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A new type of Run-by-Run controller based on the DHOBE (Dasgupta-

Huang Optimal Bounding Ellipsoid) algorithm is designed and simulated for

semiconductor manufacturing process. One approach is to use the algorithm

to implement online model identi�cation which leads to a model-reference con-

troller. The other approach is utilizes the worst case idea, to implement the set-

valued controller. Both kinds of controllers are applied to linear and quadratic

models which are derived from experiments. The controllers are simulated for

cases when processes are satisfy slow drifting, abrupt shift, bad data and model

errors. The controllers are tuned according to the requirements of the algorithm

and process and the simulation data is analyzed according to the performance

benchmark. All the simulation results are compared to either the Exponential-

lly Weighted Moving Average (EWMA)or Optimal Adaptive Quality Controller

(OAQC) control method.
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Chapter 1

Semiconductor Manufacturing

Processes and Models

1.1 Semiconductor Manufacturing Processes

Semiconductor devices have entered the VLSI age and are being routinely used

in a wide range of applications and in �elds quite di�erent from traditional elec-

tronics. This has meant that production rate and quality has had to increase

continuously to match consumption demand. This increase in production vol-

ume and application variety has raised the need for dramatic improvements in

integration density, performance, reliability and cost reduction. The realization

of these improvements requires better control of the process and of the equip-

ment. For instance, the increasing complexity of semiconductor devices enables

the packing of individual devices closer together on a single chip and at the same

time requires improvements in the precision and quality of the control techniques

of the processes. This, among other things, means reducing the process varia-

tion in all phases of production. On the other hand, the increasing complexity

translates also to longer processing times. In practice, it normally takes 30-40
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days and nearly 100 steps to �nish the manufacturing of 1 lot of wafers[13].

Other factors also a�ect the manufacturing process:

� Due to improvements in equipment, there tends to be frequent replace-

ment of equipment which in turn leads to frequent tuning of the process'

operating condition.

� There is generally an insu�cient number of on-line sensors and actuators

at each process step to establish a satisfactory control over process param-

eters.

� Lack of accurate and detailed knowledge of the process behavior often leads

normal (conventional) control schemes to di�culties.

Although there are various kinds of semiconductor manufacturing processes, they

are mainly based on the following elementary technologies: wafer cleaning and

preparation, oxidation, ion implantation, thin �lm formation, lithography and

etching. The formation of the circuits' functions on the wafer is by successive

application of these steps. Failure in any unit process will result in the failure

of the whole lot which means low yield.

With all the above di�culties, the required investment in a typical semicon-

ductor manufacturing line is normally very high. And it would be natural to

reach the point that the yield of the production is becoming extremely impor-

tant. A promising feasible solution to the attainment of high yield appears to

be robust control. The most popular process control method in the semicon-

ductor manufacturing industry is the Run-by-Run(RbR), control which will be
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covered at length in the following sections. The popularity of RbR control in

semiconductor manufactoring is due to two reasons primarily: (a) it is the clos-

est method to real-time control which can be feasibly implemented and accepted

by the industry; (b) it is a good �t to the \batch" manufacturing typically em-

ployed in the semiconductor factories. The Dasgupta-Huang Optimal Bounded

Ellipsoid (DHOBE) controller based on model-reference and set-valued methods

will be discussed and its performance will be evaluated using simulations. The

performance of this method was analyzed and compared with other RbR control

methods.

1.2 Semiconductor Manufacturing Process

Models

1.2.1 Introduction

During each semiconductor processing step, a wafer is contained within some

physical environment, that has been generated by a piece of fabrication equip-

ment within a facility as a result of settings, which are controlled or dictated by

a program or recipe.

The �rst step in developing a model-based control system consists of devel-

oping a regression model that relates the controllable variables with the quality

characteristic of interest. This model often takes the form of recipes. A state

description is a set of state variables and the model is the knowledge of how

a state set is a�ected by itself and other states and inputs. A model can be
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Figure 1.1: Semiconductor Manufacturing Process Model and Control[14]

described as a function or a map taking some number of input states to some

number of output states[14].

In most control applications, some prior information from designed experi-

ments is usually available. A model relating the controllable variable and the

responses can provide the initial estimate of the models' parameters. From these

experiments, an initial recipe can be determined. The better the initial estimates

of model parameters and initial recipes are, the smaller the transient e�ect at

startup. Usually due to the lack of knowledge of the process, empirical models

have to be used for control purposes. Sometimes the initial models are estimated

o�-line after designed experiments.

A basic assumption in this step is that the process exhibits no dynamics.

4



This means that the quality characteristic (response) at run t, depends only on

the recipe or input variables at the start of run t. No previous inputs or previous

outputs will have an e�ect on the current output. The second assumption is that

there is no delay between the control action and its e�ect on the response. The

�nal result of modeling is a set of linear regression models that relates inputs

to outputs and a recipe that achieves a desirable initial performance. Once

the process is optimized, the second step is applied to maintain the process as

close as possible to optimum, which becomes the target value of the quality

characteristic.

1.2.2 Disturbances of the Processes

The processes may be subject to di�erent shifts (in the values of their parame-

ters), noises, and other disturbances.

Normally the noises are modeled in simulations as white noise with speci�c vari-

ance. The most commonly encountered situations in the production settings are:

1. The process is drifting slowly, say on the order of 1� over a period of

100-1000 runs.

2. The process is subject to occasional large shifts, say on the order of 2� in

the runs, which occur after maintenance operations or speci�cation changes.

3. Bad data from the sensors will cause the controllers to take fault control

action. This can also be considered as a disturbance to the processes.

4. In simulations, it is found that the model error can also be considered as

a perturbation to the processes.
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1.2.3 Model Structure

While the controller has requirements for the predictive capability of the model,

it has no obvious constraints on the form of the model. The easily obtainable

model structure suitable for control is a low-order polynomial model which is

usually derived using statistically designed experiments RSM(Response Surface

Methodology).

Non-linearities can be encountered either at the inputs or at the outputs of the

system. When the non-linearities happen at the output, in general, it seems

reasonable to use a low-order polynomial to approximate the nonlinear e�ects

of the transfer function. Alternatively, non-linearities can be encountered at the

inputs, a typical case being what is called a Hammerstein model. The latter case

is easier to handle since such models are linear in the parameters and therefore,

recursive least square estimation can be applied to obtain on-line estimates[5].

Developers of linear control algorithms believe [12] that most processes can

be described using linear models. This view is based on the belief that although

the control model is not restricted to a �rst order model, since the task of the

controller is to maintain the process near an operating point after it has been op-

timized, the control actions will tend to be restricted to a small range of operating

space. Therefore, it is commonly accepted in practice that �rst order models will

be su�cient to summarize the local process behavior in most cases. However,

there are many semiconductor manufacturing processes where non-linearities are

an important feature. If non-linearities are severe, a linear controller might main-

tain stability only for a few runs. In general, if non-linearities can be modeled

and taken into account in the design of a controller, better performance will be
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achieved over the one obtained with linear models.

In the following chapters, we did not di�erentiate the control methods and

the forms of the models. As the DHOBE can handle either linear or nonlinear

models, Hammerstein model form is used in general to test the algorithms.

1.2.4 Chemical Mechanical Planarization(CMP)

With the complexity of Very Large Scale Integrated circuits increasing, their

Critical Dimension(CD) decreases and the number of levels in the devices in-

creases. Planarization techniques become more and more important to the suc-

cess of devices using a multi-level interconnect architecture, and for satisfying

increasingly stringent performance requirements. This is because for smaller

CDs and larger device sizes, higher resolution is needed for patterning circuits,

resulting in a smaller depth of focus of optical steppers, thus requiring a glob-

ally planarized surface. Moreover, for multi-level devices, Planarization is criti-

cal to prevent the surface from becoming more nonplanar with each additional

level. CMP, as a newly developed planarization technique which can meet the

planarization requirements of decreasing CDs and multi-level devices, is demon-

strated to be the only global planarization technique available and is considered

to be a strategically important technology for next generation multi-level de-

vices. The application of the CMP process range from the planarization of oxide

�lms to defect reduction[16].

