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ABSTRACT: The size of milling cutter significantly affects the machining time. Therefore, in order to perform
milling operations efficiently, we need to select a set of milling cutters with optimal sizes. It is difficult for human
process planners to select the optimal or near optimal set of milling cutters due to complex geometric interactions
among tools size, part shapes, and tool trajectories. In this paper, we give a geometric algorithm to find the optimal
cutters for 2-1/2D milling operations. We define the 2-1/2D milling operations as covering the target region without
intersecting with the obstruction region. This definition allows us to handle the open edge problem. Based on this
definition, we introduced the offsetting and inverse-offsetting algorithm to find the coverable area for a given cutter.
Following that, we represent the cutter selection problem as shortest path problem and discuss the lower and upper
bond of cutter sizes that are feasible for given parts. The Dijkstra’s algorithm is used to solve the problem and thus
a set of cutters is selected in order to achieve the optimum machining cost. We believe the selection of optimum
cutter combination can not only save manufacturing time but also help automatic process planning.

1 INTRODUCTION

NC machining is being used to create increasingly complex shapes. Complex machined parts require several
rouging and finishing passes. Traditionally, one single cutter is used in most cutting process. As the development
of high speed tool change mechanism, tool change time is shorten to seconds. Consequently, multiple cutters are
feasible to perform multi-pass cutting process for a given part. Selection of the right sets of tools and the right type
of cutter trajectories is extremely important in ensuring high production rate and meeting the required quality level.

It is difficult for human planners to select the optimal or near optimal machining strategies due to complex
interactions among tools size, part shapes, and tool trajectories.

Many researchers have studied cutter selection problems for milling processes. There still exist significant problems
to be solved in those approaches. Below are two examples:

e Most existing algorithms only work on 2-D2closed pockets (i.e., pockets that have no open edges), despite
the fact that open edges are very important in general2+hilting.

« Most of the cutter selection approaches have their own limitations. No systematic definition and algorithm for
cutter selection problem.

Finding the optimum cutters for a given part is supposed to help the process planning such as tool path planning and
scheduling. Currently there is no such systematic approach that can do it automatically, therefore, we are going to
given a systematical approach that can overcome the above limitations and can automatically generate the optimal
cutter combination for 2-1/2 milling operations. We believe our research result can also be integrated into some

commercial CAM system such that the cutter selection, CNC code generation and process planning can be
automatically performed.

2 RELATED WORK

More and more people have realized that finding the optimal cutter combination is very helpful in the process
planning. There are several papers talk about cutter selection problem for 2-1/2D milling process.



D.C.Yang and Z.Han present the tool selection problem in 3-axis NC machining for free-form surfaces [Yang 99].
In their paper, they assume that during milling process, only limited tools are available; and tool change time is a
constant number. They think too many tool changes is generally not desired in machining practice as it can affect
surface finish and cause unnecessary tool ware. In their procedure, the total machining time is the sum of cool
cutting time and tool change time. By enumerate all possible combinations of given set of cutter, they can find the
combination with minimal machining time. Their approach limits the number of tool changes to within 3, which
restricts the cutter combination. Yang et.a. find the approximate length of the cutter path, and used the tool path
length and the feed-rate to estimate the machining time. By using this method, they assume the zig-zag tool path is
used such that they can estimate the tool path length by the machining area and the cutter radius.

Sarma et.al. discussed the cutter selection in 3-axis rough cutting process [Maha 97]. They used Voronoi diagram to
find the offsetting area, which only handle the closed pocket problem. In their approach, a table in which the area
removed and the cutter size can be stored is build by using offsetting/ reverse-offsetting idea to get the cuttable area
for a cutter. They also assume the total machining time is the sum of cutting time and tool changing time and the
tool cutting time is proportional to the division of areato be cut and the cutter's diameter. Instead list al possible
combinations, they check the order of cutters in those combination and then choose the combination, which from
large tool to small too and then get the machining time for this combination. And finaly they find the best
combination.

D.Mount et.al presents an approximation algorithms for finding the optimized multiple tools for milling process
[Arya 98]. They transform the milling problem to a weighted set-cover problem using a greedy strategy to obtain a
logarithmic ratio. Their algorithm works only for pocket with connected domain. In their cost model which is used
to find the optimum tool set, the cutting time, the tool changing time and the tool transporting time are considered.

