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ABSTRACT t=KT, t=nT

: . y(t) . o
A high performance Universal Modem ASIC that supports sev- 9y (KT, —€T) —_—
eral modulation types and burst mode frame formats is under Z(nT +¢€T)

-~ j2mft

development. Powerful and generic data-aided (DA) parameter
estimators are necessary to accommodate many modes. In this
paper we present an approximated maximum likelihood (ML) Figure 1: Matched Filter of Optimal Receiver

carrier frequency offset estimator, ML joint carrier phase and

timing offsets estimator and their systolic VLS| implementa-

tions for PSK burst modems. The performances are close to The DA ML joint carrier phase and timing offset estimator
the Cramer-Rao lower bounds (CRLB) at low SNRs. Comis derivedin [1] (p.296). The presented implementation is hard-
pared with theoretical solutions the estimators proposed het¢re intensive. We derived a simipéid ML joint carrier phase
are much simpler and easier to implement by the current VLﬁnd timing offsets estimator, which is suitable for systolic VLSI
technology. The CRLB for DA estimations is discussed ifmplementation. In section Il the estimation algorithms are pre-

some depth, some issues on training sequence design is a¥@ted. Section Ill presents theifiefent VLSI implementa-
addressed in this work. tions. In the last section thERLBpa (for DA case) are in-
vestigated. Th&€RLBpa for timing offset estimation closely
depends on training sequence, therefore some issues on train-
ing sequence design for timing acquisition is discussed. The

. . performance of the estimators is shown through computer sim-
A high pgrformance ASIC supporpng _Hughes Network Syshlation and compared WithRLB 1.
tem’s Universal Modem product line is under development.

This ASIC supports a variety of bit rates, modulations (BPSK,

QPSK, 8PSK, OQPSK), forward error correction, and frame 2. ESTIMATION ALGORITHMS
formats. In order to satisfy the stringent operating condition . . . )
such as large carrier frequency offset (up to 13% symbol rate ’he haseband received signal is modeled as:

1. INTRODUCTION

low SNR (E}, /N, around 0dB) and multiple operating modes, N—1

powerful and generic estimators are necessary to recover the y(t) = /E, Z [((arng(t — nT) + jagng(t — nT
burst parameters. Maximum likelihood (ML) estimators [5] n=0

are optimal estimators. We present a good approximation of —7T)) exp[j(2nft + 0)]] + n(t) (1)

DA ML carrier frequency offset estimator, a joint carrier phase

and timing offsets estimator and their corresponding systolizhereg(t) = gr(t) ®c(t)® f(t), gr(t) is the transmitter shap-
VLSI implementations. ing function,c(t) is the channel responsg(¢) is the prédilter,

Several carrier frequency offset estimation methods are dis{t) is the additive white Gaussian noise (AWGN) with two-

cussed in [3]. The optimal ML frequency estimator is wellsided power spectral densify, /2, anda,, = ar, + jagn is
known to be given by the location of the peak of a periodograrthe data symbol from complex plane{ = v/2/2(+1 + j) for
[8]. However the computation requirements make this approa€dPSK/OQPSK signaling)T" is the symbol intervalf is the
prohibitive even with an FFT implementation. Therefore sim<carrier frequency offset, andis the delay factor that is 0 for
pler approximation methods are desired. We present a DA cd2PSK and 0.5 for OQPSK. The matchider for an optimal
rier frequency offset estimator that is based on autocorrelatiggceiver can be modeled as [1] shown in Figurg(t) is down
and the algorithm derived by Kay [2]. converted by carrier frequency offset estimﬁteand then sam-



pled at rate ofi /T, typically T = MTs, with M an integer. 005 Weighting Functon

The sampled signal ifiltered by a matched shapifiter with
responsg(—t) and timing offsetT". The output is then deci-
mated down to a rate df/ T to obtain a one sample per symbol 004
signalz(nT + T'). The demodulator corrects the phase offset o,
6 and timing offset of z(nT +¢T') prior to making symbol de-
cisions and recovering the transmitted symbgl z(nT +T)
is given by:

0.045 -

0.03[

Weight w(m')
o
o
N
&

o0
Z(TLT + 8T) = Z y(kTs)efj(Zﬂ'fkTs)gMF (TLT + 0.015 B
k:—OO 0.01 *
eT — kTy) )
2.1. Carrier Frequency Offset Estimation % 5 m 5 20 2 B 3

