
TECHNICAL RESEARCH REPORT

Stabilization of LTI Systems with Communication Constraints

by Dimitrios Hristu

CDCSS T.R. 99-3
(ISR T.R. 99-52)

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site  http://www.isr.umd.edu/CDCSS/cdcss.html



Stabilization of LTI Systems with Communication

Constraints1

Dimitris Hristu2

University of Maryland,
Institute for Systems Research,

College Park, MD 20742
e-mail: hristu@isr.umd.edu

subm. to ACC 2C00

Abstract

This work is directed towards exploring interactions of
communication and control in systems with communi-
cation constraints. Examples of such systems include
groups of autonomous vehicles, MEMS arrays and sys-
tems whose sensors and actuators are distributed across
a network. We extend some recent results involving sta-
bilization of LTI systems under limited communication
and address a class of feed-forward control problems
for the systems of interest.

1 Introduction

With communication networks proliferating into in-
creasingly many aspects of modern-day technology, en-
gineers are faced with new opportunities involving the
control of systems whose components are distributed
across a network and which are supposed to operate in
a coordinated manner. Examples of such systems in-
clude groups of vehicles, satellite clusters, mobile com-
munications, MEMS arrays and others. The challenges
that these systems present go beyond problems associ-
ated with increased dimensionality. Frequently, their
performance is limited not because of lack of compu-
tational power but because of lack of time on a shared
network of sensors and actuators. This has lead to
recent efforts towards bringing together aspects of con-
trol and communication under a framework that will
lead to a better understanding of control systems with
communication constraints.

One way to jointly formulate control and communica-
tion problems is to employ the idea of a “communica-
tion sequence” [6] which allows multiple (sub)systems
to share the attention of a centralized controller [8].
Communication sequences bring forth some of the con-
nections between control, communication and compu-

1This work was funded by NSF Grant no. EEC 94-02384 and
ARO Grant no.DAAG 55-97-1-0144.

2This work was done while the author was with the Divi-
sion of Engineering and Applied Sciences at Harvard University,
Cambridge, MA.

tational complexity and are appealing because they
quantify the amount of “attention” that the controller
pays to each component of the underlying system. Pre-
vious work has addressed problems involving stabiliz-
ing an LTI system when only some of its output(s) can
be measured at one time [10]. That work explored the
effects of communicating sequentially with each of a
set of linear systems and described a method for sta-
bilizing all systems in the set. This paper extends and
completes those results, taking into account communi-
cation constraints that are present both when making
measurements as well as when transmitting control ac-
tions to the LTI system.

We present a new “extensification algorithm” that
transforms the stabilization problem to an equivalent
problem involving matrix search (as is the case with
the work in [10]). Our goal is to combine our algo-
rithm together with recent results on tracking for net-
worked control systems ([8]) so that closed-loop track-
ing can be achieved for the systems of interest. For
related problems in hybrid system theory see [3], [5]
[4], and [12]. Work discussing systems with communi-
cation constraints can be found in [2], [11] and others.

2 A Prototype Computer-Controlled System

Consider an n-dimensional LTI system G(s) with
input u ∈ R

m
, and output y ∈ R

p
. The system

is driven by a computer or other digital controller
(Fig. 1) that may be remotely located and which does
not have simultaneous access to all inputs/outputs of
the control system. In particular:
• The controller sends commands to and receives
inputs from the system every ∆ units of time, via a
zero-order-hold stage.
• Inputs/outputs are communicated through a bus
which has limited capacity. Specifically, the bus can
“carry” at most b > 0 signals, with b < m+ p, b ∈ N ∗.

Typically, the capacity of the communication bus
will be divided between input and output signals,
with br channels devoted to sampling the output of



Figure 1: A closed-loop computer-controlled system

the underlying LTI system and bw channels used for
transmitting control inputs. We will refer to these
two groups of channels as the “input” and “output
bus.” Of course, br and bw may change at any time as
long as br + bw = b. This represents a rather general
setting for controller/plant communication, allowing
for dynamic reconfiguration of the available channels.
We will use the terms “narrow” (bw < m or br < p)
and “wide” (bw ≥ m and br ≥ p) to describe the
communication bus.

