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ABSTRACT

A high performance ASIC supporting multiple modulation, er-
ror correction, and frame formats is under development at Hughes
Network Systems, Inc. Powerful and generic data-aided (DA)
estimators are needed to accommodate operation in the required
modes. In this paper, a simplified DA maximum likelihood
(ML) joint estimator for carrier phase and symbol timing offset
for QPSK/OQPSK burst modems and a sample systolic VLSI
implementation for the estimator are presented. Furthermore,
the Cramer-Rao lower bound (CRLB) for DA case is inves-
tigated. The performance of the estimator is shown through
simulation to meet the CRLB even at low signal-to-noise ratios
(SNR). Compared with theoretical solutions, the proposed es-
timator is less computationally intensive and is therefore easier
to implement using current VLSI technology.

1. INTRODUCTION

A high performance ASIC supporting Hughes Network Sys-
tem’s Universal Modem product line is under development.
This ASIC will support a variety of bit rates, modulations (BPSK,
QPSK, 8PSK, OQPSK), forward error correction, and frame
formats. The ASIC will use several burst parameter estimation
algorithms, these algorithms are generic enough to be applica-
ble in all of the various modes and can be readily implemented
in hardware.

An expression for the DA ML joint carrier phase and tim-
ing offsets estimator in time-domain was derived in [1] (p.296).
Implementing the estimator is however, somewhat hardware in-
tensive. Based on the work in [1], a new algorithm has been
derived that can be also extended to the OQPSK case. This
algorithm is relatively simple and is suitable for systolic VLSI
implementation. The performance lower bound for ML estima-
tion is the CRLB. An expression for the CRLB for timing re-
covery in the non-DA case is given in [3]. Jiang has derived an
expression for an ML joint phase and timing offset estimator,
and the CRLB for the DA timing recovery case based on a fre-
quency domain approach in [2]. In the DA case, the CRLBDA
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Figure 1: Matched Filter of Optimal Receiver

(for DA case) which provides insight on data pattern selection
for faster timing recovery is investigated further in this paper.

In section 2 a derivation of the estimation algorithm is pre-
sented. Section 3 presents an efficient VLSI implementation of
the estimator. In the last section the CRLB for the non-DA case
and theCRLBDA are investigated, and the performance of the
new estimator is shown through computer simulation and com-
pared withCRLBDA.

2. ESTIMATION ALGORITHM

The baseband received signal is modeled as:

y(t) =
p
Es

N�1X

n=0

[(aIng(t� nT ) + jaQng(t� nT

��T )) exp[j(2�ft+ �)]] + n(t) (1)

whereg(t) = gT (t)
c(t)
f(t), gT (t) is the transmitter shap-
ing function,c(t) is the channel response,f(t) is the prefilter,
n(t) is the additive white Gaussian noise (AWGN) with two-
sided power spectral densityN0=2, andan � aIn + jaQn is
the data symbol from complex plane (an =

p
2=2(�1� j) for

QPSK/OQPSK signaling).T is the symbol interval,f is the
carrier frequency offset, and� is the delay factor that is 0 for
QPSK and 0.5 for OQPSK. The estimation algorithm for the
QPSK case is as follows. The matchedfilter for an optimal re-
ceiver can be modeled as [1] shown in Figure 1.y(t) is down
converted by carrier frequency offset estimatef̂ , and then sam-
pled at rate of1=Ts, typically T = LTs, with L an integer.
The sampled signal isfiltered by a matched shapingfilter with



responseg(�t) and timing offset"T . The output is then deci-
mated down to a rate of1=T to obtain a one sample per symbol
signalz(nT + "T ). The demodulator corrects the phase offset
� and timing offset" of z(nT+"T ) prior to making symbol de-
cisions and recovering the transmitted symbolân. z(nT + "T )
is given by:

z(nT + "T ) =

1X
k=�1

y(kTs)e
�j(2�f̂kTs)gMF (nT +

"T � kTs) (2)

Assuming zero frequency offset estimation error, there areK
(K = LN ) observations ofz(kTs + "T ) (k = 0; � � � ;K � 1)
available for estimating" and�, " 2 [�0:5; 0:5). According to
the work done in [1], the maximization object function of ML
joint phase and timing offsets estimation in AWGN channel is

L(a; "; �) = C exp

(
�Re

"
N�1X
n=0

a�nz(nT + "T )e�j�

#)
(3)

whereC is a positive constant anda = [a0; � � � ; aN�1] which
is the data pattern and is known to the estimator. Let us define
�(") as:

�(") =

N�1X
n=0

a�nz(nT + "T ) (4)

The ML joint phase and timing estimator is given by [1]:

"̂ = arg max
"
j�(")j (5)

�̂ = arg[�("̂)] (6)

According to the Equivalence Theorem [1], and assuming that
c(t) andf(t) are all-passfilters,z(nT + "T ) is equivalent to
the following:

z(nT + "T ) =

N�1X
k=0

akr(nT + "T � kT )e�j� +Nn(7)

where r(t) = gT (t)
 gT (�t)

=
sin(�t=T )

�t=T

cos(��t=T )

1� 4�2t2=T 2

The above expression also assumes that raised cosine shaping
is adopted with� denoting the rolloff factor.Nn is the sampled
version ofn(t), Gaussian noise, after beingfiltered bygMF (t).