Index m, L=32
Initially suppose we hav®/ z(nT +eT) (n=0,--- ,N — 1)
symbols without frequency rotation aad= [ao, - - - ,an_1] Figure 2: Weighting Functiofuw, }
is known in DA case. In order to simplify the presentation, let
us assume perfect timing (frequency estimation performance \ffe horrow from Kays frequency estimator, that is the weighted
the presence of random tlmlng offset is shown thrOUgh Simul%-um of phase difference. Becaugernl) is calculated based
tion), unit-energy pulsey(t) ® g(—t)), thusz(nT + £T') can  on more data thal(m,) whenm, < mso, after some arith-

be simplfied asz(n, f), which can be expressed as: metic we derived the following carrier frequency offset estima-
, tor:
z(n, f) = apexpljrfnT +6)] + v, (3) L
.1 .
where~,, is additive Gaussian noise. Correlation method is f=57 > whAn (8)
m=0

adopted to remove data modulatiop, let

where
It is easy to show that the autocorrelation of the exponential ™ ((2L +1)2 —=1))(2L + 1)’ T

wave is still an exponential wave at high SNR (simulation showshe weighting function is shown in Figure 2. Itis easy to see

that high SNR condition is not necessary), i.e., that the weighto*, decreases as increases. That is because
N1 asm gets larger and larger, the number of terms used to com-

R(m) = 1 Z rar* pute R(m) reduces and thus makes,, less and less accurate.

N-m = e Compared with Mengah algorithm, our estimator adopts dif-

—" . . ferent weighting functionl. can be less thatv/2 (e.g. when
= Egexplj2rfmT)] +noise(m) — (5) v~ 06"7" 25 .an achieve the CRLB at 0dB).

wherem = 1,--- ,L (L < N —1). Mengali [4] proposed

a frequency estimator based on modelingse(m) and the 2.2. Joint Carrier Phase and Timing Offsets Estimator

work done by Kay [2]. From simulation wind that for N . f f L h
large enougMoise(m) can be approximated as white Gaus_Assumlng zero frequency offset estimation error, t erefare
(K = MN) observations of (kTs +T) (k=0,--- , K — 1)

sian noise. The sequen¢(m)} can be treated as a contin- available for estimating andé, € € [—0.5,0.5). According to

uous wave (with frequt_ancﬁ) which is passed through a no'.sethe work done in [1], the maximization object function of ML
removal process. At high SNR, many good frequency estima-

tion methods have been derived. Kay [2] presented a frequen{:ci/Int phase and timing offsets estimation in AWGN channel is
estimation method based on weighted sum of phase difference. N-1 i g
His frequency estimator is ML at high SNR. Let ugfide the ~ L(a,€,0) = Cexp{ —Re | Y a}z(nT +eT)e™ (10)

following process: n=0
whereC is a positive constant and= [ao, - - - ,any—_1] which
(m) = arg[R(m)], m =1,---,L (6) s the data pattern and is known to the estimator. Let fimee
u(e) as:

and
N—-1

— 0(]‘)7 m = 0 _ a*z N
s { (B(m +1) — B(m)mod(2r), 1<m<L ) pe) =3 apz(nT +eT) (11)

n=0



that is the cross correlation between training sequerscel re- X, jgea sample
ceived sample$z(nT +<T')}. The ML joint phase and timing Mol |
estimator is given by [1]:

¢ = arg max|u(e)| (12)
b = argu(®)] (13) S :
According to the Equivalence Theorem [1], and assuming that Figure 3: Three Sampling Points Model
c(t) and f(t) are all-pasiilters, z(nT + ¢T') is equivalent to
the following: i . .
can achieve good performance);second is locating the largest
N-1 ) available magnitude through peak search. Let usfaw the
2(nT +¢T) = \/E, > apr(nT + T — kT)e’’ + N, (14)  sampling time ofr; as nominal O on time axis. Therefore the
k=0 sampling times of;y andz, are—T; andTy, respectively. A
where LaGrange interpolating polynomial can be adopted based on

the values ofe, (k = 0,1,2):
sin(nt/T) cos(ant/T)

r(t) = gr(t) ® gr(—t) =

wt/T 1—4a?t?/T? 2 2
. . . . @l = > = I — (18)
The above expression also assumes that raised cosine shaping k=0  i=0,izk kTl

is adopted withx denoting the rolloff factorlV,, is the sampled
version ofn(t), Gaussian noise, after beifitfered byg s (¢).