Lee et.al., assume two tools are used in rough cutting, bigger one used for the portion with a simple shape while a
small tool should be used for the complex portion [Lee 94]. They used the Octess method to find the approximately
select the cutters. This method is only valid for rough cutting, also they don't have a systematically theory of why
the two cutter are optimum.

T.C.Chang et.al., presented a method to find the cutter set for prismatic parts [Bala91]. Their basic ideais trying to
fit the possible large circle into contours to select possible large cutter to save processing time. They take both cutter
change time and geometric constraints into consideration. They stated the problem as follows. If there exists a set of
cutters, and after machining with these cutters, only finishing machining is needed for fillet radii corners, so the
problem isto determine the cutter with the largest radius in this set.

Veeramani and Gau used dynamic method in cutter selection problem [Veer 97]. Their algorithm only works for
closed pocked. Also they assume that the smallest cutter should be the minimal radio of the corners. They use two
stages to do the work: first using Voronoi mountain to get the relationship between the machinable area and the
cutter size, then they use dynamic programming to optimize the result. The goal of using dynamic programming of
identify an optimized set of cutting tools is to find the route from stage 0 to stage N such that the objective function
isoptimized. Only tool changing time and cutting time are considered in their approach. The total processing time
for a cutting-tool includes the time spent by the cutting-tool in material removal movements as well as non-material-
removal movements. They use the Voronoi Mountain to estimate the area that can be cut by a cutter and by using
the offset idea, the approximate cutter path length by using contour - parallel tool path can be estimated such that the
total cutting time can be estimated too.

In summary, most existing cutter selection algorithms select milling cutters by minimizing the machining time.
Moreover, most previous algorithms have the following restrictions. (1) they can only handle pockets with closed
edges, (2) most approaches restrict the number of cutters that can be selected.
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Figure 1: Problem Formulation

Our paper describes a systematic algorithm for finding an optimal set of milling cutters for 2-1/2D milling
operations. In selecting milling cutters we consider both the tool changing time as well as machining time and
generate solutions that alow us to minimize the total manufacturing time. Our tool selection algorithm improves
upon the previous work in the following manner: (1) it can handle both closed as well as open edges, (2) in selecting
cuttersit does not restrict the number of cutters.

Currently our algorithm is restricted to 2-1/2D milling operations. In Section 3, we define the 2-1/2D milling
operations as the problem of covering a target region with a cylindrical cutter without intersecting with the
obstruction region. This general definition alows us to handle both open and closed edges. In Section 4, we
introduce the method to compute the coverable area for each given cutter. In general, smaller the cutter size, the

more area it can cover. We find the coverable area by offsetting the obstruction region. After computing coverable

area for each cutter, in Section 5, the shortest path problem is used to represent the problem if finding a sequence of

cutters for one part. We will mainly we will discuss what the lower and upper bond of feasible cutters for a given

problem according to geometric and machining constraints. Then the Dijktra’s algorithm is used to solve the
problem. Several examples will be discussed in this section. The conclusion and discussion of our work will be
given at the final section of this paper.

3 PROBLEM FORMULATION

The most common milling problem is the problem of cutting a givBrr@gion at some constant depth using one or
more milling tools. We define the region to be machined agatiget region T. Beside the target region, there is

also anobstruction region O which is the region that the cutting tool should not cut during machining [Yao00a,
Yao00b]. An example is shown in Figure 1. The target region and the obstruction region must both be regular sets,
but may each consist of a number of non-adjacent sub-regions:

T=T,0..0T;

O:O:LD .0 Ok.
In our research, we assume that the boundary of each sub-region consists of only of line segments and segments of
circles.

Thetarget boundary By is the boundary of the target region, anddbsruction boundary By is the boundary of the
obstruction region. The edges on the obstruction boundary are obffedction edges. We call an edge of the

target boundary elosed edge if it is coexists with an obstruction edge; otherwise we call tEn edge. Figure 2

shows examples of open and closed edges. We will use the dashed line to represent the open edges, the shaded
regions as the obstruction region.

Let C be a circular cutter of radius and &, y) be a point. Then theegion covered by C at the pointX, y) is the
following set:

R(X.Y) :{ all points(u,v) such that\/(u -x)2+(v-y)’ <7 }



A point (X, y) is apermissible location for C if the interior of R(x, y) does not intersect with the obstruction region,
or equivalently, if On" R(x,y) =0 . A set of points Sis coverable using a cutting tool C if for every point pin S
there is a permissible location of C that coversp.