The wafer is held face down by a carrier which presses the wafer against a

polishing pad mounted on a rotating rigid platen. A slurry, consisting of abrasive
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Figure 1.2: Illustration of CMP Processing [15]

colloidal particles kept in suspension in water, is delivered to the surface of the

polishing pad through a slurry tube. Planarization is achieved when mechanical

abrasion removes material from the wafer surface in such a way that high areas

on the wafer undergo greater removal rate than low areas [15].

The CMP process o�ers signi�cant advantages over conventional planarization

techniques because it is a global planarization technique and because it is the

only fabrication technique which can actually reduce defect density. However

the control of the CMP is chronically poor, arising from the poor understanding

of the process, degradation of polishing pads, inconsistency of the slurry, and the

lack of in-situ sensors. Because the process includes the mechanical abrasion of

the surface, the polishing pad wears rapidly; hence the removal rate continuously

decreases. Furthermore, there is no reliable real time sensor currently available

for the CMP process; process control has to be based on post-process mea-

surements. All of these features provide an opportunity for e�ective run-by-run
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control schemes and our simulation experiments are concentrated on this process.

There are many process models summarized for algorithm development and

comparative analysis. In [6] two kinds of models, linear and second order, of

CMP are given as follows. The four controllable inputs to the model are Platen

Speed (u1), Back Pressure (u2), Polish Head Down-force (u3) and Pro�le (u4).

The two outputs are Removal Rate (y1) and Non-uniformity (y2).

(1) Linear Model

The linear model has the form of

y[n] = C + Au[n] + ![n] + �[n] (1.1)

where

C =

2
664 �1382:60
�627:32

3
775

A =

2
664 50:18 �6:65 163:4 8:45

13:67 19:95 27:52 5:25

3
775

� =

2
664 �17

1:5

3
775

� =

2
664 665:64 0

0 5:29

3
775 ;

![n] is normally distributed white noise with zero mean and covariance matrix

�. u is the vector of controllable inputs.
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(2)Second Order Model

The second order model has the form of

y[n] = C + f(u[n]) + ![n] + �[n] (1.2)

where

f(u[n]) =
3X

i=0

3X
j=0

�(i; j)u(i)u(j)

� =

2
664 1386:5 381:02 112:19 3778:8 �21:301 8:7159 24:953 37:082

1520:8 2365:6 2923:5 281:66 �3:9419 �1:0754 1:406 0:33797

�17:642 �14:974 �164:99 28:150 249:17 0:025067

�72:274 �94:222 �26:175 13:505 36:691 32:929

3
775 (1.3)

There is another series of models from experimental data summarized in [5].

(1) Almost Linear 4 � 2 CMP Model

The �rst one is called almost linear model as its form is in second order but all

the coe�cients of the second order terms are comparatively small.

y1 = 1563:5 + 159:3u1 � 38:2u2 + 178:9u3 + 24:9u4 � 67:2u1u2 � 46:2u21

�19:2u22 � 28:9u23 � 12u1t
0 + 116u4t

0 � 50:4t0 + 20:4t02 + �1;t (1.4)

y2 = 254 + 32:6u1 + 113:2u2 + 32:6u3 + 37:1u4 � 36:8u1u2 + 57:3u4t
0

�2:42t0 + �2;t (1.5)

where

t
0 = (t� 53)=53, �1;t � N(0; 602), �2;t � N(0; 302)

All the input variables are normalized to [�1; 1].

(2) Nonlinear 3 � 2 CMP Model
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This model uses only 3 input factors: Back Pressure Down-force (u1), Platen

Speed (u2) and Slurry Concentration (u3). The two outputs of the model are Re-

moval Rate (y1) and Within-wafer Standard Deviation (y2). It is fully quadratic

model with sever nonlinearity.

y1 = 276:5 + 574:6u1 + 616:3u2 � 126:7u3 � 1109:5u21 � 286:1u22 + 989:1u23

�52:9u1u2 � 156:9u1u3 � 550:3u2u3 � 10t+ �1;t (1.6)

y2 = 746:3 + 62:3u1 + 128:6u2 � 152:1u3 � 289:7u21 � 32:1u22 + 237:7u23

�28:9u1u2 � 122:1u1u3 � 140:6u2u3 + 1:5t+ �2;t (1.7)

1.2.5 Photoresist Spin-Coat and Bake Operation of Lithog-

raphy

Lithography is a process whereby the circuit pattern is mapped on the surface of

a silicon wafer in the form of a mask. The �rst step is to cover the whole wafer

surface with a thin layer of resin-photo resist. The coat should be uniform and

free of defects such as pinholes. This is not easy, especially when the surface is

uneven because of the patterns formed in earlier stages. The spin-coat method

is normally used under the following procedures.

The wafers are held on a vacuum chuck and the resists are mixed with sol-

vents to adjust the uidity and then sprayed on to the surface. The chuck is

then rotated at a certain speed to remove excess material and form a uniform

coat. Then the resist layers are dried by heating in an oven (soft baking) at

a certain temperature for a certain period of time. The wafers then undergo
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exposure, developing, and hard-baking phases to form the pattern and remove

all the un-useful solvent in the resin[13].

The following model was summarized in [11]. The inputs and their ranges are

Spin Speed (SPS) 4500-4700 RPM, the Spin Time (SPT ) 15-90 sec, the Baking

Temperature (BTE) 105-135 Degree C and the Baking Time (BTI) 20-100 sec.

The responses of the model are Resist Thickness (T ) and Reectance (R). And

the model from the experimental data is:

T = �13814+ 2:54 � 106p
SPS

+
1:95 � 107

BTE
p
SPS

�3:78BTI�0:28SPT� 6:16 � 107
SPS

(1.8)

and

R = 134:4� 0:046SPS + 0:32SPT � 0:17BTE + 0:023BTI � 4:34 � 10�5

�SPS � SPT + 5:19 � 10�5 � SPS �BTE � 1:07 � 10�3 � SPT �BTE

+5:15 � 10�6 � (SPS)2 � 4:11 � 10�4 � SPT �BTI (1.9)

Although there are many processes in the semiconductor manufacturing industry,

as long as they can be expressed as linear in the parameter models, they are in

the same family of problems for the control scheme. Thus what is of interest to

us is the structure of the process model rather than the speci�c kind of process.

The DHOBE (Dasgupta-Huang Optimal Bounded Ellipsoid) RbR controller

invented in this thesis is capable of handling linear and nonliner models. The

controller's compensation for drifts, large step disturbances and large model

errors are signi�cant and the resulting performance has been compared with

other popular control methods such as EWMA (Exponentially Weighted Moving

Average) and OAQC (Optimal Adaptive Quality Controller).
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Chapter 2

Run-by-Run Controllers

2.1 General Introduction of RbR Controllers

Many manufacturing systems are controlled with PID type controllers. In in-

dustries like semiconductor manufacturing, speci�cations or changing conditions

impose a need for adjusting such controllers on a Run-by-Run (RbR) basis. This

need has originated a collection of techniques called Run-by-Run process control.

RbR control is a form of discrete process and equipment control in which

the product recipes with respect to a particular equipment process are modi�ed

ex-situ, i.e. between equipment \runs", so as to minimize the e�ects of process

drift, shift, and other variabilities to keep the outputs at prescribed target values.

