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Abstract

This paper considers a fingerprinting system where 2nRW distinct Gaussian

fingerprints are embedded in respective copies of an n-dimensional i.i.d. Gaus-

sian image. Copies are distributed to customers in digital form, using RQ bits

per image dimension. By means of a coding theorem, a rate region for the

pair (RQ, RW ) is established such that (i) the average quadratic distortion be-

tween the original image and each distributed copy does not exceed a specified

level; and (ii) the error probability in decoding the embedded fingerprint in the

distributed copy approaches zero asymptotically in n.
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1 Introduction

The widespread use of digital data in commercial applications over the last few years

has increased the need for copyright protection and authentication schemes. Espe-

cially for audio, image, video or multimedia data, information hiding has been sug-

gested in the literature as the most effective means for protecting against unlawful

use of the data (e.g. see [1, 2]). In a general framework, this is done by embedding a

message into a host data set, such that (i) the hidden message does not perceptually

interfere with the work being protected (a distortion constraint has to be satisfied),

and (ii) the message must be difficult or impossible to remove without severely de-

grading the fidelity of the protected work. This hidden message can play the role

either of a watermark or a fingerprint, depending on the application; a watermark

carries copyright information related to the rightful owner of the protected work, and

a fingerprint uniquely identifies each individual copy distributed, making it possible to

trace any illegally distributed data back to the user [3, 4]. In some papers (e.g. [1, 5])

these two terms are used interchangeably. Also, note that in the steganography

literature the original host image is called covertext and the resultant watermarked

image is called stegotext.

Recently, there have been various approaches to information hiding, from an

information-theoretic perspective. In [3, 6] O’Sullivan et al. give a general expres-

sion for the maximum rate of the set of messages that can be hidden within a host

data set (hiding capacity) subject to an average distortion constraint, as well as the

requirement that the message withstand any deliberate attack (subject to another av-

erage distortion constraint) aimed to destroy it. In this framework, the information

hider and the attacker play a game, in which the hider selects the distribution on the

watermarks such that it maximizes the mutual information between the hidden in-

formation and the output of the attack channel, while the attacker tries to minimize

this mutual information. The authors assume that the attacker knows the hiding

channel and that the decoder of the watermark knows the attack channel (addition-

ally to the hiding channel). Also, the hider and the decoder share some common side

information (e.g. a key or the host signal itself). For the case where the alphabets

are continuous, it is shown that the optimal distributions used by the hider and the

attacker have to be Gaussian (saddlepoint condition), provided the host data set is

Gaussian distributed and the distortion measure is the mean square. Moreover, in

this case, knowledge of the host signal at the decoder does not increase the hiding
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capacity. Additionally, in [7], Merhav considered a similar problem to [3], but from

the point of view of computing the exponents of the probability of error.

Another version of the watermarking game has been investigated in [8, 9] by Cohen

and Lapidoth, where the distribution on the data set is assumed Gaussian, and the

watermark encoder and decoder are designed irrespective of the attacker model (that

is, the watermark decoder does not use a maximum likelihood rule with respect to the

attack). Also, [8, 9] considered both peak and average distortion constraints between

the watermarked and the original image (as well as between the watermarked and the

attacked image). It is proved that in the case of average distortion constraints, the

coding capacity is zero. Moreover, knowledge of the host signal at the decoder does

not increase the capacity.

Another interesting watermarking scheme is quantization index modulation, de-

veloped by Chen and Wornell [10, 11], in which the host signal is compressed by

a quantizer that depends on the message to be hidden. An information-theoretic

analysis of this system has also been developed [12]. In [13], Steinberg and Merhav

consider the problem of watermark identification (i.e., detection whether a particular

watermark resides in the covertext) and give bounds on the identification capacity for

two alternative cases, where the covertext is known, or is not known, to the decoder.

In this paper, we study a problem that combines source and channel coding in a

fingerprinting framework (see also [14]). This problem is motivated by the following

scenario. A data distributor (e.g. a news agency) has to deliver an information

sequence In (e.g., a digital image) to Mn = 2nRW customers, such that each customer

receives a different fingerprinted version of In. We call RW the distribution rate of the

fingerprints (or, equivalently, the fingerprinting rate). To that end, the agent creates

Mn distinct signals xn(1), . . . , xn(Mn) (the fingerprints) and uses them to generate