We are using the region covering idea in our following research. That is, we are trying to find the optimal cutters
that can cover the target region without intersecting the obstruction region by optimal total machining time. By
using this definition, we can not only handle the problem with closed edge, but also the problem with open edges.

Based on the region covering idea, given a cutter, we call the area of the target region that can be covered by this
cutter as coverable area of this cutter A(C). Knowing the coverable area for a given cutter, we can estimate the
cutting time if we use the cutter in machining process.

In our research, the total time of machining a part from loading the stock to the finish cutting is called the total
machining time Ty. The purpose of our research is to find the best combination of cutters such that the total
machining time for a given part is minimal. In the milling operations, the total machining time is composed by the
following items:

1. Total real cutting time T (the time spend on moving cutters to cut the profile);

2. Totd cutter change time T (the total time of changing tools that are already loaded in the tool magazine during
machining operations);
Mathematically: Ty = Tot Tee.

Our research is focusing on the 2-1/2D milling problem. We mainly consider the geometric information in finding
the cutters. Here are some assumptions:

1. Inthe milling operations, if we are going to use multiple cutters for one part, we will use the cutters in the
sequence of decreasing size.

2. A smaller cutter is only used to cut the area left by bigger ones.
3. Thetool change time can be estimated by the average experimental operations time.

Based on our definition and assumption, we define the cutter selection problem as following. Given one part
involves severa 2-1/2D milling operations, and a set of cutting tools, we are going to find the best combination of
milling tools such that the total machining time including tool changing time and cutting time for the part is
minimal.

Mathematically speaking, we have cutter set C={C,,C,,...,C,} where the cutters are sequenced in a decreasing order
such that the cutter radius have the relationsfxp=>...>r,,, and a parP, we need to find a subset of CUtt&rg§1C,

C'={C,, C,,....Cn } wheremsn and the cutters i€ are also in decreasing sequence, to achieve the minimal total
machining timeTy, .

It is difficult to select an optimal set of cutters for complex parts by hand. Therefor, in this paper, we are going to

[ Part profile ]

[ Cutter library | For each cutter., find how much of area it
can cover(Section 3).

A\

Choose an optimal sequence of cutters by
solving shortest path problem(Section 4).

Tool Change
Time/Cutting Parameters

Y
[ Best Cutter Combination ]

Figure 2: Overview of Our Approach



give a set of algorithms such that the cutter selection problem can be solved automatically. As shown in Figure 2,
based on this definition, by given a part, we can get the profile of target and obstruction regions of is. Suppose we
are given a set of cutters, we can find the coverable area for each given cutter using our algorithm. Then a shortest
path algorithms is used in order to find the best sequence of cutters that can cut al the parts by minimal total
machining time including cutting time and tool changing time.

4 FINDING COVERABLE AREA FOR A GIVEN CUTTER

In cutter selection problems, multiple cutting passes are used. The bigger cutter is usually used to cut material as
fast as possible and then smaller cutters are used until the whole target region is covered. How to find the feasible
cutter size and determine the coverable area for each cutter for a given part is believed to help the cutter selection
problem. In this section, we will introduce several geometric algorithms to automatically calculating the coverable
areafor agiven part.

4.1 PROFILE EXTRACTION ALGORITHM

Before we go further about the problem of finding multiple cutters for multiple part, we will first introduce how to
get the target and obstruction region profile from the CAD model. The idea of extracting the profile form a 3-D
model is following. Suppose we have a 3-D model of a given part, and we know the cutting depth for the cutting
process, we can use a surface to intersect with the 3-D model in different height, i.e., the upper surface and bottom
of the cutting stage, and then we can check the difference of those two intersection profile and find the real target
and obstruction profile. Figure 3 shows an example of how this procedure works.

Suppose we are given a 3-D model of the fina part P, we know before the cutting happens, the upper surface is at
height h, and cutter should cut the stock at the bottom surface at height h;, so we can use the following agorithm to
get the obstruction and target region.

