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ABSTRACT

Title of Dissertation: HEAVY AND LIGHT TRAFFIC REGIMES

FOR M |G|∞ TRAFFIC MODELS

Konstantinos P. Tsoukatos, Doctor of Philosophy, 1999

Dissertation directed by: Professor Armand M. Makowski

Department of Electrical Engineering

The M |G|∞ busy server process provides a class of structural models for com-

munication network traffic. In this dissertation, we study the asymptotic behavior

of a network multiplexer, modeled as a discrete–time queue, driven by an M |G|∞

correlated arrival stream. The asymptotic regimes considered here are those of

heavy and light traffic. In heavy traffic, we show that the arising limits are de-

scribed in terms of the classical Brownian motion and the α–stable Lévy motion,

under short– and long–range dependence, respectively. Salient features are then

effectively captured by the exponential distribution and the Mittag–Leffler spe-

cial function. In light traffic, the analysis reveals the effect of two aspects of the

M |G|∞ process, i.e., the session duration distribution G and the gradual nature of

the arrivals, as opposed to the instantaneous inputs of a standard GI|GI|1 queue.

We exploit these asymptotic results to construct interpolation approximations for

system quantities of interest, applicable to all traffic intensities.
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Chapter 1

Introduction

With high resolution traffic measurements from a variety of networking applica-

tions becoming widely available, there has been renewed interest in understand-

ing the statistical nature of emerging network traffic. Large data sets, obtained

from Ethernet LANs, VBR video sequences, ftp, telnet and WWW applications

in WANs, have been extensively studied and results point to the conclusion that

real traffic is very bursty, exhibiting great variability over extended periods of

time that are much longer than previously expected. As these dependencies may

have a pronounced effect on performance [40], they should be taken into account

when modeling network traffic for buffer and link provisioning, or for evaluating

scheduling policies.

In the recent literature on traffic modeling such persistent correlations are often

reported to be best captured by stochastic processes that are long–range depen-

dent [4, 12, 22, 23, 36, 48]. Roughly speaking, this happens when the data stream

displays correlations which span multiple time scales, and which, despite being

individually small, decay in such a slow hyperbolic–like manner as to be consid-

ered non–summable. In other cases (e.g., the studies of VBR video traces [30, 34])

sample autocorrelation functions are found to conform with a more general subex-
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ponential decay. In any case, the observed dependencies cannot be exclusively

attributed to classical Markovian models, with bounded exponential moments. A

consensus seems to be emerging to the fact that non–traditional stochastic models

should be considered; these will most likely play an increasing role in capturing

the dynamics of traffic that networks are expected to carry in the near future.

Going beyond the statistical findings mentioned above, an interesting line of

current research focuses on quantifying the consequences of high variability and

dependence on network performance. The initial experimental work in [18] indi-

cates that the impact of long–range dependencies is adverse and significant, yet

evidence to the contrary also exists [24, 38, 52], suggesting that in many practical

situations queueing measures are not seriously affected. In addition, the traffic

measurement studies have generated interest in queueing systems with correlated

arrival processes. Few analytical results are currently available for queues with

long–range or subexponentially dependent arrivals. These include the fractional

Brownian motion model of Norros [43], fractional Gaussian noise [1], the popular

independent on/off source model with Pareto activity periods [9, 28] and, more

recently, the multiplexed on/off sources [29]. In all these cases buffer overflow

probabilities display a slow non–exponential decay; this is in sharp contrast with

the exponential tails that typically characterize queues with short–range dependent

Markovian inputs. Moreover, a closer examination confirms that classification in

terms of the short vs. long–range dependent nature of the traffic is often insuffi-

cient: Both within the short and the long–range dependent regime further details

matter, and vastly different queueing behaviors arise.
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1.1 From on/off to M |G|∞ sources

In this dissertation, we consider the class of discrete–time M |G|∞ input processes.

An M |G|∞ input process is understood as the busy server process of a discrete–

time infinite server system fed by a discrete–time Poisson process of rate λ (cus-

tomers/slot) and with generic service time σ. Such M |G|∞ processes can account

both for short and long–range dependent behaviors, with the correlation patterns

controlled through σ [Proposition 2.1.1]. Furthermore, asymptotic self–similarity

arises when σ is Pareto–like, i.e., has a regularly varying tail of the form (3.9).

M |G|∞ processes have already been used by Paxson and Floyd to successfully

model WAN traffic [48]. However, perhaps the most convincing justification sup-

porting their use as plausible traffic models is provided by the following limiting

result [37]: Consider M identical and independent sources, with alternating inde-

pendent emission and silence periods. Assume that during its “on” periods each

source generates information at a constant rate of one unit per time slot, while

during the “off” periods it remains inactive. We alternatively view these “on”

periods as corresponding to information sessions. Denote by σ the duration (in

slots) of the generic information session and allow the duration of the generic “off”

period, denoted by Toff , to depend on the number of sources, i.e., Toff = Toff(M).

The resulting total session arrival rate λ(M) is given by

λ(M) =
M

E [σ] + E [Toff(M)]
.

Let the number of sources M go to infinity, while simultaneously reducing the

number of sessions of an individual source, so that the aggregate session arrival rate

remains finite. This can be achieved by selecting Toff(M) such that E [Toff(M)] =

M/λ for some λ > 0, in which case lim
M→∞

λ(M) = λ. Consider now the process
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which, in each time slot, records the total number of newly initiated “on” periods.

This converges, as M goes to infinity, to a discrete–time Poisson process with

session arrival rate λ (sessions/slot). Since σ is the generic session duration random

variable (rv), we readily identify the M |G|∞ busy server process with parameters

(λ, σ) as the limiting process counting the number of active sessions at any given

time slot. Hence, the class of M |G|∞ processes is one that naturally arises from a

Poisson superposition scheme of infinitely many simpler on/off sources.

1.2 Summary and discussion

As shown in [14, 39, 46, 47], M |G|∞ processes induce a wide variety of asymptotic

behaviors for the buffer probabilities at a multiplexer with constant release rate.

In particular, when σ has a regularly varying tail – the M |G|∞ process is now

asymptotically self–similar – the buffer asymptotics are hyperbolic in nature, in

stark contrast with the Weibullian tails induced by fractional Gaussian noise (or

fractional Brownian motion) [43]. A key contribution of this dissertation is to elu-

cidate the noted difference in buffer asymptotics between M |G|∞ and fractional

Gaussian noise inputs by further exploring this discrepancy in the heavy traffic

regime. One might expect that, with asymptotically identical correlation patterns,

both models necessarily have a heavy traffic characterization in terms of fractional

Brownian motion, in very much the same manner that different short–range depen-

dent models eventually collapse to a single description involving Brownian motion.

However, this turns out not to be the case.

In Chapter 3 we show that, under short–range dependence, the class of M |G|∞

inputs belongs to the domain of attraction of the standard Brownian motion, as

expected. However, under long–range dependence, with σ belonging to the domain
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of attraction of a non–normal stable law, the M |G|∞ process is not attracted to a

fractional Brownian motion, but instead to a non–Gaussian, α–stable Lévy motion

which is 1/α self–similar. As a consequence, the distribution of the heavy traffic

queue length is given by a Mittag–Leffler function, thus displaying not a Weibullian,

but a Pareto tail, with power 1− α [Theorem 3.4.3]. These results undescore the

fundamentally different nature of the long–range dependent M |G|∞ process (when

compared to fractional Gaussian noise), and also point to the fact that fractional

Brownian motion does not necessarily play for long–range dependence the same

key role that standard Brownian motion assumes under short–range dependence.

Within long–range dependence, there seems to be a choice for distinct modeling

possibilities, and it is not at all difficult to find rather simple, potentially useful

traffic models that are attracted to non–Gaussian limits.

In Chapter 4 we shift attention to the light traffic regime. This refers to the

limiting situation where the traffic intensity approaches zero. Noting that the

M |G|∞ process is Poisson driven, we apply the Reiman–Simon theory [49, 50, 51]

to obtain information in the form of derivatives of system quantities with respect

to the intensity of the driving Poisson process, when this intensity tends to zero

[Propositions 4.2.3, 4.2.4]. In addition, when the “on”–state rate of each con-

stituent on/off source exceeds the multiplexer release rate explicit expressions for

the expected queue size become available. These results quantify the differences

between the gradual M |G|∞ inputs and the point arrivals of a classical GI|GI|1

queue, and suggest a classification of the light traffic behavior of the buffer con-

tent distribution in terms of the short– vs long– range dependent property of the

M |G|∞ process [Corollaries 4.3.1, 4.3.2]. However, in light traffic further subcases

arise depending on comparisons of the on/off source “on”–state rate and the server
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capacity. Thus, in general, the correlation function and the short– vs long–range

dependence property of the M |G|∞ inputs are not the sole factors that impact

performance.

Work on queueing analysis under long–range dependence appears to have been

initiated by Norros [43], where the presence of fractional Brownian motion is pos-

tulated. This line of inquiry is further pursued in [58], while in [9] Brichet et al.

show how fractional Brownian motion can arise from a Gaussian superposition

scheme of infinitely many on/off sources with heavy tailed on/off periods. In the

limiting setup of [9] the sources are “small”, i.e., the peak rate of the individual

source becomes infinitely small in comparison with the multiplexer capacity. In

view of the fact that M |G|∞ processes arise from a different superposition scheme

of infinitely many on/off sources [37], where the peak on/off source rate is “large”,

i.e., remains comparable to the link capacity, it is not too surprising that these

lead to a different heavy traffic limit involving Lévy motions. More recently, in [8],

a heavy traffic limit of this type, giving rise to a Mittag–Leffler function, is ob-

tained in the standard GI|GI|1 queueing setup, for the case where the service time

distribution is heavy tailed. Heavy traffic results similar and related to the ones

given here have also been reported in [33], where only convergence of finite dimen-

sional distributions is announced. The conclusions discussed here were obtained

independently, and were summarized in the conference paper [61].

The asymptotic characterization of the queue size distribution in the heavy

and light traffic regimes is exploited in Chapter 5. By suitably interpolating be-

tween the two extremes we derive approximations to the queue size distribution,

applicable to all traffic intensities. For some common choices for the session du-

ration distribution G the approximants assume a simple final form. The accuracy
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of the proposed expressions as well as pitfalls of this technique are discussed via

several numerical examples [Section 5.4]. In Chapters 2 and 4 we make occasional

detours and study simpler queueing systems; these help us obtain exact results

[Propositions 4.3.2, 4.3.3] and establish stochastic comparisons that can provide

bounds whenever exact expressions are not available. In Appendices A and B we

have summarized several needed facts concerning functions of regular variation and

stochastic orderings.

A few words about the notation adopted here. We use =⇒r to denote weak

convergence [5], and
P
−→r to denote convergence in probability (with r going to

infinity). We write f(x) ∼ g(x) (x → ∞) when lim
x→∞

f(x)/g(x) = 1. Equality

in distribution is denoted by =st, inequality in the strong, convex and increasing

convex stochastic ordering sense are denoted by ≤st, ≤cx and ≤icx, respectively.

1.3 Self–similarity, stable distributions and reg-

ular variation

This section provides a quick tour into some background concepts which recur

throughout the dissertation. The material presented here, and much more, can be

found in [3, 7, 16, 20, 53]. We start with a definition of long–range dependence:

Definition 1.3.1 The IR–valued wide sense stationary process {Yk, k = 0,±1, . . .}

is said to be long–range dependent if

∞∑
k=1

|cov [Yk, Y0] | =∞ (1.1)

and short–range dependent otherwise.
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We proceed with self–similarity. Roughly speaking, a structure is “self–similar”

if it appears the same on any scale, large or small. The term self–similar and the

definition below are due to Mandelbrot [41].

Definition 1.3.2 The IR–valued process {X(t), t ∈ IR} is (strictly) self–similar

with index (or Hurst parameter) H > 0 if for all a > 0 the finite-dimensional

distributions of {X(at), t ∈ IR} are identical to the finite-dimensional distributions

of {aHX(t), t ∈ IR}, i.e., if for any n = 1, 2, . . ., t1, t2, . . . , tn in IR, and a > 0,

(X(at1), X(at2), . . . , X(atn)) =st (aHX(t1), aHX(t2), . . . , aHX(tn)).

From this definition we see that, in the context of stochastic processes, self–

similarity is tantamount to scale invariance of the finite–dimensional distributions,

but not necessarily of the sample paths.

Definition 1.3.3 We say that the IR–valued process {X(t), t ∈ IR} is H-sssi if it

is strictly self–similar with index H > 0 and has stationary increments.

Among the H-sssi processes the Gaussian one is the most prominent; this is in

part due to the fact that it has been widely applied in the context of long–range

dependence.

Definition 1.3.4 A H-sssi Gaussian process with index 0 < H ≤ 1 is called

fractional Brownian motion and is denoted by {BH(t), t ∈ IR}. It is called standard

fractional Brownian motion if var[BH(1)] = 1.

Proposition 1.3.1 With 0 < H ≤ 1, the fractional Brownian motion {BH(t), t ∈

IR} has the following properties:

(a) BH(0) = 0 a.s.
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(b) Its covariance function is given by

cov[BH(t1), BH(t2)] =
1

2

{
|t1|

2H + |t2|
2H − |t1 − t2|

2H
}

var[BH(1)], t1, t2 ∈ IR .

(c) When 0 < H < 1, we have E [BH(t)] = 0 for all t in IR.

(d) When H = 1, we have B1(t) = tB1(1) a.s. for all t in IR.

In the case H = 1/2 Proposition 1.3.1(b) reads

cov[B1/2(t1), B1/2(t2)] =

 var
[
B1/2(1)

]
min(t1, t2) if t1t2 > 0

0 if t1t2 ≤ 0

and {B1/2(t), t ∈ IR} is classical Brownian motion.

Consider now the increment process {ZH(n), n = 0,±1, . . .} associated with

{BH(t), t ∈ IR} and defined by

ZH(n) := BH(n+ 1)−BH(n), n = 0,±1, . . . . (1.2)

This Gaussian sequence is stationary, because fractional Brownian motion {BH(t), t ∈

IR} has stationary increments.

Definition 1.3.5 The stationary process {ZH(n), n = 0,±1, . . .} of (1.2) is called

fractional Gaussian noise. It is called standard fractional Gaussian noise if

var[ZH(1)] = 1.

From Definition 1.3.5 and Proposition 1.3.1(b) it follows that the covariance func-

tion rH(n) := cov [ZH(n+ 1), ZH(1)] of the fractional Gaussian noise process

{ZH(n), n = 0,±1, . . .} is given by

rH(n) =
1

2

{
|n+ 1|2H − 2|n|2H + |n− 1|2H

}
var [ZH(1)] , n = 0,±1, . . . . (1.3)
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If H = 1/2 then rH(n) = 0 for n 6= 0, in which case {Z1/2(n), n = 0,±1, . . .}

forms a sequence of i.i.d. Gaussian rvs and fractional Gaussian noise reduces to

the familiar white Gaussian noise. For H 6= 1/2 it follows from (1.3) that

rH(n) ∼ var [ZH(1)]H(2H − 1) n2H−2 (n→∞), (1.4)

so that rH(n) behaves like a power function. Note that lim
n→∞

rH(n) = 0 for all

0 < H < 1, however, for 1/2 < H < 1 the covariance function rH(n) decays so

slowly as n → ∞ that the corresponding sum (1.1) diverges. Thus, in the case

1/2 < H < 1 the fractional Gaussian noise process {ZH(n), n = 0,±1, . . .} is

long–range dependent.

We next present another class of processes which also contains the classical

Brownian motion as a special case. First, recall the family of stable distributions.

Definition 1.3.6 A non-degenerate rv X is said to have a stable distribution if

for any positive numbers c1 and c2 there is a positive number a(c1, c2) and a real

number b(c1, c2) such that

c1X1 + c2X2 =st a(c1, c2)X + b(c1, c2),

where X1 and X2 are i.i.d copies of X.

The characteristic functions of all stable distributions were discovered by Lévy

(1924):

Proposition 1.3.2 A rv X has a stable distribution if and only if its characteristic

function is of the form

E [exp(iθX)] = exp {iµθ − δα|θ|α (1− iβ sgn(θ) z(θ, α))} , θ ∈ IR (1.5)
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where µ is a real constant, δ > 0, α in (0, 2], β in [−1, 1] and

z(θ, α) :=


tan
(πα

2

)
if α 6= 1,

−
2

π
ln |θ| if α = 1.

Stable distributions are the only possible limit distributions for normalized and

centered sums of i.i.d. rvs, and in that sense they generalize the Gaussian distri-

bution, which is obtained by setting α = 2 in (1.5). When 0 < α < 2 methods for

generating deviates from stable laws are available but, with a few exceptions, closed

forms expressions for stable densities are not known. However, series expansions

and the tail behavior of stable distributions are known.

Let Sα(δ, β, µ) denote the generic stable rv distributed according to (1.5). The

next two results can be found in the monograph by Samorodnitsky and Taqqu [53,

pp. 16, 18].

Proposition 1.3.3 If X =st Sα(δ, β, µ) with 0 < α < 2, then

lim
x→+∞

xαP [X > x] = Kα

1 + β

2
δα (1.6)

and

lim
x→+∞

xαP [X < −x] = Kα

1− β

2
δα (1.7)

where Kα :=

(∫ ∞
0

x−α sinx dx

)−1

.

As a consequence, we have

Proposition 1.3.4 If X =st Sα(δ, β, µ) with 0 < α < 2, then

E [|X|p] <∞ for 0 < p < α,

and

E [|X|p] =∞ for p ≥ α.
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In particular, for 1 < α < 2 it holds that

var [X] =∞ and E [|X|] <∞.

Because of this infinite pth moment property for p > α, stable distributions are

candidates for modeling phenomena with high variability.

Let us now consider the following stochastic process:

Definition 1.3.7 With α in (0, 2], the IR–valued process {Lα(t), t ≥ 0} is called

(standard) α–stable Lévy motion if

(a) Lα(0) = 0 a.s.,

(b) {Lα(t), t ≥ 0} has independent increments, and

(c) Lα(t) − Lα(s) =st Sα((t − s)1/α, β, 0) for all 0 ≤ s < t < ∞, for some

β in [−1, 1].

Clearly, the 2–stable motion {L2(t), t ≥ 0} is simply the Brownian motion. More-

over, using (1.5) it can be verified that for all c > 0 the processes {Lα(ct), t ≥ 0}

and {c1/αLα(t), t ≥ 0} have the same finite–dimensional distributions, and an

α–stable Lévy motion {Lα(t), t ≥ 0} is self–similar with index H = 1/α (unless

α = 1 and β 6= 0).

In view of the power–like tail behaviors encountered in (1.4), (1.6) and (1.7), it

is appropriate to review the notion of regular variation. The definition below can

be interpreted as introducing a class of generalized power functions:

Definition 1.3.8 A Lebesgue measurable function f : IR+ → IR+ is said to be

regularly varying (at infinity) with index ρ in IR if

lim
x→+∞

f(xy)

f(x)
= yρ, y > 0. (1.8)

If ρ = 0 in (1.8) then f is called slowly varying.
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From (1.8) it follows that if f : IR+ → IR+ is regularly varying with index ρ then

it can be written as

f(x) = xρ h(x), x > 0,

where the function h : IR+ → IR+ is slowly varying.

Work on functions of regular variation was initiated by Karamata (1930). Later,

regular variation and in particular its relevance in probability was popularized by

Feller [20]; an authoritative treatment of the subject is found in the monograph

[7]. The following theorem due to Lamperti [35] (see also [7, p. 356], [3, p. 50])

provides a connection between regular variation and self–similarity: Self–similar

processes are exactly those that arise from probability limit theorems where a

process is centered and rescaled.

We use
f.d.d.
=⇒ to denote convergence of finite–dimensional distributions.

Theorem 1.3.1 Suppose that the IR–valued process {X(t), t ∈ IR} is such that,

with suitably chosen mappings f, g : IR→ IR{
X(ut)− g(u)

f(u)
, t ∈ IR

}
f.d.d.
=⇒ {Y (t), t ∈ IR} (u→∞) (1.9)

for some IR–valued process {Y (t), t ∈ IR} with non-degenerate Y (1). Then {Y (t),

t ∈ IR} is strictly self–similar, and all self–similar processes arise in this way.

Moreover, f is regularly varying with index H, where H is the Hurst parameter of

the limiting self–similar process {Y (t), t ∈ IR}.

The fact that the norming functions f appearing in (1.9) are necessarily regularly

varying shows that regular variation is intrinsically present in limit theorems of

probability.
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Chapter 2

M |G|∞ and related models

In this chapter we introduce a class of traffic models based on the M |G|∞ busy

server process. In addition, we discuss simpler related queueing models, with which

stochastic comparisons will be sought.

2.1 The M |G|∞ arrival processes

We start by presenting theM |G|∞ arrival processes, together with the assumptions

and notation that will be used throughout. Several key properties concerning this

class of processes are stated here without proof; additional details are given in

[11, 47].

2.1.1 Definitions and basic properties

Consider a population of infinitely many information sources, operating in discrete–

time. Sources can be in one of two states, active or idle. During time slot [n, n+

1), n = 0, 1, . . ., βn+1 new sources become active. Source j, j = 1, . . . , βn+1,

begins generating information by the start of slot [n+ 1, n+ 2), its activity period

has duration σn+1,j (in number of slots). While active, each source generates
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information at a constant rate of one information unit (packet) per time slot. After

its activity period expires, each source switches off permanently, never to generate

packets again. Let bn denote the number of active sources, or equivalently, the

number of packets generated by the active sources at the beginning of time slot

[n, n + 1). If initially (i.e., at time n = 0) there were already b active sources,

we denote by σ0,j the residual activity duration (in time slots) for the jth active

source, j = 1, . . . , b.

For each n = 0, 1, . . . we have the decomposition

bn = b(0)
n + b(a)

n (2.1)

where the rvs b(0)
n and b(a)

n describe the contributions to the number of active sources

at the beginning of slot [n, n + 1) from the sources already active at n = 0 and

from subsequent activations in slots [k, k + 1), k = 1, 2, . . . , n, respectively. We

readily check that

b(0)
n =

b∑
j=1

1 [σ0,j > n] and b(a)
n =

n∑
k=1

βk∑
j=1

1 [σk,j > n− k] . (2.2)

The rv b(a)
n can also be interpreted as the number of active sources at the begin-

ning of slot [n, n + 1) given that all sources were silent at time n = 0. On the

other hand, to obtain a stationary process {bn, n = 0, 1, . . .}, the rv b(0)
n should

be specified as the number of active sources at time n = 0 given that the sources

have been operating since time n = −∞. This requirement dictates the appropri-

ate distributional assumptions on the rvs b and {σ0,j , j = 1, 2, . . .}. With these

considerations in mind, we now record a set of assumptions enforced throughout.

Assumption (A) The IN–valued rvs b, {βn+1, n = 0, 1, . . .}, {σn,j, n = 1, 2, . . . ;

j = 1, 2, . . .} and {σ0,j , j = 1, 2, . . .} are defined on a common probability space
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(Ω,F ,P) and satisfy the following:

(i) These rvs are mutually independent.

(ii) The rv b is a Poisson rv with parameter λE [σ].

(iii) The rvs {βn+1, n = 0, 1, . . .} are i.i.d. Poisson rvs with parameter λ > 0.

(iv) The rvs {σn,j, n = 1, . . . ; j = 1, 2, . . .} are i.i.d. with distribution function

G on {1, 2, . . .}. Let σ denote the generic IN–valued rv distributed according to G.

We assume that E [σ] <∞.

(v) The rvs {σ0,j , j = 1, 2, . . .} are i.i.d. IN–valued rvs distributed according

to the forward recurrence time distribution Ĝ associated with G, i.e., if σ̂ denotes

a generic IN–valued rv distributed according to Ĝ, then

ĝn := P [σ̂ = n] =
P [σ ≥ n]

E [σ]
, n = 1, 2, . . . . (2.3)

The proposition below summarizes the properties of the resulting process {bn, n =

0, 1, . . .} and is a consequence of Assumption (A), (2.1) and (2.2) [47].

Proposition 2.1.1 The process {bn, n = 0, 1, . . .} is a (strictly) stationary ergodic

process with the following properties:

(a) For each n = 0, 1, . . ., the rv bn is a Poisson rv with parameter λE [σ];

(b) Its covariance function is given by

cov [bn+j , bn] = λE
[
(σ − j)+

]
= λE [σ] P [σ̂ > j] , n, j = 0, 1, . . . ;

(c) Its index of dispersion of counts (IDC) is given by

IDC :=
∞∑
j=0

cov [bn+j , bn] = λE [σ]
∞∑
j=0

P [σ̂ > j] =
λ

2
E [σ(σ + 1)] (2.4)

and the process is short–range dependent (i.e., IDC finite) if and only if E
[
σ2
]

is

finite.
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From part (b) above it is clear that the sequence {bn, n = 0, 1, . . .} exhibits some

form of positive dependence. In fact, as mentioned in [45], the rvs {bn, n = 0, 1, . . .}

are strongly positively correlated, in a sense that can be made precise by using the

notion of association [19]:

Proposition 2.1.2 The rvs {bn, n = 0, 1, . . .} are associated, in that for any

n = 0, 1, . . . and any pair of non–decreasing mappings f, g : INn+1 → IR we have

E [f(b0, . . . , bn)g(b0, . . . , bn)] ≥ E [f(b0, . . . , bn)] E [g(b0, . . . , bn)] (2.5)

provided the expectations exist and are finite.