Mn fingerprinted copies of In. In order for the fingerprints to be usable for a variety

of data, they are created independently of the host signal In. Due to bandwidth

limitations, the agent compresses the fingerprinted data at a rate of RQ bits per

image dimension subject to a fidelity criterion, prior to distribution.∗

For security purposes, as well as for maximum usability, we assume that both the

quantization and the reconstruction of the image are independent of the choice of the

fingerprint set. This can be particularly useful in case the quantization is performed

by an authority other than the information hider. In this way, the fingerprint set

∗Note that in this paper we use the more precise term fingerprint, instead of watermark that we

used in [14].
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Figure 1: The fingerprinting/authentication system with quantization

does not need to be revealed to any intermediaries (otherwise, the security of the

system would be at stake). In addition, the agent who generated the image should

be able to discern which fingerprint is present in a fingerprinted (and subsequently

compressed) image with a low probability of error (e.g., in case an authenticator needs

to track down the initial owner of an illegally distributed image), using the original

image as side information. In other words, fingerprints and source codewords have to

be designed in such a way that knowledge of the fingerprint set and the original data

suffices for detecting reliably the fingerprint in the compressed image.

This fingerprinting/compression system is depicted in Figure 1. Note that although

there is no transmission medium involved, the quantizer acts as a deterministic chan-

nel that degrades the fingerprinted image. We will thus refer the fingerprint encod-

ing/decoding as channel encoding/decoding. The main result of this paper is the

determination of the allowable rates RQ and RW for the above system, under some

weak assumptions described in the next section.

In comparison to the scenarios studied in [3, 9], our model considers a single fidelity

criterion, namely the resultant distortion between the original data sequence and the

fingerprinted/quantized data. And while quantization degrades the fingerprinted im-

age, it cannot be construed as a malicious attack of the type modeled in [3, 9]. In our

case, data compression and fingerprinting are cooperative (not competing) schemes,

and must be optimized jointly. Moreover, we assume that the fingerprinted/quantized

image is not further corrupted by any attack; therefore our result on the rate region

can be considered as an outer bound on the achievable rate region obtained when an

attack channel is present.

The paper is organized as follows: in Section 2 we give basic definitions and as-

sumptions used in our model. The coding theorem is presented in Section 3, along
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with a sketch of the proof of the achievability and converse theorems. The complete

proofs of the converse and the forward parts are given in Sections 4 and 5 respectively.

Conclusions and directions for further research are given in Section 6.

2 Model and Assumptions

We first proceed to give some definitions pertaining to the system shown in Figure

1. In the sequel, all random quantities (scalars or vectors) appear in upper case (e.g.

W,Xn, Y n). Lower case is used to denote non-random quantities (e.g. w, xn, n). For

example, for a specific w, xn(w) is a deterministic vector, while Xn = xn(W ) is a

random vector—specifically, a deterministic mapping of a random variable.

Definition 1 An (2nRQ , n) source code consists of a codebook of n-dimensional vec-

tors {ŷn(1), . . . , ŷn(2nRQ)} and an encoder f which maps the image space Rn into

that codebook.

The mapping f does not depend on the particular fingerprint set used (i.e. the

compression is done in a fingerprint-independent fashion). This can be particularly

useful in cases where the compression is performed by an authority other than the

information hider; then the hider need not reveal the fingerprints to any intermediaries

and the security of the fingerprinting system is not compromised. The codebook is

obviously available to the users, thus transmission of the fingerprinted image to each

user requires no more than nRQ bits.

Since the fingerprints have to be recoverable from the quantized image, we have a

channel coding counterpart in our model, and thus the following definition.

Definition 2 A (2nRW , n) fingerprint code consists of a codebook of n-dimensional

fingerprints {xn(1), . . . , xn(2nRW )} and a decoder

g : Rn × {ŷn(1), . . . , ŷn(2nRQ)} → {1, . . . , 2nRW }

The output of the decoder is denoted by ŵ. The notation Mn
def
= 2nRW will also be

used.

The decoder g is known only to the agent/authenticator.

We make the following basic assumptions about the image and fingerprint model:
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• The original image (or other multimedia data) In is i.i.d. N (0, PI).

• Fingerprinting is additive, i.e., the fingerprinted image can be represented as

Y n = In + xn(W )

where W is the (random, in general) fingerprint index.

• The fingerprints xn(1), . . . , xn(Mn) satisfy the following:

lim
n→∞

max
1≤i≤n

∣∣∣∣∣ 1

Mn

Mn∑
w=1

x2i (w)− PX

∣∣∣∣∣ = 0 (1)

lim
n→∞

∣∣∣∣ 1nh(In + xn(W ))−
1

2
log(2πe)(PI + PX)

∣∣∣∣ = 0 (2)

where W is assumed uniformly distributed over {1, . . . ,Mn}, h(·) is the differ-

ential entropy function, and 0 < PX < PI .