In the following it will be convenient to use the discrete-
time equivalent of the linear system G(s):

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) (1)

Each element of u retains its value (by virtue of the
ZOH stage) until that element is updated by the con-
troller. At the same time, the controller may only re-
ceive partial information about the output y(k). When
the communication bus is narrow, one possibility is to
choose a sequence of operations for the switches (see
Fig. 1) that select which inputs/outputs are to be up-
dated/sampled at a particular time. This leads us to
the notion of a “communication sequence” (originally
introduced in [6]) by which the controller chooses which
of the input signals (measurements) to update (read)
at every step.

Definition 1 An N-periodic communication se-
quence is an element of

E
m×N
per = {(σ(0), σ(1), ..., σ(N − 1),

σ(0), ..., σ(N − 1), ...) : σ(i) ∈ {0, 1}m} (2)

for some m > 0.

We will consider the controller’s communication with
the system to follow a periodic pattern specified by
a pair of N -periodic sequences: a “control” sequence
σw ∈ E

m×N
per will be used to transmit inputs and a

“measurement” sequence σr ∈ E
p×N
per will provide a

pattern for sampling the system output. The entries of
σw(i) (σr(i)) indicate which elements of u(k) (y(k))are
to be updated (measured) at the kth time step. We
will ignore quantization errors associated with the rep-
resentation of signal samples in the digital controller

and with the transmission of those samples through
the communication bus.

Definition 2 Consider a computer-controlled system
G(z) with bw < b (br < b) being the dimension of the
input (output) communication bus. A pair of commu-

nication sequences σw ∈ E
m×N

, σr ∈ E
p×N

is admis-
sible if:
• ‖σw(i)‖2 ≤ bw, ‖σr(i)‖2 ≤ br ∀i = 0, ..., N − 1
•
∑m
j=1 σw(i) +

∑p
j=1 σr(i) ≤ b ∀i = 0, ..., N − 1

• Span{σw(0), . . . , σw(N − 1)} = R
m

and
Span{σr(0), . . . , σr(N − 1)} = R

p

The above conditions require that no more than bw (br)
of the system inputs (outputs) are updated (measured)
by the controller at every step and that the pair
(σw, σr) allows communication with all inputs (out-
puts) of the linear system at least once every period.

3 Stabilization with Limited Communication

We now focus on the problem of stabilizing systems
like the one discussed in the previous section, using
static output feedback (see Fig. 1). We will take the
number of input and output channels (bw and br) to be
constant.

Problem Statement 1 Given: a computer-
controlled system G(z) with br, bw ∈ N∗, br + bw = b
denoting the size of the input and output commu-
nication busses and a pair of admissible N -periodic
communication sequences σr, σw ∈ E

p×N
per , E

m×N
per , find

a constant feedback gain Γ ∈ Rp×m that stabilizes the
system under output feedback.

In [10], we showed that a version of this problem (with
no constraints on transmitting control samples u(k)) is
equivalent to the NP-hard problem:

Problem Statement 2 Given a collection of matri-
ces Ai ∈ R

q×q
, 0 ≤ i ≤ imax, and scalars γ1, ..., γimax ∈

R , find a stable element of the affine subspace

A = A0 +

imax∑
i=1

γiAi (3)

where q = (2N2−N)n and imax = mp. In the next sec-
tion we present a new extensification algorithm. This
algorithm is complete in the sense that takes into ac-
count the both input (bw < m) and measurement con-
straints (br < p) and arrives at a similar construction
for the matrices that span the affine subspace of inter-
est.

