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ABSTRACT

Title of Dissertation: A COMPUTATIONALLY EFFICIENT FEASIBLE

SEQUENTIAL QUADRATIC PROGRAMMING

ALGORITHM

Craig Travers Lawrence, Doctor of Philosophy, 1998

Dissertation directed by: Professor André L. Tits

Department of Electrical Engineering

The role of optimization in both engineering analysis and design is continually

expanding. As such, faster and more powerful optimization algorithms are in

constant demand. In this dissertation, motivated by problems from engineering

analysis and design, new Sequential Quadratic Programming (SQP) algorithms

generating feasible iterates are described and analyzed. What distinguishes these

algorithms from previous feasible SQP algorithms is a dramatic reduction in the

amount of computation required to generate a new iterate while still enjoying

the same global and fast local convergence properties.

First, a basic algorithm which solves the standard smooth inequality con-

strained nonlinear programming problem is considered. The main idea involves

a simple perturbation of the Quadratic Program (QP) for the standard SQP



search direction. The perturbation has the property that a feasible direction is

always obtained and fast local convergence is preserved. An extension of the

basic algorithm is then proposed which solves the inequality constrained mini-

max problem. The algorithm exploits the special structure of the problem and is

shown to have the same global and local convergence properties as the basic al-

gorithm. Next, the algorithm is extended to efficiently solve problems with very

many objective and/or constraint functions. Such problems often arise in engi-

neering design as, e.g., discretized Semi-Infinite Programming (SIP) problems.

The key feature of the extension is that only a small subset of the objectives and

constraints are used to generate a search direction at each iteration. The result

is much smaller QP sub-problems and fewer gradient evaluations.

The algorithms have all been implemented and tested. Preliminary numerical

results are very promising. The number of iterations and function evaluations re-

quired to converge to a solution are, on average, roughly the same as for a widely

available state-of-the-art feasible SQP implementation, whereas the amount of

computation required per iteration is much less. The ability of the algorithms

to effectively solve real problems from engineering design is demonstrated by

considering signal set design problems for optimal detection in the presence of

non-Gaussian noise.
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Chapter 1

Introduction

1.1 Optimization in Engineering Design

Optimization plays a critical role in many aspects of engineering analysis and

design. In design, once a structure has been chosen, the problem often reduces

to that of choosing an “optimal” set of parameters to minimize appropriate

“cost” functions subject to constraints imposed by the model and the design

specifications. In engineering analysis, optimization proves to be useful, for

example, in the study of worst-case performance for a given system.

In this dissertation, optimization algorithms motivated by problems arising

from engineering analysis and design are developed. First, the standard inequal-

ity constrained nonlinear programming problem

min f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
(P )

where f : Rn → R and gj : Rn → R, j = 1, . . . ,m, are continuously differen-

tiable, is considered. In general, such a framework is too rigid to capture many

important design problems, though. A much broader class of problems may be
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tackled if (P ) is generalized to the smooth constrained mini-max problem

min F (x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
(M)

where

F (x)
∆
= max{ fj(x) | j = 1, . . . , p },

and the functions fj : Rn → R, j = 1, . . . , p, and gj : Rn → R, j = 1, . . . ,m, are

continuously differentiable. The balance of this section, as well as the following

section, is devoted to discussing how such problems arise in various generic design

methodologies. It should become clear that the mini-max framework does indeed

provide more freedom and power for the designer.

The so-called method of inequalities (see, e.g., [40]) is based upon the ob-

servation that many design problems are naturally posed as simple feasibility

problems, i.e. there are no obvious objective (or cost) functions. Design specifi-

cations may typically be written in the form

gi(x) ≤ εi, i = 1, . . . ,m, (1.1)

where gi : Rn → R, i = 1, . . . ,m, and x represents the vector of design param-

eters. An algorithm based on the method of inequalities simply searches for a

vector x satisfying (1.1). Varying the parameters εi, i = 1, . . . ,m, allows the

designer to explore various trade-offs (see Section 1.2).

As an example, consider a feedback control design problem and suppose x

represents the feedback gains. The specifications may require that the closed-

loop step response fit within a given envelope (see Figure 1.1, which is borrowed

from [76]). For a given set of design parameters x, let s(x, t), t ∈ [0, T ], denote

the step response function of the closed-loop system. Define the upper bound

2
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Figure 1.1: Example of a step-response envelope specification.

function as u(t), t ∈ [0, T ], and the lower bound function as `(t), t ∈ [0, T ]. The

envelope specification is then

s(x, t)− u(t) ≤ 0, ∀t ∈ [0, T ],

`(t)− s(x, t) ≤ 0, ∀t ∈ [0, T ].

Discretizing the time axis into M + 1 sample points spaced by ∆t = T/M , the

specification is approximated by the set of inequalities

gui (x)
∆
= s(x, i ·∆t)− u(i ·∆t) ≤ 0, i = 0, 1, . . . ,M,

g`i (x)
∆
= `(i ·∆t)− s(x, i ·∆t) ≤ 0, i = 0, 1, . . . ,M.

As an aside, in Chapter 5 we will discuss an extension of the algorithms developed

in Chapters 3 and 4 to efficiently handle problems with a very large number of

constraints and objectives (as in the current example when M is large).

Once a design problem has been translated into a set of inequalities gi(x) ≤ 0,
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i = 1, . . . ,m, (here the right-hand side parameters εi are absorbed into the

functions gi(·)) the method of inequalities is reduced to solving

find x ∈ Rn such that gi(x) ≤ 0, i = 1, . . . ,m.

One possible approach for tackling this problem is to consider the unconstrained

mini-max problem

min
x

max
i
gi(x),

which, under the appropriate regularity assumptions, is an instance of (M). Of

course, since we only require a feasible point, it is only necessary to iterate on

this mini-max problem until some x∗ is found such that

max
i
gi(x

∗) ≤ 0.

Another closely related design methodology is the so-called multi-objective

(or multi-criterion) optimization approach (see, e.g., [40]). In this approach, the

design problem is translated into a set of performance objectives:

{fi(x) | i = 1, . . . , p}

where fi : Rn → R, i = 1, . . . , p, and x represents a vector of design parameters.

The performance objectives are formulated so that, for objective i, design x′ is

“better” than x′′ if

fi(x
′) < fi(x

′′).

Of course, in general, multiple competing objectives cannot be simultaneously

minimized. Instead, they must be combined into a single composite objective

function which is then minimized. A common choice is the weighted max func-

tion. Note that it is typically meaningless to directly compare two competing

4



objectives (e.g., it makes no sense to directly compare the value of a stability

margin with that of rise time in control system design). Thus, the designer must

assign scalings (weights) ci, i = 1, . . . , p, which allow meaningful comparison

between the scaled (dimensionless) objective functions

fi(x)

ci
, i = 1, . . . , p.

A reasonable choice for the scaling factors is the difference between a value

the designer considers “bad” and one that is “good” for the objective (see Sec-

tion 1.2). Once scaled, the design problem is reduced to the unconstrained

mini-max problem

min
x

max
i

fi(x)

ci
.

Additional specifications in the form of inequality constraints are often appended

to the problem. Such a situation occurs when a quantity is required to be below

a given threshold and there is no need to expend additional effort on further

reduction. Clearly, in this case, the design problem is reduced (for a fixed set of

scaling factors) to solving a constrained mini-max problem of the form (M).

1.2 Interactive Optimization-Based Design

If optimization is to be an effective and useful tool for engineering design, it

should allow for, if not enhance, trade-off exploration in an interactive design

environment. It is typically impossible for a designer to rigidly specify the various

objectives and constraints in advance. Indeed, a more realistic approach allows

one to initially specify “approximate” versions of the objectives and constraints.

The optimization then proceeds interactively, allowing the designer to tighten or

5



relax specifications as he/she sees fit, depending upon the quality and suitability

of intermediate “solutions”. Such an approach has been proposed in [44, 72].

An important concept with respect to trade-off analysis is that of Pareto opti-

mality. Ignoring constraints for now (the definitions generalize to the constrained

case in a straightforward manner), recall the multi-objective optimization-based

design discussion from Section 1.1. A “design” x is said to be Pareto optimal if,

in a neighborhood of x, a reduction in any one of the objectives fi can only be

achieved at the expense of increasing one of the others. The set of all such x pa-

rameterizes the so-called Pareto optimal set (see Figure 1.2 for an example with

p = 2). It should be clear that if a design is to be considered optimal, it must

f

f1

2

Pareto optimal set

Attainable set

Figure 1.2: Pareto optimality.

parameterize a point somewhere in the Pareto optimal set. It is typically not

clear, though, which point on the surface is the “best”. Trade-off exploration,

which amounts to searching the Pareto optimal set, is accomplished by adjust-

ing the scaling factors ci, i = 1, . . . , p and solving the resultant optimization

6



problem. Of course this adjustment cannot be done algorithmically as it relies

entirely upon qualitative judgments by the designer.

An interactive optimization-based design methodology proposed by Nye and

Tits [44] will be briefly described in the remainder of this section. The algorithms

developed in this dissertation are ideal candidates for use in such a design ap-

proach. Our exposition and notation will closely follow that of [72].

Suppose that a structure has been chosen for the design (e.g., a state feedback

controller) and all that remains is to choose design parameter values subject to

a set of given specifications. In [44], the next step is for the designer to partition

the set of specifications into three classes.

• Hard Constraints - Specifications which must be satisfied. For example,

closed-loop stability or physical realizability.

• Soft Constraints - Specifications involving a target value which the de-

sign should approach if possible, and requiring no further improvement

once the target value is reached. For example, stability under plant uncer-

tainty or controller bandwidth.

• Objectives - Specifications which should be minimized or maximized. For

example, closed-loop sensitivity to disturbances and plant variations or the

integral of the squared error of a step response.

The next step is for the designer to assign good values and bad values to each of

the soft constraints and objectives. These values are assigned according to the

so-called uniform satisfaction/dissatisfaction rule, i.e.

“Having any one of the various objectives or soft constraints achieve

its good value should provide the same level of satisfaction to the

7



designer, while having any one of them achieve their bad value should

provide the same level of dissatisfaction.”[72]

Based on these values, the objectives and soft constraints are scaled according

to

scaled value =
raw value− good value

bad value− good value
,

where raw value is the actual value of the specification. Note that the hard

constraints are also assigned good and bad values, but the good value is the only

important threshold in this case (the bad value need only be consistent).

Let hardj(·) denote the scaled hard constraint functions, softi(·) denote

the scaled soft constraint functions, and objk(·) denote the scaled objective

functions. The interactive optimization process proceeds in three steps.

• Phase I - Attempt to generate a design in which all hard constraints are

satisfied. Each iteration decreases the maximum hard constraint violation

by working on the problem

min
x

max
j

hardj(x).

• Phase II - Entered when all hard constraints are satisfied, but not all soft

constraints and objectives have achieved their good values. Each iteration

improves the maximum value among scaled objectives and soft constraints,

while maintaining feasibility for hard constraints, by iterating with a fea-

sible direction algorithm on the problem

min
x

max
k,i
{objk(x), softi(x)}

s.t. hardj(x) ≤ 0, ∀j.

8



• Phase III - All hard constraints are satisfied and all objectives and soft

constraints have achieved their good values. Each iteration improves the

worst objective, while maintaining feasibility for all constraints, by iterat-

ing with a feasible direction algorithm on the problem

min
x

max
k

objk(x)

s.t. hardj(x) ≤ 0, ∀j,

softi(x) ≤ 0, ∀i.

At any point during the optimization, the designer may stop the process and

adjust the good/bad values. In particular, it is through adjusting the good and

bad values that the designer may search the Pareto optimal set, hence exploring

trade-offs in the design. Of course, it may become clear that it is impossible to

achieve an acceptable design. In such a case the designer may choose to modify

the structure of the design and begin the entire process again.

A number of requirements on the underlying optimization algorithm are im-

posed by such a methodology. To begin with, the algorithm must be able to

solve an inequality constrained mini-max problem (M). Further, it should be

clear from the above discussion that the algorithm must generate feasible iter-

ates, i.e. iterates which satisfy all inequality constraints (see Section 1.3). Next,

the successive iterates should always improve the maximum objective function

value, that is

max
k

objk(xi+1) < max
k

objk(xi).

In addition to these requirements, the algorithm should require as few function

evaluations as possible, since evaluating functions is often expensive in an engi-

neering context. Finally, subject to all of the above, the algorithm should be as

9



fast as possible. The algorithms developed in this dissertation are ideal for such

an application.

1.3 Feasibility

Denote the feasible set for the problems (M) and (P ) by

X
∆
= { x ∈ Rn | gj(x) ≤ 0, j = 1, . . . ,m }.

In [53, 25, 48, 51, 3], variations on the standard Sequential Quadratic Program-

ming (SQP) iteration (see Section 2.3) for solving (P ) are proposed which gener-

ate iterates lying within X. Such methods are sometimes referred to as “Feasible

SQP” (or FSQP) algorithms. It was observed that requiring feasible iterates has

both algorithmic and application-oriented advantages. Algorithmically, feasible

iterates are desirable because

• The Quadratic Programming (QP) subproblems are always consistent, i.e.

a feasible solution always exists, and

• The objective function may be used directly as a merit function in the line

search.

State of the art SQP algorithms typically include complex schemes to deal with

inconsistent QPs. Further, the choice of an appropriate merit function (to enforce

global convergence) is not always clear. Requiring feasible iterates eliminates

these issues. In an engineering context, feasible iterates are important because

• Often objective functions are undefined outside of the feasible region X,

• The optimization process may be stopped after a few iterations, yielding

a feasible point, and

10



• Trade-offs may be meaningfully explored.

These features are all relevant in both engineering analysis and design. For a

situation in which an objective function may be undefined outside of the feasible

region, consider control design problems where stability or physical realizability

are among the constraints. If the system is unstable, certain specifications on, for

example, a time response may be undefined, e.g. settling time. The second point

above is critical for real-time applications. In such applications, a feasible point

may be required before the algorithm has had time to “converge” to a solution.

Finally, the last point is directly related to the discussion of the previous section.

To begin with, the interactive design methodology of [44] specifically requires an

optimization algorithm generating feasible iterates. In general, though, it doesn’t

make sense to explore trade-offs by relaxing or tightening certain specifications

before all specifications have been satisfied, i.e. are feasible.

1.4 Objective and Contributions

The objective of this dissertation is to develop and analyze computationally

efficient feasible SQP algorithms. We begin with a core algorithm, then extend it

to handle the mini-max problem, and finally incorporate a scheme for efficiently

solving problems with a large number of objectives and/or constraints. The

contributions are summarized as follows.

• A new SQP algorithm generating feasible iterates requiring the solution of

only one QP and (at most) two linear least squares problems per iteration.

– The algorithm is shown to be globally convergent.

11



– The local convergence rate is shown to be 2-step superlinear.

– Numerical experiments show it performs very well in practice.

• The algorithm is extended to handle the mini-max problem in a way which

exploits the problem structure.

– It is proved that the global and local convergence properties are pre-

served.

– Numerical experiments again show the algorithm performs very well

in practice.

• The algorithm is equipped with a scheme to allow it to efficiently solve

problems with a very large number of objectives and/or constraints.

– It is again proved that the global and local convergence properties are

preserved.

– The size of the sub-problems and the number of gradient evaluations

are dramatically reduced.

– Numerical experiments again show the algorithm performs very well

in practice.

• A high-quality C implementation of the algorithms.

• Application of the algorithms to a problem from engineering design, specif-

ically the design of optimal signal sets for transmission in the presence of

non-Gaussian noise.

12



1.5 Outline

Broadly, this dissertation is organized as follows. After a brief discussion of some

relevant background material, the core algorithm is presented and analyzed. In

the two chapters that follow, the algorithm is extended and the appropriate

convergence analysis is given for each case. These three chapters constitute the

bulk of the contribution (including all of the theoretical contribution) of the

work. The focus then changes to implementation issues and an application of

the algorithms, followed by concluding remarks. The balance of this section

outlines the content in more detail.

In Chapter 2 we review concepts from the theory of nonlinear programming

which are directly relevant and important to the material that follows. The

topics include optimality conditions (first and second order) for general mini-

max problems, the notions of global convergence and rates of local convergence,

a brief introduction to SQP algorithms, and finally a discussion of algorithms

which generate feasible iterates. While not intended to be an exhaustive tutorial

(it is assumed the reader is familiar with these concepts), the chapter is meant

to serve as a brief review.

Chapter 3 presents the core algorithm and analysis which forms the foun-

dation of the dissertation. The basic idea involves a simple perturbation of the

SQP search direction and a technique for iteratively updating the perturbation.

Inspiration for the requirements on the perturbation is drawn from a well-known

feasible SQP algorithm with strong convergence properties. Under mild assump-

tions, the algorithm is shown to be globally convergent and locally 2-step super-

linearly convergent. In order to show 2-step superlinear convergence we call on

a modified version of a well-known argument due to Powell. The modification of
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the argument is provided in an appendix to the chapter. Several implementation

details, as well as promising numerical results, are also discussed.

The core algorithm of Chapter 3 is extended in Chapters 4 and 5. In Chap-

ter 4, the constrained mini-max problem is considered and an algorithm is given

which takes advantage of the mini-max structure of the problem. One of the key

advantages, among others, over reformulating the problem as a standard con-

strained nonlinear programming problem (as is often done) is that we maintain

the objective function descent property. This is useful in many contexts. In

addition, we simplify matters since it is unnecessary to waste effort maintaining

“feasibility” for constraints which are actually converted objectives. Problems

which have very many objectives and/or constraints, e.g. discretized problems

from Semi-Infinite Programming (SIP), are the subject of Chapter 5. In this

chapter, the algorithms of Chapters 3 and 4 are equipped with a scheme which

greatly reduces the size of the sub-problems at each iteration as well as the num-

ber of gradient evaluations. This is accomplished by carefully choosing only a

subset of the objectives and constraints in order to construct the search direction

at each iteration. In both chapters a complete convergence analysis is given, as

well as important implementation details and numerical results.

In Chapter 6 a complete problem statement is given and the structure of the

implementation, with calling sequence and description of the input and output

parameters, is provided. In addition, we discuss how the implementation deals

with an infeasible initial point, how we maintain and update Cholesky factors for

the Hessian approximation, a scheme for making the linear algebra more efficient,

and an option to allow the use a full QP to compute the Maratos correction. An

application to a real problem from engineering design is considered in Chapter 7.
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The problem involves the design of signal sets to be transmitted over an additive

noise channel in which the noise distribution is not necessarily Gaussian. As there

are many local solutions, the algorithms from this dissertation are incorporated

into a stochastic global algorithm in an attempt to locate globally optimal signal

sets.

Finally, in Chapter 8 we briefly sum up and discuss several directions for

future research. Most of the proposed future work involves further extensions of

the algorithm to handle a broader class of problems, in addition to improvements

in the implementation and more extensive testing and tuning.
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Chapter 2

Background

2.1 Optimality Conditions

In this section we briefly review some fundamental concepts from nonlinear

programming. Under appropriate assumptions, optimality conditions provide

a characterization of solutions and, in some cases, suggest methods of finding

such solutions. For a more detailed discussion of optimality conditions and their

implications see, for example, the texts [39, 1]. For the sake of generality, we

will consider only the mini-max problem (which is repeated here for the sake of

convenience)

min F (x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
(M)

where

F (x)
∆
= max{ fj(x) | j = 1, . . . , p },

and the functions fj : Rn → R, j = 1, . . . , p, and gj : Rn → R, j = 1, . . . ,m, are

continuously differentiable. A point x ∈ Rn is said to be a Karush-Kuhn-Tucker
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(KKT) point1 for the problem (M) if there exist scalars (KKT multipliers) µj,

j = 1, . . . , p, and λj , j = 1, . . . ,m, satisfying

p∑
j=1

µj∇fj(x) +
m∑
j=1

λj∇gj(x) = 0,

p∑
j=1

µj = 1,

gj(x) ≤ 0, j = 1, . . . ,m,

µj (fj(x)− F (x)) = 0 and µj ≥ 0, j = 1, . . . , p,

λjgj(x) = 0 and λj ≥ 0, j = 1, . . . ,m.

(2.1)

Define the active sets

I(x)
∆
= { j | gj(x) = 0 },

J(x)
∆
= { j | fj(x) = F (x) }.

To see why KKT points are of interest, consider the set of all directions which

point strictly into the feasible set at a (feasible) point x, i.e.

D(x)
∆
= { d ∈ Rn | 〈∇gj(x), d〉 < 0, ∀j ∈ I(x) }.

We assume for this discussion that some form of constraint qualification holds at

the point x which ensures that D(x) is not empty. With some thought, it should

be clear that if x is a local minimizer for (M), then along each direction in D(x)

at least one active objective function must increase, i.e.

〈∇fj(x), d〉 ≥ 0, for some j ∈ J(x), ∀d ∈ D(x).

It is not difficult to show that this is equivalent to the condition

6 ∃ d ∈ Rn such that

 〈∇fj(x), d〉 < 0, j ∈ J(x),

〈∇gj(x), d〉 < 0, j ∈ I(x),

1These conditions are easily obtained from the more familiar KKT conditions for the case

p = 1 by considering the equivalent single-objective problem (M ′) introduced in Section 4.1.
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which is, in turn, equivalent to 0 being in the convex hull of the active objective

and constraint gradients. The following theorem, which is well-known (see, e.g.,

Section 10.8 of [39] for the p = 1 case), follows from these observations.

Theorem 1. Suppose that x∗ is a local minimizer for (M) and the set

{ ∇gj(x
∗) | j ∈ I(x∗) }

is linearly independent. Then x∗ is a KKT point for (M).

It follows that, since (2.1) involves only first derivatives, being a KKT point is

a first-order necessary condition of optimality. When no assumptions concerning

convexity are made, in order to obtain a sufficient condition for optimality, we

will need to appeal to higher order derivatives. This, of course, implies we will

have to assume higher order derivatives exist. An important function associated

with the problem (M) is the Lagrangian L : Rn × R
p × R

m → R defined as

L(x, µ, λ)
∆
=

p∑
j=1

µjfj(x) +
m∑
j=1

λjgj(x).

Suppose that x∗ satisfies the first-order optimality conditions (2.1) with multi-

pliers µ∗ ∈ Rp and λ∗ ∈ Rm . Further, suppose that x∗ is a regular point, i.e. the

set { ∇gj(x∗) | j ∈ I(x∗) } is linearly independent. Then x∗ is said to satisfy

the second order sufficiency conditions if ∇2
xxL(x∗, µ∗, λ∗) is positive definite on

the subspace

{h | 〈∇fi(x
∗), h〉 = 〈∇fj(x

∗), h〉, ∀i, j ∈ J(x∗)

and 〈∇gj(x
∗), h〉 = 0, ∀j ∈ I(x∗)}.
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It is said that strict complementary slackness holds if we also have µ∗,j > 0, for

all j ∈ J(x∗), and λ∗,j > 0 for all j ∈ I(x∗). The following theorem (again, see

[39] for the p = 1 case) establishes the sufficiency of these conditions.

Theorem 2. Suppose that x∗ ∈ Rn satisfies the second-order sufficiency condi-

tions with strict complementary slackness. Then x∗ is a strict local minimizer.

2.2 Convergence

When analyzing iterative algorithms such as those presented in the following

chapters, there are two questions of primary interest concerning the sequences

which are generated. First, given an arbitrary initial point, will the sequence

converge to some “desirable” point? An algorithm which is guaranteed to gener-

ate a sequence converging to a desirable point is said to be globally convergent.

Once this has been established, attention is turned to the question of how fast

the sequence will converge. The answer to this question is commonly referred to

as the local rate of convergence for the algorithm. In this section we will briefly

discuss a few well-known asymptotic convergence rate indicators which are rele-

vant to our discussions. For a comprehensive discussion of rates of convergence

for iterative algorithms, see [46].

Here we will be exclusively interested in the so-called quotient convergence

rates. A sequence {xk} is said to converge to x∗ with Q-order p ≥ 1 and Q-factor

γ if there exist k such that

‖xk+1 − x
∗‖ ≤ γ‖xk − x

∗‖p, ∀k ≥ k.

Of particular importance are the special cases
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• Q-linear : p = 1 and γ ∈ (0, 1), equivalently

lim
k→∞

sup
‖xk − x∗‖

‖xk+1 − x∗‖
< 1,

• Q-superlinear :

lim
k→∞

‖xk − x∗‖

‖xk+1 − x∗‖
= 0,

• Q-quadratic : p = 2, and γ > 0, equivalently

lim
k→∞

sup
‖xk − x∗‖

‖xk+1 − x∗‖2
<∞.

Of course, Q-quadratic convergence, well known to be the convergence rate for

Newton’s method of finding roots of nonlinear equations, is the fastest of the

three. Note that a sequence which converges Q-superlinearly (which we will refer

to simply as superlinear convergence) may not converge with any Q-order p > 1.

Thus, while being faster than linear convergence, superlinear convergence does

not imply quadratic. In general, we will be interested in establishing superlin-

ear convergence, or, specifically, the slightly weaker notion of 2-step superlinear

convergence, i.e.

lim
k→∞

‖xk−1 − x∗‖

‖xk+1 − x∗‖
= 0.

Quadratic convergence typically comes at the price of requiring higher order

derivatives than we are willing to assume available to the algorithm.

2.3 SQP Algorithms

Sequential Quadratic Programming (SQP) has evolved into a broad classification

encompassing a variety of algorithms. For the sake of simplicity, we consider the
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problem (P ) in this section, which we repeat for convenience,

min f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
(P )

where f : Rn → R and gj : Rn → R, j = 1, . . . ,m, are continuously differen-

tiable. When the number of variables n is not too large, SQP algorithms are

widely acknowledged to be the most successful algorithms available for solving

(P ). For an excellent recent survey of SQP algorithms, and the theory behind

them, see [5].

In general, an SQP algorithm is characterized as one in which a quadratic

model of (P ) is formed at the current estimate of the solution and is solved

in order to construct the next estimate of the solution. Typically, in order to

ensure global convergence, a suitable merit function is used to perform a line

search in the direction provided by the solution of the quadratic model. While

such algorithms are potentially very fast, the local rate of convergence is critically

dependent upon the type of second order information utilized in the quadratic

model as well as the method by which this information is updated.

Given estimates xk ∈ Rn of the solution of (P ), 0 ≤ λk ∈ Rm of the Lagrange

multipliers at the solution, and 0 < Hk = HT
k ∈ R

n×n of the Hessian of the

Lagrangian L(xk, λk), the standard2 SQP search direction d 0
k = d 0(xk, Hk) ∈ Rn

is computed as a solution of the QP

min 1
2
〈d 0, Hkd

0〉+ 〈∇f(xk), d
0〉

s.t. gj(xk) + 〈∇gj(xk), d 0〉 ≤ 0, j = 1, . . . ,m.

QP 0(xk, Hk)

2This is not the only choice available for an SQP search direction, though it is the most

popular.
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Most SQP algorithms require that the estimates of the Lagrange multipliers be

updated as well. Let λ0
k ∈ R

m be the optimal multipliers from QP 0(xk, Hk). One

possible choice for a search direction in the multiplier space is dλk = λ0
k−λk. Thus,

for a suitable step-length parameter tk ∈ (0, 1], new estimates of the solution of

(P ) and the corresponding multipliers may be taken as

xk+1 = xk + tkd
0
k , λk+1 = λk + tkd

λ
k.

Another popular alternative for the multiplier update is to simply set λk+1 = λ0
k.

While not all SQP algorithm follow precisely this, a basic framework is as follows.

Algorithm SQP

Data: x0 ∈ Rn , 0 < H0 = HT
0 ∈ R

n×n , and a merit function φ(·).

Step 0 - Initialization. set k ← 0.

Step 1 - Computation of search direction. compute d 0
k = d 0(xk, Hk)

and the corresponding QP multiplier vector λ0
k.

Step 2 - Line search. compute tk such that

φ(xk + tkd
0
k ) < φ(xk).

Step 3 - Updates.

(i). set xk+1 ← xk + tkd
0
k and λk+1 ← λk + tkd

λ
k.

(ii). compute a new estimate Hk+1 of the Hessian of the Lagrangian.

Step 4. if convergence criterion is satisfied, then stop.

else set k ← k + 1 and goto Step 1.

22



Clearly there are a number of “degrees of freedom” that must be fixed before

such an algorithm could be implemented. In terms of global and local conver-

gence properties, the two most important choices to be made are that of an

appropriate merit function φ(·) and the Hessian updating scheme to be used in

Step 3(ii). The purpose of the merit function is to enforce global convergence

far from the solution. The requirements of decreasing the objective function

and satisfying the constraints must be balanced. In order to measure progress

towards a solution, a merit function is typically chosen so that its unconstrained

minimizers correspond to minimizers of (P ). In order for the algorithm to be

well-posed, it is necessary that the computed search direction d 0
k is a descent

direction at xk for the merit function, i.e. there must exist a t̄ > 0 such that

φ(xk + td 0
k ) < φ(xk), ∀t ∈ (0, t̄ ].

A common example is the `1 merit function

φ`1(x) = f(x) + ρ ·
m∑
i=1

g+
i (x),

originally proposed by Han [22], where ρ > 0 and g+
i (x) = max{0, gi(x)}. If ρ is

chosen large enough, the unconstrained minimizer of φ`1(·) is, in fact, a solution

of (P ).

An obvious choice for the matrices Hk is, of course, the exact Hessian of the

Lagrangian evaluated at (xk, λk), i.e.

Hk = ∇2
xxL(x, λ)

∣∣
(xk,λk)

.

If (xk, λk) are sufficiently close to a strong local minimizer (x∗, λ∗), then it can

be shown that such a choice leads to a quadratic rate of convergence [5] (assum-

ing a unit step is always accepted in the line search). Unfortunately, in most
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applications, the computation of second derivatives is prohibitively expensive.