PROFILE_EXTRACTION(P, hy, hy)

1. Get theintersection surface at height h; as S;

2. Get theintersection surface at height h, as S,

3. Obstruction region = S,, while target region=S- S,

7=z
4.2 COVERABLE AREA FINDING ALGORITHM OO%

Intuitively, the offset region F;(C) is the region formed by 48 %OQO Prgflls with Target
offsetting the obstruction subregion O, using the radius r of = < and o struction
the cutter C. Mathematically speaking, a point p isin F;(C), == Region

if pO O, and the minimal distance from p to any point in O o~

islessor equal tor. The regular union of all F(C)sis called Al 00%0 4

the offset region F(C) for all obstruction regions. Figure Ye— Upper Surface
4(b) shows an example of an offset region. =7 Profile

After we get the offset region for all obstructions, we can

define the inverse-offset region I(C) of F(C) as the region

formed by inverse offsetting the outer boundary of the offset < Bottom
region by using the radius r of the cutter C. Mathematically Surface Profile

speaking, a point p is in I(C), if pO F and the minimal
distance from p to any point on the outer boundary of F is
less or equal tor. Figure 4(c) shows an example of an offset
region. From the definition we know that | O F. <+—— 3-D Model

There may be difference between the offset region F and the
inverse-offset region | of F, we define the uncoverable
region as the region U=Tn (F-'1). Figure 4(d) shows an
example of an uncoverable region.

From the definitions, we can get the following lemma: Figure 3: Example of profile extraction



Lemma 1: We can not locate the cutter C centered at any point inside of F (not including the outer boundary of F)
without intersecting with O.

Proof: Suppose we locate cutter C at point p, pOF, we know that the minimal distance from p to any point in G; is
less or equal to r (only if the point is on the boundary of F can the equality happens), so the distance from the center
to at least one point of C will greater than r, so C must intersect with part of O.

Lemma 2: For a given cutter C and the part with obstruction O and target region T, the points in the uncoverable
region cannot be covered by the cutter C.

Proof: For agiven point p, p0JU, if we can put a cutter C that cover p, then, the center of C must locate inside of F,
from Lemma 1, we know that if we locate C at any center point inside F, C will intersect with O, that means p is not
coverable by C.

Lemma 3: Any point in the target region beside the uncoverable region is coverable.

Proof: From the definition, we know that all points outside of U in T should whether locate outside of F, or should

T \\

Given Cuitter,
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——————————————————————
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Figure 4: Finding Coverable Area by Offsetting and Inverse-offsetting



belong to I. For the points outside of F, we know that if we locate a cutter at that point, the distance from its center
to any point in O is greater than r, so this point is coverable. For any point inside of I, we can locate a cutter
centered at the point on the boundary of F that has the shortest distance from p, we know that the cutter will not
intersect with O, so the point is coverable.

By knowing the properties of the offset and inverse offset region, we can use the offsetting and inverse offsetting
idea to find the coverable area for a given cutter. For a given part, we know the obstruction regions and the target
regions. We can first offset each obstruction by the given radius r of a given cutter. Then we do union operation of
all the offset regions if they are contacted with another offset region. After that we do inverse offsetting based on
those union regions, there maybe some small part of the offset region that is outside of the inverse offset region, that
is the uncoverable region. Finally, the area of the coverable region is the difference of the target region and the
uncoverable region. Figure 4 shows how the procedure works.

Suppose the obstruction region of the given part is composed by several disconnected regions O={ O,,0,,...0,}; the
target region of the part is representedrbfor a cutter with radius r, the algorithm to find he coverable area is show
a s following:

COVERABLE_AREA_FINDLING (O, T, 1)
for each disconnected obstruction regiyndo
offsetting byr, the new region is called offset regiBn
if F; intersects some other offset region, unite those connected regions together

for eachF;, do

find U=Tn"(F- 1))

1
2
3
4
5. inverse offsettingr; by r and the region calleig
6
7. U=UuO'y;

8

Return area of = area of [- V)

Correctness proof of COVERABLE_AREA_FINDLING: From Lemma 2 and Lemma 3, we know that the coverable

area for a given cutter is the area of the target region minus the uncoverable region. Out algorithm is guaranteed to
find the right coverable area for a given cutter. Meanwhile, if we are given a part and a cutter, the algorithm can
find the offset and inverse-offset region, such that the answer can be found.

5 CUTTER SELECTION USING SHORTEST PATH ALGORITHM

By given a 2-1/2D milling problem, if we know the size of available cutters, we can use the algorithm in section 4 to
find the coverable area for each cutter. After we get the relationship of the coverable areea and the cutter size, we
are ready to find the optimal sequence of cutters such that by using those cutters, the total time of machining given
part is minimal. We cast the cutter selection problem into the shortest path problem and sue the Djikstra's algorithm
to solve it.