The above assumptions are made mostly for the sake of tractability. Although the

Gaussian model is not appropriate for most images of interest, it is possible (as argued

in [7]) to model the components of the image as uncorrelated if whitening is performed

prior to (additive) fingerprinting. The third assumption stipulates Gaussian-like fea-

tures for the fingerprint set: conditions (1) and (2) are satisfied with high probability

if the fingerprints are randomly generated using nMn i.i.d. N (0, PX) components.

This assumption is further advocated in [1], where additive i.i.d. Gaussian finger-

prints are claimed to have strong resilience to common signal processing operations

(e.g., low-pass filtering), common geometric transformations and collusional attacks.

We now define the following performance metrics:

Definition 3 The probability of error in decoding fingerprint xn(w) is given by

Pe(w) = Pr
{
g(In, f(In + xn(w))) �= w

}

Furthermore, the average probability of error for the decoder g is given by

Pe =
1

2nRW

∑
w

Pe(w)

and is equal to Pr{W �= Ŵ} when the fingerprint index W is uniformly distributed

in {1, . . . , 2nRW }.
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Definition 4 The average (per-symbol) quadratic distortion for fingerprint xn(w) is

given by

D̄(w) = E[n−1||In − f(In + xn(w)||2]

The average quadratic distortion when the fingerprint index W is uniformly distributed

in {1, . . . , 2nRW } is given by

D̄ = E[n−1||In − f(In + xn(W )||2] =
1

2nRW

∑
w

D̄(w)

Our objective in this paper is to compute:

1. the minimum value of RQ such that D̄ does not exceed some value D, and

2. the maximum value of RW such that the average probability of error Pe ap-

proaches zero, when the rate of the quantizer is RQ and D̄ does not exceed

D.

Note that the above definition of measured distortion takes into account the com-

bined effect of fingerprinting and quantization. As we mentioned in Section 1, this is

one of the distinctive differences between our model and the one considered in [3].

3 The Fingerprinting/Compression Coding Theo-

rem

The coding theorem that establishes the bounds on RQ, RW consists of two parts, a

direct and a converse part. Throughout, we use the notation Ŷ n = f(Y n). In both

parts, the following Markov conditions are used:

In, Xn → Y n → Ŷ n (3)

Y n → In, Xn → Ŷ n (4)

which hold because (i) Ŷ n is a function of Y n; and (ii) Y n = In +Xn (where Xn =

xn(W )). Also, from (3), (4) and the data processing inequality [15], we get

I(In, Xn; Ŷ n) = I(Y n; Ŷ n) (5)

We begin by stating the converse theorem.
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Theorem 1 (Converse) For any (2nRQ, n) source code and any (2nRW , n) fingerprint

set that satisfies conditions (1) and (2) above with D̄ ≤ D and Pe → 0, the following

must be true:

RQ ≥ rq(D)
def
=

1

2
log

(
P 2I

(PI + PX)D − PIPX

)

RW ≤ rw(RQ, D)
def
= RQ −

1

2
log

(
PI

D

)

The proof of the converse is given in Section 4, and is composed of two arguments:

a source coding and a channel coding argument. The source coding argument estab-

lishes the lower bound on the rate RQ, while the channel coding argument establishes

the upper bound on RW , for any pair of source and fingerprint codes. It should be

noted that RQ approaches its lower bound rq(D) when In − Ŷ n and Ŷ n become ap-

proximately uncorrelated with the average per-symbol distortion between In and Ŷ n

approaching D.

The forward (achievability) theorem is as follows.

Theorem 2 (Forward) For any ε > 0 and for any rate pair (RQ, RW ) such that

RQ > rq(D) and RW < rw(RQ, D)

there exists a (2nRQ, n) source code and a (2nRW , n) code for the fingerprints such that

(1) and (2) are satisfied, and such that for every fingerprint index w, D̄(w) ≤ D + ε

and Pe(w) < ε as n→∞.

The rate region RD of allowable rates (RQ, RW ) is shown in Figure 2 (for a fixed D).

