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ABSTRACT

A high performance Universal Modem ASIC that supports sev-
eral modulation types and burst mode frame formats is under
development. Powerful and generic data-aided (DA) parameter
estimators are necessary to accommodate many modes. In this
paper we present an approximated maximum likelihood (ML)
carrier frequency offset estimator, ML joint carrier phase and
timing offsets estimator and their systolic VLSI implementa-
tions for PSK burst modems. The performances are close to
the Cramer-Rao lower bounds (CRLB) at low SNRs. Com-
pared with theoretical solutions the estimators proposed here
are much simpler and easier to implement by the current VLSI
technology. The CRLB for DA estimations is discussed in
some depth, some issues on training sequence design is also
addressed in this work.

1. INTRODUCTION

A high performance ASIC supporting Hughes Network Sys-
tem’s Universal Modem product line is under development.
This ASIC supports a variety of bit rates, modulations (BPSK,
QPSK, 8PSK, OQPSK), forward error correction, and frame
formats. In order to satisfy the stringent operating conditions
such as large carrier frequency offset (up to 13% symbol rate),
low SNR (Eb=N0 around 0dB) and multiple operating modes,
powerful and generic estimators are necessary to recover the
burst parameters. Maximum likelihood (ML) estimators [5]
are optimal estimators. We present a good approximation of
DA ML carrier frequency offset estimator, a joint carrier phase
and timing offsets estimator and their corresponding systolic
VLSI implementations.

Several carrier frequency offset estimation methods are dis-
cussed in [3]. The optimal ML frequency estimator is well
known to be given by the location of the peak of a periodogram
[8]. However the computation requirements make this approach
prohibitive even with an FFT implementation. Therefore sim-
pler approximation methods are desired. We present a DA car-
rier frequency offset estimator that is based on autocorrelation
and the algorithm derived by Kay [2].
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Figure 1: Matched Filter of Optimal Receiver

The DA ML joint carrier phase and timing offset estimator
is derived in [1] (p.296). The presented implementation is hard-
ware intensive. We derived a simplified ML joint carrier phase
and timing offsets estimator, which is suitable for systolic VLSI
implementation. In section II the estimation algorithms are pre-
sented. Section III presents their efficient VLSI implementa-
tions. In the last section theCRLBDA (for DA case) are in-
vestigated. TheCRLBDA for timing offset estimation closely
depends on training sequence, therefore some issues on train-
ing sequence design for timing acquisition is discussed. The
performance of the estimators is shown through computer sim-
ulation and compared withCRLBDA.

2. ESTIMATION ALGORITHMS

The baseband received signal is modeled as:

y(t) =
p
Es

N�1X

n=0

[(aIng(t� nT ) + jaQng(t� nT

��T )) exp[j(2�ft+ �)]] + n(t) (1)

whereg(t) = gT (t)
c(t)
f(t), gT (t) is the transmitter shap-
ing function,c(t) is the channel response,f(t) is the prefilter,
n(t) is the additive white Gaussian noise (AWGN) with two-
sided power spectral densityN0=2, andan � aIn + jaQn is
the data symbol from complex plane (an =

p
2=2(�1� j) for

QPSK/OQPSK signaling).T is the symbol interval,f is the
carrier frequency offset, and� is the delay factor that is 0 for
QPSK and 0.5 for OQPSK. The matchedfilter for an optimal
receiver can be modeled as [1] shown in Figure 1.y(t) is down
converted by carrier frequency offset estimatef̂ , and then sam-



pled at rate of1=Ts, typically T = MTs, with M an integer.
The sampled signal isfiltered by a matched shapingfilter with
responseg(�t) and timing offset"T . The output is then deci-
mated down to a rate of1=T to obtain a one sample per symbol
signalz(nT + "T ). The demodulator corrects the phase offset
� and timing offset" of z(nT+"T ) prior to making symbol de-
cisions and recovering the transmitted symbolân. z(nT + "T )
is given by:

z(nT + "T ) =

1X
k=�1

y(kTs)e
�j(2�f̂kTs)gMF (nT +

"T � kTs) (2)

2.1. Carrier Frequency Offset Estimation

Initially suppose we haveN z(nT + "T ) (n = 0; � � � ; N � 1)
symbols without frequency rotation anda = [a0; � � � ; aN�1]
is known in DA case. In order to simplify the presentation, let
us assume perfect timing (frequency estimation performance in
the presence of random timing offset is shown through simula-
tion), unit-energy pulse (g(t) 
 g(�t)), thusz(nT + "T ) can
be simplified asz(n; f), which can be expressed as:

z(n; f) = an exp[j(2�fnT + �)] + 
n (3)

where
n is additive Gaussian noise. Correlation method is
adopted to remove data modulationan, let

rn � z(n; f)a�n = Es exp[j(2�fnT + �)] + 
a�n (4)