4 Extensive Form of a Discrete LTI System

Consider the system of Fig. 1, to which a static out-
put feedback controller is attached, subject to limited
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communication as described in Sec. 2. If the input and
output busses were both “wide” (br = p, bw = m)
then the static output feedback control u(k) = ΓCx(k)
would be possible to implement and Γ would have to be
chosen to make the closed-loop dynamics (A + BΓC)
stable. We proceed to modify this simple situation to
reflect the existence of communication constraints.

4.1 Constrained Measurements
Assume for now that bw = m so that the controller
can transmit the entire input vector at once to the LTI
system. Because measurements are to be obtained ac-
cording to the communication sequence σr ∈ E

p×N
per ,

only some of the elements of y(k) are received by the
controller at each step k. The elements for which the
controller does not receive updates are assumed to hold
their last-known values. More precisely, we have a con-
trol law of the form

u(k) = Γyl(k) (4)

where yl(k) is the output vector composed of the most
up to date information available to the controller at
the kth step. Notice that in general yl(k) 6= y(k) be-
cause not all elements of y(k) are communicated to the
controller at step k. We can write

yl(k) = diag(σr(k))y(k) + (I − diag(σr(k)))yl(k − 1)
(5)

where for a vector x ∈ Rn, diag(x) is an n× n matrix
with the elements of x along its diagonal and all off-
diagonal entries being zero. By iteratively applying
Eq. 5 for a number of steps equal to the communication
period N , we obtain

yl(k) = diag (σr(k)) y(k) +

N−1∑
i=1

diag (σr(k − i))

i−1∏
j=0

MR(k, j)

 y(k − i) (6)

where MR(k, j)
4
= I − diag (σr(k − j)). We observe

that if the communication sequence σr is admissible
then each of the p elements of the output y(k) will be
read at least once every N steps so the summation in
Eq. 6 terminates after at mostN steps: system outputs
older than N steps are essentially “overwritten” in the
controller. We can rewrite Eq. 6 as

yl(k) =
N−1∑
i=0

DR(k, i)Cx(k − i) (7)

where

DR(k, i)
4
=

{
diag(σr(k)) i = 0

diag(σr(k − i))
∏i−1
j=0 MR(k, j) i > 0

(8)
are diagonal p × p matrices with binary entries. The
jth diagonal element of DR(k, i) is 1 if the jth output
was last read at the (k − i)th step and is 0 otherwise.

4.2 Constrained Control
We now follow the procedure of Sec. 4.1, applied this
time to communication over the input bus. The in-
put vectors u(k) arrive at the LTI system according to

the communication sequence σw ∈ E
m×N
per . At the kth

step, only the inputs specified by the non-zero entries
of σw(k) are updated, with all other inputs remaining
at their previous values:

u(k) = diag(σw(k))Γyl(k) + (I − diag(σw(k)))u(k − 1)
(9)

By iterating backwards for a full period (N steps) and
assuming that the communication sequence σw is ad-
missible (i.e. all m elements of the input are updated
at least once every N steps) we obtain:

u(k) =
N−1∑
i=0

DW (k, i)Γyl(k − i) (10)

where

DW (k, i)
4
=

{
diag(σw(k)) i = 0

diag(σw(k − i))
∏i−1
j=0 MW (k, j) i > 0

(11)

are diagonalm×m binary matrices andMW (k, j)
4
= I−

diag (σw(k − j)). The jth diagonal element of DW (k, i)
is 1 if the jth input was last updated at the (k − i)th

step, 0 otherwise.

4.3 Combining Communication Constraints
If communication with the system is to proceed ac-
cording to the pair (σr , σw) of admissible N -periodic
sequences, we can combine the results of Sec. 4.1 and
Sec. 4.2. By substituting Eq. 7 into Eq. 10 we obtain:

Bu(k) =
2N−2∑
i=0

Fkix(k − i) (12)

where

Fki
4
= B

b iN c(i−N−1)∑
j=min(i,N−1)

DW (k, j)ΓDR(k − j, i− j)C (13)

We can now write the closed-loop dynamics of the
computer-controlled system as:

x(k + 1) = Ax(k) +
2N−2∑
i=0

Fkix(k − i) (14)

