of the sumability

condition (L) since limn"1m(nT ) =1.

7.4.1 SuÆcient Conditions for (E2)

A suÆcient condition for (E2) can be derived from uniform Large Deviations upper bounds as

we now show. First a few de�nitions: With the coordinate process f�`; ` = 0; 1; : : :g de�ned

on the measurable space (X1;B(X1)), we write

�SL(�)
:
=

1

L

LX
`=1

f(�; �`); � 2 �: L = 1; : : : (7.20)

Since condition (P5) can be rephrased as limL!1
�SL(�) = F (�) P�;x{a.s., the rate of conver-

gence implied by (E2) thus suggests that the law of large numbers associated with the sample

averages (7.20) be complemented by a Large Deviations upper bound. This is essentially the

content of condition (U1):

(U1) The collection of probability measures fP�;x; � 2 �; x 2 Xg satis�es a uniform Large

Deviations upper bound principle with respect to (the sample averages associated with)

f if there exists a closed convex function I : IRd ! [0;1] such that

lim sup
L!1

1

L
log sup

�2�;x2X
P�;x[ �SL(�)� F (�) 2 C] � � inf

z2C
I(z):

for every closed subset C of IRd.

We refer to I as the rate functional associated with this uniform Large Deviations upper bound

principle. By itself condition (U1) is not suÆcient for (E2), so we supplement (U1) by

imposing additional conditions (U2){(U3) on the rate functional I:

(U2) The rate function I in (U1) is level compact, i.e., the set fz 2 IRd : I(z) � rg is compact

for all r � 0; and

(U3) The rate function I in (U1) has the property that I(z) = 0 if and only if z = 0.

In a brief but necessary interlude, we pause to establish the following consequence of (U1){

(U3).
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Lemma 7.3 Assume (U2){(U3) to hold for some closed convex rate function I : IRd !
[0;+1]. Then, for every Æ > 0, we have

K(Æ)
:
= inf

z2CÆ

I(z) > 0: (7.21)

where CÆ
:
= fz 2 IRd : kzk � Æg.

Proof: We need only consider the case 0 � K(Æ) < 1, for otherwise (6.3) trivially holds.

Therefore, there exists an CÆ-valued sequence fzn; n = 1; 2; : : :g such that the values fI(zn); n =

1; 2; : : :g are non{increasing with limn!1 I(zn) = K(Æ). Hence, for every � > 0, there exists a

positive integer n(�) such that

K(Æ) � I(zn) � K(Æ) + �; n � n(Æ): (7.22)

Invoking the level{compactness condition (U2), we conclude from (7.22) that a convergent

CÆ-valued subsequence fznj ; j = 1; 2; : : :g can be extracted from fzn; n � n(Æ)g. If z? denotes
the limit of this convergent subsequence, then z? necessarily belongs to the closed set CÆ so

that z? 6= 0. By the lower semicontinuity of I, we see that

K(Æ) = lim
j"1

I(znj ) � I(z?) > 0 (7.23)

with the strict positivity follows from (U3) since z? 6= 0.

We also need some additional conditions on the mapping g.

(G) The mapping IRd ! IRp : z ! g(�; z + F (�)) is continuous at z = 0 uniformly in �, i.e.,

for every � > 0, there exists Æ(�) > 0 with the property that if kzk < Æ(�), then

sup
�2�

kg(�; z + F (�))� g(�; F (�))k < �: (7.24)

In many situations of interest, the mapping g is independent of � and takes the form

g(�; x) = �(x); � 2 �; x 2 IRd (7.25)

for some Borel mapping � : IRd ! IRp. In such cases, condition (G) is guaranteed by requiring

that � be uniformly continuous on IRd. This latter requirement is satis�ed when � is Lipschitz

continuous, a condition obviously met for the frequent choice �(x)
:
= x.

Theorem 7.4 Assume conditions (U1){(U3) and (G) to hold. Then the rvs

f"n+1; n = 0; 1; : : :g satisfy condition (E2).

Proof: Fix � > 0, and for each L = 1; 2; : : : ; set

GL(�; x)
:
= P�;x

hg(�; �SL(�))� h(�)
 � �

i
; � 2 �; x 2 X:
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From the de�nition (7.7) we readily observe that

P[n+1 62 B�] = E[P[kg(�n; Yn+1)� h(�n)k � �jFn]]

= E[G`n+1(�n; Xn;`n)] n = 0; 1; : : : (7.26)

where in the last equality we have made use of the requirement (7.7) on P.

By virtue of the uniform continuity condition (G), there exists Æ(�) > 0 such that (7.24)

holds whenever kzk < Æ(�). Hence, for each � in �, the eventhg(�; �SL(�))� h(�)
 � �

i
�
h �SL(�)� F (�)

 � Æ(�)
i
:

Therefore, with the notation of Lemma 7.3, we conclude that

GL(�; x) � P�;x[ �SL(�)� F (�) 2 CÆ(�)]; � 2 �; x 2 X L = 1; 2; : : : (7.27)

where CÆ(")
:
= fz 2 IRd : kzk � Æ(�)g.

Next, we pick � in the interval (0; K(Æ(�))) which is non-empty due to Lemma 7.3. Under

condition (U1) if K(Æ(�)) is �nite, then there exists a �nite integer L(�) such that

sup
�2�;x2X

P�;x[ �SL(�)� F (�) 2 CÆ(�)] � e�L(K(Æ(�))��); L � L(�); (7.28)

while if K(Æ(�)) =1, then for every R > 0, there exists a �nite integer L(R) such that

sup
�2�;x2X

P�;x[ �SL(�)� F (�) 2 CÆ(�)] � e�LR; L � L(R): (7.29)

In any event, either from (7.28) or (7.29), we can assert the existence of a �nite integer L? and

of a strictly positive constant K? such that

sup
�2�;x2X

P�;x[ �SL(�)� F (�) 2 CÆ(�)] � e�LK
?

; L � L?: (7.30)

Using this information in (7.27), we readily conclude from (7.26) that (E2) indeed holds.

From the proof of Theorem 7.4 we see that the law of large numbers (P5) automatically

holds under conditions (U1){(U3). This is a simple consequence of the bound (7.30) and of

the Borel{Cantelli Lemma.

7.4.2 SuÆcient Conditions for (U1){(U3)

In this section, we develop a uniform large deviations upper bound for a parameterized sequence

of dependent random variables. This result generalizes a similar result obtained by Dupuis and

Simha [29] for i.i.d. rvs.

For L = 1; 2; � � �, we de�ne
cL(t; �; x)

:
=

1

L
logE�;x[exp

�D
t; L �SL(�)� LF (�)

E�
]; t 2 IRd; � 2 �; x 2 X (7.31)

and

cL(t)
:
= sup

�2�;x2X
cL(t; �; x); t 2 IRd: (7.32)

As in [30], we require that the following assumptions (C1){(C2) hold:
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(C1) For all t in IRd, the limit c(t)
:
= limL!1 cL(t) exists where we allow +1 both as a limit

value and as an element in the sequence fcL(t); L = 1; 2; : : :g.
(C2) The mapping c : IRd ! IR [ f+1g is a closed convex function whose e�ective domain

D(c) := ft 2 IRd : c(t) <1g has a non{empty interior containing the point t = 0.

The Legendre{Fenchel transform of c is the closed convex mapping I : IRd ! [0;+1] de�ned

by

I(z)
:
= sup

t2IRd

fht; zi � c(t)g; z 2 IRd; (7.33)

and for notational convenience, we write

I(S 0) = inf
z2A

I(z); A � IRd:

The �rst result of this section shows that the conditions (C1){(C2) are suÆcient conditions

for (U1). The proof, which follows, is similar to that given by Dupuis and Simha for the i.i.d.

case discussed in [29].

Theorem 7.5 Assume (P0), (P5) and (C1){(C2) to hold. Then, for any closed subset C of

IRd, the inequality

lim sup
L!1

1

L
log sup

�2�;x2X
P�;x

h
�SL(�)� F (�) 2 C

i
� �I(C) (7.34)

holds.

Proof: Let C be a closed subset of IRd. If I(C) = 0, then (7.34) automatically holds. Hence,

we need only establish (7.34) when 0 < I(C), and thus two cases need to be considered, namely

0 < I(C) <1 and I(C) =1.

Case 1: If 0 < I(C) < 1, then � can be selected in the interval (0; I(C)). By G�artner's

covering lemma [30], there exist r distinct non{zero points t1; : : : ; tr in D(c) such that

C �
r[
i=1

H+(ti; I(C)� �) (7.35)

where H+(t; �)
:
= fz 2 IRd : ht; zi � c(t) � �g.

The integer r and the points t1; : : : ; tr depend on both � and C, but not on � and x. For each

i = 1; : : : ; r, the point ti belongs to D(c), so that c(ti) is �nite and cL(ti) is therefore also �nite
for L large enough, say L � L0 { it is plain that L0 can be chosen the same for all i = 1; : : : ; r.

Fix � in �, x in X and L � L. With these facts in mind, we readily see from (7.35) that

P�;x[ �SL(�)� F (�) 2 C]
�

rX
i=1

P�;x

hD
ti; �SL(�)� F (�)

E
� c(ti) � I(C)� �

i
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=
rX
i=1

P�;x[
D
ti; L �SL(�)� LF (�)

E
� L(c(ti) + I(C)� �)]

=
rX
i=1

P�;x[exp(
D
ti; L �SL(�)� LF (�)

E
) � exp (L(c(ti) + I(C)� �))]

�
rX
i=1

E�;x[exp
�D
ti; L �SL(�)� LF (�)

E�
] exp (�L(c(ti) + I(C)� �))

=
rX
i=1

exp (LcL(ti; �; x)) exp (�L(c(ti) + I(C)� �))

=
rX
i=1

exp (L(cL(ti; �; x)� c(ti))) exp (�L(I(C)� �))

�
rX
i=1

exp(L(cL(ti)� c(ti))) exp (�L(I(C)� �)) : (7.36)

The last inequality follows from the fact that cL(t; �; x) � cL(t) for all � in �, x in X, and all

t 2 IRd.

Since limL!1 cL(ti) = c(ti), i = 1; : : : ; r, we can �nd for every Æ > 0, an integer L� = L�(Æ)

such that L� � L0 and jcL(ti)� c(ti)j < Æ, i = 1; : : : ; r, whenever L � L�, and therefore

sup
i=1;:::;r

exp(L(cL(ti)� c(ti))) � exp(LÆ); L � L�:

Using this last fact, we conclude from (7.36) that

P�;x[ �SL(�)� F (�) 2 C] � r exp (�L(I(C)� �� Æ)) ; L � L�

whence

sup
�2�;x2X

P�;x

h
�SL(�)� F (�) 2 C

i
� r exp (�L(I(C)� �� Æ)) ; L � L� (7.37)

since the integer r and the points t1; t2; � � � ; tr depend on the set C and on the chosen �, and

the integer L� depends on C, � and the chosen Æ > 0. It then follows that

lim sup
L!1

1

L
log sup

�2�;x2X
P�;x

h
�SL(�)� F (�) 2 C

i
� �(I(C)� �� Æ) (7.38)

and (7.34) now follows since (7.38) holds for all � in the interval (0; I(C)) and for all Æ > 0.

Case 2: If I(C) = 1, then �x R > 0 and by G�artner's covering lemma [30], there again

exists r distinct non{zero points t1; : : : ; tr in D(c) such that

C �
r[
i=1

H+(ti; R): (7.39)

The integer r and the points t1; : : : ; tr depend on both R and C, but not on � and x. For

each i = 1; : : : ; r, the point ti belongs to D(c), so that c(ti) is �nite and cL(ti) is therefore also
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�nite for L large enough, say L � L00 { it is again plain that L00 can be chosen the same for all

i = 1; : : : ; r.