It is easy to show that the autocorrelation of the exponential
wave is still an exponential wave at high SNR (simulation shows
that high SNR condition is not necessary), i.e.,

R(m) �
1

N �m

N�1X
n=m

rnr
�

n�m

= E2
s exp[j(2�fmT )] + noise(m) (5)

wherem = 1; � � � ; L (L < N � 1). Mengali [4] proposed
a frequency estimator based on modelingnoise(m) and the
work done by Kay [2]. From simulation wefind that forN
large enoughnoise(m) can be approximated as white Gaus-
sian noise. The sequencefR(m)g can be treated as a contin-
uous wave (with frequencyf ) which is passed through a noise
removal process. At high SNR, many good frequency estima-
tion methods have been derived. Kay [2] presented a frequency
estimation method based on weighted sum of phase difference.
His frequency estimator is ML at high SNR. Let us define the
following process:

�(m) = arg[R(m)]; m = 1; � � � ; L (6)

and

�m =

�
�(1); m = 0
(�(m+ 1)� �(m))mod(2�); 1 < m < L

(7)
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We borrow from Kay’s frequency estimator, that is the weighted
sum of phase difference. BecauseR(m1) is calculated based
on more data thanR(m2) whenm1 < m2, after some arith-
metic we derived the following carrier frequency offset estima-
tor:

f̂ =
1

2�T

L�1X
m=0

!�m�m (8)

where

w�m =
3((2L+ 1)2 � (2m+ 1)2)

((2L+ 1)2 � 1))(2L+ 1)
; m = 0; � � � ; L� 1 (9)

The weighting function is shown in Figure 2. It is easy to see
that the weightw�m decreases asm increases. That is because
asm gets larger and larger, the number of terms used to com-
puteR(m) reduces and thus makes�m less and less accurate.
Compared with Mengali’s algorithm, our estimator adopts dif-
ferent weighting function,L can be less thanN=2 (e.g. when
N = 96, L = 32 can achieve the CRLB at 0dB).

2.2. Joint Carrier Phase and Timing Offsets Estimator

Assuming zero frequency offset estimation error, there areK
(K = MN ) observations ofz(kTs + "T ) (k = 0; � � � ;K � 1)
available for estimating" and�, " 2 [�0:5; 0:5). According to
the work done in [1], the maximization object function of ML
joint phase and timing offsets estimation in AWGN channel is

L(a; "; �) = C exp

(
�Re

"
N�1X
n=0

a�nz(nT + "T )e�j�

#)
(10)

whereC is a positive constant anda = [a0; � � � ; aN�1] which
is the data pattern and is known to the estimator. Let us define
�(") as:

�(") =
N�1X
n=0

a�nz(nT + "T ) (11)



that is the cross correlation between training sequencea and re-
ceived samplesfz(nT + "T )g. The ML joint phase and timing
estimator is given by [1]:

"̂ = arg max
"

j�(")j (12)

�̂ = arg[�("̂)] (13)

According to the Equivalence Theorem [1], and assuming that
c(t) andf(t) are all-passfilters,z(nT + "T ) is equivalent to
the following:

z(nT + "T ) =
p
Es

N�1X
k=0

akr(nT + "T � kT )ej� +Nn (14)

where

r(t) = gT (t)
 gT (�t) =
sin(�t=T )

�t=T

cos(��t=T )

1� 4�2t2=T 2

The above expression also assumes that raised cosine shaping
is adopted with� denoting the rolloff factor.Nn is the sampled
version ofn(t), Gaussian noise, after beingfiltered bygMF (t).

Arriving at a solution to Eq. (12) is a difficult task and the
resulting hardware structure presented in [1] is quite compli-
cated. It is well known that a quadratic form can be used to
approximate the central segment of a convex function around
its peak. The location of the peak of a second order polynomial
is easy to compute from its coefficients. The expression for
j�(")j can be approximated by a quadratic equation as shown
below. If " ! 0, the inter-symbol-interference (ISI) and noise
Nn can be ignored and we can simplifyj�(")j as

j�(")j �
p
Es

N�1X
n=0

janj
2r("T ) = N

p
Esr("T ) (15)

wherejanj2 = 1 (n = 0; � � � ; N � 1). Furthermore by letting
t = "T and using Taylor series approximations for sine and
cosine functions and after some simplification, we arrive at

j�(t)j � N
p
Es

�
1�

�2t2

6T 2

�
(16)