The proof of the forward theorem is given in Section 5. Briefly, a (2nRQ, n) random

source codebook is generated, where each codeword Ŷ n(q) consists of n i.i.d.N (0, PI−

d) components, such that d ≤ D ≤ PI . Joint typicality encoding is used, with the

proviso that distortion is measured between In and Ŷ n. For the channel code, a

random fingerprint codeXn(1), . . . , Xn(2nRW ) is generated, where each componentXi

is i.i.d. Gaussian distributed with variance PX . The decoder/authenticator, who has

knowledge of In, uses the random fingerprint code together with the aforementioned

random source code to form triplets (In, Xn(k), Ŷ n) for all possible 1 ≤ k ≤ 2nRW . It

declares fingerprint Ŵ present in the image if (In, Xn(Ŵ ), Ŷ n) is jointly typical with

respect to a suitably chosen distribution. The probability of error is shown to vanish

asymptotically as long as

RW <
1

2
log

(
PI + PX2

2RQ

PI + PX

)
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Figure 2: For a given distortion constraint D, the shaded area represents the region

RD of achievable pairs (RQ, RW ). As D varies, the minimum source coding rate rq(D)

and the maximum corresponding fingerprinting rate rw(rq(D), D) parametrically de-

fine curve L. The inner bound RinD is represented by the striped region.

This inequality, together with the constraint RQ > rq(D), yields a non-convex inner

bound RinD on the achievable rate-regionRD (see Figure 2). The entire region RD can

be achieved by timesharing. Finally, we extract and expurgate deterministic source

and channel codes so that (1) and (2) are satisfied, together with Pe(w) → 0 and

D̄(w) ≤ D + ε for every fingerprint index w.

There are a number of observations that can be made with respect to Figure 2.

• The upper boundary ofRD is parallel to the diagonal RW = RQ. This is because

RD is the convex hull of RinD , and the asymptotic slope of L equals unity.

• The entire region RD lies below the diagonal RW = RQ. This is because for a

given image In, all 2nRW fingerprinted copies have to be distinguishable through

different quantization indices, i.e., RQ ≥ RW .

• Setting Ŷ n identically equal to zero results in an average distortion equal to PI

and also makes it impossible to detect the fingerprint. Thus for D ≥ PI , both

rq(D) and rw(rq(D), D) equal zero, and RD becomes the entire subdiagonal

region RQ ≥ RW .

• The other extreme (i.e., minimum) value of D is PIPX
PI+PX

. This distortion is

achieved when Ŷ n is a scaled version of Y n, which requires infinite precision
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Figure 3: Example for n = 2 (plane). The hexagonal cells represent the encoding

regions of the quantizer, and their centers are the representation vectors Ŷ n. In

order to decode the fingerprint Xn with low probability of error, it is necessary for

Y n = In + Xn to fall into different encoding regions for different Xn with high

probability.

and hence also an infinite rate rq(D). Obviously, the fingerprint can be per-

fectly reconstructed from In and Ŷ n, thus the corresponding fingerprinting rate

rw(rq(D), D) is infinite.

• The region RD grows monotonically with D ∈ [PIPX/(PI + PX), PI ].

• Figure 2 depicts the rate region RD obtained when both the distortion bound D

and the fingerprint variance PX are fixed. The effect of varying PX (with D kept

fixed) is to change the position of the left-hand boundary ofRD: as PX increases,

so does the minimum quantization rate rq(D) given in Theorem 1. There is no

change in the upper boundary of RD, since the expression for rw(RQ, D) does

not involve PX . Thus for an application where the only constraints are upper

bounds D and R on the average distortion and quantization rates, respectively,

the maximum fingerprinting rate RW would be given by

R−
1

2
log

(
PI
D

)
,

and could be achieved (within ε) using any value of PX such that

0 < PX ≤
PI(PI2

−2RQ −D)

D − PI
.
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The actual choice of PX would depend on the possible attack scenarios (not

studied in this paper); in general, higher values of PX would be preferable.

Figure 3 depicts a quantizer in the case n = 2, where 2nRW = 6 possible finger-

prints are used. Clearly, the introduction of the fingerprints increases the distortion

between the original image In and its representation Ŷ n. Setting RW above a certain

limit would result in poor fingerprint detection, since versions of the image carrying

different fingerprints could fall, with high probability, in the same encoding region.

4 Converse Theorem

The proof of Theorem 1 consists of two parts, the source coding part which establishes

a lower bound on RQ and the channel coding part which establishes an upper bound

on RW .

Let ε > 0. We assume that the fingerprint index W is uniformly distributed in

{1, . . . , 2nRW }, Pe < ε, and

D̄ =
1

n

n∑
i=1

E(Ii − Ŷi)
2 ≤ D . (6)

Let θ be the angle formed between the vectors Y n and Ŷ n in L2, where inner

product is defined as the (componentwise) average correlation. In other words,

cos(θ) =
n−1

∑n
i=1E(YiŶi)(

n−1
∑n
i=1E(Y 2i )

)1/2(
n−1

∑n
i=1E(Ŷ 2i )

)1/2 (7)

Again, Xn
def
= xn(W ).