In summary, the process {bn, n = 0, 1, . . .} results from discrete–time Pois-

son arrivals of information sessions, where the generic session duration rv σ is

distributed according to the pmf G and the packet generation rate of an on-

going session is one packet per time slot. It is fully characterized by a pair

(λ,G), with λ the Poisson arrival rate (per slot). Under Assumption (A) the

sequence {bn, n = 0, 1, . . .} can be identified as the stationary busy server pro-

cess of a discrete–time M |G|∞ queue; for this reason the packet arrival process

{bn, n = 0, 1, . . .} is henceforth referred to as the M |G|∞ input process. From

Propositions 2.1.2 and 2.1.1(b) we see that {bn, n = 0, 1, . . .} is an associated

process, whose positive correlation structure is completely determined by the dis-

tribution of σ̂ (and thus of σ). In many cases the inverse is also true, i.e., it is

possible to extract M |G|∞ model parameters to match a given autocorrelation

function.

Proposition 2.1.3 An IR+–valued sequence {φ(n), n = 0, 1, . . .} is the autocor-

relation function of an M |G|∞ process (λ, σ) if and only if the mapping n→ φ(n)
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is decreasing and integer–convex with φ(0) = 1 > φ(1) and lim
n→∞

φ(n) = 0, in which

case the corresponding distribution of σ is given by

P [σ > n] =
φ(n)− φ(n+ 1)

1− φ(1)
, n = 0, 1, . . .

Based on this property, M |G|∞ processes have been used to model VBR video

traffic in [34].

2.1.2 Second order self–similarity

In [11] Cox observed that when G is a Pareto distribution with parameter α, 1 <

α < 2, the M |G|∞ busy server process has the so-called second order asymptotic

self–similarity property. That is, its correlation structure is asymptotically that

of the increments of a strictly self–similar process. The covariance function of

standard fractional Gaussian noise is given by (1.3). Using (1.3) and Proposition

2.1.3 we find that if the activity rv σ is distributed according to

P [σ > n] =
|n− 1|2H − 3|n|2H + 3|n+ 1|2H − |n+ 2|2H

4(1− 22H−2)
, n = 0, 1, . . . , (2.6)

with 1/2 < H < 1, then the corresponding M |G|∞ input process has the same

correlation function (1.3) as a fractional Gaussian noise process with Hurst param-

eter H. This already provides a point of contact between the M |G|∞ process and

the increments of a strictly self–similar process. Clearly, the particular distribu-

tion (2.6) achieving this match is too restrictive. It is relaxed as follows: For each

m = 1, 2, . . ., we introduce the process {b(m)
n , n = 0, 1, . . .} defined by

b(m)
n :=

1

m

m−1∑
k=0

bmn+k, n = 1, 2, . . . , (2.7)
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so that {b(m)
n , n = 0, 1, . . .} is also a stationary process, obtained from {bn, n =

0, 1, . . .} by averaging over blocks of size m. Denote its covariance function by

r(m)(k) := cov[b(m)
n , b

(m)
n+k], k = 0, 1, . . . .

We say that the original process {bn, n = 0, 1, . . .} is asymptotically second–order

self–similar if the correlation function of {b(m)
n , n = 0, 1, . . .} tends, as the block

size m goes to infinity, to the correlation function of fractional Gaussian noise, i.e.,

if for each lag k = 1, 2, . . ., we have

lim
m→∞

r(m)(k)

r(m)(0)
=
rH(k)

rH(0)
(2.8)

where rH(k) is given by (1.3). Noting that

r(m)(0) =
1

m

(
var[b0] + 2

m∑
n=1

(
1−

n

m

)
cov[bn, b0]

)
(2.9)

it was shown in [37] that the M |G|∞ process is asymptotically second–order self–

similar with parameter H, 1/2 < H < 1, if the tail of σ is regularly varying with

index −(3− 2H), i.e.,

P [σ > n] = n−(3−2H)h(n), n = 1, 2, . . . , (2.10)

for some slowly varying function h : IR+ → IR+. The specific distribution (2.6) is

simply one instance of (2.10). Whenever 1/2 < H < 1, the tail behavior (2.10)

implies E
[
σ2
]

=∞, and, by Proposition 2.1.1(b), the corresponding second–order

asymptotically self–similar M |G|∞ process is also long–range dependent.

The study of queueing systems in heavy traffic typically involves operations

such as accumulating over time and rescaling. For this reason we expect that a

heavy traffic analysis of a queue with M |G|∞ arrivals will provide a natural way to

further explore the connection with self–similar processes discussed in this section,

and address this problem in detail in Chapter 3.
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2.2 The queueing system

We now feed the M |G|∞ arrival stream {bn, n = 0, 1, . . .} presented in Section

2.1.1 into a discrete–time single server queue with infinite buffer capacity. Such

a queueing system routinely serves as a model for a network multiplexer: If qn

denotes the number of packets remaining in the multiplexer buffer by the end of

slot [n − 1, n), and the multiplexer output link can transmit c packets/slot, then

the buffer content sequence {qn, n = 0, 1, . . .} evolves according to the Lindley

recursion

q0 = q; qn+1 = [qn + bn+1 − c]
+, n = 0, 1, . . . (2.11)

for some initial buffer content q ≥ 0. To identify conditions ensuring existence of

a finite stationary version of {qn, n = 0, 1, . . .} and to determine its properties, we

appeal to established results on recursions of the form (2.11). We introduce the

partial sums {sn, n = 0, 1, . . .} defined by

s0 := 0; sn :=
n∑
j=1

bj , n = 1, 2, . . . (2.12)

and specialize the results from [2, 54] to the present setup.

Proposition 2.2.1 If λE [σ] < c, then the Lindley recursion (2.11) is termed

stable and the following statements hold:

(a) There are infinitely many n such that qn = 0.

(b) The sequence {qn, n = 0, 1, . . .} of (2.11) and the sequence {q0
n, n =

0, 1, . . .} constructed from (2.11) with q0 = 0 strongly couple, in the sense that

q0
n = qn, n ≥ m(q), (2.13)

where m(q) := min{n = 0, 1, . . . : qn = 0} <∞ (by part (a)).

(c) The convergence qn =⇒n q∞ takes place, where the stationary IR+–valued
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rv q∞ is a.s. finite and given by

q∞ =st sup{sn − nc; n = 0, 1, . . .}. (2.14)

Part (a) above is (1.2.5) in [2, p. 71] (or Lemma 6.1(3) in [54]) and (b) is implied

by Lemma 6.1(4) in [54]. Weak convergence in (c) is a consequence of (4.2.6) and

Remark 4.1.1 in [2]. Expression (2.14) for the stationary rv q∞ follows from (2.2.3)

of [2].

From parts (b) and (c) of Proposition 2.2.1 we see that if λE [σ] < c, then weak

convergence to the stationary version q∞ takes place for any initial condition q;

furthermore the distribution of q∞ does not depend on q. It thus suffices to restrict

attention to the choice q = 0 and we implicitly do so from now on whenever we

refer to (2.11). In that case the system is initially empty and the output to the

Lindley recursion admits an equivalent representation given by

q0 = 0; qn = sn − nc− inf (sj − jc, j = 0, 1, . . . , n) , n = 1, 2, . . . (2.15)

where the partial sums {sn, n = 1, 2, . . .} are defined by (2.12). This is useful for

establishing heavy and light traffic limit theorems.

2.3 Instantaneous inputs

By “instantaneous” inputs we refer to the situation where each arriving session

brings all of its workload to the system in one time slot, immediately upon arrival.

These inputs are to be contrasted with the gradual M |G|∞ inputs, where arriving

work is spread over the entire duration of a session. Such instantaneous arrivals

are represented by the IN–valued sequence of i.i.d. rvs {un, n = 0, 1, . . .} given by

un+1 :=

βn+1∑
i=1

σn+1,i, n = 0, 1, . . . , (2.16)
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where the families of i.i.d. rvs {βn+1, n = 0, 1, . . .} and {σn+1,i, n = 0, 1, . . . , i =

1, 2, . . .} are as in Section 2.1.1. These arrivals are also characterized by the pair

(λ,G) and we use u to denote the generic rv for the i.i.d. sequence {un, n =

0, 1, . . .}.

We offer the instantaneous inputs {un, n = 0, 1, . . .} to the same multiplexer

with constant release rate c. Assuming that the queue is initially empty, we write

the corresponding Lindley recursion for the queue length sequence {q(u)
n , n =

0, 1, . . .} as

q
(u)
0 = 0; q

(u)
n+1 = [q(u)

n + un+1 − c]
+, n = 0, 1, . . . . (2.17)

If E [u] = λE [σ] < c the system is stable and the convergence q(u)
n =⇒n q

(u)
∞ takes

place for some IR+–valued rv q(u)
∞ .

Owing to the independence of the rvs {un, n = 0, 1, . . .} recursion (2.17) can,

at least in principle, be handled by standard generating function techniques. The

details of this approach are given in Section 2.3.1.

2.3.1 A Markov chain of the M |G|1 type

Consider a Markov chain on {0, 1, . . .}, whose transition probability matrix P is

of the M |G|1 type and is given by

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 + f1 f2 f3 . . .

f0 f1 f2 . . .

0 f0 f1 . . .

...

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.18)

Assume that the probability vector (f0, f1, . . .) satisfies
∞∑
i=0

ifi < 1, in which case

the Markov chain is positive recurrent. Denote by (π0, π1, . . .) the steady state
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probability vector associated with P , and set

Π(z) :=
∞∑
i=0

πiz
i and F (z) :=

∞∑
i=0

fiz
i, z ∈ D, (2.19)

where D = {s ∈ IC : |s| < 1} is the unit disk in the complex plane IC. The vector

(π0, π1, . . .) satisfies

π0 = (f0 + f1)π0 + f0π1 (2.20)

and

πk =
k+1∑
l=0

fk−l+1πl, k = 1, 2, . . . . (2.21)

We multiply (2.20) by z and, for each k = 1, 2, . . ., the kth equation in (2.21)

by zk. Adding up, invoking definitions (2.19) and manipulating we find

zΠ(z) = (z − 1)f0π0 + (f0 + f1z)Π(z) + (F (z)− f0 − f1z)Π(z),

so that

Π(z) =
(z − 1)f0π0

z − F (z)
, z ∈ D. (2.22)

We compute the limit as z → 1 by applying l’ Hospital’s rule on the right-hand

side in relation (2.22). Since Π(1) = 1, we get

π0 =
1− F ′(1)

f0

. (2.23)

and inserting (2.23) back in (2.22) yields

Π(z) =
(1− z)(1− F ′(1))

F (z)− z
, z ∈ D. (2.24)

To calculate Π′(1) =
∞∑
i=0

iπi we differentiate (2.24) and apply l’ Hospital’s rule

twice, so as to conclude that

Π′(1) =
F ′′(1)

2(1− F ′(1))
. (2.25)
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2.3.2 Case c = 1: A solution by generating function

Set

Q(u)(z) := E
[
zq

(u)
∞

]
and U(z) := E [zu] , z ∈ D. (2.26)

When the multiplexer release rate is c = 1 the sequence {q(u)
n , n = 0, 1, . . .} is

a Markov chain on {0, 1, . . .}. With the notation of Section 2.3.1, its transition

matrix is of the form (2.18) with

fi := P [u = i] , i = 0, 1, . . . . (2.27)

Under (2.27), we have the identification

F (z) = U(z), Π(z) = Q(u)(z), z ∈ D (2.28)

and

F ′(1) = E [u] , Π′(1) = E
[
q(u)
∞

]
. (2.29)

As we plan to specialize the results of Section 2.3.1 to the inputs {un, n = 0, 1, . . .},

given by (2.16), we note that

U(z) = exp (λ(E [zσ]− 1)) and U ′′(1) = λE [σ(σ − 1)] + λ2E [σ]2 . (2.30)

Thus, because of (2.28) and (2.29), relations (2.23), (2.24) and (2.25) imply

P
[
q(u)
∞ = 0

]
= (1− λE [σ])eλ (2.31)

Q(u)(z) =
(1− z)(1− λE [σ])

exp (λ(E [zσ]− 1))− z
, z ∈ D (2.32)

and

E
[
q(u)
∞

]
=
λ(λE [σ]2 + E [σ(σ − 1)])

2(1− λE [σ])
. (2.33)
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2.3.3 Case c = 1: An equivalent representation

We now derive a representation of the stationary queue size q(u)
∞ in terms of the

forward recurrence times of the input sequence {un, n = 1, 2, . . .}. To do this we

introduce the sequence of i.i.d. rvs {ûn, n = 1, 2, . . .} with generic rv û whose

distribution is given by

P [û = 0] = 0; P [û = n] =
1

E [u]
P [u ≥ n] , n = 1, 2, . . . . (2.34)

The corresponding generating function is given by

Û(z) :=
∞∑
n=1

P [û = n] zn

=
1

E [u]

∞∑
n=1

P [u ≥ n] zn

=
1

E [u]

∞∑
n=1

zn
∞∑
k=n

P [u = k]

=
1

E [u]

∞∑
k=1

zk+1 − z

z − 1
P [u = k]

=
z

E [u]

1− U(z)

1− z
, z ∈ D. (2.35)

Under the stability condition E [u] < 1, relations (2.24) (with the identification

(2.28) and (2.29)) read

Q(u)(z) =
(1− z)(1−E [u])

U(z)− z

= (1−E [u])

(
1−

1− U(z)

1− z

)−1

, z ∈ D. (2.36)

Therefore, with the help of (2.35), we obtain

Q(u)(z) =
1− E [u]

1− E [u] E [zû−1]
, z ∈ D, (2.37)
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where we note that the rv û− 1 is non-negative because of (2.34). Upon rewriting

(2.37) as

Q(u)(z) = (1−E [u])
∞∑
n=0

E [u]n E
[
zû−1

]n
, z ∈ D,

we get the representation

q(u)
∞ =st

ν∑
n=1

(ûn − 1) , (2.38)

where the rv ν is independent of {ûn, n = 1, 2, . . .} and geometrically distributed

with parameter E [u] according to

P [ν = n] = E [u]n (1−E [u]), n = 0, 1, . . . , (2.39)

(with the convention that empty sums in (2.38) have value zero). The stationary

queue size q(u)
∞ is thus expressed as a geometric sum of the forward recurrence times

{ûn, n = 1, 2, . . .} associated with the input sequence {un, n = 1, 2, . . .}.

2.3.4 Case c = 1: Idle and busy periods

We now take one more look at recursion (2.17); this will prove useful in the de-

velopments of Chapter 4. We view the queue size sequence {q(u)
n , n = 0, 1, . . .} as

evolving in a series of independent regenerative cycles, alternating between zero

and positive values. If the queue is initially empty then, for each n = 1, 2, . . .,

the nth cycle consists of an idle period followed by a busy period, with respective

lenghts I(u)
n and B(u)

n , (expressed in time slots). We say that a time slot is part of

a busy period if the queue length at the beginning of the time slot is positive. If

the queue length at the left slot boundary is zero, the slot is considered to belong

to an idle period. That is, for each n = 1, 2, . . ., the family of i.i.d. pairs of rvs

{(I(u)
n , B(u)

n ), n = 1, 2, . . .} associated with (2.17) are recursively defined by

I(u)
n := inf{t = 0, 1, . . . : q

(u)∑n−1
i=1 (Ii+Bi)+t

> 0} (2.40)
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and

B(u)
n := inf{t = 0, 1, . . . : q

(u)∑n−1
i=1 (Ii+Bi)+In+t

= 0}, (2.41)

with the convention that empty sums are zero.

A clarification is needed as the terms “idle” and “busy” are slightly abused

here. For example, it is possible that, when the queue length is zero at consecutive

instants, say t and t+1, this occurs because of a single arriving packet in [t, t+ 1)

which was served by the end of the time slot. Such a slot is considered to belong

to an “idle” period, despite the fact that the server was busy serving the arriving

packet. Thus “idle” and “busy” are defined here in reference to queue content,

and not to server activity. For lack of better terminology, we shall continue to use

“idle” and “busy” in forthcoming arguments, referring to definitions (2.40) and

(2.41) to resolve any confusion.

Next, denote by (I(u), B(u)) the generic idle and busy period pair associated

with {(I(u)
n , B(u)

n ), n = 1, 2, . . .}. By the Renewal–Reward Theorem we can alter-

natively express P
[
q(u)
∞ = 0

]
(which has already been evaluated in (2.31)) as

P
[
q(u)
∞ = 0

]
=

E
[
I(u)
]

E [I(u)] + E [B(u)]
. (2.42)

To obtain the distribution of the idle period I(u) let

η := P [β = 0] + P [β = 1] P [σ = 1] (2.43)

denote the probability that at most one unit of work arrives during a time slot.

When c = 1, the definitions (2.40) and (2.41) imply that I(u) is geometric with

parameter η, i.e.,

P
[
I(u) = k

]
= P [q1 = . . . = qk−1 = 0, qk > 0]

= ηk−1(1− η), k = 1, 2, . . . , (2.44)
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so that

E
[
I(u)
]

=
1

1− η
. (2.45)

2.3.5 Case c = 1/m (m = 1, 2, . . .)

The arguments presented in Section 2.3.2 can be easily extended to address the

following situation: Fix some integer m = 1, 2, . . . and consider the queue length

sequence {q(u)
n , n = 0, 1, . . .} resulting from the recursion (2.17) with multiplexer

release rate c = 1/m. In this case {q(u)
n , n = 0, 1, . . .} is a Markov chain on the

lattice {0, 1/m, 2/m, . . .}. The transition probability matrix is again of the form

(2.18) but this time, instead of (2.27), it holds that

fi :=


P

[
u =

i

m

]
if i = 0 (mod m)

0 if i 6= 0 (mod m).

(2.46)

In place of (2.28) we now have the identification

F (z) = U(zm) and Π(z) = Q(u)(zm), z ∈ D. (2.47)

Consequently,

F ′(1) = mE [u] , F ′′(1) = m2U ′′(1) +m(m− 1)U ′(1) (2.48)

and

Π′(1) = mE
[
q(u)
∞

]
. (2.49)

As the analysis leading to (2.23) and (2.25) still applies, we use (2.48) in (2.23) to

obtain

P
[
q(u)
∞ = 0

]
= (1− λmE [σ])eλ, (2.50)

and (2.30), (2.48) and (2.49) in (2.25) to collect

E
[
q(u)
∞

]
=
λ(λmE [σ]2 +mE [σ2]−E [σ])

2(1− λmE [σ])
. (2.51)
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2.3.6 Poisson inputs: Stochastic comparisons

The temporal correlations in the M |G|∞ arrival process are expected to have an

adverse effect on queueing performance. Insight to this effect can be obtained from

a comparison with the situation where these correlations are altogether eliminated,

while maintaining the same Poisson marginal distribution. To that end we consider

the companion sequence {q(ξ)
n , n = 0, 1, . . .} evolving according to

q
(ξ)
0 = 0; q

(ξ)
n+1 = [qn + ξn+1 − c]

+, n = 0, 1, . . . (2.52)

where the rvs {ξn, n = 1, 2, . . .} form a sequence of i.i.d. Poisson rvs with pa-

rameter λE [σ]. Clearly, these independent Poisson arrivals fall in the category of

the instantaneous inputs of (2.16), where the pair (λ, σ) is replaced by (λE [σ] , 1).

Under the stability condition λE [σ] < c, convergence to the stationary IR+–valued

rv q(ξ)
∞ takes place. Then, for c = 1/m, with m = 1, 2, . . ., we can use (2.50) and

(2.51) to obtain

P
[
q(ξ)
∞ = 0

]
= (1− λmE [σ])eλE[σ] (2.53)

and

E
[
q(ξ)
∞

]
=
λE [σ] (λmE [σ] +m− 1)

2(1− λmE [σ])
. (2.54)

Noting the inequalities

P
[
q(ξ)
∞ = 0

]
≥ P

[
q(u)
∞ = 0

]
and E

[
q(ξ)
∞

]
≤ E

[
q(u)
∞

]
we suspect that q(ξ)

∞ and q(u)
∞ may, at least in some circumstances, act as stochastic

lower and upper bounds respectively to the stationary queue size q∞ induced by

M |G|∞ arrivals. As a first step in this direction we now establish a comparison

between q(ξ)
∞ and q(u)

∞ , in the increasing convex stochastic ordering sense.
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Proposition 2.3.1 If λE [σ] < c and E
[
σ2
]
< ∞, then the stationary queue

lengths q(ξ)
∞ and q(u)

∞ associated with recursions (2.52) and (2.17) satisfy

q(ξ)
∞ ≤icx q

(u)
∞ . (2.55)

The proof of Proposition 2.3.1 relies on the following fact:

Lemma 2.3.1 For Poisson rvs Xγλ and Xλ with parameters γλ and λ, respec-

tively, it holds that

Xγλ ≤cx γXλ, γ ≥ 1. (2.56)

Proof. We first prove a similar comparison result for certain Bernoulli rvs; these

are subsequently used to construct the Poisson rvs of interest. Let W (p) denote a

generic Bernoulli rv with parameter p, 0 ≤ p ≤ 1, i.e.,

P
[
W (p) = 1

]
= p = 1−P

[
W (p) = 0

]
.

Fix some integer n > γλ and consider two sequences of i.i.d. Bernoulli rvs{
W

(λ
n

)

i , i = 1, 2, . . . , n
}

and

{
W

(λγ
n

)

i , i = 1, 2, . . . , n

}
with generic rvs W (λ

n
) and

W (λγ
n

), respectively. For all convex mappings φ : IR→ IR and γ ≥ 1, it holds that

φ(γ)− φ(0)− γ(φ(1)− φ(0)) ≥ 0.

Therefore, upon comparing

E
[
φ
(
W (λγ

n
)
)]

=
γλ

n
φ(1) +

(
1−

γλ

n

)
φ(0)

with

E
[
φ
(
γW (λ

n
)
)]

=
λ

n
φ(γ) +

(
1−

λ

n

)
φ(0),
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we get

E
[
φ
(
W (λγ

n
)
)]
≤ E

[
φ
(
γW (λ

n
)
)]
.

Thus, by Definition B.4 (see Appendix B), we arrive at

W (λγ
n

) ≤cx γW
(λ
n

) (2.57)

which in turn [59, Proposition 1.1.2] implies that

n∑
i=1

W
(λγ
n

)

i ≤cx

n∑
i=1

γW
(λ
n

)

i . (2.58)

By Poisson’s Convergence Theorem the rvs Xλγ and γXλ can be obtained as the

weak limits of the sums
n∑
i=1

W
(λγ
n

)

i and
n∑
i=1

γW
(λ
n

)

i , respectively, by letting n go to

infinity. The expectations of both left and right hand side of (2.58) are finite and

equal to γλ, the common value of the expectations of the limiting rvs. Therefore

Proposition B.8 applies and (2.56) follows by taking the limit in (2.58).

Proof of Proposition 2.3.1. Recall that the generic rvs β and ξ are Pois-

son rvs with parameters λ and λE [σ], respectively, with E [σ] ≥ 1. Applying

Lemma 2.3.1, we obtain

ξ ≤cx β E [σ] (2.59)

or, equivalently, by Definition B.4,

E [φ(ξ)] ≤ E [φ(β E [σ])] (2.60)

for all convex mappings φ : IR→ IR for which the expectations exist. On the other

hand, Jensen’s inequality implies

φ

(
E

[
β∑
k=1

σk|β

])
≤ E

[
φ

(
β∑
k=1

σk

)
|β

]
,
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whence

E [φ(β E [σ])] ≤ E [φ(u)] . (2.61)

Combining (2.61) and (2.60) we collect E [φ(ξ)] ≤ E [φ(u)], which (again by Defi-

nition B.4) is tantamount to

ξ ≤cx u. (2.62)

Finally, we use (2.62), together with the fact that E
[
q(ξ)
∞

]
and E

[
q(u)
∞

]
exist and

are both finite when E
[
σ2
]
< ∞, to conclude that (2.55) holds true by appeal-

ing to the external monotonicity of GI|GI|1 recursions given by Proposition B.8.