From Eq. (16) we can use a second order polynomial to approx-
imate the relationship between sampling time and the magni-
tude of correlationj�(t)j given that these sampling points are
close enough to the ideal sampling point (i.e.t is close enough
to 0). Using a general form of the second order polynomial

j�(t)j = b2t
2 + b1t+ b0 (17)

suggests that a joint phase and timing estimator can be derived
based on three adjacent samples ofj�(t)j. These samples are
the closest ones to the ideal sampling point as shown in Figure
3. In order to meet the condition thatt is close enough to 0, two
measures are adopted: one is that the sampling rateM (samples
per symbol) is large enough (simulation shows thatM = 4
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Figure 3: Three Sampling Points Model

can achieve good performance);second is locating the largest
available magnitudex1 through peak search. Let us define the
sampling time ofx1 as nominal 0 on time axis. Therefore the
sampling times ofx0 andx2 are�Ts andTs, respectively. A
LaGrange interpolating polynomial can be adopted based on
the values ofxk (k = 0; 1; 2):

j�(t)j =

2X
k=0

xk

2Y
i=0;i6=k

t� ti
tk � ti

(18)

= b2t
2 + b1t+ b0

using the fact thatt0 = �Ts; t1 = 0; t2 = Ts, we can get

b2 =
1

T 2
s

�x0
2
� x1 +

x2
2

�
(19)

b1 =
1

Ts

�x2
2
�

x0
2

�
(20)

b0 = x1 (21)

The ML timing offset estimator (12) is thê" which maximizes
j�(")j. It is easy to compute the sampling time of the peak of
j�(t)j from a second order polynomial, i.e.

tpeak = �
b1
2b2

=
(x0 � x2)Ts

2x0 � 4x1 + 2x2
(22)

therefore, the ML estimate of" is

"̂ = �
tpeak
T

=
x2 � x0

M(2x0 � 4x1 + 2x2)
(23)

The phase estimator is shown in Eq. (13). Interpolation tech-
niques can be applied to correct the timing offset before phase
estimation. This however introduces an additional delay in the
demodulation process. Simulations show that using the time
for the non ideal sample ofx1 is sufficient for meeting the
CRLB (sampling time ofx1 is t1). This leads to

�̂ = arg [�(t1)] (24)

In order to locate the largest available valuex1 easily, a highly
correlated data patterna is selected. [6] discusses this problem
in depth. Here unique word (UW) and alternating (one zero)
data patterns are investigated.
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3. VLSI IMPLEMENTATIONS

For the frequency estimator, the calculation ofR(m) (Eq. (5))
is a hardware intensive task that requires(2N � L � 1)L=2
complex multiplication and(2N � L � 3)L=2 additions. In
order to make full use of each input data and exploit concur-
rency, we propose the systolic VLSI implementation as shown
in Figure 4. If higher speed clock is available, the complex
multipliers can be shared on time division basis.fR(m)g will
be available on the clock cycle following the one latching the
N th data symbol into the estimator. Frequency offset can then
be calculated via Eq. (8). One advantage of this structure is
that it is scalable. If we want to increaseL to get a better per-
formance, more elements can be added at the right hand side
shown in Figure 4.

The hardware block diagram for the joint phase and timing
estimator is shown in Figure 5. The multi-sample correlator
generates outputs at a higher rate than one sample per symbol.
A systolic VLSI implementation of the correlator is shown in
Figure 6, wherexij denotes theith symbol (i = 0; � � � ; N�1),
jth sample (j = 0; � � � ; 3) of the output from the matched shap-
ing filter. In QPSK case,an = �1� j, only adders are neces-
sary therefore the computational complexity is relatively small
especially when using the correlator as soft-decision UW de-
tector. Through peak search module, we can locatex 0, x1 and
x2. An Arctan Lookup table (LUT) is used when estimating
the phase offset.

4. PERFORMANCE BOUNDS AND SIMULATION
RESULTS

The variance of an unbiased estimation is lower bounded by the
CRLB. TheCRLBDA for DA frequency estimation is given by
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Figure 5: Joint Carrier Phase and Timing Offsets Estimator

1−Z 1−Z 1−Z0a
1a 1−Na

11121314 xxxx×××

11121314 yyyy×××

1−Z
0

ia

inx

iny outy
*
iininout axyy +=

1−Z
iny outy

inout yy =

Figure 6: Multi-Sample Correlator

[8] as follows:

E[(fT � f̂T )2] � 6

�
4�2

Es

N0
N(N2 � 1)

�
�1

(25)

TheCRLBDA for joint carrier phase and timing offsets is given
by [6]. If a is chosen properly (e.g.a is BPSK type data or real)
theCRLBDAs in joint estimation are the same as those in the
single parameter estimation with the knowledge of the other
parameter. TheCRLBDA for phase estimation is given by