Fix � in � and L � L00. By the same arguments as the one leading to (7.36), this time with

the help of (7.39), we get

P�;x[ �SL(�)� F (�) 2 C]
�

rX
i=1

P�;x

hD
ti; �SL(�)� F (�)

E
� c(ti) � R

i
=

rX
i=1

P�;x[
D
ti; L �SL(�)� LF (�)

E
� L(c(ti) +R)]

=
rX

i=1

P�;x[exp(
D
ti; L �SL(�)� LF (�)

E
) � exp (L(c(ti) +R))]

�
rX

i=1

E�;x[exp
�D
ti; L �SL(�)� LF (�)

E�
] exp (�L(c(ti) +R))

=
rX

i=1

exp (LcL(ti; �; x)) exp (�L(c(ti) +R))

=
rX

i=1

exp (L(cL(ti; �; x)� c(ti))) exp (�L(R))

�
rX

i=1

exp(L(cL(ti)� c(ti))) exp (�L(R)) : (7.40)

The last inequality follows from the fact that cL(t; �; x) � cL(t) for all � in � and all t 2 IRd.

Since limL!1 cL(ti) = c(ti), i = 1; : : : ; r, we can �nd for every Æ > 0, an integer L� = L�(Æ)

such that L� � L00 and jcL(ti)� c(ti)j < Æ, i = 1; : : : ; r, whenever L � L�, and as in Case 1,

we can conclude from 7.40 that

sup
�2�;x2X

P�;x

h
�SL(�)� F (�) 2 C

i
� r exp (�L(R � Æ)) ; for all L � L�: (7.41)

Therefore,

lim sup
L!1

1

L
log sup

�2�;x2X
P�;x

h
�SL(�)� F (�) 2 C

i
� �(R � Æ)

and since R and Æ are arbitrary

lim sup
L!1

1

L
log sup

�2�;x2X
P�;x

h
�SL(�)� F (�) 2 C

i
� �1: (7.42)

Combining the two separate cases, we have for closed sets C such that I(C) > 0

lim sup
L!1

1

L
log sup

�2�;x2X
P�;x

h
�SL(�)� F (�) 2 C

i
� �I(C): (7.43)

We are now in a position to give a set of suÆcient conditions for (U1){(U2) to hold.
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Lemma 7.6 Assume conditions (P0), (P5) and (C1){(C2) to hold. Then the collection of

probability measures fP�;x; � 2 �; x 2 Xg satis�es the uniform Large Deviations upper bound

condition (U1). The corresponding rate functional I given by (7.33) satis�es (U2).

Proof: That condition (U1) holds is immediate from Theorem 7.5 since the Legendre-Fenchel

transform I given by (7.34) is a closed convex mapping.

Next, we show that I given by (7.33) is indeed level{compact. We do so by slightly modifying

the arguments of Ellis' Theorem V.1, Part (f) in [30, pp. 6-7]: For r � 0, we consider the level

set Kr
:
= fz 2 IRd : I(z) � rg which is closed by the lower semicontinuity of c. From the

de�nition of I, we see that

ht; zi � I(z) + c(t) � r + c(t); t 2 IRd; z 2 Kr (7.44)

and therefore, for each R > 0, we get

sup
ktk�R

ht; zi � r + sup
ktk�R

c(t) z 2 Kr: (7.45)

In view of (C2), we can choose R such that the closed ball BR
:
= fz 2 IRd : kzk � Rg is

contained in the e�ective domain D(c), in which case c is continuous on BR. Therefore, by

standard results from real analysis, we can assert that

sup
ktk�R

jc(t)j := A <1 and sup
ktk�R

ht; zi = R kzk : (7.46)

Combining (7.45) and (7.46), we �nd kzk � R�1(r +A) for all z in Kr, and the level set Kr is

thus compact since closed and bounded.

We address next the crucial condition (U3) on the rate functional I. We do so in two steps;

the �rst step being contained in the next lemma and the second step appearing in Theorem

7.8.

Lemma 7.7 Assume (P0), (P5) and (C1){(C2) to hold. If z = 0, then I(z) = 0, in which

case I(IRd) = 0.

Proof: In order to show that z = 0 implies I(z) = 0, we proceed by contradiction, and assume

I(0) > 0: We claim that � > 0 can always be selected small enough so that I(B�) > 0, where

again B�
:
= fz 2 IRd : jjzjj � �g. Indeed, recall [90, Thm. 10.1, p. 82] that the convex function

I is continuous on the interior of D(I) (which contains the origin z = 0). By choosing � small

enough, we can ensure that B� is contained in the interior of D(I), and that I(z) > 0 for all z

in B�, this last fact by continuity under the assumption I(0) > 0. Continuity over the compact

set B� yields 0 < I(B�) < 1, and by Theorem 7.5, for 0 < � < I(B�) there exists a �nite

integer L? such that

sup
�2�;x2X

P�;x[ �SL(�)� F (�) 2 B�] � e�L(I(B�)��); L � L?: (7.47)
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Now taking the limit in (7.47), we readily conclude that

lim
L!1

P�;x[ �SL(�)� F (�) 2 B�] = 0; � 2 �; x 2 X; (7.48)

or equivalently, that the sample averages (7.20) do not converge in probability, thus not a.s.

This conclusion is in direct contradiction with (P5) and the assumption I(0) > 0 cannot hold.

Thus I(0) = 0, and we readily get I(IRd) = 0 from the fact that I(z) � 0 for all z in IRd.

In order to show that I(z) = 0 implies z = 0, we need an additional condition on the

function c de�ned in (C1){(C2).

(C3) The function c is (Fr�echet-) di�erentiable at t = 0, i.e., its gradient rc(t) exists at t = 0,

with rc(0) = 0.

We are now ready to present the main result of this section:

Theorem 7.8 Under (P0), (P5), (C1){(C3), the conditions (U1){(U3) hold.

Proof: Combining Theorem 7.5 with Lemmas 7.6 and 7.7, we see that all of (U1){(U3) hold

except for the property that I achieves its global minimum at the unique point z = 0, but this

follows directly from [30, Thm. V.1 (g), pp. 6-7], under (C3).

7.5 IID State Processes

We refer to the i.i.d. case as the situation characterized by some collection f��; � 2 �g of

probability measures on (X;B(X)) such that for Borel subsets B1; : : : ; BL in B(X),

P�;x[�` 2 B`; ` = 1; : : : ; L] =
LY
`=1

��(B`) L = 1; : : : (7.49)

for all � in � and x in X. Assumption (P0) is satis�ed by requiring that the collection f��; � 2
�g be measurable in the sense that for every Borel subset B in B(X), the mapping � ! ��(B)

is Borel measurable. The validity of (P5) is guaranteed by the strong law of large numbers for

i.i.d. sequences provided the moment conditionZ
�
jf(�; x)jd��(x) <1; � 2 �

holds, in which case we have

F (�) =
Z
�
f(�; x)d��(x); � 2 �:

The Borel measurability of F then follows readily from the Borel measurability of f by standard

arguments.
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With (7.49), the de�nition (7.31) yields

cL(t; �; x) = log
Z
X

eht;f(�;x)�F (�)id��(x); t 2 IRd; � 2 �; x 2 X (7.50)

for all L = 1; 2; : : :, and (C1) holds in the form

c(t) = lim
L!1

sup
�2�;x2X

cL(t; �; x)

= sup
�2�

log
Z
X

eht;f(�;x)�F (�)id��(x); t 2 IRd: (7.51)

For each � in � and each x in X, the mapping t ! cL(t; �; x) given by (7.50) is convex by

H�older's Inequality [25, Lemma 2.2.31, p. 37], and is lower semicontinuous by Fatou's Lemma.

Since for proper convex functions, closedness is equivalent to lower semicontinuity follows from

of [90, Thm. 7.1, pp. 51-52], we conclude that the mapping t! cL(t; �; x) is closed and convex.

That c is closed and convex follows from the fact that both convexity [90, Thm. 10.8, p. 90],

and closedness are preserved under the supremum operation. The other conditions (C2){(C3)

can be investigated in speci�c instances.

Example: As a simple example we consider the case when for each � in �, the measure ��
is a Gaussian measure on IRd with mean m(�) and covariance matrix �(�). If f(�; x)

:
= x,

c(t) =
1

2
sup
�2�

ht;�(�)ti ; t 2 IRd: (7.52)

Consequently, rc(t) exists at t = 0 if there exists a symmetric positive semi{de�nite matrix �

such that �(�) � � for all � in � (where inequalities are with respect to the usual ordering on

the cone of symmetric positive semi{de�nite matrices).

7.6 Markov Chains with Finite State Space

In the Markovian case, we assume the existence of a collection fK�; � 2 �g of measurable

transition kernels X� B(X)! [0; 1] such that

P�;x[�L+1 2 Bj�`; ` = 0; 1; : : : ; L] = K�(�L;B); B 2 B(X) L = 0; 1; : : : (7.53)

for all � in � and x in X. Condition (P0) follows by requiring that for each x in X and each Borel

subset B in B(X), the mapping � ! K�(xL;B) is Borel measurable on �. Condition (P5) is

guaranteed by imposing some ergodicity conditions on the Markov chains with transition kernels

fK�; � 2 �g.
Of particular interest for applications are the models involving �nite state Markov chains.

We develop this important case by �nding explicit conditions on the one{step transition prob-

abilities which ensure the various conditions discussed so far. The set{up is as follows: The

state space X is a �nite set, say with s elements, and following [25, 30], we identify X with

the canonical basis fe1; : : : ; esg of IRs, i.e., hex; eyi = Æxy, x; y = 1; : : : ; s; the notation x and
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ex, x = 1; : : : ; s, is used interchangeably. For each � in �, with the transition kernel K� we

associate the s� s stochastic matrix P (�)
:
= (P�(x; y)) whose entries are de�ned by

P�(x; y)
:
= K�(x; fyg); x; y 2 X: (7.54)

In short, under each of the measures P�;x, the rvs f�`; ` = 0; 1; : : :g form a time{homogeneous

Markov chain with one{step transition matrix P�.

Next, given the mapping f : ��X! IRd, we seek to evaluate the corresponding quantities

(7.31){(7.32). Fixing t in IRd, we de�ne the s� s matrices f�t;�; � 2 �g by

�t;�(x; y)
:
= P�(x; y)e

ht;f(�;y)�F (�)i; � 2 �; x; y 2 X: (7.55)

As in [25, pp. 58-61], we have

c`(t; �; x) =
1

`
log

D
ex;�

`
t;�e
E
; x 2 X; � 2 � ` = 1; 2; : : : (7.56)

where e is the element (1; : : : ; 1) of IRd. Armed with this notation, we can now turn to the

main results of this section. We begin with an auxiliary result of a technical nature:

Lemma 7.9 Consider the family of �nite state space Markov chains with one{step transition

matrices fP (�); � 2 �g. Suppose the following conditions are enforced:

(i): For each � in �, the one{step transition matrix is irreducible and aperiodic; and

(ii): For each x and y in X, the mappings � ! P�(x; y) and �! f(�; x) are continuous on �.