The most widely used RbR controllers are model-reference controllers such

as the EWMA, OAQC and IMC. The description of model-reference RbR con-

trollers will be covered in sections 1 and 2 of this chapter. The Set-Valued

method of RbR control will be introduced in section 3 of this chapter.
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The model-reference RbR controller is designed in the following way: First,

it performs process control based only on post-process measurements. Then

it responds to post-process measurements by updating models of the process

between runs. Finally it provides a new recipe for use in the next run of the

process. It does not modify the recipe during a run based on measurements

made while the process is running. The RbR controller's capability to update

the recipe for each run is mainly based on the fact that many control parameters

in semiconductor fabrication can be changed between runs with little or no cost

or time delay. The reason why it generates new recipes from the post-process

measurements on a run-by-run basis is, on one hand, lack of online sensors for

the process. On the other hand, frequent changes of inputs to the process will

only increase the variability of the process output. Sometimes deadband has to

be utilized in order to make the change less frequent.

The model-reference RbR controller usually has two parts: Optimization of

the model and recipe generation. For all the control strategies, the key issues

are modeling, stability, and performance analysis.

The process control models need to account for the process variations through-

out the whole process, providing enough accuracy for control without too many

adjustable parameters. Typically the process model for RbR controller is static

and empirical, where the model structure is polynomial in the inputs. The ini-

tial models are derived from former o�-line experiments. These are the best

estimates of the model before the controller is put into operation. After the

14
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Figure 2.1: Diagram of RbR Controller

controller is online, the model within the controller is updated using the new

measurements of the output of the process run-by-run. Various types of model

updating methods lead to di�erent kinds of controllers which will be introduced

in the following sections.

After the model is updated, the next step is to use it to predict the output

of the process and generate the recipe for the next run in order to minimize the

variation of the process response. A typical block diagram of an RbR controller

is illustrated in Figure 2.1. Normally the goal of the RbR controller is to reduce

the variability of the process output as measured by the mean squared deviation

from the target. The control feedback from an RbR controller is sometimes

15



accomplished by suggesting target output values to the next lower level of control,

i.e. the RbR controller can be used as a supervisory controller which provides

the setpoints to the real-time controllers. In the absence of lower level control,

the RbR feedback would consist of suggestions for equipment input parameter

settings.

2.2 EWMA Gradual Mode RbR Controller

2.2.1 Introduction

The Exponentially Weighted Moving Average (EWMA) RbR controller was �rst

developed by E. Sachs et al. from MIT [12]. Its gradual mode mainly compen-

sates for slowly drifting processes that can be represented by linear models.

The EWMA is a statistic with the characteristic that it gives less and less

weight to data as they get older and older . It has the desirable feature of al-

lowing the weight of a point to decay gradually with age in a geometric fashion.

It can be used as a dynamic process control tool. To control a process, it is

convenient to forecast where the process will be in the next instance of time.

Then if the forecast shows a future deviation from target that is too large, some

remedial control action from the controller or the process operator will compel

the forecast to equal the target. In semiconductor manufacturing industry, the

observation is recorded on every piece manufactured, a forecast based on the un-

folding historical record can be used to initiate a feedback control loop to adjust

the process.
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The EWMA gradual mode controller is a linear approximation model-based

controller with an EWMA forgetting factor that provides for control of noisy

processes. The controller only updates the o�set term of the model on a Run-

by-Run basis using EWMA. By adjusting the intercept term, the controller is

able to track and compensate for gradual changes in the process as well as �lter

out random walk noise in the process.

The update of the intercept term constitutes a smoothing (or �ltering) of

measurements of the intercept term in order to adapt the process model to ac-

count for recent changes in the process. The amount of smoothing performed

for the output is a function of the EWMA weight . Higher weights indicate

recent measurements are weighted more in each update, and therefore indicate

less �ltering. This method is e�ective for many processes in the semiconductor

industry. This is because many processes are subject to small shift or drift o�set

changes in the overall equipment state, but the underlying process dependencies

do not change.

The linear EWMA controller has been shown to improve run by run process

control for approximately linear processes which are subject to shifts or persistent

drifts in the presence of noises. But the EWMA controller is unable to adequately

control processes which are poorly represented by such models.

2.2.2 The EWMA Algorithm

Suppose that the manufacturing process can be described by a simpli�ed SISO

linear model; i.e. the output of the process yt is linearly related to the process
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input ut in the form of yt = �t + �ut. However, as the real process model is

unknown to us, we have the estimated model as yt = at+but. Here it is assumed

that the slope term of the real and estimated model do not change from run to

run. And the model update is only limited to updating the value of the intercept

term. Then according to the EWMA algorithm introduced in [12], we have the

following recursive relations:

ut =
(T � at�1)

b

and

at =
tX

i=1

w(1� w)t�i(yi � bui) = w(yt � but) + (1� w)at�1:

The �rst equation speci�es the generation of the recipes based on model esti-

mation using previous run measurements; where T is the target value for the

process output. The second equation speci�es the model updating using the

measurement of the process output yt of current run and the previous model

parameter estimations. w 2 (0; 1) is the weight that is assigned to current mea-

surements. When the input to the process is not a scalar but a vector, then the

recipe generation equation becomes

ut =
T � at�1

bT b
b + (I � bb

T

bT b
)ut�1

This choice of ut minimizes the change in recipe between runs measured by:

jjut � ut�1jj =
q
(ut � ut�1)T (ut � ut�1) The key point of tuning the EWMA

RbR controller is to select the appropriate weight w. The necessary and su�-

cient condition for yt to converge to T is that

0 <
w�

b
< 2;
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which is to say that the weight should depend on the error of the model from

the real process [17]. However, if the weight is selected large, the noise of the

process will deteriorate and if weight is small, the compensation result will not

be satisfactory. A �xed weight has been used in previous EWMA controllers.

Recently, arti�cial neural networks (ANN) have been incorperated in the EWMA

controller in order to change and select the weight on-line according to previous

experiences [10].

2.3 Optimizing Adaptive Quality Controller

(OAQC)

The OAQC controller is another form of model-reference RbR controller [6], [5]

[19]. It can act both as an optimizer and a controller. In its optimizer mode, it

updates the model at every run and in the controller mode, it uses a quadratic

cost function to maintain the response of the process at the desired target with

regards to the variation of the tunable parameters. It integrates the multivariate

control chart as a deadband to the controller in order to erase outliers, which

are harmful to the control and optimizing actions. This method can be applied

to nonlinear models as well. Simulations have been done for second order Ham-

merstein models of CMP.

The OAQC controller's internal model is summarized as the second-order

MIMO Hammerstein transfer function model by the following form

yt = (Ip � LB)yt = y(0) +Nzt�1 +M(t) + (Ip � CB)�t
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where

z
T
t = (ut; u

2
t ; u

(i)
t ; u

(j)
t ) (i < j)

is a 2n + (n(n� 1)=2) vector that contains quadratic expansions of ut.

yt is a p� 1 vector of model responses.

ut�1 is the vector of controllable parameters.

B is the shifting operator.

M(t) is the shifting term and � is the white noise random vector.

After simpli�cation, the model can be changed to the following form

ŷt+1jt = Lyt +M(t + 1) +Nzt:

The model estimation task is to get the on-line parameter estimates of L̂,

M̂ ,N̂ and this is implemented using the multivariate recursive least-squares al-

gorithm.

By rede�ning the model's vector of regressors and coe�cients as the following,

the above model is changed to the normalized form

ŷ
[i]

t+1jt = �̂
[i]T

�
[i]
t ;

where

�
[i]
t = (yt�1jz[i]t�1jt)

�̂
T = [L̂jN̂ jM̂ ]:

Then the estimation of the model parameter is changed to estimating the

vector �̂[i] according to the following procedure. Here i is the index of the re-

sponse.