Further, the true Hessian is often not well-behaved (not positive definite) far

from the solution. Thus, approximate updating schemes are used in most prac-

tical algorithms. While a great number of such schemes have been studied in

the literature, one particular method that has enjoyed great success in practice

is the class of secant approximations. Following [5], a Taylor expansion in x of

∇xL(x, λk+1) about the point xk+1 reveals

∇xL(xk+1, λk+1)−∇xL(xk, λk+1) ≈ ∇
2
xxL(xk+1, λk+1)(xk+1 − xk).

This relationship inspires the secant equation, which requires an update Hk+1 to

satisfy

Hk+1(xk+1 − xk) = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1).

The most common updating schemes add either a rank-one or rank-two matrix

Uk = U(Hk, xk+1, xk, λk+1, λk) to Hk so that Hk+1 = Hk + Uk will satisfy the

secant equation. Under appropriate conditions, such updating schemes lead to

superlinear rates of convergence. Finally, we note that simply using a positive

definite matrix for all k (such as the identity matrix) without attempting to

estimate any second order information will likely result in a linear convergence

rate.

Local convergence analysis is always done under the assumption that a full

step of one, i.e. tk = 1 is accepted in the line search for all k sufficiently large.

It turns out, though, that for certain popular choices of merit functions (e.g.,

the `1 merit function) the step length may be truncated even in a neighborhood

of the solution, hence preventing superlinear convergence. This phenomenon

was first observed by N. Maratos in his PhD thesis [41]. Several methods have
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been proposed in the literature to overcome this problem. Among these are the

“watch-dog” technique of Chamberlain, et al. [9], the non-monotone line search

schemes originally proposed by Grippo, et al. [20], then adapted to the SQP

framework as a Maratos avoidance scheme by Panier and Tits [50] and Bonnans,

et al. [7], and the second-order correction, or “bending”, method proposed by

Mayne and Polak in [42]. The algorithms discussed in this dissertation will

utilize a second-order correction inspired by that in [42].

2.4 Feasible Direction Algorithms

A feasible direction at a point x ∈ X (recall the definition of X from Section 1.3)

is defined as any vector d ∈ Rn satisfying x+ td ∈ X for all t ∈ [0, t̄ ], for some

t̄ > 0. Note that the SQP direction d 0 = d 0(x,H), a direction of descent for f ,

may not be a feasible direction at x, though it is at worst tangent to the active

constraint surface (see Figure 2.1, where d is a feasible descent direction and

the dashed lines represent level curves of f). Thus, in order to generate feasible

iterates in the SQP framework, it is necessary to “tilt” d 0 into the feasible

set. A number of different approaches have been considered in the literature for

generating feasible directions and, specifically, tilting the SQP direction.

Early feasible direction algorithms (see, e.g., [80, 53]) were first-order meth-

ods, i.e. only first derivatives were used and no attempt was made to accumu-

late and use second-order information. Furthermore, search directions were often

computed via linear programs instead of QPs. As a consequence, such algorithms

converged linearly at best. Polak proposed several extensions to these algorithms

(see [53], Section 4.4) which took second-order information into account when
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d0

d

∇f(x)

∇g(x)

X

Figure 2.1: Infeasibility of SQP direction d0.

computing the search direction. A few of the search directions proposed by Polak

could be viewed as tilted SQP directions (with proper choice of the matrices en-

capsulating the second-order information in the defining equations). Even with

the second-order information, though, it was not possible to guarantee superlin-

ear convergence because no mechanism was included for controlling the amount

of tilting.

A straightforward way to tilt the SQP direction is, of course, to perturb

the right-hand side of the constraints in QP 0(x,H) directly. Building on this

observation, Herskovits and Carvalho [25] and Panier and Tits [48] independently

developed similar feasible SQP algorithms in which the size of the perturbation

was a function of the norm of d 0(x,H) at the current point x ∈ X. Thus, their

algorithms required the solution of QP 0(x,H) in order to define the perturbed

QP. Both algorithms were shown to be superlinearly convergent. On the other

hand, as a by-product of the tilting scheme, global convergence proved to be
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more elusive. In fact, the algorithm in [25] is not globally convergent, while the

algorithm in [48] had to resort to a first-order search direction far from a solution

in order to guarantee global convergence. Such a hybrid scheme could give slow

convergence if a poor initial point is chosen.

The algorithm developed by Panier and Tits in [51], and analyzed under

weaker assumptions by Qi and Wei in [64], has enjoyed a great deal of success

in practice as implemented in the FFSQP/CFSQP [79, 36] software packages.

We will refer to their algorithm as FSQP. In [51], instead of directly perturbing

QP 0(x,H), tilting is accomplished by replacing d 0 with the convex combination

d = (1− ρ)d 0 + ρd1, where d1 ∈ Rn is an (essentially) arbitrary feasible descent

direction (see Figure 2.2). To preserve the local convergence properties of the

x

d0

d1

d = (1− ρ)d0 + ρd1

X

Figure 2.2: “Tilting” the SQP direction d0 in FSQP.

SQP iteration, ρ = ρ(d 0) ∈ [0, 1] is computed so that d approaches d 0 fast

enough (in particular, ρ(d 0) = O(‖d 0‖2)) as the solution is approached. It is

suggested that, for example, d1 = d1(x) may be taken as a solution of the QP

min
1

2
‖d1‖2 + max

{
〈∇f(x), d1〉+ max

j=1,... ,m
{gj(x) + 〈∇gj(x), d

1〉}

}
. QP 1(x)
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Finally, in order to avoid the Maratos effect and guarantee a superlinear rate

of convergence, a second order correction d̃ = d̃(x, d,H) ∈ Rn is used to “bend”

the search direction (see Figure 2.3). That is, an Armijo-type search is performed

x

d

d̃

x+ d+ d̃
X

Figure 2.3: “Bending” the direction d in FSQP.

along the arc x + td + t2d̃. In [51], the Maratos correction d̃k is taken as the

solution of the QP

min 1
2
〈d̂k + d̃, Hk(d̂k + d̃)〉+ 〈∇f(xk), d̂k + d̃〉

s.t. gj(xk + d̂k) + 〈∇gj(xk), d̂k + d̃〉 ≤ −‖d̂k‖τ , j = 1, . . . ,m,

Q̃P (xk, d̂k, Hk)

if it exists and has norm less than min{‖d̂k‖, C}, where τ ∈ (2, 3) and C large

are given. Otherwise, d̃k = 0. It is observed in [51] that d̃ could instead be taken

as the solution of a linear least squares problem without affecting the asymptotic

convergence properties.

From the point of view of computational cost, the main drawback of algorithm

FSQP is the need to solve three QPs (or two QPs and a linear least squares

problem) at each iteration. Clearly, for many problems it would be desirable to

reduce the number of QPs at each iteration while preserving the generation of

feasible iterates as well as the global and local convergence properties. This is

especially critical in the context of those large-scale nonlinear programs for which

the time spent solving the QPs dominates that used to evaluate the functions.
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Recently there has been a great deal of interest in interior point algorithms for

nonconvex nonlinear programming (see, e.g., [11, 13, 74, 8, 52, 73]). Such algo-

rithms generate feasible iterates and typically only require the solution of linear

systems of equations in order to generate new iterates. Performance of interior

point algorithms tends to be closely related to the careful iterative reduction

of a barrier parameter. Essentially, search directions are computed based upon

quadratic models of logarithmic barrier functions. On the other hand, SQP-

type methods, such as the algorithm proposed here, base search directions upon

a quadratic model of the original problem. Thus SQP-type methods should,

in general, generate better search directions than interior point methods at the

expense of possibly more work per iteration. Of course, work is still very much

in its infancy for interior point nonconvex nonlinear programming algorithms.

Eventually, such algorithms may be an attractive alternative, especially for very

large problems.
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Chapter 3

Basic Algorithm

3.1 Introduction

In this chapter we propose and analyze an algorithm to solve the standard smooth

nonlinear programming problem (P ), which we again repeat for convenience,

min f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
(P )

where f : Rn → R and gj : Rn → R, j = 1, . . . ,m, are continuously differen-

tiable. The algorithm and analysis of this chapter represent the under-pinnings

of this dissertation. In subsequent chapters we will extend the algorithm pre-

sented here to handle generalizations of (P ).

Recall that the feasible set for (P ) is denoted by

X
∆
= { x ∈ Rn | gj(x) ≤ 0, j = 1, . . . ,m }.

We consider a perturbation of QP 0(x,H), the QP used to compute the standard

SQP direction (see Chapter 2), which allows us to control the tilting into the

feasible set. Specifically, given x ∈ X, 0 < H = HT ∈ Rn×n , and 0 ≤ η ∈ R, let
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(d̂, γ̂) = (d̂(x,H, η), γ̂(x,H, η)) ∈ Rn × R solve the QP

min 1
2
〈d̂, Hd̂〉+ γ̂

s.t. 〈∇f(x), d̂〉 ≤ γ̂,

gj(x) + 〈∇gj(x), d̂〉 ≤ γ̂ · η, j = 1, . . . ,m.

Q̂P (x,H, η)

In Section 3.3, we show that d̂ is a descent direction and, for η > 0, d̂ is a feasible

direction. Note that for η ≡ 1, the search direction is a special case of those

computed in Polak’s second-order feasible direction algorithms (see Section 4.4

in the book [53]). Further, it is not difficult to show that when η ≡ 0, we recover

the SQP direction, i.e. d̂(x,H, 0) = d 0(x,H). Large values of the parameter η,

which we will call the tilting parameter, emphasize feasibility, while small values

of η emphasize descent.

In [3], Birge, Qi, and Wei propose an SQP algorithm based on Q̂P (x,H, η)

which generates feasible iterates. Their motivation for introducing the right-

hand-side constraint perturbation and the tilting parameters (they use a vector

of parameters, one for each constraint) is, like us, to obtain a feasible search

direction. Specifically, motivated by the nature of the application problems they

are interested in tackling, their goal is to ensure a full step of one is accepted

in the line search as early as is possible (so that costly line searches are avoided

for most iterations). To this end, their tilting parameters start out positive and,

if anything, increase when a step of one is not accepted. A side-effect of such

an updating scheme is that the algorithm cannot achieve a superlinear rate of

convergence, as the authors point out in Remark 5.1 of [3].

In the present chapter, our goal is to compute a feasible descent direction

which approaches the true SQP direction fast enough so as to ensure superlinear

convergence. Furthermore, we would like to do this with as little computation
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per iteration as possible. While computationally the most expensive, algorithm

FSQP of [51] (see also Section 2.4) has the convergence properties and practical

performance we seek. Motivated by this observation, we examine the relevant

properties of the search directions generated by algorithm FSQP on the sequence

of iterates {xk}. For x ∈ X, define

I(x)
∆
= { j | gj(x) = 0 },

the index set of active constraints at the point x. In [51], in order for the line-

search (with the objective function f(x) used directly as the merit function) to

be well-defined, and in order to preserve global and fast local convergence, the

sequence of search directions {dk} generated by algorithm FSQP is constructed

so that the following properties hold:

1. dk = 0 if xk is a KKT point for (P ),

2. 〈∇f(xk), dk〉 < 0 if xk is not a KKT point,

3. 〈∇gj(xk), dk〉 < 0, for all j ∈ I(xk) if xk is not a KKT point, and

4. dk = d 0
k +O(‖d 0

k‖
2).

We will show in Section 3.3 that for Hk = HT
k > 0 and ηk ≥ 0, d̂k = d̂(xk, Hk, ηk)

automatically satisfies the first two properties. Furthermore, d̂k satisfies the third

property if ηk > 0. Ensuring the fourth property is satisfied requires a bit more

care.

In the algorithm presented in Section 3.2, at iteration k, we compute the

search direction via Q̂P (xk, Hk, ηk) and the tilting parameter ηk is iteratively

adjusted to ensure the four properties are satisfied. The resultant algorithm will

be shown to be locally superlinearly convergent and globally convergent without
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resorting to a first-order direction far from the solution (as is required in the

similar scheme proposed in [48]). Further, the generation of a new iterate will

only require the solution of one QP and two closely related linear least squares

problems. Note that, in contrast with the algorithm presented in [3], our tilting

parameter starts out positive and asymptotically approaches zero.

In Section 3.2, we present the details of our new FSQP algorithm. In Sec-

tion 3.3, we show that under mild assumptions our iteration is globally con-

vergent, as well as locally superlinearly convergent. The algorithm has been

implemented and tested and we show in Section 3.4 that the numerical results

are quite promising.

3.2 Algorithm

We begin by making a few assumptions that will be in force throughout the

chapter.

Assumption 1: The set X is non-empty.

Assumption 2: The functions f : Rn → R and gj : Rn → R, j = 1, . . . ,m, are

continuously differentiable.

Assumption 3: For all x ∈ X with I(x) 6= ∅, the set {∇gj(x) | j ∈ I(x)} is

linearly independent.

Recall that (simplifying (2.1) to the case p = 1) a point x ∈ Rn is said to be

a Karush-Kuhn-Tucker (KKT) point for the problem (P ) if there exist scalars
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(KKT multipliers) λj , j = 1, . . . ,m, satisfying

∇f(x) +
m∑
j=1

λj∇gj(x) = 0,

gj(x) ≤ 0, j = 1, . . . ,m,

λjgj(x) = 0 and λj ≥ 0, j = 1, . . . ,m.

(3.1)

It is well known that, under our assumptions, a necessary condition for optimality

for a point x ∈ X is that it be a KKT point, i.e. satisfy the KKT conditions.

Note that, with x ∈ X, Q̂P (x,H, η) is always consistent: (0, 0) satisfies

the constraints. Indeed, Q̂P (x,H, η) always has a unique solution (d̂, γ̂) (see

Lemma 1 below) which, by convexity, is its unique KKT point; i.e. there exist

multipliers µ̂ ∈ R and λ̂j , j = 1, . . . ,m, which, together with (d̂, γ̂), satisfy

 Hd̂

1

+ µ̂

 ∇f(x)

−1

+
m∑
j=1

λ̂j

 ∇gj(x)
−η

 = 0,

〈∇f(x), d̂〉 ≤ γ̂,

gj(x) + 〈∇gj(x), d̂〉 ≤ γ̂ · η, ∀j = 1, . . . ,m,

µ̂
(
〈∇f(x), d̂〉 − γ̂

)
= 0 and µ̂ ≥ 0,

λ̂j
(
gj(x) + 〈∇gj(x), d̂〉 − γ̂ · η

)
= 0 and λ̂j ≥ 0, ∀j = 1, . . . ,m.

(3.2)

A simple consequence of the first equation in (3.2), which will be used throughout

our analysis, is an affine relationship amongst the multipliers, namely

µ̂+ η ·
m∑
j=1

λ̂j = 1. (3.3)

The parameter η will be iteratively adjusted, i.e. η = ηk, to ensure that

d̂k = d̂(xk, Hk, ηk) has the necessary properties. At iteration k, choosing ηk > 0

is sufficient to guarantee the first three properties discussed in Section 3.1 are

34



satisfied. As it turns out, though, we will need something a little stronger than

this. In order to ensure that, away from a solution, there is adequate tilting

into the feasible set (hence the step size does not collapse) we strengthen the

positivity requirement to force ηk to be bounded away from zero away from KKT

points of (P ). Finally, the fourth property requires that ηk → 0, as k → ∞,

sufficiently fast as d 0(xk, Hk) → 0. Of course, we do not want to compute

d 0
k = d 0(xk, Hk), as is done in [48], so we must rely on some other information

to update ηk.

Given an estimate Ik of the active set I(xk), we can compute an estimate

d̂ 0
k = d̂ 0(xk, Hk, Ik) of d 0(xk, Hk) by solving the equality constrained QP

min 1
2
〈d̂ 0, Hkd̂ 0〉+ 〈∇f(xk), d̂ 0〉

s.t. gj(xk) + 〈∇gj(xk), d̂ 0〉 = 0, j ∈ Ik,
LS0(xk, Hk, Ik)

which is equivalent (after a change of variables) to a linear least squares problem.1

Let Îk be the set of active constraints, not including the “objective descent”

constraint 〈∇f(xk), d̂k〉 ≤ γ̂k, for Q̂P (xk, Hk, ηk), i.e.

Îk
∆
= { j | gj(xk) + 〈∇gj(xk), d̂k〉 = γ̂k · ηk }.

We will show in Section 3.3 that d̂ 0(xk, Hk, Îk−1) = d 0(xk, Hk) for all k suffi-

ciently large. Furthermore, it will be shown that, when d̂k is small, choosing

ηk ∝ ‖d̂ 0(xk, Hk, Îk−1)‖
2

will be sufficient to establish global and 2-step superlinear convergence. Proper

choice of the proportionality constant (Ck in the algorithm statement below),

while not important in the convergence analysis, is critical for satisfactory nu-

merical performance. This will be discussed in Section 3.4.

1Which is, in turn, equivalent to a square system of linear equations in n+ |Î0
k | variables.
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In Section 2.4, it was mentioned that a linear least squares problem could

be used instead of a QP to compute a version of the Maratos correction d̃ with

the same asymptotic convergence properties. Given that our goal is to reduce

the computational cost per iteration, it makes sense to use such an approach

here. Thus, we take d̃k = d̃(xk, d̂k, Hk, Îk) as the solution, if it exists and is not

too large, of the equality constrained QP (equivalent to a least squares problem

after a change of variables)

min 1
2
〈d̂k + d̃, Hk(d̂k + d̃)〉+ 〈∇f(xk), d̂k + d̃〉

s.t. gj(xk + d̂k) + 〈∇gj(xk), d̃〉 = −‖d̂k‖τ , ∀j ∈ Îk,
L̃S(xk, d̂k, Hk, Îk)

where τ ∈ (2, 3), a direct extension of an alternative considered in [48]. Such an

objective, as compared to the pure least squares objective ‖d̃‖2, should improve

numerical performance without significantly increasing computational require-

ments (or affecting the convergence analysis). In the case that L̃S(xk, d̂k, Hk, Îk)

is inconsistent, or the computed solution d̃k is too large, we could simply set

d̃k = 0. Note that one should use Q̃P (xk, d̂k, Hk) (see Section 2.4) for problems

in which function evaluations are expensive compared to the solution of a QP

since it provides a better model of (P ).

The proposed algorithm is as follows.

Algorithm FSQP′

Parameters: α ∈ (0, 1
2
), β ∈ (0, 1), τ ∈ (2, 3), ε` > 0, 0 < C ≤ C, D̄ > 0.

Data: x0 ∈ X, 0 < H0 = HT
0 ∈ R

n×n , 0 < η0 ∈ R.

Step 0 - Initialization. set k ← 0.

Step 1 - Computation of search arc.
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(i). compute (d̂k, γ̂k) = (d̂(xk, Hk, ηk), γ̂(xk, Hk, ηk)), the active set

Îk, and the associated multipliers µ̂k ∈ R, λ̂k ∈ Rm .

(ii). if (d̂k = 0) then stop.

(iii). compute d̃k = d̃(xk, d̂k, Hk, Îk) if it exists and satisfies ‖d̃k‖ ≤

‖d̂k‖. Otherwise, set d̃k = 0.

Step 2 - Arc search. compute tk, the first number t in the sequence

{1, β, β2, . . . } satisfying

f(xk + td̂k + t2d̃k) ≤ f(xk) + αt〈∇f(xk), d̂k〉,

gj(xk + td̂k + t2d̃k) ≤ 0, j = 1, . . . ,m.

Step 3 - Updates.

(i). set xk+1 ← xk + tkd̂k + t2kd̃k.

(ii). compute a new symmetric positive definite estimate Hk+1 to

the Hessian of the Lagrangian.

(iii). select Ck+1 ∈ [C,C].

∗ if (‖d̂k‖ < ε`) then

· compute, if possible,2 d̂ 0
k+1 = d̂ 0(xk+1, Hk+1, Îk), and the

associated multipliers λ̂0
k+1 ∈ R

|Îk |.

· if
(
d̂ 0
k+1 exists and ‖d̂ 0

k+1‖ ≤ D̄ and λ̂0
k+1 ≥ 0

)
then set

ηk+1 ← Ck+1 · ‖d̂ 0
k+1‖

2.

· else set ηk+1 ← Ck+1 · ‖d̂k‖2.

2That is, if LS0(xk+1,Hk+1, Îk) is non-degenerate.

37



∗ else set ηk+1 ← Ck+1 · ε2` .

(iv). set k ← k + 1 and goto Step 1.

3.3 Convergence Analysis

Much of our analysis, especially the local analysis, will be devoted to establish-

ing the relationship between d̂(x,H, η) and the SQP direction d 0(x,H). As a

consequence, we will be referring to the KKT conditions for QP 0(x,H) in sev-

eral places. The direction d 0 = d 0(x,H) is a KKT point for QP 0(x,H) if there

exists a multiplier λ0 ∈ Rm satisfying

Hd 0 +∇f(x) +
m∑
j=1

λ0,j∇gj(x) = 0,

gj(x) + 〈∇gj(x), d 0〉 ≤ 0, j = 1, . . . ,m,

λ0,j · (gj(x) + 〈∇gj(x), d 0〉) = 0 and λ0,j ≥ 0, j = 1, . . . ,m.

(3.4)

Further, an estimate d̂ 0 = d̂ 0(x,H, I) is a KKT point for LS0(x,H, I) if there

exists a multiplier λ̂0 ∈ Rm satisfying
Hd̂ 0 +∇f(x) +

∑
j∈I

λ̂0
j
∇gj(x) = 0,

gj(x) + 〈∇gj(x), d̂ 0〉 = 0, j ∈ I.

(3.5)

Note that the components of λ̂0 for j 6∈ I play no role in the optimality con-

ditions. We chose to always use λ̂0 ∈ R
m , independent of the size of I, for

notational convenience and consistency in indexing.
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3.3.1 Global Convergence

In this section we establish that, under mild assumptions, our proposed algo-

rithm FSQP′ generates a sequence of iterates {xk} with the property that all

accumulation points are KKT points for the problem (P ). We begin by estab-

lishing some properties of the tilted SQP search direction d̂(x,H, η).

Lemma 1. Given H = HT > 0, x ∈ X, and η ≥ 0, d̂(x,H, η) is well-defined

and (d̂, γ̂) = (d̂(x,H, η), γ̂(x,H, η)) is the unique KKT point of Q̂P (x,H, η).

Furthermore, suppose {xk}k∈N ⊂ X is bounded, {Hk}k∈N is bounded away from

singularity, and {ηk}k∈N ⊂ [0,∞). Then {d̂(xk, Hk, ηk)}k∈N is bounded.

Proof. First note that the feasible set for Q̂P (x,H, η) is non-empty, since (d̂, γ̂) =

(0, 0) is always feasible. Now consider the cases η = 0 and η > 0 separately. From

(3.2) and (3.4), it is clear that, if η = 0, then (d̂, γ̂) is a solution to Q̂P (x,H, 0)

if, and only if, d̂ is a solution of QP 0(x,H) and γ̂ = 〈∇f(x), d̂〉. It is well known

that, under our assumptions, d 0(x,H) is well-defined, unique, and continuous

as a function of x. Thus, the lemma follows immediately for this case. Suppose

now that η > 0. In this case, (d̂, γ̂) is a solution of Q̂P (x,H, η) if, and only if, d̂

solves the unconstrained problem

min
1

2
〈d̂, Hd̂〉+ max

{
〈∇f(x), d̂〉,

1

η
· max
j=1,... ,m

{gj(x) + 〈∇gj(x), d̂〉}

}
. (3.6)

and

γ̂ = max

{
〈∇f(x), d̂〉,

1

η
· max
j=1,... ,m

{gj(x) + 〈∇gj(x), d̂〉}

}
.

Since the function being minimized in (3.6) is strictly convex and radially un-

bounded, it follows that (d̂(x,H, η), γ̂(x,H, η)) is well-defined and unique as a

global minimizer for the convex problem Q̂P (x,H, η), and thus unique as a KKT

point for that problem.
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To prove the third claim, let d̂k = d̂(xk, Hk, ηk) and note that since {Hk}k∈N

is bounded away from singularity and Hk = HT
k > 0, for all k, there exists σ1 > 0

such that

〈d̂k, Hkd̂k〉 ≥ σ1‖d̂k‖
2, ∀k.

Further, the optimal value of the Q̂P (xk, Hk, ηk) is non-positive (since (0, 0) is

always feasible), thus

γ̂k ≤ −
1

2
〈d̂k, Hkd̂k〉,

for all k. In view of the first QP constraint,

〈∇f(xk), d̂k〉 ≤ −
1

2
〈d̂k, Hkd̂k〉

≤ −
σ1

2
‖d̂k‖

2,

for all k. It follows that

‖d̂k‖ ≤
2

σ1
‖∇f(xk)‖,

where we have used the inequality −‖∇f(xk)‖‖d̂k‖ ≤ 〈∇f(xk), d̂k〉. Bounded-

ness of {xk}k∈N and Assumption 2 gives the result.

Lemma 2. Given H = HT > 0 and η ≥ 0

(i). γ̂(x,H, η) ≤ 0 for all x ∈ X. Moreover, γ̂(x,H, η) = 0 if, and only if,

d̂(x,H, η) = 0.

(ii). d̂(x,H, η) = 0 if, and only if, x is a KKT point for (P ).

Proof. To prove (i), note that (d̂, γ̂) = (0, 0) is always feasible for Q̂P (x,H, η),

thus the optimal value of the QP is non-positive. Further, since H > 0, the

quadratic term in the objective is non-negative, which implies γ̂(x,H, η) ≤ 0.

Now suppose d̂(x,H, η) = 0, then feasibility of the first QP constraint implies

γ̂(x,H, η) = 0. Finally, suppose γ̂(x,H, η) = 0. Since x ∈ X, H > 0, and η ≥ 0,
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it is clear that d̂ = 0 is both feasible and achieves the minimum value of the

objective. Thus, uniqueness gives d̂(x,H, η) = 0 and part (i) is proved.

Suppose now that d̂(x,H, η) = 0. Then γ̂(x,H, η) = 0 and by (3.2) there

exist multipliers λ̂ ∈ Rm and 0 ≤ µ̂ ∈ R satisfying

µ̂∇f(x) +
m∑
j=1

λ̂j∇gj(x) = 0,

gj(x) ≤ 0, ∀j = 1, . . . ,m,

λ̂jgj(x) = 0 and λ̂j ≥ 0, ∀j = 1, . . . ,m.

We begin by showing that µ̂ > 0. Proceeding by contradiction, suppose µ̂ = 0,

then by (3.3) we have
m∑
j=1

λ̂j > 0.

Note that,

Î
∆
= { j | gj(x) + 〈∇gj(x), d̂(x,H, η)〉 = γ̂(x,H, η) · η }

= { j | gj(x) = 0 } = I(x).

Thus, by the complementary slackness condition of (3.2) and the optimality

conditions above,

0 =
m∑
j=1

λ̂j∇gj(x) =
∑
j∈I(x)

λ̂j∇gj(x).

By Assumption 3, if I(x) 6= ∅, then this sum vanishes only if λ̂j = 0, for all j ∈

I(x), but we saw above that this is not the case. Hence we have a contradiction

and it follows that µ̂ > 0. It is now immediate that x is a KKT point for (P )

with multipliers λj = λ̂j/µ̂, j = 1, . . . ,m.

Finally, to prove the necessity portion of part (ii) note that if x is a KKT point

for (P ), then (3.1) shows that (d̂, γ̂) = (0, 0) is a KKT point for Q̂P (x,H, η),
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with µ̂ = (1 + η
∑

j λj)
−1 and λ̂j = λj(1 + η

∑
j λj)

−1, j = 1, . . . ,m. Uniqueness

of such points (Lemma 1) gives the result.

The next two lemmas establish that the line search in Step 2 of Algorithm

FSQP′ is well defined.

Lemma 3. Suppose x ∈ X is not a KKT point for (P ), H = HT > 0, and

η > 0. Then

(i). 〈∇f(x), d̂(x,H, η)〉 < 0, and

(ii). 〈∇gj(x), d̂(x,H, η)〉 < 0, for all j ∈ I(x).

Proof. Both follow immediately from Lemma 2 and the fact that d̂(x,H, η) and

γ̂(x,H, η) must satisfy the constraints in Q̂P (x,H, η).

Lemma 4. If ηk = 0, then xk is a KKT point for (P ) and the algorithm will

stop in Step 1(ii) at iteration k. On the other hand, whenever the algorithm does

not stop in Step 1(ii), the line search is well defined, i.e. Step 2 yields a step

tk = βj for some finite j = j(k).

Proof. Suppose that ηk = 0. Then k > 0 and, by Step 3(iii), either d̂ 0
k = 0 with

λ̂0
k ≥ 0, or d̂k−1 = 0. The latter case cannot hold, as the stopping criterion in

Step 1(ii) would have stopped the algorithm at iteration k − 1. On the other

hand, if d̂ 0
k = 0 with λ̂0

k ≥ 0, then in view of the optimality conditions (3.5), and

the fact that xk is always feasible for (P ), we see that xk is a KKT point for (P )

with multipliers

λj =


λ̂0
k

j
, j ∈ Îk−1,

0, otherwise.
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Thus, by Lemma 2, d̂k = 0 and the algorithm will stop in Step 1(ii). The first

claim is thus proved. Also, we have established that ηk > 0 whenever Step

2 is reached. The second claim now follows immediately from Lemma 3 and

Assumption 2.

The previous lemmas imply that the algorithm is well-defined. In addition,

Lemma 2 shows that if Algorithm FSQP′ generates a finite sequence terminat-

ing at the point xN , then xN is a KKT point for the problem (P ). We now

concentrate on the case in which an infinite sequence {xk} is generated, i.e. the

algorithm never satisfies the termination condition in Step 1(ii). Note that, in

view of Lemma 4, we may assume throughout that

ηk > 0, ∀k ∈ N . (3.7)

Given an infinite index set K, we will use the notation

xk
k∈K
−→ x∗

to mean

xk → x∗ as k →∞, k ∈ K.