Then, for each t in IRd, the following statements are true:

1. For each � in �, the non{negative matrix �t;� is irreducible and primitive; its spectral

radius �(�t;�) coincides with the largest positive eigenvalue of �t;� which always has mul-

tiplicity one, and the eigenvector u(�t;�) corresponding to �(�t;�) can be selected such

that

mt;�
:
= min

i
ui(�t;�) > 0 and he; u(�t;�)i = 1; (7.57)

2. The mappings �! �(�t;�) and � ! u(�t;�) are continuous on �.

Proof: (Claim 1.) Fix t in IRd and � in �. Since the exponential factors entering the de�nition

(7.56) are strictly positive, it is plain from (ii) that the non{negative matrix �t;� is irreducible

and primitive [38, Thm. 8, p. 80], and most of Claim 1 is now a simple rephrasing of the

Perron{Frobenius theorem [57, Thm. 2.2, p. 545]. The existence of an eigenvector satisfying

the normalization condition in (7.57) follows from the positivity condition in (7.57) and the

scalability property of eigenvectors.

(Claim 2.) Fix t in IRd. For each � in �, the stochastic matrix P (�) is ergodic by virtue

of (i), and therefore admits a unique invariant probability vector �(�), i.e., �(�)0 = �(�)0P (�)
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and he; �(�)i = 1; we also have F (�) =
P

x �x(�)f(�; x) by the Ergodic Theorem for Markov

Chains [21, Thm. 2, p. 92]. With this in mind, we note that the continuity assumption (ii)

on � ! P (�) implies the continuity of � ! �(�) since �(�t;�) has multiplicity one for all �

in � [58, p. 110]. Therefore, � ! F (�) is also continuous by the continuity assumption (ii)

on f . In short, from (7.56) and assumption (ii) we conclude that the matrix{valued mapping

� ! �t;� is (entrywise) continuous on �, whence the mapping � ! �(�t;�) is continuous since

each eigenvalue is a continuous mapping on the space of square matrices [65, p. 225]. It is now

a simple matter to see that the mapping � ! u(�t;�) is continuous: Indeed, for each � in �,

the conditions

[�t;� � �(�t;�)Is]u = 0 and he; ui = 1 (7.58)

uniquely determine the eigenvector u(�t;�) since �(�t;�) has multiplicity one. Using this char-

acterization, we can now establish the desired continuity by adapting the arguments of [70, p.

39]. Another argument is available in [58, p. 110].

The validity of the conditions (C1){(C3) is now discussed:

Theorem 7.10 Consider the family of �nite state space Markov chains with one{step transition

matrices fP (�); � 2 �g, under the assumptions (i){(ii) of Lemma 7.9. If the parameter set �

is a compact subset of IRp, then conditions (C1){(C3) hold with

c(t)
:
= lim

`!1
sup

�2�;x2X
c`(t; �; x) = sup

�2�
log �(�t;�); t 2 IRd: (7.59)

Proof: (Condition (C1)) Fix t in IRd. As pointed out in the proof of Theorem 3.1.2 in [25, p.

60], the limit (7.60) exists and equals

c(t; �; x)
:
= lim

l!1
c`(t; �; x) = log �(�t;�); � 2 �; x 2 X (7.60)

so that

sup
�2�

log �(�t;�) � lim inf
`!1

c`(t) (7.61)

by invoking the de�nition (7.31){(7.32). The conclusion (7.59) (including the existence of the

limit) will follow if we can establish that

lim sup
`!1

c`(t) � sup
�2�

log �(�t;�): (7.62)

To do so, we �x � in � and x in X. In the notation of Lemma 7.9, u(�t;�) is the eigenvector

of �t;� associated with the eigenvalue �(�t;�) such that (7.58) holds. Using the representation

(7.57), we readily get

c`(t; �; x) =
1

`
log

D
ex;�

`
t;�e
E

� 1

`
log

*
ex;�

`
t;�

u(�t;�)

mt;�

+
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=
1

`
log

*
ex; �(�t;�)

`u(�t;�)

mt;�

+

� log �(�t;�) +
1

`
log

hex; u(�t;�)i
mt;�

� log �(�t;�)� 1

`
logmt;�: ` = 1; 2; : : : (7.63)

Next, upon taking the supremum in (7.63) , we see that

c`(t) = sup
�2�;x2X

c`(t; �; x) � sup
�2�

log �(�t;�)� 1

`
log

�
inf
�2�

mt;�

�
` = 1; 2; : : : (7.64)

and the desired inequality (7.62) follows provided (7.59) can be strengthened to read

inf�2�mt;� > 0, or equivalently, mini inf�2� ui(�t;�) > 0. This last condition is now an imme-

diate consequence of the continuity result of Lemma 7.9 under the compactness condition on

�.

(Condition (C2)) A careful inspection of the proof of (7.59) reveals that in fact we have

shown

c(t) = lim
`!1

sup
�2�;x2X

c`(t; �; x) = sup
�2�;x2X

lim
`!1

c`(t; �; x); t 2 IRd (7.65)

With this in mind, �x � in � and x in X: For each ` = 1; 2; : : :, the mapping t ! c`(t; �; x)

is convex (as can be seen by standard arguments [25, Lemma 2.3.9, p. 46] using H�older's

inequality). Therefore, the mapping t ! c(t; �; x) is also convex since the pointwise limit of

convex mappings is convex [90, Thm. 10.8, p. 90]. Hence, by (7.65), the mapping c is also convex

since convexity is preserved under the supremum operation [90, Thm. 5.5, p. 35]. Next, it is

plain from (7.60) and (7.65) that D(c) = IRd since 0 < sup� �(�t;�) <1 by the continuity result

of Lemma 7.9 under the compactness condition on �. Therefore, c is continuous throughout

IRd, thus a fortiori closed.

(Condition (C3)) We need to establish that the mapping c is di�erentiable at t = 0 with

rc(0) = 0. We do so in three steps: Step 1 { Fix � in � and observe from Jensen's inequality

that

c`(t; �; x) �
D
t;Ex;�

h
�S`(�)

i
� F (�)

E
; t 2 IRd; x 2 X; ` = 1; 2; : : : : (7.66)

It also follows from assumption (ii) of Lemma 7.9 that (P5) holds, whence

lim`!1Ex;�[ �S`(�)] = F (�) via the Bounded Convergence Theorem. Taking the limit in (7.66)

and using this last limit result, we get c(t; �; x) � 0 for all t in IRd and x in X. Therefore, since

c(0; �; x) = 0, we conclude that

inf
t2IRd

c(t; �; x) = c(0; �; x) = 0; t 2 IRd; x 2 X: (7.67)

Step 2 { Now, for any direction v in IRd, the mapping �! ��v;� is entrywise analytic on

IR. Hence, the mapping � ! �(��v;�) is di�erentiable on IR, since in fact analytic on IR [65,

Thm. 7.7.1, p. 241] as the largest eigenvalue of ��v;� is guaranteed to be of multiplicity one by
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the Perron{Frobenius theory. Thus from di�erentiability and (7.67) we readily see by standard

arguments that

lim
�!0

Dv(�; �) = 0 (7.68)

where

Dv(�; �)
:
=
c(�v; �; x)

�
; � 6= 0: (7.69)

In particular, the convex mapping t ! c(t; �; x) is Gâteaux-di�erentiable at t = 0 along any

direction; its di�erentiability at t = 0 now follows from Theorem 25.2 of Rockafellar [90, p.

244].

Step 3 { It follows from convexity that �! Dv(�; �) is non{decreasing on (0;1). Moreover,

since � ! �(��v;�) is continuous on � for each � 6= 0, we see that � ! Dv(�; �) is also continuous

on � for each � > 0. Therefore, starting with a decreasing sequence f�n; n = 0; 1; : : :g such

that �n # 0 as n ! 1, we see from (7.68) that limnDv(�n; �) = 0 monotonically for each �

in �. By Dini's Theorem [93, p. 195], this last convergence is taking place uniformly on the

compact set �, i.e., for every � > 0, there exists a �nite integer N(�) such that

sup
�2�

jDv(�n; �)j < �; n � N(�): (7.70)

Therefore, combining (7.69) and (7.70), we �nd that

lim
n!1

c(�nv)

�n
= lim

n!1
sup
�2�

Dv(�n; �) = 0 (7.71)

or equivalently, the mapping c is Gâteaux-di�erentiable at t = 0 along all directions, and c is

indeed Fr�echet-di�erentiable at t = 0 by virtue of Theorem 25.2 of [90, p. 244].

7.7 Markov Chains with Countably In�nite State Space

In this section we reveal some limitations to the Large Deviations upper bounds we use and

show that a very simple Markov chain on a countably in�nite state space with unbounded

function f can fail to meet the condition (C1).

Example: We look at the Markov Chain fXn; n = 0; 1; : : :g which is the random walk on

the non-negative integers IN with a reection at the origin. We take for simplicity � to consist

of the single point � so uniformity over � is not the issue. An alternative representation for the

M.C. can be derived if we de�ne the i.i.d. process fUn; n = 1; 2; : : :g where P [Un = 1] = p =

1� P [Un = �1] and
Xn+1 = [Xn + Un+1]

+; n = 0; 1; : : :

= [[Xn�1 + Un]
+ + Un+1]

+

= maxf0; Un+1; Xn�1 + Un + Un+1g
= maxfUn + 1; Un + Un+1; Xn�2 + Un�1 + Un + Un+1g
= maxf0; Un + 1; Un + Un+1; : : : ; U2 + : : :+ Un+1; X0 + U1 + : : :+ Un+1g
� X0 + U1 + : : :+ Un+1 (7.72)
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In order to apply our large deviations results the M.C. must satisfy conditions (C1)� (C3) so

let us look at the moment generating function. For t � 0

E

"
exp

 
t

nX
i=1

Xi

!#
� E

24exp
0@t nX

i=1

0@X0 +
iX

j=1

Uj

1A1A35
= E [exp (ntX0)]E

24exp
0@t nX

i=1

iX
j=1

Uj

1A35
= E

h
entX0

i
E

24exp
0@t nX

j=1

Uj(n� (j � 1))

1A35
= E

h
entX0

i nY
j=1

E
h
et(n�(j�1))Uj

i

= E
h
entX0

i nY
`=1

E
h
et`Uj

i
= E[entX0 ]

nY
`=1

fqe�`t + pe`tg

= MX0(nt)
nY
`=1

e`t(p+ qe�2`t)

Therefore,

1

n
logE

"
exp

 
t

nX
i=1

Xi

!#

� 1

n
logMX0(nt) +

t

n

nX
`

`+
t

n

nX
`=1

log(p+ qe�2`t)

=
1

n
logMX0(nt) +

t(n + 1)

2
+

1

n

nX
`=1

log(p+ qe�2`t)

Taking X0 = x, we get

MX0(t) = etx;
1

n
logMX0(nt) = tx;

and

lim
n!1

1

n

nX
`=1

log(p+ qe�2`t) � lim
n!1

1

n

nX
`=1

log(p)

= log(p):

Therefore,

lim inf
n!1

1

n
logE

"
exp

 
t

nX
i=1

Xi

!#
=1; t > 0

and the point t = 0 is not contained in D(c).
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7.7.1 Uniform Markov Chains

It is known [105, 25] that general irreducible Markov chains satisfying a uniform recurrence or

a Doeblin condition possess a large deviations principle. The condition (from [25]) is:

(U) There exists integers 0 < ` � N and a constant M � 1 such that for all x; y 2 X,

P(x; �) � M

N

NX
m=1

Pm(y; �)

where Pm(x; �) is the m-step transition probability for initial state x

Since condition (U) is so restrictive as to preclude the simple example above, we must conclude

that the large deviations approach we have taken in this chapter has some substantial limitations

in regards to the class of state processes that we can accommodate. All is not lost however,

and the next section makes the case for the large deviations approach, particularly when g is

nonlinear.