K
[i]
t = P

[i]
t�1�

[i]
t =(�+ �

[i]T

t P
[i]
t�1�

[i]
t )
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e
[i]
t = y

[i]
t � �[i]T t�̂

[i]
t�1

�̂
[i]
t = �̂

[i]
t�1 +K

[i]
t e

[i]
t

P
[i]
t = [I �K

[i]
t �

[i]T

t P
[i]
t�1]=�+R

[i]
t

where

R
[i]
t = IK

[i]T

t P
[i]
t�1�

[i]
t =[2(p+ n) + (n(n� 1)=2)]

After the model is updated, the algorithm will use the prediction of the model

output to optimize the cost function of the following quadratic form

J = (ŷt+1jt � T )TW (ŷt+1jt � T ) + (ut � ut�1)
T�(ut � ut�1)

where T is the target, W and � are diagonal matrices.

2.4 The Set-Valued RbR Controller

The Set-Valued RbR control method was developed by J.S.Baras and N.S.Patel

[7]. It is also a model-based method. However, the set-valued controller consid-

ers the uncertainty of the model identi�cation. This uncertainty exists because

normally the updated model can not be exactly accurate due to model errors,

measurement noises and other perturbations. What can be identi�ed more pre-

cisely is the set of the models in which the real process model resides. We could

be quite certain that the model is somewhere in this set, but due to the random-

ness of the process, the exact position is unknown. Then the set-valued method

together with the worst case approach will select such a model parameter point

from the set which makes the cost function the largest (worst case). Then by

using these model parameters, the recipe that will optimize the cost function

will be found. This recipe is not the best and is somewhat conservative but it is
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ensured that it �ts even for the worst case. Thus it can be applied safely to any

model in the model set. The conceptual framework is as follows.

The system model is considered as consisting of several mappings. The state

(model parameters) of the current run is mapped from the state of previous run

by

Mt+1 2 F(Mt):

The response of the process model is a mapping from the state and recipe by

yt+1 2 G(Mt; ut):

The cost function is de�ned by

zt+1 = l(yt+1)

This is a rather general de�nition of the system as the structure of the mappings

and the cost function are left unspeci�ed. The recipe is always generated at the

end of each run for the use of next run and the measurement is always for the

current run. Then at run j, a feasible set Pj of the system states can be de�ned.

It can be calculated recursively by the following

Pj = fM 2 Pj�1 : yj 2 G(M;uj�1)g

and

Pj =
[

M2Pj

F(M):

The worst case approach of the set-valued method is implemented here to

generate the recipe by choosing the state that makes the cost function the largest,

and then computes the recipe.

min
u2U

max
M2Pj

max
y2G(M;u)

l(y):
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The set-valued method has been applied using the Optimal Volume Ellipsoid

(OVE) algorithm [20] to get the set of models when the process model is limited

to a polynomial structure.
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Chapter 3

RbR Controller Based on the DHOBE

Algorithm

3.1 The DHOBE Algorithm

3.1.1 Introduction

DHOBE which is known as the Dasgupta-Huang Optimal Bounded Ellipsoid was

�rst developed in 1987 by Dasgupta and Huang [1]. It modi�ed the OBE algo-

rithm of Fogel and Huang [8] by introducing a forgetting factor. It was further

developed by Rao and Huang in 1993 [2] by introducing the rescue procedure.

This algorithm belongs to a class of bounded-error estimation algorithms termed

set-membership parameter estimation algorithms.

It is used in the RbR controller to achieve the online recursive model pa-

rameter estimation. When applied to the Set-Valued method, it is used to get

the ellipsoid of the model parameters. The largest bene�t of this algorithm is

that unlike other recursive algorithms, DHOBE discerns if the new measure-
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ment contains any fresh information. This will save a lot of calculations and

reduces signi�cantly the calculations for load estimation. The only knowledge

required from the real process is the strict bound of the noise instead of the

distribution of the noise. Another improvement is the introduction of the rescue

procedure. As stated in Chapter 1 the semiconductor manufacturing process

usually undergoes abrupt shifts (due to equipment maintenance) and modelling

errors (considered as big shift at the startup). This normally causes other model

identi�cation methods to return an empty set for the parameters. The rescue

procedure greatly improves the performance of the algorithm under this cir-

cumstance and accordingly that of the controller. The DHOBE based controller

works best for large step disturbances and model errors, which are hard for other

methods to compensate for.

The DHOBE algorithm also gives us the freedom of applying the model-

reference method or the set-valued method. Because for each recursion, the

returned result is not a single model (point) but a set or outer bounding ellipsoid

(set) of the estimated parameters. If, according to the algorithm, the center of

the ellipsoid each time is taken as the model coe�cients, the explicit model

update is implemented which leads to a model-reference method. If we choose

the worst-case point (point that causes the largest cost function) in the set, then

we can apply the Set-Valued method with the help of worst case approach. Both

cases are simulated and the results are compared in Chapter 4.
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3.1.2 Algorithm

The main idea of DHOBE is recursively obtaining the ellipsoidal outer bounds

to the membership set. It can be applied to linear-in-the-parameters models like

the Hammerstein model introduced in Chapter 1. And this feature ensures that

the algorithm can be used to estimate the parameters of quadratic models. This

broadens the scope of the control method to processes in which the Hammerstein

model is normally used to approximate the nonlinearity of the process.

Assume that the process model is of the following form:

y(t) = �
�T�(t) + v(t) (3.1)

where �� is the true parameter vector and �(t) is the input vector. v(t)is the

noise term which is bounded by , i.e

jv(t)j � : (3.2)

Suppose that at time instance t-1, the membership set of the parameters of the

model is outer bounded by the ellipsoid Et�1. It can be de�ned by its center

from �(t� 1), its orientation from the positive de�nite matrix P�1(t� 1) and its

size from the uncertainty parameter �2(t� 1):

Et�1 = f� 2 <N : [� � �(t� 1)]TP�1(t� 1)[� � �(t� 1)] � �
2(t� 1)g (3.3)

On the other hand, at time instance t, we have an observation of the process yt

which, after de�ning the noise bound , we can utilize to obtain another set St

as follows:

St = f� 2 <N : [y(t)� �
T�(t)]2 � 

2g: (3.4)
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Figure 3.1: Recursive Formation of Bounding Ellipsoid [1]

St will intersect with Et�1 which will enable us to recursively enclose the inter-

section of the two sets by another ellipsoid Et as follows:

Et = f� 2 <N : (1� �t)[� � �(t� 1)]TP�1(t� 1)[� � �(t� 1)] + �t[y(t)� �
T�(t)]2

� (1� �t)�
2(t� 1) + �t

2g; (3.5)

where the updating gain �t is introduced. The gain �t is positive and time

varying. We can also consider (1 � �t) as the forgetting factor. �t is chosen to

minimize �2(t) at each time instance in order to decrease the size of the ellipsoid

from run to run as, is easily seen from the following updates of the ellipsoids.The

recursive formation of the ellipsoids is illustrated in a 2-dimensional example in

Figure 3.1. It is shown in [1] that

Et = f� 2 <N : [� � �(t)]TP�1(t)[� � �(t)] � �
2(t)g; (3.6)

can be transformed to the following recursive expressions.

P
�1(t) = (1� �t)P

�1(t� 1) + �t�(t)�
T (t) (3.7)

�
2(t) = (1� �t)�

2(t� 1) + �t
2 � �t(1� �t)[y(t)� �T (t)�(t� 1)]2

1� �t + �t�T (t)P (t� 1)�(t)
(3.8)
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�(t) = �(t� 1) + �tP (t)�(t)[y(t)� �T (t)�(t� 1)]: (3.9)

Using the matrix-inversion lemma (3.7) can yield

P (t) =
1

1� �t
[P (t� 1)� �tP (t� 1)�(t)�T (t)P (t� 1)

1� �t + �t�T (t)P (t� 1)�(t)
]: (3.10)

After computing the center of the ellipsoid Et, we can use it as a point estimation

of the parameter vector for the model.