Arriving at a solution to Eq. (12) is a ditult task and the :
X ) . . sing the fact thaty = —T%, t; =0, t2 = T, we can get
resulting hardware structure presented in [1] is quite compIH g o ! 2 g

= bot? + byt + bo

cated. It is well known that a quadratic form can be used to 1 /o o

approximate the central segment of a convex function around br = (3 -1+ 3) (19)

its peak. The location of the peak of a second order polynomial 13 . .

is easy to compute from its cdifients. The expression for by = — (—2 — —0) (20)

|(g)| can be approximated by a quadratic equation as shown b ;{3 2 2 (21)
0o — 1

below. Ife — 0, the inter-symbol-interference (I1SI) and noise

N,, can be ignored and we can simpl as
" g plify=)] The ML timing offset estimator (12) is thewhich maximizes

N-—1 |u(g)]. Itis easy to compute the sampling time of the peak of
|u(e)| = / Es Z |an|*r(eT) = N\/E,r(eT) (15) |u(t)| from a second order polynomial, i.e.
n=0

where|a,|> = 1 (n = 0,--- , N — 1). Furthermore by letting tpeak = —2%1 = % (22)
t = €T and using Taylor series approximations for sine and 2 To — 4T + 2%
cosine functions and after some sinfigiation, we arrive at therefore, the ML estimate afis
w22
|,U(t)| ~N /Es <1 _ W) (16) 6 — _tpeak _ o — Lo (23)
T M (2xo — 41 + 219)

From Eqg. (16) we can use a second order polynomial to approx- . . . .
imate the relationship between sampling time and the magn)ih-.he phase estimator is shown in Eq. (13). Interpolation tech

X . . . niques can be applied to correct the timing offset before phase
tude of correlationu(t)| given that these sampling points are’ . "~ . . X " ;
y ) . : estimation. This however introduces an additional delay in the
close enough to the ideal sampling point (t.&s close enough

: = demodulation process. Simulations show that using the time
to 0). Using a general form of the second order polynomial for the non ideal sample of; is suficient for meeting the
|u(t)] = bot? + byt + bo (17) CRLB (sampling time ofc, is#;). This leads to

suggests that a joint phase and timing estimator can be derived 6 = arg [p(t1)] (24)
based on three adjacent sample$.df)|. These samples are

the closest ones to the ideal sampling point as shown in Figuhe order to locate the largest available valteeasily, a highly

3. In order to meet the condition thiis close enough to 0, two correlated data patteenis selected. [6] discusses this problem
measures are adopted: one is that the samplindgfaigamples in depth. Here unique word (UW) and alternating (one zero)
per symbol) is large enough (simulation shows that= 4 data patterns are investigated.
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[8] as follows:
Figure 4. Systolic VLSI Structure of Carrier Frequency Offset B 1
Estimator E[(fT — fT)*] > 6 {47T2FSN(N2 - 1)} (25)
0
3. VLSI IMPLEMENTATIONS TheCRLBpy for joint carrier phase and timing offsets is given

by [6]. If a is chosen properly (e.@.is BPSK type data or real)
For the frequency estimator, the calculation’tifin) (Eqg. (5)) the CRLBpasS in joint estimation are the same as those in the
is a hardware intensive task that requif@®' — L — 1)L/2  single parameter estimation with the knowledge of the other
complex multiplication and2N — L — 3)L/2 additions. In parameter. Th€ RLBp4 for phase estimation is given by
order to make full use of each input data and exploit concur-
rency, we propose the systolic VLS| implementation as shown Bi(6 — 6)2] > 2EsN - 26
in Figure 4. If higher speed clock is available, the complex I )1z { } (26)

0
multipliers can be shared on time division bagi&(m)} will

be available on the clock cycle following the one latching thdhat iS independent of training sequence if Nyquist shape is
Nth data symbol into the estimator. Frequency offset can the#fioPted. Moeneclaey proposed the CRLB for DA timing es-
be calculated via Eq. (8). One advantage of this structure fination with the assumption that training sequends zero

that it is scalable. If we want to increageto get a better per- Mean and i.i.d. in [7]. The bound for the case where the sam-

formance, more elements can be added at the right hand siddd ratel/T > 2B (B is the bandwidth of (#)) and N large
shown in Figure 4. enough is given by

The hardware block diagram for the joint phase and timing
estimator is shown in Figure 5. The multi-sample correlator E[(7 — 7)?] > T? {
generates outputs at a higher rate than one sample per symbol.
A systolic VLSI implementation of the correlator is shown in, ... R(f)
Figure 6, where:;; denotes théth symbol ( =0, --- , N —1),

2F, A -1
N N / 42 2R ( f)df} (27)

the Fourier transform of(¢). Jiang has proposed
the following expression foERLBpa with arbitrary training

jth s_amplej =0,---,3)ofthe outpgt from the matched shap- sequence in [6]:

ing filter. In QPSK casey,, = +1 + j, only adders are neces-

sary therefore the computational complexity is relatively small K/2-1 ) -1

especially when using the correlator as soft-decision UW de-) _2Es 3 <2Lk> R <i> LAk (28)

tector. Through peak search module, we can logater; and NoNT =K/ N NT

5. An Arctan Lookup table (LUT) is used when estimating

the phase offset. whereA[k] is thekth element ofV-point discrete Fourier trans-

form (DFT) ofa, i.e. A[k] = 3.\ a,e 12 /N)  Accord-
4. PERFORMANCE BOUNDS AND SIMULATION ing to Eq. (28) CRLBp, has different values for different data
RESULTS patterns.