In the case c = 1 the rv q(u)
∞ (and q(ξ)

∞ as well) admits the equivalent repre-

sentation (2.38) given in Section 2.3.3. This enables us to sharpen the result of

Proposition 2.3.1 as follows:

Proposition 2.3.2 Let c = 1 in the recursions (2.17) and (2.52). If λE [σ] < 1,

then the stationary queue lengths q(u)
∞ and q(ξ)

∞ satisfy

q(ξ)
∞ ≤st q

(u)
∞ . (2.63)

Proof. When c = 1 relation (2.38) for q(u)
∞ is in effect, and a corresponding

expression holds true for q(ξ)
∞ . That is,

q(ξ)
∞ =st

µ∑
n=1

(ξ̂n − 1), (2.64)

where the generic rv ξ̂ for the sequence of i.i.d. rvs {ξ̂n, n = 1, 2, . . .} is distributed

according to

P
[
ξ̂ = 0

]
= 0; P

[
ξ̂ = n

]
=

1

E [ξ]
P [ξ ≥ n] , n = 1, 2, . . . , (2.65)
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and the rv µ is independent of {ξ̂n, n = 1, 2, . . .}, with

P [µ = n] = E [ξ]n (1−E [ξ]), n = 0, 1, . . . . (2.66)

Noting that E [ξ] = E [u] we have µ =st ν, where the distribution of ν was given

in (2.39) . Also, the convex stochastic comparison (2.62) implies

E
[
(ξ − n)+

]
≤ E

[
(u− n)+

]
, n = 0, 1, . . . . (2.67)

From (2.34) and (2.65) we see that

P
[
ξ̂ > n

]
=

1

E [ξ]
E
[
(ξ − n)+

]
n = 0, 1, . . .

with the corresponding relation for u. Inequality (2.67) now yields

P
[
ξ̂ > n

]
≤ P [û > n] , n = 0, 1, . . . ,

or, equivalently,

ξ̂ ≤st û. (2.68)

Thus, the convex stochastic comparison between ξ and u translates into a strong

stochastic comparison between ξ̂ and û, and the conclusion (2.63) follows from

µ =st ν, (2.38), (2.64), (2.68) and Proposition 2.2.5 in [59, p. 45].
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Chapter 3

Heavy traffic: Lévy motion limits

3.1 Introduction

In this chapter we derive the non-degenerate limiting distribution, as the traf-

fic intensity λE [σ] tends to the multiplexer release rate c, of the appropriately

normalized queue length induced by an M |G|∞ arrival process, for a generally

distributed activity rv σ. The arising limits are classified in terms of the short–

vs. long–range dependent property of the M |G|∞ process, as determined by the

tail behavior of σ. In the short–range dependent regime the limiting distribution

distribution is exponential, as is the case in the classical GI|G|1 queue, originally

studied by Kingman in [31, 32]. However, under long–range dependence the results

do not involve the fractional Brownian motion model of Norros [43, 44]. Different

self–similar limits arise in the form of Lévy motion, leading to a buffer content

distribution with hyperbolic decay.

The basic idea behind the proof of these results is a “convergence together”

argument which allows us to identify processes with well–known heavy traffic be-

havior, under both short– and long–range dependence. This is accomplished chiefly

by combining standard results on stable rvs and their domain of attraction [20],
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with a general functional convergence result for processes with stationary indepen-

dent increments due to Skorokhod [57]. We point out that, even in the short–range

dependent case, convergence to Brownian motion does not appear to follow from

standard results for stationary processes [5, Thm. 20.1, p. 174], as it is not ob-

vious that the M |G|∞ busy server process satisfies the required mixing property.

However, as mentioned in Proposition 2.1.2, the M |G|∞ busy server process is

strongly positively correlated – it is an associated process. Because of this prop-

erty, it is then possible under short–range dependence to develop an alternative

approach similar to that used by Newman and Wright in [42] in establishing the

Invariance Principle for sequences of associated random variables. This approach

is not pursued here.

3.2 The heavy traffic regime

We seek to understand the behavior of the (stable) queue with the the correlated

M |G|∞ arrival process, under the assumption that it is almost fully utilized, i.e.,

λE [σ], though less than the release rate c, is very close to c. This typically involves

obtaining limiting expressions of properly rescaled quantities of interest, as the

packet arrival rate λE [σ] tends towards its critical value c. Here, the quantity

of interest is the steady–state queue size q∞. A natural setup to investigate this

problem consists of embedding the discrete–time queue with release rate c driven by

an M |G|∞ input process (λ, σ) into a parametric family of like queueing systems,

indexed by an integer parameter, say r. More precisely, for each r = 1, 2, . . .

we take the rth system to be a discrete–time queue with release rate c driven

by an M |G|∞ input process {brn, n = 0, 1, . . .} characterized by the pair (λr, σ).

The corresponding queue size sequence {qrn, n = 0, 1, . . .} also obeys the Lindley
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recursion (2.11), and admits a representation of the form (2.15), i.e.,

qr0 = 0; qrn = srn − nc− inf
(
srj − jc, j = 0, 1, . . . , n

)
, n = 1, 2, . . . (3.1)

where {srn, n = 1, 2, . . .} is the sequence of partial sums (2.12) associated with

{brn, n = 1, 2, . . .}. We take λrE [σ] < c for all r = 1, 2, . . . for some fixed c > 0,

so that

lim
r→∞

λr = c/E [σ] . (3.2)

Thus, each one of these systems is stable with lim
r→∞

λrE [σ] = c, thereby capturing

the notion that “the system is driven to heavy traffic.” We seek a scaling sequence

{ζr, r = 1, 2, . . .} such that the convergence in distribution

qr∞
ζr

=⇒r Q (3.3)

takes place to some IR–valued rv Q.

Unfortunately, this heavy traffic program cannot be carried out in this form as

exact expressions are unavailable for the distribution of qr∞ owing to the correla-

tions present in the M |G|∞ input process, and we need to resort to the following

indirect approach where the buffer content is rescaled in both the time and state

space variables: For each r = 1, 2, . . ., we define the IR–valued continuous–time

processes {Sr(t), t ≥ 0} and {Qr(t), t ≥ 0} by

Sr(t) :=
1

ζr

(
sr[rt] −E

[
sr[rt]
])

and Qr(t) :=
qr[rt]

ζr
, t ≥ 0,

and the function γr : IR+ → IR by

γr(t) :=
1

ζr

(
[rt]c− E

[
sr[tr]
])

=
[rt]

ζr
(c− λrE [σ]) , t ≥ 0.

The convergence (3.3) can be stated informally as

lim
r→∞

lim
t→∞

Qr(t) = Q (3.4)
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with limits understood in the sense of weak convergence. The approach to heavy

traffic followed here is to interchange the order of these limits, i.e., to evaluate

lim
t→∞

lim
r→∞

Qr(t) (3.5)

which corresponds to first taking r to infinity, and then letting t go to infinity.

Assuming that the limits can be taken in that order, we are then left with the task

of showing that

lim
r→∞

lim
t→∞

Qr(t) = Q = lim
t→∞

lim
r→∞

Qr(t). (3.6)

In this chapter we concentrate only on establishing the first step (3.5), and it is

well known [27, 65] that the theory of weak convergence on function spaces provides

a natural framework for doing so. To that end, we pause briefly to introduce the

needed notation, as well as to highlight several points from the theory of weak

convergence of processes; this material is drawn mostly from [5, pp. 150–153] to

which the reader is referred for additional information:

For each T > 0, let D[0, T ] denote the space of mappings [0, T ]→ IR which are

right–continuous with left limits; the space D[0, T ] can be equipped with either

the uniform topology or the standard Skorokhod topology [5, p. 111]. As in [5, p.

150], a concept prefixed with U (resp. S) refers to the uniform (resp. Skorokhod)

topology. For probability measures defined on the collection of U–Borel (resp. S–

Borel) sets on D[0, T ], we refer to weak convergence in the sense of the uniform

(resp. Skorokhod) topology by U–weak (resp. S–weak) convergence, and we write

U
=⇒r (resp.

S
=⇒r) (with the understanding that r goes to infinity). For probability

measures defined on the collection of U–Borel sets, U–weak convergence implies S–

weak convergence but the converse is false. This implication will be used repeatedly

in various technical arguments [Sections 3.5 and 3.7].
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Finally, let D[0,∞) denote the space of mappings IR+ → IR which are right–

continuous with left limits. In this chapter, we present results on the S–weak

convergence of the restrictions to finite intervals of sequences of IR–valued processes

with sample paths in D[0,∞). More precisely, consider the sequence of IR–valued

processes {Xr(t), t ≥ 0}, r = 1, 2, . . ., with sample paths in D[0,∞). Whenever

for each T > 0 we have the S–weak convergence

{Xr(t), 0 ≤ t ≤ T}
S

=⇒r {X(t), 0 ≤ t ≤ T} in D[0, T ]

for some IR–valued process {X(t), t ≥ 0} with sample paths in D[0,∞), we sim-

plify the notation by writing

{Xr(t), t ≥ 0}=⇒r{X(t), t ≥ 0}.

Now, noting that (3.1) can be rewritten as

Qr(t) = Sr(t)− γr(t)− inf
0≤x≤t

(Sr(x)− γr(x)) , t ≥ 0, (3.7)

and recalling the continuous mapping theorem [5, Thm. 5.1, p. 30], we conclude

that the first limit in (3.5) requires at the very least identifying a scaling sequence

{ζr, r = 1, 2, . . .} that ensures the convergence

{Sr(t), t ≥ 0} =⇒r {S(t), t ≥ 0} (3.8)

for some non–trivial limiting process {S(t), t ≥ 0}.

3.3 The main heavy traffic results

As will become apparent shortly, the choice of the scaling sequence {ζr, r =

1, 2, . . .} and the characterization of the limiting process {S(t), t ≥ 0} entering
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(3.8) both depend on the distribution of the rv σ which controls the correlations

in the input packet stream. It is nevertheless easy to see that in order to avoid

collecting only a law of large numbers, any candidate scaling sequence {ζr, r =

1, 2, . . .} should obey the following necessary condition:

Condition (A) The scaling sequence {ζr, r = 1, 2, . . .} satisfies

lim
r→∞

ζr = +∞ with lim
r→∞

ζr
r

= 0.

The heavy traffic assumption below refines (3.2), and guarantees that, as r goes

to infinity, the family of queueing systems described by (3.7) gradually approaches

instability at the appropriate speed:

Assumption (B) The scaling sequence {ζr, r = 1, 2, . . .} satisfies

lim
r→∞

(λrE [σ]− c)
r

ζr
= −γ or equivalently, λrE [σ] = c−

ζr
r

(γ + o(1))

for some γ > 0.

Condition (A) and Assumption (B) are enforced throughout. It is worth point-

ing out that the scaling sequence {ζr, r = 1, 2, . . .} is essentially unique, i.e., any

other scaling sequence {ζ ′r, r = 1, 2, . . .} yielding a non–degenerate limit in (3.8)

must satisfy lim
r→∞

ζ ′r/ζr = C for some finite constant C > 0.

We begin with the case where the M |G|∞ process is short–range dependent

and let {B(t), t ≥ 0} denote a standard Brownian motion.

Theorem 3.3.1 (Short–range dependence) If E
[
σ2
]
< ∞, then with ζr =

√
r, r = 1, 2, . . ., it holds that

{Sr(t), t ≥ 0} =⇒r {

√
cE [σ2]

E [σ]
B(t), t ≥ 0}.
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The remaining results are obtained under the additional assumption that the

tail of σ is regularly varying of order α (1 < α ≤ 2), i.e., of the form

P [σ > n] = n−αh(n), n = 1, 2, . . . (3.9)

for some slowly varying function h : IR+ → IR+, in which case the mean E [σ] is

finite. Of particular interest for the forthcoming discussion is the realization that

the truncated second moment of σ is (2− α)–regularly varying. Writing

lα(x) :=



α

2− α
h(x) if 1 < α < 2

2

[x]∑
r=1

h(r)

r
if α = 2

(3.10)

for all x > 0, we can show via Proposition 3.8.1 that the function lα : IR+ → IR+

is slowly varying and that whenever E
[
σ2
]

=∞, it holds

E
[
1 [σ ≤ n] σ2

]
∼ n2−αlα(n) (n→∞). (3.11)

The details of the proof of this asymptotic equivalence are identical to those of

(3.43) and (3.44).

The next proposition handles the boundary value α = 2, which represents a

hybrid case between short– and long–range dependence.

Theorem 3.3.2 Assume α = 2 in (3.9) with E
[
σ2
]

= ∞. Then, with {ζr, r =

1, 2, . . .} satisfying

lim
r→∞

r

ζ2
r

l2(ζr) = lim
r→∞

r

ζ2
r

E
[
1 [σ ≤ ζr]σ

2
]

= K (3.12)

for some positive constant K, it holds that

{Sr(t), t ≥ 0} =⇒r {

√
cK

E [σ]
B(t), t ≥ 0}.
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Finally, we turn to the case of bona fide long–range dependence, i.e., 1 < α < 2.

We recall Definition 1.3.7 and let {Lα(t), t ≥ 0} denote a spectrally positive, α–

stable Lévy motion, i.e., an α–stable Lévy motion such that for all t > 0, the rv

Lα(t) is a stable rv Sα(t1/α, 1, 0) [53, p. 9] characterized by

E [exp(iθLα(t))] = exp
(
−t|θ|α

(
1− i sgn(θ) tan(

πα

2
)
))

, θ ∈ IR . (3.13)

Theorem 3.3.3 (Long–range dependence) If 1 < α < 2 in (3.9), then with

{ζr, r = 1, 2, . . .} satisfying

lim
r→∞

r

ζαr
h(ζr) = lim

r→∞
rP [σ > ζr] = K (3.14)

for some positive constant K, it holds that

{Sr(t), t ≥ 0} =⇒r {

(
CK cos(π

2− α

2
)

)1/α

Lα(t), t ≥ 0 } (3.15)

where

CK :=
cKΓ(2− α)

(α− 1)E [σ]
. (3.16)

We close with a characterization of the scaling sequences encountered in Theorems

3.3.2 and 3.3.3; its proof is given in Proposition A.3 of Appendix A.

Proposition 3.3.1 The scaling sequence {ζr, r = 1, 2, . . .} of Theorems 3.3.2 and

3.3.3 is 1/α–regularly varying, 1 < α ≤ 2, i.e., of the form ζr = r1/αĥ(r) for some

slowly varying function ĥ : IR+ → IR+.

3.4 Consequences and comments

Several interesting inferences follow from the heavy traffic results obtained so far.
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3.4.1 Queue size

We start with the heavy traffic behavior of the normalized queue length. Whenever

the convergence (3.8) holds, we can immediately conclude from (3.7) and from the

continuity of the reflection mapping (via the continuous mapping theorem [5, Thm.

5.1, p. 30]) that

{Qr(t), t ≥ 0} =⇒r {Q(t), t ≥ 0} (3.17)

with

Q(t) := S(t)− γt− inf
0≤x≤t

(S(x)− γx) , t ≥ 0. (3.18)

The form of the limit derives from (3.7) and the fact that lim
r→∞

γr(t) = −γt under

Assumption (B).

This observation can now be used to provide a characterization of Q(∞), the

steady–state buffer content in heavy traffic, under the assumptions of Theorems

3.3.1–3.3.3.

In the short–range dependent case, Theorem 3.3.1 combines with a classical

result on the reflection functional of Brownian motion [27, p. 15] to yield the

following.

Theorem 3.4.1 Under the assumptions of Theorem 3.3.1, the resulting stationary

heavy–traffic buffer content is exponentially distributed, with

P [Q(∞) > x] = exp

(
−

2γE [σ]

cE [σ2]
x

)
, x ≥ 0.

Theorem 3.3.2 leads via (3.17)–(3.18) to a similar result.

Theorem 3.4.2 Under the assumptions of Theorem 3.3.2, the resulting stationary

heavy–traffic buffer content is exponentially distributed, with

P [Q(∞) > x] = exp

(
−

2γE [σ]

cK
x

)
, x ≥ 0.
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Finally, in the stable case, we need to introduce the class of Mittag–Leffler

functions [17, p. 206]: For each ν > 0 the Mittag–Leffler function Eν : IR → IR is

given by

Eν(x) :=
∞∑
n=0

xn

Γ(νn+ 1)
, x ∈ IR . (3.19)

Theorem 3.3.3 can be combined with established facts on the reflection functional

of a Lévy process [6] to yield the following conclusions.

Theorem 3.4.3 Under the assumptions of Theorem 3.3.3, the distribution of the

resulting stationary heavy–traffic buffer content is given by

P [Q(∞) > x] = Eα−1

(
−

γ

CK
xα−1

)
, x ≥ 0, (3.20)

and the associated heavy–traffic buffer asymptotics are hyperbolic, with

P [Q(∞) > x] ∼
cK

γ(α− 1)E [σ]
x1−α (x→∞). (3.21)

Proof. Combining Proposition 5a of [6, p. 725] (or Theorem in [26, p. 417]) with

(3.18) and Theorem 3.3.3, we obtain

E
[
e−sQ(∞)

]
=

γ

γ + CKsα−1
, s ≥ 0. (3.22)

Application of Fubini’s theorem in (3.22) yields∫ ∞
0

e−sx P [Q(∞) > x] dx =
1

s

(
1− E

[
e−sQ(∞)

])
=

1

s

CK

CK + γs1−α
, s ≥ 0 (3.23)

and a simple change of variable gives∫ ∞
0

e−x P
[
Q(∞) >

x

s

]
dx =

CK

CK + γs1−α
, s ≥ 0. (3.24)
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Letting s → ∞ we note that the mapping x → P
[
Q(∞) >

x

s

]
monotonically

increases to the constant mapping x→ P [Q(∞) > 0], whence

P [Q(∞) > 0] =

∫ ∞
0

e−x lim
s→∞

P
[
Q(∞) >

x

s

]
dx

= lim
s→∞

∫ ∞
0

e−x P
[
Q(∞) >

x

s

]
dx

= lim
s→∞

CK
CK + γs1−α

= 1

by the monotone convergence theorem, so that Q(∞) has no point mass at 0.

For |s| > (CK/γ)1/(α−1), the right–hand side in (3.23) can be represented by an

absolutely convergent geometric series, so that∫ ∞
0

e−sx P [Q(∞) > x] dx =
1

s

∞∑
n=0

(
−

γ

CK

)n
s(1−α)n, |s| > (CK/γ)1/(α−1).

Therefore, by Theorem 35.2 in [13, p. 192], the transform can be inverted term by

term to yield

P [Q(∞) > x] =
∞∑
n=0

(
−

γ

CK

)n
x(α−1)n

Γ((α− 1)n+ 1)
, x ≥ 0

and (3.20) readily follows from the definition (3.19). The asymptotics (3.21) are

verified by observing that

1− E
[
e−sQ(∞)

]
∼
CK

γ
sα−1 (s→ 0+)

and by making use of a standard Tauberian result [7, Corollary 8.1.7].

3.4.2 On selecting the heavy traffic scaling

As the appropriate scaling sequence {ζr, r = 1, 2, . . .} is revealing of the nature of

the limiting heavy traffic process {S(t), t ≥ 0}, we briefly discuss here its selection.
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In Section 2.1.2 we mentioned that, under (3.9) with 1 < α < 2, the M |G|∞

busy server process possesses the second order asymptotic self–similarity property,

with parameter (3−α)/2, i.e., by aggregating the original process {bn, n = 0, 1, . . .}

in blocks of size m and dividing by the block size, we obtain in the limit (as m

goes to infinity) the same correlation function as that of a fractional Gaussian

noise process. Such convergence of the correlation function tempts one to think

that the appropriate scaling ensuring (3.8) might be the one that balances the

rate of growth of the partial sums variance, so that convergence (3.8) occurs to a

limiting process with finite variance. We now explore this point in some detail:

By standard calculations, we find the variance of the partial sums to be

var [Sr(t)] =
λrE [σ]

ζ2
r

[rt] + 2

[rt]∑
k=1

([rt]− k)P [σ̂ > k]

 , t ≥ 0

for all r = 1, 2, . . .. It can be shown that when the tail of σ satisfies (3.9) with

1 < α < 2, the candidate scaling {ζr, r = 1, 2, . . .} given by

ζ2
r := r

r∑
k=1

P [σ̂ > k] , r = 1, 2, . . . (3.25)

indeed results in a finite limiting variance, i.e., lim
r→∞

var [Sr(t)] exists and is finite

for all t ≥ 0. In addition, invoking (3.94) we see that the scaling (3.25) has the

asymptotic form

ζ2
r ∼

1

(2− α)(α− 1)E [σ]
r3−αh(r) (r →∞). (3.26)

and is therefore regularly varying of order (3− α)/2.

On the other hand, from Theorem 1.3.1 we already know that convergence of

a normalized partial sum process, such as {Sr(t), t ≥ 0}, can only be to a self–

similar process, and that the corresponding Hurst parameter H may be determined
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through the regularly varying scaling {ζr, r = 1, 2, . . .} by

lim
r→∞

ζ[rx]

ζr
= xH , x > 0.

Thus, the candidate scaling (3.25), which balances the growth of the variance, sug-

gests possible convergence to a fractional Brownian motion with Hurst parameter

(3− α)/2.

In the present heavy traffic setup however, convergence of the rescaled M |G|∞

process to a fractional Brownian motion does not take place. The candidate scaling

(3.25) is not the appropriate scaling; it is too strong and yields convergence to

a degenerate limit – the identically zero process. Theorem 3.3.3, in conjuction

with Proposition 3.3.1, clearly shows that the correct scaling does not contain

any r(3−α)/2 factor, but instead contains the weaker r1/α factor associated with

the stable law to which the service rv σ is attracted. As a result, the limiting

heavy traffic process turns out to be not a fractional Brownian motion but an

α–stable 1/α–self–similar Lévy motion, the stable analog of standard Brownian

motion, which has independent increments with infinite variance. In heavy traffic,

the corresponding queue length asymptotics are not Weibullian, but hyperbolic

with power 1 − α. Thus, M |G|∞ processes demonstrate that, within long–range

dependence, fractional Brownian motion does not assume the ubiquitous role that

standard Brownian motion plays in the short–range dependence setup, and that

modeling possibilities attracted to non–Gaussian limits are not so hard to find.

Clearly, the extent to which such non–Gaussian processes can serve as useful traffic

models deserves further consideration.
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3.5 Outline of proof and preliminary results

In this section we organize the proof of Theorems 3.3.1–3.3.3 into a series of steps

which we formalize as Propositions; their proofs are given in Section 3.7.

Look at the rth queueing system for some r = 1, 2, . . ., and fix n = 0, 1, . . ..

We note the decomposition brn = b(0)r
n + b(a)r

n where the rvs b(0)r
n and b(a)r

n describe

the contributions to the number of customers in the system at the beginning of

slot [n, n + 1) from those initially present (at n = 0) and from the new arrivals,

respectively. It is easy to see that

b(0)r
n =

br∑
j=1

1 [σ̂j > n] and b(a)r
n =

n∑
k=1

βrk∑
j=1

1 [σk,j > n− k] .

It was shown in [47, Sec. 5] that

s(0)r
n :=

n∑
j=1

b
r(0)
j =

br∑
j=1

min(n, σ̂j − 1) (3.27)

and

s(a)r
n :=

n∑
k=1

b
(a)r
k =

n∑
k=1

βrk∑
j=1

min(σk,j, n− k + 1). (3.28)

We introduce the rescaled versions

S(0)r(t) :=
1

ζr

(
s

(0)r
[rt] − E

[
s

(0)r
[rt]

])
, t ≥ 0

and

S(a)r(t) :=
1

ζr

(
s

(a)r
[rt] − E

[
s

(a)r
[rt]

])
, t ≥ 0

so that

Sr(t) = S(0)r(t) + S(a)r(t), t ≥ 0. (3.29)

Also, for each T > 0, the identically zero mapping on [0, T ] is the element of D[0, T ]

denoted by θT , i.e., θT : [0, T ]→ IR with θT (t) = 0, 0 ≤ t ≤ T .
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We first show that the initial condition plays no role in the heavy traffic limit,

as should be expected. This reduction step, as well as others taken in this section,

is accomplished under the following sufficient condition.

Condition (B) The scaling sequence {ζr, r = 1, 2, . . .} satisfies

lim
r→∞

1

ζr

r∑
j=1

P [σ̂ > j] = 0.

Condition (B) holds under each set of assumptions of Theorems 3.3.1–3.3.3; this

is shown in Proposition 3.6.1 of Section 3.6.

Proposition 3.5.1 Under Condition (B), for each T > 0 it holds that

{S(0)r(t), 0 ≤ t ≤ T}
U

=⇒r θT in D[0, T ].

Thus, in order to get (3.8) it suffices to consider the limiting behavior of the

rescaled process {S(a)r(t), t ≥ 0}. To that end, for each r = 1, 2, . . ., we introduce

the sequence {wrn, n = 0, 1, . . .} given by

wr0 := 0, wrn :=
n∑
k=1

βrk∑
j=1

σk,j, n = 1, 2, . . . (3.30)

which can be interpreted as the sequence of partial sums associated with the in-

stantaneous arrivals (2.16). The corresponding rescaled process {W r(t), t ≥ 0} is

given by

W r(t) :=
1

ζr

(
wr[rt] −E

[
wr[rt]

])
, t ≥ 0. (3.31)

The main idea driving the discussion is that in as much as heavy traffic is concerned,

the process {W r(t), t ≥ 0} acts as a surrogate for {S(a)r(t), t ≥ 0}. This is made

precise through the following “convergence together” result.
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Proposition 3.5.2 Under Condition (B), for each T > 0 it holds that

{W r(t)− S(a)r(t), 0 ≤ t ≤ T}
U

=⇒r θT in D[0, T ].

Combining Propositions 3.5.1 and 3.5.2, we immediately get the following con-

clusion from the decomposition (3.29).

Corollary 3.5.1 Under Condition (B), for each T > 0 it holds that

{W r(t)− Sr(t), 0 ≤ t ≤ T}
U

=⇒r θT in D[0, T ],

so that the process {Sr(t), 0 ≤ t ≤ T} is S–weakly convergent if and only if

{W r(t), 0 ≤ t ≤ T} is S–weakly convergent, and convergence is to the same limit.