5.1 BACKGROUND ON SHORTEST PATH PROBLEM AND DIJKSTRA’'S ALGORITHM

In a shortest-paths problem, we are given a weighted, directed gr&dplx (V, E), with weight functionw: E- R
mapping edges to real-valued weights (as shown in Figure 5). The weight pf=pal§) vi,...,v[is the sum of the
weight of its constituent edges:

w(p) = ZW(Vi—mVi)-



Figure5: Shortest path Problem

We define the shortest-path weight from u to v by

—rmin{w(p)ul® - v if there is a path from tov
5(U,V) —{oo tw(p) ) otherwise

A shortest path from vertex u to vertex v is then defined as any path p with weight w(p)=d(u,v).

The single-source shortest-paths problem is defined as: by given agraph G = (V, E), we want to find a shortest path
from a given source vertex s [0 V to every vertex v V.

Dijkstra’s algorithm is known to be a good algorithm to solve the single-source shortest-paths problem on a
weighted, directed graph G = (V, E) for the case in which all edge weights are nonnegative. Therefor, in G, we
assume that w(u, v)=0 for each edge (u, vV)LE. In order to indicate the vertices on the shortest paths, given a graph
G=(V,E), we maintain for each vertex v V a predecessor 7{V] that is either another vertex or NIL.

The following theorem shows the correctness of Dijkstra’s agorithm: If we run Dijkstra’s agorithm on a weighted,
directed graph G=(V,E) with nonnegative weight function w and source s, then at termination, d[u] = &s, u) for al
verticesudJV. The running time required by Dijkstra’s algorithmis O(V?) [Thom 1990].

5.2 CUTTER SELECTION PROBLEM REPRESENTATION

Assume the cutters { C,,C,,...,C,} are given in order of decreasing size. Initially, we have the stock for given part,

after use the selected cutters, the initial stock will be machined into the final part. Here, we define the machining
process as several machining stages; each stage represents the intermediate part shapes, which are gotten by using
the corresponding cutter on the initial stockidPthe initial stage in which no cutter is useq, isPthe stop node in

the graph. Prepresents the last stage in which a cutteisQised such that all target area left after using bigger

cutters should be cleaned. In other worgsfiould be a cutter that can cover all target regions. We will build a

graph in which each node represents a machining stage. The graph is shown in Figur&té. ndtle represents

the part shap®; after thei'th cutter has been used on the stock. Each edge represents the operation of using some
cutter on the part. In this graph, the cost of each adpdq the time (cutting time and tool change time) needed to

use cutteC; on partsP;.

By using this representation, the optimal manufacturing time is equal to the least cost of any p&htérém
After we get this graph, we can easily solve this problem by using Dijkstra’s algorithm.

Cutter G

Figure 6: Problem Representation



5.3 USING DIJKSTRA’'S ALGORITHM IN FINDING OPTIMUM CUTTER SET
In order to calculate the weight for each edge, i.e., the machining time, we have the following assumptions:
1. T isknown asaverage cutter change timein terms of k. which can be determined by experimental operations.

2. During machining, for a cutter C whose diameter is d, if the area really cut by only use C is A', then the total
cutting time can be estimated by the formula: Ty=kxA'/r

3. If acutter is used during machining operations, the cutter will cut all possible area left by the forma cutters.
That means, if the current cutter is ¢ and it is used after cutter ¢;, then the real area cut by cutter ¢; should be A-
A.

4. During machining operation, we assume the cutters are used by a decreasing order, i.e., the larger tool is aways
used before a smaller tool can be used. The assumption is made based on the observation that usualy for a
given area A’, the bigger cutter used to cut it, the less time spend on machining. Following this assumption, we
can calculate the total cutting time for a given cutter C; if it is used right after C; is used, where ri<r;: Ty =
kx(A-A)/r;, k is a given ratio controls the cutting time for different machines. k can also be obtained by
experimental operations.

5. Cutter C, isthe lower bond of all feasible cutters. As we need to clean the whole target region, C,, must be the
end node of the shortest path.