7.8 Martingale Method for Convergence

As the approach of this chapter relies heavily on large deviations arguments, this requires

the �niteness of certain exponential moments, thus leading naturally to the condition (L) on

the window sizes f`n+1; n = 0; 1; : : :g. Of course such a condition is dictated by the technique

adopted here, and is certainly far from necessary as we now show through an example. We shall

see that in some cases only �nite second order moments suÆce in order to yield a.s. convergence,

and this in the absence of condition (L), provided an additional condition is imposed on the

gain sequence fn+1; n = 0; 1; : : :g, namely

1X
n=0

2n+1 <1: (7.73)

To develop this point, we consider an unconstrained scheme (i.e. � = IRp) with p = d = s, and

g(�; x) = f(�; x) = x for all � and x in IRp, so that (1.5){(1.7) takes the form

�0 2 IRp; �n+1 = �n + an+1
1

`n+1

`n+1X
`=1

Xn+1;`: n = 0; 1; : : : (7.74)

We put ourselves in the i.i.d. case with the additional assumption that for each � in IRp, the

probability measure �� has �nite mean h(�) and covariance matrix �(�). We assume that

h(�) 6= 0 except for � = �?; we take �? = 0 for the sake of convenience. By following an

argument of Gladyshev [39], we get the following result whose proof is in the appendix.

Proposition 7.11 Under the foregoing assumptions on the probability measures

f��; � 2 IRpg, we further assume the conditions

sup
Æ�1<jj�jj<Æ

h�; h(�)i < 0; Æ 2 (0; 1) (7.75)
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and

jjh(�)jj2 + Tr(�(�)) � K(1 + jj�jj2); � 2 IRp (7.76)

for positive constant K. If the gain sequence fn+1; n = 0; 1; : : :g satis�es both (S') and (7.73),

then limn!1 �n = 0 P{a.s. without any additional condition on the window size sequence

f`n+1; n = 0; 1; : : :g.

It is plain under the i.i.d. assumption that there is no loss of generality in taking f(�; x)
:
= x

for all � and x in IRp. Moreover, projected versions of the algorithm can in principle be

addressed by arguments similar to the ones given by Chong and Ramadge [19, Appendix A, p.

365]. Therefore, in the i.i.d. case with linear g, the above Proposition (and its variants) suggest

conditions for a.s. convergence which are similar to those given for the standard Robbins{Monro

scheme (without averaging), and probably weaker than the ones developed in this chapter so

that the framework developed here then seems to provide little improvement, if any. However,

the situation is quite di�erent when g is nonlinear; the martingale arguments break down even

in the i.i.d. case and the large deviations framework discussed in this chapter now leads to

conditions for a.s. convergence.

171



Appendix A

Proofs and Auxiliary Results

A.1 A Proof of Lemma 2.1

Proof: If (D1) holds, then

P�V � �V + L; for each � 2 �:

Since V is unbounded o� petite sets we can de�ne the set

C
:
=

(
x 2 X : V (x) � L

1=2(1� �)

)

By Meyn and Tweedie's Lemma 15.2.8 [79, p. 370], if we let � = 1
2
(1� �) then we have

��V � ��V � L1C ; for each � 2 �:

which is (D2).

If (D2) holds, then

sup
�2�

��V = sup
�2�

P�V � V

= ��V + b1C

which implies

P�V � V (1� �) + b1C ; � 2 �

� V (1� �) + b; � 2 �

It is enough to pick just one � 2 � and together with Lemma 15.2.2 in [79], it follows that

V is unbounded o� petite sets.

A.2 A Proof of Lemma 3.1

Proof: Fix some arbitrary ` 2 (0; 1). The inequality���x log� x��� � C(`)x`; 0 < x � 1
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holds if and only if ���log� x��� :=
����� lnxln �

����� � C(`)x`�1; 0 < x � 1

holds.

For all ` in (0; 1) and some yet to be de�ned constant C(`) > 0, de�ne on x 2 (0; 1]:

f(x)
:
=

����� lnxln�

�����
g(x)

:
= C(`)x`�1:

The derivatives with respect to x on (0; 1] are calculated:

df

dx
(x) =

1

x ln �
< 0;

dg

dx
(x) = C(`)(`� 1)x`�2

= �C(`)(1� `)
x`�1

x
� �C(`)(1� `)

1

x
< 0:

We observe that for each ` such that 0 < ` < 1 there exists a constant 0 < C(`) <1 such that

dg

dx
(x) � df

dx
(x) < 0; for all x 2 (0; 1].

We note that f(1) = 0 and g(1) = C(`) and

f(1)� f(x) =
Z 1

x

df

dx
(x) dx

�
Z 1

x

dg

dx
(x) dx

= g(1)� g(x); 0 < x � 1

Therefore,

f(x) � g(x)� C(`)

� g(x); 0 < x � 1

since we have chosen C(`) > 0.

A.3 Summary of BMP's Theorem 5

The results below are taken verbatim from [6].

BMP de�ne two classes of functions: Li(p) and Li(Q;L1; L2; p1; p2) where Q is a compact

subset of their parameter space D and the remaining arguments are constants.
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De�nition 2 (BMP) De�ne for p � 0

Li(p)
:
=

(
f : sup

x1 6=x2

f(x1)� f(x2)

kx1 � x2k (1 + kx1kp + kx2kp)
)
:

De�nition 3 (BMP) For a function g and an integer p, let

Np(g)
:
= sup

(
sup
x

kg(x)k
1 + kxkp+1 ; sup

x1 6=x2

g(x1)� g(x2)

kx1 � x2k (1 + kx1kp + kx2kp)
)
:

De�nition 4 (BMP) For p1; p2; L1; L2 � 0, de�ne Li(Q;L1; L2; p1; p2) to be by those func-

tions f(�; x) such that:

(i) for all � 2 Q,
Np1(f(�; �)) � L1;

(ii) for all �1, �2 2 Q, all x 2 IRk,

kf(�1; x)� f(�2; x)k � L2 k�1 � �2k (1 + kxkp2):

Theorem A.1 (BMP's Thm. 5) Given p1 � 0, p2 � 0, we assume that there exist positive

constants K1, K2, q1, q2, � < 1 such that:

(i) for all g 2 Li(p1), � 2 Q, n �, z1, z2:
kP n

� g(x1)� P n
� g(x2)k � K1�

nNp1(g) (1 + kx1kq1 + kx2kq2)

(ii) for all � 2 Q, n � 0, z and all m � q1 _ q2Z
P n
� (x; dx1) (1 + kx1km) � K2 (1 + kxkm)

(iii) for all g 2 Li(p1), �, �0 2 Q, n � 0, x,

kP n
� g(x)� P n

�0g(x)k � K3Np1(g) k� � �0k (1 + kxkq2)

Then, for any function f(�; x) of class Li(Q;L1; L2; p1; p2), there exist functions h(�), �� and

constants C1, C2, C(`), 0 < ` < 1 depending only on the Lj, pj, such that:

(j) for all �, �0 2 Q, kh(�)� h(�0)k � C1 k� � �0k,
(jj) for all � 2 Q, k��(x)k � C2 (1 + kxkq1)
(jjj) for all �, �0 2 Q, all ` 2 (0; 1) and for all s = max(p2; q1; q2)

k��(x)� ��0(x)k � C(`) k� � �0k` (1 + kxks)
kP���(x)� P�0��0(x)k � C(`) k� � �0k` (1 + kxks)

(jv) (I � ��)�� = f� � h(�).

Proof: See [6, page 260]
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A.4 A Version of Theorem 3.10 for (D1)

The next theorem is an alternate version of Theorem 3.10 for (D1).

Theorem A.2 If (D1) holds for V, then (D1) also holds for the function = V r where r is a

positive real in the interval [0; 1].

Proof:

Suppose (D1) holds for the function V : X! [1;1) with some � < 1 and L <1, i.e.

P�V � �V + L; for all � 2 �.

Consider any rational q = n=d and let V q = V n=d for some n � d. We have from Jensen's

inequality

P�V
q � (P�V )

n=d

� (�V + L)n=d

� �n=dV n=d +
L

�(d�n)=d
(claim proven below)

= �n=dV q +
L

�(d�n)=d
; for all � 2 � (A.1)

where the last inequality step follows from a claim we now prove.

The inequality

(�V + L)n=d � �n=dV n=d +
L

�(d�n)=d

is valid if and only if

(�V + L)n �
�
�n=dV n=d +

L

�(d�n)=d

�d
: (A.2)

Using the binomial expansion, the left hand side of (A.2) can be rewritten

(�V + L)n =
nX

k=0

(�V )n�k Lk
�
n

k

�
(A.3)

and the right hand side of A.2 can be rewritten�
�n=dV n=d +

L

�(d�n)=d

�d
=

dX
k=0

�
�n=dV n=d

�d�k � L

�(d�n)=d

�k  d
k

!
; n � d:

=
dX

k=0

�
n(d�k)

d
�

k(d�n)
d V

n(d�k)
d Lk

 
d

k

!
; n � d

=
dX

k=0

�n�kV
n(d�k)

d Lk

 
d

k

!
; n � d: (A.4)

We now compare the summands on the right hand sides of A.3 and A.4 for each k =

0; 1; 2; : : : ; n. When k = 0, we trivially �nd that the summands are equal.

Examining the case when k = 1; : : : ; n, we �nd
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1. The exponent n�k � n(d�k)
d

for all positive integers n � d and k = 1; : : : ; n. Since V � 1

we have

V n�k � V
n(d�k)

d :

2. For n � d and k = 1; : : : ; n,�
n

k

�
=

n!

k!(n� k)!
� d!

k!(d� k)!
=

 
d

k

!

These two inequalities imply the individual summands of (A.3) and (A.4) obey the inequality:

(�V )n�k Lk
�
n

k

�
� �n�kV

n(d�k)
d Lk

 
d

k

!
; k = 0; 1; : : : ; n:

For the case k = n + 1; : : : ; d, since the summands on the right hand side of (A.4) are all

positive, the claim is now proven and (A.1) holds. Thus for any rational q = n=d 2 Q we have

P�V
q = �qV q +

L

�(1�q)
; for all � 2 �: (A.5)

Now let qi be any sequence of rationals in the interval (0; 1) which converge to the real number

r 2 (0; 1), i.e. r = limi!1 qi. Then by the Dominated Convergence Theorem since V qi � V for

all i = 1; 2; : : : and P�V (x) < V (x) + L <1 for any � 2 � and x 2 X we have the following

P�(V
r) = P�( lim

i!1
V qi)

= lim
i!1

P�(V
qi)

� lim
i!1

�
�qiV qi +

L

�1�qi

�
= �rV r +

L

�1�r
; � 2 �;

where the inequality follows from (A.5). Finally, the case for r = 0 and r = 1 follow trivially.

Corollary A.3 If for some � < 1 and L <1 we have

P�V � �V + L; � 2 �

then for any real r in the interval [0; 1], we have

Pm
� V

r � CD(r)V
r m = 1; 2; : : : ; � 2 �

where

CD(r) = 1 +
L

�(1�r)(1� �r)
;

= 1 +
L

�(1�r) � �
: (A.6)
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A.5 A Proof of Theorem 4.5

Proof: The proof is identical for each i = 1; : : : ; p so let us now �x such an i. Let � be a �xed

point in � and consider a small perturbation in the ith component vector, denoted ��i such

that �0 = � +��i 2 �.

Part 1 (Set up.): Expand the di�erence

J(�0)� J(�) = E��0
[f�0(X1)]� E�� [f�(X1)]

= E��0
[f�(X1)]�E�� [f�(X1)] +E�� [f�0(X1)� f�(X1)]

+
n
E��0

[f�0(X1)� f�(X1)]�E�� [f�0(X1)� f�(X1)]
o

so that

@J(�)

@�i
= lim

��i!0

J(�0)� J(�)

��i

= lim
��i!0

X
x2X

��0(x)� ��(x)

��i
f�(x) (A.7)

+ lim
��i!0

X
x2X

��(x)
f�0(x)� f�(x)

��i
(A.8)

+ lim
��i!0

X
x2X

(��0(x)� ��(x))
f�0(x)� f�(x)

��i
(A.9)

We shall next consider the three limits (A.7) - (A.9) separately starting with the �rst.