Eq. (28) gives us insight on training sequence design im-
The variance of an unbiased estimation is lower bounded by theediately if estimation variance is chosen as performance cri-
CRLB. TheCRLBp, for DA frequency estimation is given by teria. A sequence is optimal if it minimizes tiERLBpa for



CRLB,, of Pseudo Random Data Pattern Timing Offset Detector Characteristic with Random Phase (No Noise)
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Figure 7: TheCRLBpy4 for Timing Estimation with UW Pat- Figure 9: Timing Offset Estimatévs. Timing Offset:
tern

s Performance Comparision of Carrier Frequency Estimation and CRLBDA thek/' that maXImIZES{Qﬂ'k/KPR(k/NT) W|th ItS maXImum
0 ‘ ‘ ! ‘ + Porctiming R,nqz, the the following holds
<D> CRLB, o K21
RHSof Eq.(29) < > RualA[K]>  (31)
k:*K/Z
= RnawFa

The optimal sequence can be derived immediately, which has
the following DFT

AT = {“E_ & = kn, (32)

0 otherwise

Normalized RMS Frequency Offset Estimation Error

It is a tone with frequency,,/N. The only concern here is

10" L . L . L . that the optimal sequence perhaps is not binary.

BN (48), DIF0-13RS, Random Timing, Randam phase, N=96, L=32 Two data patterns have been investigated in our ASIC de-

. ) . o sign: alternating one-zero pattern (ig. = (—1)%v/2/2(1 +

E'gir]g 8: RMS Carrier Frequency Offset Estimation Error Vsj)), and a unique word pattern. A 48-symbol UW was selected.
DA

According to Eq. (28) for the alternating one-zero data pattern

—1
timing estimation under some constraints. The following pre- CRLBpal10 = {QWZEN} (33)
sentation shows a simple example on training sequence design No
under energy constraint, i.e., and thus the performance is independent of rolloff factor
given thata > 0. For the UW pattern, the timing estimation
ok 2 k ) CRLBp4, is closely related to the rolloff factor. It follows from
alop = arg max Z <T> R (ﬁ) |A[K]I" (29) Eq. (28) that the larger the rolloff factor, the smallERLB p4 .

k=—K/2 Figure 7 shows Eq. (28) plotted as a function of SNR for three
different values of rolloff factor.

The parameters for the computer simulations were QPSK

K/2—1

with the condition that

N/2-1 signaling,N = 96 andL = 32 in an AWGN channel for fre-
Z |A[K]|> = E, (30) quency estimationy = 48 andM = 4 in the AWGN channel
k=—N/2 for joint phase and timing estimation. Figure 8 shows normal-

ized root mean squared (RMS) frequency estimation error with
Becaus€2rk/K)*R(k/NT)is non-negativeR (f) is assumed f = 0.13/T, which is compared with th€ RLBp, for fre-
to be non-negative, e.g., raised-cosine shape, othefRis8| quency estimation. From simulation we can see that the estima-
is adopted in Eq. (28)),A[k]|? is also non-negative, ldt,, be tion RMS error is very close to théRLBpa even at 0dB, the



~ Timing Offset Estimation Simulation: rolloff factor 0.5
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Phase Estimation Performance of QPSK
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Figure 10: Timing Offset Estimation Performance (one zerdigure 11: Phase Offset Estimation Performance (UW pattern,

pattern vs. UW patterfy = 0.5)

performance degradation caused by timing error is very small.
Figure 9 shows the saw tooth characteristics of Eq. (23) under
no noise conditions with random phase. From simulations we
can see that Eq. (23) is an unbiased estimate Bleak search
(i.e. locatingz;) resolves then /4 (m = +1, +2) ambiguity.

For phase and timing estimation, different rolloff factors
for the raised cosine shaping function were also tested. Simu-
lation shows that the RMS timing estimation error meets the
CRLBp, of timing estimation for allas and data patterns.
Simulations also support that for the one-zero pattern the RMS
timing error is independent of, while for the UW pattern it de-
creases as increases. This is in agreement with the evaluation
of the CRLBp, . Figure 10 shows the timing offset estimation
performance withh = 0.5, where one-zero pattern and UW
pattern of QPSK are illustrated. Figure 11 shows the phase es-
timation performance. The RMS phase estimation error meets
the CRLBpx for phase estimation.

5. CONCLUSIONS

The RMS estimation errors of our algorithms that have moder-
ate complexities meet teRLBp 4 at low SNR, therefore they
areefficient. The techniques proposed here can be used in high
performance PSK burst modems working under large carrier
frequency offset and low SNR conditions. A training sequence
design method for timing acquisition is also illustrated in this
paper.
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