We now begin with the source coding part.

Source Coding Part: We have the usual chain of inequalities:

RQ ≥
1

n
H(Ŷ n)

=
1

n
H(Ŷ n)−

1

n
H(Ŷ n|Y n)

=
1

n
I(Ŷ n;Y n) (8)

≥ inf
p(ŷn|yn)

1

n
I(Ŷ n;Y n) (9)
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The infimum in (9) is taken over all the distributions p(ŷn|yn) for which the conditions

(1), (2), (3), (4) and (6) are satisfied. It is well known (e.g., [16, page 69]) that

1

n
I(Ŷ n;Y n) ≥

1

2
log

(
1

sin2(θ)

)
(10)

where θ was defined in (7).

In order to minimize (10) with respect to θ, we consider the L2 space spanned by

the vectors Xn, In and Ŷ n depicted in Figure 4. The following observations are in

order:

1. Y n lies on the plane Pxi spanned by Xn and In.

2. The projection of Ŷ n on the Pxi plane lies on Y n, due to Markov condition (3).

Equivalently, Ŷ n and Y n belong to a plane Pŷ which is orthogonal to Pxi.

3. The circle C on the plane Pŷ is the locus of all Ŷ n such that D̄ = d.

We obtain a lower bound on 1
n
I(Ŷ n;Y n) by minimizing (10), or equivalently, by

maximizing θ. This happens when Ŷ n is tangent to C and d takes the maximum

allowable value, namely D. It then follows from the geometry of Figure 4 that Ŷ n−In

is orthogonal to Ŷ n and that sin(θ) =

√
D(PI+PX)−PIPX

PI
. Substituting in (10), we

obtain

RQ ≥
1

2
log

(
P 2I

(PI + PX)D − PIPX

)
(11)
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as required.

Channel Coding Part: Let ε > 0 and Pe < ε. Let the rate of the quantizer be

RQ ≥ rq(D) and the distortion constraint (6) be satisfied. Since the fingerprint index

W is uniformly distributed, we have:

RW =
1

n
H(W )

=
1

n
I(W ; In, Ŷ n) +

1

n
H(W |In, Ŷ n)

≤
1

n
I(W ; In, Ŷ n) + ε (12)

≤
1

n
I(Xn; In, Ŷ n) + ε

=
1

n
I(Ŷ n;Y n)−

1

n
I(Ŷ n; In) + ε (13)

where (12) is due to Fano’s inequality [15] and (13) follows from (5). Since the rate

of the quantizer is RQ, we have from (8) that n−1I(Ŷ n;Y n) ≤ RQ, and from (13) we

obtain

RW − ε ≤ RQ −
1

n
I(Ŷ n; In)

= RQ − h(I) +
1

n
h(In|Ŷ n)

≤ RQ −
1

2
log

(
PI

n−1
∑n
i=1E(Ii − Ŷi)2

)

≤ RQ −
1

2
log

(
PI

D

)
(14)

Taking ε arbitrarily small yields the desired bound on RW and concludes the proof of

the channel coding converse.

5 Forward Theorem

The proof of Theorem 2 uses a random source code CŶ and a random channel code

CX , generated independently of each other. The codebook for CŶ consists of 2nRQ

sequences Ỹ n(1), . . . , Ỹ n(2nRQ), whose components are i.i.d. N (0, PI − d); while the

codebook for CX consists of Mn = 2nRW sequences Xn(1), . . . , Xn(Mn), whose com-

ponents are i.i.d. ∼ N (0, PX). We first show that

Pr{|n−1||In − Ŷ n||2 −D| < ε} → 1 (15)

Pr{Ŵ = W} → 1 (16)
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where the probabilities are computed with respect to the joint (product) distribution

of In, W , CŶ and CX . We then extract deterministic codes that satisfy the conditions

in the statement of the theorem.

Source Coding: The fingerprinted image Y n = In + Xn(W ) (where W is a ran-

dom fingerprint index, uniformly distributed in {1, . . . , 2nRW }) is represented by the

codeword Ŷ n = f(Y n) = Ỹ n(q), where q is the smallest index such that the pair

(Y n, Ỹ n(q)) is jointly typical with respect to a distribution pY Ŷ defined below. If no

such q ∈ {1, . . . , 2nRQ} can be found, then Ŷ n = Ỹ n(0)
def
= 0.