Lemma 5. Suppose K ⊆ N is an infinite index set such that xk
k∈K
−→ x∗ ∈ X,

Hk
k∈K
−→ H∗ > 0, {ηk} is bounded on K, and d̂k

k∈K
−→ 0. Then Îk ⊆ I(x∗), for all

k ∈ K, k sufficiently large and the QP multiplier sequences {µ̂k} and {λ̂k} are

bounded on K. Further, given any accumulation point η∗ ≥ 0 of {ηk}k∈K, (0, 0)

is the unique solution of Q̂P (x∗, H∗, η∗).

Proof. It follows immediately from non-negativity and (3.3) that {µ̂k}k∈K is

bounded. Assumption 2 allows us to conclude that {∇f(xk)}k∈K is bounded.
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Lemma 2 and the first constraint in Q̂P (xk, Hk, ηk) give

〈∇f(xk), d̂k〉 ≤ γ̂k ≤ 0, ∀k ∈ K.

Thus, γ̂k
k∈K
−→ 0. Next, we will show that Îk ⊆ I(x∗), for all k ∈ K, k sufficiently

large. Consider j′ 6∈ I(x∗). There exists δj′ > 0 such that gj′(xk) ≤ −δj′ < 0,

for all k ∈ K, k sufficiently large. In view of Assumption 2, and since d̂k
k∈K
−→ 0,

γ̂k
k∈K
−→ 0, and {ηk} is bounded on K, it is clear that

gj′(xk) + 〈∇gj′(xk), d̂k〉 − γ̂k · ηk ≤ −
δj′

2
< 0,

i.e. j′ 6∈ Îk, for all k ∈ K, k sufficiently large. Hence, Îk ⊆ I(x∗), for all k ∈ K,

k sufficiently large, which proves the first claim of the lemma.

Boundedness of {µ̂k}k∈K has been proved. To prove that of {λ̂k}k∈K, using

complementary slackness, and the first equation in (3.2), write

Hkd̂k + µ̂k∇f(xk) +
∑

j∈I(x∗)

λ̂jk∇gj(xk) = 0. (3.8)

Proceeding by contradiction, suppose that {λ̂k}k∈K is unbounded. Without loss

of generality, assume that ‖λ̂k‖∞ > 0, for all k ∈ K and define for all k ∈ K

νjk
∆
=

λ̂jk

‖λ̂k‖∞
∈ [0, 1].

Note that, for all k ∈ K, ‖νk‖∞ = 1. Dividing (3.8) by ‖λ̂k‖∞ and taking limits

on an appropriate subsequence of K, it follows that

∑
j∈I(x∗)

ν∗,j∇gj(x
∗) = 0,

for some ν∗,j , j ∈ I(x∗), where ‖ν∗‖∞ = 1. As this contradicts Assumption 3, it

is established that {λ̂k}k∈K is bounded.
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To complete the proof, let K′ ⊆ K be an infinite index set such that ηk
k∈K′

−→ η∗

and assume without loss of generality that µ̂k
k∈K′

−→ µ̂∗ and λ̂k
k∈K′

−→ λ̂∗. Taking

limits in the optimality conditions (3.2) shows that, indeed, (d̂, γ̂) = (0, 0) is a

KKT point for Q̂P (x∗, H∗, η∗) with multipliers µ̂∗ and λ̂∗. Finally, uniqueness

of such points (Lemma 1) proves the result.

Before proceeding, we make an assumption concerning the estimates Hk of

the Hessian of the Lagrangian.

Assumption 4: There exist constants 0 < σ1 ≤ σ2 such that, for all k,

σ1‖d‖
2 ≤ 〈d,Hkd〉 ≤ σ2‖d‖

2, ∀d ∈ Rn .

Lemma 6. The sequences {Hk} and {ηk} generated by Algorithm FSQP′ are

bounded. Further, the sequence {d̂k} is bounded on subsequences on which {xk}

is bounded.

Proof. That {Hk} is bounded follows immediately from Assumption 4. Step

3(iii) of Algorithm FSQP′ ensures that the sequence {ηk} is bounded. Finally,

it then follows from Lemma 1 that {d̂k} is bounded on subsequences on which

{xk} is bounded.

Lemma 7. If K ⊆ N is an infinite index set such that d̂k
k∈K
−→ 0, then all accu-

mulation points of {xk}k∈K are KKT points for (P ).

Proof. Suppose K′ ⊆ K is an infinite index set on which xk
k∈K′

−→ x∗ ∈ X. In view

of Lemma 6, assume, without loss of generality that Hk
k∈K′

−→ H∗ > 0 and ηk
k∈K′

−→

η∗ ≥ 0. Lemma 5 shows that (0, 0) is the unique solution of Q̂P (x∗, H∗, η∗).

Thus, in view of Lemma 2, x∗ is a KKT point for (P ).
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We now state and prove the main result of this section.

Theorem 3. Under the stated assumptions, Algorithm FSQP′ generates a se-

quence {xk} for which all accumulation points are KKT points for (P ).

Proof. Suppose K ⊆ N is an infinite index set such that xk
k∈K
−→ x∗. In view of

Lemma 6, we may assume without loss of generality that d̂k
k∈K
−→ d̂∗, ηk

k∈K
−→ η∗ ≥

0, and Hk
k∈K
−→ H∗ > 0. The cases η∗ = 0 and η∗ > 0 are considered separately.

Suppose first that η∗ = 0. Then, by Step 3(iii), either d̂ 0
k

k∈K
−→ 0 with λ̂0

k ≥ 0,

for all k ∈ K, k large enough, or d̂k−1
k∈K
−→ 0. If the latter case holds, it is then

clear that xk−1
k∈K
−→ x∗, since ‖xk − xk−1‖ ≤ 2‖d̂k−1‖

k∈K
−→ 0. Thus, by Lemma 7,

x∗ is a KKT point for (P ). Now suppose instead that d̂ 0
k

k∈K
−→ 0 with λ̂0

k ≥ 0,

for all k ∈ K, k large enough. Using an argument very similar to that used in

Lemma 5, we can show that {λ̂0
k}k∈K is a bounded sequence and Îk−1 ⊆ I(x∗),

for all k ∈ K, k sufficiently large. Thus, taking limits in (3.5) on an appropriate

subsequence of K shows that x∗ is a KKT point for (P ).

Now consider the case η∗ > 0. We will show that d̂k
k∈K
−→ 0. Proceeding

by contradiction, without loss of generality suppose there exists d > 0 such

that ‖d̂k‖ ≥ d for all k ∈ K. Thus, from non-positivity of the optimal value

of the objective function in Q̂P (xk, Hk, ηk) (since (0, 0) is always feasible) and

Assumption 4, we see that

γ̂k ≤ −
1

2
σ1d

2 < 0, ∀k ∈ K.

Further, in view of (3.7) and since η∗ > 0, there exists η > 0 such that

ηk > η, ∀k ∈ K.

From the constraints of Q̂P (xk, Hk, ηk), it follows that

〈∇f(xk), d̂k〉 ≤ −
1

2
σ1d

2 < 0, ∀k ∈ K,
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and

gj(xk) + 〈∇gj(xk), d̂k〉 ≤ −
1

2
σ1d

2η < 0, ∀k ∈ K,

j = 1, . . . ,m. Hence, using Assumption 2, it is easily shown that there exists

δ > 0 such that for all k ∈ K, k large enough,

〈∇f(xk), d̂k〉 ≤ −δ,

〈∇gj(xk), d̂k〉 ≤ −δ, ∀j ∈ I(x∗)

gj(xk) ≤ −δ, ∀j ∈ {1, . . . ,m} \ I(x∗).

The rest of the contradiction argument establishing d̂k
k∈K
−→ 0 follows exactly the

proof of Proposition 3.2 in [48]. Finally, it then follows from Lemma 7 that x∗

is a KKT point for (P ).

3.3.2 Local Convergence

While the details are often quite different, overall the analysis in this section

is inspired by and occasionally follows that of Panier and Tits in [48, 51]. In

order to establish a rate of convergence for the algorithm, we first strengthen

the regularity assumptions.

Assumption 2′: The functions f : Rn → R and gj : Rn → R, j = 1, . . . ,m, are

three times continuously differentiable.

Recall that a point x∗ is said to satisfy the second order sufficiency conditions

with strict complementary slackness for (P ) if there exists a multiplier vector

λ∗ ∈ Rm such that

• The pair (x∗, λ∗) satisfies (3.1), i.e. x∗ is a KKT point for (P ),
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• ∇2
xxL(x∗, λ∗) is positive definite on the subspace

{h | 〈∇gj(x
∗), h〉 = 0, ∀j ∈ I(x∗)},

• and λ∗,j > 0 for all j ∈ I(x∗) (strict complementary slackness).

In order to guarantee that the entire sequence {xk} converges to a KKT point

x∗, we make the following assumption. Recall that we have already established,

under weaker assumptions, that every accumulation point of {xk} is a KKT

point for (P ).

Assumption 5: The sequence {xk} has an accumulation point x∗ which satisfies

the second order sufficiency conditions with strict complementary slackness.

It is well known, and not difficult to show, that Assumption 5 guarantees the

entire sequence converges. For a proof see, e.g., Proposition 4.1 in [48]. We state

the result here without proof.

Lemma 8. The entire sequence generated by Algorithm FSQP′ converges to a

point x∗ satisfying the second order sufficiency conditions with strict complemen-

tary slackness.

From this point forward, λ∗ will denote the (unique) multiplier vector sat-

isfying the KKT conditions for (P ) at x∗. Further, we need to strengthen the

assumptions concerning the sequence {Hk}.

Assumption 6: The sequence {Hk} converges to some H∗ = H∗T > 0.

In order to establish a rate of convergence, we will show that our sequence of

tilted SQP directions approaches the true SQP direction, for which asymptotic
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rates of convergence are well known, sufficiently fast. In order to do so, define

d 0
k = d 0(xk, Hk), where xk and Hk are as computed by Algorithm FSQP′ .

Further, for each k, define λ0
k ∈ R

m as a multiplier vector satisfying (3.4) at d 0
k

and let I0
k

∆
= { j | gj(xk) + 〈∇gj(xk), d 0

k 〉 = 0 }. The following lemma is proved

in [48, 51] under identical assumptions.

Lemma 9.

(i) d 0
k → 0,

(ii) λ0
k → λ∗.

(iii) For all k sufficiently large, the following two equalities hold

I0
k = { j | λ0,j

k > 0 } = I(x∗).

Before proceeding, we state one more well-known result that will be called

upon several times throughout the balance of the analysis. First, we make the

definitions

Rk
∆
= [ ∇gj(xk) : j ∈ I(x∗) ] ,

gk
∆
= [ gj(xk) : j ∈ I(x∗) ]T .

Lemma 10. Under the stated assumptions, the matrix Hk Rk

RT
k 0


is uniformly invertible, i.e. it has bounded condition number for all k.

We now establish that the entire tilted SQP direction sequence converges to

0. In order to do so, we establish that d̂(x,H, η) is continuous in a neighborhood

of (x∗, H∗, η∗), for any η∗ ≥ 0. Complicating the analysis is the fact that we have
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yet to establish that the sequence {ηk} does, in fact, converge. Given η∗ ≥ 0,

define the set

N∗(η∗)
∆
=


 ∇f(x∗)

−1

 ,

 ∇gj(x∗)
−η∗

 , j ∈ I(x∗)

 .

Lemma 11. Given any η∗ ≥ 0, the set N∗(η∗) is linearly independent.

Proof. Note that, in view of Lemma 2, d̂∗ = d̂(x∗, H∗, η∗) = 0. Now suppose the

lemma does not hold, i.e. suppose there exist scalars λj, j ∈ {0} ∪ I(x∗), not all

zero, such that

λ0

 ∇f(x∗)

−1

+
∑

j∈I(x∗)

λj

 ∇gj(x∗)
−η∗

 = 0. (3.9)

In view of Assumption 3, λ0 6= 0 and the scalars λj are unique modulo a scaling

factor. This uniqueness, the fact that d̂∗ = 0, and the optimality conditions (3.2)

imply that µ̂∗ = 1 and

λ̂∗,j =


λj

λ0
j ∈ I(x∗)

0 else,

j = 1, . . . ,m are KKT multipliers for Q̂P (x∗, H∗, η∗). Thus, in view of (3.3),

η∗ ·
∑

j∈I(x∗)

λj

λ0
= 0.

But this contradicts (3.9), which gives

η∗ ·
∑

j∈I(x∗)

λj

λ0
= −1,

hence N∗(η∗) is linearly independent.
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Lemma 12. Let η∗ ≥ 0 be an accumulation point of {ηk}. Then (d̂∗, γ̂∗) =

(0, 0) is the unique solution of Q̂P (x∗, H∗, η∗) and the second order sufficiency

conditions hold, with strict complementary slackness.

Proof. In view of Lemma 2, Q̂P (x∗, H∗, η∗) has (d̂∗, γ̂∗) = (0, 0) as its unique

solution. Define the Lagrangian function L̂∗ : Rn × R × R × R
m → R for

Q̂P (x∗, H∗, η∗) as

L̂∗(d̂, γ̂, µ̂, λ̂) =
1

2
〈d̂, H∗d̂〉+ γ̂ + µ̂

(
〈∇f(x∗), d̂〉 − γ̂

)
+

m∑
j=1

λ̂j
(
gj(x

∗) + 〈∇gj(x
∗), d̂〉 − γ̂η∗

)
.

Suppose µ̂∗ ∈ R and λ̂∗ ∈ Rm are multipliers satisfying (3.2) at (d̂∗, γ̂∗). Let j = 0

be the index for the first constraint in Q̂P (x∗, H∗, η∗), i.e. 〈∇f(x∗), d̂〉 ≤ γ̂. Note

that since (d̂∗, γ̂∗) = (0, 0), the active constraint index set3 Î∗ for Q̂P (x∗, H∗, η∗)

is equal to I(x∗), the active constraint index set for (P ) at x∗, in addition to

j = 0. Thus the set of active constraint gradients for Q̂P (x∗, H∗, η∗) is N∗(η∗).

Now consider the Hessian of the Lagrangian for Q̂P (x∗, H∗, η∗), i.e. the

second derivative with respect to the first two variables (d̂, γ̂),

∇2L̂∗(0, 0, λ̂∗, µ̂∗) =

 H∗ 0

0 0

 ,
and given an arbitrary h ∈ R

n+1 , decompose it as h = (yT , α)T , where y ∈ R
n

and α ∈ R. Then clearly,

hT∇2L̂∗(0, 0, λ̂∗, µ̂∗)h ≥ 0, ∀h

3We are temporarily abandoning our convention of omitting the objective descent constraint

in Î for this argument only.
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and for h 6= 0, hT∇2L̂∗(0, 0, λ̂∗, µ̂∗)h = yTH∗y is zero if, and only if, y = 0 and

α 6= 0. Since  ∇f(x∗)

−1


T  0

α

 = −α 6= 0,

it then follows that ∇2L̂∗(0, 0, λ̂∗, µ̂∗) is positive definite on N∗(η∗)⊥, the tangent

space to the active constraints for Q̂P (x∗, H∗, η∗) at (0, 0). Thus, it is established

that the second order sufficiency conditions hold. We next show that strict

complementary slackness holds.

First, µ̂∗ > 0. Indeed, suppose to the contrary that µ̂∗ = 0. In view of (3.3),

this implies there exists an index j′ ∈ Î∗ such that λ̂∗,j
′
> 0. Recalling that

Î∗ = I(x∗) ∪ {0} and invoking complementary slackness for Q̂P (x∗, H∗, η∗), the

first equation in (3.2) gives

∑
j∈I(x∗)

λ̂∗,j∇gj(x
∗) = 0.

As λ̂∗,j
′
> 0 for some j′ ∈ Î∗, this contradicts Assumption 3. Next, a well-known

consequence of Assumption 3 is that the KKT multipliers λ∗,j for (P ) at x∗

are unique. Thus, it follows from the optimality conditions (3.2) and (3.1) that

λ̂∗,j = µ̂∗ ·λ∗,j, j = 1, . . . ,m. Further, it follows from Assumption 5 that λ̂∗,j > 0,

j ∈ I(x∗), i.e. strict complementary slackness is satisfied by Q̂P (x∗, H∗, η∗) at

(0, 0).

Lemma 13. If K is a subsequence on which {ηk} converges, say to η∗ ≥ 0, then

µ̂k
k∈K
−→ µ̂∗ > 0 and λ̂k

k∈K
−→ µ̂∗ · λ∗, where µ̂∗ = µ̂∗(η∗) is the KKT multiplier for

the first constraint of Q̂P (x∗, H∗, η∗). Finally, d̂k → 0 and γ̂k → 0.

Proof. In view of Lemmas 11 and 12, we may invoke a result due to Robinson
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(Theorem 2.1 in [68]) to conclude

(d̂k, γ̂k)
k∈K
−→ (0, 0), µ̂k

k∈K
−→ µ̂∗, and

λ̂k
µ̂∗

k∈K
−→ λ∗.

It is important to note that µ̂∗ is a function of η∗, i.e. µ̂∗ = µ̂∗(η∗). Now suppose

that the last claim of the lemma does not hold. If d̂k 6→ 0, there exists an

infinite index set K ⊆ N and d > 0 such that ‖d̂k‖ ≥ d, for all k ∈ K. As

{ηk}k∈K is bounded, there exists an infinite index set K′ ⊆ K and η∗ ≥ 0 such

that ηk
k∈K′

−→ η∗. By what we showed above, d̂k
k∈K′

−→ 0, which is a contradiction,

hence d̂k → 0. It immediately follows from the first constraint of Q̂P (xk, Hk, ηk)

that γ̂k → 0.

Lemma 14. For all k sufficiently large, Îk = I(x∗).

Proof. Since {ηk} is bounded and (d̂k, γ̂k) → (0, 0), in view of Lemma 5, Îk ⊆

I(x∗), for all k sufficiently large. Now suppose it does not hold that Îk = I(x∗)

for all k sufficiently large. Thus, there exists j′ ∈ I(x∗) and an infinite index

set K ⊆ N such that j′ 6∈ Îk, for all k ∈ K. Now, in view of Lemma 6, there

exists an infinite index set K′ ⊆ K and η∗ ≥ 0 such that ηk
k∈K′

−→ η∗. Since

j′ ∈ I(x∗), Assumption 5 guarantees λ∗,j
′
> 0. Further, Lemma 13 shows that

λ̂j
′

k

k∈K′

−→ µ̂∗(η∗) · λ∗,j
′
> 0. Therefore, λ̂j

′

k > 0 for all k sufficiently large, k ∈ K′,

which, by complementary slackness, implies j′ ∈ Îk for all k ∈ K′ large enough.

Since K′ ⊆ K, this is a contradiction, hence Îk = I(x∗), for all k sufficiently

large.

Given a vector λ ∈ Rm , define the notation

λ+ ∆
= [ λj : j ∈ I(x∗) ]T .
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Note that, in view of Lemma 9(iii), for k large enough, the optimality conditions

(3.4), yield  Hk Rk

RT
k 0


 d 0

k

(λ0
k)

+

 = −

 ∇f(xk)

gk

 . (3.10)

Lemma 15. For all k sufficiently large, d̂ 0
k = d 0

k .

Proof. In view of Lemma 14 and the optimality conditions (3.5), the estimate

d̂ 0
k and its corresponding multiplier vector λ̂0

k (recall that for ease of notation we

defined λ̂0
k ∈ R

m) satisfy Hk Rk

RT
k 0


 d̂ 0

k

(λ̂0
k)

+

 = −

 ∇f(xk)

gk

 , (3.11)

for all k sufficiently large. In view of (3.10), the result then follows from

Lemma 10.

Lemma 16.

(i) ηk → 0,

(ii) µ̂k → 1, and λ̂k → λ∗.

(iii) For all k sufficiently large, Îk = { j | λ̂jk > 0 }.

Proof. Claim (i) follows from Step 3(iii) of Algorithm FSQP′, since in view of

Lemma 13, Lemma 15, and Lemma 9, {d̂k} and {d̂ 0
k} both converge to 0. In

view of (i), Lemma 13 establishes that µ̂k → µ̂∗(0), and λ̂k → µ̂∗(0) · λ∗. That

µ̂∗(0) = 1 follows from (3.3), hence claim (ii) is proved. Finally, claim (iii)

follows from claim (ii), Lemma 14, and Assumption 5.
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We now focus our attention on establishing relationships between d̂k, d̃k, and

the true SQP direction d 0
k .

Lemma 17.

(i) ηk = O(‖d 0
k‖

2),

(ii) d̂k = d 0
k +O(‖d 0

k‖
2).

(iii) γ̂k = O(‖d 0
k‖).

Proof. In view of Lemma 15, d̂ 0
k exists and d̂ 0

k = d 0
k for all k sufficiently large.

Lemmas 13 and 9 ensure that Step 3(iii) of Algorithm FSQP′ chooses ηk =

Ck · ‖d̂ 0
k‖

2 for all k sufficiently large, thus (i) follows. It is clear from Lemma 14

and the optimality conditions (3.2) that d̂k and λ̂k satisfy Hk Rk

RT
k 0


 d̂k

λ̂+
k

 = −

 µ̂k · ∇f(xk)

gk − ηk · γ̂k · 1|I(x∗)|



= −

 ∇f(xk)

gk

+ ηk ·


 ∑
j∈I(x∗)

λ̂jk

 · ∇f(xk)

γ̂k · 1|I(x∗)|

 , (3.12)

for all k sufficiently large, where 1|I(x∗)| is a vector of |I(x∗)| ones. It thus follows

from (3.10) that

d̂k = d 0
k +O(ηk),

and in view of claim (i), claim (ii) follows. Finally, since (from the QP constraint

and Lemma 2) 〈∇f(xk), d̂k〉 ≤ γ̂k < 0, it is clear that γ̂k = O(‖d̂k‖) = O(‖d 0
k‖).

Lemma 18. d̃k = O(‖d 0
k‖

2).
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Proof. Let

ck
∆
= [−gj(xk + d̂k)− ‖d̂k‖

τ : j ∈ I(x∗)]T .

Expanding gj(·), j ∈ I(x∗), about xk we see that, for some ξj ∈ (0, 1), j ∈ I(x∗),

ck = [

=−ηk·γ̂k︷ ︸︸ ︷
−gj(xk)− 〈∇gj(xk), d̂k〉

+
1

2
〈d̂k,∇

2gj(xk + ξjd̂k)d̂k〉 − ‖d̂k‖
τ : j ∈ I(x∗) ]T .

Since τ > 2, from Lemma 17, we conclude ck = O(‖d 0
k‖

2). Now, for all k suffi-

ciently large, Îk = I(x∗), d̃k is well-defined and satisfies

gj(xk + d̂k) + 〈∇gj(xk), d̃k〉 = −‖d̂k‖
τ , j ∈ I(x∗), (3.13)

thus, we have established

RT
k d̃k = O(‖d 0

k‖
2). (3.14)

The first order KKT conditions for L̃S(xk, d̂k, Hk, Îk) tell us there exists a

multiplier λ̃k ∈ R|I(x
∗ )| satisfying

Hk(d̂k + d̃k) +∇f(xk) +Rkλ̃k = 0,

RT
k d̃k = ck.

Also, from the optimality conditions (3.12) we have

Hkd̂k +∇f(xk) = qk −Rkλ̂
+
k ,

where

qk
∆
= ηk ·

 ∑
j∈I(x∗)

λ̂jk

 · ∇f(xk).

So, d̃k and λ̃k satisfy Hk Rk

RT
k 0


 d̃k

λ̃k

 =

 Rkλ̂
+
k − qk

ck

 .
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Solving for d̃k, after a little algebra we obtain

d̃k = H−1
k Rk(R

T
kH

−1
k Rk)

−1ck

+
[
H−1
k −H

−1
k Rk(R

T
kH

−1
k Rk)

−1RT
kH

−1
k

]
(Rkλ̂

+
k − qk)

= H−1
k Rk(R

T
kH

−1
k Rk)

−1ck

+
[
H−1
k −H

−1
k Rk(R

T
kH

−1
k Rk)

−1RT
kH

−1
k

]
(−qk).

Further, in view of Lemma 17 and boundedness of all sequences, qk = O(‖d 0
k‖

2).

Thus, d̃k equivalently satisfies Hk Rk

RT
k 0


 d̃k

λ′k

 =

 −qk
ck

 = O(‖d 0
k‖

2),

for some λ′k ∈ R
|I(x∗ )|. The result then follows from Lemma 10.

We now add one additional assumption to ensure that the matrices {Hk}

suitably approximate the Hessian of the Lagrangian at the solution. Define the

projection

Pk
∆
= I −Rk(R

T
kRk)

−1RT
k .

Assumption 7:

lim
k→∞

‖Pk(Hk −∇2
xxL(x∗, λ∗))Pkd̂k‖

‖d̂k‖
= 0.

The following technical lemma will be needed in order to establish that even-

tually the step of one is always accepted by the line search.

Lemma 19. There exist constants ν1, ν2, ν3 > 0 such that

(i) 〈∇f(xk), d̂k〉 ≤ −ν1‖d 0
k‖

2,
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(ii) for all k sufficiently large

m∑
j=1

λ̂jkgj(xk) ≤ −ν2‖gk‖,

(iii) d̂k = Pkd̂k + d1
k, where

‖d1
k‖ ≤ ν3‖gk‖+O(‖d 0

k‖
3),

for all k sufficiently large.

Proof. To show part (i), note that in view of the first QP constraint, negativity

of the optimal value of the QP objective, and Assumption 4,

〈∇f(xk), d̂k〉 ≤ γ̂k

≤ −1
2
〈d̂k, Hkd̂k〉

≤ −σ1

2
‖d̂k‖2 = −σ1

2
‖d 0

k‖
2 +O(‖d 0

k‖
4).

The proof of part (ii) is identical to that of Lemma 4.4 in [48]. To show (iii),

note that from (3.12) for all k sufficiently large, d̂k satisfies

RT
k d̂k = −gk − γ̂kηk · 1|I(x∗)|.

Thus, we can write d̂k = Pkd̂k + d1
k, where

d1
k = −Rk(R

T
kRk)

−1(gk + γ̂kηk · 1|I(x∗)|).

The result follows from Assumption 3.

Lemma 20. For all k sufficiently large, tk = 1.
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Proof. Following [48], consider an expansion of gj(·) about xk + d̂k for j ∈ I(x∗),

for all k sufficiently large,

gj(xk + d̂k + d̃k) = gj(xk + d̂k) + 〈∇gj(xk + d̂k), d̃k〉+O(‖d 0
k‖

4)

= gj(xk + d̂k) + 〈∇gj(xk), d̃k〉+O(‖d 0
k‖

3)

= −‖d̂k‖τ +O(‖d 0
k‖

3)

= −‖d 0
k ‖

τ +O(‖d 0
k‖

3),

where we have used Lemmas 17 and 18, boundedness of all sequences, and the

constraints from L̃S(xk, d̂k, Hk, Îk) (Îk = I(x∗) for all k sufficiently large by

Lemma 14). As τ < 3, it follows that gj(xk + d̂k + d̃k) ≤ 0, j ∈ I(x∗), for all k

sufficiently large. The same result trivially holds for j 6∈ I(x∗). Further, we have

gj(xk + d̂k + d̃k) = O(‖d 0
k‖

τ ), j ∈ I(x∗). (3.15)

In view of Assumption 2′ and Lemmas 17 and 18,

f(xk + d̂k + d̃k) = f(xk) + 〈∇f(xk), d̂k〉+ 〈∇f(xk), d̃k〉

+ 1
2
〈d̂k,∇2f(xk)d̂k〉+O(‖d 0

k‖
3).

From the optimality conditions (3.2), Lemma 17(i), and boundedness of all se-

quences, we see

Hkd̂k +∇f(xk) +
m∑
j=1

λ̂jk∇gj(xk) = O(‖d 0
k‖

2). (3.16)

Complementary slackness for Q̂P (xk, Hk, ηk) and Lemma 17 yield

λ̂jk〈∇gj(xk), d̂k〉 = −λ̂jkgj(xk) +O(‖d 0
k‖

3). (3.17)

Taking the inner product of (3.16) with d̂k, then adding and subtracting the

quantity
∑

j λ̂
j
k〈∇gj(xk), d̂k〉, using (3.17), and finally multiplying the result by
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1
2

gives

1
2
〈∇f(xk), d̂k〉 = −

1

2
〈d̂k, Hkd̂k〉 −

m∑
j=1

λ̂jk〈∇gj(xk), d̂k〉

−
1

2

m∑
j=1

λ̂jkgj(xk) +O(‖d 0
k‖

3).

Further, Lemmas 17 and 18 and (3.16) give

〈∇f(xk), d̃k〉 = −
m∑
j=1

λ̂jk〈∇gj(xk), d̃k〉+O(‖d 0
k‖

3).

Combining results, we have

f(xk + d̂k + d̃k)− f(xk) =

1

2
〈∇f(xk), d̂k〉 −

1

2
〈d̂k, Hkd̂k〉 −

1

2

m∑
j=1

λ̂jkgj(xk)

−
m∑
j=1

λ̂jk〈∇gj(xk), d̂k〉 −
m∑
j=1

λ̂jk〈∇gj(xk), d̃k〉

+
1

2
〈d̂k,∇

2f(xk)d̂k〉+O(‖d 0
k‖

3). (3.18)

Expanding about xk and using Lemmas 17(ii) and 18 and equation (3.15)

we have

gj(xk) + 〈∇gj(xk), d̂k〉+ 〈∇gj(xk), d̃k〉 =

−
1

2
〈d̂k,∇

2gj(xk)d̂k〉+O(‖d 0
k‖

τ ), j ∈ I(x∗),

since τ < 3. Rearranging to give an expression for gj(xk) and then substituting
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into the third term on the right-hand side of (3.18) for each j gives

f(xk + d̂k + d̃k)− f(xk) =

1

2
〈∇f(xk), d̂k〉+

1

2

m∑
j=1

λ̂jkgj(xk)

+
1

2
d̂Tk

(
∇2f(xk) +

m∑
j=1

λ̂jk∇
2gj(xk)−Hk

)
d̂k

+O(‖d 0
k‖

τ ).