Let us define Comp(p) to be the companion form asso-
ciated with an nth-degree polynomial p(s) =

∑n
0 pis

i

Comp(p)
4
=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 · · · · · · 0 1
pn pn−1 · · · p1 p0

 (15)
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If we now use the Fkj (Eq. 13) to define the matrix
polynomial

fk(s) = A+
2N−2∑
i=0

Fkjs
i (16)

then the closed-loop dynamics of Eq. 14 can be ex-
pressed in first-order form:

χ(k + 1) = Comp(fk)χ(k) (17)

where χ = [xT(k−2N+1) · · · x
T
(k) x

T
(k+1)]

T ∈ R (2N−1)
n.

The system of Eq. 17 is linear, time-varying and de-
scribes the state evolution of the computer-controlled
system under output feedback and periodic commu-
nication. We have essentially “extensified” the state
vector to include past values up to two communica-
tion periods. We note that the matrix Comp(fk) is
N -periodic in k, so Eq. 17 represents a periodic linear
system of dimension (2N − 1)n. Although of larger di-
mension, this periodic system is equivalent to the orig-
inal system in the sense that it exactly describes the
closed loop dynamics under the communication policy
that was imposed.

It is a fact that every discrete-time periodic system
can be expressed as a time-invariant system of higher
dimension (see [7]). In our case, this yields a system of
order (2N2 −N)n which we call the “extensive form”
of the original system in Problem 1:

Xe(k + 1) = AX e(k) (18)

where Xe(k) ∈ R
(2N2−N)n

and

A =


0 · · · 0 0 Comp(f0)

Comp(f1) 0 · · · 0 0
0 Comp(f2) 0 · · · 0

.

.

.

.

.

.

.
.
. · · · 0

0 · · · 0 Comp(fN−1) 0


(19)

By construction, stability of the extensified system
(Eq. 18) is equivalent to the stability of the original
system. Moreover, each of the matrices Comp(fk) are
affine in the entries of Γ. By choosing a basis for R

m×p
,

we can express Γ as Γ =
∑mp
i=0 γiEi where Ei is anm×p

matrix whose (b ipc+1, i mod p+1)th entry is “1”, with

all other entries being zero. In the basis of the {Ei} we
can express A as an element of the affine subspace

A = A0 +

mp∑
i=0

γiAi (20)

where each of the Ai are obtained by substituting Ei
for Γ in Eq. 13.

We note that at the kth step, the latest available out-
put to the controller yl(k) depends on the pastN values

of the state. If all elements of u(k) could be commu-
nicated simultaneously (wide input bus), it would be
sufficient to “extensify” the state by considering only
its N -past values at times k, k − 1, ..., k − N − 1 (see
[10]). However, because the inputs are also subject to
delays in arriving at the LTI system, a particular el-
ement of u(k) could persist for (at most) the next N
steps k, k + 1, ..., k +N − 1. This implies that the en-
tries of u(k) as seen by the LTI system could depend
on state values that are (at most) 2N − 1 steps old.

In summary, we have given a procedure for converting
an output feedback stabilization problem involving LTI
systems under limited communication, into a search
problem involving a finite collection of (2N2 − N)n-
dimensional matrices. These matrices are obtained
from the parameters of the control system together
with a pair of admissible communication sequences.

Equations 18 and 19 show that after a full communi-
cation period, the stability properties of the extensive
form can be captured in a lower-dimensional space by
considering

z(k + 1) = Âz(k) (21)

where Â = AN−1AN−2 . . .A0 and dim(z) = (2N−1)n.
In this lower-dimensional space, the number of gains is
the same as in the extensive form, however the gains

enter Â nonlinearly. If the number of gains is nγ
4
= mp

then the number of matrix coefficients for the exten-
sive form is nγ + 1. In the lower-dimensional space the

number of matrix coefficients would be
∑N
i=0

(
nγ+i−1

i

)
.