Part 2-a (First limit, setup): We have the matrix equation

P�0 = P� +��i Q�;i +R(�;��i)

hence

��P�0 = ��P� +��i ��Q�;i + ��R(�;��i)

= �� +��i ��Q�;i + ��R(�;��i):

Inserting canceling terms on the left we have

���0P�0 + ��P�0 + ��0 = �� +��i��Q�;i + ��R(�;��i)

so that

(��0 � ��)(I � P�0) = ��i��Q�;i + ��R(�;��i):

The group inverse P#
�0 exists by Lemma 4.3 under the assumption of strong ergodicity for

all �, along with the series expansion

P#
�0

:
= �e��0 + (I � P�0 + e��0)

�1

= �e��0 +
1X
k=0

(P�0 � e��0)
k
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Thus by (4.18),

(��0 � ��)(I � P�0)P
#
�0 = ��i��Q�;iP

#
�0 + ��R(�;��i)P

#
�0

which becomes

(��0 � ��)(I � e��0) = ��i��Q�;iP
#
�0 + ��R(�;��i)P

#
�0

or since (��0 � ��)e = 0�
1

��i

�
(��0 � ��) = ��Q�;iP

#
�0 +

�
1

��i

�
��R(�;��i)P

#
�0 ; for small j��ij > 0.

Multiply on the right by the performance function column vector f�
:
= [f�(x) ]x2X for which

we assume in (F1) that f� 2 L1V r = fh : supx2X
jh(x)j
V r(x)

<1g:�
1

��i

�
(��0 � ��)f� = ��Q�;iP

#
�0 f� +

�
1

��i

�
��R(�;��i)P

#
�0 f� (A.10)

We next consider separately the two terms on the right hand side of (A.10) as ��i ! 0

starting with the second term.

Part 2-b. (First Limit, second term.): De�ne R0(�;��i)
:
=
�

1
��i

�
R(�;��i) and the

second term is

��R
0(�;��i)P

#
�0 f�: (A.11)

From Lemma 4.4 we �nd that under our conditions, the fundamental kernel is a mapping

from L1V r to L1V r and by (2.15), ��0(V
r) < 1 so that P#

�0 is also a mapping from L1V r to L1V r .

We will show that this second term is zero in the limit as ��i ! 0, but, instead of (A.11) we

can consider

lim
��i!0

��R
0(�;��i)f = lim

��i!0

X
x

��(x)
X
y

rx;y(�;��i)

��i
f(y)

for arbitrary f 2 L1V r .

Note that if px;y(�) = 0 for any points x; y; �, then by (4.10) rx;y(�;��i) necessarily must

be zero also in a small Æ-neighborhood of ��i = 0. If we then take the convention that any

fraction of the form 0
0
is de�ned to be zero, then we can write the double sum as

��R
0(�;��i)f =

X
x

��(x)
X
y

rx;y(�;��i)

��i
f(y)

=
X
x

��(x)
X
y

px;y(�)
rx;y(�;��i)

px;y(�)��i
f(y)

=
X
x;y

��(x)px;y(�)
rx;y(�;��i)

px;y(�)��i
f(y):

To apply the Dominated Convergence Theorem, we �nd for all j��ij < Æ

X
x;y

��(x)px;y(�)
rx;y(�;��i)

px;y(�)��i
f(y) �X

x;y

��(x)px;y(�)K
00
3CV

r(y) <1; (A.12)
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where the �rst inequality follows from (4.10) and the fact that f 2 L1V r (which de�nes some

constant C <1) while the �niteness follows from (2.15). Thus,

lim
��i!0

��R
0(�;��i)f = lim

��i!0

X
x;y

��(x)px;y(�)
rx;y(�;��i)

px;y(�)��i
f(y)

=
X
x;y

��(x)px;y(�) lim
��i!0

rx;y(�;��i)

px;y(�)��i
f(y)

=
X
x;y

��(x)px;y(�) 0

= 0

for arbitrary f 2 L1V r . Thus, the second term in (A.10) converges to zero.

Part 2-c. (First limit, �rst term) : In this part, we will be appealing to Lemma 4.4 so

before we begin let us verify the fourth condition of the Lemma 4.4; that P� ! P�0 as � ! �0
in the induced operator norm kj � jkV r , i.e.

lim
�!�0

kjP� � P�0jkV r = lim
�!�0

sup
h2L1

V r

jhjV r=1

j(P� � P�0)hjV r = 0: (A.13)

We have for some h 2 L1V r such that jhjV r

:
= supx2X

jh(x)j
V r(x)

= 1

j(P� � P�0)hj =

�����X
y

(px;y(�)� px;y(�0)) h(y)

�����
� k� � �0k

X
y

(K3px;y(�0))V
r(y)

� k� � �0kCV r(x)

for some constant C <1; the �rst inequality following from (G2) while the second inequality

follows from (D0), and (D0) is implied by (D2). Thus,

j(P� � P�0)hjV �
k� � �0kCV (x)

V (x)
= C k� � �0k

and clearly converges to zero in the limit as � ! �0, hence we have shown (A.13).

We will soon consider the limit of the �rst term in (A.10):

lim
�0!�

��Q�;iP
#
�0 f�

but before we begin, we note that the group inverse is given by

P#
�0

:
= (I � P�0 + e��0)

�1 � e��0

=
1X
k=0

(P�0 � e��0)
k � e��0 ;
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and is the di�erence of an fundamental matrix term and an invariant matrix term. From Lemma

4.4, if we let f 2 L1V r , under the conditions we have established, P
#
�0 f converges to P#

� f in the

L1V r norm as �0 ! �, i.e.

lim
�0!�

sup
x2X

���P#
�0 (x; f)� P#

� (x; f)
���

V r(x)
= 0:

Hence, for every � > 0 there exists a Æ > 0 neighborhood suÆciently small, such that

0 � sup
x2X

���P#
�0 (x; f)� P#

� (x; f)
���

V r(x)
� �

for all �0 in this Æ-neighborhood. Hence we have,���P#
�0 (x; f)� P#

� (x; f)
��� � �V r(x); for all x 2 X; j��ij � Æ:

Thus, for all �0 in this neighborhood of �,���P#
�0 (x; f)

��� �
���P#

� (x; f)
���+ �V r(x)

� CV r(x); for all x 2 X (A.14)

for some constant C <1.

We now consider the limit of the �rst term in (A.10), namely:

lim
��i!0

�0=�+��i

��Q�;iP
#
�0 f�

Without loss of generality, instead of P#
�0 f� we can consider an arbitrary family of functions

g��i : X! IR such that jg��ij � CV r uniformly for all ��i in the Æ-neighborhood of zero. We

have shown in (A.14) that this family of functions will include P#
�0 f�. Thus, we consider

lim
��i!0

�0=�+��i

��Q�;ig��i = lim
��i!0

�0=�+��i

X
x2X

��(x)
X
y

@px;y(�)

@�i
g��i(y)

= lim
��i!0

�0=�+��i

X
x2X

��(x)
X
y

px;y(�)

@px;y(�)
@�i

px;y(�)
g��i(y)

where the last line holds because if px;y(�) = 0, then the partial derivative in the numerator is

necessarily zero under (4.7) and this ratio is thus zero.

Again, to apply the Dominated Convergence theorem, we check for all j��ij < Æ

X
x;y2X

��(x)px;y(�)

@px;y(�)
@�i

px;y(�)
g��i(y) � X

x;y2X

��(x)px;y(�)K3CV
r(y) <1 (A.15)

by (4.8) and (2.15). Thus,

lim
��i!0

�0=�+��i

X
x;y2X

��(x)px;y(�)

@px;y(�)
@�i

px;y(�)
g��i(y)

=
X
x;y2X

��(x)px;y(�)

@px;y(�)
@�i

px;y(�)
lim
��i!0

�0=�+��i

g��i(y)
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for arbitrary g��i 2 L1V r .

Hence for our problem, we can take

g��i(y) = P#
�+��i

(y; f�)

which is an element of L1V r for all j��ij � Æ and we thus have

lim
��i!0

�0=�+��i

X
x

��(x)
X
y

@px;y(�)

@�i
P#
�+��i

(y; f�)

=
X
x

��(x)
X
y

@px;y(�)

@�i
lim
��i!0

�0=�+��i

P#
�+��i

(y; f�)

We know from the Lemma 4.4 that for f� 2 L1V r

lim
�0!�

sup
x2X

���P#
�0 (x; f�)� P#

� (x; f�)
���

V r(x)
= 0

hence since X = fx 2 X : V r(x) <1g we have
lim
��i!0

�0=�+��i

��Q�;iP
#
�0 f� = ��Q�;iP

#
� f�

Therefore, the limit in (A.10) yields:

lim
��i!0

�
1

��i

�
(��0 � ��)f� = ��Q�;iP

#
� f�

which concludes the �rst limit in (A.7).

Part 3 (Second limit): Condition (F3) implies that there exists a Æ > 0 such that for all

x 2 X �����f�+��i(x)� f�(x)

��i

����� � C 0V r(x); for all ��i 2 (0; Æ), (A.16)

for some C 0 <1. Since we have X
x2X

��(x)C
0V r(x) <1;

the second limit follows from the Dominated Convergence Theorem, i.e.

lim
��i!0

X
x2X

��(x)
f�0(x)� f�(x)

��i
=

X
x2X

��(x) lim
��i!0

f�0(x)� f�(x)

��i

=
X
x2X

��(x)
@f�(x)

@�i
:

Part 4 (Third limit): The convergence of the third limit,

lim
��i!0

X
x2X

(��0(x)� ��(x))
f�0(x)� f�(x)

��i
= 0 (A.17)
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follows via the same bound (A.16) coupled with (4.15) of Lemma 4.4.

Part 5 (Remaining equalities): The equality of

��Q�;iP
#
� f� = ��Q�;ig�; � 2 �;

follows since the performance potential gx(�) given by

gx(�)
:
= lim

n!1

(
E�;x

"
nX

k=0

f�(X
fxg
k )

#
� nJ(�)

)
; x 2 X: (A.18)

= lim
n!1

nX
k=0

E�;x

h
f�(X

fxg
k )� J(�)

i
(A.19)

is nothing more than a solution to the Poisson equation with forcing function f�.

In prior chapters, we have denoted any Poisson equation solution as ��. Here, we are

assuming the fundamental matrix exists and is the inverse of (I�P�+ e��). It is easily veri�ed
that a solution of the Poisson equation takes the form

�� = Z�f� = (I � P� + e��)
�1f�

Additionally, the series form (A.19) is known to solve the Poisson equation and to exist

(converge) by Theorem 17.4.2 in [79] under irreducibility, (D2), and (2.15). Furthermore, the

solution in the form g� di�ers by at most a �nite constant [79, Proposition 17.4.1] from the

solution P#
� f�, i.e.

P#
� f� = Z�f� � e��f�

= g� + ec

for some constant jcj <1. Therefore

��Q�;iP
#
� f� = ��Q�;i (g� + ec)

= ��Q�;ig�

since Q�;ie = 0 by assumption. Similarly,

��Q�;iP
#
� f� = ��Q�;i (Z� � e��) f�

= ��Q�;i (Z�f� � eJ(�))

= ��Q�;i��:

or this holds for any of the family of solutions to the Poisson equation which di�er by an additive

constant.
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A.6 A Proof of Theorem 4.6

This is an alternate version of last sections result which does not explicitly assume existence of

an invertible fundamental matrix.