Subtracting α〈∇f(xk), d̂k〉 from both sides and invoking Lemma 19 shows there

exist constants ν2, ν3 > 0 such that, since τ > 2,

f(xk + d̂k + d̃k)− f(xk)− α〈∇f(xk), d̂k〉 ≤

(
1

2
− α)〈∇f(xk), d̂k〉+

1

2
d̂TkPk

(
∇2f(xk) +

m∑
j=1

λ̂jk∇
2gj(xk)−Hk

)
Pkd̂k

−

(
ν2 − ν3

(
‖d̂k‖+ ν3‖gk‖

)∥∥∥∥∥∇2f(xk) +
m∑
j=1

λ̂jk∇
2gj(xk)−Hk

∥∥∥∥∥
)
· ‖gk‖

+o(‖d 0
k‖

2).

Since d̂k → 0 and gk → 0 and all sequences are bounded, the third term on the

right-hand side is negative for all k sufficiently large, hence

f(xk + d̂k + d̃k)− f(xk)− α〈∇f(xk), d̂k〉 ≤

(
1

2
− α)〈∇f(xk), d̂k〉+

1

2
d̂TkPk

(
∇2
xxL(xk, λ̂k)−Hk

)
Pkd̂k

+o(‖d 0
k‖

2).

Assumption 7 says that Pk(∇2
xxL(xk, λ̂k)−Hk)Pkd̂k = o(‖d̂k‖). This, along with
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Lemma 19 implies

f(xk + d̂k + d̃k)− f(xk)− α〈∇f(xk), d̂k〉

≤ −ν1(
1

2
− α)‖d 0

k‖
2 + o(‖d 0

k‖
2)

≤ 0,

for all k sufficiently large. Thus we have shown that the conditions of the line

search in Step 2 are satisfied with tk = 1 for all k sufficiently large.

A consequence of Lemmas 17, 18, and 20 is that the algorithm generates a

convergent sequence of iterates satisfying

xk+1 − xk = d 0
k +O(‖d 0

k‖
2). (3.19)

This allows us to apply, with some modification, the argument used by Powell

in [60] to establish a 2-step superlinear rate of convergence, the main result of

this section. The modification of Powell’s argument to our case is given in the

appendix.

Theorem 4. Algorithm FSQP′ generates a sequence {xk} which converges 2-

step superlinearly to x∗, i.e.

lim
k→∞

‖xk+2 − x∗‖

‖xk − x∗‖
= 0.

3.4 Implementation and Numerical Results

In our implementation of Algorithm FSQP′ we allow for some classification of

the constraints in order to exploit structure. In particular, the implementation

contains special provisions for linear (affine) constraints and simple bounds on
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the variables. The general problem solved is

min f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,mn,

〈aj, x〉+ bj ≤ 0, j = 1, . . . ,ma,

x` ≤ x ≤ xu,

where aj ∈ R
n , bj ∈ R, j = 1, . . . ,ma, and x`, xu ∈ R

n with x` < xu (compo-

nentwise). The linear constraints and bounds require no “tilting” and may be

directly incorporated into Q̂P (xk, Hk, ηk), i.e.

min 1
2
〈d̂, Hkd̂〉+ γ̂

s.t. 〈∇f(xk), d̂〉 ≤ γ̂,

gj(x) + 〈∇gj(x), d̂〉 ≤ γ̂ · ηjk, j = 1, . . . ,mn,

〈aj, xk + d̂〉+ bj ≤ 0, j = 1, . . . ,ma,

x` − xk ≤ d̂ ≤ xu − xk.

Note that a distinct value of ηk is maintained for each nonlinear constraint, i.e

ηjk, j = 1, . . . ,mn. This helps significantly in practice while not affecting the

analysis. We define the active sets in the implementation as

Înk = { j | gj(xk) + 〈∇gj(xk), d̂k〉 − γ̂k · η
j
k > −

√
εm }

Îak = { j | 〈aj, xk + d̂k〉+ bj > −
√
εm }

where εm is the machine precision. As before, let λ̂jk ∈ R
mn be the QP multipliers

corresponding to the nonlinear constraints. Define λ̂ak ∈ R
ma , ζuk ∈ R

n , and

ζ lk ∈ R
n as the QP multipliers corresponding to the affine constraints, the upper
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bounds, and the lower bounds respectively. The binding sets are defined as

Îb,nk = { j | λ̂jk > 0 }, Îb,ak = { j | λ̂a,jk > 0 },

Îb,lk = { j | ζ l,jk > 0 }, Îb,uk = { j | ζu,jk > 0 }.

Of course, no bending is required from d̃k for affine constraints and simple

bounds. Hence, if Înk = ∅, we simply set d̃k = 0, otherwise the implementa-

tion attempts to compute d̃k as the solution of

min 〈d̂k + d̃, Hk(d̂k + d̃)〉+ 〈∇f(xk), d̂k + d̃〉

s.t. gj(xk + d̂k) + 〈∇gj(xk), d̃〉 = −min{10−2‖d̂k‖, ‖d̂k‖τ}, j ∈ Înk ,

〈aj, xk + d̂k + d̃〉+ bj = 0, j ∈ Îak ,

d̃j = xu − xjk − d̂
j
k, j ∈ Îb,uk ,

d̃j = xl − xjk − d̂
j
k, j ∈ Îb,lk .

Since not all simple bounds are included in the computation of d̃k, it is possible

that xk + d̂k + d̃k will not satisfy all bounds. To take care of this, we simply

“clip” d̃k so that the bounds are satisfied. Specifically, for the upper bounds, we

perform the following:

for j 6∈ Îb,uk do

if (d̃jk ≥ xu − xjk − d̂
j
k) then

d̃jk ← xu − xjk − d̂
j
k

end

The same procedure, mutatis mutandis, is executed for the lower bounds. We

note that such a procedure has no effect on the convergence analysis of Section 3.3

since, locally, the active set is correctly identified and a full step along d̂k + d̃k is

always accepted.
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Due to convexity of affine constraints, in the line search of Step 2 we first

generate an upper bound on the step size t̄k ≤ 1 using the affine constraints that

were not used in the computation of d̃k. Once these constraints are satisfied, they

need not be checked again. Finally, the least squares problem used to compute

d̂ 0
k is modified similarly. In the implementation, d̂ 0

k is only computed if mn > 0,

in which case we use

min 1
2
〈d̂ 0, Hkd̂ 0〉+ 〈∇f(xk), d̂ 0〉

s.t. gj(xk) + 〈∇gj(xk), d̂ 0〉 = 0, j ∈ Îb,nk−1,

〈aj, xk + d̂ 0〉+ bj = 0, j ∈ Îb,ak−1,

d̂ 0
j
= xu − xjk, j ∈ Îb,uk−1,

d̂ 0
j
= xl − xjk, j ∈ Îb,lk−1.

It was mentioned above that, in the implementation, we maintain a separate

tilting parameter ηjk for each nonlinear constraint. In particular, the ηjk’s are

different because we use a different scaling Cj
k for each nonlinear constraint.

In the algorithm description and in the analysis all that was required of Ck

was that it remain bounded and bounded away from zero. In practice, though,

performance of the algorithm is critically dependent upon the choice of Ck. For

our implementation, an adaptive scheme was chosen in which Cj
k is increased if

gj(·) caused a failure in the line search. Otherwise, if f(·) caused a failure in the

line search, Ck is decreased. Specifically, our update rule is as follows,

if (gj(·) caused line search failure) then Cj
k+1 ← Cj

k · δc

else if (f(·) caused line search failure) then Cj
k+1 ← Cj

k/δc

if (Cj
k+1 < C) then Cj

k+1 ← C

if (Cj
k+1 > C) then Cj

k+1 ← C
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where δc > 1.

Another aspect of the algorithm which was purposefully left vague in Sec-

tions 3.2 and 3.3 was the updating scheme for the Hessian estimates Hk. In

the implementation, we use the BFGS update with Powell’s modification [61].

Specifically, define

δk+1
∆
= xk+1 − xk

γk+1
∆
= ∇xL(xk+1, λ̂k)−∇xL(xk, λ̂k),

where, in an attempt to better approximate the true multipliers, if µ̂k >
√
εm

we normalize as follows

λ̂jk ←
λ̂jk
µ̂k
, j = 1, . . . ,mn.

A scalar θk+1 ∈ (0, 1] is then defined by

θk+1
∆
=


1, if δTk+1γk+1 ≥ 0.2 · δTk+1Hkδk+1,

0.8 · δTk+1Hkδk+1

δTk+1Hkδk+1 − δTk+1γk+1

, otherwise.

Defining ξk+1 ∈ Rn as

ξk+1
∆
= θk+1 · γk+1 + (1− θk+1) ·Hkδk+1,

the rank two Hessian update is

Hk+1 = Hk −
Hkδk+1δ

T
k+1Hk

δTk+1Hkδk+1

+
ξk+1ξ

T
k+1

δTk+1ξk+1

.

Note that while it is not clear whether the resultant sequence {Hk} will, in

fact, satisfy Assumption 7, this update scheme is known to perform very well in

practice.

Our implementation calls the Goldfarb-Idnani based active set QP solver

QLD due to Powell and Schittkowski [70]. QLD uses dense linear algebra and
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does not allow “warm starts”, i.e. does not allow the user to supply an initial

guess for the QP multipliers. For simplicity, we not only used QLD to solve

Q̂P (xk, Hk, ηk), but also the least squares problems. Of course, this was likely

not too inefficient since the active set is known automatically for these problems.

In order to guarantee that the algorithm terminates after a finite number of

iterations with an approximate solution, the stopping criterion of Step 1(ii) is

changed to

if (‖d̂k‖ ≤ ε) stop,

where ε > 0 is small. Finally, note that during the line search of Step 2, as

soon as it is determined that the given trial point does not satisfy the descent

criterion or a particular constraint, no more constraints are evaluated. In this

case, a new trial point is immediately computed and the trial evaluations start

over from the beginning. In order to reduce the number of constraint function

evaluations, the constraint which caused the failure is always checked first at the

new trial point, as it is most likely to be infeasible.

In order to test the implementation, we selected several problems from [28]

which provided feasible initial points and contained no equality constraints. The

results are reported in Table 3.1. For all problems we used the parameter values

α = 0.1, β = 0.5, τ = 2.5,

ε` = min{1,
√
ε}, C = 1× 10−3, C = 1× 103,

δc = 10, D̄ = 10 · ε`.

Further, we always set H0 = I and ηj0 = 1× 10−2, Cj
0 = 1, j = 1, . . . ,mn.

In Table 3.1 we compare our implementation with CFSQP [36], the imple-

mentation of Algorithm FSQP as described in [51]. The column labeled # lists

the problem number as given in [28], the column labeled ALGO tells which al-
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gorithm was used to solve the given problem (the names are self-explanatory).

The next three columns give the size of the problem following the conventions

of this section. The columns labeled NF, NG, and IT give the number of objective

function evaluations, nonlinear constraint function evaluations, and iterations

required to solve the problem, respectively. Finally, f(x∗) is the objective func-

tion value at the final iterate and ε is the tolerance for the size of the search

direction (the stopping criterion). The value of ε was chosen in order to obtain

approximately the same precision as reported in [28] for each problem.

The results reported in Table 3.1 are very encouraging. The performance

of our implementation of Algorithm FSQP′ is essentially identical to that of

CFSQP (Algorithm FSQP). Of course, Algorithm FSQP′ requires substantially

less work per iteration than Algorithm FSQP. Thus, in the case that the work

to generate a new iterate dominates the work to evaluate the objectives and

constraints, the new algorithm is at a clear advantage.

3.5 Modification of Powell’s Argument

In this appendix we discuss how the arguments given by Powell in Sections 2 and

3 of [60] may be used, with some modification, to prove Theorem 4. To avoid

confusion, we will refer to lemmas from [60] as Lemma P.n, where n is the number

as it appears in [60]. We begin by noting that all of Powell’s assumptions outlined

at the beginning of Section 2 in [60] hold in our case (under the strengthened

assumptions of Section 3.3.2). Also, Lemmas P.1 and P.2 are already established

by our Lemmas 14 and 16. These Lemmas show that the active set is exactly

identified by the QP multipliers for all k sufficiently large. In view of this,
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and since Lemma 20 shows that tk = 1 for all k sufficiently large, the inactive

constraints eventually have no effect on the computation of a new iterate. Thus,

without loss of generality, it may be assumed here that we are generating iterates

converging to a solution of the problem

min f(x)

s.t. gj(x) = 0, j ∈ I(x∗),
(P+)

Let L+ : Rn×R |I(x
∗ )| → R be the corresponding Lagrangian function and, recall-

ing our notation introduced in Section 3.3.2, let λ∗+ be the optimal multiplier

for (P+).

Lemma P.3, which establishes that the SQP direction d 0
k is unchanged when

the matrix Hk is perturbed by a symmetric matrix whose kernel includes the

orthogonal complement of the constraint gradients, is algorithm independent,

hence automatically holds. Following Powell’s notation, define

hk
∆
= Pk∇f(xk),

and interpret the symbol “∼” as meaning the ratio of the expression on the

left-hand side to the right-hand side is both bounded above and bounded away

from zero, as k →∞. Using the same argument as in Lemma P.4, we can show

(recall the definition of gk from Section 3.3.2)

‖d 0
k‖ ∼ ‖gk‖+ ‖hk‖.

In view of (3.19), this implies Lemma P.4 still holds in our case.

Unfortunately, the proof of Lemma P.5 will not work in our context. Thus,

we establish this result here.

Lemma 21. ‖xk − x∗‖ ∼ ‖gk‖+ ‖hk‖.
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Proof. We begin by showing that ∇2L+(x∗, λ∗+) (by which we mean the second

derivative with respect to both x and λ) is non-singular. Let R∗
∆
= limk→∞Rk.

Suppose there exists z = (yT , uT )T ∈ R
n+|I(x∗ )| such that ∇2L+(x∗, λ∗)z =

0. Then, using complementary slackness we can substitute ∇2
xxL(x∗, λ∗) for

∇2
xxL

+(x∗, λ∗+), obtaining ∇2
xxL(x∗, λ∗) R∗

R∗T 0


 y

u

 = 0.

So, R∗Ty = 0 and yT∇2
xxL(x∗, λ∗)y = −(R∗T y)Tu = 0, which, in view of Assump-

tion 5, implies y = 0. This, in turn, implies R∗u = 0, which, by Assumption 3

requires u = 0. Thus, we have shown that ∇2L+(x∗, λ∗+) is non-singular.

Note that we may write

∇L+(xk, λ
0+
k )

=

∫ 1

0

∇2L+(x∗ + t(xk − x
∗), λ∗+ + t(λ0+

k − λ
∗+))

 xk − x∗

λ0+
k − λ

∗+

 dt

∆
= Dk

 xk − x∗

λ0+
k − λ

∗+

 .

Since xk → x∗ and λ0+
k → λ∗+, it follows from our regularity Assumption 2′ that

Dk → ∇2L+(x∗, λ∗+). Non-singularity of ∇2L+(x∗, λ∗+) implies that for all k

sufficiently large, Dk is non-singular and there exists M > 0 such that

‖D
−1

k ‖ ≤M,

for k large enough. Thus,

‖xk − x∗‖ ≤
(
‖xk − x

∗‖2 + ‖λ0+
k − λ

∗+‖2
) 1

2

=
∥∥∥D−1

k ∇L
+(xk, λ

0+
k )
∥∥∥ ,
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(where we are using the Euclidean norm) which implies

‖xk − x
∗‖ ≤M

∥∥∇L+(xk, λ
0+
k )
∥∥ , (3.20)

for all k sufficiently large (note that we are using the Euclidean norm). Recall

now that, for k large enough, the SQP direction satisfies Hk Rk

RT
k 0


 d 0

k

λ0+
k

 = −

 ∇f(xk)

gk

 .

This can be solved for d 0
k , yielding

d 0
k = −H−1

k Rk(R
T
kH

−1
k Rk)

−1gk

−
[
H−1
k −H

−1
k Rk(R

T
kH

−1
k Rk)

−1RT
kH

−1
k

]
∇f(xk)

= −H−1
k Rk(R

T
kH

−1
k Rk)

−1gk

−
[
H−1
k −H

−1
k Rk(R

T
kH

−1
k Rk)

−1RT
kH

−1
k

]
· (Pk +Rk(R

T
kRk)

−1RT
k )∇f(xk)

= −H−1
k Rk(R

T
kH

−1
k Rk)

−1gk

−
[
H−1
k −H

−1
k Rk(R

T
kH

−1
k Rk)

−1RT
kH

−1
k

]
Pk∇f(xk)

∆
= Bkgk + Ekhk,

where Bk and Ek are bounded for large k, and we have used the trivial identity

Pk +Rk(R
T
kRk)

−1RT
k = I. Now, in view of the optimality conditions (3.4),

∇xL
+(xk, λ

0+
k ) = −Hkd

0
k

= −HkBkgk −HkEkhk.

Thus, there exist K1, K2 > 0 such that for large k

‖∇xL
+(xk, λ

0+
k )‖ ≤ K1‖gk‖+K2‖hk‖. (3.21)
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Finally, since ∇λL
+(xk, λ

0+
k ) = gk, we conclude from (3.20) and (3.21) that there

exists K3 > 0 such that for large k

‖xk − x
∗‖ ≤ K3 · (‖gk‖+ ‖hk‖) .

To go the other direction, expanding g(·) about x∗ (recall that for this argu-

ment g : Rn → R
|I(x∗ )|) and noting that Pk∇gj(xk) = 0 for all k, we have

‖gk‖+ ‖hk‖ = ‖g(x∗) +RT
k (xk − x∗) +O(‖xk − x∗‖2)‖

+ ‖Pk∇xL
+(xk, λ

∗+)‖

= ‖RT
k (xk − x∗) +O(‖xk − x∗‖2)‖

+ ‖Pk(∇xL
+(x∗, λ∗+) +∇2

xxL
+(x∗, λ∗+)(xk − x∗)

+O(‖xk − x∗‖2)‖

= ‖RT
k (xk − x∗)‖+ ‖Pk∇2

xxL
+(x∗, λ∗+)(xk − x∗)‖

+O(‖xk − x∗‖2)

≤ K4‖xk − x∗‖+O(‖xk − x∗‖2),

for some constant K4 > 0, and the result follows.

Lemma P.6 requires some additional explanation in our case. In particular,

we need to justify/modify equations (3.3), (3.8), and (3.9) in [60]. To begin

with, consider for all k sufficiently large (and recall that we are only interested

in j ∈ I(x∗) here)

gj(xk+1) = gj(xk + d 0
k +O(‖d 0

k‖
2)

= gj(xk) + 〈∇gj(xk), d 0
k 〉+O(‖d 0

k‖
2)

= O(‖xk+1 − xk‖2).
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Thus equation (3.3) holds. If O(‖xk+1 − xk‖2) is added to the right hand side

of equation (3.8), and to both sides of equation (3.9), then the same argument

holds for the sequences generated by Algorithm FSQP′. Finally, Theorem P.1

is the same as our Theorem 4 and the argument used in [60] may be used to

prove Theorem 4.
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# ALGO n ma mn NF NG IT f(x∗) ε

12 NEW 2 0 1 7 14 7 -3.0000000e+1 1e-6

CFSQP 7 14 7 -3.0000000e+1

29 NEW 3 0 1 11 20 10 -2.2627417e+1 1e-5

CFSQP 11 20 10 -2.2627417e+1

30 NEW 3 0 1 18 35 18 1.0000000e+0 1e-7

CFSQP 18 35 18 1.0000000e+0

31 NEW 3 0 1 9 25 8 6.0000000e+0 1e-5

CFSQP 9 19 7 6.0000000e+0

33 NEW 3 0 2 4 11 4 -4.0000000e+0 1e-8

CFSQP 4 11 4 -4.0000000e+0

34 NEW 3 0 2 8 32 8 -8.3403245e-1 1e-8

CFSQP 7 28 7 -8.3403244e-1

43 NEW 4 0 3 9 45 8 -4.4000000e+1 1e-5

CFSQP 10 46 8 -4.4000000e+1

66 NEW 3 0 2 8 30 8 5.1816327e-1 1e–8

CFSQP 8 30 8 5.1816327e-1

84 NEW 5 0 6 4 32 4 -5.2803351e+6 1e-8

CFSQP 4 30 4 -5.2803351e+6

93 NEW 6 0 2 14 55 12 1.3507596e+2 1e-5

CFSQP 16 62 13 1.3507596e+2

113 NEW 10 3 5 13 116 13 2.4306210e+1 1e-3

CFSQP 12 108 12 2.4306377e+1

117 NEW 15 0 5 19 179 17 3.2348679e+1 1e-4

CFSQP 20 219 19 3.2348679e+1

Table 3.1: Numerical results for FSQP′.
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Chapter 4

Mini-Max Algorithm

4.1 Introduction

In this chapter, we extend the basic algorithm of Chapter 3 to solve the con-

strained mini-max problem

min F (x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,
(M)

where

F (x)
∆
= max{ fj(x) | j = 1, . . . , p },

and the functions fj : Rn → R, j = 1, . . . , p, and gj : Rn → R, j = 1, . . . ,m, are

continuously differentiable. Of course, since F (x) is a non-differentiable func-

tion, (M) is a non-smooth optimization problem. As a consequence, Algorithm

FSQP′ may not be applied directly to solve (M).

It is well-known that (M) may be transformed into an equivalent smooth
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nonlinear programming problem by adding a variable as follows

min
(x,γ)

γ

s.t. fj(x) ≤ γ, j = 1, . . . , p,

gj(x) ≤ 0, j = 1, . . . ,m.

(M ′)

It is not difficult to show that x∗ ∈ Rn is a local minimizer for (M) if, and only

if, (x∗, F (x∗)) ∈ R
n × R is a local minimizer for (M ′). Thus, we could apply

Algorithm FSQP′ to (M ′) in order to solve the non-smooth problem (M). It

turns out, though, that there are a few reasons why this may not be a desirable

approach. To begin with, blindly applying a standard nonlinear programming

algorithm to (M ′) ignores a great deal of structure which could be exploited in

(M). Further, in the context of feasible direction algorithms, there is no reason

why any additional effort should be expended maintaining “feasibility” for the

objective functions which appear as constraints in (M ′). Finally, if the algorithm

of Chapter 3 were to be applied to (M ′), the line search would enforce descent

on γ for each iteration. As it is possible that, at any particular iteration, none

of the constraints fj(x) ≤ γ will be active1, the generated sequence of iterates

will not be guaranteed to exhibit the objective function descent property

F (xk+1) < F (xk),

which is useful in many applications. It is true that only a simple modification

of FSQP′ would be required to ensure the descent property does hold for a

mini-max problem when posed in the form (M ′). Still, this largely ignores the

structure of the problem and is not the most efficient way to proceed.

1Though, at least one will be active at the solution.
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A number of authors have considered the problem (M). The unconstrained

problem was first considered by Han in [24, 23]. Han’s approach was essen-

tially to apply the SQP algorithm of [22] to the equivalent problem (M ′) while

carefully exploiting the special structure. Polak, Mayne, and Higgins [56, 57]

successively solve quadratic approximations of the original problem, using exact

second derivatives, in order to obtain search directions. Their algorithms achieve

quadratic convergence under fairly strict conditions. In [77], Zhou and Tits

proposed a new SQP-based algorithm for the unconstrained mini-max problem

which incorporated a nonmonotone line search scheme in an attempt to avoid the

Maratos effect without computing a second order correction. The same authors

proposed an algorithm based on a monotone line search for mini-max problems

with a large number of objective functions in [78]. The constrained problem has

been considered by, e.g., Kiwiel in [32], Panier and Tits in [47], and Zhou in [76],

all in the context of feasible iterates. In [76], Zhou extends the nonmonotone line

search-based algorithm of [77] to handle the constrained case. The algorithm of

[47] extends the feasible SQP algorithm of [48] to handle mini-max objective

functions. A recent algorithm for the constrained mini-max problem which does

not generate feasible iterates is the augmented Lagrangian approach of Rustem

and Nguyen [69]. The extension of Algorithm FSQP′ discussed in this chapter

was inspired by the algorithms of [47, 76].

In Section 4.2, we present the details of our extension of FSQP′. In Sec-

tion 4.3, we show that the convergence results of Section 3.3 are preserved, i.e.

the algorithm is globally convergent, as well as locally superlinearly convergent.

The implementation of Algorithm FSQP′ has been extended to solve (M) and

we show in Section 4.4 that the numerical results are, again, quite promising.
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4.2 Algorithm

We begin by making a few definitions. Let I
∆
= {1, . . . ,m} and J

∆
= {1, . . . , p}.

As before, let X denote the feasible set for (M), i.e.

X
∆
= { x ∈ Rn | gj(x) ≤ 0, j ∈ I }.

Given x ∈ X, let

I(x)
∆
= { j ∈ I | gj(x) = 0 }

denote the set of active constraints at x, and let

J(x)
∆
= { j ∈ J | fj(x) = F (x) }

denote the set of active objective functions at x. The following assumptions will

hold throughout this chapter.

Assumption 1: The set X is non-empty.

Assumption 2: The functions fj : Rn → R, j ∈ J , and gj : Rn → R, j ∈ I, are

continuously differentiable.

Assumption 3: For all x ∈ X, the set {∇gj(x) | j ∈ I(x)} is linearly inde-

pendent. Further, for all x ∈ X with I(x) 6= ∅, the set {∇fj(x) | j ∈ J(x)} is

linearly independent.

Recall from Section 2.1, a point x ∈ Rn is said to be a Karush-Kuhn-Tucker

(KKT) point for the problem (M) if there exist scalars (KKT multipliers) µj,
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j ∈ J , and λj , j ∈ I, satisfying

∑
j∈J

µj∇fj(x) +
∑
j∈I

λj∇gj(x) = 0,∑
j∈J

µj = 1,

gj(x) ≤ 0, j ∈ I,

µj (fj(x)− F (x)) = 0 and µj ≥ 0, j ∈ J,

λjgj(x) = 0 and λj ≥ 0, j ∈ I.

(4.1)

The Lagrangian L : Rn × R
p × R

m → R for (M) is defined by

L(x, µ, λ)
∆
=
∑
j∈J

µjfj(x) +
∑
j∈I

λjgj(x).

Given x ∈ Rn and J ′ ⊆ J , define

FJ ′(x)
∆
= max{ fj(x) | j ∈ J

′ }.

Further, given a direction d ∈ Rn , let

F ′(x, d)
∆
= max{ fj(x) + 〈∇fj(x), d〉 | j ∈ J } − F (x),

i.e. a first-order approximation of F (x + d) − F (x). Loosely speaking, we ex-

tend Algorithm FSQP′ to solve the non-smooth problem (M) by replacing all

instances of the directional derivative of the objective function with F ′(x, d). In

particular, given x ∈ X, 0 < H = HT ∈ Rn×n , and η ≥ 0, let

(d̂, γ̂) = (d̂(x,H, η), γ̂(x,H, η)) ∈ Rn × R

be the unique solution of the QP

min 1
2
〈d̂, Hd̂〉+ γ̂

s.t. F ′(x, d̂) ≤ γ̂,

gj(x) + 〈∇gj(x), d̂〉 ≤ γ̂ · η, j = 1, . . . ,m.

Q̂P (x,H, η)
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To see that this is, indeed, a QP, note that it may be equivalently written as

min 1
2
〈d̂, Hd̂〉+ γ̂

s.t. fj(x) + 〈∇fj(x), d̂〉 ≤ F (x) + γ̂, j = 1, . . . , p,

gj(x) + 〈∇gj(x), d̂〉 ≤ γ̂ · η, j = 1, . . . ,m.

As in Chapter 3, we will make frequent use of the optimality conditions

for Q̂P (x,H, η), which are readily derived from the second form given above.

Specifically, (d̂, γ̂) is a KKT point for Q̂P (x,H, η) if there exist multipliers µ̂ ∈ Rp

and λ̂ ∈ Rm which, together with (d̂, γ̂), satisfy

 Hd̂

1

+
∑
j∈J

µ̂j

 ∇fj(x)
−1

+
∑
j∈I

λ̂j

 ∇gj(x)
−η

 = 0,

fj(x) + 〈∇fj(x), d̂〉 ≤ F (x) + γ̂ · η, ∀j ∈ J,

gj(x) + 〈∇gj(x), d̂〉 ≤ γ̂ · η, ∀j ∈ I,

µ̂j
(
fj(x) + 〈∇f(x), d̂〉 − F (x)− γ̂

)
= 0 and µ̂j ≥ 0, ∀j ∈ J

λ̂j
(
gj(x) + 〈∇gj(x), d̂〉 − γ̂ · η

)
= 0 and λ̂j ≥ 0, ∀j ∈ I.

(4.2)

A simple consequence of the first equation in (4.2), which will be used throughout

our analysis, is an affine relationship amongst the multipliers, i.e.