The CUTTER_SELECTION procedure (CS) works this way: first, we will build a weighted, directed graph G=(V,E)
with nonnegative weight function w and source node s and target node v. We call this procedure as BUILD_GRAPH.
In this graph, each node represents a cutter size in the sequence from bigger to smaller. The first node (the source
node s) represents a virtual cutter cO whose diameter is infinity and whose coverable area is 0. The last node
represents the cutter found in the given cutter list whose coverable area should be the of the whole target region.
The edge links cutter i and j (here, the size of cutter i is bigger than cutter j) in the graph edge €(i,j) represents one
possible cutting sequence, i.e., after using cutter i, we changed into using j to cut the left area. The weight w of the
edge €(i,j) is defined as:

w(i,j)= ch+Tctj:kc+ kX(A’-A,)/rJ

After we get graph G, the optimization problem becomes fining the shortest path begins from the cutter Cy whose
diameter isinfinity to the cutter C, whose diameter if the smallest one among all cutters. We can use the Dijkstra’s
algorithm to find the shortest path, by means, the best cutter setsin decreasing order that can machine the given part
in minimum total machining time.

CUTTER_SELECTION(r[i],A[i], i=1to n)
1. BuIiLD_GRAPH

2. DIKASTRA(G, w, =0, v=n)

3. PRINT_RESULT

6. ALGORITHM ANALYSIS

Suppose we have N cutters. For the given part, the number of the edges of the obstruction region is E. The
complexity of our algorithm can be gotten by:

1. For each offsetting operations, we know the average complexity is O(E) [Yang 93]. Meanwhile, the inverse-
offsetting operation is based on the offset region, the segment should be O(E) so that the complexity of doing
inverser-offsetting is also O(E). Thus, the total time for finding coverable area for each part corresponding to
al N cuttersis O(Nx E).
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2. The Dijkstra agorithm runs in O(V?), V is the vertex in the graph. So for the cutter selection problem, the
running time in shortest path selection phase is O(N).

In summary, the total running for our algorithmis O(Nx E+ N?).
7. IMPLEMENTATION AND EXAMPLES

We have implemented our algorithm by using C++ and ACIS. Here shows one example. Suppose for part shown in
Figure 7(a), we are initialy give 10 cutters, (05, (110, 015, (020, (025, 030, 035, 040, (045, (050. By using our
algorithm, we can build a cutter size and coverable arearelationship char as shown in Figure 7(b).

By using the shortest path problem, we can get some results as discussed following: if we assign different tool
changing time and cutting factors, we are going to have different cutter combinations as shown in Figure 8. In
Figure 8, we can see that if the cutter changing time plays a more and more dominate role in total machining time,
the total number of cuttersin the optimal set will be less.

8. DISCUSSION AND CONCLUSION

Competition in manufacturing market requires optimal machining time and cost. How to automatically select an
optimal set of cutters such that the total machining time is minimal is very important. Asit is difficult to do this
cutter selection work manually, we give a series of agorithms such that we can select one or multiple optimal
cutters for agiven part. In particular, the contributions of our research are:

=  We define the region covering idea in cuter selection problem. By this definition, we cannot only handle the
problem with closed edge but also the problem with open edges. By this definition, not only the best cutter
sequences can be selected, but also can help us determine the efficient cutter path.

=  The method of how to extract the profile in name of target and obstruction region from a given 3-D model is
given. By using this profile extraction algorithm, we can ensure this whole system can be performed
automatically.

»  We discussed the upper and lower bond of a set of cutters for a given part, and give the offset and inverse offset
algorithm to find the coverable are for agiven cutter.

=  We represent the cutter selection problem as shortest-path problem, and by solving this problem the optimal
Gredede O O O O O O O 00
cwscrmin O O O O O O O @ O ®

Timeis 20:
Cutter's Diameter: 50 45 40 35 30 25 20 15 10 5

Figure 8: For different cutting parameter, the result is different



sequence of cutters for multi-pass milling can be found.

We plan to extend our work in the following areas to overcome current limitations:

= Currently when we estimate the real cutting time, we assume the cutting time proportional to the division of
coverable area and the cutter size. In practice, the cutting time will also depend on the cutter path. We will try
to consider tool path information such that the result will be more suitable.

» Tool life will aso constrain tool selection. We should avoid the situation that the tool is broken during
machining process. We will consider tool wear rate and total cutting area in order to use tool life information in
cutter selection problem.

=  Sofar, we are mainly consider the geometric constraint in cutter selection problem, we will exploit more about
machine constraints
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