Thus, even though lower-dimensional matrices are of-
ten convenient from a computational viewpoint, the
potential savings in algorithm run times are offset by
the memory demands due to the large number of coef-
ficient matrices that Eq. 21 requires.

5 An Extensification Example

Consider the scalar system

x(k + 1) = ax(k) + u(k) (22)

y(k) = x(k) (23)

We assume that the controller communicates with the
above system over a bus of width b = 1 according to the
following pair of 2-periodic communication sequences:

σr = (1, 0, 1, 0, . . .), σw = (0, 1, 0, 1, . . .) (24)

Notice that the only communication channel is used for
measurements of the output and for transmission of the
control actions in an alternating fashion. Clearly, the
above sequences are admissible. We want to stabilize
the system using a control law of the form

u(k) = γy(k − d(σr , σw, k)) (25)
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where d(σr, σw, k) is a delay that depends on the com-
munication sequences and the current step k.

The scalar system we began with, combined with the
period-2 pair of communication sequences σr, σw gives
rise to a 3-dimensional periodic system χ(k + 1) =
Comp(fk)χ(k) with

fk(s) =

{
a+ γs2 k even
a+ γs k odd

(26)

The corresponding companion forms are:

Comp(fk) =



 0 1 0
0 0 1
γ 0 a

 k even 0 1 0
0 0 1
0 γ a

 k odd

(27)

and the extensive form is given by the 6-dimensional
LTI system:

Xe(k + 1) =


0 1 0

0 0 0 1
γ 0 a

0 1 0
0 0 1 0
0 γ a

Xe(k) (28)

Choosing the gain γ in order to stabilize the above
system is equivalent to finding a stable element of the
form given by Eq. 20 where A0 and A1 can be read off
from Eq. 28.

6 Finding a Set of Stabilizing Gains

After a computer-controlled system has been put in the
extensive form as described in Sec. 4, the output stabi-
lization problem becomes equivalent to finding a stable
element of the affine subspace defined by Eq. 20. This
is an NP-hard problem [1]. One possibility is to choose
the gains γi so that the eigenvalues ofA = A0+

∑
i γiAi

are enclosed in a circle with the smallest possible ra-
dius. This suggests minimizing the spectral radius of
the closed-loop system

η = ||λmax(A)|| (29)

To negotiate the large number of local minima that
are expected, we use simulated annealing on the gains
γi. Our algorithm numerically computes the gradient
∂η/∂γi and then lets the gains γi flow along that gra-
dient, adding a white-noise term dw with a gain g(t)
that decays to zero:

dγi =
∂η

∂γi
dt+ g(t)dw. (30)

The “cooling schedule” g(t) should go to zero as t→∞,
but it should do so at a slow enough rate for the spectral
radius to approach the global minimum.

7 Simulation Results

Consider the fourth-order LTI system:

x(k + 1) =

[
1 3/4 1/2 0

1/4 3 1/3 −1/3
1/6 0 −1/2 −3/7
0 −1 2/5 0

]
x(k) +

[
0 0
1 0
0 0
0 1

]
u

y =
[

1 0 0 1
0 1 0 0

]
x (31)

whose open-loop system eigenvalues are shown in
Fig. 2. We want to stabilize this LTI system using

−2 0 2 4
−3

−2

−1

0

1

2

3

Re

Im

Figure 2: Eigenvalues of open-loop system, ‖λmax‖ = 3.2.

static output feedback, given that the communication
bus can carry two signals to/from any of the inputs or
outputs (i.e. b = 2). Of the two available channels,
one is to be used for transmitting control values, the
other for obtaining measurements. In the following, we
investigate the performance of the extensification and
simulated annealing algorithms (Sec. 4, 6 ) for two dif-
ferent communication sequences.

7.1 Control with Uniform Attention
Initially the controller is to divide its attention equally
between each of the input/output pairs (u1, y1) and
(u2, y2). For that purpose, we chose

σw = σr =

([
1
0

]
,

[
0
1

]
,

[
1
0

]
,

[
0
1

]
, · · ·

)
(32)

to be the communication sequences to be used, so that
the controller reads and transmits in an alternating
pattern.