∑
j∈J

µ̂j + η ·
m∑
j=1

λ̂j = 1. (4.3)

At iteration k, in order to update the tilting parameter ηk, we will again

have to estimate the SQP direction d 0(xk, Hk), which, for mini-max problems,

is defined via the following QP (see, e.g., [47])

min 1
2
〈d 0, Hkd

0〉+ F ′(xk, d
0)

s.t. gj(xk) + 〈∇gj(xk), d 0〉 ≤ 0, j ∈ I.
QP 0(xk, Hk)
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Of course, in the interest of reducing computational cost per iteration, we would

again like to approximate d 0(xk, Hk) by instead solving an equality constrained

QP. Given Jk ⊆ J and Ik ⊆ I let

(d̂ 0, γ̂ 0) = (d̂ 0(xk, Hk, Jk, Ik), γ̂ 0(xk, Hk, Jk, Ik)) ∈ R
n × R

be the solution, if it exists, of the equality constrained QP

min 1
2
〈d̂ 0, Hkd̂ 0〉+ γ̂ 0

s.t. fj(xk) + 〈∇fj(xk), d̂ 0〉 = F (xk) + γ̂ 0 j ∈ Jk

gj(xk) + 〈∇gj(xk), d̂ 0〉 = 0, j ∈ Ik,

LS0(xk, Hk, Jk, Ik)

Note that while this QP is no longer equivalent to a least squares problem (due

to the lack of quadratic dependence on γ̂ 0 in the objective), its solution still only

requires the solution of one linear system of equations in n+ |Jk|+ |Ik| variables.

Define

Ĵk
∆
= { j ∈ J | fj(xk) + 〈∇fj(xk), d̂k〉 = F (xk) + γ̂k }

Îk
∆
= { j ∈ I | gj(xk) + 〈∇gj(xk), d̂k〉 = γ̂k · ηk }

as the active sets from Q̂P (xk, Hk, ηk). It will be shown in Section 4.3.2 that, in

order to guarantee superlinear convergence, it is sufficient to choose

Jk = Ĵk−1, Ik = Îk−1.

Before we accept d̂ 0
k = d̂ 0(xk, Hk, Ĵk−1, Îk−1) as a “good” estimate of d 0

k =

d 0(xk, Hk) and use it to compute the tilting parameter ηk, we first check that

it satisfies a few important conditions. Let µ̂0
k ∈ R

|Ĵk−1 | and λ̂0
k ∈ R

|Îk−1 | be

the multipliers from LS0(xk, Hk, Ĵk−1, Îk−1), and suppose D̄ > 0 is some pre-

specified number. If d̂ 0
k is to be considered a reasonable estimate of d 0

k , the

following conditions must be satisfied:
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1. d̂ 0
k exists,

2. ‖d̂ 0
k‖ ≤ D̄,

3. µ̂0
k ≥ 0,

4. λ̂0
k ≥ 0,

5. FĴk−1
(xk) = F (xk).

The need for the first conditions is obvious. As we know that the estimate is

likely only valid in a neighborhood of the solution, and since d 0(x,H) is zero at

the solution and small in a neighborhood, we reject overly large estimates. Since

the multipliers at the solution are known to be positive, the third and fourth

conditions further help to eliminate poor estimates. Finally, the last condition

helps to eliminate cases when Ĵk−1 is a poor estimate of the true active set.

We will show in Section 4.3.2 that these conditions will always hold for k large

enough. During the early iterations, when the conditions do not hold, it is

sufficient to use min{ε`, ‖d̂k−1‖2} in place of ‖d̂ 0
k‖

2 for the tilting parameter

update, where ε` > 0 is a small parameter.

Finally, we will again use a second-order correction to avoid the Maratos

effect. In [47], the authors suggest the linear least squares problem

min 1
2
‖d̃‖2

s.t. fi(xk) + 〈∇fi(xk), d̃ 〉 = fj(xk) + 〈∇fj(xk), d̃ 〉 i, j ∈ Jk,

gj(xk) + 〈∇gj(xk), d〉 = 0, j ∈ Ik,

where Jk and Ik are the index sets of active objectives and constraints, respec-

tively, from the computation of the search direction. While such an approach

would be sufficient to guarantee a step of one is eventually always accepted for
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our algorithm, we use an equality constrained QP which has fewer constraints

and tends to work better in practice (and, of course, also guarantees a step of

one is eventually always accepted). At iteration k, let

(d̃k, γ̃k) = (d̃(xk, d̂k, Hk, Ĵk, Îk), γ̃(xk, d̂k, Hk, Ĵk, Îk)) ∈ R
n × R

be the solution, if it exists, of

min 1
2
〈d̂k + d̃, Hk(d̂k + d̃)〉+ γ̃

s.t. fj(xk + d̂k) + 〈∇fj(xk), d̃〉 = FĴk(xk + d̂k) + γ̃, j ∈ Ĵk,

gj(xk + d̂k) + 〈∇gj(xk), d̃〉 = −‖d̂k‖τ , j ∈ Îk,

L̃S(xk, d̂k, Hk, Ĵk, Îk)

where τ ∈ (2, 3). We are now in a position to state the complete algorithm.

Algorithm FSQP′-MM

Parameters: α ∈ (0, 1
2
), β ∈ (0, 1), τ ∈ (2, 3), ε` > 0, 0 < C ≤ C, D̄ > 0.

Data: x0 ∈ X, 0 < H0 = HT
0 ∈ R

n×n , 0 < η0 ∈ R.

Step 0 - Initialization. set k ← 0.

Step 1 - Computation of search arc.

(i). compute (d̂k, γ̂k) = (d̂(xk, Hk, ηk), γ̂(xk, Hk, ηk)), the active sets

Ĵk and Îk, and the associated multipliers µ̂k ∈ Rp , λ̂k ∈ Rm .

(ii). if (d̂k = 0) then stop.

(iii). compute d̃k = d̃(xk, d̂k, Hk, Ĵk, Îk) if it exists and satisfies

‖d̃k‖ ≤ ‖d̂k‖. Otherwise, set d̃k = 0.
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Step 2 - Arc search. compute tk, the first number t in the sequence

{1, β, β2, . . . } satisfying

F (xk + td̂k + t2d̃k) ≤ F (xk) + αtF ′(xk, d̂k),

gj(xk + td̂k + t2d̃k) ≤ 0, j = 1, . . . ,m.

Step 3 - Updates.

(i). set xk+1 ← xk + tkd̂k + t2kd̃k.

(ii). compute a new symmetric positive definite estimate Hk+1 to

the Hessian of the Lagrangian.

(iii). select Ck+1 ∈ [C,C].

∗ if (‖d̂k‖ < ε`) then

· compute, if possible,2 d̂ 0
k+1 = d̂ 0(xk+1, Hk+1, Ĵk, Îk), and the

associated multipliers µ̂0
k+1 ∈ R

|Ĵk | and λ̂0
k+1 ∈ R

|Îk |.

· if
(
d̂ 0
k+1 exists and ‖d̂ 0

k+1‖ ≤ D̄ and FĴk(xk+1) = F (xk+1)

and µ̂0
k+1 ≥ 0 and λ̂0

k+1 ≥ 0
)

then set

ηk+1 ← Ck+1 · ‖d̂ 0
k+1‖

2.

· else set ηk+1 ← Ck+1 · ‖d̂k‖2.

∗ else set ηk+1 ← Ck+1 · ε2` .

(iv). set k ← k + 1 and goto Step 1.

2That is, if LS0(xk+1,Hk+1, Ĵk, Îk) is non-degenerate.
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4.3 Convergence Analysis

In order to establish global convergence to a KKT point for (M), the analysis

will exactly follow that of Section 3.3.1. While the chain of results are identical,

there are a few critical areas in which the analysis itself differs significantly.

We will omit the details of any argument which is a trivial modification of the

corresponding argument in Section 3.3.1. The local convergence analysis will

require a good bit more effort, though it will also follow the outline of that for

Algorithm FSQP′ in Section 3.3.2.

4.3.1 Global Convergence

The goal of this section will be to show that Algorithm FSQP′-MM generates

a sequence of iterates {xk} for which all accumulation points are KKT points

for (M).

Lemma 22. Given H = HT > 0, x ∈ X, and η ≥ 0, d̂(x,H, η) is well-defined

and (d̂, γ̂) = (d̂(x,H, η), γ̂(x,H, η)) is the unique KKT point of Q̂P (x,H, η).

Furthermore, suppose {xk}k∈N ⊂ X is bounded, {Hk}k∈N is bounded away from

singularity, and {ηk}k∈N ⊂ [0,∞). Then {d̂(xk, Hk, ηk)}k∈N is bounded.

Proof. First note that the feasible set for Q̂P (x,H, η) is non-empty, since (d̂, γ̂) =

(0, 0) is always feasible. The case η > 0 is similar to that in Lemma 1 and we

omit it here. Consider now the case η = 0. In this case, (d̂, γ̂) solves Q̂P (x,H, 0)

if, and only if, d̂ solves QP 0(x,H) and γ̂ = F ′(x, d̂). Since H = HT > 0,

the objective in QP 0(x,H) is strictly convex and radially unbounded. Further,

the feasible set is convex, therefore the solution of QP 0(x,H) is well-defined

and unique. This, in turn, implies (d̂(x,H, 0), γ̂(x,H, 0)) is well-defined and the

85



unique KKT point of the convex problem Q̂P (x,H, 0). For the third claim, note

that since {Hk}k∈N is bounded away from singularity and Hk = HT
k > 0, for all

k, there exists σ1 > 0 such that

〈d̂k, Hkd̂k〉 ≥ σ1‖d̂k‖
2, ∀k.

Let ĵ(k) be such that fĵ(k)(xk) = F (xk) for all k. As the optimal value of

Q̂P (xk, Hk, ηk) is non-positive (since (0, 0) is always feasible),

γ̂k ≤ −
1

2
〈d̂k, Hkd̂k〉,

for all k. In view of QP constraint ĵ(k),

〈∇fĵ(k)(xk), d̂k〉 ≤ −
1

2
〈d̂k, Hkd̂k〉

≤ −
σ1

2
‖d̂k‖

2,

for all k. It immediately follows that

‖d̂k‖ ≤
2

σ1
‖∇fĵ(k)(xk)‖.

In view of Assumption 2 and boundedness of {xk}k∈N, {∇fj(xk)}k∈N is bounded

for each j. As there are only finitely many j, {d̂k}k∈N is bounded.

Lemma 23. Given H = HT > 0 and η ≥ 0

(i). γ̂(x,H, η) ≤ 0 for all x ∈ X. Moreover, γ̂(x,H, η) = 0 if, and only if,

d̂(x,H, η) = 0.

(ii). d̂(x,H, η) = 0 if, and only if, x is a KKT point for (M).

Lemma 24. Suppose x ∈ X is not a KKT point for (M), H = HT > 0, and

η > 0. Then
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(i). 〈∇fj(x), d̂(x,H, η)〉 < 0, for all j ∈ I(x), and

(ii). 〈∇gj(x), d̂(x,H, η)〉 < 0, for all j ∈ I(x).

In order to prove the following lemma we will need to make use of the op-

timality conditions for LS0(x,H, J ′, I ′), where x ∈ X, H = HT > 0, J ′ ⊆ J ,

and I ′ ⊆ I. The pair (d̂ 0, γ̂ 0) is a KKT point for LS0(x,H, J ′, I ′) if there exist

multipliers µ̂0,j, j ∈ J ′, and λ̂0,j, j ∈ I ′, which, together with (d̂ 0, γ̂ 0), satisfy

 Hd̂ 0

1

+
∑
j∈J ′

µ̂0,j

 ∇fj(x)
−1

+
∑
j∈I′

λ̂0,j

 ∇gj(x)
0

 = 0,

fj(x) + 〈∇fj(x), d̂ 0〉 = F (x) + γ̂ 0, ∀j ∈ J ′,

gj(x) + 〈∇gj(x), d̂ 0〉 = 0, ∀j ∈ I ′.

(4.4)

Lemma 25. If ηk = 0, then xk is a KKT point for (M) and the algorithm will

stop in Step 1(ii) at iteration k. On the other hand, whenever the algorithm does

not stop in Step 1(ii), the line search is well defined, i.e. Step 2 yields a step

tk = βj for some finite j = j(k).

Proof. Suppose ηk = 0. Then k > 0 and by Step 3(iii) either (i) d̂ 0
k = 0,

F (xk) = FĴk−1
(xk), µ̂0

k ≥ 0, and λ̂0
k ≥ 0, or (ii) d̂k−1 = 0. Case (ii) cannot hold,

otherwise the algorithm would have stopped in Step 1(ii) at iteration k − 1.

Consider case (i). Since d̂ 0
k = 0 and fj(xk) = F (xk) for some j ∈ Ĵk−1, it follows

from the constraints in LS0(xk, Hk, Ĵk−1, Îk−1) that γ̂ 0
k = 0. Thus, from the

optimality conditions (4.4), it is clear that xk must be a KKT point for (M)

with multipliers

µj =

 µ̂0,j
k j ∈ Ĵk−1,

0 otherwise,
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and

λj =

 λ̂0,j
k j ∈ Îk−1,

0 otherwise.

Therefore, in view of Lemma 23, d̂k = 0 and the algorithm stops in Step 1(ii) at

iteration k. Thus, if Step 2 is reached, ηk > 0 and xk is not a KKT point. Now,

by Lemma 23, γ̂(xk, Hk, ηk) < 0 and from the first QP constraint F ′(xk, d̂k) < 0.

The result follows from Lemma 24 and Assumption 2.

At this point we have established that the algorithm is well-defined. Further,

from Lemma 23, it is clear that if Algorithm FSQP′-MM generates a finite

sequence terminating at the point xN , then xN is a KKT point for the problem

(M). Thus, we now focus on the case in which Algorithm FSQP′-MM generates

an infinite sequence {xk}. Note that, in view of Lemma 25, as was the case in

Chapter 3, we may assume throughout that

ηk > 0, ∀k ∈ N . (4.5)

Lemma 26. Suppose K ⊆ N is an infinite index set such that xk
k∈K
−→ x∗ ∈ X,

Hk
k∈K
−→ H∗ > 0, {ηk} is bounded on K, and d̂k

k∈K
−→ 0. Then Ĵk ⊆ J(x∗) and

Îk ⊆ I(x∗), for all k ∈ K, k sufficiently large and the QP multiplier sequences

{µ̂k} and {λ̂k} are bounded on K. Further, given any accumulation point η∗ ≥ 0

of {ηk}k∈K, (0, 0) is the unique solution of Q̂P (x∗, H∗, η∗).

The analysis that follows will require the Hessian estimate sequence {Hk}

generated by Algorithm FSQP′-MM to be bounded above and bounded away

from singularity.

Assumption 4: There exist constants 0 < σ1 ≤ σ2 such that, for all k,

σ1‖d‖
2 ≤ 〈d,Hkd〉 ≤ σ2‖d‖

2, ∀d ∈ Rn .
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Lemma 27. The sequences {Hk} and {ηk} generated by Algorithm FSQP′-

MM are bounded. Further, the sequence {d̂k} is bounded on subsequences on

which {xk} is bounded.

Lemma 28. If K ⊆ N is an infinite index set such that d̂k
k∈K
−→ 0, then all

accumulation points of {xk}k∈K are KKT points for (M).

We now state and prove the main result of this section. Recall that the proof

of Theorem 3 called on the proof of Proposition 3.2 in [48], which was based on a

contradiction argument that made heavy use of the line search descent criterion.

The merit function for the line search in Algorithm FSQP′ is the nonsmooth

objective function F (x) which is, in a sense, more restrictive than a smooth merit

function. It is this fact which complicates the analysis in the following theorem

over that in [48].

Theorem 5. Under the stated assumptions, Algorithm FSQP′-MM generates

a sequence {xk} for which all accumulation points are KKT points for (M).

Proof. Suppose K ⊆ N is an infinite index set such that xk
k∈K
−→ x∗. In view of

Lemma 27, we may assume without loss of generality that d̂k
k∈K
−→ d̂∗, ηk

k∈K
−→

η∗ ≥ 0, and Hk
k∈K
−→ H∗ > 0. The cases η∗ = 0 and η∗ > 0 are considered

separately.

Consider first the case where η∗ = 0. Then, by Step 3(iii), either (i) d̂ 0
k

k∈K
−→ 0,

with F (xk) = FĴk−1
(xk), µ̂0

k ≥ 0, and λ̂0
k ≥ 0, for all k ∈ K, k large enough, or

(ii) d̂k−1
k∈K
−→ 0. Case (ii) implies xk−1

k∈K
−→ x∗ since ‖xk−xk−1‖ ≤ 2‖d̂k−1‖

k∈K
−→ 0.

Thus, in view of Lemma 28, x∗ is KKT for (M). Now consider case (i). It follows

from the optimality conditions (4.4) that {µ̂0
k}k∈K is bounded, thus we assume

without loss of generality that µ̂0
k

k∈K
−→ µ̂0,∗. We now show that Îk−1 ⊆ I(x∗)
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for all k ∈ K, k sufficiently large. Suppose not. Then there exists an infinite

index set K′ ⊆ K and an index ̄ ∈ Îk−1, for all k ∈ K′, such that ̄ 6∈ I(x∗).

Thus, g̄(xk)
k∈K′

−→ −δ∗ < 0. In view of our regularity assumptions, and since

d̂ 0
k

k∈K′

−→ 0, this contradicts the constraints in the optimality conditions (4.4) for k

sufficiently large. Finally, using the same technique as in Lemma 5 in Chapter 3,

we can show that the sequence {λ̂0
k}k∈K is bounded. Thus, we assume without

loss of generality that λ̂0
k

k∈K
−→ λ̂0,∗ ≥ 0. Taking limits in the optimality conditions

(4.4) on an appropriate subsequence of K shows that x∗ is KKT for (M).

We now turn our attention to the case η∗ > 0. As in the proof of Theorem 3,

we argue by contradiction to show that d̂k
k∈K
−→ 0. Suppose without loss of

generality that there exists d > 0 such that ‖d̂k‖ ≥ d for all k ∈ K. Using

an argument analogous to that in Theorem 3, we can show that there exists a

constant δ > 0 such that for all k ∈ K, k sufficiently large,

F ′(xk, d̂k) ≤ −δ,

〈∇gj(xk), d̂k〉 ≤ −δ, ∀j ∈ I(x∗)

gj(xk) ≤ −δ, ∀j ∈ {1, . . . ,m} \ I(x∗).

We now use these inequalities to show that there exists t > 0 such that tk > t

for all k ∈ K, k sufficiently large. Using the same argument as in [48], we can

show that there exists tj > 0, j ∈ I, such that

gj(xk + td̂k + t2d̃k) ≤ 0, ∀t ∈ [0, tj ], j ∈ I.

As in [48], for the objectives we will make use of the identity

fj(xk + td̂k + t2d̃k) = fj(xk) +

∫ 1

0

〈∇fj(xk + tξd̂k + t2ξ2d̃k), td̂k + 2t2ξd̃k〉dξ.
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Thus,

F (xk + td̂k + t2d̃k)− F (xk)− αtF
′(xk, d̂k)

= max
j∈J

{
fj(xk) +

∫ 1

0

〈∇fj(xk + tξd̂k + t2ξ2d̃k), td̂k + 2t2ξd̃k〉dξ

}
−F (xk)− αtF

′(xk, d̂k)

Define ĵ
∆
= ĵ(t, k) as an index which achieves the first max. Adding and sub-

tracting tF ′(xk, d̂k), we have

F (xk + td̂k + t2d̃k)− F (xk)− αtF
′(xk, d̂k)

= fĵ(xk) +

∫ 1

0

〈∇fĵ(xk + tξd̂k + t2ξ2d̃k), td̂k + 2t2ξd̃k〉dξ − F (xk)

+tF (xk)− t ·max
j∈J

{
fj(xk) + 〈∇fj(xk), d̂k〉

}
+ (1− α)tF ′(xk, d̂k)

≤ t ·

∫ 1

0

〈∇fĵ(xk + tξd̂k + t2ξ2d̃k), d̂k + 2tξd̃k〉 − 〈∇fĵ(xk), d̂k〉dξ

+(1− α)tF ′(xk, d̂k) + (1− t)
(
fĵ(xk)− F (xk)

)︸ ︷︷ ︸
≤0

.

Thus, for all k ∈ K, k sufficiently large,

F (xk + td̂k + t2d̃k)− F (xk)− αtF
′(xk, d̂k)

≤ t ·

{
sup
ξ∈[0,1]

‖∇fĵ(xk + tξd̂k + t2ξ2d̃k)−∇fĵ(xk)‖ · ‖d̂k‖

+2t sup
ξ∈[0,1]

‖∇fĵ(xk + tξd̂k + t2ξ2d̃k)‖ · ‖d̂k‖ − (1− α)δ

}
.

It follows from our regularity assumptions and boundedness of all sequences that

there exists tf > 0 such that

F (xk + td̂k + t2d̃k)− F (xk)− αtF
′(xk, d̂k) ≤ 0,

for all t ∈ [0, tf ], for all k ∈ K, k sufficiently large. Letting t = min{tf , tj , j ∈ I},

we have established that tk ≥ t for all k ∈ K, k sufficiently large. Following the
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proof of Proposition 3.2 in [48], it is clear from the descent criterion in the line

search that

F (xk+1) ≤ F (xk) + αtkF
′(xk, d̂k)

≤ F (xk)− αtδ.

On the other hand, since F is continuous, F (xk)
k∈K
−→ F (x∗), thus we have a

contradiction. This establishes that d̂k
k∈K
−→ 0. Finally, in view of Lemma 28, we

see that x∗ is KKT for (M).

4.3.2 Local Convergence

As usual, in order to establish a result concerning the rate of convergence, we

first need to strengthen our regularity assumptions.

Assumption 2′: The functions fj : Rn → R, j ∈ J , and gj : Rn → R, j ∈ I,

are three times continuously differentiable.

Recall that a point x∗ is said to satisfy the second order sufficiency conditions

with strict complementary slackness for (M) if x∗ is a regular point (guaranteed

by Assumption 3) and if there exist multiplier vectors µ∗ ∈ R
p and λ∗ ∈ R

m

such that

• The triple (x∗, µ∗, λ∗) satisfies (4.1), i.e. x∗ is a KKT point for (M),

• ∇2
xxL(x∗, µ∗, λ∗) is positive definite on the subspace

{h | 〈∇fi(x
∗), h〉 = 〈∇fj(x

∗), h〉, ∀i, j ∈ J(x∗)

and 〈∇gj(x
∗), h〉 = 0, ∀j ∈ I(x∗)},
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• µ∗,j > 0 for all j ∈ J(x∗) and λ∗,j > 0 for all j ∈ I(x∗) (strict complemen-

tary slackness).

Continuing to follow Section 3.3, we strengthen the assumptions one step further

in order to ensure that the entire sequence {xk} converges to a KKT point

x∗. Again, we have already established, under weaker assumptions, that every

accumulation point of {xk} is a KKT point for (M).

Assumption 5: The sequence {xk} has an accumulation point x∗ which satisfies

the second order sufficiency conditions with strict complementary slackness.

A straightforward modification of the proof of Proposition 4.1 in [48] shows

that Assumption 5 guarantees the entire sequence converges. We state the result

here without proof.

Lemma 29. The entire sequence generated by Algorithm FSQP′-MM con-

verges to a point x∗ satisfying the second order sufficiency conditions with strict

complementary slackness.

From this point forward, µ∗ and λ∗ will denote the (unique) multiplier vec-

tors satisfying the KKT conditions for (M) at x∗. Finally, we strengthen our

assumptions concerning the sequence {Hk}.

Assumption 6: The sequence {Hk} converges to some H∗ = H∗T > 0.

As was the case in Chapter 3, a major portion of the local convergence

analysis will be devoted to showing that d̂k approaches the SQP direction d 0
k =
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d 0(xk, Hk) sufficiently fast. Note that QP 0(xk, Hk) is equivalently expressed as

min 1
2
〈d 0, Hkd

0〉+ γ 0

s.t. fj(xk) + 〈∇fj(xk), d 0〉 ≤ F (xk) + γ 0, j ∈ J,

gj(xk) + 〈∇gj(xk), d 0〉 ≤ 0, j ∈ I.

From this, we readily see that (d 0
k , γ

0
k ) is a KKT point for QP 0(xk, Hk) if there

exist multipliers µ0
k ∈ R

p and λ0
k ∈ R

m which, together with (d 0
k , γ

0
k ), satisfy

 Hkd
0
k

1

+
∑
j∈J

µ0,j
k

 ∇fj(xk)
−1

+
∑
j∈I

λ0,j
k

 ∇gj(xk)
0

 = 0,

fj(xk) + 〈∇fj(xk), d 0
k 〉 ≤ F (xk) + γ 0

k · η, ∀j ∈ J,

gj(xk) + 〈∇gj(xk), d 0
k 〉 ≤ 0, ∀j ∈ I,

µ0,j
k (fj(xk) + 〈∇f(xk), d

0
k 〉 − F (xk)− γ 0

k ) = 0 and µ0,j
k ≥ 0, ∀j ∈ J

λ0,j
k (gj(xk) + 〈∇gj(xk), d 0

k 〉) = 0 and λ0,j ≥ 0, ∀j ∈ I.

(4.6)

Define the active sets for QP 0(xk, Hk)

J0
k

∆
= { j ∈ J | fj(xk) + 〈∇fj(xk), d 0

k 〉 = F (xk) + γ 0
k },

I0
k

∆
= { j ∈ I | gj(xk) + 〈∇gj(xk), d 0

k 〉 = 0 }.

The following lemma is proved similarly to Lemma 3 in [47].

Lemma 30.

(i) d 0
k → 0,

(ii) µ0
k → µ∗ and λ0

k → λ∗.
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(iii) For all k sufficiently large, the following equalities hold

J0
k = { j ∈ J | µ0,j

k > 0 } = J(x∗)

I0
k = { j ∈ I | λ0,j

k > 0 } = I(x∗).

In the analysis that follows, we will be assuming that |J(x∗)| > 1, i.e. more

than one objective is active at the solution. The motivation for this assumption

is primarily ease of notation as well as the fact that it allows us to ignore several

special cases. When |J(x∗)| = 1, since we have shown xk → x∗, it is easily

checked that the analysis from Chapter 3 allows us to conclude 2-step superlinear

convergence. Furthermore, without loss of generality, we will be assuming that

J(x∗) = { 1, . . . , r },

where 1 < r ≤ p. Now define

Rk
∆
= [ ∇f2(xk)−∇f1(xk), . . . ,∇fr(xk)−∇f1(xk),∇gj(xk) : j ∈ I(x∗) ] ,

gk
∆
= [ f2(xk)− f1(xk), . . . , fr(xk)− f1(xk), gj(xk) : j ∈ I(x∗) ]T .

The following assumption was not needed in Chapter 3, as it followed imme-

diately from previous assumptions, but it is crucial for the analysis that follows.

Assumption 7: The matrix

R∗
∆
= lim

k→∞
Rk

has full rank.

Note that since xk → x∗, R∗ is well-defined. This assumption allows us to

generalize Lemma 10 to the present case. As it is a standard result, we state it

without proof.
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Lemma 31. Under the stated assumptions, the matrix Hk Rk

RT
k 0


is uniformly invertible, i.e. it has bounded condition number for all k.

The importance of the matrix given in Lemma 31 comes from its relationship

to the SQP direction d 0
k = d 0(xk, Hk) for all k sufficiently large.

Lemma 32. For all k sufficiently large, there exists 0 < ψ0
k ∈ R

r−1+|I(x∗ )| such

that, together with d 0
k = d 0(xk, Hk),

 d 0
k

ψ0
k

 is the unique solution of the linear

system  Hk Rk

RT
k 0


 d

ψ

 = −

 ∇f1(xk)

gk

 .

Proof. In view of the optimality conditions (4.6) and Lemma 30(iii), for all k

sufficiently large we have

f1(xk) + 〈∇f1(xk), d
0
k 〉 = γ 0

k + F (xk)

= fj(xk) + 〈∇fj(xk), d 0
k 〉, j = 2, . . . , r.

Thus, for all k sufficiently large,

〈∇fj(xk)−∇f1(xk), d
0
k 〉 = − (fj(xk)− f1(xk)) , j = 2, . . . , r,

〈∇gj(xk), d 0
k 〉 = −gj(xk), j ∈ I(x∗).

(4.7)

Adding and subtracting

∇f1(xk) =

(
r∑
j=1

µ0,j
k

)
· ∇f1(xk)
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from (the first n elements of) the first equation of the optimality conditions (4.6),

and using complementary slackness, gives

Hkd
0
k +

r∑
j=2

µ0,j
k 〈∇fj(xk)−∇f1(xk), d

0
k 〉+

∑
j∈I(x∗)

λ0,j
k 〈∇gj(xk), d

0
k 〉 = −∇f1(xk).

(4.8)

Combining (4.8) with (4.7) and defining

ψ0
k

∆
= [ µ0,j

k , j = 2, . . . , r, λ0,j
k , j ∈ I(x∗)]T

gives the result.

The modification of Powell’s superlinear convergence result used in Sec-

tion 3.3.2 does not directly apply to mini-max problems. On the other hand,

note that under the current assumptions x∗ also satisfies the strong second or-

der sufficiency conditions with strict complementary slackness for the smooth

problem

min f1(x)

s.t. fj(x)− f1(x) ≤ 0, j = 2, . . . , r,

gj(x) ≤ 0, j ∈ I(x∗),

(E)

where all constraints are active at the solution x∗. It is easily verified that (E)

satisfies all of the necessary assumptions given in Section 2 of [60]. Now sup-

pose that de(xk, Hk) is the SQP direction as computed for (E) on the sequences

{xk} and {Hk} generated by FSQP′-MM for (M). Using Lemma 32, it is

straightforward to show that, for all k sufficiently large,

de(xk, Hk) = d 0(xk, Hk).

Thus, it should be clear that we may equivalently assume our algorithm is iter-

ating on the smooth problem (E). It remains to establish that, for the iteration

on (E),

97



1. The multiplier sequences converge to the true multipliers,

2. For all k sufficiently large, the binding sets for the QPs correspond to the

active sets at the solution x∗,

3. xk+1 − xk = O(‖d 0
k‖

2), and

4. tk = 1 for all k sufficiently large.

Then, our modification of Powell’s argument as discussed in Chapter 3 may be

applied to establish 2-step superlinear convergence for the mini-max algorithm.