Arriving at a solution to eq. (5) is a difficult task and the
resulting hardware structure presented in [1] is quite compli-
cated. It is well known that a quadratic form can be used to
approximate the central segment of a convex function around
its peak. The expression for�(") can be approximated by a
quadratic equation as shown below. If"! 0, the inter-symbol-
interference (ISI) and noiseNn can be ignored and we can sim-
plify j�(")j as

j�(")j � Es

N�1X
n=0

janj
2r("T ) = NEsr("T ) (8)
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Figure 2: Correlation Magnitudej�(")j vs. Timing Offset"

wherejanj2 = 1 (n = 0; � � � ; N � 1). Furthermore by letting
t = "T and using Taylor series approximations for sine and
cosine functions and after some simplification, we arrive at

j�(t)j � NEs

�
1�

�2t2

6T 2

�
(9)

Figure 2 shows the result of numerical evaluation ofj�(")j
which follows a quadratic form. From eq. (9) we can use a sec-
ond order polynomial to approximate the relationship between
sampling time and the magnitude of correlationj�(t)j given
that these sampling points are close enough to the ideal sam-
pling point (i.e.t is close enough to 0). Using a general form
of the second order polynomial

j�(t)j = b2t
2 + b1t+ b0 (10)

suggests that a joint phase and timing estimator can be derived
based on three adjacent samples ofj�(t)j. These samples are
the closest ones to the ideal sampling point as shown in Figure
3. In order to meet the condition thatt is close enough to 0, two
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Figure 3: Three Sampling Points Model

measures are adopted: one is that the sampling rateL (sam-
ples per symbol) is large enough (simulation shows thatL = 4
can achieve good performance); second is locating the largest
available magnitudex1 through peak search. Let us define the
sampling time ofx1 as nominal 0 on time axis. Therefore the



sampling times ofx0 andx2 are�Ts andTs, respectively. A
LaGrangeinterpolating polynomial can be adopted based on
the values ofxk (k = 0; 1; 2):

j�(t)j =

2X
k=0

xk

2Y
i=0;i 6=k

t� ti
tk � ti

(11)

= b2t
2 + b1t+ b0

where

b2 =

2X
n=0

xnQ
2

l=0;l6=n(tn � tl)
(12)
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xn
P
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(13)
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n=0

xn
Q

2
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2

l=0;l6=n(tn � tl)
(14)

Using the fact thatt0 = �Ts; t1 = 0; t2 = Ts, we can get

b2 =
1

T 2
s

�x0
2

� x1 +
x2
2

�

b1 =
1

Ts

�x2
2

�
x0
2

�

b0 = x1

The ML timing offset estimator (5) is thê" which maximizes
j�(")j. It is easy to compute the sampling time of the peak of
j�(t)j from a second order polynomial, i.e.

tpeak = �
b1
2b2

=
(x0 � x2)Ts

2x0 � 4x1 + 2x2
(15)

therefore, the ML estimate of" is

"̂ = �
tpeak
T

=
x2 � x0

L(2x0 � 4x1 + 2x2)
(16)

The phase estimator is shown in eq. (6). Interpolation tech-
niques can be applied to correct the timing offset before phase
estimation. This however, introduces an additional delay in the
demodulation process. Simulations show that using the time
for the non-ideal sample ofx1 is sufficient for meeting the
CRLB (sampling time ofx1 is t1). This leads to

�̂ = arg [�(t1)] (17)

In order to locate the largest available valuex1 easily, a highly
correlated data patterna is selected. [2] discusses this problem
in depth. Here unique word (UW) and alternating (one zero)
data patterns are investigated.

The same algorithms can be applied to OQPSK modulation
with minor modifications. �(") is slightly modified from eq.
(4) as:

�(") =

N�1X
n=0

[a�n1z(nT + "T ) + a�n2z(nT + T=2 + "T )] (18)
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Figure 4: Joint Carrier Phase and Timing Offsets Estimator

where

an1 = aIn + j

N�1X
k=0

aQkr((n� k � 1=2)T )

an2 =

N�1X
k=0

aIkr((n � k + 1=2)T ) + jaQn

an1 andan2 are defined to combine the effect of inter-channel
and inter-symbol interferences. The above however requires
more computational power since multipliers are needed instead
of just adders for the QPSK case. We can get a simplified ver-
sion by lettingan1 = aIn andan2 = jaQn.