The matrices composing the extensive form were com-
puted and simulated annealing was performed on the
four elements of the feedback matrix Γ. The simulated
annealing algorithm was stopped after 5000 steps. The
cooling schedule was a 1

log(n) decay followed by a linear

decay to zero when the gain g(t) reached a pre-specified
level of 0.1. A plot of the cooling schedule is shown
in Fig. 3. Choosing “good” cooling schedules for the
stabilization problem considered here remains an open
problem. In this case, the spectral radius did not reach
values below unity. The evolution of the spectral radius
is shown in Fig. 4. The resulting final eigenvalues of the
extensified system are shown in Fig. 5, corresponding
to a closed-loop system that was unstable.
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Figure 3: Cooling schedule.
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Figure 4: Evolution of spectral radius (uniform atten-
tion).
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Figure 5: Closed-loop eigenvalues with uniform attention,
‖λmax‖ = 2.7.

7.2 Towards Optimal Communication
Next, we investigated a period-four pair of communi-
cation sequences,

σw = σr =

([
1
0

]
,

[
1
0

]
,

[
1
0

]
,

[
0
1

]
, · · ·

)
(33)

that devote three cycles to the pair (u1, y1) for every
one cycle allocated to (u2, y2). The above sequences
were chosen after some experimentation and by notic-
ing that the upper-left 2× 2 block of the dynamics for
the state evolution (Eq. 31) has a larger spectral radius
than the lower-right block (when the coupling between
the two blocks is removed). As a result, communicat-
ing more often with the (u1, y1) pair may lead to better
performance.

The cooling schedule was the same as in the uniform at-
tention case. This time, simulated annealing stabilized
the closed-loop system, reducing the spectral radius to
0.795. The final closed-loop eigenvalues are shown in
Fig. 6. with the evolution of the spectral radius of the

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re

Im

Figure 6: Closed-loop eigenvalues with non-uniform at-
tention, λmax = 0.795.

system shown in Fig. 7.
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0

0.5

1

1.5

2

2.5

3

3.5

4

Spectral Radius

Figure 7: Evolution of spectral radius (non-uniform at-
tention).
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8 Combining Stabilization with Feed-forward
Control

We outline a method for combining stabilization and
feed-forward control. Consider an LTI system subject
to communication constraints as described in Sec. 2
and assume that a stabilizing feedback matrix Γ has
been computed. Let {yd}

km
k=1, (yd(k) ∈ R

p
, km > 0 be

a desired output sequence of finite duration, which we
want to track with the output of the system of Fig. 1.
That is, we allow the controller to send signals of the
form

u(k) = Γy(k − d(σw, σr, k)) + u′(k) (34)

where d() is a delay due to the communication con-
straints. The signal u′(k) is a feed-forward term
which is subject to the same communication constraints
(σr, σ(w)) as the feedback signal so that it may be su-
perimposed on the stabilizing inputs transmitted by
the controller as Eq. 34 shows. We want to select the
sequence u′(k), k = 0, ..., km so that the error:

km∑
i=0

||yd(k)− y(k)|| (35)

is minimized. In the following, we assume that the
duration (km) of the desired signal is a multiple of
(2N − 1).

If the desired output yd(k) is known a-priori, then
we can make use of operator-based approaches [8] for
this “preview tracking” problem, suitably modified for
discrete-time systems. In short, consider the LTI sys-
tem discussed in Sec. 2, in its periodic form of Eq. 17

χ(k + 1) = Ac(k)χ(k) (36)

with Ac(k) = Comp(fk) N -periodic, defined by
Eq. 15, 16. The dynamics of the stabilized system
(Eq. 36) must be modified to reflect the presence of
the feed-forward signal u′(k). Let

v(k)
4
= [uT(k−2N+2) · · · u

T
(k−1) u

T
(k)]

T

ψ(k)
4
= [yT(k−2N+2) · · · y

T
(k−1) y

T
(k)]

T (37)

then

χ(k + 1) = Ac(k)χ(k) +Bc(k)v(k)

ψ(k) = Cc(k)χ(k) (38)

where Bc ∈ R
(2N−1)n×m

and Cc ∈ R
(2N−1)p×(2N−1)n

will be determined by the choice of communication se-
quence and the parameters of the underlying liner sys-
tem.