Proof: Let � be a �xed point in � and consider a small perturbation in the ith component

vector, denoted ��i. The perturbation is assumed small enough so �0 = � + ��i 2 �. The

proof is identical for each i = 1; : : : ; p so let us now �x such an i.

Part 1 (Set up.): Let us expand the di�erence

J(�0)� J(�) = E��0
[f�0(X1)]�E�� [f�(X1)]

= E��0
[f�0(X1)]�E�� [f�0(X1)] +E�� [f�0(X1)� f�(X1)]

so that

@J(�)

@�i
= lim

��i!0

J(�0)� J(�)

��i

= lim
��i!0

X
x2X

��0(x)� ��(x)

��i
f�0(x) (A.20)

+ lim
��i!0

X
x2X

��(x)
f�0(x)� f�(x)

��i
(A.21)

We shall next consider the two limits (A.20) - (A.21) separately starting with the �rst.

Part 2-a (First limit, setup): We have the matrix equation

P�0 = P� +��i Q�;i +R(�;��i)

hence

��P�0 = ��P� +��i ��Q�;i + ��R(�;��i)

= �� +��i ��Q�;i + ��R(�;��i):

Inserting canceling terms on the left we have

���0P�0 + ��P�0 + ��0 = �� +��i��Q�;i + ��R(�;��i)

so that

(��0 � ��)(I � P�0) = ��i��Q�;i + ��R(�;��i):

Multiplying on the right by the Poisson equation solution ��0 we �nd,

(��0 � ��)(I � P�0)��0 = ��i��Q�;i��0 + ��R(�;��i)��0

which becomes

(��0 � ��)(I � e��0)f�0 = ��i��Q�;i��0 + ��R(�;��i)��0
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or since (��0 � ��)e = 0�
1

��i

�
(��0 � ��)f�0 = ��Q�;i��0 +

�
1

��i

�
��R(�;��i)��0 ; for j��ij > 0. (A.22)

We next consider separately the two terms on the right hand side of (A.22) as ��i ! 0

starting with the second term.

Part 2-b. (First Limit, second term.):

De�ne R0(�;��i)
:
=
�

1
��i

�
R(�;��i) and the second term is

��R
0(�;��i)��0 : (A.23)

Note again that if px;y(�) = 0, then rx;y(�;��i) necessarily must be zero also in a small

Æ-neighborhood of ��i = 0. If we again take the convention that any fraction of the form 0
0
is

de�ned to be zero, then we can write the double sum as

��R
0(�;��i)��0 =

X
x

��(x)
X
y

rx;y(�;��i)

��i
��0(y)

=
X
x

��(x)
X
y

px;y(�)
rx;y(�;��i)

px;y(�)��i
��0(y); j��j < Æ:

To apply the Dominated Convergence Theorem, we �nd for all j��ij < ÆX
x;y

��(x)px;y(�)
rx;y(�;��i)

px;y(�)��i
��0(y) �

X
x;y

��(x)px;y(�)K
00
3CV

r(y) <1; j��ij < Æ (A.24)

where the �rst inequality follows from (4.10) and the hypothesis while the second follows from

(2.15). Thus

lim
��i!0

��R
0(�;��i)��0 = lim

��i!0

X
x;y

��(x)px;y(�)
rx;y(�;��i)

px;y(�)��i
��0(y)

=
X
x;y

��(x)px;y(�) lim
��i!0

rx;y(�;��i)

px;y(�)��i
��0(y)

=
X
x;y

��(x)px;y(�) 0

= 0:

Thus, the second term in (A.22) converges to zero.

Part 2-c. (First limit, �rst term) :

We are assuming that for some constant C <1,

sup
�2�

j��0(x)j � CV r(x); for all x 2 X. (A.25)

We now consider the limit of the �rst term in (A.22), namely:

lim
��i!0

�0=�+��i

��Q�;i��0 = lim
��i!0

�0=�+��i

X
x2X

��(x)
X
y

@px;y(�)

@�i
��0(y)

= lim
��i!0

�0=�+��i

X
x2X

��(x)
X
y

px;y(�)

@px;y(�)
@�i

px;y(�)
��0(y)
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where the last line follow because if px;y(�) = 0, then the partial derivative in the numerator is

necessarily zero under (4.7) and this ratio is thus zero.

Again, to apply Dominated Convergence, we check

X
x;y2X

��(x)px;y(�)

@px;y(�)
@�i

px;y(�)
��0(y) �

X
x;y2X

��(x)px;y(�)K3CV
r(y) <1 (A.26)

for all j��ij < Æ by (4.8) and (2.15). Thus,

lim
��i!0

�0=�+��i

X
x;y2X

��(x)px;y(�)

@px;y(�)
@�i

px;y(�)
��0(y) =

X
x;y2X

��(x)px;y(�)

@px;y(�)
@�i

px;y(�)
lim
��i!0

�0=�+��i

��0(y)

=
X
x;y2X

��(y)
@px;y(�)

@�i
��(y)

the last step following from the assumed continuity of ��.

Therefore, the limit in (A.22) yields:

lim
��i!0

�
1

��i

�
(��0 � ��)f�0 = ��Q�;i��

which concludes the �rst limit in (A.7).

Part 3 (Second limit): Condition (F3) implies that there exists a Æ > 0 and some C 0 <1
such that for all �����f�+��i(x)� f�(x)

��i

����� � C 0V r(x); ��i 2 (0; Æ); x 2 X:

Since we assume X
x2X

��(x)C
0V r(x) <1;

the result follows from the Dominated Convergence Theorem, i.e.

lim
��i!0

X
x2X

��(x)
f�0(x)� f�(x)

��i
=

X
x2X

��(x) lim
��i!0

f�0(x)� f�(x)

��i

=
X
x2X

��(x)
@f�(x)

@�i
:

Part 4 (Last equality):

The equality of

��Q�;i�� = ��Q�;ig�; � 2 �;

follows since the performance potential gx(�) given by

gx(�)
:
= lim

n!1

(
E�;x

"
nX

k=0

f�(X
fxg
k )

#
� nJ(�)

)
; x 2 X: (A.27)

= lim
n!1

nX
k=0

E�;x

h
f�(X

fxg
k )� J(�)

i
(A.28)
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is nothing more than a solution to the Poisson equation with forcing function f�.

Speci�cally, the series form (A.28) is known to solve the Poisson equation and to exist

(converge) by Theorem 17.4.2 in [79] under irreducibility, (D2), and (2.15). Furthermore, the

solution in the form g� di�ers by at most a �nite constant [79, Proposition 17.4.1] from the

solution ��, i.e.

�� = g� + ec

for some constant jcj <1. Therefore

��Q�;i�� = ��Q�;i (g� + ec)

= ��Q�;ig�

since Q�;ie = 0 by assumption.

A.7 A Proof of Lemma 5.8

Proof: Fix a Æ such that Æ � minfÆC ; ÆHg and 0 < Æ � 1.

Case 1) � and �0 are chosen in � so that k� � �0k � Æ:

kh`(�)� h`(�
0)k

= k���H`;� � ���0H`;�0k
� k���H`;�k+ k��`;�0H`;�0k
� 2 sup

�2�
k���H`;�k

� 2 sup
�2�

���(X̀
i=1

V r(�i))


� `�(V r)

Since �(V r) <1 by (2.15 there exists a K <1 such that

kh`(�)� h`(�
0)k � `K

� `
K

Æb̀2 k� � �0kb̀2 :
Case 2) � and �0 in � are chosen so that k� � �0k < Æ � 1. Under our assumptions, for any

n = 1; 2; : : : and any �x 2 X, we have

kh`(�)� h`(�
0)k

�
���H`;� � �P n

`;�H`;�(�x)
+  �P n

`;�H`;�(�x)� �P n
`;�0H`;�(�x)


+
 �P n

`;�0H`;�(�x)� �P n
`;�0H`;�0(�x)

 +  �P n
`;�0H`;�0(�x)� ���0H`;�0


� `CHCE

�V r
` (�x)�

n + CHCC
�V r
` (�x)n`

2 k� � �0kb̀3
+`C5 k� � �0kb̀2 �P n

`;�0
�V r
` (�x) + `CHCE

�V r
` (�x)�

n

� `2 �V r
` (�x)

�
2CHCE �n + CHCCn k� � �0kb̀3 + Cr

DC5 k� � �0kb̀2� ; �x 2 X
`:
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In the second inequality above we have applied (C), (E1), and (H5) while the last inequality

we have again applied (5.14) under (D1) with Jensen's inequality.

This last inequality is true for all n = 1; 2; : : :, hence we may choose an integer n
:
=�

log� k��kb̀3� = log� k��kb̀3 + u where the remainder u is such that 0 � u < 1 and b̀
3 is

from (C). If we let ��
:
= � � �0, the bracketed term becomes�

2CHCE�
n + CHCCn k��kb̀3 + Cr

DC5 k��kb̀2�
� 2CHCE�

log�k��k
b̀3
+ CHCC(log� k��kb̀3 + 1) k��kb̀3 + Cr

DC5 k��kb̀2
� 2CHCE k��kb̀3 + CHCC k��kb̀3 log� k��kb̀3 + CHCC k��kb̀3 + Cr

DC5 k��kb̀2
� (2CHCE + CHCC + Cr

DC5) k��kb̀2 + CHCC k��kb̀3 log� k��kb̀3
�

�
2CHCE + CHCC + Cr

DC5 + CHCCC( b̀2= b̀3)� k��kb̀2 :
Here, we have used Lemma 3.1 in the last inequality with 0 < b̀

2= b̀3 < 1 and C( b̀2= b̀3) < 1 a

constant.

Finally, since we are free to choose any �x 2 X, we choose a minimizing �x in �V r
` (�x) for the

tightest bound. Unifying the two cases, there exists a Ch <1 such that

kh`(�)� h`(�
0)k � `2Ch k� � �0kb̀2 ; �; �0 2 �;

for all ` = 1; 2; : : :.

A.8 Localized Versions of the BMP Lemmas

Here, we adapt BMP Lemma's 2 through 6 [6, pp. 223-228], which provide a bound for each

term of the decomposition, to our conditions and framework of this chapter. These adapted

lemma's are then collected in Proposition 6.7 to show the the properties of the overall noise

term.