Thus, we need only consider the convergence of the process {W r(t), t ≥ 0}, and

characterize the limiting process. In fact, a further reduction can be achieved by

noting that in heavy traffic we can replace {βrk, k = 1, 2, . . .} by the limiting i.i.d.

sequence {βk, k = 1, 2, . . .}, where the generic rv β is a Poisson rv with parameter

c/E [σ]. More precisely, consider the modified workload process {vn, n = 0, 1, . . .}

given by

v0 = 0; vn =
n∑
k=1

βk∑
j=1

σk,j, n = 1, 2, . . . (3.32)

under the assumption that the rvs {βk, k = 1, 2, . . .} are independent of the session

duration rvs {σn,j, n, j = 1, 2, . . .}. For each r = 1, 2, . . ., the corresponding

rescaled process {V r(t), t ≥ 0} is defined by

V r(t) :=
1

ζr

(
v[rt] − E

[
v[rt]

])
, t ≥ 0. (3.33)

Proposition 3.5.3 Under Assumption (B), the process {W r(t), 0 ≤ t ≤ T} is

S–weakly convergent if and only if {V r(t), 0 ≤ t ≤ T} is S–weakly convergent,

and convergence is to the same limit.
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Corollary 3.5.1 and Proposition 3.5.3 together lead to the following conclusion:

Corollary 3.5.2 Under Assumption (B) and Condition (B), the process {Sr(t),

0 ≤ t ≤ T} is S–weakly convergent if and only if {V r(t), 0 ≤ t ≤ T} is S–weakly

convergent, and convergence is to the same limit.

3.6 Proofs of Theorems 3.3.1–3.3.3

First, the big picture: Corollary 3.5.2 and Proposition 3.6.1 (given below) imply

that in proving Theorems 3.3.1–3.3.3 we need only investigate the convergence

of the modified workload process (3.33). This is a much easier task as we now

deal with the (normalized) partial sums process associated with a single sequence

of i.i.d. rvs, of finite mean but possibly infinite variance, an extensively studied

situation where the (functional form of the) classical Central Limit Theorem and

its generalization to i.i.d. summands with infinite variance, are expected to yield

the requested convergence. In fact, as we shall see shortly, the convergence of

the finite dimensional distributions of {V r(t), t ≥ 0} turns out to be an easy

by–product of classical results concerning stable distributions and their domains

of attraction [20, pp. 574–581]. Finally, the desired S–weak convergence of the

process {V r(t), t ≥ 0}, thus of {Sr(t), t ≥ 0}, will be validated through functional

convergence results due to Skorokhod [57]. This approach clearly explains the form

of the results obtained in this chapter, providing insights as to when the process

{V r(t), t ≥ 0} is expected to converge, and to which limit. A different, analytic

approach using characteristic functions was pursued in the technical report [60].

We now proceed with the details: In Section 3.8 we give a proof that the

technical Condition (B) required to establish the “convergence together” argument,
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indeed holds under the assumptions of Theorems 3.3.1–3.3.3.

Proposition 3.6.1 Condition (B) holds true for each of the scaling sequences

{ζr, r = 1, 2, . . .} in Theorems 3.3.1–3.3.3.

Next, we consider the generic compound rv Y given by

Y :=

β∑
j=1

σj (3.34)

where the rv β is a Poisson rv with parameter c/E [σ] and independent of the i.i.d.

rvs {σj, j = 1, 2, . . .} which are distributed according to σ. Fixing t ≥ 0, we note

that

V r(t) =st

1

ζr

[rt]∑
k=1

(Yk −E [Yk]) , r = 1, 2, . . . (3.35)

where the i.i.d. rvs {Yk, k = 1, 2, . . .} are distributed according to the generic rv

Y .

For easy reference, we restate some useful facts concerning stable distributions

and their domains of attraction; the reader is refered to [20, pp. 574–581] for

additional material: Let L be a rv with distribution not concentrated at one point,

and let {Xr, r = 1, 2, . . .} be a sequence of i.i.d. rvs, with generic rv X. We say

that X belongs to the domain of attraction of the rv L if there exist normalizing

constants ζr > 0 and cr, r = 1, 2, . . ., such that

X1 + . . .+Xr − rcr
ζr

=⇒r L. (3.36)

By Theorem 1 of [20, p. 576] only stable rvs possess a domain of attraction. By

Theorem 2 in [20, p. 577], in order for X to belong to the domain of attraction of

a stable law with exponent α, 0 < α ≤ 2, it is necessary that its truncated second

moment be regularly varying with exponent 2− α, i.e.,

E
[
1 [X ≤ r]X2

]
∼ r2−αg(r) (r →∞), (3.37)
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for some slowly varying function g : IR+ → IR+. The associated scaling sequence

{ζr, r = 1, 2, . . .} in (3.36) must then satisfy

lim
r→∞

r

ζ2
r

E
[
1 [X ≤ ζr]X

2
]

= M (3.38)

for some constant M > 0 [20, p. 579]. Moreover, if E [X] is finite, then by Theorem

3(ii) of [20, p. 581] we can take cr = E [X], r = 1, 2, . . ..

We are now ready to discuss Theorems 3.3.1–3.3.3 which are all proven in

the same manner, although for clarity of presentation, we shall consider each of

them separately. As E [Y ] is finite under the enforced assumptions, we conclude

from (3.35) and (3.36) that for each t > 0, the convergence question concerning

{V r(t), r = 1, 2, . . .} is equivalent to determining whether the rv Y is attracted

to a stable law, and to which one. In asserting this equivalence we rely on the

fact that the scaling sequence {ζr, r = 1, 2, . . .} so selected is regularly varying, as

turns out to be the case by Proposition 3.3.1, so that

lim
r→∞

ζ[rt]

ζr
= t1/α, t ≥ 0. (3.39)

In each case, we show that both the necessary condition (3.37) and the accompa-

nying sufficient condition stated in [20, p. 577] are satisfied. This occurs simply

because the generic rv Y inherits the tail behavior of the generic service time σ

under each set of assumptions of Theorems 3.3.1–3.3.3.

A proof of Theorem 3.3.1.

Since E
[
σ2
]
<∞, the variance of Y is also finite, and is given by

var [Y ] = var [β] E [σ]2 + E [β] var [σ] =
cE [σ2]

E [σ]
. (3.40)

Hence, the truncated second moment of Y varies slowly, i.e., (3.37) holds with

α = 2 and as Y is never degenerate at one point, it follows from Corollary 1 to
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Theorem 2 in [20, p. 578] that Y is attracted to the normal distribution. Obviously,

the scaling ζr =
√
r, r = 1, 2, . . . satisfies (3.38), with M = cE

[
σ2
]
/E [σ]. In

fact, by a well–known result of Donsker [5, Thm. 16.1, p. 137], selecting ζr =
√
r, r = 1, 2, . . . ensures that the process {V r(t), t ≥ 0} is S–weakly convergent

to a Brownian motion, with

{V r(t), t ≥ 0}
S

=⇒r {
√
M B(t), t ≥ 0}. (3.41)

Combining (3.41) with Proposition 3.6.1 and Corollary 3.5.2 immediately concludes

the proof.

Under the assumptions of Theorems 3.3.2 and 3.3.3, E
[
σ2
]

is infinite, and the

compound Poisson rv Y now has infinite variance. Also, if σ satisfies the tail

condition (3.9), so does Y with

P [Y > r] = P

[
β∑
j=1

σj > r

]
∼ E [β] r−αh(r) (r →∞). (3.42)

The asymptotic equality in (3.42) is stated as an exercise in [20, Ex. 31, p. 288],

where the reader will find hints for its proof (see also [16]). Next, we check that

the truncated second moment of Y is given by

E
[
1 [Y ≤ r]Y 2

]
= 2

r∑
n=1

nP [Y > n]− r(r + 2)P [Y > r] +
r−1∑
n=0

P [Y > n]

for each r = 1, 2, . . .. Using (3.42) in this last expression, we find that

E
[
1 [Y ≤ r]Y 2

]
∼ E [β]

(
2

r∑
n=1

n1−αh(n)− r2−αh(r)

)
(r →∞) (3.43)

because E [Y ] is finite and E
[
Y 2
]

infinite. We close these preliminary remarks by

noting that the truncated second moments of σ and Y are obviously related to

each other by

E
[
1 [Y ≤ r]Y 2

]
∼ E [β] E

[
1 [σ ≤ r]σ2

]
(r→∞). (3.44)
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A proof of Theorem 3.3.2.

Inserting α = 2 in (3.43) and using the definition (3.10) (with α = 2), we get

E
[
1 [Y ≤ r]Y 2

]
∼ E [β] (l2(r)− h(r)) (r→∞).

By Proposition 3.8.1(ii), l2 : IR+ → IR+ is slowly varying with

lim
r→∞

h(r)

l2(r)
= 0,

so that

E
[
1 [Y ≤ r]Y 2

]
∼ E [β] l2(r) (r→∞). (3.45)

This time, by Corollary 1 in [20, p. 578], the slow variation of the truncated second

moment is a necessary and sufficient condition for Y to be attracted to the nor-

mal distribution, with normalizing coefficients selected according to (3.38) (despite

the fact that the variance of Y is now infinite). Since the marginals of the process

{V r(t), t ≥ 0}, which has stationary, independent increments, converge to a Gaus-

sian distribution, it follows by [57, Theorem 2.7] without any additional conditions

that (3.41) takes place. Because of (3.45), selecting the scaling {ζr, r = 1, 2, . . .}

according to (3.38), with M = cK/E [σ], is equivalent to (3.12). Combining (3.41)

with Proposition 3.6.1 and Corollary 3.5.2 completes the proof.

A proof of Theorem 3.3.3.

When 1 < α < 2 in (3.9) the rvs σ and Y have infinite second moment, and

Proposition 3.8.1(i) implies

lim
r→∞

1

r2−αh(r)

r∑
n=1

n1−αh(n) =
1

(2− α)
. (3.46)
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Using this asymptotic in (3.43) we get

E
[
1 [Y ≤ r]Y 2

]
∼

α

2− α
E [β] r2−αh(r) (r→∞). (3.47)

Invoking Corollary 2 of [20, p. 578], we see that (3.47) and the tail condition

(3.42) are sufficient to ensure membership of Y in the domain of attraction of a

non–normal stable distribution with exponent 1 < α < 2. The associated scaling

sequence {ζr, r = 1, 2, . . .}, selected according to (3.38), yields convergence of the

marginal distribution of V r(1), as r goes to infinity, to that of an α–stable rv, i.e.,

lim
r→∞

E [exp(iθV r(1))] = E

[
exp

(
iθ

(
MΓ(3− α)

α(α− 1)
cos(π

2− α

2
)

)1/α

Lα(1)

)]

for all θ in IR. The exact value of the constant given above can be easily veri-

fied, by recalling the expression (3.13) for the characteristic function of Lα(1) and

comparing it with Eq. (3.18) of [20, p. 730] (note the unfortunate error in the ±

sign). Next, appealing to [57, Theorem 2.7] again, we conclude that convergence

of the marginals also implies S–weak convergence of the process {V r(t), t ≥ 0},

which has stationary, independent increments, to an α–stable Lévy motion. More

precisely, it holds that

{V r(t), t ≥ 0}
S

=⇒r {

(
MΓ(3− α)

α(α− 1)
cos(π

2− α

2
)

)1/α

Lα(t), t ≥ 0}. (3.48)

Using (3.47) in (3.38) with M = cKα/(2−α)E [σ] we obtain the scaling sequence

{ζr, r = 1, 2, . . .} given in (3.14). Finally, combining (3.48) with Proposition 3.6.1

and Corollary 3.5.2 shows that (3.15) holds true.
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3.7 Proofs of Propositions 3.5.1, 3.5.2 and 3.5.3

We start by remarking that if the sequence {ζr, r = 1, 2, . . .} is regularly varying

(as stated in Proposition 3.3.1), then Condition (B) also implies

lim
r→∞

1

ζr

[rt]∑
j=1

P [σ̂ > j] = 0, t ≥ 0. (3.49)

All three proofs given in this section follow the same pattern, and are based on

the following simple idea: Consider a sequence of IR–valued processes {Xr(t), t ≥

0}, r = 1, 2, . . ., with sample paths in D[0,∞). Fix T > 0. According to Theorem

4.1 of [5, p. 25], the U–weak convergence

{Xr(t), 0 ≤ t ≤ T}
U

=⇒r θT in D[0, T ],

follows from the convergence in probability

sup
0≤t≤T

|Xr(t)|
P
−→r 0. (3.50)

A proof of Proposition 3.5.1.

Fix r = 1, 2, . . ., and note from (3.27) that

sup
0≤t≤T

|S(0)r(t)| ≤
1

ζr

br∑
j=1

min(σ̂j − 1, [rT ]) +
λrE [σ]

ζr
E [min(σ̂ − 1, [rT ])] .

Hence, for every ε > 0, it is plain that

P

[
sup

0≤t≤T
|S(0)r(t)| > ε

]
≤ P

[
1

ζr

br∑
j=1

min(σ̂j − 1, [rT ]) +
λrE [σ]

ζr
E [min(σ̂ − 1, [rT ])] > ε

]

≤
2λrE [σ]

εζr
E [min(σ̂ − 1, [rT ])] (3.51)
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where the last step follows by Chebyshev’s inequality. It is also the case that

E [min(σ̂ − 1, [rT ])] =

[rT ]−1∑
n=0

P [min(σ̂ − 1, [rT ]) > n]

=

[rT ]−1∑
n=0

P [σ̂ − 1 > n]

=

[rT ]∑
n=1

P [σ̂ > n] .

Appealing to Condition (B) and (3.49), we get

lim
r→∞

E

[
1

ζr
min(σ̂ − 1, [rT ])

]
= 0 (3.52)

and the conclusion

lim
r→∞

P

[
sup

0≤t≤T
|S(0)r(t)| > ε

]
= 0

immediately obtains from (3.2) upon letting r go to infinity in (3.51).

A proof of Proposition 3.5.2.

Fix r = 1, 2, . . .. From (3.28) and (3.30) we note that

wrn − s
(a)r
n =

n∑
k=1

βrk∑
j=1

(σk,j − (n− k + 1))+

=
n∑
k=1

βrn−k+1∑
j=1

(σn−k+1,j − k)+

=st

n∑
k=1

βrk∑
j=1

(σk,j − k)+, n = 1, 2, . . . (3.53)

where the last step made use of the mutual independence of the families of i.i.d.

rvs {βrk, k = 1, 2, . . .} and {σk,j, k, j = 1, 2, . . .}. It is now straightforward to

check that

sup
0≤t≤T

|W r(t)− S(a)r(t)| ≤st
1

ζr

[rT ]∑
k=1

βrk∑
n=1

(σk,n − k)+ +
λr
ζr

[rT ]∑
k=1

E
[
(σ − k)+

]
.
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By Chebyshev’s inequality, for every ε > 0 we obtain

P

[
sup

0≤t≤T
|W r(t)− S(a)r(t)| > ε

]
≤

2λr
εζr

[rT ]∑
k=1

E
[
(σ − k)+

]
=

2λrE [σ]

εζr

[rT ]∑
k=1

P [σ̂ > k] , (3.54)

and the desired convergence

sup
0≤t≤T

|W r(t)− S(a)r(t)|
P
−→r 0

follows upon letting r go to infinity in the upper bound (3.54), and making use of

(3.2), Condition (B) and (3.49).

The proof of Proposition 3.5.3 requires estimates that derive from various mar-

tingales inequalities; we now state them in Lemmas 3.7.1 and 3.7.2 for easy ref-

erence: Consider a collection of integrable rvs {Xi, i = 1, . . . , n} adapted with

respect to the filtration {Fi, i = 1, . . . , n}, i.e., for each i = 1, . . . , n, the rv Xi is

Fi–measurable. We also write

Si = X1 + . . .+Xi, i = 1, . . . , n.

Kolmogorov’s maximal inequality [25, Corollary 2.1, p. 14] is given first.

Lemma 3.7.1 Assume {(Si,Fi), i = 1, . . . , n} to form a martingale. Then, for

each p ≥ 1, it holds that

P

[
max
i=1,...,n

|Si| > λ

]
≤ λ−pE [|Sn|

p] , λ > 0.

The von Bahr–Esseen inequality [64] is next.
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Lemma 3.7.2 Assume {(Xi,Fi), i = 1, . . . , n} to form a martingale difference.

If E [|Xi|
p] <∞ for all i = 1, . . . , n, then

E [|Sn|
p] ≤ 2

n∑
i=1

E [|Xi|
p] , 1 ≤ p ≤ 2.

In what follows Lemmas 3.7.1 and 3.7.2 are applied to the special case when

the rvs {Xi, i = 1, . . . , n} are zero–mean i.i.d. rvs.

A proof of Proposition 3.5.3.

Recall that the rvs {βk, k = 1, 2, . . .} are i.i.d. Poisson rvs with parameter c/E [σ],

which are independent of the sequence of i.i.d. session duration rvs {σk,j, k, j =

1, 2, . . .}.

Fix r = 1, 2, . . .. On the same probability triple (Ω,F ,P) where the previ-

ously mentioned rvs are defined, we introduce a family of i.i.d. {0, 1}–valued rvs

{Ur
k,j, k, j = 1, 2, . . .}, i.e.,

P [Ur = 1] =
λrE [σ]

c
= 1−P [Ur = 0]

where Ur denotes the generic rv for this i.i.d. sequence. The rvs {Ur
k,j, k, j =

1, 2, . . .} are assumed independent of the collections of rvs mentioned so far. Next,

we define the rvs {β̃rk, k = 1, 2, . . .} by

β̃rk :=

βk∑
j=1

Ur
k,j, k = 1, 2, . . .

We also define the workload process {w̃rn, n = 0, 1, . . .} corresponding to {β̃rk, k =

1, 2, . . .} by

w̃r0 := 0, w̃rn :=
n∑
k=1

β̃rk∑
j=1

σk,j, n = 1, 2, . . .
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and its rescaled version {W̃ r(t), t ≥ 0} by

W̃ r(t) :=
1

ζr

(
w̃r[rt] −E

[
w̃r[rt]

])
, t ≥ 0.

Under the enforced independence assumptions, it is easy to check that {β̃rk, k =

1, 2, . . .} =st {β
r
k, k = 1, 2, . . .}, and that

{W̃ r(t), 0 ≤ t ≤ T} =st {W
r(t), 0 ≤ t ≤ T}.

Moreover, these rvs are all defined on the same probability triple as the rescaled

process {V r(t), t ≥ 0}. Thus, the result will be established if it holds that

{V r(t)− W̃ r(t), 0 ≤ t ≤ T}
U

=⇒r θT in D[0, T ],

or equivalently, if we can show that

sup
0≤t≤T

|V r(t)− W̃ r(t)|
P
−→r 0. (3.55)

To that end, for each r = 1, 2, . . ., we note from the definitions that

w̃rn =
n∑
k=1

βk∑
j=1

Ur
k,jσk,j, n = 1, 2, . . .

so that

vrn − w̃
r
n =

n∑
k=1

βk∑
j=1

(1− Ur
k,j)σk,j, n = 1, 2, . . . (3.56)

The rvs {Zr
k, k = 1, 2, . . .} defined by

Zr
k :=

βk∑
j=1

(1− Ur
k,j)σk,j, k = 1, 2, . . . (3.57)

are i.i.d., and denote by Zr the corresponding generic rv associated with this

collection of rvs. It is plain from (3.56) and (3.57) that

sup
0≤t≤T

|V r(t)− W̃ r(t)| =
1

ζr
sup

1≤n≤[rT ]

∣∣∣∣∣
n∑
k=1

(Zr
k − E [Zr

k])

∣∣∣∣∣ .

60



Fix ε > 0. Invoking the maximal inequality for martingale sequences [Lemma

3.7.1], we get

P

[
sup

0≤t≤T
|V r(t)− W̃ r(t)| > ε

]
≤

1

(εζr)p
E

∣∣∣∣∣∣
[rT ]∑
k=1

(Zr
k − E [Zr

k])

∣∣∣∣∣∣
p (3.58)

with p selected such that 1 < p < α ≤ 2. This selection of p ensures E [σp] <

∞ both under short–range dependence and under the assumption of regularly

varying tail (3.9). The von Bahr – Esseen inequality [Lemma 3.7.2] for martingale

differences can now be applied to the right–hand side of (3.58) to yield

1

(εζr)p
E

∣∣∣∣∣∣
[rT ]∑
k=1

(Zr
k −E [Zr

k])

∣∣∣∣∣∣
p ≤ 2[rT ]

(εζr)p
E [|Zr − E [Zr] |p] . (3.59)

By the convexity of x→ xp (p > 1) on IR+, we find

E [|Zr − E [Zr] |p] ≤ 2p−1(E [|Zr|p] + E [|Zr|]p) ≤ 2pE [|Zr|p] (3.60)

with the last step validated by Jensen’s inequality. Next, using the definition of

Zr, we obtain by the same convexity argument that

E [|Zr|p|β] ≤ βp−1 E

[
β∑
j=1

(1− Ur
j )pσpj |β

]
= βpE [σp] E [(1− Ur)p] a.s. (3.61)

under the enforced independence assumptions (and with an obvious notation).

Injecting the bounds (3.60) and (3.61) into (3.59), we conclude from (3.58) that

P

[
sup

0≤t≤T
|V r(t)− W̃ r(t)| > ε

]
≤

2p+1

εpζp−1
r

[rT ]

r
E [σp] E [βp]

r

ζr
E [(1− Ur)p] (3.62)

As the heavy traffic Assumption (B) implies

lim
r→∞

r

ζr
E [(1− Ur)p] =

γ

c
, (3.63)

the desired conclusion (3.55) now follows by letting r go to infinity in (3.62) and

noting that lim
r→∞

1/ζp−1
r = 0 for p > 1.
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3.8 A proof of Proposition 3.6.1

In the proof of Proposition 3.6.1 and elsewhere, we make use of the following fact.

Lemma 3.8.1 For any slowly varying function u : IR+ → IR+, it holds that

lim
x→∞

xρu(x) =∞, ρ > 0, (3.64)

while

lim
x→∞

xρu(x) = 0, ρ < 0. (3.65)

Proof. By the Representation Theorem for slowly varying functions [7, Theorem

1.3.1, p. 12], we can write

u(x) ∼ c exp

(∫ x

A

ε(t)

t
dt

)
(x→∞) (3.66)

with constants A > 0 and c > 0, and Borel mapping ε : IR+ → IR such that

lim
t→∞

ε(t) = 0. Thus,

xρu(x) ∼ cAρ exp

(∫ x

A

ε(t) + ρ

t
dt

)
(x→∞).

For every δ > 0 there exists tδ > A such that |ε(t)| < δ for t > tδ, whence

−δ + ρ

t
≤
ε(t) + ρ

t
≤
δ + ρ

t
, t > tδ

so that

K + (−δ + ρ) ln

(
x

tδ

)
≤

∫ x

A

ε(t) + ρ

t
dt ≤ K + (δ + ρ) ln

(
x

tδ

)
, x > tδ

with

K :=

∫ tδ

A

ε(t) + ρ

t
dt.
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The conclusion (3.64) (resp. (3.65)) follows from these inequalities when selecting

δ > 0 such that δ < ρ (resp. δ < −ρ) – such a selection is always possible when

ρ > 0 (resp. ρ < 0).

The limit (3.64) is useful in the proof of the following discrete analogue to the

direct half of Karamata’s Theorem [7, p. 26].

Proposition 3.8.1 Let u : IR+ → IR+ be a slowly varying function. Then the

following statements hold:

(i) For any p > −1, we have the asymptotics

r∑
n=1

npu(n) ∼
rp+1

p+ 1
u(r) (r →∞); (3.67)

(ii) For any p < −1, we have the asymptotics

∞∑
n=r

npu(n) ∼ −
rp+1

p + 1
u(r) (r →∞); (3.68)

(iii) The mapping û : IR+ → IR+ defined by

û(x) :=

[x]∑
n=1

u(n)

n
, x ≥ 0 (3.69)

is a slowly varying function which satisfies

lim
x→∞

u(x)

û(x)
= 0. (3.70)

Proof. (i) Under the condition p + 1 > 0, it follows from (3.64) that (3.67) is

equivalent to

lim
r→∞

r∑
n=r?+1

1

r

(n
r

)p u(n)

u(r)
=

1

p+ 1
(3.71)

for any finite r? (which is now fixed for the remainder of the proof).
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To prove (3.71) pick δ in (0, 1 + p) and A > 0. By Potter’s bound [7, p. 25],

there exists an integer r? := r(δ, A) such that

u(n)

u(r)
< A

(n
r

)−δ
, r? ≤ n ≤ r. (3.72)

Now, pick r > r? and note that

r∑
n=r?+1

1

r

(n
r

)p u(n)

u(r)
=

∫ 1

0

Ur(x) dx (3.73)

where the function Ur : IR+ → IR is defined by

Ur(x) := 1

[
x ≥

r?

r

]
Tr(x)p

u(rTr(x))

u(r)
, x ≥ 0 (3.74)

with

Tr(x) :=
[rx] + 1

r
, x ≥ 0. (3.75)

For every x in (0, 1), we have x ≤ Tr(x) ≤ 1, and the Uniform Convergence

Theorem for slowly varying functions [7, Theorem 1.2.1, p. 6] thus implies

lim
r→∞

u(rTr(x))

u(r)
= 1. (3.76)

The pointwise convergence

lim
r→∞

Ur(x) = xp (3.77)

is now an immediate consequence of (3.74)–(3.76). Moreover, making use once

more of Potter’s bound (3.72) we find that

0 ≤ Ur(x) ≤ ATr(x)p−δ ≤ Amax(1, xp−δ)

with finite integral ∫ 1

0

max(1, xp−δ) dx < 1 +
1

p− δ + 1
(3.78)
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under the choice of δ. These remarks together with (3.76) lead to

lim
r→∞

∫ 1

0

Ur(x)dx =

∫ 1

0

xpdx =
1

p+ 1
(3.79)

by dominated convergence, and the desired limit (3.71) follows by going to the

limit in (3.73).