E[(� � �̂)2] �

�
2Es

N0
N

�
�1

(26)

that is independent of training sequence if Nyquist shape is
adopted. Moeneclaey proposed the CRLB for DA timing es-
timation with the assumption that training sequencea is zero
mean and i.i.d. in [7]. The bound for the case where the sam-
pling rate1=Ts � 2B (B is the bandwidth ofr(t)) andN large
enough is given by

E[(� � �̂)2] � T 2

�
2Es

N0
N

Z
4�2f2R(f)df

�
�1

(27)

with R(f) the Fourier transform ofr(t). Jiang has proposed
the following expression forCRLBDA with arbitrary training
sequence in [6]:

8<
:

2Es

N0NT

2
4 K=2�1X
k=�K=2

�
2�k

N

�2
R

�
k

NT

�
jA[k]j2

3
5
9=
;
�1

(28)

whereA[k] is thekth element ofN -point discrete Fourier trans-
form (DFT) ofa, i.e.A[k] =

PN�1
n=0 ane

�j(2�nk=N). Accord-
ing to Eq. (28),CRLBDA has different values for different data
patterns.

Eq. (28) gives us insight on training sequence design im-
mediately if estimation variance is chosen as performance cri-
teria. A sequence is optimal if it minimizes theCRLBDA for
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timing estimation under some constraints. The following pre-
sentation shows a simple example on training sequence design
under energy constraint, i.e.,

ajop = arg max

K=2�1X
k=�K=2

�
2�k

N

�2
R
�

k

NT

�
jA[k]j2 (29)

with the condition that

N=2�1X
k=�N=2

jA[k]j2 = Ea (30)

Because(2�k=K)2R(k=NT ) is non-negative (R(f) is assumed
to be non-negative, e.g., raised-cosine shape, otherwisejR(f)j
is adopted in Eq. (28)),jA[k]j2 is also non-negative, letkm be
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thek that maximizes(2�k=K)2R(k=NT ) with its maximum
Rmax, the the following holds

RHS of Eq:(29) �
K=2�1X
k=�K=2

RmaxjA[k]j2 (31)

= RmaxEa

The optimal sequence can be derived immediately, which has
the following DFT

jA[k]j =
(
1

2

p
Ea if k = �km;

0 otherwise
(32)

It is a tone with frequencykm=N . The only concern here is
that the optimal sequence perhaps is not binary.

Two data patterns have been investigated in our ASIC de-
sign: alternating one-zero pattern (i.e.a i = (�1)ip2=2(1 +
j)), and a unique word pattern. A 48-symbol UW was selected.
According to Eq. (28) for the alternating one-zero data pattern

CRLBDAj10 =
�
2�2

Es
N0

N

�
�1

(33)

and thus the performance is independent of rolloff factor�
given that� > 0. For the UW pattern, the timing estimation
CRLBDA is closely related to the rolloff factor. It follows from
Eq. (28) that the larger the rolloff factor, the smallerCRLBDA.
Figure 7 shows Eq. (28) plotted as a function of SNR for three
different values of rolloff factor.

The parameters for the computer simulations were QPSK
signaling,N = 96 andL = 32 in an AWGN channel for fre-
quency estimation,N = 48 andM = 4 in the AWGN channel
for joint phase and timing estimation. Figure 8 shows normal-
ized root mean squared (RMS) frequency estimation error with
f = 0:13=T , which is compared with theCRLBDA for fre-
quency estimation. From simulation we can see that the estima-
tion RMS error is very close to theCRLBDA even at 0dB, the
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performance degradation caused by timing error is very small.
Figure 9 shows the saw tooth characteristics of Eq. (23) under
no noise conditions with random phase. From simulations we
can see that Eq. (23) is an unbiased estimate of". Peak search
(i.e. locatingx1) resolves them=4 (m = �1; �2) ambiguity.

For phase and timing estimation, different rolloff factors
for the raised cosine shaping function were also tested. Simu-
lation shows that the RMS timing estimation error meets the
CRLBDA of timing estimation for all�s and data patterns.
Simulations also support that for the one-zero pattern the RMS
timing error is independent of�, while for the UW pattern it de-
creases as� increases. This is in agreement with the evaluation
of theCRLBDA. Figure 10 shows the timing offset estimation
performance with� = 0:5, where one-zero pattern and UW
pattern of QPSK are illustrated. Figure 11 shows the phase es-
timation performance. The RMS phase estimation error meets
theCRLBDA for phase estimation.

5. CONCLUSIONS

The RMS estimation errors of our algorithms that have moder-
ate complexities meet theCRLBDA at low SNR, therefore they
areefficient. The techniques proposed here can be used in high
performance PSK burst modems working under large carrier
frequency offset and low SNR conditions. A training sequence
design method for timing acquisition is also illustrated in this
paper.
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