It should be emphasized that the function f used by the encoder is independent

of the fingerprint set; and that the encoder only sees Y n, and not the original image

In. Thus the distribution pY Ŷ used in the typicality criterion for determining Ŷ n

must be such that the average distortion constraint between In and Ŷ n is (indirectly)

met. Such pY Ŷ can be chosen using parameters derived from the proof of the converse

theorem, as demonstrated below.

Let d ≤ D. Consider a bivariate Gaussian density pY Ŷ having zero mean and

covariance matrix

KY Ŷ =


 PI + PX (PI + PX)(PI − d)/PI

(PI + PX)(PI − d)/PI PI − d


 ,

and denote its marginals by pY and pŶ . The typical set corresponding to pY Ŷ is

T n
Y Ŷ

(ε) =

{
(yn, ŷn) :

∣∣∣∣−1

n
log pY (y

n)−
1

2
log(2πe)(PI + PX)

∣∣∣∣ < ε,

∣∣∣∣−1

n
log pŶ (ŷ

n)−
1

2
log(2πe)(PI − d)

∣∣∣∣ < ε,

∣∣∣∣−1

n
log pY Ŷ (y

n, ŷn)−
1

2
log(2πe)2|KY Ŷ |

∣∣∣∣ < ε

}
,

where—with a slight abuse of notation—pY (y
n), pŶ (ŷ

n) and pY Ŷ (y
n, ŷn) are the n-fold

i.i.d. products of pY (y), pŶ (ŷ) and pY Ŷ (y, ŷ), respectively.

Since each of the sequences Ỹ n(r) is i.i.d. (pŶ ) and independent of Y n, the proba-

bility that the pair (Y n, Ỹ n(r)) belongs to T n
Y Ŷ

(ε) is lower-bounded by 2−n(I(Ŷ ;Y )+ε).

Here I(Ŷ ;Y ) denotes the mutual information of the bivariate distribution pY Ŷ :

I(Ŷ ;Y ) =
1

2
log

(
P 2I

(PI + PX)d− PIPX

)

A standard argument (e.g., [15, page 356]) allows us to conclude that for

RQ ≥ I(Ŷ ;Y ) + 3ε =
1

2
log

(
P 2I

(PI + PX)d− PIPX

)
+ ε , (17)
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there exists an index q ≥ 1 such that (Y n, Ỹ n(q)) lies in T n
Y Ŷ

(ε) (and thus Ŷ n = Ỹ n(q))

with probability approaching unity.

The desired property (15) follows from a stronger result, namely that with prob-

ability approaching unity, the configuration of In, Xn, Y n and Ŷ n in the L2 space

induced by empirical (not ensemble) correlations is approximately that shown in Fig-

ure 4. This result will also be of use in the channel coding argument given later.

Lemma 1 With probability approaching unity, the triplet (In, Xn, Ŷ n) is typical with

respect to the trivariate Gaussian distribution pIXŶ having zero mean and covariance

matrix

KIXŶ =




PI 0 PI − d

0 PX PX(PI − d)/PI

PI − d PX(PI − d)/PI PI − d




Proof: Since PIXŶ is Gaussian, typicality is also expressed as follows: the empirical

correlations obtained from (In, Xn, Ŷ n) should be within ε (or a factor thereof) of the

corresponding entries of KIXŶ . Since Pr{(In, Xn) ∈ T nIX(ε)} → 1 and Pr{Ŷ n ∈

T n
Ŷ
(ε)} → 1, it remains to show that

Pr

{∣∣∣∣∣1n
n∑
i=1

IiŶi − (PI − d)

∣∣∣∣∣ < ε

}
→ 1 . (18)

and

Pr

{∣∣∣∣∣1n
n∑
i=1

XiŶi −
PX(PI − d)

PI

∣∣∣∣∣ < ε

}
→ 1 (19)

The fact that Pr{(Y n, Y n) ∈ T n
Y Ŷ

(ε)} → 1 implies that

Pr

{∣∣∣∣∣1n
n∑
i=1

(Xi + Ii)Ŷi −
(PI + PX)(PI − d)

PI

∣∣∣∣∣ < ε

}
→ 1 , (20)

and thus it suffices to prove one of the two relationships, w.l.o.g. (18).