The above updating of model estimation is not performed every time. The fol-

lowing criterion is checked at every run in order to decide whether the updating

of the ellipsoid's information should be performed or not. If

�
2(t� 1) + �

2(t) � 
2
; (3.11)

where �(t) is the prediction error given by

�(t) = y(t)� �T (t)�(t� 1); (3.12)

then there will be no update; all the parameters use the values of the previous

run.

Otherwise, �t can be calculated according to the following.

�t = min(�max; �t);

where

�t =

8>>>>>>>>>><
>>>>>>>>>>:

�max if �
2
t = 0

(1� �t)=2 if Gt = 1

(1�
q
Gt=(1 + �t(Gt � 1)))=(1�Gt) if �t(Gt � 1) + 1 > 0

�max if �t(Gt � 1) + 1 � 0
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where �max 2 (0; 1) is a user de�ned upper bound of �t, and

Gt = �T
t Pt�1�t

�t = (2 � �
2
t�1)=�

2
t :

3.1.3 Rescue Procedure

The rescue procedure of the algorithm was developed by Rao and Huang in

[2]. It is particularly necessary when there is a large jump in the parameters

of the model or big disturbances occurred in the process. In such cases, the

algorithm might return an empty set and thus there is no bounding ellipsoid

generated. This is because when the parameters change abruptly in a big step,

the intersection of Et�1 and St will be void as illustrated in Figure 3.2. At this

time the calculation of the �2 will become negative which is a result and also

an indication that there will be no bounding ellipsoid. This is the failure of the

algorithm and the rescue procedure is called at this time to enlarge the size of

Et�1 so that the intersection of St and the enlarged ellipsoid Et�1 will no longer

be void. This rescue procedure will migrate the center of the ellipsoid to the real

parameter vector �� which will reduce the parameter estimation error.

3.2 DHOBE Algorithm Implementation

For most semiconductor manufacturing processes, the model can be summarized

as a linear-in-the-parameters form as follows. This form includes the second

order and interaction terms but still linear in the parameters (coe�cients),

yt = u
T�+ �t

where
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Figure 3.2: DHOBE Rescue Procedure Illustration [1]

u is the vector of controllable inputs

� is the parameter of the model

�t is the noise term.

The DHOBE algorithm can be applied to such models by producing a set of

estimation of the parameters � which is bounded by an ellipsoid de�ned as:

E� = f�t : (�t � �
(+)
t )TP�1

t (�t ��
(+)
t ) � �

2
t g;

where

P
�1
t is a positive de�nite matrix with dimension the same as the parameter

vector. It describes the shape of the ellipsoid.

�
(+)
t is the center of the ellipsoid and is considered as the current estimation

of the parameters.

�
2
t is the uncertainty of the estimated parameters and de�nes the size of the

ellipsoid.

All the above parameters are updated at each run and are used to estimate

the model parameters for the next run. As stated before, the only knowledge
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required for the process is the strict bound of the noise �t. i.e.

j�tj < :

This is also the su�cient condition to ensure convergence.

The procedures used in the DHOBE algorithm are listed below:

Step 1) At each run t, calculate the error residual:

�t = yt � u
T
t �

(+)
t�1

where

yt is the measurement made(or the process response) at this run.

ut is the recipe calculated for this run.

�
(+)
t�1 is the model parameters updated at the last run.

�t is the error.

Step 2) Check if the following inequality holds


2 � �

2
t�1 + �

2
t :

If Yes, then it is known that the process response is still in the acceptable range.

i.e. the measurement is redundant and contains no new information for updating

the model coe�cients. Return to Step 1) without calculating any parameters

of the algorithm. The parameters for the model also remain the same as in the

previous run. It is this check that saves a lot of computational load and makes

the algorithm e�cient when only small drift exist.

If No, the algorithm does the following steps to update the parameters within

itself and also updates the coe�cients of the model.

Step 3) Compute two intermediate scalar variables:

3a)Gt = u
T
t Pt�1ut

3b)�t = (2 � �
2
t�1)=�

2
t :

Step 4) Compute an intermediate variable �t and the update factor �t
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�t = min(�max; �t)

�t =

8>>>>>>>>>><
>>>>>>>>>>:

�max if �
2
t = 0

(1� �t)=2 if Gt = 1

(1�
q
Gt=(1 + �t(Gt � 1)))=(1�Gt) if �t(Gt � 1) + 1 > 0

�max if �t(Gt � 1) + 1 � 0

�t is the design factor and is in the range of [0; 1). 1��t is the forgetting factor.

Step 5) Update the parameter uncertainty factor

�
2
t = (1� �t)�

2
t�1 + �t

2 � �t(1� �t)�
2
t =(1� �t + �tGt)

Step 6) Check if �2t > 0,

If Yes, proceed to step 7.

If No, do the following:

6a) Compute the intermediate scalar variable

� =

8>><
>>:

�
2
t + 

2 � 2j�tj if �t 6= �max

�max

�
�2t

1��max+�maxGt
� 2

1��max

�
if �t = �max

6b) Reset the uncertainty parameter for time t-1

�
2
t�1 = �+ �

6c) Return to Step 3b).

Steps 6a)-6c) is the rescue procedure for the case when �
2
t is negative and the

returned bounding ellipsoid is an empty set. � is the user speci�ed ination

parameter. It will inate the collapsed ellipsoid su�ciently in order to contain

the new �(+).
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Step 7) Update the ellipsoid's structure matrix

P
�1
t = (1� �t)P

�1
t�1 + �tutu

T
t

. Step 8) Update the auxiliary recursive-least-square matrix

Pt =
1

1� �t
[Pt�1 �

�tPt�1utu
T
t Pt � 1

1� �t + �tGt

]

Step 9) Update the new center of the ellipsoid

�
(+)
t = �

(+)
t�1 + �tPtut�t

and return to Step 1).

3.3 RbR Controller Based on DHOBE

3.3.1 Model-Reference RbR Controller Based on DHOBE

The DHOBE algorithm is applied to two forms of the RbR controller. The �rst

one is the model reference (or internal model controller discussed in Section 2)

and the second form is used as the Set-Valued controller with the worst case

approach. These two methods of implementation of the algorithm are discussed

in this section.

In model reference RbR controller, DHOBE is used as the algorithm to im-

plement the run-by-run model parameter estimation. The recipes are generated

using the minimization of the squared error between the model's predictive out-

put and the target value. Figure 3.3 illustrates the basic ow chart of the con-

troller. The �rst step is to set the parameters related to the internal process

model. This includes the following:
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Figure 3.3: Block Diagram for DHOBE Based Controller
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� Building the initial model which might be obtained from o�-line experi-

ments.

� Setting the target value of the process outputs.

� Setting the constraints of the inputs.

� Setting the initial recipes of the equipment which might be the nominal

value of the inputs.

The second step is to set parameters related to the controllers. This parameter

setting is not easy as it is equivalent to the tuning of the controllers. But

after some o�-line simulations are completed, the recommended values can be

available. These parameters include:

� Setting the strict noise bound :

� Setting the updating factor's (�) upperbound �max.

� Setting the rescue step length � which is normally set to 1.

� Setting the ellipsoid's orientation matrix P which is normally set to I at

the start.

The choice of the noise bound is most important. When  is chosen to be larger

than the actual bound, the tracking ability of the algorithm will be increased.

But from the DHOBE algorithm, it is easy to see that when the noise bound

is selected too large, the update of the model will not happen until the model's

output signi�cantly deviates from the target. This is not expected especially

when the process is undergoing small drifts. The sensitivity of the controller will

be decreased because of this larger noise bound. In our simulations, the process
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noise and measurement noise are combined to a white noise and the normal dis-

tribution has zero mean and variance �. We took 3� as the noise bound and it

is shown that this bound is appropriate enough for the simulated circumstances.