(ii) The proof is similar to that for Part (i). We note that under the condition

p+ 1 < 0 it follows from (3.65) that (3.68) is equivalent to

lim
r→∞

∞∑
n=r

1

r

(n
r

)p u(n)

u(r)
= −

1

p+ 1
. (3.80)

Thus, pick δ in (0,−1− p), and A > 0. By a Potter bound [7, p. 25] similar to

(3.72) there exists an integer r? := r(δ, A) such that

u(n)

u(r)
< A

(n
r

)δ
, r? ≤ r ≤ n, (3.81)

and we conclude that
∞∑
n=r

npu(n) is finite for each r = 1, 2, . . ., under the current

choice of δ. Next, we write

∞∑
n=r+1

1

r

(n
r

)p u(n)

u(r)
=

∫ ∞
1

Ur(x) dx (3.82)

where the function Ur : IR+ → IR is now defined by

Ur(x) := Tr(x)p
u(rTr(x))

u(r)
, x ≥ 0 (3.83)

with Tr(x) as in (3.75). Since, for every x in [1,∞), we have x ≤ Tr(x) ≤ x + 1,

the Uniform Convergence Theorem for slowly varying functions [7, Theorem 1.2.1,

p. 6] implies (3.76) and the pointwise convergence (3.77) again follows. Making

use of Potter’s bound (3.81) we find that

0 ≤ Ur(x) ≤ ATr(x)p+δ ≤ Axp+δ, r ≥ r?
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with finite integral ∫ ∞
1

xp+δ dx = −
1

p+ δ + 1
(3.84)

under the current choice of δ. These remarks together with (3.77) lead to

lim
r→∞

∫ ∞
1

Ur(x)dx =

∫ ∞
1

xpdx = −
1

p+ 1
(3.85)

by dominated convergence, and the desired limit (3.80) follows by going to the

limit in (3.82).

(iii) We begin by noting that the standard asymptotics

lim
x→∞

[bx]∑
n=[ax]+1

1

n
= ln

(
b

a

)
, 0 < a < b

imply

lim
x→∞

[bx]∑
n=[ax]+1

1

n

u(n)

u(x)
= ln

(
b

a

)
, 0 < a < b. (3.86)

Indeed, for some x?? in IR+, it holds that

a ≤ sup
(n
x

: n = [ax] + 1, . . . , [bx]
)
≤ b, x ≥ x??. (3.87)

By the Uniform Convergence Theorem [7, Theorem 1.2.1, p. 6], for each δ > 0

there exists x? := xa,b(δ) > x?? such that

sup

(
|
u(tx)

u(x)
− 1| : t ∈ [a, b]

)
≤ δ, x ≥ x?. (3.88)

Combining (3.87) and (3.88) we readily get (3.86) in the form

lim
x→∞

[bx]∑
n=[ax]+1

1

n

u(n
x
x)

u(x)
= ln

(
b

a

)
.

Now, pick ε in (0, 1). In view of (3.86) we have

lim inf
x→∞

û(x)

u(x)
≥ lim

x→∞

[x]∑
n=[εx]+1

1

n

u(n)

u(x)
= − ln ε. (3.89)
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Since ε can be chosen arbitrarily small, it follows that

lim
x→∞

û(x)

u(x)
=∞ (3.90)

or equivalently, (3.70). To prove that û is slowly varying, pick y > 1 and note that

for every x > 0, we have

û(yx) = û(x) + u(x)

[yx]∑
n=[x]+1

1

n

u(n)

u(x)
,

so that

û(yx)

û(x)
= 1 +

u(x)

û(x)

[yx]∑
n=[x]+1

1

n

u(n)

u(x)
.

It is now straightforward from (3.70) and (3.86) to obtain

lim
x→∞

û(yx)

û(x)
= 1.

The case y < 1 is handled in a similar way, and the slow variation of û follows.

A proof of Proposition 3.6.1.

From (2.3) it always holds that

E [σ̂] =
∞∑
n=0

P [σ̂ > n] =
E [σ2]

2E [σ]
+

1

2
. (3.91)

We consider each of the scalings {ζr, r = 1, 2, . . .} associated with Theorems 3.3.1

– 3.3.3, separately:

[Theorem 3.3.1] Under short–range dependence, we have E
[
σ2
]
<∞, and it is

immediate from (3.91) that Condition (B) holds for the choice ζr =
√
r, r = 1, 2, . . .

(in fact for any choice such that lim
r→∞

ζr =∞).

We next turn to Theorems 3.3.2 and 3.3.3. Upon substituting (3.9) (with 1 < α ≤
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2) into (2.3), we readily get from Proposition 3.8.1(ii) that

P [σ̂ > n] =
1

E [σ]

∞∑
j=n

P [σ > j] ∼
1

(α− 1)E [σ]
n1−αh(n) (n→∞),

whence
r∑

n=1

P [σ̂ > n] ∼
1

(α− 1)E [σ]

r∑
n=1

n1−αh(n) (r→∞) (3.92)

provided E [σ̂] is infinite.

[Theorem 3.3.2] When α = 2 in (3.9), the condition E
[
σ2
]

= ∞ implies that

E [σ̂] is infinite by (3.91). Thus, (3.92) holds in the form

r∑
n=1

P [σ̂ > n] ∼
1

E [σ]

r∑
n=1

h(n)

n
(r→∞)

which, from Proposition 3.8.1(iii) is seen to be slowly varying. By Proposition

3.3.1, the scaling {ζr, r = 1, 2, . . .} is 1/2–regularly varying, so that

1

ζr

r∑
n=1

P [σ̂ > n] ∼
1

E [σ]
r−

1
2

1

ĥ(r)

r∑
n=1

h(n)

n
(r→∞) (3.93)

for some slowly varying function ĥ : IR+ → IR+. The ratio of slowly varying

functions being itself slowly varying, we readily conclude from Lemma 3.8.1 and

(3.93) that Condition (B) holds.

[Theorem 3.3.3] On the range 1 < α < 2, E
[
σ2
]

is infinite, and so is E [σ̂] by virtue

of (3.91). Proposition 3.8.1(i) applied to the right–hand side of the asymptotic

equivalence (3.92) yields

r∑
n=1

P [σ̂ > n] ∼
1

(2− α)(α− 1)E [σ]
r2−αh(r) (r→∞). (3.94)

By Proposition 3.3.1 the scaling {ζr, r = 1, 2, . . .} is 1/α–regularly varying, so

that

1

ζr

r∑
n=1

P [σ̂ > n] ∼
1

(2− α)(α− 1)E [σ]

h(r)

ĥ(r)

r2−α

r
1
α

(r→∞) (3.95)
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for some slowly varying function ĥ : IR+ → IR+. The ratio of slowly varying func-

tions is itself slowly varying, and Condition (B) is now a direct consequence of

Lemma 3.8.1 once we note that 2− α− α−1 < 0 for α > 0.
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Chapter 4

Light traffic limits

4.1 Introduction

We seek to characterize the light traffic limiting behavior of the queueing system

with M |G|∞ inputs. Our main tool for accomplishing this task is a methodology

presented in a series of papers by Reiman and Simon [49, 50, 51]. Their approach

provides a general framework for deriving asymptotic results in systems where the

quantity of interest can be expressed as a function of a Poisson–like process. If

λ > 0 denotes the intensity of the Poisson process driving the system, then the light

traffic information furnished by the Reiman–Simon technique consists of derivatives

of the quantity of interest, with respect to λ, evaluated at λ = 0+. We devote

most of our efforts to the case c = 1, because then additional expressions become

available by relating the system with M |G|∞ inputs to that with instantaneous

inputs. The results quantify the effect of the session duration distribution G and

reveal the differences between the gradual M |G|∞ inputs and the instantaneous

arrivals of a classical GI|GI|1 queue. Moreover, in the special case c = 1, they

suggest a classification of the light traffic behavior of the multiplexer buffer content

in terms of the short– vs long– range dependent property of the M |G|∞ arrival
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process.

4.2 Reiman–Simon theory

4.2.1 Preliminaries

To place our problem in the context of the Reiman–Simon methodology, we start

by introducing bi–infinite counterparts to the sequences of IN–valued rvs repre-

senting session arrivals and their activity durations. That is, we consider the

bi–infinite sequences of IN–valued rvs {βn, n = 0,±1,±2, . . .} and {σn,j, n =

0,±1,±2, . . . ; j = 1, 2, . . .} which are constructed on a common probability space

(Ω,F ,Pλ), are mutually independent and satisfy Assumptions (A)(i) and (ii), re-

spectively. We also introduce the bi–infinite sequences of M |G|∞ inputs {bn, n =

0,±1,±2, . . .} and queue lengths {qn, n = 0,±1,±2, . . .}, where the former are

given by

bn :=
n∑

k=−∞

βk∑
j=1

1 [σk,j > n− k] , n = 0,±1, . . . ,

so that bn denotes the number of active sessions at the beginning of slot [n, n+ 1).

In this setup, instead of starting the Lindley recursion at time n = 0 we take the

viewpoint that the system has been operating from time n = −∞, i.e.,

qn+1 = [qn + bn+1 − c]
+, n = 0,±1, . . . . (4.1)

Under the stability condition λE [σ] < c convergence to the stationary IR+–valued

rv q∞ has already taken place by time n = 0, that is,

q0 =st q∞. (4.2)

Application of the Reiman–Simon method entails conditioning on the number

of arriving sessions and their corresponding activity durations. We introduce the

71



necessary notation. First, we denote by the empty set ∅ the event that, from time

t = −∞ to t = +∞, there are no session arrivals at all. Next, fix n = 1, 2, . . .,

and consider the following event ω: There are exactly n sessions that ever become

active. For each i = 1, 2, . . . , n, fixed ti = 0,±1, . . ., and ki = 1, 2, . . ., the ith

session becomes active during time slot time [ti−1, ti) and its activity period lasts

ki time slots. We denote such an event ω by {t1, . . . , tn; k1, . . . , kn}. In other words,

{t1, . . . , tn; k1, . . . , kn} corresponds to an event where n sessions arrive to the system

over all time, and these arrivals occur during time slots [t1 − 1, t1), . . . , [tn − 1, tn)

with respective activity durations k1, . . . , kn. We drop the duration indices to

denote unions of events, i.e.,

{t1, . . . , tn; } :=
∞⋃
k1=1

. . .

∞⋃
kn=1

{t1, . . . , tn; k1, . . . , kn}, (4.3)

is the event that exactly n sessions arrive to the system over all time, and these

arrivals occur during time slots [t1 − 1, t1), . . . , [tn − 1, tn).

4.2.2 Light traffic derivatives

Let the generic system performance metric φ(λ) be expressed as

φ(λ) =

∫
ψ dPλ (4.4)

for a suitably chosen rv ψ : Ω→ IR. For example, ψ(ω) can be chosen as the queue

length at time t = 0, corresponding to a sample path ω in Ω, in which case, from

(4.2) and (4.4), the performance metric φ(λ) is the expected value Eλ [q∞] of the

stationary queue length q∞.

Following the Reiman–Simon method, we decompose the expectation in (4.4)

according to occurrences of session arrivals/activity durations events of the form

{t1, . . . , tn; k1, . . . , kn}. To do this, for each n = 1, 2, . . . we associate with ψ several
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auxiliary functions. First, the expected value ψ̂ of ψ, conditional on the session

arrivals event {t1, . . . , tn; } is given by

ψ̂({t1, . . . , tn; }) := E [ψ | {t1, . . . , tn; }] ; (4.5)

this does not depend on λ. Next, we define the function ψ̃ : {1, 2, . . .}n → IR by

ψ̃(k1, . . . , kn) :=
+∞∑

t1=−∞

. . .

+∞∑
tn=−∞

ψ({t1, . . . tn; k1, . . . , kn}). (4.6)

where ψ({t1, . . . tn; k1, . . . , kn}) is the value of ψ when n sessions arrive to the sys-

tem over all time, these session arrivals occur during time slots [t1−1, t1), . . . , [tn−

1, tn), and their respective activity durations are given by k1, . . . , kn. Further-

more, let Πn,j denote the set of unordered j-tuples chosen from {1, 2, . . . , n} (with

repetitions allowed), where for π = {i1, i2, . . . , ij} in Πn,j, we use the notation

tπ := {ti1 , ti2, . . . , tij ; }.

Now, for any given arrival event {t1, . . . , tn; }, we define

Ψ({t1, . . . , tn; }) :=
n∑
j=0

(−1)n−j
∑
π∈Πn,j

ψ̂(tπ). (4.7)

For instance, we have

Ψ({t; }) = ψ̂({t; })− ψ̂(∅), (4.8)

Ψ({t1, t2; }) = ψ̂({t1, t2; })− ψ̂({t1; })− ψ̂({t2; }) + ψ̂(∅) (4.9)

and so on.

The formulas for the light traffic derivatives can be obtained by considering a

system where only arrivals in an interval of the form [−T, T ), for T = 1, 2, . . ., are

ever allowed to enter; let φT (λ) be the corresponding performance metric. The idea

is to calculate first the derivatives of φT (λ) with respect to λ, at λ = 0+, and then

let T go to infinity. Clearly, it is necessary to justify that this interchange of limits
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in λ and T leads to the correct answer. To that end we enforce an assumption on

the finiteness of the exponential moment of σ:

Assumption (C) There exists θ? > 0 such that E
[
eθσ
]
<∞ for θ < θ?.

In [51] it is shown that under Assumption (C) the interchange of limits is indeed

valid; here we simply restate this conclusion as

Proposition 4.2.1 Under Assumption (C) it holds that

lim
T→∞

dn

dλn
φT (0+) =

dn

dλn
φ(0+), n = 0, 1, . . . .

The following result is essentially a discrete–time version of Theorem 2 in [51, p.

30], and enables us to calculate the nth order derivative of φ(λ) at λ = 0+ by

considering scenarios where at most n sessions ever arrive to the system.

Proposition 4.2.2 If Assumption (C) is satisfied, then

lim
λ→0+

φ(λ) = ψ̂(∅), (4.10)

and for each n = 1, 2, . . ., it holds that

dn

dλn
φ(0+) =

+∞∑
t1=−∞

. . .

+∞∑
tn=−∞

Ψ({t1, . . . , tn; }). (4.11)

Proof. For each T = 1, 2, . . . and j = 0, 1, . . . let

P T
j (λ) := e−2λT (2λT )j

j!

denote the probability that j discrete–time Poisson session arrivals occur during

the interval [−T, T ). For each n = 0, 1, . . ., the nth derivative of P T
j (λ) with respect

to λ is given by

dn

dλn
P T
j (λ) = (2T )n

min(n,j)∑
i=0

(−1)n−i
(

n

i

)
P T
j−i(λ),
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so that

dn

dλn
P T
j (0+) =


(2T )n

(
n

j

)
(−1)n−j if n ≥ j

0 if n < j.

(4.12)

Given that j Poisson arrivals have occured in [−T, T ), they are uniformly dis-

tributed over the 2T time slots. Thus,

φT (λ) =
∞∑
j=0

P T
j (λ)

T∑
t1=−T+1

. . .

T∑
tj=−T+1

1

(2T )j
ψ̂({t1, . . . , tj; })

and using (4.12) we get

dn

dλn
φT (0+) =

n∑
j=0

(2T )n
(

n

j

)
(−1)n−j

T∑
t1=−T+1

. . .

T∑
tj=−T+1

1

(2T )j
ψ̂({t1, . . . , tj; })

=
n∑
j=0

(2T )n−j(−1)n−j
∑
π∈Πn,j

T∑
tπ=−T+1

ψ̂(tπ)

=
n∑
j=0

(−1)n−j
∑
π∈Πn,j

T∑
t1=−T+1

. . .

T∑
tn=−T+1

ψ̂(tπ)

=
T∑

t1=−T+1

. . .

T∑
tn=−T+1

Ψ({t1, . . . , tn; }) (4.13)

Letting T go to infinity in (4.13) and invoking Proposition 4.2.1 we conclude that

(4.11) holds true.

We rely on Proposition 4.2.2 to calculate light traffic derivatives of system quan-

tities in the sequel.

4.2.3 Case c ≥ 1

We now consider a Lindley recursion (4.1) with release rate c ≥ 1. Fix some integer

p = 1, 2, . . .. Take ψ := q0
p, where q0 is the queue length at time n = 0, so that

the performance measure of interest is φ(λ) = Eλ [q∞
p], the pth moment of the
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stationary queue size. To determine its light traffic derivatives we need to evaluate

the quantities appearing in Proposition 4.2.2.

Clearly, if at most bcc sessions are ever active, then, since each active session

generates one arrival per time slot, their inputs are flushed out of the queue by the

end of the time slot and the queue remains empty. So, for each m = 1, 2, . . . , bcc

and t1, . . . , tm = 0,±1,±2, . . . it is immediate from definition (4.5) that

ψ̂(∅) = 0 and ψ̂({t1, . . . , tm; }) = 0. (4.14)

Next, fix some b ≥ 0 and take ψ := 1 [q0 > b], in which case the performance

metric of interest is the tail probability, φ(λ) = Eλ [ψ] = Pλ [q∞ > b]. If at most

bcc sessions become active, then the same simple considerations as before apply,

because whenever q0 = 0 we also have 1 [q0 > b] = 0. Thus relations (4.14) still

hold true for the current choice ψ := 1 [q0 > b] as well. Consequently, by combining

(4.14) with Proposition 4.2.2 for each of the functions ψ := q0
p and ψ := 1 [q0 > b]

we arrive at

Proposition 4.2.3 Consider a Lindley recursion (4.1) with release rate c ≥ 1. If

Assumption (C) is satisfied then for each m = 1, 2, . . . , bcc, it holds that:

(a) For p = 1, 2, . . .,

lim
λ→0+

Eλ [q∞
p] = 0 and

dm

dλm
Eλ [q∞

p]
∣∣∣
λ=0+

= 0. (4.15)

(b) For b ≥ 0,

lim
λ→0+

Pλ [q∞ > b] = 0 and
dm

dλm
Pλ [q∞ > b]

∣∣∣
λ=0+

= 0. (4.16)

Before proceeding we make a few comments. Note that when c = 1 the server

can only process one session at a time, so that the system can be viewed as a single

server queue operating in discrete time. Then from (4.16) with c = 1 it is already
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apparent that the light traffic limits of a queueing system with M |G|∞ inputs

differ from those of a standard single server GI|GI|1 queue. For the system first

derivative is here zero, while in the system (2.17) with instantaneous inputs the

first light traffic derivative is positive. This is a manifestation of the fact that work

that joins the system gradually, as is the case with M |G|∞ inputs, generates less

queueing that work arriving instantaneously. Also, relation (4.16) reflects (though

in a rough manner) the statistical multiplexing gain: All powers of λ up to and

including λbcc offer no contribution to the tail probability. Thus (4.16) implies that,

in light traffic, increasing the multiplexer release rate c while maintaining the same

system utilization λE [σ] /c results in a decreasing tail probability Pλ [q∞ > b].

In view of (4.15) and (4.16) the focus shifts to the calculation of the derivative

of order bcc + 1. This is the first non-zero derivative and it is clearly more infor-

mative than the bcc+ 1 lower order derivatives, for it provides the leading term in

expansions of system quantities around λ = 0.

4.2.4 Case c = 1

In this section we consider a Lindley recursion (4.1) with release rate c = 1. This

corresponds to the situation where each active session in the M |G|∞ input gener-

ates arrivals at rate equal to the multiplexer service rate. In this case we are able

to obtain explicit expressions for the second order light traffic derivatives of sys-

tem quantities by carrying out in full the calculations associated with Proposition

4.2.2.

We take ψ to be either ψ := q0
p for some p = 1, 2, . . ., or ψ := 1 [q0 > b] for

b ≥ 0, yielding φ(λ) = Eλ [q∞
p] and φ(λ) = Pλ [q∞ > b], respectively. From (4.11)
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it follows that

d2

dλ2
φ(0+) =

+∞∑
t1=−∞

+∞∑
t2=−∞

ψ̂({t1, t2; }), (4.17)

where we have also taken into account (4.14). We thus need to evaluate ψ̂({t1, t2; }).

This calculation requires consideration of a system where only two sessions are ever

active. In particular, since

ψ̂({t1, t2; }) =
∞∑
k1=1

∞∑
k2=1

ψ({t1, t2; k1, k2})P [σ = k1] P [σ = k2] , (4.18)

we need only examine the queue length process induced by events of the form

{t1, t2; k1, k2}. It is convenient to interchange the order of summations appearing

in (4.17) and (4.18) – this can be done without qualms for the summands are all

non-negative. Recalling definition (4.6), we calculate the sums over the arrival

times first, say

ψ̃(k1, k2) =
+∞∑

t1=−∞

+∞∑
t2=−∞

ψ({t1, t2; k1, k2}), (4.19)

and then rewrite (4.17) as

d2

dλ2
φ(0+) = E

[
ψ̃(σ1, σ2)

]
, (4.20)

where σ1 and σ2 are i.i.d. copies of the generic activity duration rv σ. Thus, the

calculation of the second derivative is reduced to the evaluation of ψ̃. To deter-

mine ψ̃ consider a session arrival/activity duration event of the form {t1, t2; k1, k2}.

Observe that if

min(t2 + k2, t1 + k1) > max(t1, t2) (4.21)

the two sessions that arrive in slots [t1 − 1, t1) and [t2 − 1, t2) are simultaneously

active from time max(t1, t2) until min(t2 + k2, t1 + k1). In that case the queue size

evolves as shown in Figure 4.1; otherwise, i.e., if min(t2 +k2, t1 +k1) ≤ max(t1, t2),

it is identically zero.
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Figure 4.1: Queue length evolution under the event {t1, t2; k1, k2}

By inspection, under (4.21), the queue length at time t = 0 is given by

q0({t1, t2; k1, k2}) =



−max(t1, t2),
if max(t1, t2) ≤ 0 and

0 ≤ min(t1 + k1, t2 + k2)

min(t1 + k1, t2 + k2)

−max(t1, t2),

if min(t1 + k1, t2 + k2) < 0

and 0 ≤ max(t1 + k1, t2 + k2)

min(t1, t2) + k1 + k2,
if max(t1 + k1, t2 + k2) < 0

and 0 ≤ min(t1, t2) + k1 + k2

0, otherwise.

To facilitate the evaluation of ψ̂ we display q0({t1, t2; k1, k2}) in the t1t2–plane; the

values for k1 ≥ k2 and k1 < k2 are shown in Figures 4.2 and 4.3, respectively.

We carry out the detailed calculation of the function ψ̃ corresponding to each

of the choices ψ := q0, ψ := q0
2 and ψ := 1 [q0 > b], b = 0, 1, . . ., in Section 4.4.

The results are summarized in Lemma 4.2.1 below.
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Lemma 4.2.1 Assume c=1 in the Lindley recursion (4.1). The following state-

ments hold:

(a) If ψ := q0 then

ψ̃(k1, k2) =
1

2
k1k2(k1 + k2), k1, k2 = 1, 2, . . . . (4.22)

(b) If ψ := q0
2 then

ψ̃(k1, k2) =
1

2
k1k2(1 + k1k2), k1, k2 = 1, 2, . . . . (4.23)

(c) If ψ := 1 [q0 > b] for some b = 0, 1, . . ., then

ψ̃(k1, k2) =
1

2

{
(k1 − b)

2 + (k2 − b)
2
}
−

3

2
(k1 + k2 − 2b)

+2(k1 − b)(k2 − b) + 1 (4.24)

for k1, k2 > b and ψ̃(k1, k2) = 0 otherwise.

In principle it is possible to evaluate the function ψ̃ corresponding to ψ := q0
p for

p > 2 in a similar manner. However, such calculations become increasingly tedious

for large p.

We now obtain explicit expressions for the second order light traffic derivatives

of system quantities by combining each one of (4.22), (4.23) and (4.24) with (4.20).