Now, feed-forward input sequences are mapped to out-
puts by

ψ̃ = Λṽ (39)

where

ψ̃
4
=


ψ(1)
ψ(2)

...
ψ(µ)

 ṽ =


v(0)
v(1)

...
v(µ− 1)

 , (40)

µ = km/(2N − 1) and

Λ
4
= [Λij ] (41)

with each (2N − 1)p× (2N − 1)m block Λij given by

Λij =


Cc(i)

(∏j
q=iAc(q)

)
Bc(j) i > j

Cc(i)Bc(j) i = j
0 j > i

(42)

If p ≥ m, Λ has more rows than columns. If Λ has
maximal column-rank, then we can use its generalized
inverse to compute the feed-forward control sequence
that will minimize the tracking error (Eq. 35) by:

v∗ = (ΛTΛ)−1ΛT (ψd − ψic) (43)

where ψic is the effect of initial conditions for the plant
state x(0). The vector ψic will be comprised of the
samples of the sequence

yic(k) = CAkx(0) (44)

according to Eq. 37, 40.

There are two necessary conditions for Λ to be injective.
First, the original system (Eq. 1) have normal rank:

limsup|z|=1rank(C(zI −A)−1B) = m (45)

Second, the communication sequences σr, σw must be
admissible, to prevent from consistently “ignoring” any
of the inputs or outputs. Although these are only neces-
sary conditions, is is possible to modify matters so that
they are also sufficient, by redefining ṽ(k) in Eq. 39 to
be:

ṽ =



v(−2N − 1)
...

v(−1)
v(0)
v(1)

...
v(µ− 1)


(46)

and Λ to be the new map that takes ṽ to ỹ. This
corresponds to considering the “past” 2N − 1 samples
of v in order to ensure injectivity of the new map Λ.
From a least-squares point of view, if the cost function
penalizes the deviation from a given output y(0), then
the controller must be given the chance to affect y(0).
This can only be guaranteed if we are allowed to choose
the 2N − 1 inputs preceding that output. This is not
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surprising if we recall the n-step controllability results
for discrete-time LTI systems. If the above conditions
are satisfied then non-zero inputs sent by the controller
to the LTI system will produce non-zero outputs and
Λ will be kernel-free. We will not give a formal proof
of this here; a more detailed argument can be found in
[9].

We expect to include results demonstrating combined
tracking and stabilization tasks in the final version of
this manuscript.

9 Conclusions and Future Work

In this paper we have addressed the stabilization of
LTI systems which are operating under limited com-
munication. Our approach is based on the use of peri-
odic communication sequences which direct the flow of
control and measurement signals from the controller to
the plant across a network or communication bus. The
work presented here builds on previous versions of the
extensification algorithm in order to handle constraints
affecting both control and measurements. There are
several issues that present opportunities for further
work related to the extensification algorithm, including
methods for finding “good” communication sequences
and cooling schedules. In addition, it would be desir-
able to investigate bounds for the spectral radius of the
extensive form so that stopping criteria for our simu-
lated annealing algorithm can be constructed.

We have outlined a method for combining basic feed-
forward control with the extensive form. Closed-
loop tracking is a logical next step that remains to
be addressed. Finally, although our model for lim-
ited communication assumes timely arrival of each in-
put/output sample from/to the controller, this may not
be the case in may realistic situations (i.e. control over
the Internet). Current efforts are focused on develop-
ing models that can handle variability in the arrivals
of control samples as well as “lost” samples that fail to
arrive at their destination.
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