The setting of the maximum value of the updating factor (�max) is also im-

portant. It controls the rate of convergence of the algorithm. If it is very small,

convergence of the algorithm is slow. If it is too large, the size of the ellipsoid (�2)

may change so rapidly that the ellipsoid's boundary excludes the real process

parameter (��). If �� ends up too far outside the ellipsoid, the result is usually

an ellipsoid which collapses to the empty set and invokes the rescue procedure.

The re-inated ellipsoid can then miss �� again at the next update cycle and so

on resulting in a non-converging oscillation of the ellipsoid. In our simulations,

we use 0.4 as the maximum value and by selecting the proper re-ination step

�, satisfactory control results can be achieved.

After having a model estimation for each run, the recipe can be calculated

for the next run by minimizing a prede�ned cost function. The cost function

normally takes the form of squared error between target value and the model's

output using the current model estimation. When there is only one response the

form might be

min
u
(T � �

T
u):

If there are multiple responses, the cost function might take the form

min
u
(T � �

T
u)TW (T � �

T
u);

where W is the weight diagonal matrix assigned for each response. The value

of each element represents the priority of each response. The most important
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output is assigned the largest weight, which is used in order to keep the output

value as close to its target value as possible. T is the target vector.

If the change of recipes incurs large costs, then this change should also be taken

into consideration by adding an additional term into the cost function as in [5]:

min
ut
fw1(T � �

T
ut) + w2(ut � ut�1)

T�(ut � ut�1)g;

where � is the weight diagonal matrix assigned to each input of the recipe. If

the cost for changing a certain tunable input is higher, then we can assign larger

weight to that particular input so that by optimizing the cost function, it is kept

as close to the previous run's value as possible. wi are the weight terms also.

The minimization is achieved by �nding the optimal recipe during each run

through line searching. The calculated inputs should also satisfy the constraints

that are essential for equipment and process requirements. These constraints are

normally in the form of ranges which are quite natural and easy to get. These

constraints guarantee that the optimal recipe is feasible physically and reason-

able to the equipment.

After the recipe is calculated, the equipment tunable inputs are adjusted

accordingly, which might cause the output of the real process to change. This

change is reected in the characteristic of the product. Measurements are con-

ducted and fed back to the controller as new information. Then according

to DHOBE, the residual error �(t) between the current measurement and the

model's output (the current recipe and the previous run's model) will be calcu-

lated and used to estimate the next run's model.
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At this time, the controller will decide if the updating is necessary by the

following criterion:

�
2 + �

2 � 
2

If the inequality is satis�ed, the controller uses the previous model for the next

run. And the cycle restarts.

3.3.2 Set-Valued RbR Controller Based on DHOBE

The Set-Valued RbR Controller using DHOBE is similar to the model-reference

one except for the part of optimization of the cost function and generation of

recipes. The model updating still uses the centers of the ellipsoids as the model

parameter estimates, recursively. But after the outer bounds of the ellipsoids

are generated, the optimization selects the model from these ellipsoids (sets)

and tries to �nd the min-max of the cost function. Using the results from [7] we

get the following.

Suppose at run t, the ellipsoid is generated by DHOBE with the parameters:

center of ellipsoid �
�
t , orientation Pt and size �2t . The optimization of the cost

function is implemented as

min
u2U

max
y
t
�y��yt

l(y)

where U is the feasible set of inputs; this can be achieved by imposing constraints

according to the requirements from the process.

y
t
= �

�T
t u�

s
uT

Pt

�2t

u�p
g

�yt = �
�T
t u+

s
uT

Pt

�2t

u+
p
g:
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y
t
and �yt de�ne the inner maximization scope. In order to simplify the calcu-

lation, we impose the restriction that the cost function is convex. Then the

maximization will only appear on either of the two points.

For multiple responses process, just like the former controllers, we used the

Pareto-optimal method so that di�erent weights are selected for di�erent re-

sponses and then sum them together. The worst case treatment is to select

the larger one of the cost functions between the upper and lower bounds of the

response among all the responses and sum the weighted sub-functions together.
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Chapter 4

Simulations and Comparisons

4.1 Simulation Set-up

The simulations were performed using MATLAB version 5 both for real process

outputs and the controller algorithm. First, the process was simulated using

the model that was summarized from experiments. Its output is considered as

the real process output. The model is in polynomial form and can be linear,

quadratic or of any higher order. This model is used as the real process which is

subject to noise, drift, large shifting and all the disturbances that can happen.

Then the calculated recipes are input to the model and �nally output measure-

ments are obtained. These measurements are also simulated as corrupted by

noise.

In the simulation, the noises for processes and measurements are combined

as one. Furthermore the assumption was made that the noises are normally

distributed with de�nite variance and zero mean. The noises to di�erent re-

sponses of the same process are not correlated. This assumption does not a�ect
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the DHOBE method as the algorithm only requires the knowledge about the

bounds of the noise and no prior knowledge or assumption about the noise dis-

tribution is required. Other forms of noises are also simulated and the results

are not di�erent from the normally distributed one.

The slow drifting is simulated by adding a small positive or negative value

to the output of the process. This may also be achieved by slightly drifting the

parameters of the model. Actually, they have the same e�ect on the controller,

and in the simulation the �rst method was used. This alteration also applies to

large abrupt shifting.

In MATLAB, the optimizing function with constraints: \constr" serves as the

core of the optimization. It is used to �nd the optimized recipes that minimize

the cost function, either in DHOBE-MR (Model Reference version) or DHOBE-

SV (Set-Valued version). The function uses several inputs to implement the

optimization: u0 is the starting point for searching. ulb and uub are the lower

and upper bounds of the input u. These bounds were used as the constraints de-

�ned by equipment and process requirements. The calculated recipe is restricted

to this range.

The model embedded into the controller can be assumed as perfect model;

i.e. it reects the real process models with the same parameters and structures.

In the simulations, this means that the initial model in the controller is the

same as the process model. But in practice, the real process model is unknown.

The controller's model is only an approximation to the process based on the
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past experimental data. No matter how close this approximation is, the internal

model will for sure have model errors . This case was also simulated by changing

the parameters and structures in a certain range. The simulation shows that

the imperfect models only a�ect the starting transition phase. For both kinds of

DHOBE controllers, this transition period is rather short: it only takes one to

two runs. After each simulation, statistical performance analysis was performed

and the controlled outputs were compared with the uncontrolled one graphically.

4.2 Performance Measures of RbR Controllers

There are di�erent ways of evaluating a RbR controller against its peers. They

often lead to variation analysis of the sampling data from the experiments. This

was also simulated using the MATLAB program. However, a general criterion

for the RbR controller, actually many other controllers, is stated as follows.

1. The controller's ability to track the target value set before hand without lag.

This is especially true for the semiconductor manufacturing industry considering

the cost of each lot of wafer and all the money and time consuming manufactur-

ing processes before.

2. The controller's ability to prevent disturbances from inuencing the process

outputs.

3. The controller's ability to reject noise. i.e. not to respond to spurious uctu-

ations.

Sometimes increased product quality is associated with improved process
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performance, such as process capability, or Cpk, de�ned as:

Cpk = min(Cpl; Cpu)

where

Cpl = jm� Lj=3�

Cpu = jm� U j=3�

m is the mean, � is the standard deviation, U and L are the upper and lower

limits.

Another performance measure that indicates the frequency of recipe changes

is the average adjustment interval (AAI)

In the comparisons of the simulation results between the DHOBE controller and

other RbR controllers, the following statistical measures are used to evaluate the

performance of the control action.

� �yi is the mean of the sampling values from the real process ith output.

� Syi is the standard deviation of the process ith output.

� MSD(yi � Ti) is the square root mean square deviation of the process ith

output from its target value.