This leads to the following

Proposition 4.2.4 Let c = 1 in the Lindley recursion (4.1). Under Assumption

(C) it holds that:

(a) The moments Eλ [q∞] and Eλ

[
q∞

2
]

satisfy

d2

dλ2
Eλ [q∞]

∣∣∣
λ=0+

= E [σ] E[σ2] (4.25)

and

d2

dλ2
Eλ

[
q∞

2
]∣∣∣
λ=0+

=
1

2

(
E [σ]2 + E[σ2]2

)
. (4.26)
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(b) For each b = 0, 1, . . .

d2

dλ2
Pλ [q∞ > b]

∣∣∣
λ=0+

= E
[
(σ − b)+2

]
P [σ > b] + 2 E

[
(σ − b)+

]2
−3 E

[
(σ − b)+

]
P [σ > b] + P [σ > b]2 . (4.27)

Proposition 4.2.4 delineates a light traffic behavior for the queue with M |G|∞

arrivals that is certainly different from that of a classical GI|GI|1 queue. Indeed,

when considering the first two terms in a light traffic expansion of Pλ [q∞ > b]

around λ = 0 (for c = 1) we see that the first derivative (4.16) is zero so that the

second derivative is the most informative. This is given by (4.27) which highlights

the role of the activity duration rv σ, through both its distribution and its first two

moments. Thus, a light traffic expansion of the tail probability Pλ [q∞ > b] induced

by M |G|∞ arrivals is completely different from the corresponding expansion for

the system with instantaneous inputs: This can be obtained from (2.38) (or via the

Reiman–Simon method) and is given by Pλ

[
q(u)
∞ > b

]
∼ λE [σ] P [σ̂ > b+ 1] (λ→

0), thus starting with a non-zero first order term λ. Notice also that here, even if

Assumption (C) were to be relaxed, (4.27) shows that for Pλ [q∞ > b] to decay like

λ2 for small λ it is necessary that E
[
σ2
]

be finite. If E
[
σ2
]

= ∞, as is the case

for long–range dependent M |G|∞ arrivals, expression (4.27) yields infinity and λ2

is no longer the correct order of decay. A different, smaller exponent should be

sought in the long–range dependent case.

4.2.5 A heavy–light traffic relationship

In Sections 4.2.3 and 4.2.4 we have, at least partially, mapped out the light traffic

behavior of the multiplexer with M |G|∞ inputs. Of course this partial information

is augmented whenever expressions for the next higher order derivatives become
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available. Unfortunately, the calculations soon become intractable and, typically,

explicit expressions are available only for the first non-zero derivative. In principle

however, if light traffic derivatives of every order were known, then system quan-

tities would be completely determined away from the light traffic regime by their

Taylor series expansion (under analyticity assumptions). In particular, knowledge

of all light traffic derivatives would also imply full knowledge of system quantities

in heavy traffic. This observation raises the question as to how these successive

derivatives at λ = 0+ are related to the respective limiting behavior of system

quantities in the heavy traffic regime. The answer is given in [56], where a sim-

ple yet rather unexpected relationship is established. This relationship suggests

a method for constructing certain approximations of system quantities; these are

precisely the interpolation approximations discussed in Chapter 5.

The link between heavy traffic limits and light traffic derivatives is provided by

the following proposition, which is a special case of Simon’s results [56].

Proposition 4.2.5 Let the function φ : [0, 1)→ IR+ be analytic on [0, 1). Suppose

that the limit

H := lim
x→1−

(1− x)φ(x) (4.28)

exists and is positive and finite. Then

lim
n→∞

1

n!

dn

dxn
φ(0+) = H. (4.29)

We apply Proposition 4.2.5 in the context of the Lindley recursion (4.1) with c = 1,

describing a system with M |G|∞ arrivals, by setting x := λE [σ], so that x lies in

[0, 1) whenever the system is stable. Let us assume φ(λ) := Eλ [q∞] is analytic in

[0, 1). From Assumption (B) and Theorems 3.3.1 and 3.4.1 we infer that the limit

H := lim
λ→1/E[σ]

(1− λE [σ]) Eλ [q∞] =
E [σ2]

2E [σ]
(4.30)
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is positive and finite whenever E
[
σ2
]
<∞. In that case Proposition 4.2.5 reads

lim
n→∞

1

n!

1

E [σ]n
dn

dλn
Eλ [q∞]

∣∣∣
λ=0+

=
E [σ2]

2E [σ]
. (4.31)

Recalling Proposition 4.2.4(a), which provides the second light traffic derivative,

we observe that (4.31) already holds as an equality for n = 2, and not just in the

limit as n → ∞. This hints to the possibility that (4.31) holds with equality for

all n = 2, 3 . . ., namely

dn

dλn
Eλ [q∞]

∣∣∣
λ=0+

=
n!

2
E [σ]n−1 E

[
σ2
]
, n = 2, 3 . . . . (4.32)

If (4.32) were to hold, or were assumed to hold, then additional results would be

within reach. In fact, it follows from (2.33) that (4.32) indeed holds for the expected

queue size Eλ

[
q(u)
∞

]
in the system with instantaneous inputs. These observations

motivate a closer examination of the relation between the discrete–time queue

driven by M |G|∞ inputs and the corresponding system with i.i.d. instantaneous

inputs.

4.3 Gradual inputs

In this section we revisit the system with gradual input process. We aim at obtain-

ing expressions for the expected queue length and the probability that the queue

length is zero. We adapt the arguments of [55] and suppose that the system with

gradual inputs operates in parallel with a second system, with instantaneous in-

puts. That is, we consider the Lindley recursion (2.17) with instantaneous inputs

(2.16), and the sequence {q(a)
n , n = 0, 1, . . .} evolving according to

q
(a)
0 = 0; q

(a)
n+1 = [q(a)

n + b
(a)
n+1 − c]

+, n = 0, 1, . . . , (4.33)
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where the sequence of gradual inputs {b(a)
n , n = 1, 2, . . .} is given by

b(a)
n =

n∑
k=1

βk∑
j=1

1 [σk,j > n− k] , n = 0, 1, . . . , (4.34)

with the convention that empty sums are zero. We couple the two input sequences

(4.34) and (2.16) by constructing them both from the same i.i.d. rvs {βn+1, n =

0, 1, . . .} and {σn+1,i, n = 0, 1, . . . , i = 1, 2, . . .} of Section 2.1.1.

4.3.1 Stationary version

The gradual input sequence {b(a)
n , n = 0, 1, . . .} of (4.34) driving recursion (4.33)

is not the stationary version of the M |G|∞ busy server process. This stationary

version {bn, n = 0, 1, . . .} was given by (2.1) in Section 2.1.1 and contains an

additional term due to the servers initially busy. It is thus necessary to establish

a relation between the stationary regimes for (4.33) (with non-stationary inputs)

and for (2.11) (with stationary inputs). This is done in the following Lemma.

Lemma 4.3.1 Under the stability condition λE [σ] < c the sequences {qn, n =

0, 1, . . .} and {q(a)
n , n = 0, 1, . . .} associated with the Lindley recursions (2.11) and

(4.33), respectively, converge weakly to the same stationary rv q∞.

Proof. Define M := max{σ0,j , j = 1, . . . , b}, where b and {σ0,j , j = 1, . . . , b}

are given in Assumption (A), so that M is the (finite) time that elapses until the

activity periods of all initially active sessions expire. From (2.1) and (2.2) we note

that

bn+M+1 = b
(a)
n+M+1, n = 0, 1, . . . . (4.35)

Thus, on every sample path, the queue size sequences {qn+M , n = 0, 1, . . .} and

{q(a)
n+M , n = 0, 1, . . .} are driven by the same input sequence (4.35) with possibly
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different (in general) initial conditions qM and q
(a)
M . Because

lim
n→+∞

1

n

n∑
j=1

b
(a)
j = λE [σ] a.s.

we can invoke Lemma 6.1.4 in [54, p. 134], to conclude that under the stability

condition λE [σ] < c the sequences {qn+M , n = 0, 1, . . .} and {q(a)
n+M , n = 0, 1, . . .}

strongly couple on every sample path, hence, due to the already established fact

that qn =⇒n q∞, weakly converge to the same stationary rv q∞.

4.3.2 Case c ≤ 1: A stochastic comparison

In this section we assume that the multiplexer release rate is c ≤ 1, and establish

a strong stochastic comparison between q∞ and q(u)
∞ . For each n = 1, 2, . . . let

dn denote the total amount of work processed by the server in the system (2.17)

with instantaneous inputs (2.16) during the interval (0, n]. The sequence {dn, n =

1, 2, . . .} satisfies

dn =
n∑
k=1

uk − q
(u)
n , n = 1, 2, . . . . (4.36)

Next, look at the sibling system (4.33) with gradual inputs. Under the condition

c ≤ 1, a single active session suffices to make full use of the server capacity c,

despite the gradual nature of its input. This is no longer true if c > 1; in that case

if there is only one active session in the system it is served at unit rate and the

portion c− 1 of the capacity remains unused. Thus, under the assumption c ≤ 1,

in the system (4.33) (with gradual inputs) the server processes, in every sample

path, exactly the same amount of work as the server in the coupled system (2.16)
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(with instantaneous inputs) . This crucial observation enables us to write

dn =
n∑
k=1

b
(a)
k − q

(a)
n , n = 1, 2, . . . . (4.37)

for the same completed work sequence {dn, n = 1, 2, . . .} as that of (4.36). We

can thus obtain a relation between the queue sizes in the two systems: For each

n = 1, 2, . . ., set

vn :=
n∑
k=1

βn−k+1∑
j=1

(σn−k+1,j − k)+ (4.38)

and note from relations (4.36) and (4.37), and definitions (4.34) and (2.16) that

q(u)
n − q

(a)
n =

n∑
k=1

βk∑
j=1

(σk,j − (n− k + 1))+

=
n∑
k=1

βn−k+1∑
j=1

(σn−k+1,j − k)+

= vn. (4.39)

Observe here that (4.39) implies the sample path inequality

q(a)
n ≤ q(u)

n , n = 1, 2, . . . . (4.40)

Take n going to infinity in (4.40) and recall that the stochastic ordering ≤st is

stable under weak convergence (Proposition B.3 of Appendix B). It is now plain

from Lemma 4.3.1 that

q(a)
∞ ≤st q

(u)
∞ (4.41)

with q(a)
∞ =st q∞, and the following stochastic comparison is obtained:

Proposition 4.3.1 Consider the Lindley recursions (2.11) and (2.17) with inputs

characterized by a common pair (λ, σ) and release rate c such that λE [σ] < c ≤ 1.

The respective stationary rvs q∞ and q(u)
∞ satisfy

q∞ ≤st q
(u)
∞ . (4.42)
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4.3.3 Case c ≤ 1: Expected queue size E [q∞]

In addition to the stability condition λE [σ] < c we assume that E
[
σ2
]
< ∞,

which ensures E
[
q(u)
∞

]
< ∞, and proceed again via (4.39) and Lemma 4.3.1 to

express E [q∞] in terms of E
[
q(u)
∞

]
. For each n = 1, 2, . . ., it holds that

E
[
q(a)
n

]
= E

[
q(u)
n

]
− E [vn] . (4.43)

From (4.38) by Wald’s identity we have

E [vn] = λ

n∑
k=1

E
[
(σ − k)+

]
= λE [σ]

n∑
k=1

P [σ̂ > k]

whence

lim
n→∞

E [vn] = λE [σ] (E [σ̂]− 1)

= λE [σ]

(
E [σ(σ + 1)]

2E [σ]
− 1

)
=

λ

2
E [σ(σ − 1)] (4.44)

where the second equality follows from (2.4). Turning to the sequence {q(u)
n , n =

0, 1, . . .} we note that (2.17) is driven by the i.i.d. rvs {un, n = 1, 2, . . .} of (2.16)

and satisfies q
(u)
0 = 0 ≤ q

(u)
1 , so that the monotonicity result of Proposition B.7

(Appendix B) applies. We get

q(u)
n ≤st q

(u)
∞ , n = 1, 2, . . . (4.45)

and because of (4.40) we also obtain

q(a)
n ≤st q

(u)
∞ , n = 1, 2, . . . . (4.46)
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Since E
[
q(u)
∞

]
< ∞ whenever E

[
σ2
]
< ∞, inequalities (4.45) and (4.46) imply

that

E
[
q(u)
∞

]
= lim

n→∞
E
[
q(u)
n

]
and E

[
q(a)
∞

]
= lim

n→∞
E
[
q(a)
n

]
(4.47)

by the dominated convergence theorem. Therefore, letting n go to infinity in (4.43)

and using (4.44), (4.47) and Lemma 4.3.1 we collect

Proposition 4.3.2 Consider the Lindley recursions (2.11) and (2.17) with inputs

characterized by a common pair (λ, σ) and release rate c such that λE [σ] < c ≤ 1.

If E
[
σ2
]
<∞, then the respective stationary rvs q∞ and q(u)

∞ satisfy

E [q∞] = E
[
q(u)
∞

]
−
λ

2
E [σ(σ − 1)] . (4.48)

In the case where the multiplexer release rate is c = 1/m, for some integer

m = 1, 2, . . ., we can combine (4.48) with (2.51). Doing so yields an explicit

expression for the expected queue size induced by M |G|∞ inputs, namely

E [q∞] =
λE [σ2] (λmE [σ] +m− 1)

2(1− λmE [σ])
, m = 1, 2, . . . , (4.49)

provided that λE [σ] < c = 1/m and E
[
σ2
]
<∞. Of course formula (4.49) should

be consistent with the light traffic derivatives of E [q∞], calculated in Section 4.2.4

through the Reiman–Simon method. Indeed, for m = 1, in which case c = 1, it is

now easy to differentiate (4.49) twice and verify that (4.25) holds true.

4.3.4 Case c = 1: Determination of P [q∞ = 0]

Let the multiplexer rate be c = 1. We now obtain an exact expression for

P [q∞ = 0], i.e., the probability that the queue size is zero in the discrete–time

queue with M |G|∞ input process. This is accomplished by combining the corre-

sponding result on the instantaneous inputs queue with a sample path argument

for the coupled system with gradual inputs. The details are as follows:
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Consider the systems (2.17) and (4.33), with coupled instantaneous and grad-

ual inputs respectively. In Section 2.3.4 we introduced a decomposition of the

queue length evolution in system (2.17) in terms of “idle” and “busy” periods

{(I(u)
n , B(u)

n ), n = 1, 2, . . .} in the sense defined by (2.40) and (2.41). In the same

manner we introduce {(In, Bn), n = 1, 2, . . .}, the idle and busy period lengths as-

sociated with (4.33). These rv pairs are also i.i.d.; let (I, B) be the corresponding

generic pair. We first note that the coupled systems both start empty and have

identical cycle lengths,

In +Bn = I(u)
n +B(u)

n , n = 1, 2, . . . , (4.50)

so that it suffices to focus on one such common regenerative cycle, say the first

one.

Next, look at system (2.17), with instantaneous inputs. Starting from q
(u)
0 = 0,

the queue finds itself in an idle period. In the time slot preceding the first busy

period there must be either a single session arrival whose workload exceeds one,

or more than one session arrivals. Now, consider the coupled system (4.33), with

gradual inputs. Here, on every sample path, the queue is empty whenever it is

empty in the sibling instantaneous input system. Clearly, if a busy period in

(2.17) is triggered by at least two arrivals in the preceding slot, then the queue size

in (4.33) also grows positive, the two systems become simultaneously busy, and

the idle period I1 for (4.33) is equal to the respective idle period I
(u)
1 for (2.17).

However, if a busy period in (2.17) is initiated by a single session arrival, the queue

size in (4.33) remains zero, as long as only one session is active. This is due to the

assumption that, in system (4.33), an active session generates input at rate equal

to the multiplexer release rate c = 1. In that case the idle period I1 for (4.33) is
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longer than the respective idle period I
(u)
1 for (2.17). Let

J := I1 − I
(u)
1 (4.51)

denote their difference. Since J = 0 if the generic busy period I(u) of (2.17) starts

with more than one session arrivals, it only remains to condition on the event that

it starts with a single arrival.

To calculate the probability that the busy period of (2.17) is initiated by a lone

arriving session we write

P
[
I(u) = k, βI(u) = 1

]
= P

[
q

(u)
1 = . . . = q

(u)
k−1 = 0, βk = 1, σk,1 > 1

]
= ηk−1P [β = 1] P [σ > 1] , k = 1, 2, . . . ,

with η given by (2.43), so that

P [βI(u) = 1] =
∞∑
k=1

P
[
I(u) = k, βI(u) = 1

]
=

1

1− η
P [β = 1] P [σ > 1]

= E
[
I(u)
]
P [β = 1] P [σ > 1] , (4.52)

where the last equality in (4.52) follows from (2.45). Next, note that on the event

{βI(u) = 1} the queue size associated with (4.33) becomes positive only after an

arrival of a second session which takes place before the activity period of the first

one expires. Let the rv X count the number of successive time slots that elapse

until a second session arrives, inclusive of the slot where this arrival occurs. The

rv X is geometrically distributed with

P [X > k] = P [β = 0]k , k = 0, 1, . . . . (4.53)

From the discussion above it follows that the generic rv J satisfies

J =st

 min([σ − 1|σ > 1], X) if βI(u) = 1

0 if βI(u) 6= 1.
(4.54)
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We can now calculate the expectation E [J ] without difficulty. Using (4.53) we

write

E [min([σ − 1|σ > 1], X)] =
∞∑
k=0

P [min([σ − 1|σ > 1], X) > k]

=
∞∑
k=0

P [σ − 1 > k|σ > 1] P [β = 0]k

=
1

P [σ > 1]

∞∑
k=0

P [σ > k + 1] P [β = 0]k

=
1

P [σ > 1] P [β = 0]
E [min(σ,X)− 1] .

Therefore, (4.54) via (4.52) implies

E [J ] =
P [β = 1]

P [β = 0]
E
[
I(u)
]

E [min(σ,X)− 1] . (4.55)

By application of the Renewal–Reward theorem, in conjuction with Lemma 4.3.1,

we determine P [q∞ = 0] as

P [q∞ = 0] =
E [I]

E [B] + E [I]
=

E
[
I(u)
]

+ E [J ]

E [B(u)] + E [I(u)]
, (4.56)

where the second equality in (4.56) follows from (4.50) and (4.51). Thus, making

use of (2.42) and (4.55) in (4.56) above we collect

Lemma 4.3.2 Consider the Lindley recursions (2.11) and (2.17) with inputs char-

acterized by a common pair (λ, σ), with generic IN–valued session arrival rv β such

that λ = E [β] <∞ and release rate c = 1. If λE [σ] < 1, then

P [q∞ = 0] = P
[
q(u)
∞ = 0

](
1 +

P [β = 1]

P [β = 0]
E [min(σ,X)− 1]

)
, (4.57)

where the rv X follows the geometric distribution (4.53).

We stress that (4.57) is valid for any IN–valued sequence of i.i.d. rvs {βn+1, n =

0, 1, . . .} with E [β] <∞, as the arguments leading to Lemma 4.3.2 do not require

that β be Poisson distributed.
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By specializing (4.57) to M |G|∞ input processes and invoking (2.31) we obtain

an explicit expression for P [q∞ = 0], in the case where the multiplexer release rate

is c = 1.

Proposition 4.3.3 Consider the Lindley recursion (2.11) with c = 1. Under the

stability condition λE [σ] < 1, it holds that

P [q∞ = 0] = (1− λE [σ])eλ

(
1 + λ

∞∑
k=1

e−λkP [σ > k]

)
. (4.58)

4.3.5 Case c = 1: Short– vs long–range dependence

Let the multiplexer release rate be c = 1. In this section we seek to develop

some understanding as to what kind of light traffic results should be expected

when Assumption (C) fails, as would be the case if σ follows some subexponential

distribution. To that end we discuss expansions based on the closed form expression

(4.58) for P [q∞ = 0]. For short–range dependent inputs we verify that (4.58) is

in agreement with the partial light traffic information for P [q∞ = 0] obtained in

Section 4.2.4. More interestingly, we show that (4.58) can be exploited to provide

a light traffic limit for long–range dependent inputs; such a result could not have

been obtained via the Reiman–Simon theory (at least in its present form).

We start by considering the case where the M |G|∞ input process is short–range

dependent. From (4.58) it follows that

P [q∞ > 0] = 1− (1− λE [σ])eλ

(
1 + λ

∞∑
k=1

(e−λk − 1)P [σ > k] + λ(E [σ]− 1)

)
.

(4.59)

We now show that the leading term in the light traffic expansion of P [q∞ > 0] is

of order λ2 and evaluate this term explicitly. To do this note that the mapping

k →
1

λ
(1 − e−λk) monotonically increases to the mapping k → k as λ → 0+.
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Therefore, since E
[
σ2
]
<∞ under short-range dependence, we conclude that

lim
λ→0+

∞∑
k=1

1

λ
(1− e−λk) P [σ > k] =

∞∑
k=1

k P [σ > k] =
1

2
E [σ(σ − 1)] (4.60)

by the monotone convergence theorem, while

lim
λ→0+

1

λ2

(
1− eλ(1− λE [σ])(1− λ+ λE [σ])

)
= E [σ] (E [σ]− 1) +

1

2
. (4.61)

Thus, combining (4.61) and (4.60) with (4.59) yields

Corollary 4.3.1 (Short–range dependence) In the setup of Proposition 4.3.3,

with E
[
σ2
]
<∞, it holds that

lim
λ→0+

1

λ2
P [q∞ > 0] =

1

2
(E [σ(σ − 1)] + 2E [σ] (E [σ]− 1) + 1) . (4.62)

This is precisely the result implied by (4.16) and (4.27) for b = 0. In addition,

we observe that Assumption (C) is superfluous in this case, for what is needed to

obtain (4.62) is that E
[
σ2
]

be finite. This indicates that the conclusions of Section

4.2.4 may still be valid when σ is subexponentially distributed with E
[
σ2
]
<∞.

Next, we turn our attention to the situation where the tail of σ is regularly

varying with index −α (1 < α < 2), i.e., of the form

P [σ > n] = n−αh(n), n = 1, 2, . . . (4.63)

for some slowly varying function h : IR+ → IR+. In this case E
[
σ2
]

= ∞, the

associated M |G|∞ process is long–range dependent and the arguments used above

do not apply. First write
∞∑
k=1

e−λkP [σ > k] =
1

e−λ − 1

(
∞∑
k=1

e−λkP [σ = k]− e−λ
)

(4.64)

and manipulate (4.58) to obtain

P [q∞ > 0] = 1− eλ(1− λE [σ])

(
1− λ−

λ2

e−λ − 1
E [σ]

)
−

λeλ

e−λ − 1
(1− λE [σ])

(
∞∑
k=1

e−λkP [σ = k]− 1 + λE [σ]

)
. (4.65)
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Expression (4.65) has the advantage of explicitly displaying the Laplace–Stieltjes

transform of the distribution of σ. This puts us in position to invoke a Tauberian

result on the asymptotic behavior of Laplace–Stieltjes transforms at the origin. In

particular, Theorem 8.1.6 in [7, p. 333] provides the asymptotics of the second

term in (4.65) as

∞∑
k=1

e−λkP [σ = k]− 1 + λE [σ] ∼ λαh(1/λ)
Γ(2− α)

α− 1
(λ→ 0+). (4.66)

For the first term in (4.65), making use of the fact

lim
λ→0

e−λ − 1 + λ

λα
= 0, 1 < α < 2

we find after straightforward calculations that

lim
λ→0

1

λα

(
1− eλ(1− λE [σ])

(
1− λ−

λ2

e−λ − 1
E [σ]

))
= 0. (4.67)

Consequently, (4.65) via (4.66) and (4.67) leads to

Corollary 4.3.2 (Long–range dependence) In the setup of Proposition 4.3.3,

with the tail of σ given by (4.63), it holds that

lim
λ→0+

λ−α

h(1/λ)
P [q∞ > 0] =

Γ(2− α)

α− 1
. (4.68)

The effect of the distribution of σ, and in particular of its second moment,

on the light traffic asymptotics of P [q∞ > 0] is now more apparent: As λ → 0+,

the “busy” queue probability P [q∞ > 0] exhibits a λ2 decay under short–range

dependence, and the slower non-integer power decay λα, when σ satisfies (4.63), in

which case the M |G|∞ process is long–range dependent. The limit (4.68) prompts

us to conjecture that, when c = 1, under long–range dependence, such a λα decay

in λ of the tail probability P [q∞ > b] holds more generally for all b ≥ 0. Yet this

problem remains as of now unresolved.
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Figure 4.4: Calculation of ψ̃(k1, k2); example for k1 = 2, k2 = 5.

4.4 Proof of Lemma 4.2.1

We consider parts (a), (b) and (c) separately.

Proof of (a). By symmetry it suffices to determine ψ̃(k1, k2) for k1 < k2. To do

this, we refer to Figure 4.3, and split the area where ψ({t1, t2; k1, k2}) > 0 in ten

numbered regions, adopting the convention that edges between region i and any

other higher numbered region all belong to region i. The splitting we choose is

shown in Figure 4.4, accompanied by a simple example for the case k1 = 2, k2 = 5.

The double sum (4.19) is broken up into sums over each region, which are

calculated below.

Region 1:
−k2∑

t1=−(k1+k2)

−k2∑
t2=t1

(t1 + k1 + k2) =
k1(k1 + 1)(k1 + 2)

6

Region 2:
1−k2∑

t1=1−(k1+k2)

(t1 − (1− k2) + k1)(k2 − k1) =
k1(k2 − k1)(k1 + 1)

2

Region 3:
−k1∑

t1=−2k1+1

t1+k1∑
t2=−k1+1

(t1 − t2 + k1) =
k1(k1 + 1)(k1 − 1)

6

Region 4:
0∑

t1=1−k1

0∑
t2=t1

(−t2) =
k1(k1 + 1)(k1 − 1)

6
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Region 5:
0∑

t1=1−k1

t1−1∑
t2=−k1

(−t1) =
k1(k1 − 1)(k1 + 1)

6

Region 6:
0∑

t1=−k1

−k1−1∑
t2=−k2

(−t1) =
k1(k2 − k1)(k1 + 1)

2

Region 7:
1∑

t1=−k1

−k2−1∑
t2=t1−k2

(t2 − t1 + k2) =
k1(k1 − 1)(k1 + 1)

6

Region 8: −k1 +
−k2∑

t2=−(k1+k2)

(t2 + k1 + k2)(k2 − k1) =
k1((k1 + 1)(k2 − k1)− 2)

2

Region 9:
−k2∑

t1=−(k1+k2)+1

t1−1∑
t2=−(k1+k2)

(t2 + k1 + k2)−
−k2−1∑

t2=−(k1+k2)

(t2 + k1 + k2)

=
k1(k1 − 1)(k1 − 2)

6

Region 10:
−k1∑

t1=−k2+1

t1−1∑
t2=−k2

k1 − (2k2 − 2k1 − 1)k1

=
k1(k2 − k1 − 1)(k2 − k1 − 2)

2

Adding the results from regions 1–10 shows that the claim holds true.