A.8.1 A Proof of Lemma 6.2

Proof: Part 1. Consider the sum

Sn
:
=

n�1X
k=0

k+11fk+1��gr�(�k) � (��k(Xk+1)� P�k��k(Xk)) ; n = 1; 2; : : : ;

which is a martingale since

E
h
1fk+1��g��k(Xk+1)jFk

i
= 1fk+1��gP�k��k(Xk):

Also, since the conditional expectation is a contraction in L2 [108, p. 88], or via Jensen's

Inequality, we have

E�;x

h
1fk+1��g jr�(�k) � P�k��k(Xk)j2

i
� E�;x

h
1fk+1��g jr�(�k) � ��k(Xk+1)j2

i
:
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Incremental orthogonality and Pythagoras formula [108, p.110] along with the above results

yield

E�;x

h
jSnj2

i
= E�;x

h
jS1j2

i
+

nX
k=2

E�;x

h
jSk � Sk�1j2

i

=
n�1X
k=0

2k+1E�;x

h
1fk+1��g jr�(�k) � (��k(Xk+1)� P�k��k(Xk))j2

i

=
n�1X
k=0

2k+1E�;x

h
1fk+1��g kr�(�k)k2 k��k(Xk+1)� P�k��k(Xk)k2

i

=
n�1X
k=0

2k+1M
2
1E�;x

h
1fk+1��g k��k(Xk+1)� P�k��k(Xk)k2

i

=
n�1X
k=0

2k+1M
2
1

n
E�;x

h
E
h
1fk+1��g�

0
�k
(Xk+1)��k(Xk+1)jFk

ii
� E�;x

h
1fk+1��gP�k�

0
�k
(Xk)P�k��k(Xk)

io
�

n�1X
k=0

2k+1M
2
1E�;x

h
E
h
1fk+1��g�

0
�k
(Xk+1)��k(Xk+1)jFk

ii

� C2
�M

2
1

n�1X
k=0

2k+1E�;x

h
1fk+1��gV

2r(Xk+1)
i

� C2
�M

2
1

n�1X
k=0

2k+1E�;x

h
1fk+1��gV

1(Xk+1)
i

where we have used (P2') in the second to last line. The last line follows since r � 1=4. Applying

(D0') to the last line we �nd

E�;x

h
S2
n

i
� M2

1C
2
�CDV (x)

n�1X
k=0

2k+1

The bound in the �rst part of the lemma follows then from Doob's inequality

E�;x

24sup
n�m

1fn��g

�����
n�1X
k=0

k+1e"(1)k+1

�����
2
35 � E�;x

"
sup
n�m

jSnj2
#
� 4 sup

n�m
E�;x jSnj2

� 4C2
�M

2
1CDV (x)

m�1X
k=0

2k+1; x 2 X; � 2 Q:

Part 2. For the convergence properties in the second part of the lemma, we note that on

f�(Q) =1g we have the bound
1X
k=0

2k+1 <1

which implies the martingale converges a.s. and also in L2 since it is bounded in L2 [108].
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Part 3. Now consider the sum

Zn
:
=

n�1X
k=0

k+11f�k2Qgr�(�k) � (��k(Xk+1)� P�k��k(Xk)) ; n = 1; 2; : : : ;

which is a martingale since

E
h
1f�k2Qg��k(Xk+1)jFk

i
= 1f�k2QgP�k��k(Xk):

Also, since the conditional expectation is a contraction in L2 [108, p. 88], or via Jensen's

Inequality, we have

E�;x

h
1f�k2Qg jr�(�k) � P�k��k(Xk)j2

i
� E�;x

h
1f�k2Qg jr�(�k) � ��k(Xk+1)j2

i
:

Incremental orthogonality and Pythagoras formula [108, p.110] along with the above results

yield

E�;x

h
jZnj2

i
= E�;x

h
jZ1j2

i
+

nX
k=2

E�;x

h
jZk � Zk�1j2

i

=
n�1X
k=0

2k+1E�;x

h
1f�k2Qg jr�(�k) � (��k(Xk+1)� P�k��k(Xk))j2

i

=
n�1X
k=0

2k+1E�;x

h
1f�k2Qg kr�(�k)k2 k��k(Xk+1)� P�k��k(Xk)k2

i

=
n�1X
k=0

2k+1M
2
1E�;x

h
1f�k2Qg k��k(Xk+1)� P�k��k(Xk)k2

i

=
n�1X
k=0

2k+1M
2
1

n
E�;x

h
1f�k2QgE

h
� 0�k(Xk+1)��k(Xk+1)jFk

ii
�E�;x

h
1f�k2QgP�k�

0
�k
(Xk)P�k��k(Xk)

io
�

n�1X
k=0

2k+1M
2
1E�;x

h
1f�k2QgE

h
� 0�k(Xk+1)��k(Xk+1)jFk

ii

� C2
�M

2
1

n�1X
k=0

2k+1E�;x

h
1f�k2QgV

2r(Xk+1)
i

� C2
�M

2
1

n�1X
k=0

2k+1E�;x

h
1f�k2QgV

1(Xk+1)
i

where we have used (P2') in the second to last line. The last line follows since r � 1=4.

Applying (D0') to the last line we �nd

E�;x

h
Z2
n

i
� M2

1C
2
�CDV (x)

n�1X
k=0

2k+1

and since
P1

k=0 
2
k+1 <1, the martingale Zn converges P�;x-a.s. and in L2.
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A.8.2 A Proof of Lemma 6.3

Proof:

Under (P3'),

kP���(x)� P�0��0(x)k � CÆV
r(x) k� � �0kb̀1 ; x 2 X; �; �0 2 Q: (A.29)

For k = 1; 2; : : : we have from (H2') and the de�nition of the SA that

k�k � �k�1k � k kH(�k�1; Xk) + k�k(�k�1; Xk) + zkk (A.30)

� 2k kH(�k�1; Xk) + k�k(�k�1; Xk)k (A.31)

� 2CHkV
r(Xk) + 2C�3

2
kV

r(Xk)

� 2 (CH + 1C�3) kV
r(Xk) (A.32)

Above, the projection term is bounded by

kzkk � kH(�k�1; Xk) + k�k(�k�1; Xk)k
which follows since �k 2 � and at the very least, the projection term can return the iterate to

this point so �k+1 2 �.

We next observe that for any �; �0 2 Q
j �(x)�  �0(x)j = jr�(�) � P���(x)�r�(�0) � P�0��0(x)j
� jr�(�) � P���(x)�r�(�0) � P���(x)j+ jr�(�0) � P���(x)�r�(�0) � P�0��0(x)j
� kr�(�)�r�(�0)k kP���(x)k+ kr�(�0)k kP���(x)� P�0��0(x)k
� M2 k� � �0k kP���(x)k+M1 kP���(x)� P�0��0(x)k :

Hence, by (P2') and (P3')

j �(x)�  �0(x)j � M2 k� � �0kC�V
r(x) +M1CÆ k� � �0kb̀1 V r(x) (A.33)

Part 1. By (A.29) and (A.32),

E�;x

24 m^��1X
k=1

k+1
���e"(2)k+1

���!2
35

= E�;x

24 m�1X
k=1

k+1
��� �k(Xk)�  �k�1(Xk)

��� 1fk+1��g
!2
35

� E�;x

24 m�1X
k=1

k+1

�
M2C� k�k � �k�1k+M1CÆ k�k � �k�1kb̀1�V r(Xk)1fk+1��g

!2
35

� 2E�;x

24 m�1X
k=1

k+1M2C� k�k � �k�1kV r(Xk)1fk+1��g

!2
35

+2E�;x

24 m�1X
k=1

k+1M1CÆ k�k � �k�1kb̀1 V r(Xk)1fk+1��g

!2
35
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Applying (A.32) to this last line

E�;x

24 m^��1X
k=1

k+1
���e"(2)k+1

���!2
35

� 8M2
2C

2
� (CH + 1C�3)

2E�;x

24 m�1X
k=1

k+1kV
2r(Xk)1fk+1��g

!2
35

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀1 E�;x

24 m�1X
k=1

k+1
b̀1
k V

r(1+b̀1)(Xk)1fk+1��g

!2
35

� 8M2
2C

2
� (CH + 1C�3)

2E�;x

24 m�1X
k=1

2kV
2r(Xk)1fk+1��g

!2
35

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀1 E�;x

24 m�1X
k=1

1+
b̀1

k V r(1+b̀1)(Xk)1fk+1��g

!2
35

Since for all k = 1; 2; : : :, we have 2k = 21

�
2
k

21

�
� 21

�
2
k

21

� 1+b̀1
2

=

 
21


(1+b̀1)
1

!

(1+b̀1)
k and

V r(1+b̀1)(x) � V 2r(x)

E�;x

24 m^��1X
k=1

k+1
���e"(2)k+1

���!2
35

�
0B@8M2

2C
2
� (CH + 1C�3)

2

0@ 21


(1+b̀1)
1

1A2

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀1
1CA

�E�;x

24 m�1X
k=1

1+
b̀1

k V 2r(Xk)1fk+1��g

!2
35

Let A0
2 be the large constant term in parentheses and if we apply the Schwarz inequality [50,

p. 2]

E�;x

24 m^��1X
k=1

k+1
���e"(2)k+1

���!2
35 � A0

2E�;x

24 m�1X
k=1

1+
b̀1

k V 2r(Xk)1fk+1��g

!2
35

� A0
2

 
m�1X
k=1

1+
b̀1

k

!
E�;x

"
m�1X
k=1

1+
b̀1

k V 4r(Xk)1fk+1��g

#

� A0
2

 
m�1X
k=1

1+
b̀1

k

!
m�1X
k=1

1+
b̀1

k E�;x

h
V (Xk)1fk+1��g

i

� A0
2

 
m�1X
k=1

1+
b̀1

k

!
m�1X
k=1

1+
b̀1

k CDV (x)

= A2V (x)

 
m�1X
k=1

1+
b̀1

k

!2
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with A2 = CDA
0
2. Above, we have used the assumption that r � 1=4.

Part 2. By (A.29) and a simple bound on the square of a sum,

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(2)k+1

���!2
35

= E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
��� �k(Xk)�  �k�1(Xk)

���!2
35

� 2E�;x

24 n�1X
k=m

k+1M2C�1f�k2Qg1f�k�12Qg k�k � �k�1kV r(Xk)

!2
35

+2E�;x

24 n�1X
k=m

k+1M1CÆ1f�k2Qg1f�k�12Qg k�k � �k�1kb̀1 V r(Xk)

!2
35

If we apply (A.32) to this we get

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(2)k+1

���!2
35

� 8M2
2C

2
� (CH + 1C�3)

2E�;x

24 n�1X
k=m

k+1k1f�k2Qg1f�k�12QgV
2r(Xk)

!2
35

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀1 E�;x

24 m�1X
k=m

k+1
b̀1
k 1f�k2Qg1f�k�12QgV

r(1+b̀1)(Xk)

!2
35

� 8M2
2C

2
� (CH + 1C�3)

2E�;x

24 n�1X
k=m

2k1f�k�12QgV
2r(Xk)

!2
35

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀1 E�;x

24 n�1X
k=m

1+
b̀1

k 1f�k�12QgV
r(1+b̀1)(Xk)

!2

:

35

Since for all k = m;m + 1; : : :, we have 2k = 21

�
2
k

21

�
� 21

�
2
k

21

� 1+b̀1
2

=

 
21


(1+b̀1)
1

!

(1+b̀1)
k and

V r(1+b̀1)(x) � V 2r(x)

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(2)k+1

���!2
35

�
0B@8M2

2C
2
� (CH + 1C�3)

2

0@ 21


(1+b̀1)
1

1A2

+ 8M2
1C

2
Æ (CH + 1C�3)

2b̀1
1CA

�E�;x

24 n�1X
k=m

1+
b̀1

k 1f�k�12QgV
2r(Xk)

!2
35
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Let B0
2 be the large constant term in parentheses and if we apply the Schwarz inequality

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(2)k+1

���!2
35

� B0
2E�;x

24 n�1X
k=m

1+
b̀1

k 1f�k�12QgV
2r(Xk)

!2
35

� B0
2

 
n�1X
k=m

1+
b̀1

k

!
E�;x

"
n�1X
k=m

1+
b̀1

k 1f�k�12QgV
4r(Xk)

#

� B0
2

 
n�1X
k=m

1+
b̀1

k

!
n�1X
k=m

1+
b̀1

k E�;x

h
1f�k�12QgV (Xk)

i

� B0
2

 
n�1X
k=m

1+
b̀1

k

!
m�1X
k=m

1+
b̀1

k CDV (x)

= B2V (x)

 
n�1X
k=m

1+
b̀1

k

!2

with B2 = CDB
0
2. Above, we have used the assumption that r � 1=4.