While the proofs are occasionally different, the following sequence of lemmas are

direct extensions of those in Section 3.3.2.

Given η∗ ≥ 0, we extend the definition of the set N∗(η∗) given in Section 3.3.2

to

N∗(η∗)
∆
=


 ∇fj(x∗)

−1

 , j = 1, . . . , r;

 ∇gj(x∗)
−η∗

 , j ∈ I(x∗)

 .

Lemma 33. Given any η∗ ≥ 0, the set N∗(η∗) is linearly independent.

Proof. Note that, in view of Lemma 23, d̂∗ = d̂(x∗, H∗, η∗) = 0. Now suppose

the claim does not hold, i.e. suppose there exist scalars µj, j = 1, . . . , r, and λj ,

j ∈ I(x∗), not all zero, such that

r∑
j=1

µj

 ∇fj(x∗)
−1

+
∑

j∈I(x∗)

λj

 ∇gj(x∗)
−η∗

 = 0. (4.9)

In view of Assumption 3, µj, j = 1, . . . , r, are not all zero and λj, j ∈ I(x∗),

are not all zero. First consider the case
∑r

j=1 µ
j 6= 0, and assume without loss

of generality (may need to divide (4.9) by
∑r

j=1 µ
j) that

r∑
j=1

µj = 1.
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Then, it follows from (4.9) that

∇f1(x
∗) +

r∑
j=2

µj (∇fj(x
∗)−∇f1(x

∗)) +
∑

j∈I(x∗)

λj∇gj(x
∗) = 0,

and

η∗ ·
∑

j∈I(x∗)

λj = −1. (4.10)

In view of Assumption 7, µj, j = 1, . . . , r, and λj, j ∈ I(x∗), are the unique

multipliers for (M), and, by complementary slackness, are all positive. As this

contradicts (4.10), we must have
∑r

j=1 µ
j = 0. In this case, (4.9) gives

r∑
j=2

µj (∇fj(x
∗)−∇f1(x

∗)) +
∑

j∈I(x∗)

λj∇gj(x
∗) = 0,

which immediately contradicts Assumption 7. Thus, N∗(η∗) is linearly indepen-

dent.

Lemma 34. Let η∗ ≥ 0 be an accumulation point of {ηk}. Then (d̂∗, γ̂∗) =

(0, 0) is the unique solution of Q̂P (x∗, H∗, η∗) and the second order sufficiency

conditions hold, with strict complementary slackness.

Proof. In view of Lemma 23, Q̂P (x∗, H∗, η∗) has (d̂∗, γ̂∗) = (0, 0) as its unique

solution. A straightforward modification of the proof of Lemma 12 shows that

the second-order sufficiency conditions hold. It remains to show that strict

complementary slackness holds. Let Ĵ∗ ⊆ J and Î∗ ⊆ I denote the active

sets at the solution of Q̂P (x∗, H∗, η∗). Since (d̂∗, γ̂∗) = (0, 0), it should be

clear that Ĵ∗ = {1, . . . , r} and Î∗ = I(x∗). Suppose that µ̂∗,j, j = 1, . . . , r,

and λ̂∗,j, j ∈ I(x∗) are the multipliers satisfying (4.2) at (0, 0). Suppose that∑r
j=1 µ̂

∗,j = 0. Then it follows from (4.2) that

r∑
j=2

µ̂∗,j (∇fj(x
∗)−∇f1(x

∗)) +
∑

j∈I(x∗)

λ̂∗,j∇gj(x
∗) = 0.
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As this contradicts Assumption 7, we must have µ̄
∆
=
∑r

j=1 µ̂
∗,j > 0. Now, it is

clear from (4.2) and uniqueness of the multipliers µ∗ ∈ Rp and λ∗ ∈ Rm that

µ∗,j =

 µ̂∗,j, j = 1, . . . , r,

0, otherwise,

and

λ∗,j =

 λ̂∗,j, j ∈ I(x∗),

0, otherwise.

Thus, by Assumption 5 (strict complementary slackness for (M)), it follows that

strict complementary slackness holds for Q̂P (x∗, H∗, η∗).

Just as for Lemma 13 in Chapter 3, the following lemma now follows from

Theorem 2.1 in [68].

Lemma 35. If K is a subsequence on which {ηk} converges, say to η∗ ≥ 0,

then µ̂k
k∈K
−→

(∑p
j=1 µ̂

∗,j
)
µ∗ > 0 and λ̂k

k∈K
−→ µ̂∗ · λ∗, where µ̂∗ = µ̂∗(η∗) is the

KKT multiplier vector for the constraints corresponding to the true objectives in

Q̂P (x∗, H∗, η∗). Finally, d̂k → 0 and γ̂k → 0.

A trivial extension of Lemma 14 shows that Q̂P (xk, Hk, ηk) eventually cor-

rectly identifies the active set at the solution of (M).

Lemma 36. For all k sufficiently large, Ĵk = {1, . . . , r} and Îk = I(x∗).

We can now show that our estimate of the SQP direction is exact for all k

large enough.

Lemma 37. For all k sufficiently large, d̂ 0
k = d 0

k .
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Proof. In view of Lemma 36 and the optimality conditions 4.4, for all k suffi-

ciently large

Hkd̂
0
k +

r∑
j=1

µ̂0,j
k ∇fj(xk) +

∑
j∈I(x∗)

λ̂0,j
k ∇gj(xk) = 0,

r∑
j=1

µ̂0,j
k = 1,

(4.11)

and

γ̂ 0
k = fj(xk)− F (xk) + 〈∇fj(xk), d̂ 0

k 〉, j = 1, . . . , r.

It follows that

fj(xk)− f1(xk) + 〈∇fj(xk)−∇f1(xk), d̂ 0
k 〉 = 0, j = 2, . . . , r.

Subtracting ∇f1(xk) =
(∑r

j=1 µ̂
0,j
k

)
∇f1(xk) from the first equation in (4.11)

and defining

ψ̂0
k

∆
=
(
µ̂0,j
k , j = 2, . . . , r; λ̂0,j

k , j ∈ I(x
∗)
)T

,

we have  Hk Rk

RT
k 0


 d̂ 0

k

ψ̂0
k

 = −

 ∇f1(xk)

gk

 ,

for all k sufficiently large. The result then follows from Lemmas 32 and 31.

Lemma 38.

(i) ηk → 0,

(ii) µ̂k → 1, and λ̂k → λ∗.

(iii) For all k sufficiently large, Îk = { j | λ̂jk > 0 }.

Proof. Straightforward extension of proof of Lemma 16.
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Lemma 39.

(i) ηk = O(‖d 0
k‖

2),

(ii) d̂k = d 0
k +O(‖d 0

k‖
2).

(iii) γ̂k = O(‖d 0
k‖).

Proof. The proofs of (i) and (ii) are straightforward extensions of the proofs of

Lemma 17(i) and (ii). In view of Lemma 36, for all k sufficiently large,

γ̂k = 〈∇fj(xk), d̂k〉+ fj(xk)− F (xk), j = 1, . . . , r.

Further, since xk → x∗, J(xk) ⊆ J(x∗) for all k sufficiently large. Thus, for all

k sufficiently large we may choose ĵ(k) ∈ J(xk) such that ĵ(k) ∈ J(x∗). Clearly,

fĵ(k) − F (xk) = 0 for all k sufficiently large, thus

γ̂k = 〈∇fĵ(k)(xk), d̂k〉,

for all k sufficiently large. It follows that

γ̂k = O(‖d̂k‖) = O(‖d 0
k‖).

Lemma 40. d̃k = O(‖d 0
k‖

2).

Proof. In view of Lemma 36 and the constraints in L̃S(xk, d̂k, Hk, Jk, Ik), we

have

fj(xk + d̂k)− f1(xk + d̂k) + 〈∇fj(xk)−∇f1(xk), d̃k〉 = 0, j = 2, . . . , r.

Further, from the constraints of Q̂P (xk, Hk, ηk),

fj(xk)− f1(xk) + 〈∇fj(xk)−∇f1(xk), d̂k〉 = 0, j = 2, . . . , r.
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for all k sufficiently large. Expanding fj − f1 about xk and evaluating at xk + d̂k

gives

= 0︷ ︸︸ ︷
fj(xk)− f1(xk) + 〈∇fj(xk)−∇f1(xk), d̂k〉+〈∇fj(xk)−∇f1(xk), d̃k〉

+
1

2
〈d̂k, (∇

2fj(xk + ξjkd̂k)−∇
2f1(xk + ξjkd̂k))d̂k〉 = 0,

for some ξjk ∈ (0, 1). Thus,

〈∇fj(xk)−∇f1(xk), d̃k〉 = −
1

2
〈d̂k, (∇

2fj(xk + ξjkd̂k)−∇
2f1(xk + ξjkd̂k))d̂k〉

= O(‖d̂k‖2) = O(‖d 0
k‖

2).

Using the same argument as in Lemma 18, we can similarly show

〈∇gj(xk), d̃k〉 = O(‖d 0
k‖

2), j ∈ I(x∗).

Combining results, we have established

RT
k d̃k = O(‖d 0

k‖
2).

The rest of the proof is a straightforward extension of that for Lemma 18.

As in Section 3.3.2, we now add one additional assumption to ensure that

the matrices {Hk} suitably approximate the Hessian of the Lagrangian at the

solution. Define the projection

Pk
∆
= I −Rk(R

T
kRk)

−1RT
k .

Assumption 8:

lim
k→∞

‖Pk(Hk −∇2
xxL(x∗, λ∗))Pkd̂k‖

‖d̂k‖
= 0.

Lemma 41. There exist constants ν1, ν2, ν3 > 0 such that
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(i) F ′(xk, d̂k) ≤ −ν1‖d 0
k‖

2,

(ii) for all k sufficiently large

m∑
j=1

λ̂jkgj(xk) ≤ −ν2‖gk‖,

(iii) d̂k = Pkd̂k + d1
k, where

‖d1
k‖ ≤ ν3‖gk‖+O(‖d 0

k‖
3),

for all k sufficiently large.

Proof. From the constraints of Q̂P (xk, Hk, ηk), we have

fj(xk) + 〈∇fj(xk), d̂k〉 − F (xk) ≤ γ̂k

≤ −
1

2
〈d̂k, Hkd̂k〉

≤ −
σ1

2
‖d̂k‖

2.

Thus, for all k we have

F ′(xk, d̂k) = max
j
{fj(xk) + 〈∇fj(xk), d̂k〉 − F (xk)}

≤ −
σ1

2
‖d̂k‖

2,

and (i) follows. Claim (ii) may be proved using a straightforward extension

of the proof of Lemma 19(ii). In view of the optimality conditions 4.2 and

Lemma 36,

RT
k d̂k = −gk − γ̂kηk

 0r−1

1|I(x∗)|

 ,

where 0r−1 is the vector of r − 1 zeros and 1|I(x∗)| is the vector of |I(x∗)| ones.

Using this equation and Assumption 7, we may apply the same argument as was

used for Lemma 19(iii) to show that Claim (iii) holds.
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Lemma 42. For all k sufficiently large, tk = 1.

Proof. The same argument as was used in the proof of Lemma 20 may be used

to show that the constraints are satisfied with a step of one for all k sufficiently

large. In order to show that the descent criterion is satisfied we loosely follow

the proof given in [47]. For j ∈ {1, . . . , r}, expanding fj about xk + d̂k we have

fj(xk+ d̂k+ d̃k) = fj(xk+ d̂k)+〈∇fj(xk+ d̂k), d̃k〉+
1

2
〈d̃k,∇

2fj(xk+ d̂k+ξ
j
kd̃k)d̃k〉,

for some ξjk ∈ (0, 1). Now expanding ∇fj about xk and using Lemmas 39 and

40,

fj(xk + d̂k + d̃k) = fj(xk + d̂k) + 〈∇fj(xk), d̃k〉︸ ︷︷ ︸
=γ̃k+F{1,... ,r}(xk+d̂k)

+O(‖d 0
k‖

3), j = 1, . . . , r.

(4.12)

Thus,

fj(xk + d̂k + d̃k) = fi(xk + d̂k + d̃k) +O(‖d 0
k‖

3), i, j = 1, . . . , r.

Note that, since xk + d̂k + d̃k → x∗,

F (xk + d̂k + d̃k) = F{1,... ,r}(xk + d̂k + d̃k), (4.13)

for all k sufficiently large. Define µ̄k
∆
=
∑r

j=1 µ̂
j
k. Then, in view of Lemma 38(ii)

and strict complementary slackness, µ̄k > 0 for all k sufficiently large. Using

(4.12), (4.13), and the fact that
∑r

j=1(µ̂
j
k/µ̄k) = 1,

F (xk + d̂k + d̃k) =
r∑
j=1

µ̂jk
µ̄k
fj(xk + d̂k + d̃k) +O(‖d 0

k‖
3).

Expanding fj about xk in the above expression we get (after a little algebra)

F (xk + d̂k + d̃k) =
r∑
j=1

µ̂jk
µ̄k

(

=γ̂k+F (xk)︷ ︸︸ ︷
fj(xk) + 〈∇fj(xk), d̂k〉

+〈∇fj(xk), d̃k〉+
1

2
〈d̂k,∇

2fj(xk)d̂k〉) +O(‖d 0
k‖

3).
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Using the fact that γ̂k = F ′(xk, d̂k) and rearranging, we have

F (xk + d̂k + d̃k) = F (xk) +
1

2
F ′(xk, d̂k)

+
1

2

r∑
j=1

µ̂jk
µ̄k

(
fj(xk) + 〈∇fj(xk), d̂k〉 − F (xk)

)
+

r∑
j=1

µ̂jk
µ̄k

(
〈∇fj(xk), d̃k〉+

1

2
〈d̂k,∇

2fj(xk)d̂k〉

)
+O(‖d 0

k‖
3).

As fj(xk)− F (xk) ≤ 0, the above expression gives

F (xk + d̂k + d̃k)− F (xk) ≤
1

2
F ′(xk, d̂k) +

1

2

r∑
j=1

µ̂jk
µ̄k
〈∇fj(xk), d̂k〉

+
r∑
j=1

µ̂jk
µ̄k

(
〈∇fj(xk), d̃k〉+

1

2
〈d̂k,∇

2fj(xk)d̂k〉

)
+O(‖d 0

k‖
3).

(4.14)

From the optimality conditions (4.2), for all k sufficiently large

Hkd̂k +
r∑
j=1

µ̂jk∇fj(xk) +
∑

j∈I(x∗)

λ̂jk∇gj(xk) = 0.

Taking the inner product of the above equation with d̂k and d̃k respectively gives
r∑
j=1

µ̂jk〈∇fj(xk), d̂k〉 = −
∑

j∈I(x∗)

λ̂jk〈∇gj(xk), d̂k〉 − 〈d̂k, Hkd̂k〉, (4.15)

and
r∑
j=1

µ̂jk〈∇fj(xk), d̃k〉 = −
∑

j∈I(x∗)

λ̂jk〈∇gj(xk), d̃k〉+O(‖d 0
k‖

3). (4.16)

Plugging (4.15) and (4.16) into (4.14), after dividing by µ̄k, we find

F (xk + d̂k + d̃k)− F (xk) ≤
1

2
F ′(xk, d̂k)−

1

2

∑
j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̂k〉

−
∑

j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̃k〉 −

1

2µ̄k
〈d̂k, Hkd̂k〉

+
1

2

r∑
j=1

µ̂jk
µ̄k
〈d̂k,∇

2fj(xk)d̂k〉+O(‖d 0
k‖

3).
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Add and subtract

1

2

∑
j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̂k〉 =

1

2

∑
j∈I(x∗)

λ̂jk
µ̄k

( γ̂k · ηk︸ ︷︷ ︸
=O(‖d 0

k ‖
3)

−gj(xk))

from the right hand side of the previous expression, yielding

F (xk + d̂k + d̃k)− F (xk) ≤
1

2
F ′(xk, d̂k)−

∑
j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̂k〉

−
∑

j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̃k〉 −

1

2

∑
j∈I(x∗)

λ̂jk
µ̄k
gj(xk)

−
1

2µ̄k
〈d̂k, Hkd̂k〉+

1

2

r∑
j=1

µ̂jk
µ̄k
〈d̂k,∇

2fj(xk)d̂k〉

+O(‖d 0
k‖

3).

(4.17)

Using the exactly the same argument as in the proof of Lemma 20, we can show

gj(xk + d̂k + d̃k) = O(‖d 0
k‖

τ ), j ∈ I(x∗).

Thus, expanding about xk, we have

gj(xk) + 〈∇gj(xk), d̂k〉+ 〈∇gj(xk), d̃k〉+
1

2
〈d̂k,∇

2gj(xk)d̂k〉 = O(‖d 0
k‖

τ ),

for j ∈ I(x∗). Multiplying this expression by
λ̂
j
k

µ̄k
and summing over I(x∗) gives

−
∑

j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̂k〉 −

∑
j∈I(x∗)

λ̂jk
µ̄k
〈∇gj(xk), d̃k〉

=
∑

j∈I(x∗)

λ̂jk
µ̄k
gj(xk) +

1

2

∑
j∈I(x∗)

λ̂jk
µ̄k
〈d̂k,∇

2gj(xk)d̂k〉+O(‖d 0
k‖

τ ).

So, substituting this and then subtracting αF ′(xk, d̂k) from both sides of (4.17)
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we see

F (xk + d̂k + d̃k)− F (xk)− αF
′(xk, d̂k) ≤

(
1

2
− α

)
F ′(xk, d̂k)

+
1

2

〈
d̂k,

 r∑
j=1

µ̂jk
µ̄k
∇2fj(xk) +

∑
j∈I(x∗)

λ̂jk
µ̄k
∇2gj(xk)−Hk

 d̂k

〉

+
1

2

∑
j∈I(x∗)

λ̂jk
µ̄k
gj(xk) +O(‖d 0

k‖
τ).

As µ̄k is bounded away from zero for all k sufficiently large, the rest of the proof

follows that of Lemma 20.

Theorem 6. Algorithm FSQP′ generates a sequence {xk} which converges 2-

step superlinearly to x∗, i.e.

lim
k→∞

‖xk+2 − x∗‖

‖xk − x∗‖
= 0.

4.4 Implementation and Numerical Results

The implementation details for Algorithm FSQP′-MM are exactly the same,

or direct extensions of, those for Algorithm FSQP′ as given in Section 3.4. The

active objectives from Q̂P (xk, Hk, ηk) will be taken as those in the set

Ĵk = { j ∈ J | fj(xk) + 〈∇fj(xk), d̂k〉 − F (xk)− γ̂k > −
√
εm },

where εm is the machine precision. The tilting parameter scaling factors Cj
k,

j ∈ I, are updated following the same rule, but now Cj
k is decreased when

108



constraint gj did not cause a line search failure and some objective did, i.e.

if (gj(·) caused line search failure) then Cj
k+1 ← Cj

k · δc

else if (some fi(·) caused line search failure) then Cj
k+1 ← Cj

k/δc

if (Cj
k+1 < C) then Cj

k+1 ← C

if (Cj
k+1 > C) then Cj

k+1 ← C

Finally, for the Hessian update, in order to provide a better estimate of the

multipliers at the solution, if
∑

j∈J µ̂
j
k >
√
εm, we again normalize the multipliers

as follows

µ̂jk ←
µ̂jk∑
j∈J µ̂

j
k

, j ∈ J,

λ̂jk ←
λ̂jk∑
j∈J µ̂

j
k

, j ∈ I.

Note that the quantity γk+1 is now defined as

γk+1
∆
= ∇xL(xk+1, µ̂k, λ̂k)−∇xL(xk, µ̂k, λ̂k).

Otherwise, the Hessian update is precisely as given in Section 3.4.

In order to test Algorithm FSQP′-MM we chose several problems from the

literature. Unable to find good nonlinearly constrained mini-max test problems,

following [36, 79] we took problems 43, 84, 113, and 117 from [28] and turned

them into mini-max problems by removing some constraints and adding objec-

tives of the form

fi(x) = f(x) + αigi(x),

where αi > 0 are fixed scalars. Specifically, for p43m, the first two constraints

of problem 43 were removed and converted into objectives using a value of αi =

15 for both. For p84m, constraints 5 and 6 of problem 84 were removed and

converted into objectives using αi = 20 for both. Next, for p113m the first three
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linear constraints of problem 113 were converted into objectives using αi = 10

for all. Finally, for p117m, the first two nonlinear constraints of problem p117

were converted into objective functions with αi = 10 for both. Problem dav is

from [75], problems polk1 - polk4 are from [56], and problem kiwi1 is from [33].

Finite difference gradients were used for all test problems except polk1 - polk4,

where analytic gradients were used.

In Table 4.1, we give the results for FSQP′-MM, which we call NEW in

the table, and CFSQP [36], which implements a mini-max extension (similar to

that discussed in this chapter) of the algorithm FSQP [51]. The first column

gives the specific problem being solved and the column labeled ALGO tells which

algorithm was used to solve the given problem. The next three columns indicate

the size of the problem following the notation of this chapter (for all problems,

m indicates the number of nonlinear constraints). The columns labeled NF, NG,

and IT give the number of (scalar) objective function evaluations, nonlinear

constraint function evaluations, and iterations required to solve the problem,

respectively. Finally, F (x∗) is the value of the maximum objective function at

the final iterate and ε is the tolerance for the size of the search direction (the

stopping criterion).

Again the numerical results are very encouraging. On average, our implemen-

tation of Algorithm FSQP′-MM seems to take the same number of iterations

and function evaluations as CFSQP. Given that the cost to generate a new it-

erate is much cheaper for Algorithm FSQP′-MM, the results seem to indicate

that the new algorithm may be superior for applications in which the cost of

evaluating functions is dominated by the cost of generating a new iterate, and

it is at least as good for other applications.
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ALGO n p m NF NG IT F (x∗) ε

p43m NEW 4 3 1 48 23 10 -4.40000e+1 5e-6

CFSQP 67 32 13 -4.40000e+1

p84m NEW 5 3 4 58 48 12 -5.28034e+6 5e-6

CFSQP 17 20 4 -5.28034e+6

p113m NEW 10 4 5 109 125 14 2.43062e+1 5e-6

CFSQP 108 127 14 2.43062e+1

p117m NEW 15 3 3 97 103 17 3.23487e+1 5e-6

CFSQP 124 144 21 3.23487e+1

dav NEW 4 20 0 272 12 1.15706e+2 5e-6

CFSQP 342 12 1.15706e+2

polk1 NEW 2 2 0 91 23 2.71830e0 5e-6

CFSQP 42 11 2.71828e0

polk2 NEW 10 2 0 184 34 5.45982e+1 5e-6

CFSQP 217 45 5.45982e+1

polk3 NEW 11 10 0 191 15 3.70348e0 5e-6

CFSQP 236 17 3.70348e0

polk4 NEW 2 3 0 46 8 1.36429e-5 5e-6

CFSQP 45 8 4.09939e-7

kiwi1 NEW 5 10 0 180 13 2.26002e+1 1e-6

CFSQP 159 11 2.26002e+1

Table 4.1: Numerical results for FSQP′-MM.
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Chapter 5

Discretized Problems from

Semi-Infinite Programming

5.1 Introduction

Consider the Semi-Infinite Programming (SIP) problem

min f(x)

s.t. Φ(x) ≤ 0,
(SI)

where f : Rn → R is continuously differentiable, and Φ : Rn → R is defined by

Φ(x)
∆
= sup

ξ∈[0,1]

φ(x, ξ),

with φ : Rn × [0, 1]→ R continuously differentiable in the first argument. Such

problems arise in numerous application areas, such as engineering design, where

a specification must be satisfied over a range of independent parameter values.

For an excellent survey of the theory behind the problem (SI), in addition to

some algorithms and applications, see [27] as well as the collection [67]1. Many

1Some of the content of this chapter has appeared in the article [35] in the collection [67].
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globally convergent algorithms designed to solve (SI) rely on approximating

Φ(x) by using progressively finer discretizations of [0, 1] (see, e.g. [18, 21, 26,

49, 54, 55, 58, 65]). Specifically, such algorithms generate a sequence of problems

of the form

min f(x)

s.t. φ(x, ξ) ≤ 0, ∀ξ ∈ Ξ,
(DSI)

where Ξ ⊂ [0, 1] is a (presumably large) finite set. For example, given q ∈ N ,

one could use the uniform discretization

Ξ
∆
=

{
0,

1

q
, . . . ,

q − 1

q
, 1

}
.

Clearly these algorithms are crucially dependent upon being able to efficiently

solve problem (DSI).

Of course, (DSI) involves only a finite number of smooth constraints, thus

could be solved in principle via a standard constrained optimization algorithm

such as that introduced in Chapter 3. Note however that when |Ξ| is large

compared to the number of variables n, it is likely that only a small subset

of the constraints are active at a solution. A scheme which exploits this fact

by cleverly using an appropriate small subset of the constraints at each step

should, in most cases, enjoy substantial savings in computational effort without

sacrificing global and local convergence properties.

Early efforts at employing such a scheme appear in [55, 49] in the context

of first order methods of feasible directions. In [55], at iteration k, a search

direction is computed based on the method of Zoutendijk [80] using only the

gradients of those constraints satisfying φ(xk, ξ) ≥ −ε, where ε > 0 is small.

Clearly, close to a solution, such “ε-active” constraints are sufficient to ensure

convergence. However, if the discretization is very fine, such an approach may
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still produce sub-problems with an unduly large number of constraints. It was

shown in [49] that, by means of a scheme inspired by the bundle-type methods

of non-differentiable optimization (see, e.g. [33, 37]), the number of constraints

used in the sub-problems can be further reduced without jeopardizing global

convergence. Specifically, in [49], the constraints to be used in the computation

of the search direction dk+1 at iteration k + 1 are chosen as follows. Let Ξk ⊆ Ξ

be the set of constraints used to compute the search direction dk, and let xk+1

be the next iterate. Then Ξk+1 includes:

• All ξ ∈ Ξ such that φ(xk+1, ξ) = 0 (i.e. the “active” constraints),

• All ξ ∈ Ξk which influenced the computation of the search direction dk,

and

• Some ξ ∈ Ξ, if it exists, which caused a step-length reduction in the line

search at iteration k.

While the former is needed to ensure that dk is a feasible direction, it is argued

in [49] that the latter two are necessary to avoid zig-zagging or other jamming

phenomena. The number of constraints required to compute the search direction

is thus typically small compared to |Ξ|, hence each iteration of such a method

is computationally less costly. Unfortunately, for a fixed level of discretization,

the algorithms in [55, 49] converge at a linear rate at best.

A number of attempts at applying the SQP scheme to problems with a large

number of constraints, e.g. our discretized problem from SIP, have been docu-

mented in the literature. In [2], Biggs treats all active inequality constraints as

equality constraints in the QP sub-problem, while ignoring all constraints which

are not active. Polak and Tits [58], and Mine et al. [43], apply to the SQP
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framework an ε-active scheme similar to that used in [55]. Similar to the ε-active

idea, Powell proposes a “tolerant” algorithm for linearly constrained problems

in [62]. Finally, in [71], Schittkowski proposes another modification of the SQP

scheme for problems with many constraints, but does not prove convergence. In

practice, the algorithm in [71] may or may not converge, dependent upon the

heuristics applied to choose the constraints for the QP sub-problem.

In this chapter, the scheme introduced in [49] in the context of first-order

feasible direction methods is extended to the Feasible SQP (FSQP) framework

introduced in Chapter 3. Our presentation and analysis significantly borrow from

[35], where the FSQP algorithm of [51] is similarly extended to handle problems

with many constraints. The algorithm and analysis of [35] were inspired by that

of [78], where an important special case of (DSI) is considered, the unconstrained

minimax problem.

Let the feasible set be denoted

X
∆
= {x ∈ Rn | φ(x, ξ) ≤ 0, ∀ξ ∈ Ξ }.

For x ∈ X, η ≥ 0, Ξ̂ ⊆ Ξ, and H ∈ Rn×n with H = HT > 0, let

(d̂(x,H, η,Ξ′), γ̂(x,H, η,Ξ′)) ∈ Rn × R

be the unique solution of the QP

min 1
2
〈d̂, Hd̂〉+ γ̂

s.t. 〈∇f(x), d̂〉 ≤ γ̂

φ(x, ξ) + 〈∇xφ(x, ξ), d̂〉 ≤ γ̂ · η, ∀ξ ∈ Ξ′.

Q̂P (x,H, η,Ξ′)

At iteration k, given an estimate xk ∈ X of the solution, a constraint index set

Ξk ⊆ Ξ, ηk > 0, and a symmetric positive definite estimate Hk of the Hessian
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of the Lagrangian, the basic algorithm presented in this chapter first computes

d̂k = d̂(xk, Hk, ηk,Ξk). An Armijo-type line search is then performed along the

direction d̂k, yielding a step-size tk ∈ (0, 1]. The next iterate is taken to be

xk+1 = xk + tkd̂k. Finally, Hk is updated yielding Hk+1, the tilting parameter ηk

is updated to ηk+1, and a new constraint index set Ξk+1 is constructed following

the ideas of [49].

As is pointed out in [78], the construction of [49] cannot be used meaningfully

in the SQP framework without modifying the update rule for the new metric

Hk+1. The reason is as follows. As discussed above, following [49], if tk < 1,

Ξk+1 is to include, among others, the index ξ̄ ∈ Ξ of a constraint which was

infeasible for the last trial point in the line search.2 The rationale for including

ξ̄ in Ξk+1 is that if ξ̄ had been in Ξk, then it is likely that the computed search

direction would have allowed a longer step. Such reasoning is clearly justified in

the context of first-order search directions as is used in [49], but it is not clear

that ξ̄ is the right constraint to include under the new metric Hk+1. To overcome

this difficulty, it is proposed in [78] that Hk not be updated whenever tk < δ,

δ a prescribed small positive number, and ξ̄ 6∈ Ξk. We will show in Section 5.3

that, as is the case for the mini-max algorithm of [78], for k large enough, ξ̄ will

always be in Ξk, thus normal updating will take place eventually, preserving the

local convergence rate properties of the SQP scheme.