Sometimes, when the issue of changing the input parameters is also taken into

consideration, the standard deviation for each input will be considered also.
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4.3 Simulation Results and Analysis

4.3.1 Simulations Comparison with EWMA

For the CMP Model in this simulation, the following linear model is used and

is considered as the perfect model for the real process. The EWMA method is

used as the comparison. The original model is for multiple objective purposes:

to optimize both Removal Rate and Non-Uniformity. In [6], only one response

removal rate was simulated. Both algorithms are simulated under the same

circumstances: i.e. the same noise, drifting, disturbance, model and model error.

Standard deviation and MSE (Mean Square Error) are calculated and taken as

the main metric for evaluation.

Process Models

The process model introduced in Chapter 1 is used here for both the real process

model and the internal model of the controller. No error in either coe�cients or

structure when summarizing the model is considered.

y[n] = �1382:60 + [50:18;�6:65; 163:4; 8:45]� u
T (n) + ![n] + �[n]:

The simulation results are illustrated in Figure 4.1 and Figure 4.2 for DHOBE-

MR and DHOBE-SV.

From Table 4.1, it can be seen that the compensation e�ect for DHOBE and

EWMA have no big di�erence as measured by the MSE and standard deviation

for the simulated number of runs. The weight of the EWMA controller is selected

as 0.6 in this case.

But when there is some model error, which is common in real applications,

the DHOBE-MR and DHOBE-SV have faster convergent characteristic (as seen

from simulations).
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Figure 4.1: Comparison of DHOBE-MR and EWMA with Linear Perfect Model

under Drifting

Method �y Sy MSD

EWMA 1674.4 36.7 44.8

DHOBE-MR 1664.6 36.9 51.5

DHOBE-SV 1669.9 35.1 46.4

Table 4.1: EWMA and DHOBE Performance for Linear Perfect CMP Model

45



0 5 10 15 20 25 30
1200

1300

1400

1500

1600

1700

1800

Run No.

R
em

ov
al

 R
at

e(
R

) A
/m

in

CMP Process under Drift Controlled by EWMA Controller with perfect model

0 5 10 15 20 25 30
1200

1300

1400

1500

1600

1700

1800
CMP Process under Drift Controlled by DHOBE Controller with perfect model

Run No.

Controlled
Target & 3 sigma
Uncontrolled
MSE=251.9811

Controlled
Target & 3 sigma
Uncontrolled
MSE=260.6958

Figure 4.2: Comparison of DHOBE-SV and EWMA with Linear Perfect Model

under Drifting

The simulation is somewhat rough for this case as the process model was taken

as 80% of each parameters of the real process. DHOBE-MR and DHOBE-SV

are shown to track the target much faster than EWMA under this circumstance.

This is also illustrated in Table 4.2 by considering the STD and MSD. The sim-

ulation of EWMA controller used 0.3 as the weight.

Simulations were also performed for the case when there is a large step distur-

bance during the operation. The simulation result also shows that DHOBE-MR

and DHOBE-SV are better than EWMA because EWMA is suitable for gradual

mode. It is hard for it to compensate for large variance in several runs. The step

disturbance in the simulation was experimented by changing the model param-

eters of the real process greatly. The resulted shifting value equals to the target
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Figure 4.3: Comparison of DHOBE-MR and EWMA for Linear Imperfect Model

under Drifting

Method �y Sy MSD

EWMA 1742.9 219.7 223.9

DHOBE-MR 1672.5 90.9 95.1

DHOBE-SV 1685.7 90.0 91.3

Table 4.2: EWMA and DHOBE Performance for Linear Imperfect CMP Model
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Figure 4.4: Comparison of DHOBE-SV and EWMA for Linear Imperfect Model

under Drifting

value + 350. The weight for EWMA controller is selected as 0.43.

Bad Data case was simulated and the result for DHOBE-MR and DHOBE-SV

are not better in view of the MSE. But after one run of large deviation from

the target, the response returned to the acceptable range (3�) very quickly. The

bad data used in the simulation is 500 above target value. In the simulation, the

weight for EWMA controller is selected as 0.6.

4.3.2 Simulations Comparison with OAQC

The simulation setup and result for OAQC can be found in [5]. It does not pro-

vide much detailed information about the algorithm. Instead the process model

for CMP and the simulation data were provided in detail. Simulations using
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Figure 4.5: Comparison of DHOBE-MR and EWMA for Linear Perfect Model

under Step Disturbance

Method �y Sy MSD

EWMA 1717.1 97.9 100.8

DHOBE-MR 1708.9 67.0 68.1

DHOBE-SV 1710.9 68.6 69.8

Table 4.3: EWMA and DHOBE Performance for CMP Model w/Step Distur-

bance
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Figure 4.6: Comparison of DHOBE-SV and EWMA for Linear Perfect Model

under Step Disturbance

Method �y Sy MSD

EWMA 1699.8 106.0 106.0

DHOBE-MR 1693.1 128.2 128.5

DHOBE-SV 1689.9 125.1 125.6

Table 4.4: EWMA and DHOBE Performance for CMP Model w/ Bad Data
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Figure 4.7: Comparison of DHOBE-MR and EWMA for Linear Perfect Model

under Bad Data

the model and DHOBE algorithm were fully implemented and the result was

compared against OAQC.

The process models obtained from experiments are considered as real pro-

cess models with drifts and the approximated models are in almost-linear, fully

quadratic and linear form. Performance was evaluated according to di�erent

kinds of approximate models. This provides us an opportunity to test the

DHOBE's robustness to model error. There are two forms of the model with

regards to the number of parameters to be tuned: CMP4x2 and CMP3x2.
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Figure 4.8: Comparison of DHOBE-SV and EWMA for CMP Model w/Bad

Data

CMP 4 � 2 Model

1) Process Model Considered as Real

y1 = 1563:5 + 159:3u1 � 38:2u2 + 178:9u3 + 24:9u4 � 67:2u1u2 � 46:2u21

�19:2u22 � 28:9u23 � 12u1t
0 + 116u4t

0 � 50:4t0 + 20:4t02 + �1;t

y2 = 254+32:6u1+113:2u2+32:6u3+37:1u4�36:8u1u2+57:3u4t0�2:42t0+�2;t

where

t
0 = (t� 53)=53; �1;t � N(0; 602); �2;t � N(0; 302)

This model was summarized from 209 wafer experiments and was considered to

be the real process model in the simulations. It is a rather complex form as it

includes both the quadratic and 2 factor interaction terms model.

y1 is the removal rate; target value 2000.

52



y2 is the with-in wafer nonuniformity. target value 100.

u1 is the platen speed.

u2 is the back pressure.

u3 is the polishing downforce.

u4 is the pro�le.

All controllable factors are scaled to [-1,1] range. The target values for y1 and

y2, 2000 and 100 are unrealistic. These values are set in order to evaluate the

performance of the algorithm. For y1, the larger value the better, and for y2, the

smaller the value the better; and for most of the time these target values cannot

be reached.

2)Approximate Initial Models { Quadratic Models (Scenario 1)

First, the fully quadratic model used in the controller is of the following form:

y1 = 1600+150u1�40u2+180u3+25u4�30u21�20u22�25u23�60u1u2�0:9t

and

y2 = 250 + 30u1 + 100u2 + 20u3 + 35u4 � 30u1u2 + 0:05t

We can see that there is a big model error comparing with the real process model

for both parameters and drifting. The performance measurement is implemented

in 5).

3)Approximate Initial Models { Linear Models (Scenario 2)

If the quadratic and interaction terms are dropped then the above model is

changed to a linear model. As the real process model is not severely nonlinear,

the control e�ect with the linear model is good. The constraints for the input

and output are the same as in the quadratic model.

y1 = 1600 + 150u1 � 40u2 + 180u3 + 25u4 � 0:9t
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Figure 4.9: CMP4x2 Scenario 1 Controlled by DHOBE-MR
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Figure 4.10: CMP4x2 Scenario 1 Controlled by DHOBE-SV
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Figure 4.11: CMP4x2 Scenario 2 Controlled by DHOBE-MR

y2 = 250 + 30u1 + 100u2 + 30u3 + 35u4 + 0:05t

4) Quadratic Models with Step Disturbance (Scenario 3)

The DHOBE algorithm was also tested when abrupt disturbances happened.