Proof of (b). It suffices to evaluate ψ̃ for k1 < k2. We refer to the proof of

Part (a), split the t1t2–plane in the same manner and carry out the algebra for the

double sum (4.19) corresponding to ψ := q2
0. The summands are listed below.

Region 1:
−k2∑

t1=−(k1+k2)

−k2∑
t2=t1

(t1 + k1 + k2)2 =
k1(k1 + 1)2(k1 + 2)

12

Region 2: (k2 − k1)
1−k2∑

t1=1−(k1+k2)

(t1 − (1− k2) + k1)2

=
k1(k1 + 1)(2k1 + 1)(k2 − k1)

6
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Region 3:
−k1∑

t1=−2k1+1

t1+k1∑
t2=−k1+1

(t1 − t2 + k1)2 =
k2

1(k2
1 − 1)

12

Region 4:
0∑

t1=1−k1

0∑
t2=t1

(−t2)2 =
k2

1(k2
1 − 1)

12

Region 5:
0∑

t1=1−k1

t1−1∑
t2=−k1

(−t1)2 =
k2

1(k2
1 − 1)

12

Region 6:
0∑

t1=−k1

−k1−1∑
t2=−k2

(−t1)2 =
k1(k1 + 1)(2k1 + 1)(k2 − k1)

6

Region 7:
1∑

t1=−k1

−k2−1∑
t2=t1−k2

(t2 − t1 + k2)2 =
k2

1(k2
1 − 1)

12

Region 8: (k2 − k1)
−k2∑

t2=−(k1+k2)

(t2 + k1 + k2)2 − k2
1

=
k1((k1 + 1)(2k1 + 1)(k2 − k1)− 6k1)

6

Region 9:
−k2∑

t1=−(k1+k2)+1

t1−1∑
t2=−(k1+k2)

(t2 + k1 + k2)2 −
−k2−1∑

t2=−(k1+k2)

(t2 + k1 + k2)2

=
k1(k1 − 1)2(k1 − 2)

12

Region 10:
−k1∑

t1=−k2+1

t1−1∑
t2=−k2

k2
1 − (2k2 − 2k1 − 1)k2

1

=
k2

1(k1 − k2 + 1)(k1 − k2 + 2)

2

Adding the summands from regions 1–10 verifies the asserted expression.

Proof of (c). By symmetry we need only calculate ψ̃ for k1 < k2. We go back to

Figure 4.3, where ψ̃ corresponding to ψ := q0 was displayed. Clearly, in order for

q0 to be greater than b it is necessary that k1 > b. If this is not true, i.e. if k1 ≤ b,

then 1 [q0 > b] is zero, hence ψ̃ corresponding to ψ := 1 [q0 > b] is also zero and
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Figure 4.5: Values of 1 [q0 > b] ({t1, t2; k1, k2}) for k1 < k2.

the second part of the claim holds true. Now, if k1 > b then the t1t2–plane does

indeed contain a region where ψ = 1. We show ψ({t1, t2; k1, k2}) corresponding to

ψ := 1 [q > b] and identify this region in Figure 4.5. Using this graph, calculation

of ψ̃(k1, k2) from the double sum (4.6) is a matter of algebra. From the points

along the line t1 = −k1, which splits the ψ = 1 region in two trapezoids, we collect

−b−1∑
i=−(k1+k2)+b+1

1 = k1 + k2 − 2b− 1. (4.69)

On the right trapezoid the double sum can be calculated as

k2−b−2∑
j=0

(j + k1 − b) =
1

2
(2k1 + k2 − 3b− 2)(k2 − b− 1). (4.70)

On the left trapezoid we find

k1−b−2∑
j=0

(k1 + k2 − 2b− 2− j) =
1

2
(2k2 + k1 − 3b− 2)(k1 − b− 1). (4.71)

Adding (4.69), (4.70), (4.71) and manipulating validates the claim for k1 > b.
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Chapter 5

Interpolation approximations

5.1 Introduction

In this chapter we address the problem of evaluating the buffer content distribution

at a multiplexer fed by an M |G|∞ arrival process, across the entire range of sys-

tem utilizations between zero and one. For arbitrary session duration distribution

G the system lacks the desired Markovian structure and obtaining exact analyti-

cal results appears very difficult, if not impossible. To circumvent the difficulties

of an exact analysis one typically seeks to devise approximations, by relying on

information gleaned from asymptotic regimes. A promising approach consists of

deriving approximations from the analysis of large buffer asymptotics [29, 39, 47];

these estimates are exact in the limit as the buffer level goes to infinity. Here, we

propose an alternative class of simple approximations, justified by the character-

izations of the buffer content distribution in the heavy and light traffic regimes,

obtained in Chapters 3 and 4, respectively. These approximations are termed inter-

polation approximations [49], because they arise by suitably interpolating between

the heavy and light traffic limits of the quantity of interest. Such approximations

are asymptotically exact in the limits as the system utilization goes to zero and
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one. We provide examples of interpolation approximations to the buffer content

distribution, for several commonly chosen G, covering both short– and long–range

dependent M |G|∞ inputs. Comparisons with simulation estimates suggest that

the approximants capture accurately the queue size distribution at small buffer

sizes, for which approximations based on large buffer asymptotics are often ill fit-

ted. On the other hand, when G has finite exponential moment, we do not expect

the heavy–light traffic interpolation to be accurate for buffer sizes much larger

than the maximum burst length: The approximation exhibits the appropriate ex-

ponential decay in the buffer size, yet the rate is only asymptotically exact as the

system utilization tends to one, i.e., in the heavy traffic limit. This drawback is

often absent under long–range dependence, as there are cases where the queue size

distribution has hyperbolic (in the buffer size) asymptotics with the same expo-

nent for all traffic intensities! Moreover, an approximation is more valuable in the

presence of heavy tails, when considering that alternative estimates by means of

simulation take an unreasonably long time to obtain.

5.2 Summary of asymptotics

In the context of the Lindley recursion (2.11), describing the evolution of the buffer

content at a multiplexer with M |G|∞ inputs, we are interested in approximating

the probability that the stationary buffer content exceeds b when the system uti-

lization is ρ := λE [σ] /c,

P (b, ρ) := Pλ [q∞ > b] , b ≥ 0, 0 ≤ ρ < 1. (5.1)

Let us point out that the system dynamics depend on λ, G and c jointly, and not

simply on the utilization ρ. However, for developing approximate expressions it is
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convenient to fix G and c and adopt the view suggested by (5.1), that is consider

the buffer content distribution as a function of the system utilization ρ. In a similar

manner we introduce the moments of the stationary buffer content

Qk(ρ) := Eλ

[
q∞

k
]
, 0 ≤ ρ < 1, k = 1, 2, . . . ;

these should not be confused with the heavy traffic queue length process {Q(t), t ≥

0} of Chapter 3.

The interpolation approximations we have in mind hinge on the availability of

explicit expressions for limits of system quantities as λ → c/E [σ] (heavy traffic

limits), and derivatives with respect to λ as λ → 0 (light traffic derivatives).

For notational convenience we now rephrase the required light and heavy traffic

asymptotics in terms of the utilization ρ, with the understanding that when ρ→ 0

or ρ → 1 it is actually λ which goes to the corresponding limit, while both c and

σ remain fixed.

We start from the results in the light traffic regime, obtained by the Reiman–

Simon method:

Proposition 5.2.1 Consider the Lindley recursion (4.1) with release rate c ≥ 1

and let b ≥ 0. If Assumption (C) is satisfied, then the following hold:

(a) For each n = 0, 1, . . . , bcc, we have

dn

dρn
P (b, 0+) = 0; (5.2)

(b) In addition, for c = 1, we have

E [σ]2
d2

dρ2
P (b, 0+) = E

[
(σ − b)+2

]
P [σ > b] + 2 E

[
(σ − b)+

]2
−3 E

[
(σ − b)+

]
P [σ > b] + P [σ > b]2 . (5.3)
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Considered next is the behavior of the queue with M |G|∞ arrivals in heavy

traffic, that is, as the packet arrival rate λE [σ] tends to the multiplexer release

rate c from below. We tacitly assume that the heavy traffic limit of the stationary

distribution coincides with the stationary distribution of the heavy traffic limit.

Using Assumption (B) we express the relevant facts from Theorems 3.4.1 and

3.4.3 in terms of the utilization ρ in the following

Proposition 5.2.2 The heavy traffic limits of the stationary queue length distri-

bution associated with (2.11) can be classified as follows:

(a) If E
[
σ2
]
<∞, then

lim
ρ→1

Pλ [(1− ρ) q∞ > x] = exp

(
−

2E [σ]

E [σ2]
x

)
, x ≥ 0. (5.4)

(b) If P [σ > n] = n−α, n = 1, 2, . . ., with 1 < α < 2, then

lim
ρ→1

Pλ

[
(1− ρ)1/(α−1)q∞ > x

]
= Eα−1

(
−

(α− 1)E [σ]

Γ(2− α)
xα−1

)
, x ≥ 0, (5.5)

where for ν > 0, Eν : IR → IR is the Mittag–Leffler special function defined by

(3.19).

Part (a) of Proposition 5.2.2 addresses the classical short–range dependent

case, for which the heavy traffic normalizer is 1− ρ and the limiting heavy traffic

distribution is exponential. Part (b) deals with a long–range dependent M |G|∞

arrival process, in which case the heavy traffic queue length distribution is ex-

pressed through a Mittag–Leffler function with hyperbolic decay, while the heavy

traffic normalizer is (1− ρ)1/(α−1) and has power–law behavior.

The results under the light and heavy traffic regimes are subsequently combined

into approximations for all values of ρ in the interval [0, 1).
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5.3 Heavy–light traffic interpolations

Whenever Assumption (C) is satisfied, Pλ [q∞ > b] is infinitely differentiable with

respect to ρ at ρ = 0, hence it can be approximated by bringing together heavy

traffic limits and light traffic derivatives into a Taylor series–like expansion. To this

end we enforce Assumption (C) throughout Sections 5.3.1 and 5.3.2 and follow the

approach proposed in [21]. In passing, we also discuss approximations for Qk(ρ),

k = 1, 2. The details are given below:

5.3.1 Tail probability approximations

Consider the normalized queue length rv (1− ρ) q∞ and define

F (x, ρ) := Pλ [(1− ρ) q∞ > x]

= P

(
x

1− ρ
, ρ

)
, 0 ≤ ρ < 1, x ≥ 0 (5.6)

and

F (x, 1) := lim
ρ→1

Pλ [(1− ρ) q∞ > x] , x ≥ 0. (5.7)

Assume that partial derivatives of F (x, ρ) with respect to ρ, up to order n, at ρ =

0+, are available. Construct F̂n(x, ρ), the nth order interpolation approximation

to F (x, ρ), by means of the polynomial

F̂n(x, ρ) :=
n∑
i=0

ρi

i!

∂i

∂ρi
F (x, 0+) +

(
F (x, 1)−

n∑
i=0

1

i!

∂i

∂ρi
F (x, 0+)

)
ρn+1. (5.8)

Observe that

F̂n(x, 1) = F (x, 1) and
∂i

∂ρi
F̂n(x, 0+) =

∂i

∂ρi
F (x, 0+), i = 0, 1, . . . , n,

that is, F̂n(x, ρ) is precisely that unique n+1 degree polynomial in ρ which matches

the n + 1 partial derivatives of F (x, ρ) at ρ = 0+ and its heavy traffic limit.
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Now, by reversing the (1− ρ) normalization in F̂n(x, ρ) we generate the nth order

interpolation approximation to Pλ [q∞ > b] as

Pλ [q∞ > b] ≈ F̂n((1− ρ) b, ρ). (5.9)

Note that, in principle, this may lie outside [0, 1], in which case it is obviously a

poor approximation.

To calculate the quantities associated with (5.9) it remains to express the partial

derivatives appearing in (5.8) in terms of the light traffic derivatives of Pλ [q∞ > b].

We have

∂

∂ρ
F (x, 0+) =

∂

∂ρ
P (x, 0+) + x

∂

∂x
P (x, 0+) (5.10)

and

∂2

∂ρ2
F (x, 0+) =

∂2

∂ρ2
P (x, 0+) + 2x

∂2

∂ρ∂x
P (x, 0+)

+2x
∂

∂x
P (x, 0+) + x2 ∂2

∂x2
P (x, 0+). (5.11)

In case additional light traffic information is available, repeated application of the

chain rule will yield higher order derivatives, as needed.

We are now ready to write approximate expressions anchored on the heavy and

light traffic results of Section 5.2. Proposition 5.2.2(a) provides the limit (5.7) that

should be inserted in (5.8). Proposition 5.2.1(a) can be used to substitute for the

partials in (5.10) and then in (5.8). Thus, if the multiplexer release rate is c ≥ 1,

the bccth order interpolation approximation to Pλ [q∞ > b] is simply

Pλ [q∞ > b] ≈ F̂bcc((1− ρ) b, ρ) = ρbcc+1 exp

(
−

2E [σ]

E [σ2]
(1− ρ) b

)
. (5.12)

More can be accomplished in the case c = 1, since Proposition 5.2.1(b) affords us a

promising 2nd order interpolation approximation. Insertion of (5.11) in (5.8) yields

F̂2(b, ρ) =
1

2
ρ2(1− ρ)

∂2

∂ρ2
P (b, 0+) + ρ3 exp

(
−

2E [σ]

E [σ2]
b

)
(5.13)
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and the latter leads to the 2nd order approximation

Pλ [q∞ > b] ≈ F̂2((1− ρ) b, ρ), c = 1, (5.14)

where Proposition 5.2.1(b) is used to supply the second partial derivative in (5.13).

5.3.2 Moment approximations

Next, we briefly deal with moment approximations. We restrict attention to the

case c = 1 and consider only the queue length first and second moment. The

relevant light traffic limits are given by (4.15), (4.25) and (4.26). In heavy traffic

we see from (5.4) that

lim
ρ→1

(1− ρ)k Qk(ρ) = k!

(
E [σ2]

2E [σ]

)k
, k = 1, 2, . . . .

Moment approximations are then developed by interpolating for (1− ρ)Q1(ρ) and

(1−ρ)2 Q2(ρ), in very much the same manner as distribution approximations. We

skip the details of the derivation and list the resulting final expressions

Q1(ρ) =
E [σ2]

2E [σ]

ρ2

1− ρ
, c = 1 (5.15)

and

Q2(ρ) ≈
ρ2

4(1− ρ)2

(
ρ

(
E [σ2]

2

E [σ]2
− 1

)
+

E [σ2]
2

E [σ]2
+ 1

)
, c = 1. (5.16)

Note that formula (5.15) is in fact exact, as it coincides with result (4.49) (with

m = 1) and with a continuous time analog established for a fluid model in [55, p.

23]. This match clearly validates the interpolation method. On the contrary we

note that (5.16) cannot be exact. To see this, consider the example where σ = 1

deterministic. This corresponds to i.i.d. Poisson arrivals, for which a probability
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generating function of the queue length rv is available. Using (2.32) it can be

shown that the exact expression is

Q2(ρ) =
ρ2

6(1− ρ)2
(ρ2 − ρ+ 3), c = 1, σ = 1 a.s.

a formula that clearly cannot be recovered using only two light traffic derivatives.

Still, when σ = 1 approximation (5.16) is within 9% of the correct value, for all ρ

in [0, 1).

5.3.3 Long–range dependence

It is apparent from the developments of Section 5.2 that the light traffic results, as

stated in Proposition 5.2.1, do not cover several interesting distributions belonging

to the subexponential family. Such is for example the lognormal distribution, which

violates Assumption (C) despite having finite kth moment for all k = 0, 1, . . .. In

view of Corollary 4.3.1, it is natural to expect that Assumption (C) can be relaxed

to require that E
[
σk
]

be finite, for appropriate k ≥ 2, in order for Proposition

(5.2.1) to go through. This would still not address the case of long–range depen-

dence, characterized by E
[
σ2
]

= ∞. We are however able to construct a sharp

approximation, based on heuristic arguments presented below.

Consider the Pareto distribution P [σ > n] = n−α, n = 1, 2, . . ., with 1 < α < 2;

in this case not only Assumption (C) fails, but as seen from Proposition 5.2.1, (5.3)

yields infinity. This indicates that Pλ [q∞ > b] may not be an analytic function of ρ

under long–range dependence. When c = 1 we recall that Corollary 4.3.2 strongly

suggests that lim
ρ→0

ρ−αPλ [q∞ > b] is the sought after non-trivial limit, for all b ≥ 0.

These considerations lead us to postulate that, when c = 1,

lim
ρ→0

ρ−αPλ [q∞ > b] = K(b) (5.17)
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for some unknown mapping K : IR+ → IR+, which, by Corollary 4.3.2, satisfies

K(0) = Γ(2 − α)/(α − 1)E [σ]α. On the other hand, the heavy traffic result of

Proposition 5.2.2(b) hints at developing an approximation around the normalized

rv (1 − ρ)1/(α−1) q∞. Then, taking advantage of Proposition 5.2.2(b) we propose

the approximant

Pλ [q∞ > b] ≈ Eα−1

(
−

(α− 1)E [σ]

Γ(2− α)

1− ρ

ρα
bα−1

)
, c = 1. (5.18)

This expression is in agreement with the heavy traffic limit (5.5). In addition, from

the Mittag–Leffler function asymptotics given in [17, p. 207], we have

Eα−1(−x) ∼
1

x

1

Γ(2− α)
(x→∞)

which ensures that, as ρ→ 0, approximation (5.18) conforms with the conjectured

light traffic limit (5.17).

We close the presentation of the approximate expresssions with a comment.

Recall that each active source in the M |G|∞ arrival process generates one infor-

mation unit per time slot. So, c = 1 corresponds to the case where the amount of

service in one slot is exactly equal to the amount of information that one active

source generates in one slot. When c = 1 a single active source suffices to make

full use of the server capacity; in this system there is never any leftover capacity

to simultaneously serve more than one source. On the contrary, when c > 1, the

server can attend to more than one source during one time slot, so that there is a

multiple service feature to the system behavior. An exact or approximate analysis

in this regime is clearly more challenging.
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5.4 Numerical results

To gauge the accuracy of the proposed expressions we have carried out simulation

experiments under various choices for the distribution of the session duration rv

σ. The experimental values are obtained by regenerative simulation and relative

widths accompanying them correspond to 95% confidence intervals. We almost

exclusively (with one exception) confine ourselves to the simple situation where the

multiplexer release rate is c = 1. While the list of examples below is not exhaustive,

it does serve to illustrate the ability of the heavy–light traffic interpolation to

“ballpark” the true tail probabilities, as well as its limitations.

Deterministic When the session duration is deterministic, σ = D a.s., for some

positive integer D, approximation (5.14) reads

Pλ [q∞ > b] ≈
ρ2(1− ρ)

2D2

(
3[D − (1− ρ)b]+([D − (1− ρ)b]+ − 1)

+ 1 [D > (1− ρ)b]) + ρ3 exp

(
−

2

D
(1− ρ)b

)
, b = 0, 1, . . . .

We let the session duration be σ = 3 and obtain simulation estimates for the

steady state probability Pλ [q∞ > 0]. Of course, in this case the exact expression

(4.58) is available. In Table 5.1 we list simulation estimates and numerical values

from (4.58) and from the light–heavy traffic interpolation. A comparison of the

exact formula (4.58) to the light–heavy traffic interpolation shows that, in this case,

the agreement is excellent. Since we expect the approximation to be asymptotically

exact at the endpoints ρ = 0 and ρ = 1, it is not surprising that the largest errors

occur in moderate traffic.

In the same setup, we next consider the tail probability Pλ [q∞ > 4]. No exact

expressions are available in this case. From Table 5.2 we see that although the
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Tail probability Pλ [q∞ > 0]

ρ Exact Simulation Approximation Error (%)

0.1 1.0478e-02 1.0469e-02±0.2% 1.0500e-02 –0.21

0.2 4.1622e-02 4.1668e-02±0.3% 4.1778e-02 –0.38

0.3 9.3042e-02 9.3020e-02±0.2% 9.3500e-02 –0.49

0.4 1.6441e-01 1.6442e-01±0.2% 1.6533e-01 –0.56

0.5 2.5545e-01 2.5533e-01±0.2% 2.5694e-01 –0.58

0.6 3.6594e-01 3.6607e-01±0.1% 3.6800e-01 –0.56

0.7 4.9573e-01 4.9601e-01±0.1% 4.9817e-01 –0.49

0.8 6.4470e-01 6.4488e-01±0.1% 6.4711e-01 –0.37

0.9 8.1279e-01 8.1264e-01±0.1% 8.1450e-01 –0.21

Table 5.1: Pλ [q∞ > 0] for deterministic session duration σ = 3.

approximation yields estimates in the correct order of magnitude, the errors are

substantial when not in the moderate–to–heavy traffic regime. This can be ex-

plained as follows: When σ = 3, in order for the queue to build up to 4 at least

3 sources should be simultaneously active. Note that the light traffic component

of the approximation consists of the second derivative, which can be obtained by

considering sample paths with at most two source activations in the system. Thus,

any effects due to the activation of more than two sources are not adequately

accounted for in light traffic.

Uniform We now specialize (5.14) to the case where σ is uniformly distributed

on {1, . . . ,M}, i.e., P [σ = n] = 1/M , n = 1, 2, . . . ,M. This yields

Pλ [q∞ > b] ≈ 1 [M > (1− ρ)b]
ρ2(1− ρ)

3M2(M + 1)2

(
1 + 5(M − (1− ρ)b)2

)
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Tail probability Pλ [q∞ > 4]

ρ Simulation Approximation Error (%)

0.1 1.1271e-04±1.7% 9.0718e-05 19.51

0.2 1.3444e-03±1.7% 9.4753e-04 29.52

0.3 6.1736e-03±0.9% 5.9952e-03 2.89

0.4 1.9246e-02±0.6% 1.4415e-02 25.10

0.5 4.7745e-02±0.5% 3.9894e-02 16.44

0.6 1.0292e-01±0.4% 9.5777e-02 6.94

0.7 2.0035e-01±0.3% 1.9757e-01 1.39

0.8 3.6093e-01±0.3% 3.6379e-01 –0.79

0.9 6.1407e-01±0.3% 6.1902e-01 –0.81

Table 5.2: Pλ [q∞ > 4] for deterministic session duration σ = 3.

×(M − (1− ρ)b)2 + ρ3 exp

(
−6

(1− ρ)b

2M + 1

)
, b = 0, 1, . . . .

For M = 5 we compare simulation vs approximation in Tables 5.3 and 5.4, for

system utilizations ρ = 0.2 and ρ = 0.8 respectively. Once more, the approxima-

tion is very sharp for small buffer sizes. As the buffer size increases beyond the

maximum burst length and the true probabilities become smaller, the approxima-

tion lingers on in the correct order of magnitude, but clearly deteriorates away

from heavy traffic. Eventually, as the buffer size tends to infinity, the interpolation

approximation overestimates the actual probabilities.
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Tail probability Pλ [q∞ > b]

Buffer size Simulation Approximation Error (%)

0 4.4907e-02±0.2% 4.5333e-02 –0.95

2 1.1747e-02±0.5% 1.1399e-02 2.97

5 1.4543e-03±1.4% 9.7380e-04 33.04

8 1.9456e-04±3.7% 2.4379e-04 –25.30

10 5.1620e-05±7.0% 1.0186e-04 –97.31

Table 5.3: Utilization ρ = 0.2; σ ∼ uniform(1, 5).

Tail probability Pλ [q∞ > b]

Buffer size Simulation Approximation Error (%)

0 6.5489e-01±0.1% 6.6133e-01 –0.98

10 2.0086e-01±0.4% 1.9161e-01 4.60

20 6.3303e-02±0.9% 5.8057e-02 8.29

30 1.9964e-02±1.7% 1.9406e-02 2.79

40 6.2827e-03±3.1% 6.5188e-03 –3.75

50 1.9703e-03±5.6% 2.1897e-03 –11.13

Table 5.4: Utilization ρ = 0.8; σ ∼ uniform(1, 5).
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Figure 5.1: Geometric γ = 0.8 session duration.

Geometric Taking σ to follow the geometric distribution, P [σ > n] = γn, n =

0, 1, . . ., with 0 < γ < 1 we obtain from (5.14) that

Pλ [q∞ > b] ≈
ρ2

2
(1−ρ)(1+γ)2γ2(1−ρ)b+ρ3 exp

(
−2

1− γ

1 + γ
(1− ρ)b

)
, b = 0, 1, . . .