The vector In can be decomposed as

In = αY n + Zn (21)

where Zn is an i.i.d. Gaussian vector independent of Y n and, by the Markov condition

(3), also independent of Ŷ n. It can be easily shown that α = PI
PI+PX

, and that the

variance of each Zi equals
PIPX
PI+PX

.
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From (20) and (21), we obtain

Pr

{∣∣∣∣∣
(
1 +

PX

PI

)
1

n

n∑
i=1

IiŶi −
(
1 +

PX

PI

)
1

n

n∑
i=1

ZiŶi −
(PI + PX)(PI − d)

PI

∣∣∣∣∣ < ε

}
→ 1

(22)

It is easy to show that Pr{|n−1
∑n
i=1 ZiŶi| < ε} → 1 by conditioning on the sequence

Ŷ n and applying the weak law of large numbers to the i.i.d. sequence Zn (which is

independent of Ŷ n). Thus (22) yields (18), as required.

Channel Coding: Again, the fingerprint index W is assumed to be uniformly dis-

tributed in {1, . . . , 2RW }. The rate of the random source code is set at RQ = rq(d)+ ε

(where d ≤ D), which guarantees (15).

The decoder/authenticator has possession of In, Ŷ n, as well as CŶ and CX . To

detect the fingerprint, the decoder forms all triplets (In, Xn(k), Ŷ n) for 1 ≤ k ≤ 2nRW ,

and tests each one for typicality with respect to the trivariate distribution pIXŶ
introduced in Lemma 1.

• If there exists a unique index j such that (In, Xn(j), Ŷ n) ∈ T n
IXŶ

(ε), then the

decoder outputs Ŵ = j.

• Otherwise, the decoder outputs Ŵ = 0, thereby declaring an error.

To compute the probability of error Pr{Ŵ �= W}, we assume w.l.o.g. that W = 1

(since Pr{Ŵ �= W} = Pr{Ŵ �= w|W = w} for any w). An error will occur only if

one of the following events occurs.

1. Ŷ n = 0, i.e., there exists no q ∈ {1, . . . , 2nRQ} such that (In +Xn(1), Ŷ n(q)) ∈

T n
Y,Ŷ

(ε). As this is not typical with respect to the PŶ -marginal of pIXŶ , the

decoder declares an error.

2. There exists q ∈ {1, . . . , 2nRQ} such that (In+Xn(1), Ŷ n(q)) ∈ T n
Y,Ŷ

(ε), but the

triplet (In, Xn(1), Ŷ n(q)) does not belong to T n
I,X,Ŷ

(ε).

3. There exists q (as in Event 2) satisfying (In, Xn(1), Ŷ n(q)) ∈ T n
I,X,Ŷ

(ε), but

there also exists k > 1 such that (In, Xn(k), Ŷ n(q)) ∈ T n
I,X,Ŷ

(ε).

Under Event 1, there is no good representation Ŷ n of In+Xn(1). From the source

coding argument, the probability of this event is asymptotically vanishing provided
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RQ > rq(d). The same is true about the probability of Event 2, by virtue of Lemma

1.

The probability of Event 3 is upper bounded as follows, assuming that Ŷ n =

f(In +Xn(1)).

Pr{∃ w �= 1 : (In, Xn(w), Ŷ n) ∈ T n
I,X,Ŷ

(ε)}

≤
2nRW∑
w=2

Pr{(In, Xn(w), Ŷ n) ∈ T n
I,X,Ŷ

(ε)}

= 2nRW Pr{(In, Xn(2), Ŷ n) ∈ T n
I,X,Ŷ

(ε)} (23)

The quantity Pr{(In, Xn(2), Ŷ n) ∈ T n
IXŶ

(ε)} can be upper-bounded by 2−n(I(X;I,Ŷ )−ε),

since

• (In, Ŷ n) lies in T n
IŶ
(ε); and

• by construction, Ŷ n depends only on In andXn(1), and is therefore independent

of Xn(2).

It can be easily shown that the mutual information I(X; I, Ŷ ) equals
1
2
log

(
PId

(PI+PX)d−PIPX

)
. Therefore, in order for (23) to vanish asymptotically, it suffices

that

RW <
1

2
log

(
PId

(PI + PX)d− PIPX

)
− o(1) (24)

Since RQ = rq(d) + ε, we have

d =
PI(PI + PX2

2(RQ−ε))

(PI + PX)22(RQ−ε)

and by substitution, (24) becomes

RW <
1

2
log

(
PI + PX2

2(RQ−ε)

PI + PX

)
− o(1) (25)

Thus (25) guarantees that Pr{Ŵ �= W} → 0.

We note here that the rate pair (RQ, RW ) can be chosen arbitrarily close to the

point
(
rq(D), rw(rq(D), D)

)
on the curve L which forms the upper boundary of the

region RinD (see Figure 2). Once we establish the existence of deterministic codes

with the desired properties, we will argue by time-sharing that the entire region RD
is achievable.