Computer simulations show that the performance degrada-
tion is small and we can conserve hardware and make the im-
plementation compatible with QPSK. After redefining�("), we
just need to follow the same procedure derived for QPSK for
estimating timing and phase offsets.

3. VLSI IMPLEMENTATION

The hardware block diagram for the estimator is shown in Fig-
ure 4. The multi-sample correlator generates outputs at a higher
rate than one sample per symbol. Let us define the following
complex correlation computation:

�(") =
N�1X
n=0

(aIn � jaQn)(zI (n) + jzQ(n))

=

N�1X
n=0

(aInzI(n) + aQnzQ(n) + j(aInzQ(n)�

aQnzI(n)))

= CII + CQQ + j(CIQ � CQI ) (19)

A systolic [4] VLSI implementation of the correlator is shown
in Figure 5 for both QPSK and OQPSK cases, wherexij de-
notes theith symbol (i = 0; � � � ; N � 1), jth sample (j =
0; � � � ; 3) of the output from the matched shapingfilter. In
QPSK/OQPSK case,aIj = �1; aQj = �1, only adders are
necessary therefore the computational complexity is relatively
small especially when using the correlator as soft-decision UW
detector. Through peak search module, we can locatex 0, x1
andx2. An ArctanLookup table (LUT) is used when estimat-
ing the phase offset.
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Figure 5: Multi-Sample Correlator for QPSK/OQPSK

4. PERFORMANCE BOUNDS AND SIMULATION
RESULTS

The performance lower bound for unbiased ML estimation is
the Cramer-Rao lower bound (CRLB). Wefirst address the CRLB
for the QPSK case analytically. Then the performance of QPSK
and OQPSK is shown through simulations. TheCRLBDA for
phase estimation is given by [1] as follows:

E[(� � �̂)2] �
�
2Es

N0
N

�
�1

(20)

Moeneclaey proposed the CRLB for i.i.d. random data pattern
(i.e., no information abouta available) in [3]. The bound for the
case where the sampling rate1=Ts � 2B (B is the bandwidth
of r(t)) andN large enough is given by

E[(� � �̂ )2] � T 2

�
2Es

N0
N

Z
4�2f2R(f)df

�
�1

(21)

with R(f) the Fourier transform ofr(t). Jiang has proposed
the following expression forCRLBDA in [2]:
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3
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(22)

whereA[k] is thekth element ofN -point discrete Fourier trans-
form (DFT) ofa, i.e.A[k] = PN�1

n=0 ane
�j(2�nk=N). Accord-

ing to eq. (22),CRLBDA has different values for different data
patterns. Two data patterns have been investigated: alternating
one-zero pattern (i.e.ai = (�1)ip2=2(1 + j)), and a unique
word pattern. A 48-symbol UW was selected. According to eq.
(22) for the alternating one-zero data pattern

CRLBDAj10 =
�
2�2

Es

N0
N

�
�1

(23)
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Figure 6: TheCRLBDA for Timing Estimation with UW Pat-
tern

and thus the performance is independent of rolloff factor�
given that� > 0. For the UW pattern, the timing estimation
CRLBDA is closely related to the rolloff factor. It follows from
eq. (22) that the larger the rolloff factor, the smallerCRLBDA.
Figure 6 shows eq. (22) plotted as a function of SNR for three
different values of rolloff factor.

The parameters for the computer simulations for QPSK and
OQPSK signaling wereN = 48 andL = 4 in an AWGN chan-
nel. Figure 7 shows the saw tooth characteristics of eq. (16)
under no noise conditions with random phase. From simula-
tions we can see that (16) is an unbiased estimate of". Peak
search (i.e. locatingx1) resolves them=4 (m = �1; �2) am-
biguity.

Different rolloff factors for the raised cosine shaping func-
tion were also tested. Simulation shows that the root mean
squared (RMS) timing estimation error of QPSK meets the
CRLBDA for all �s and data patterns. Simulations also support
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that for the one-zero pattern the RMS timing error is indepen-
dent of�, while for the UW pattern it decreases as� increases.
This is in agreement with the evaluation of theCRLBDA. For
OQPSK case the timing estimation performance degrades slightly
compared with QPSK due to the crosstalk between the in-phase
and the quadrature channels in the presence of timing and phase
offsets. Figure 8 shows the timing offset estimation perfor-
mance with� = 0:5, where one-zero pattern of QPSK and
UW pattern of QPSK/OQPSK are illustrated. Figure 9 shows
the phase estimation performance. The RMS phase estimation
error meets theCRLBDA for phase estimation in QPSK case
while it degrades slightly in OQPSK case.
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5. CONCLUSION

In this paper an ML joint phase and timing offsets estimator for
QPSK/OQPSK burst modems along with a systolic VLSI im-
plementation has been presented. The performance of timing
recovery meets the CRLB for the DA case at low SNR, there-
fore it verifies the correctness of thisCRLBDA [2]. The joint
estimator is relatively simple to realize.
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