As a final matter on the update rule for Ξk, following [78], we allow for

additional constraint indices to be added to the set Ξk. While not necessary

for global convergence, cleverly choosing additional constraints can significantly

2Assuming that it was a constraint, and not the objective function, which caused a failure

in the line search.
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improve performance, especially in early iterations. In the context of discretized

SIP, exploiting the possible regularity properties of the SIP constraints with

respect to the independent parameter can give useful heuristics for choosing

additional constraints.

In order to guarantee fast (superlinear) local convergence, it is again necessary

that, for k large enough, the line search always accept the step-size tk = 1. It

is well-known in the SQP framework that the line search could truncate the

step size arbitrarily close to a solution (the so-called Maratos effect discussed

in Section 2.3), thus preventing superlinear convergence. Various schemes have

been devised to overcome such a situation. We will argue that a second-order

correction, as used in Chapter 3, will still be sufficient to overcome the Maratos

effect without sacrificing global convergence.

The balance of the chapter is organized as follows. In Section 5.2 we intro-

duce the algorithm and present some preliminary material. Next, in Section 5.3,

we give a complete convergence analysis of the algorithm proposed in Section 5.2.

The local convergence analysis assumes the just mentioned second-order correc-

tion is used. In Section 5.4, the algorithm is extended to handle the constrained

mini-max case. Some implementation details, in addition to numerical results,

are provided in Section 5.5.

5.2 Algorithm

We begin by making a few assumptions that will be in force throughout. They

are the same as those that were used in Chapter 3. The first is a standard

regularity assumption, while the second ensures that the set of active constraint
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gradients is always linearly independent.

Assumption 1: The functions f : Rn → R and φ(·, ξ) : Rn → R, ξ ∈ Ξ, are

continuously differentiable.

Define the set of active constraints for a point x ∈ X as

Ξact(x)
∆
= {ξ ∈ Ξ | φ(x, ξ) = 0}.

Assumption 2: For all x ∈ X with Ξact(x) 6= ∅, the set {∇xφ(x, ξ) | ξ ∈

Ξact(x)} is linearly independent.

Applying the definition given in Section 2.1 to (DSI), a point x∗ ∈ R
n is

called a Karush-Kuhn-Tucker (KKT) point for the problem (DSI) if there exist

KKT multipliers λ∗,ξ, ξ ∈ Ξ, satisfying

∇f(x∗) +
∑
ξ∈Ξ

λ∗,ξ∇xφ(x∗, ξ) = 0,

φ(x∗, ξ) ≤ 0, ∀ξ ∈ Ξ,

λ∗,ξφ(x∗, ξ) = 0 and λ∗,ξ ≥ 0, ∀ξ ∈ Ξ.

(5.1)

Under our assumptions, any local minimizer x∗ for (DSI) is a KKT point. Thus,

(5.1) provides a set of first-order necessary conditions of optimality.

Throughout our analysis, we will often refer to the KKT conditions for

Q̂P (x,H, η,Ξ′). Specifically, given x ∈ X, H = HT > 0, η ≥ 0, and Ξ′ ⊆ Ξ,

(d̂, γ̂) is a KKT point for Q̂P (x,H, η,Ξ′) if there exist (scalar) multipliers µ̂ and
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λ̂ξ, ξ ∈ Ξ′, satisfying

 Hd̂

1

+ µ̂

 ∇f(x)

−1

+
∑
ξ∈Ξ′

λ̂ξ

 ∇xφ(x, ξ)

−η

 = 0,

〈∇f(x), d̂〉 ≤ γ̂,

φ(x, ξ) + 〈∇xφ(x, ξ), d̂〉 ≤ γ̂ · η, ∀ξ ∈ Ξ′,

µ̂
(
〈∇f(x), d̂〉 − γ̂

)
= 0 and µ̂ ≥ 0,

λ̂ξ
(
φ(x, ξ) + 〈∇xφ(x, ξ), d̂〉 − γ̂ · η

)
= 0 and λ̂ξ ≥ 0, ∀ξ ∈ Ξ′.

(5.2)

In fact, such a (d̂, γ̂) is the unique KKT point, as well as the unique global

minimizer (stated formally in Lemma 43 below). As in Chapter 3, we will make

frequent use of a simple consequence of the first equation in (5.2), i.e.

µ̂+ η ·
∑
ξ∈Ξ′

λ̂ξ = 1. (5.3)

It remains to explicitly specify the key feature of the proposed algorithm: the

update rule for Ξk. As discussed in Section 5.1, following [49], Ξk+1 will include

(in addition to possible heuristics) three crucial components. The first is the

set Ξact(xk+1) of indices of active constraints at the new iterate. The second

component of Ξk+1 is the set Ξ̂bk ⊆ Ξk of indices of constraints that affected

d̂k. In particular, Ξ̂bk will include all indices of constraints in Q̂P (xk, Hk, ηk,Ξk)

which have positive multipliers, i.e. the binding constraints. Specifically, let λ̂ξk,

ξ ∈ Ξk, be the QP multipliers from Q̂P (xk, Hk, ηk,Ξk). Define

Ξ̂bk
∆
= { ξ ∈ Ξk | λ̂

ξ
k > 0 }.

Finally, the third component of Ξk+1 is the index ξ̄ of one constraint, if any exists,

which forced a reduction of the step in the previous line search. While the exact
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type of line search we employ is not critical to our analysis, we assume from this

point onward that it is an Armijo-type search (as was used in Chapter 3). That

is, given constants α ∈ (0, 1/2) and β ∈ (0, 1), the step-size tk is taken as the

first number t in the set {1, β, β2, . . . } such that

f(xk + tdk) ≤ f(xk) + αt〈∇f(xk), d̂k〉, (5.4)

and

φ(xk + td̂k, ξ) ≤ 0, ∀ξ ∈ Ξ. (5.5)

Thus, tk < 1 implies that either (5.4) or (5.5) is violated at xk + tk
β
d̂k. In the

event that (5.5) is violated, there exists ξ̄ ∈ Ξ such that

φ

(
xk +

tk

β
d̂k, ξ̄

)
> 0, (5.6)

and, in such a case, we will include ξ̄ in Ξk+1.

In order to update the tilting parameter, we follow the same scheme as in

Chapter 3. Specifically, given an index set Ξ′′k ⊆ Ξ, we attempt to compute

an estimate d̂ 0
k = d̂ 0(xk, Hk,Ξ

′′
k) of the SQP direction by solving the equality

constrained QP

min 1
2
〈d̂ 0, Hkd̂ 0〉+ 〈∇f(xk), d̂ 0〉

s.t. φ(xk, ξ) + 〈∇xφ(xk, ξ), d̂ 0〉 = 0, ξ ∈ Ξ′′k,
LS0(xk, Hk,Ξ

′′
k)

which, again, is equivalent (after a change of variables) to solving a linear least

squares problem. Define

Ξ̂k
∆
= { ξ ∈ Ξk | φ(xk, ξ) + 〈∇xφ(xk, ξ), d̂k〉 = γ̂k · ηk }.

We will show in Section 5.3.2 that, in order to guarantee fast local convergence,

it is sufficient to choose

Ξ′′k = Ξ̂k−1.
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If d̂ 0
k exists, is bounded, and has positive multipliers (i.e. is a “good” estimate),

the tilting parameter is taken as

ηk = Ck · ‖d̂ 0
k‖

2,

where Ck > 0 is chosen according to heuristics. Otherwise, it is sufficient to use

min{ε`, ‖d̂k−1‖2} in place of ‖d̂ 0
k‖

2.

Algorithm FSQP′-MC

Parameters. α ∈ (0, 1
2
), β ∈ (0, 1), 0 < δ � 1, ε` > 0, 0 < C ≤ C, D̄ > 0.

Data. x0 ∈ X, 0 < H0 = HT
0 ∈ R

n×n .

Step 0 - Initialization. set k ← 0 and choose Ξ0 ⊇ Ξact(x0).

Step 1 - Computation of search direction.

(i) compute d̂k = d̂(xk, Hk, ηk,Ξk).

(ii) if d̂k = 0, then stop.

Step 2 - Line search. compute tk, the first number t in the sequence

{1, β, β2, . . . } satisfying (5.4) and (5.5).

Step 3 - Updates.

(i). set xk+1 ← xk + tkd̂k.

(ii). if tk < 1 and (5.5) was violated at xk + tk
β
d̂k, then let ξ̄ be such

that (5.6) holds.

(iii). pick

Ξk+1 ⊇ Ξact(xk+1) ∪ Ξ̂bk.
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if tk < 1 and (5.6) holds for some ξ̄ ∈ Ξ, then set

Ξk+1 ← Ξk+1 ∪ {ξ̄}.

(iv). if tk ≤ δ and ξ̄ 6∈ Ξk, then set Hk+1 ← Hk, ηk+1 ← ηk. else,

(a) compute a new symmetric positive definite estimate

Hk+1 to the Hessian of the Lagrangian.

(b) select Ck+1 ∈ [C,C].

∗ if (‖d̂k‖ < ε`) then

· compute, if possible,3 d̂ 0
k+1 = d̂ 0(xk+1, Hk+1, Ξ̂k), and the

associated multipliers λ̂0
k+1 ∈ R

|Ξ̂k |.

· if
(
d̂ 0
k+1 exists and ‖d̂ 0

k+1‖ ≤ D̄ and λ̂0
k+1 ≥ 0

)
then set

ηk+1 ← Ck+1 · ‖d̂ 0
k+1‖

2.

· else set ηk+1 ← Ck+1 · ‖d̂k‖2.

∗ else set ηk+1 ← Ck+1 · ε2` .

(v). set k ← k + 1 and goto Step 1.

5.3 Convergence Analysis

While there are some critical differences, the analysis in this section closely

parallels that of [78, 35]. We begin by establishing that, under a few additional

assumptions, algorithm FSQP′-MC generates a sequence which converges to a

KKT point for (DSI). Then, upon strengthening our assumptions slightly, we

show that the rate of convergence is two-step superlinear.

3That is, if LS0(xk+1,Hk+1, Ξ̂k) is non-degenerate.
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5.3.1 Global Convergence

The following will be assumed to hold throughout our analysis.

Assumption 3: The level set { x ∈ Rn | f(x) ≤ f(x0) } ∩X is compact.

Assumption 4: There exist scalars 0 < σ1 ≤ σ2 such that for all k,

σ1‖d‖
2 ≤ 〈d,Hkd〉 ≤ σ2‖d‖

2, ∀d ∈ Rn .

Given the scalars 0 < σ1 ≤ σ2 from Assumption 4, define

H
∆
= {H = HT | σ1‖d‖

2 ≤ 〈d,Hd〉 ≤ σ2‖d‖
2, ∀d ∈ Rn}.

First, we derive some properties of d̂(x,H, η,Ξ′).

Lemma 43. For all x ∈ X, H ∈ H, η ≥ 0, and Ξ′ ⊆ Ξ, the pair

(d̂, γ̂) = (d̂(x,H, η,Ξ′), γ̂(x,H, η,Ξ′)) ∈ Rn × R

is well-defined and the unique KKT point of Q̂P (x,H, η,Ξ′). Further, for Ξ′ ⊆ Ξ

fixed, suppose {xk}k∈N ⊂ X is bounded, {Hk}k∈N ⊂ H, and {ηk}k∈N ⊂ [0,∞).

Then {d̂(xk, Hk, ηk,Ξ
′)}k∈N is bounded. Finally, d̂ = 0 if, and only if, γ̂ = 0.

Proof. The first and second claims are proved exactly as in Lemma 1. The third

claim is proved exactly as in Lemma 2.

The following results are straightforward extensions of Lemmas 2, 3, and 4

in Chapter 3. The proofs are omitted here as they are minor modifications of

those given in Chapter 3.
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Lemma 44. For all x ∈ X, H ∈ H, η ≥ 0, and Ξ′ ⊆ Ξ such that Ξact(x) ⊆ Ξ′,

(d̂(x,H, η,Ξ′), γ̂(x,H, η,Ξ′)) = (0, 0) if, and only if, x is a KKT point for (DSI).

If x is not a KKT point for (DSI) and η > 0, then d̂ = d̂(x,H, η,Ξ′) satisfies

〈∇f(x), d̂〉 < 0, (5.7)

〈∇xφ(x, ξ), d̂〉 < 0, ∀ξ ∈ Ξact(x), (5.8)

and γ̂ = γ̂(x,H, η,Ξ′) < 0.

Lemma 45. If ηk = 0, then xk is KKT for (DSI) and the algorithm will stop

in Step 1(ii) at iteration k. On the other hand, whenever the algorithm does not

stop in Step 1(ii), the line search is well-defined, i.e. Step 2 yields a step tk = βj

for some finite j = j(k).

In view of the update rule in Step 3(iii) and Lemma 44, if Algorithm FSQP′-

MC generates a finite sequence terminating at the point xN , then xN is a KKT

point for (DSI). We now concentrate on the case in which the algorithm never

satisfies the termination condition in Step 1(ii) and generates an infinite sequence

{xk}. As a consequence of Lemma 45, we may assume throughout that

ηk > 0, ∀k ∈ N . (5.9)

Before stating the next lemma, recall that a set of vectors { vj ∈ R
n | j =

1, . . . , r } is said to be positive linear independent if there does not exist scalars

αj ≥ 0, j = 1, . . . , r, not all zero, such that

r∑
j=1

αjvj = 0.
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Lemma 46. Suppose K is an infinite index set such that Ξ̂k ≡ Ξ′, for all k ∈ K,

xk
k∈K
−→ x∗ ∈ X, Hk

k∈K
−→ H∗ ∈ H, ηk

k∈K
−→ 0, d̂k

k∈K
−→ d̂∗, and γ̂k is bounded. Then

the set

{ ∇xφ(x∗, ξ) | ξ ∈ Ξ′ }

is positive linear independent.

Proof. We argue by contradiction. Suppose there exist scalars αξ ≥ 0, ξ ∈ Ξ′,

not all zero, such that

∑
ξ∈Ξ′

αξ∇xφ(x∗, ξ) = 0. (5.10)

Taking the limit on K in the QP-active constraints (since ηk
k∈K
−→ 0 and γ̂k is

bounded)

φ(x∗, ξ) + 〈∇xφ(x∗, ξ), d̂∗〉 = 0, ∀ξ ∈ Ξ′. (5.11)

Taking the inner product of (5.10) with d̂∗ and substituting (5.11) gives

−
∑
ξ∈Ξ′

αξφ(x∗, ξ) = 0.

Thus, since x∗ ∈ X, we must have

φ(x∗, ξ) = 0, ∀ξ ∈ { ξ | αξ > 0 },

i.e. { ξ | αξ > 0 } ⊆ Ξact(x
∗), in which case (5.10) contradicts Assumption 2.

Lemma 47. Suppose K is an infinite index set such that Ξ̂k ≡ Ξ∗, for all k ∈ K,

xk
k∈K
−→ x∗ ∈ X, Hk

k∈K
−→ H∗ ∈ H, ηk

k∈K
−→ η∗ ≥ 0, d̂k

k∈K
−→ d̂∗, and γ̂k

k∈K
−→ γ̂∗.

Then (d̂∗, γ̂∗) is the unique KKT point of Q̂P (x∗, H∗, η∗,Ξ∗).
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Proof. We begin by showing that {λ̂k}k∈K is bounded. It is clear from positivity

of the multipliers and (5.3) that µ̂k ∈ [0, 1] for all k, hence {µ̂k}k∈K is bounded.

First, consider the case that η∗ > 0. From (5.3) we have

∑
ξ∈Ξ∗

λ̂ξk =
1

ηk
(1− µ̂k).

Since η∗ > 0, ηk is bounded away from zero on K. As λ̂ξk ≥ 0, for all k ∈ K,

ξ ∈ Ξ∗, and {µ̂k}k∈K is bounded, it immediately follows that {λ̂k}k∈K is bounded.

Now consider the case that η∗ = 0 and, proceeding by contradiction, suppose

that {λ̂k}k∈K is unbounded. Let K′ ⊆ K be an infinite index set such that

‖λ̂k‖
k∈K′

−→∞. Define

νξk
∆
=

λ̂ξk

‖λ̂k‖
, ξ ∈ Ξ∗,

and suppose without loss of generality that νξk
k∈K′

−→ ν∗,ξ ∈ [0, 1], ξ ∈ Ξ∗. Of

course, ‖νk‖ = 1, for all k ∈ K′, thus ‖ν∗‖ = 1. Divide the first equation of the

QP optimality conditions (5.2) by ‖λ̂k‖ and take the limit on K′ (all quantities

are convergent on K′), yielding

∑
ξ∈Ξ∗

ν∗,ξ∇xφ(x∗, ξ) = 0.

Note that ν∗,ξ > 0 implies ξ ∈ Ξ̂k, for all k sufficiently large. We assume without

loss of generality that Ξ̂k ≡ Ξ̂ for all k ∈ K′. In view of Lemma 46, since

‖ν∗‖ = 1, we have a contradiction. Therefore, {λ̂k}k∈K is bounded.

Now suppose that K′ ⊆ K is an infinite index set such that µ̂k
k∈K′

−→ µ̂∗, and

λ̂ξk
k∈K′

−→ λ̂∗,ξ, ξ ∈ Ξ∗. Taking limits in the optimality conditions (5.2) shows

that (d̂∗, γ̂∗) is a KKT point for Q̂P (x∗, H∗, η∗,Ξ∗) with multipliers µ̂∗ ≥ 0 and

λ̂∗,ξ ≥ 0, ξ ∈ Ξ∗. Uniqueness of such points (Lemma 43) proves the result.
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Lemma 48. (i) The sequences {xk}, {ηk}, and {d̂k} are bounded; (ii) {f(xk)}

converges; (iii) tkdk −→ 0.

Proof. Boundedness of {xk} follows from Assumption 3 and the fact that {f(xk)}

is a monotonically decreasing sequence (guaranteed by Step 2). Since f is con-

tinuous, it also follows that {f(xk)} converges. It follows from Step 3(iv) that

{ηk} is bounded, thus in view of Assumption 4, Lemma 43, and boundedness of

{xk}, {d̂k} is bounded.

In view of the objective descent constraint in Q̂P (xk, Hk, ηk,Ξk) and since

(0, 0) is always feasible,

〈∇f(xk), d̂k〉 ≤ γ̂k

≤ −1
2
〈d̂k, Hkd̂k〉.

From Step 2, we have

f(xk+1) ≤ f(xk) + αtk〈∇f(xk), d̂k〉

≤ f(xk)−
α
2
tk〈d̂k, Hkd̂k〉.

Rearranging,

f(xk)− f(xk+1) ≥
α

2
tk〈d̂k, Hkd̂k〉 ≥ 0.

In view of the second claim of this lemma, and since tk ∈ [0, 1], for all k, we

conclude

〈tkd̂k, Hk(tkd̂k)〉 → 0.

As Hk ∈ H for all k, claim (iii) follows.

In order to establish convergence to a KKT point, it will be convenient to

consider the value function for Q̂P (x,H, η,Ξ′). In particular, given the solution

(d̂, γ̂) = (d̂(x,H, η,Ξ′), γ̂(x,H, η,Ξ′)), define

v̂(x,H, η,Ξ′)
∆
= −

(
1

2
〈d̂, Hd̂〉+ γ̂

)
.
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Note that, since (0, 0) is always feasible for Q̂P (x,H, η,Ξ′),

v̂k
∆
= v̂(xk, Hk, ηk,Ξk) ≥ 0,

for all k.

Lemma 49. Let K be an infinite index set. Then (i) d̂k
k∈K
−→ 0 if and only if

γ̂k
k∈K
−→ 0, (ii) d̂k

k∈K
−→ 0 if and only if v̂k

k∈K
−→ 0, and (iii) if d̂k

k∈K
−→ 0, then all

accumulation points of {xk}k∈K are KKT points for (DSI).

Proof. Suppose d̂k
k∈K
−→ 0 and assume without loss of generality that xk

k∈K
−→ x∗ ∈

X, Hk
k∈K
−→ H∗ ∈ H, ηk

k∈K
−→ η∗ ≥ 0, Ξk ≡ Ξ′ for all k ∈ K, and γ̂k

k∈K
−→ γ̂∗.

Then, in view of Lemma 47, (0, γ̂∗) is the unique solution of Q̂P (x∗, H∗, η∗,Ξ′).

It follows from Lemma 43 that γ̂∗ = 0. The converse is proved similarly, hence

claim (i) is proved.

Now suppose that d̂k
k∈K
−→ 0. Then γ̂k

k∈K
−→ 0 and it is clear from the definition

of v̂k that v̂k
k∈K
−→ 0. To prove the converse, note that from the optimality

conditions (5.2),

〈d̂k, Hkd̂k〉 = −µ̂k〈∇f(xk), d̂k〉 −
∑
ξ∈Ξk

λ̂ξk〈∇xφ(xk, ξ), d̂k〉

= −µ̂kγ̂k −
∑
ξ∈Ξk

λ̂ξk(γ̂k · ηk − φ(xk, ξ))

=

(
µ̂k + ηk ·

∑
ξ∈Ξk

λ̂ξk

)
γ̂k +

∑
ξ∈Ξk

λ̂ξkφ(xk, ξ)

≤ −γ̂k.

Thus,

v̂k = −
1

2
〈d̂k, Hkd̂k〉 − γ̂k

≥
1

2
〈d̂k, Hkd̂k〉 > 0,

for all k ∈ K. In view of Assumption 4, it is clear that if v̂k
k∈K
−→ 0, then d̂k

k∈K
−→ 0.

Thus, claim (i) is proved.
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Suppose that d̂k
k∈K
−→ 0. Let x∗ be some accumulation point of {xk} and

suppose that K′ ⊆ K is an infinite index set such that xk
k∈K′

−→ x∗. Without loss

of generality, assume that Ξk ≡ Ξ′ for all k ∈ K′, Hk
k∈K′

−→ H∗, and ηk
k∈K′

−→ η∗ ≥ 0.

As usual, let µ̂k and λ̂ξk, ξ ∈ Ξ′ denote the multipliers from Q̂P (xk, Hk, ηk,Ξ
′)

and suppose further, without loss of generality, that Ξ̂k ≡ Ξ̂′, for all k ∈ K.

As d̂k
k∈K′

−→ 0, γ̂k
k∈K′

−→ 0 and it is clear that Ξ̂′ ⊆ Ξact(x
∗). Thus, in view of

Assumption 2,

{ ∇xφ(xk, ξ) | ξ ∈ Ξ̂′ }

is a linearly independent set for all k ∈ K′, k sufficiently large.

Again, without loss of generality, suppose that µ̂k
k∈K′

−→ µ̂∗ ∈ [0, 1]. Define

R̂(x)
∆
= [ ∇xφ(x, ξ) | ξ ∈ Ξ̂′ ],

and let R̂k
∆
= R̂(xk). From the optimality conditions (5.2) we obtain the unique

expression for the multipliers

λ̂k = −
(
R̂T
k R̂k

)−1

R̂T
k

(
Hkd̂k + µ̂k∇f(xk)

)
.

In view of Assumptions 1 and 4, boundedness of {xk}, and since d̂k
k∈K′

−→ 0, we

see

λ̂k
k∈K′

−→ λ̂∗ = −
(
R̂∗T R̂∗

)−1

R̂∗T (µ̂∗∇f(x∗)) ,

where R̂∗ = R̂(x∗). Taking limits in the optimality conditions (5.2) shows that µ̂∗

and λ̂∗ are multipliers for Q̂P (x∗, H∗, η∗, Ξ̂′), where we set λ̂∗,ξ = 0 for ξ ∈ Ξ′\Ξ̂′.

Note that, from (5.3) and our explicit expression for λ̂∗ above, µ̂∗ > 0. Finally,

it is not difficult to see from (5.2) that x∗ is KKT for (DSI) with multipliers

λ∗,ξ =


λ̂∗,ξ

µ̂∗
, ξ ∈ Ξ′,

0, otherwise.

129



Lemma 50. Given x ∈ X, H > 0, and η ≥ 0, suppose Ξ′ ⊂ Ξ′′ ⊆ Ξ. If

d̂(x,H, η,Ξ′) is not feasible for Q̂P (x,H, η,Ξ′′), then

v̂(x,H, η,Ξ′′) < v̂(x,H, η,Ξ′).

Proof. Clearly d̂(x,H, η,Ξ′) 6= d̂(x,H, η,Ξ′′) since, by assumption, d̂(x,H, η,Ξ′)

is not feasible for Q̂P (x,H, η,Ξ′′). On the other hand, d̂(x,H, η,Ξ′′) is feasible

for Q̂P (x,H, η,Ξ′). Uniqueness of the solution of Q̂P (x,H, η,Ξ′) (Lemma 43)

gives the result.

The proof of the following two results were inspired by the proof of Theorem

T in [49].

Lemma 51. Suppose K is an infinite index set such that

xk
k∈K
−→ x∗ ∈ X, Hk

k∈K
−→ H∗ ∈ H, ηk

k∈K
−→ η∗ ≥ 0,

d̂k
k∈K
−→ d̂∗, γ̂k

k∈K
−→ γ̂∗,

where x∗ is not a KKT point for (DSI), and suppose Ξk ≡ Ξ′ for all k ∈ K.

Then η∗ > 0 and there exists t > 0 such that for all t ∈ [0, t], φ(xk + tdk, ξ) ≤ 0,

for all ξ ∈ Ξ′, and for all k ∈ K sufficiently large.

Proof. We begin by establishing that η∗ > 0. Suppose to the contrary that

η∗ = 0, i.e. ηk
k∈K
−→ 0. Then, in view of Step 3(iv), without loss of generality,

either

(i) d̂ 0
k

k∈K
−→ 0, with ‖d̂ 0

k‖ ≤ D̄ and λ̂0
k ≥ 0, for all k ∈ K, or

(ii) d̂k−1
k∈K
−→ 0.
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We first consider case (i). Let K′ ⊆ K be an infinite index set and Ξ0 ⊆ Ξ be

such that Ξ̂k−1 ≡ Ξ0 for all k ∈ Ξ0. Since d̂ 0
k

k∈K′

−→ 0, and since by construction

d̂ 0
k = d̂ 0(xk, Hk,Ξ

0), it follows from the constraints of LS0(xk, Hk,Ξ
0) that Ξ0 ⊆

Ξact(x
∗). Thus, as a consequence of Assumption 2, { ∇xφ(x∗, ξ) | ξ ∈ Ξ0 } is

a linearly independent set. Using an argument along the lines of that used in

Lemma 47, we can show that {λ̂0
k}k∈K′ is bounded, thus we assume without loss

of generality that λ̂0
k

k∈K′

−→ λ̂0
∗ ≥ 0. Taking limits in the optimality conditions for

LS0(xk, Hk,Ξ
0) shows that x∗ is a KKT point for (DSI) with multipliers

λ∗,ξ =

 λ̂0
∗, ξ ∈ Ξ0,

0, otherwise,

a contradiction. Now consider case (ii). As d̂k−1
k∈K
−→ 0, it follows that xk−1

k∈K
−→

x∗. In view of Lemma 49, x∗ is a KKT point, which is again a contradiction.

This establishes η∗ > 0.

As η∗ > 0, there exists η > 0 such that ηk ≥ η for all k ∈ K. Now, since x∗ is

not KKT, in view of Lemma 49(iii), {d̂k}k∈K is bounded away from zero, which

implies {γ̂k}k∈K is bounded away from zero. Thus, there exists γ̄ < 0 such that

φ(xk, ξ) + 〈∇xφ(xk, ξ), d̂k〉 ≤ γ̄η < 0, ∀ξ ∈ Ξ′,

for all k ∈ K. Therefore, there exists δ > 0 and k such that for all k ∈ K, k > k,

〈∇xφ(xk, ξ), d̂k〉 ≤ −δ, ∀ξ ∈ Ξ′ ∩ Ξact(x
∗)

φ(xk, ξ) ≤ −δ, ∀ξ ∈ Ξ′ \ (Ξ′ ∩ Ξact(x
∗)).

(5.12)

Now let Q
∆
= {xk| k ∈ K} ∪ {x∗}, D

∆
= {d̂k| k ∈ K} ∪ {d̂∗} and define

M(t, ξ)
∆
= max

x∈Q
max
d∈D

max
ζ∈[0,1]

‖∇xφ(x+ tζd, ξ)−∇xφ(x, ξ)‖ · ‖d‖,
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which is well-defined and continuous in t for all ξ ∈ Ξ′, since Q and D are

compact. Now for all k ∈ K, ξ ∈ Ξ′ we have

φ(xk + td̂k, ξ)− φ(xk, ξ)

=

∫ 1

0

〈∇xφ(xk + tζd̂k, ξ), d̂k〉dζ

= t

{∫ 1

0

〈∇xφ(xk + tζd̂k, ξ)−∇xφ(xk, ξ), d̂k〉dζ + 〈∇xφ(xk, ξ), d̂k〉

}
≤ t

{
sup
ζ∈[0,1]

‖∇xφ(xk + tζd̂k, ξ)−∇xφ(xk, ξ)‖ · ‖d̂k‖+ 〈∇xφ(xk, ξ), d̂k〉

}
≤ t

{
M(t, ξ) + 〈∇xφ(xk, ξ), d̂k〉

}
. (5.13)

Further note that M(0, ξ) = 0, for all ξ ∈ Ξ′. For ξ ∈ Ξ′∩Ξact(x
∗), define tξ such

that M(t, ξ) < δ for all t ∈ [0, tξ]. For all ξ ∈ Ξ′ \ (Ξ′ ∩Ξact(x
∗)), our regularity

assumptions and boundedness of {xk} and {d̂k} imply there exist M1,ξ > 0 and

M2,ξ > 0 such that

|〈∇xφ(xk, ξ), d̂k〉| ≤M1,ξ, ∀k, and max
t∈[0,1]

|M(t, ξ)| ≤M2,ξ.