As an example we set γ = 0.8 and plot simulated and approximate values in

Figure 5.1, for system utilizations ρ = 0.1, 0.4, 0.6 and 0.9. In all cases confidence

interval widths were within 10% of the mean. The linear decrease of the simulated

values suggests an exponential decay of the queue length distribution, in agreement

with large deviations results. Figure 5.1 clearly indicates that the heavy–light

traffic interpolation is sufficient for providing rough estimates for a wide range of

probabilities and buffer sizes.

An example for c > 1 If the multiplexer release rate is c > 1, expression (5.14)

is not applicable, the first non-zero light traffic derivative is not available, and the
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Figure 5.2: Geometric γ = 2/3 session duration; release rate c = 4.

only available heavy–light traffic approximant is (5.12). To illustrate its behavior

we provide an example in Figure 5.2, where we have picked c = 4 and σ geometric

with parameter γ = 2/3. The results correspond to system utilizations ρ = 0.2,

ρ = 0.6 and ρ = 0.8. The approximation fares very well in moderate to heavy

loads, yet it obviously yields inaccurate results for ρ = 0.2 due to insufficient light

traffic information.

Pareto Let the session duration rv follow the Pareto distribution P [σ > n] =

n−α, n = 1, 2, . . ., with 1 < α < 2, which case the M |G|∞ process is long–

range dependent and the approximate expression (5.18) is in effect. Assessing the

performance of (5.18) requires numerical evaluation of the Mittag–Leffler function.

In general, a calculation based on the series expansion (3.19) is not recommended.

Instead, the Laplace transform of the Mittag–Leffler law can be inverted by contour

integration along a suitably chosen path in the complex plane; details are deferred

to Section 5.5. We finally arrive at the alternative expression

Eν(−x) =
sin(νπ)

νπ

∫ π/2

0

e−(x tan θ)1/ν

1 + sin(2θ) cos(νπ)
dθ, x ≥ 0, 0 < ν < 1, (5.19)

which is evaluated by numerical integration.
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Figure 5.3: Pareto α = 1.5 session duration.
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Figure 5.4: Pareto α = 1.7 session duration.
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We have tested approximation (5.18) for system utilizations ρ = 0.2, 0.5 and

0.8. Under long–range dependence simulation estimates converge very slowly;

moreover confidence intervals based on the regenerative method cannot be con-

structed, because the underlying period has infinite variance. In the results shown

the runs were 109 time slots long, and by that time the estimates had stabilized.

The log–log scale plots in Figures 5.3 and 5.4 correspond to two Pareto distribu-

tions with parameters α = 1.5 and α = 1.7. Observe that the heavier α = 1.5

Pareto tail induces larger tail probabilities than α = 1.7, at the same system uti-

lizations. In both Figures 5.3 and 5.4 we see that simulated and approximate values

are very close, suggesting that expression (5.18) provides a satisfactory approxi-

mation. Note also the almost linear shape of the curves in log–log scale, reflecting

the power law asymptotics of the queue size distribution announced in [29, 39, 46].

Truncated Pareto When σ follows a truncated Pareto distribution, the result-

ing M |G|∞ process is short–range dependent. Yet, over a finite range of time

scales, it can display dependencies similar to those of a long–range dependent

M |G|∞ process. Specifically, for 1 < α < 2, pick some N = 2, 3, . . . and consider

the truncated Pareto distribution on {1, 2, . . . , N} given by

P [σ > n] =
1

1−N−α
(n−α −N−α), n = 1, 2, . . . , N. (5.20)

The distribution (5.20) has finite support and clearly satisfies Assumption (C).

The integer parameter N provides the desired flexibility in controlling the tail

behavior of σ, hence the dependencies in the M |G|∞ arrivals. When N = 2

the corresponding rv σ is deterministic, σ = 2 a.s. As N increases the second

moment of the session duration distribution also increases, thus leading to stronger

dependencies in the M |G|∞ process. In the limit as N goes to infinity the rv σ

116



0 5 10 15 20 25 30 35 40 45 50 55
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Buffer size b

P
ro

ba
bi

lit
y 

P
[q

>
b]

ρ = 0.2

ρ = 0.5

ρ = 0.8

Simulation
Approximation

Figure 5.5: Truncated Pareto α = 1.7, N = 50.

converges weakly to the standard Pareto rv

P [σ > n] = n−α, n = 1, 2, . . . ,

so that we traverse the boundary from a rv σ with finite exponential moment to

one that has infinite variance, hence to a corresponding M |G|∞ process that is

long–range dependent.

To study the effect of the truncation level N on the queue size distribution we

carry out simulation experiments for α = 1.7 and two truncation levels N = 50

and N = 1000. Results are collected for system utilizations ρ = 0.2, 0.5, 0.8. As

approximation (5.14) does not assume any simple closed form expression in this

case, we calculate the various quantities entering (5.14) numerically.

In Figure 5.5 we compare simulation results for truncation level N = 50 with

the approximate values obtained from (5.14). Confidence intervals widths are

not shown, since, with the exception of the three points at the bottom of the
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plot, they were well within 10% of the mean. The pairs of curves, corresponding

to ρ = 0.2, 0.5 and 0.8, show that the approximation tracks the true queue size

probabilities satisfactorily, especially for small buffer sizes. However, it is clear that

as the target probabilities become smaller and the buffer size of interest larger, the

quality of the approximation degrades.

Further increase in N is expected to be even more revealing of the limitations

of approximation (5.14). Note that, maintaining α = 1.7 and increasing N from

50 to 1000 results in a small increase in the expectation, from E [σ] = 2.9 to

E [σ] = 3.035, and a large increase in the second moment, from E
[
σ2
]

= 15.863 to

E
[
σ2
]

= 42.49. Figure 5.6 depicts the queue size probabilities for truncated Pareto

session duration with α = 1.7 and N = 1000, at system utilizations ρ = 0.2, 0.5

and 0.8. Along with simulation estimates we also plot the values obtained from

approximation (5.14) (labeled SRD) and those from expression (5.18) (labeled

LRD). The latter is appropriate for a long–range dependent M |G|∞ process, so

it does not strictly apply to the truncated Pareto setup. However (5.18) becomes

applicable in the limit as the truncation level N goes to infinity. Thus, it is

representative of the shape to which the simulation curve tends as N grows larger.

From Figure 5.6 it becomes clear that while the estimates from the second order

interpolation (5.14) are adequate for small buffer sizes, they fail to track the true

probabilities as the buffer size increases. In fact, for N = 1000 and within the

buffer range shown in the figures, it is the curve from the LRD approximation

(5.18) that is closer to the simulated values.

Obviously, the larger the variance of the truncated Pareto rv, the closer the

simulation curve will be to that of the LRD approximation (5.18). Moreover, we

see that for a fixed variance of σ the match between the simulation curve and that
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Figure 5.6: SRD vs LRD approximation for truncated Pareto session duration.
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Figure 5.7: Truncated Pareto α = 1.7, N = 1000.

of the LRD approximation is better at smaller buffer sizes. On the other hand, as

the buffer size grows to infinity, the LRD approximation (5.18) will also eventually

fail: It exhibits a hyperbolic decay, while, as follows from the developments in [47],

the queue size distribution induced by truncated Pareto session durations decays

exponentially fast. This can also be verified visually, from the linear shape of

the rightmost part of the simulation curves in Figure 5.6. This contrast between

the truncated Pareto and standard Pareto session durations is more evident when

comparing the log–log plots of simulated values in Figures 5.4 and 5.7. Although

the shape of the left part of the curves in Figure 5.7 is almost linear, suggestive of

a hyperbolic initial segment, the righmost part decreases rapidly and the curves

become concave, in accordance with the anticipated exponential decay.
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5.5 On the Mittag–Leffler distribution

In Chapter 3 we saw that the heavy traffic buffer content distributions for long–

range dependent M |G|∞ arrivals are given through Mittag–Leffler special func-

tions. Here, we leave the series expansion (3.19) for the Mittag–Leffler function

aside, and discuss instead an alternative representation. This offers an interest-

ing interpretation for this class of distributions and is often more amenable to

numerical calculations, such as the ones performed in Section 5.4.

It is known [17, p. 207] that for 0 < ν < 1, the Mittag–Leffler function Eν(−x)

is completely monotone on [0,∞), i.e., for all n = 0, 1, . . .

(−1)n
dn

dxn
Eν(−x) ≥ 0, x ≥ 0, 0 < ν < 1.

The class of completely monotone functions is characterized by the following the-

orem [20, p. 439], due to Bernstein:

Theorem 5.5.1 The function φ : [0,∞)→ IR is completely monotone if and only

if it is of the form

φ(λ) =

∫ +∞

0

e−λx F (dx) (5.21)

where F is a measure, not necessarily finite, on [0,∞).

It is then clear that for 0 < ν < 1, the Mittag–Leffler function x → Eν(−x),

x ≥ 0, admits the representation (5.21) and hence can be viewed as a mixture of

exponential distributions. Its corresponding measure F in (5.21) is determined as

follows:

First, we recall the established Laplace transform relations. In particular, (3.20)

and (3.23) provide the Laplace transform pair∫ +∞

0

e−sxEν(−x
ν) dx =

1

s

1

1 + s−ν
, s ≥ 0, 0 < ν < 1; (5.22)
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this formula can also be derived from [17, Eq. (18) p. 209]. We obtain a rep-

resentation of the form (5.21) for Eν(−x
ν) by using the definition of the Laplace

inversion integral

Eν(−x
ν) = lim

Y→+∞

1

2πj

∫ d+jY

d−jY

esx
1

s

1

1 + s−ν
ds, x ≥ 0, 0 < ν < 1, (5.23)

where we pick d to be any strictly positive abscissa on the real axis. The denom-

inator 1 + s−ν has roots of the form sm = e−j
2m+1
ν

π, m = 0,±1, . . ., and since

0 < ν < 1 we have
|2m+ 1|

ν
> 1 for every m = 0,±1, . . ., so that there is no root

with argument in [−π, π]. Thus, the integral (5.23) can be evaluated along the

clockwise path from H to A shown in Figure 5.8, namely

Eν(−x
ν) = lim

R→+∞
r→0

1

2πj

∫ A

H

esx
1

s

1

1 + s−ν
ds, x ≥ 0, 0 < ν < 1. (5.24)

In the limit as the radius R goes to infinity the contribution of the arcs CB and

R

r
d

A
B

C D

EF

G
H

Figure 5.8: Integration path

GF to the integral above is zero, by Jordan’s

lemma. The limiting contribution of the arcs

HG and BA is also zero, because their length

is bounded and esx is also bounded along

these arcs. Finally, on the circular arc ED

we set s = r ejφ, φ in [−π, π], and see that

the resulting integrand vanishes as r → 0.

Thus, in (5.24) only the integrals along the

segments FE and DC remain in the limit.

Setting s = ye−jπ and s = yejπ, y > 0, for

FE and DC, respectively, and manipulating

we collect

Eν(−x
ν) =

∫ +∞

0

e−xy fν(y) dy, x ≥ 0, 0 < ν < 1, (5.25)
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with

fν(y) :=
sin(νπ)

πy1−ν (y2ν + 2yν cos(νπ) + 1)
, y ≥ 0, 0 < ν < 1. (5.26)

Expression (5.19) is now obtained by a change of variable tan θ = yν in (5.25).

Relations (5.25) and (5.26) provide the desired interpretation of the Mittag–Leffler

distribution in terms of an infinite mixture of exponentials. The specific form

of (5.26) shows that when 0 < ν < 1, the density function fν(y) weighting an

exponential distribution with parameter y increases to infinity as y goes to zero, so

that the Mittag–Leffler distribution contains no single dominant exponential with

strictly positive parameter, as expected. This infinite mixture of exponentials is to

be contrasted with the classical heavy traffic queue size distribution under short–

range dependence, given by a single exponential; the one to which expression (5.25)

collapses as ν → 1.

Representation (5.25) and convergence to the exponential distribution as ν → 1

are illustrated in Figure 5.9. The bottom plots show the density function fν(x)

for ν = 0.6, 0.8 and 0.99, and the top log–log scale plots show the corresponding

Mittag–Leffler distributions Eν(−x
ν). The dash–dotted line depicts the negative

exponential e−x. It is clear that as ν → 1 the density fν(x) tends to place all of its

mass at one, i.e., at a single exponential, and this also becomes apparent from the

top plot for ν = 0.99. In addition, we observe that, even for ν = 0.99, although

e−x and Eν(−x
ν) are very close for small values of the argument x, they remain

strikingly different as x grows to infinity.
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Chapter 6

Conclusions

Recent measurements studies have demonstrated that communication networks

carry traffic much burstier than expected (self–similar, long–range, or subexpo-

nentially dependent). These findings have generated interest in the potential im-

plications of high variability and dependence on network performance.

In this dissertation, we sought to understand the impact of (strong) correla-

tions in the input packet stream on the performance of a single network multi-

plexer. This was modeled as a discrete–time queue driven by a family of M |G|∞

correlated arrival processes. Given that obtaining exact solutions is, in general,

extremely difficult, we instead focused on the analysis of the system behavior in

two asymptotic regimes, namely light and heavy traffic.

In heavy traffic, we distinguished between M |G|∞ arrival processes with short–

and long–range dependence, identifying for each case the appropriate heavy traffic

scaling that results in non–degenerate limits. The resulting limits for short–range

dependent inputs involve the standard Brownian motion. Of particular interest are

the conclusions for the long–range dependent case: The normalized queue length

can be expressed as a function not of a fractional Brownian motion, but of an α–

stable, 1/α self–similar independent increments Lévy process. The buffer content
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distribution in heavy traffic is expressed through a Mittag–Leffler special function

and displays a hyperbolic decay, of power 1− α.

Investigation of the system behavior in light traffic reveals the effect of two

aspects of the M |G|∞ arrivals, i.e., the session duration distribution G and the

gradual nature of the inputs, as opposed to the instantaneous inputs of a standard

GI|GI|1 queue. However, the arising limits cannot be fully classified in terms of

short vs long–range dependence property of the M |G|∞ process, hence demon-

strating that the latter is not the only factor that impacts performance.

Exploiting the results above, we proposed a family of heuristic approximations

for a multiplexer with M |G|∞ inputs. These interpolation approximations were

developed by combining the asymptotic characterizations of the buffer content

distribution under heavy and light traffic conditions and are applicable to all traffic

intensities. For several common pmfs G the approximants assume a simple final

form, and are capable of providing quick and reliable estimates of the buffer content

distribution, especially for small buffer sizes.

In closing, we mention two open questions. First, Corollary 4.3.2 lead us to

conjecture that, in light traffic, if c = 1 and the session duration distribution

has a regularly varying tail of order −α, with 1 < α < 2, then the buffer con-

tent distribution also exhibits a power law behavior of the form λα. Second, the

stochastic comparisons discussed here could be complemented by stochastic com-

parisons within the family of M |G|∞ inputs. For two discrete–time queues, with

c = 1, each driven by instantaneous inputs (2.16), representation (2.38) shows

that a convex comparison between the respective distributions of σ translates into

a strong stochastic comparison between the corresponding queue lengths. This

can be viewed as a discrete–time analog of the well known result for the wait-
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ing time in a standard M |G|1 queue and is another instance of a folk theorem

of queueing “variability increases delays”. We conjecture that the folk theorem

holds for the gradual M |G|∞ inputs as well (when c = 1), and simulation results

indeed suggest that a convex stochastic ordering between session durations leads

to a strong stochastic comparison between the queue lengths. However, as the ana-

log to (2.38) is not available, the conjecture remains unsettled, and may require

multidimensional stochastic comparisons between M |G|∞ arrival vectors.
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Appendix A

Asymptotic invertibility of regularly varying

functions

We establish the asymptoptic invertibility property given in Proposition 3.3.1 by

relying on the following facts:

Proposition A.1 Consider a Borel measurable function β : IR+ → IR such that

lim
x→∞

β(x) = 0. With A > 0 and y > 0, the equation

y = exp

(∫ x

A

1− β(t)

t
dt

)
, x ≥ A (A.1)

has a unique solution x := x(y) for all y large enough. Moreover,

lim
y→∞

x(γy)

x(y)
= γ, γ > 0, (A.2)

or equivalently, the mapping y → x(y) is regularly varying of order 1, i.e., x(y) ∼

yv(y) (y →∞) for some slowly varying function v : IR+ → IR+.

Proof. Set

B(x) :=

∫ x

A

1− β(t)

t
dt, x ≥ A
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and pick ε in (0, 1). Since lim
x→∞

β(x) = 0, there exists A? = A?(ε) > A such that

1− ε

t
<

1− β(t)

t
<

1 + ε

t
, t ≥ A?. (A.3)

It is straightforward to see that lim
x→∞

B(x) =∞ and B(A) = 0, and by continuity,

the range of x → exp(B(x)) contains the semi–infinite interval [1,∞). We also

conclude from (A.3) that x→ B(x) is strictly monotone increasing on the interval

[A?,∞), and the existence and uniqueness of a solution to (A.1) follows when-

ever y ≥ y? with y? := exp(B(A?)). The solution mapping y → x(y) is strictly

increasing on [y?,∞).

We now turn to proving (A.2). There is nothing to prove when γ = 1. With

γ > 1, whenever y ≥ y?, we get

γ =
γy

y
= exp(B(x(γy))−B(x(y))) = exp

(∫ x(γy)

x(y)

1− β(t)

t
dt

)
,

and the use of the inequalities (A.3) yields[
x(γy)

x(y)

]1−ε

≤ γ ≤

[
x(γy)

x(y)

]1+ε

,

or equivalently,

γ
1

1+ε ≤
x(γy)

x(y)
≤ γ

1
1−ε . (A.4)

Letting y go to infinity in (A.4), we conclude

γ
1

1+ε ≤ lim inf
y→∞

x(γy)

x(y)
≤ lim sup

y→∞

x(γy)

x(y)
≤ γ

1
1−ε ,

and (A.2) is obtained as we note that ε is arbitrary in (0, 1). The case γ < 1 is

handled in a similar way; details are omitted in the interest of brevity.
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Lemma A.2 Consider slowly varying functions u, w : IR+ → IR+, such that

u(x) ∼ w(x) (x → ∞), and let α > 1. For any sequences {ζr, r = 1, 2, . . .}

and {ηr, r = 1, 2, . . .} with lim
r→∞

ζr = lim
r→∞

ηr =∞ such that

lim
r→∞

rζ−αr u(ζr) = lim
r→∞

rη−αr w(ηr) = K (A.5)

for some finite constant K > 0, it holds that ζr ∼ ηr (r→∞).

Proof. We first look at the special case when u = w, in which case condition

(A.5) implies

lim
r→∞

ζ−αr u(ζr)

η−αr u(ηr)
= 1. (A.6)

We refer to the proof of Lemma 3.8.1, where we introduced the asymptotically

equivalent representation (3.66) of the slowly varying function u. Substituting

(3.66) in (A.6), we see that

lim
r→∞

exp

(
−

∫ ζr

A

α− ε(t)

t
dt+

∫ ηr

A

α− ε(t)

t
dt

)
= 1,

or, equivalently,

lim
r→∞

∣∣∣∣∫ ηr

ζr

α− ε(t)

t
dt

∣∣∣∣ = 0. (A.7)

Pick δ in (0, α). Because lim
r→∞

ζr = lim
r→∞

ηr =∞, there exists rδ such that for r > rδ

we have |ε(t)| < δ whenever t > min(ζr, ηr). Thus,

(α− δ)

∣∣∣∣ln ηrζr
∣∣∣∣ < ∣∣∣∣∫ ηr

ζr

α− ε(t)

t
dt

∣∣∣∣ , r > rδ,

and combining this last inequality with (A.7) we obtain the desired conclusion

lim
r→∞

ηr/ζr = 1.

In general, when u and w are not necessarily equal, we note the easy relation

ζ−αr u(ζr)

η−αr u(ηr)
=
rζ−αr u(ζr)

rη−αr w(ηr)
·
w(ηr)

u(ηr)
, r = 1, 2, . . .
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Condition (A.5) and the asymptotic equivalence of u and w together imply that

the relation (A.6) still holds, and the conclusion ζr ∼ ηr (r→∞) follows from the

first part of the proof.

Proposition A.3 Consider a slowly varying function u : IR+ → IR+, and let

α > 1. For any sequence {ζr, r = 1, 2, . . .} with lim
r→∞

ζr =∞ such that (A.5) holds,

we have

ζr ∼ r
1
αw(r) (r→∞)

for some slowly varying function w : IR+ → IR+.

Proof. We go back to the proof of Lemma 3.8.1, where we introduced the

asymptotically equivalent representation (3.66) of the slowly varying function u. In

view of Lemma A.2, it suffices to consider a sequence {ζr, r = 1, 2, . . .} determined

by the relations

rζ−αr · c exp

(∫ ζr

A

ε(t)

t
dt

)
= K, r ≥ r? (A.8)

for some r? large enough, with constants A > 0 and c > 0, and Borel mapping

ε : IR+ → IR such that lim
t→∞

ε(t) = 0. We can write (A.8) in the equivalent form

Br
1
α = exp

(∫ ζr

A

1− β(t)

t
dt

)
, r ≥ r?

with

B :=
( c

KAα

) 1
α

and β(t) :=
1

α
ε(t), t ≥ 0.

Hence, by Proposition A.1, for large enough r we see that ζr is the unique solution

x(y) of the equation (A.1) with y = Br
1
α . By the second part of Proposition A.1,
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we have

ζr = x(Br
1
α ) ∼ Br

1
αv(Br

1
α ) (r →∞)

for some slowly varying function v : IR+ → IR+. The desired conclusion is now

immediate once we note that the mapping w : x → Bv(Bx
1
α ) is slowly varying

whenever v is.
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Appendix B

Stochastic orderings

We collect here some definitions and properties concerning stochastic orderings.

The material is drawn mostly from [59], where additional information is available.

Throughout let X and Y denote two IR–valued rvs, and let D denote the set

of all probability distribution functions of IR–valued rvs.

Definition B.1 Let X and Y have distribution functions F and G, respectively.

We say that X is stochastically smaller than Y , and write X ≤st Y , or, equiva-

lently, F ≤st G, if

F (x) ≥ G(x), x ∈ IR .

Proposition B.2 It holds that X ≤st Y if and only if

E [φ(X)] ≤ E [φ(Y )] (B.1)

for all non-decreasing functions φ : IR → IR for which the expectations in (B.1)

exist.

Proposition B.3 Let {Fn, n = 1, 2, . . .} and {Gn, n = 1, 2, . . .} be two subsets

of D such that Fn =⇒n F and Gn =⇒n G for limits F and G in D, respectively.

If Fn ≤st Gn for all n = 1, 2, . . . then F ≤st G.
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Definition B.4 We say that X is smaller in the convex stochastic ordering than

Y , and write X ≤cx Y , if

E [φ(X)] ≤ E [φ(Y )] (B.2)

for all convex functions φ : IR→ IR whenever the expectations exist in (B.2).

We similarly define the increasing convex stochastic ordering.

Definition B.5 We say that X is smaller in the increasing convex stochastic or-

dering than Y , and write X ≤icx Y , if

E [φ(X)] ≤ E [φ(Y )] (B.3)

for all increasing convex functions φ : IR → IR whenever the expectations exist in

(B.3).

The ≤icx ordering admits the following characterization [59, p. 8].

Proposition B.6 It holds that X ≤icx Y if and only if X is smaller in mean

residual life than Y , i.e.,

E
[
(X − x)+

]
≤ E

[
(Y − x)+

]
, x ∈ IR

provided the expectations above are finite.

Consider now the Lindley recursions

w
(X)
n+1 = [w(X)

n +Xn+1]+ and w
(Y )
n+1 = [w(Y )

n + Yn+1]+ n = 0, 1, . . . , (B.4)

with initial conditions w
(X)
0 and w

(Y )
0 ; these are independent of the driving se-

quences of i.i.d. rvs {Xn, n = 1, 2, . . .} and {Yn, n = 1, 2, . . .}, with generic rvs X

and Y , respectively. Let ≺ denote either ≤st or ≤icx, and let {wn, n = 0, 1, . . .}

be either {w(X)
n , n = 0, 1, . . .} or {w(Y )

n , n = 0, 1, . . .}.
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Proposition B.7 [59, p. 79] If w0 ≺ w1 in (B.4) then for all n = 0, 1, . . ., we

have

wn ≺ wn+1.

Moreover, if the stationary rv w∞ exists, then

wn ≺ w∞, n = 0, 1, . . . ,

where, if ≺ denotes ≤icx, it is further assumed that w∞ has finite expectation.

Proposition B.8 [59, p. 80] If X ≺ Y and w
(X)
0 ≺ w

(Y )
0 in (B.4) then

w
(X)
n+1 ≺ w

(Y )
n+1, n = 0, 1, . . . .

Moreover, if the corresponding stationary versions w(X)
∞ and w(Y )

∞ exist, then X ≺

Y is sufficient to ensure that

w(X)
∞ ≺ w(Y )

∞

where, if ≺ denotes ≤icx, it is further assumed that w(Y )
∞ has finite expectation.
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[29] P. R. Jelenković and A. A. Lazar. Multiplexing on–off sources with subexpo-

nential on periods: Part I. In IEEE Infocom 97, Kobe (Japan), April 1997.
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