17



Deterministic Codes: With (RQ, RW ) as above, consider a deterministic source

codebook ŷn(1), . . . , ŷn(2nRQ) and a deterministic channel codebook xn(1), . . . , xn(Mn)

(where Mn = 2nRW ) satisfying the following conditions:

1

Mn

Mn∑
w=1

Pr{|n−1||In − f(In + xn(w))||2 −D| > ε} < ε (26)

1

Mn

Mn∑
w=1

Pe(w) < ε (27)

max
1≤i≤n

∣∣∣∣∣ 1

Mn

Mn∑
w=1

x2i (w)− PX

∣∣∣∣∣ < ε (28)

∣∣∣∣1nh(In + xn(W ))− h0

∣∣∣∣ < ε (29)

where h0 =
1
2
log(2πe)(PI + PX). The existence of such codes is guaranteed by the

fact that the corresponding random codes satisfy each of the above conditions with

probability approaching unity asymptotically.

By a standard expurgation argument, a proportion δ of the watermaks can be

removed from the channel code so that each remaining fingerprint xn(w) satisfies

Pr{|n−1||In − f(In + xn(w))||2 −D| > ε} < ε/δ (30)

and

Pe(w) < ε/δ , (31)

where the ratio ε/δ vanishes with ε (e.g., δ varies as
√
ε). Using the fact that

||In − f(In + xn(w))|| ≤ ||In||

and the dominated convergence theorem, it is straightforward to show that (30) im-

plies

D̄(w) = n−1E[||In − g(f(In + xn(w))||2] ≤ D + ε (32)

for every fingerprint xn(w) in the new (i.e., expurgated) channel code.

It remains to show that conditions (1) and (2) are also satisfied by the new chan-

nel code. (1) follows from (28) after a slight modification of the random channel

code which does not affect the asymptotic relationships of interest. Specifically, we

truncate each fingerprint component at ±β, where β = β(n) increases slowly with

n. As a result, removal of δMn fingerprints from the original deterministic code has

asymptotically negligible effect on the sum in (28), which can then be renormalized

to yield (1) for the new code.
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To establish condition (2) for the new channel code, we consider the n-variate

density of In + xn(W ) resulting from choosing xn(W ) uniformly over the following

sets: (a) the original deterministic code; (b) the set of codewords that were removed

from that code; and (c) the new code. Denoting these densities by pa, pb and pc,

respectively, we have

h(pa) ≤ − log(1− δ) + (1− δ)h(pc)− δ
∫
pb logpc

The integral on the r.h.s. of the above inequality can be upper-bounded using explicit

forms for pb and pc together with the power condition (1), which holds for both the

original and the new code. Without going into detail, the resulting bound is of the

form
1

n
h(pa) ≤ o(1) +

1

n
h(pc)

Since n−1h(pa) is within ε of h0 (by (29)) and n−1h(pc) can be no larger than h0 + ε

(i.e., the entropy of a Gaussian distribution with the same second moments), the

required result follows.

Timesharing: Thus far, we have established the achievability of the region RinD
depicted in Figure 2. To show that the entire region RD is achievable for a particular

distortion bound D, consider any point (RQ, RW ) in RD. Since the asymptotic slope

of L equals unity, the point in question will lie on a straight line segment joining(
rq(D)+ε, rw(rq(D), D)−ε

)
with another point below the curve L, corresponding to

a lower distortion bound D′ < D. If λ ∈ (0, 1) is the appropriate mixture coefficient,

then partitioning the image In into blocks of λn and (1− λ)n symbols and applying

the corresponding source and fingerprint codes will yield an average distortion no

larger than λD + (1 − λ)D′ + ε. It is straightforward to show that the mixture of

fingerprinting codes will also satisfy conditions (1) and (2). Thus the point (RQ, RW )

is achievable for distortion bound D.

This concludes the proof of the forward part of the coding theorem.

6 Concluding Remarks

There are a number of possible extensions to the fingerprinting model considered

in this paper. One could combine our model with the one in [3], assuming that

the fingerprinted images are further corrupted by attacks. Generalizations of our

results for non-Gaussian images and fingerprints, non-quadratic distortion metrics,
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and quantizers that depend explicitly on the fingerprint used (as in [10]) would be

also welcome. Another interesting model that could offer increased security, would

involve a trusted authority via which agents and customers would communicate. In

this case, the trusted authority combines watermarking and fingerprinting using a

superposition of codewords; one for the agent who generated the original image and

one for the customer who receives the watermarked/fingerprinted copy [17].
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