In this case the quadratic initial model was used and the constraints are the

same as before. The abrupt shift to the �rst response happened at t = 20 with

magnitude -100 and for the second response the shift happened at t = 30 with

magnitude 50.

5) Performance Analysis

The OAQC was simulated in [5] under exactly the same circumtances for the

above 3 scenarios for 20 times each. The �nal results with regards to the statis-

tical variance analysis were listed. The DHOBE-MR and DHOBE-SV methods

were also tested for 20 times each and using the same kind of performance mea-
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Figure 4.12: CMP4x2 Scenario 2 Controlled by DHOBE-SV
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Figure 4.13: CMP4x2 Scenario 3 Controlled by DHOBE-MR
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Figure 4.14: CMP4x2 Scenario 3 Controlled by DHOBE-SV

sures; the results are listed in Table 4.5 for comparison. There might be some

factors from the tuning of the controller but we can see the tendency, and thus

prove the feasibility of the new controller.

Table 4.5 shows that for response 1, the mean value is normally better for

DHOBE but the standard deviation is larger than OAQC. For the second re-

sponse, the mean value is larger but the standard deviation is better for DHOBE.

CMP Nonlinear 3 � 2 Model

In this section, the second CMP process model is used. It has only 3 control-

lable factors and the responses are removal rate (y1) and within-wafer standard

deviation (y2).

1) Real Process Model

y1 = 276:5 + 574:6u1 + 616:3u2 � 126:7u3 � 1109:5u21 � 286:1u22 + 989:1u23

57



Scenario Method �y1 �y2 Sy1 Sy2 MSD1 MSD2

1 OAQC 1719.7 168.4 70.4 40.1 288.9 79.2

DHOBE-MR 1754.7 157.3 84.5 35.0 259.7 67.5

DHOBE-SV 1787.7 168.1 82.8 34.7 228.2 76.9

2 OAQC 1718.2 165.7 72.1 42.0 291.0 78.2

DHOBE-MR 1781.9 165.0 84.5 36.1 234.2 74.8

DHOBE-SV 1807.4 177.5 85.9 36.1 211.9 86.1

3 OAQC 1661.2 189.2 89.2 43.5 350.2 99.2

DHOBE-MR 1741.4 189.1 108.7 35.6 280.8 96.0

DHOBE-SV 1747.0 190.8 109.2 37.5 275.9 98.3

Table 4.5: OAQC and DHOBE Performance for CMP 4x2 Models

�52:9u1u2 � 156:9u1u3 � 550:3u2u3 � 10t+ �1;t

and

y1 = 746:3 + 62:3u1 + 128:6u2 � 152:1u3 � 289:7u21 � 32:1u22 + 237:7u23

�28:9u1u2 � 122:1u1u3 � 140:6u2u3 + 1:5t+ �2;t

where

�1;t � N(0; 602); �2;t � N(0; 302):

Controllable factors are back pressure downforce (u1), platen speed (u2) and

slurry concentration (u3). They are all scaled to [-1,1] range and the target val-

ues for y1 and y2 are 2200 and 400 respectively. These models are �tted to the

results of a 32-wafer experimental design and they served as real process model

in the simulation. They are hard to control using a linear model controller as

they contain large second-order coe�cients. This model also shows the necessity
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Figure 4.15: CMP3x2 Scenario 1 Controlled by DHOBE-MR

of adopting the nonlinear controller.

2) Quadratic Models (Scenario 1)

y1 = 2500 + 400u1 + 500u2 � 100u3 � 800u21 � 200u22 + 1000u23 � 40u1u2 � 100u1u3

�350u2u3 � 7t

y2 = 600 + 50u1 + 100u2 � 100u3 � 200u21 � 50u22 + 300u23 � 30u1u2 � 100u1u3

�100u2u3 + 3t

3) Linear Models (Scenario 2)

The following simulations used a linear model controller to compensate for the

nonlinear process model. This also represents the case when using linear models

only. The simulations were implemented using DHOBE-MR and SV controller
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Figure 4.16: CMP3x2 Scenario 1 Controlled by DHOBE-SV

and the results are compared with OAQC method.

y1 = 2500 + 400u1 + 500u2 � 100u3 � 7t

y2 = 600 + 50u1 + 100u2 � 100u3 + 3t

From Table 4.6 it can be seen that when using the nonlinear model as the

controller's model to compensate for the severe nonlinear processes, the mean

value of response, standard deviation and mean square deviation are in the

acceptable range. But when the internal model is linear, the compensation

result is not good as expected. This also illustrates that the nonlinear internal

model is necessary for such kind of cases no matter for which kind of control

method.
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Figure 4.17: CMP3x2 Scenario 2 Controlled by DHOBE-MR
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Figure 4.18: CMP3x2 Scenario 2 Controlled by DHOBE-SV
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Scenario Method �y1 �y2 Sy1 Sy2 MSD1 MSD2

1 OAQC 2069.9 478.8 143.8 53.5 193.5 95.0

DHOBE-MR 2005.5 490.5 139.7 41.2 235.9 98.6

DHOBE-SV 2002.8 490.4 141.4 42.7 238.9 98.9

2 OAQC 1950.4 595.0 430.7 99.6 543.9 220.4

DHOBE-MR 1921.5 663.9 457.0 99.9 568.4 271.9

DHOBE-SV 1921.8 659.6 381.6 71.6 499.0 256.8

Table 4.6: OAQC and DHOBE Performance for CMP3x2 Models
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Chapter 5

Conclusions and Future Work

We �rst analyzed the characteristic of semiconductor manufacturing processes.

Models for these processes were further discussed in Chapter 1. Normally they

can be described or approximated by the linear-in-the-parameter polynomial

models. This gives us the direction and simpli�cation of searching the model

identi�cation method. The normally used control method for semiconductor

manufacturing is the run-by-run control. We discussed its features and explained

several popular methods. Then we tried to apply the DHOBE method which is

suitable for both model identi�cation and for using the Set-Valued method with

many advantages.

From the simulations in Chapter 4, we can see that the DHOBE controller

can be applied to either linear or nonlinear process models. When comparing

the simulation result with EWMA method, both methods achieved satisfactory

result in linear models with slowly drifting, but DHOBE achieved better results

in shorter transition phase caused by initial model error and faster tracking from

large deviation caused by the step disturbance. The compensation for bad data
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case needs further improvement. The bad data can be considered as the outlier

and there are suggested ways to screen out these bad data without taking them

into the model identi�cation process which will fool the controller into taking

signi�cant control actions.

The comparison using the same performance measures also shows that the

controller is comparable to OAQC controller when it is applied to linear, almost

linear or severe linear process models. When the process model is fully quadratic,

the internal model within the controller is shown to be nonlinear necessarily in

either cases.

The basic ideas for di�erent model referenced RbR control methods are the

same as illustrated in Chapter 2. Their di�erence is the method of updating the

model at each run. The optimization step of each methods are almost the same.

Then the model identi�cation method will mainly decide the performance of the

RbR controller. For the Set-valued method, it is di�erent from the model ref-

erence method. As it applied the worst case approach, the control e�ect should

be di�erent from the other methods. However, from our simulations, it is al-

most the same as the model referenced method when using the same kind of

model updating technology. This is because the DHOBE algorithm used the �2

to shrink the size of the feasible model parameter set, and this leads to the fact

that the worst case parameter is almost the same as the center of the ellipsoid.
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