Also,

E�;x

24 1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(2)k+1

���!2
35 � B2V (x)

 
1X

k=m

1+
b̀1

k

!2

(A.34)

A.8.3 A Proof of Lemma 6.4

Proof: First we note that

sup
�2Q

j �(x)j =
�����d�d� (�) � P���(x)

����� �
d�d� (x)

 kP���(x)k �M1C�V
r(x):

Part 1. We have

E�;x

24 m^��1X
k=1

k+1
���e"(3)k+1

���!2
35 = E�;x

24 m�1X
k=1

(k � k+1)
��� �k�1(Xk)

��� 1fk+1��g
!2
35

� M2
1C

2
�E�;x

24 m�1X
k=1

(k � k+1)V
r(Xk)1fk+1��g

!2
35 :

Next, the Schwarz inequality yields

E�;x

24 m^��1X
k=1

k+1
���e"(3)k+1

���!2
35

� M2
1C

2
�

 
m�1X
k=1

(k � k+1)

!
E�;x

"
m�1X
k=1

(k � k+1)V
2r(Xk)1fk+1��g

#
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� M2
1C

2
�

 
m�1X
k=1

(k � k+1)

!
m�1X
k=1

(k � k+1)E�;x

h
V 1(Xk)1fk+1��g

i

� M2
1C

2
�1

m�1X
k=1

(k � k+1)CDV (x)

� M2
1C

2
�CDV (x)

2
1 :

Part 2. Here we have

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(3)k+1

���!2
35

= E�;x

24 n�1X
k=m

1f�k2Qg1f�k�12Qg(k � k+1)
��� �k�1(Xk)

���!2
35

� M2
1C

2
�E�;x

24 n�1X
k=m

(k � k+1)1f�k2Qg1f�k�12QgV
r(Xk)

!2
35 :

Next, the Schwarz inequality yields

E�;x

24 n�1X
k=m

k+11f�k2Qg1f�k�12Qg
���e"(3)k+1

���!2
35

� M2
1C

2
�

 
n�1X
k=m

(k � k+1)

!
E�;x

"
n�1X
k=m

(k � k+1)1f�k2Qg1f�k�12QgV
2r(Xk)

#

� M2
1C

2
�

 
n�1X
k=m

(k � k+1)

!
n�1X
k=m

(k � k+1)E�;x

h
1f�k�12QgV

1(Xk)
i

� M2
1C

2
�m

n�1X
k=m

(k � k+1)CDV (x)

� M2
1C

2
�CDV (x)

2
m:

A.8.4 A Proof of Lemma 6.5

Proof: First we have from (H2') and (6.11):

k+1
���e"(4)k+1

��� =
���2k+1r�(�k) � �k+1(�k; Xk+1) +R(�; �k; �k+1)

���
� 2k+1 kr�(�k)k � k�k+1(�k; Xk+1)k+ jR(�; �k; �k+1)j
� 2k+1M1C�3V

r(Xk+1) + 2k+1M2 kH(�k; Xk+1) + k+1�k+1(�k; Xk+1)k2
� 2k+1M1C�3V

r(Xk+1) + 2k+12M2(C
2
H + 2k+1C

2
�3)V

2r(Xk+1)

� 2k+1(M1C�3 + 2M2C
2
H + 221C

2
�3)V

2r(Xk+1)

= 2k+1BV
2r(Xk+1)
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where B
:
=M1C�3 + 2M2C

2
H + 221C

2
�3.

Part 1. With these results,

E�;x

24 m^��1X
k=0

k+1
���e"(4)k+1

���!2
35 � B2E�;x

24 m�1X
k=0

2k+1V
2r(Xk+1)1fk+1��g

!2
35

� B2E�;x

" 
m�1X
k=0

2k+1

!
m�1X
k=0

2k+1V
4r(Xk+1)1fk+1��g

#
;

m = 1; 2; : : :

where the last line follows from the Schwarz inequality. We have 4r � 1, so

E�;x

24 m^��1X
k=0

k+1
���e"(4)k+1

���!2
35 � B2

 
m�1X
k=0

2k+1

!
E�;x

"
m�1X
k=0

2k+1V
1(Xk+1)1fk+1��g

#

� B2

 
m�1X
k=0

2k+1

!
CDV (x)

m�1X
k=0

2k+1

� A4

 
m�1X
k=0

2k+1

!2

V (x); m = 1; 2; : : :

where A4 = B2CD.

Part 2. Similarly,

E�;x

24 n�1X
k=m

k+11f�k2Qg
���e"(4)k+1

���!2
35

� B2E�;x

24 n�1X
k=m

2k+11f�k2QgV
2r(Xk+1)

!2
35

� B2E�;x

" 
n�1X
k=m

2k+1

!
m�1X
k=n

2k+11f�k2QgV
4r(Xk+1)

#
; m = 0; 1; 2; : : : ; n > m;

where the last line follows from the Schwarz inequality. We assume 4r � 1, so

E�;x

24 n�1X
k=m

k+11f�k2Qg
���e"(4)k+1

���!2
35

� B2

 
n�1X
k=m

2k+1

!
E�;x

"
n�1X
k=m

2k+11f�k2QgV
1(Xk+1)

#

� B2

 
n�1X
k=m

2k+1

!
CDV (x)

n�1X
k=m

2k+1

� B4

 
n�1X
k=m

2k+1

!2

V (x); m = 0; 1; 2; : : : ; n > m;

where B4 = B2CD.
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A.8.5 A Proof of Lemma 6.6

Proof: Part 1. Recall e�0;n :
= 1r�(�) �P���(x)�nr�(�n�1) �P�n�1��n�1(Xn) for n = 1; 2; : : :.

First we have

j1r�(�) � P���(x)j2 � 21M
2
1C

2
�V

2r(x) � 21M
2
1C

2
�V

1(x)

and for each m = 1; 2; : : :

E�;x

"
sup

1�n�m
1fn��g

���nr�(�n�1) � P�n�1��n�1(Xn)
���2#

� M2
1C

2
�E�;x

"
sup

1�n�m
2nV

2r(Xn)1fn��g

#

Thus,

E�;x

"
sup

1�n�m
1fn��g je�0;nj2

#

= E�;x

"
sup

1�n�m
1fn��g

���1r�(�) � P���(x)� nr�(�n�1) � P�n�1��n�1(Xn)
���2#

� E�;x

"
sup

1�n�m
1fn��g

�
2
���nr�(�n�1) � P�n�1��n�1(Xn)

���2 + 2 j1r�(�) � P���(x)j2
�#

� 2M2
1E�;x

"
m�1X
k=0

2k+11fn��gV
2r(Xk+1)C

2
�

#
+ 2M2

1
2
1C

2
�V

2r(x)

� 2M2
1C

2
�

m�1X
k=0

2k+1E�;x

h
1fn��gV

1(Xk+1)
i
+ 221M

2
1C

2
�V

1(x)

� 2M2
1CDC

2
�V (x)

m�1X
k=0

2k+1 + 221M
2
1C

2
�V (x)

� 4CDM
2
1C

2
�V (x)

m�1X
k=0

2k+1; m = 1; 2; : : :

and recalling CD � 1 for the last line.

Part 2. To prove the second statement, we use a similar argument to yield

E�;x

"
1X
n=0

je�0;nj2
#
� 4CDM

2
1C

2
�V (x)

1X
k=0

2k <1; x 2 X;

and this implies that the sum
P1

n=0 je�0;nj2 converges P�;x � a:s: and hence

limn!1 e�n;0 = 0, P�;x � a:s:
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A.9 A Proof of Proposition 7.11

Proof: There is no loss of generality in assuming �0 to be non{random, as we do from now on.

We begin by writing (7.74) in the form

�0 2 IRp; �n+1 = �n + n+1fh(�n) + "n+1g; n = 0; 1; : : :

and by noting that under the i.i.d. assumption, we have

E["n+1jFn] = 0 and E[jj"n+1jj2jFn] =
1

`n+1
Tr[�(�n)]: n = 0; 1; : : : (A.35)

With the notation R(�)
:
= h�; h(�)i for all � in IRp, we readily get from (A.35) that

E[jj�n+1jj2jFn] = jj�njj2 + 2n+1R(�n) + 2n+1

"
jjh(�n)jj2 + 1

`n+1
Tr[�(�n)]

#

� jj�njj2 + 2n+1K(1 + jj�njj2) + 2n+1
`n+1

K(1 + jj�njj2) (A.36)

� (1 + 2K2n+1)jj�njj2 + 2K2n+1 n = 0; 1; : : : (A.37)

where in (A.36) we used (7.75){(7.76). Next we introduce the integrable rvs fMn; n = 0; 1; : : :g
by setting

M0
:
= jj�0jj2; Mn+1

:
= �n+1jj�n+1jj2 � �n+1 n = 0; 1; : : : (A.38)

with

�n+1
:
=

nY
i=0

�
1 + 2K2i+1

��1
and �n+1

:
=

nX
i=0

2K2i+1�i+1: n = 0; 1; : : :

We observe that (A.37) is equivalent to the supermartingale property

E[Mn+1jFn] �Mn P� a:s: n = 0; 1; : : : (A.39)

so that

supn E[Mn] � jj�0jj2: (A.40)

We also note the easy bounds

A � �n+1 � 1 and 0 � �n+1 � B n = 0; 1; : : : (A.41)

where

A
:
= exp[�2K

1X
i=0

2i+1] and B
:
= lim

n!1
�n; (A.42)

from (7.73) we see that 0 < A � 1 and B < 1. From (A.38), with �0 = 1 and �0 = 0, we

readily obtain the inequalities

Mn + �n � Ajj�njj2 and jMnj � �njj�njj2 + �n: n = 0; 1; : : : (A.43)
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Using (A.41){(A.42) we conclude from (A.40) and the �rst inequality in (A.43) that

sup
n
E[jj�njj2] <1;

whence supnE[jMnj] < 1 by the second part of (A.43). Therefore, by the basic martingale

convergence theorem [57, Thm. 5.1., p. 278], the supermartingale fMn; n = 0; 1; : : :g converges
P{a.s. to a �nite rv, and so does also the sequence fjj�njj2; n = 0; 1; : : :g.

It remains to show that limn!1 jj�njj2 = 0 P{a.s. To do this, we take expectations on both

sides of (B.3) and get

E[jj�n+1jj2] = E[jj�njj2] + 2n+1E[R(�n)] + 2n+1E

"
jjh(�n)jj2 + 1

`n+1
Tr[�(�n)]

#
n = 0; 1; : : : (A.44)

After adding these relations for k = 0; 1; : : : ; n and canceling appropriate terms, we are then

left with the relation for n = 0; 1; : : :

E[jj�n+1jj2] = jj�0jj2 +
nX

k=0

k+1E[R(�k)] +
nX

k=0

2k+1E

"
E[jjh(�k)jj2] + 1

`k+1
Tr[�(�k)

#
: (A.45)

Upon using the inequality (7.76) and the bound supnE[jj�njj2] <1 obtained earlier, we easily

conclude from (A.45) that

0 � �
1X
k=0

k+1E[R(�k)] <1: (A.46)

Therefore, limk!1 k+1E[R(�k)] = 0 and under (S') a simple argument by contradiction shows

that we must necessarily have lim infk!1E[R(�k)] = 0. In other words, along a subsequence,

say fnj; j = 1; 2; : : :g, we have limj!1E[R(�nj )] = 0, whence limj!1R(�nj ) = 0 in probability

(under P). Consequently, along a further subsequence, still denoted fnj; j = 1; 2; : : :g, we
have limj!1R(�nj ) = 0 P{a.s. Using this last fact in conjunction with (7.75) readily yields

limj!1 �nj = 0 P{a.s. and the desired conclusion now follows.
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