For such ξ, define tξ = δ/(M1,ξ +M2,ξ). Then t{M(t, ξ) + 〈∇xφ(xk, ξ), d̂k〉} ≤ δ,

for all t ∈ [0, tξ], ξ ∈ Ξ′ \ (Ξ′∩Ξact(x
∗)). Finally, set t = maxξ∈Ξ′ tξ. From (5.13)

and (5.12) it is easily verified that t is as claimed.

Lemma 52. lim inf
k
v̂k = 0.

Proof. We argue by contradiction. That is, suppose

lim inf
k
v̂k = v̂∗ > 0. (5.14)

As all sequences of interest are bounded, there exists an infinite index set K such
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that

v̂k
k∈K
−→ v̂∗, xk

k∈K
−→ x∗ ∈ X, Hk

k∈K
−→ H∗ ∈ H,

v̂k+1
k∈K
−→ v̂∗+, d̂k

k∈K
−→ d̂∗, d̂k+1

k∈K
−→ d̂∗+,

γ̂k
k∈K
−→ γ̂∗, γ̂k+1

k∈K
−→ γ̂∗+, ηk

k∈K
−→ η∗ ≥ 0,

and Ξ̂bk ≡ Ξ′, for all k ∈ K. Since Ξ̂bk consists of the indices of the binding

constraints for Q̂P (xk, Hk, ηk,Ξk), (d̂k, γ̂k) solves Q̂P (xk, Hk, ηk,Ξ
′), for all k ∈

K, and we may assume without loss of generality that Ξk ≡ Ξ′ for all k ∈

K. In view of Lemma 47, (d̂∗, γ̂∗) is the unique solution of Q̂P (x∗, H∗, η∗,Ξ′),

and by Lemmas 49 and 43, γ̂∗ < 0. Thus, the objective descent constraint in

Q̂P (x∗, H∗, η∗,Ξ′) gives

〈∇f(x∗), d̂∗〉 < 0.

Now, in view of Lemmas 48(iii) and 49, tk
k∈K
−→ 0. Without loss of generality, we

assume that tk < min{δ, t}, for all k ∈ K, where δ is as defined in the algorithm

statement and t is as given by Lemma 51. Note that since tk < δ < 1, at least

one of the line search conditions of Step 2 is not satisfied at x̄k+1 = xk + tk
β
d̂k for

all k ∈ K. As α < 1 a standard argument may be used to show that condition

(5.4) is violated at x̄k+1 only finitely many times. Thus we assume that condition

(5.5) causes the line search failure for all k ∈ K, i.e.

φ(x̄k+1, ξ̄k) > 0, ∀k ∈ K.

As there are only finitely many constraints, we may assume without loss of

generality that ξ̄k ≡ ξ̄, for all k ∈ K. In view of Lemma 51, ξ̄ 6∈ Ξ′. As a

consequence, by Step 3(iv), Hk+1 = Hk and ηk+1 = ηk for all k ∈ K. Further, we

assume without loss of generality that

Ξk+1 ≡ Ξ′′ ⊇ Ξ′ ∪ {ξ̄}, ∀k ∈ K.
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It follows that (d̂k+1, γ̂k+1) solves Q̂P (xk+1, Hk, ηk,Ξ
′′), for all k ∈ K.

Note that in view of Lemma 48(iii), xk+1
k∈K
−→ x∗, hence by Lemma 47,

(d̂∗+, γ̂
∗
+) is the unique solution of Q̂P (x∗, H∗, η∗,Ξ′′). Since φ(x̄k+1, ξ̄) > 0 and

φ(xk+1, ξ̄) ≤ 0, for all k ∈ K, it follows that φ(x∗, ξ̄) = 0. Expanding φ(x̄k+1, ξ̄)−

φ(xk+1, ξ̄) and taking limits shows that

〈∇xφ(x∗, ξ̄), d̂∗〉 ≥ 0.

It follows that, since γ̂∗ < 0 and η∗ > 0 (by Lemma 51), (d̂∗, γ̂∗) is infeasible for

Q̂P (x∗, H∗, η∗,Ξ′′). Finally, in view of Lemma 50, v̂∗+ < v̂∗. As this contradicts

(5.14), the proof is complete.

Corollary 1. There exists an accumulation point of {xk} which is a KKT point

for (DSI).

Proof. Follows immediately from Lemmas 49 and 52.

Define the Lagrangian function for (DSI) as

L(x, λ)
∆
= f(x) +

∑
ξ∈Ξ

λξφ(x, ξ).

In order to show that the entire sequence converges to a KKT point x∗, we

strengthen our assumptions as follows.

Assumption 1′: The functions f : Rn → R and φ(·, ξ) : Rn → R, ξ ∈ Ξ are

twice continuously differentiable.

Assumption 5: Some accumulation point x∗ of {xk} which is a KKT point for

(DSI) also satisfies the second order sufficiency conditions with strict comple-

mentary slackness, i.e. there exists λ∗ ∈ R|Ξ| satisfying (5.1) as well as
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• ∇2
xxL(x∗, λ∗) is positive definite on the subspace

{h | 〈∇xφ(x∗, ξ), h〉 = 0, ∀ξ ∈ Ξact(x
∗)},

• and λ∗,ξ > 0 for all ξ ∈ Ξact(x
∗).

It is well-known that such an assumption implies that x∗ is an isolated KKT

point for (DSI) as well as an isolated local minimizer. The following theorem is

the main result of this section.

Theorem 7. The sequence {xk} generated by algorithm FSQP′-MC converges

to a strict local minimizer x∗ of (DSI).

Proof. First we show that there exists a neighborhood of x∗ in which no other

accumulation points of {xk} can exist, KKT points or not. As x∗ is a strict

local minimizer, there exists ε > 0 such that f(x) > f(x∗) for all x 6= x∗,

x ∈ S
∆
= B(x∗, ε) ∩ X, where B(x∗, ε) is the open ball of radius ε centered at

x∗. Proceeding by contradiction, suppose x′ ∈ B(x∗, ε), x′ 6= x∗, is another

accumulation point of {xk}. Feasibility of the iterates implies that x′ ∈ S. Thus

f(x′) > f(x∗), which is in contradiction with Lemma 48(ii). Next, in view of

Lemma 48(iii), (xk+1 − xk) → 0. Suppose K is an infinite index set such that

xk
k∈K
−→ x∗. Then there exists k1 such that ‖xk − x∗‖ < ε/4, for all k ∈ K,

k ≥ k1. Further, there exists k2 such that ‖xk+1 − xk‖ < ε/4, for all k > k2.

Therefore, if there were another accumulation point outside of B(x∗, ε), then

the sequence would have to pass through the compact set B(x∗, ε) \ B(x∗, ε/4)

infinitely many times. This contradicts the established fact that there are no

accumulation points of {xk}, other than x∗, in B(x∗, ε).
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5.3.2 Local Convergence

We have thus shown that, with a likely dramatically reduced amount of work

per iteration, global convergence can be preserved. This would be of little in-

terest, though, if the speed of convergence were to suffer significantly. In this

section we establish that, under a few additional assumptions, the sequence {xk}

generated by a slightly modified version of algorithm FSQP′-MC (to avoid the

Maratos effect) exhibits 2-step superlinear convergence. To do this, the bulk of

our effort is focused on showing that for k large the set of constraints Ξ̂bk which

affect the search direction is precisely the set of active constraints at the solu-

tion, i.e. Ξact(x
∗). In addition, we show that, eventually, no constraints outside

of Ξact(x
∗) affect the line search, and that Hk is updated normally at every

iteration. Thus, for k large enough, the algorithm behaves as if it were solving

the problem

min f(x)

s.t. φ(x, ξ) ≤ 0, ξ ∈ Ξact(x
∗),

(P ∗)

using all constraints at every iteration. Establishing this allows us to apply the

results of Section 3.3.2 concerning local convergence rates.

Lemma 53. Suppose K is an infinite index set such that ηk
k∈K
−→ η∗ ≥ 0, Hk

k∈K
−→

H∗ ∈ H, and Ξk ≡ Ξ∗, for all k ∈ K. Then Q̂P (x∗, H∗, η∗,Ξ∗) satisfies the

strong second order sufficiency conditions with strict complementary slackness,

the gradients of the active constraints are linearly independent, and Ξact(x
∗) ⊆

Ξ∗.
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Proof. Consider the Lagrangian function for Q̂P (x∗, H∗, η∗,Ξ∗)

L̂∗(d̂, γ̂, µ̂, λ̂)
∆
=

1

2
〈d̂, H∗d̂〉+ γ̂

+µ̂
(
〈∇f(x∗), d̂〉 − γ̂

)
+
∑
ξ∈Ξ∗

λ̂ξ
(
φ(x∗, ξ) + 〈∇xφ(x∗, ξ), d̂〉 − γ̂ · η∗

)
.

In view of Lemmas 52 and 49, we may assume without loss of generality that

(d̂k, γ̂k)
k∈K
−→ (0, 0). Thus, (0, 0) is the unique solution of Q̂P (x∗, H∗, η∗,Ξ∗) and it

is not difficult to show that (plug (0, 0) into the constraints of Q̂P (x∗, H∗, η∗,Ξ∗))

the set of active constraint gradients for Q̂P (x∗, H∗, η∗,Ξ∗) is

N∗
∆
=


 ∇f(x∗)

1

 ,

 ∇xφ(x∗, ξ)

−η∗

 , ξ ∈ Ξ∗ ∩ Ξact(x
∗)

 .

Using an argument identical to that given in the proof of Lemma 11 in Chapter 3,

we can show that N∗ is a linearly independent set. Further, the argument from

Lemma 12 in Chapter 3 may be used to show that the Hessian of the Lagrangian

∇2L̂∗(0, 0, µ̂∗, λ̂∗) is positive definite on N∗⊥. Thus, the second order sufficiency

conditions hold.

Let µ̂∗, λ̂∗,ξ, ξ ∈ Ξ∗, denote the unique (since N∗ is linearly independent)

multipliers from Q̂P (x∗, H∗, η∗,Ξ∗). We now show that strict complementary

slackness holds and Ξact(x
∗) ⊆ Ξ∗. An identical argument to that used in

Lemma 12 in Chapter 3 can be used to show that µ̂∗ > 0. In view of Assump-

tion 2, the multipliers λ∗,ξ, ξ ∈ Ξ, are unique for (DSI) at x∗. It thus follows

from the optimality conditions (5.2) that

λ∗,ξ =


λ̂∗,ξ

µ̂∗
, ξ ∈ Ξ∗,

0, otherwise.

Finally, as a consequence of Assumption 5, Ξact(x
∗) ⊆ Ξ∗ and

λ̂∗,ξ

µ̂∗
> 0, ∀ξ ∈ Ξact(x

∗).
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Therefore, strict complementary slackness holds for Q̂P (x∗, H∗, η∗,Ξ∗). It also

follows that Ξact(x
∗) ⊆ Ξ∗.

Lemma 54. There exists an infinite index set K such that Ξact(x
∗) ⊆ Ξ̂bk for

all k ∈ K.

Proof. Let K be as in the previous Lemma. We may apply the classical result

of Robinson [68] to conclude

µ̂k
k∈K
−→ µ̂∗,

λ̂ξk
k∈K
−→ λ̂∗,ξ, ∀ξ ∈ Ξ∗,

where µ̂k, λ̂
ξ
k, ξ ∈ Ξ∗ are the QP multipliers from Q̂P (xk, Hk, ηk,Ξ

∗) and µ̂∗ > 0,

λ̂∗,ξ, ξ ∈ Ξ∗ are the QP multipliers from Q̂P (x∗, H∗, η∗,Ξ∗). Note further that

uniqueness of the multipliers λ∗,ξ, ξ ∈ Ξ, for (DSI) at x∗ and the optimality

conditions (5.2) give

λ∗,ξ =


λ̂∗,ξ

µ̂∗
, ξ ∈ Ξ∗,

0, otherwise.

As µ̂∗ > 0, strict complementary slackness for (DSI) (Assumption 5) implies

λ̂∗,ξ > 0, for all ξ ∈ Ξact(x
∗). Therefore, for all k ∈ K, k sufficiently large,

Ξact(x
∗) ⊆ Ξ̂bk.

Before stating and proving the next lemma, we note that as a consequence

of Lemma 48(i), there exists η̄ > 0 such that

ηk ≤ η̄,

for all k.

Lemma 55. Given ε > 0, there exists δ > 0 such that for every x ∈ X satisfying

‖x−x∗‖ < δ, every η ∈ [0, η̄], every H ∈ H, and every Ξ′ ⊆ Ξ with Ξact(x
∗) ⊆ Ξ′,

all ξ ∈ Ξact(x
∗) are binding for Q̂P (x,H, η,Ξ′) and ‖d̂(x,H, η,Ξ′)‖ < ε.
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Proof. Given H ∈ H, η ∈ [0, η̄], and Ξ′ ⊆ Ξ such that Ξact(x
∗) ⊆ Ξ′, Lemma 44

implies that d̂(x∗, H, η,Ξ′) = 0. Since H and [0, η̄] are compact, Lemma 53 and

Assumption 5 allows us to apply Theorem 2.1 of [68] to conclude that, given

ε > 0, there exists δΞ′ > 0 such that for all x satisfying ‖x − x∗‖ < δΞ′ and

all H ∈ H, η ∈ [0, η̄], the QP multipliers from Q̂P (x,H, η,Ξ′) are positive for

all ξ ∈ Ξact(x
∗) and ‖d̂(x,H, η,Ξ′)‖ < ε. As Ξ is a finite set, δ may be chosen

independent of Ξ′.

Lemma 56. For k sufficiently large Ξact(x
∗) ⊆ Ξ̂bk.

Proof. For an arbitrary ε > 0, let δ > 0 be as given by Lemma 55. In view of

Theorem 7, there exists k such that ‖xk − x∗‖ < δ for all k ≥ k. By Lemma 54,

there exists an infinite index set K such that Ξact(x
∗) ⊆ Ξ̂bk, for all k ∈ K.

Choose k′ ≥ k, k′ ∈ K. It follows that Ξact(x
∗) ⊆ Ξk′+1. The result follows by

induction and Lemma 55.

Lemma 57. d̂k −→ 0.

Proof. Follows immediately from Lemma 56, Step 3(iii) of algorithm FSQP′-

MC, Assumption 4, and Lemma 55.

Lemma 58. For k large enough,

(i) Ξ̂bk = Ξact(x
∗), and

(ii) φ(xk + td̂k, ξ) ≤ 0 for all t ∈ [0, 1], ξ ∈ Ξ \ Ξact(x
∗).

Proof. For (i), in view of Lemma 56, it suffices to show that, for k sufficiently

large, Ξ̂bk ⊆ Ξact(x
∗). Suppose ξ′ ∈ Ξ \ Ξact(x

∗), i.e. φ(x∗, ξ′) < 0. Since
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xk −→ x∗, by continuity we have φ(xk, ξ
′) < 0 for all k sufficiently large. In view

of Lemma 57, for k sufficiently large we have

φ(xk, ξ
′) + 〈∇xφ(xk, ξ

′), d̂k〉 < 0.

Therefore, λ̂ξ
′

k = 0 (hence ξ′ 6∈ Ξ̂bk) for all k sufficiently large. Part (ii) follows

from Theorem 7, Lemma 57, and our regularity assumptions.

In order to achieve superlinear convergence, it is crucial that a unit step, i.e.

tk = 1, always be accepted for all k sufficiently large. Again, we will include a

second order correction such as that used in Chapter 3. Specifically, at iteration

k, let d̃k = d̃(xk, d̂k, Hk, Ξ̂k) be the solution of L̃S(xk, d̂k, Hk, Ξ̂k), defined for

τ ∈ (2, 3) as follows

min 1
2
〈d̂k + d̃, Hk(d̂k + d̃ )〉+ 〈∇f(xk), d̂k + d̃ 〉

s.t. φ(xk + d̂k, ξ) + 〈∇xφ(xk, ξ), d̂k + d̃〉 = −‖d̂k‖τ , ∀ξ ∈ Ξ̂k,

L̃S(xk, d̂k, Hk, Ξ̂k)

if it exists and has norm less that min{‖d̂k‖, C}, where C is a large number.

Otherwise, set d̃k = 0. The following step is added to algorithm FSQP′-MC:

Step 1(iii). compute d̃k = d̃(xk, d̂k, Hk, Ξ̂k).

In addition, the line search criterion (5.4) and (5.5) are replaced with

f(xk + td̂k + t2d̃k) ≤ f(xk) + αt〈∇f(xk), d̂k〉, (5.15)

and

φ(xk + td̂k + t2d̃k) ≤ 0, ∀ξ ∈ Ξ. (5.16)

Finally, the condition (5.6) is replaced with

φ

(
xk +

tk
β
d̂k +

(
tk
β

)2

d̃k, ξ̄

)
> 0. (5.17)
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With some effort, it can be shown that these modifications do not affect any

of the results obtained to this point. Hence, it is established that for k large

enough, the modified algorithm FSQP′-MC behaves identically to that given

in Chapter 3, applied to (P ∗).

Assumption 1 is now further strengthened and a new assumption concerning

the Hessian approximations Hk is given. These assumptions allow us to use the

local convergence rate result from Chapter 3.

Assumption 1′′: The functions f : Rn → R, and φ(·, ξ) : Rn → R, ξ ∈ Ξ, are

three times continuously differentiable.

Assumption 6: As a result of the update rule chosen for Step 3(iv), Hk ap-

proaches the Hessian of the Lagrangian in the sense that

lim
k→∞

‖Pk(Hk −∇2
xxL(x∗, λ∗))Pkd̂k‖

‖d̂k‖
= 0,

where λ∗ is the KKT multiplier vector associated with x∗ and

Pk
∆
= I −Rk(R

T
kRk)

−1RT
k

with Rk = [∇xφ(xk, ξ) | ξ ∈ Ξact(x
∗)].

Theorem 8. For all k sufficiently large, the unit step tk = 1 is accepted in Step

2. Further, the sequence {xk} converges to x∗ 2-step superlinearly, i.e.

lim
k→∞

‖xk+2 − x∗‖

‖xk − x∗‖
= 0.

5.4 Extensions to Constrained Mini-Max

The algorithm we have discussed may be extended following the scheme of [78]

to handle problems with many objective functions, i.e. large-scale constrained
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mini-max. Specifically, consider the problem

min max
ω∈Ω

f(x, ω)

s.t. φ(x, ξ) ≤ 0, ∀ξ ∈ Ξ,

where Ω and Ξ are finite (again, presumably large) sets, and f : Rn×Ω→ R and

φ : Rn × Ξ→ R are both three times continuously differentiable with respect to

their first argument. Given Ω′ ⊆ Ω, define

FΩ′(x)
∆
= max

ω∈Ω′
f(x, ω).

Given a direction d ∈ Rn , define a first-order approximation of FΩ′(x+d)−FΩ′(x)

by

F ′Ω′(x, d)
∆
= max

ω∈Ω′
{f(x+ d, ω) + 〈∇xf(x, ω), d〉} − FΩ′(x).

Define (d̂(x,H, η,Ω′,Ξ′), γ̂(x,H, η,Ω′,Ξ′)) ∈ Rn × R as the solution of the QP

min 1
2
〈d̂, Hd̂〉+ γ̂

s.t. F ′Ω′(x, d̂) ≤ γ̂,

φ(x, ξ) + 〈∇xφ(x, ξ), d̂〉 ≤ γ̂ · η, ∀ξ ∈ Ξ′.

Q̂P (x,H, η,Ω′,Ξ′)

The second order correction d̃(x, d̂, H,Ω′,Ξ′) is computed as the solution, if it

exists, of the equality constrained QP

min 1
2
〈d̂+ d̃, H(d̂+ d̃)〉+ γ̃

s.t. f(x+ d̂, ω) + 〈∇xf(x, ω), d̃〉 = FΩ′(x) + γ̃, ∀ω ∈ Ω′

φ(x+ d̂, ξ) + 〈∇xφ(x, ξ), d̃〉 = −‖d̂‖τ , ∀ξ ∈ Ξ′,

L̃S(x, d̂, H,Ω′,Ξ′)

where τ ∈ (2, 3) and again, if the QP has no solution, or if the solution has norm

greater than min{‖d̂‖, C}, we set d̃(x, d,H,Ω′,Ξ′) = 0. Finally, the estimate of

the SQP direction d̂ 0(x,H,Ω′,Ξ′) is taken from the solution

(d̂ 0, γ̂ 0) = (d̂ 0(x,H,Ω′,Ξ′), γ̂ 0(x,H,Ω′,Ξ′)) ∈ Rn × R,
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if it exists, of the equality constrained QP

min 1
2
〈d̂ 0, Hd̂ 0〉+ γ̂ 0

s.t. f(x, ω) + 〈∇xf(x, ω), d̂ 0〉 = FΩ′(x) + γ̂ 0, ∀ω ∈ Ω′

φ(x, ξ) + 〈∇xφ(x, ξ), d̂ 0〉 = 0, ∀ξ ∈ Ξ′,

LS0(x,H,Ω′,Ξ′)

As was the case with the constraints, at iteration k, only a subset Ωk ⊆ Ω

will be used to compute the search directions. In order to describe the update

rules for Ωk, following [78], we define a few index sets for the objectives (in direct

analogy with the index sets for the constraints as introduced in Section 5.2). The

set of indices of “maximizing” objectives is defined in the obvious manner as

Ωmax(x)
∆
= {ω ∈ Ω | f(x, ω) = FΩ(x)}.

At iteration k, let µ̂ωk , ω ∈ Ωk, be the multipliers from Q̂P (xk, Hk, ηk,Ωk,Ξk)

associated with the objective functions. The set of indices of objective functions

which affected the computation of the search direction d̂k is given by

Ω̂b
k

∆
= {ω ∈ Ωk | µ̂

ω
k > 0 }.

The line search criterion (5.15) is replaced with

FΩ(xk + td̂k + t2d̃k) ≤ FΩ(xk) + αtF ′Ωk(xk, d̂k). (5.18)

If tk < 1 and the truncation is due to an objective function, then define ω̄ ∈ Ω

as an index such that

f

(
xk +

tk
β
d̂k +

(
tk
β

)2

d̃k, ω̄

)
> FΩ(xk) + α

tk
β
F ′Ωk(xk, d̂k). (5.19)

Remark: Note that we use F ′Ωk(xk, d̂k) in the line search descent criterion in-

stead of F ′Ω(xk, d̂k). This allows us to skip the evaluation of the objective function
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gradients ∇xf(xk, ω), ω ∈ Ξ \ Ξk, potentially saving a great deal of effort in the

case that gradient evaluations are expensive.

Finally, define

Ω̂k
∆
= { ω ∈ Ωk | f(xk, ω) + 〈∇xf(xk, ω), d̂k〉 = FΩk(xk) + γ̂k }.

We are now in a position to state the extended algorithm.

Algorithm FSQP′-MOC

Parameters. α ∈ (0, 1
2
), β ∈ (0, 1), 0 < δ � 1, ε` > 0, 0 < C ≤ C, D̄ > 0.

Data. x0 ∈ X, 0 < H0 = HT
0 ∈ R

n×n .

Step 0 - Initialization. set k ← 0 and choose Ω0 ⊇ Ωmax(x0), Ξ0 ⊇

Ξact(x0).

Step 1 - Computation of search directions.

(i) compute d̂k = d̂(xk, Hk, ηk,Ωk,Ξk).

(ii) if d̂k = 0, then stop.

(iii) compute d̃k = d̃(xk, d̂k, Hk, Ω̂k, Ξ̂k).

Step 2 - Line search. compute tk, the first number t in the sequence

{1, β, β2, . . . } satisfying (5.18) and (5.16).

Step 3 - Updates.

(i). set xk+1 ← xk + tkd̂k.

(ii). if tk < 1 and (5.18) was violated at x̄k+1 = xk + tk
β
d̂k +

(
tk
β

)2

d̃k,

then let ω̄ be such that (5.19) holds.

if (5.16) was violated at x̄k+1, then let ξ̄ be such that (5.17) holds.
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(iii). pick

Ωk+1 ⊇ Ωmax(xk+1) ∪ Ωb
k, and

Ξk+1 ⊇ Ξact(xk+1) ∪ Ξ̂bk.

if tk < 1 and (5.19) holds for some ω̄ ∈ Ω, then set Ωk+1 ← Ωk+1 ∪

{ω̄}. if tk < 1 and (5.17) holds for some ξ̄ ∈ Ξ, then set Ξk+1 ←

Ξk+1 ∪ {ξ̄}.

(iv). if tk ≤ δ and ω̄ 6∈ Ωk or ξ̄ 6∈ Ξk, then set Hk+1 ← Hk,

ηk+1 ← ηk. else,

(a) compute a new symmetric positive definite estimate

Hk+1 of the Hessian of the Lagrangian.

(b) select Ck+1 ∈ [C,C].

∗ if (‖d̂k‖ < ε`) then

· compute, if possible,4 d̂ 0
k+1 = d̂ 0(xk+1, Hk+1, Ω̂k, Ξ̂k), and

the associated multipliers µ̂0
k+1 ∈ R

|Ω̂k | and λ̂0
k+1 ∈ R

|Ξ̂k |.

· if
(
d̂ 0
k+1 exists and ‖d̂ 0

k+1‖ ≤ D̄ and λ̂0
k+1 ≥ 0 and µ̂0

k+1 ≥ 0

and FΩ(xk+1) = FΩ̂k
(xk+1)

)
then set

ηk+1 ← Ck+1 · ‖d̂ 0
k+1‖

2.

· else set ηk+1 ← Ck+1 · ‖d̂k‖2.

∗ else set ηk+1 ← Ck+1 · ε2` .

(v). set k ← k + 1 and goto Step 1.

4That is, if LS0(xk+1,Hk+1, Ω̂k, Ξ̂k) is non-degenerate.
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5.5 Implementation and Numerical Results

We only discuss the implementation details for FSQP′-MC here. The details for

FSQP′-MOC are similar. The implementation allows for multiple discretized

SIP constraints and contains special provisions for those which are affine in x.

Specifically, problem (DSI) is generalized to

min f(x)

s.t. φj(x, ξ)
∆
= 〈cj(ξ), x〉 − dj(ξ) ≤ 0, ∀ξ ∈ Ξ(j), j = 1, . . . ,m`,

φj(x, ξ) ≤ 0, ∀ξ ∈ Ξ(j), j = m` + 1, . . . ,m,

where cj : Ξ
(j)
` −→ R

n , j = 1, . . . ,m`, dj : Ξ
(j)
` −→ R, j = 1, . . . ,m`, and Ξ(j) is

finite, j = 1, . . . ,m. The assumptions and algorithm statement are generalized

in the obvious manner. Analogous to what was done in Chapter 3, no tilting

is required for the affine constraints. As far as the analysis of Section 5.3 is

concerned, such a formulation could readily be adapted to the format of (DSI)

by grouping all constraints together, i.e. letting Ξ = ∪mj=1Ξ
(j). The arguments

would have to be modified slightly to account for the fact that no tilting is

done for the affine constraints. Since they are incorporated directly into the

sub-problems, though, it should be obvious that tilting is not necessary.

Recall that it is only required that Ξk contain certain subsets of Ξ. The

algorithm allows for additional elements of Ξ to be included in order to speed up

initial convergence. Of course, there is a trade-off between speeding up initial

convergence and increasing (i) the number of gradient evaluations and (ii) the

size of the QPs. In the implementation, heuristics are applied to add potentially

useful elements to Ξk (see, e.g. , [71] for a discussion of such heuristics). In the

case of discretized SIP, one may wish to exploit the knowledge that adjacent
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discretization points are likely to be closely related. Following [78, 49, 19], for

some ε > 0, the implementation includes in Ξk the set Ξ``mε (xk) of ε-active “left

local maximizers” at xk. At a point x ∈ X, for j = 1, . . . ,m, define the ε-active

discretization points as

Ξ(j)
ε (x)

∆
= {ξ ∈ Ξ(j) | φj(x, ξ) ≥ −ε}.

Such a discretization point ξ
(j)
i ∈ Ξ(j) = {ξ(j)

1 , . . . , ξ
(j)

|Ξ(j)|
} is a left local maximizer

if it satisfies one of the following three conditions: (i) i ∈ {2, . . . , |Ξ(j)| − 1} and

φj(x, ξ
(j)
i ) > φj(x, ξ

(j)
i−1) (5.20)

and

φj(x, ξ
(j)
i ) ≥ φj(x, ξ

(j)
i+1); (5.21)

(ii) i = 1 and (5.21); (iii) i = |Ξ(j)| and (5.20). The set Ξ``mε (x) is the set of

all left local maximizers in Ξε(x) = ∪mj=1Ξ
(j)
ε (x). The first part of the update

(i.e. before updates due to line search violations) in Step 3(iii) of the algorithm

becomes

Ξk+1 = Ξact(xk) ∪ Ξbk ∪ Ξ``mε (xk).

Finally, we have found that in practice, including the end-points (whether or not

they are close to being active) during the first iteration often leads to a better

initial search direction. Thus we set

Ξ0 = Ξact(x0) ∪ Ξ``mε (x0) ∪

(
m⋃
j=1

({ξ(j)
1 } ∪ {ξ

(j)

|Ξ(j)|
})

)
.

The implementation handles simple bounds on the variables, updates on the

coefficients Cj
k, and updates of the Hessian estimate Hk in a manner analogous
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to that in the basic algorithm FSQP′ (see Section 3.4). Note that the imple-

mentation maintains a separate tilting parameter ηjk, j = 1, . . . ,m−m`, for each

discretized nonlinear SIP constraint. As in Chapter 3, the stopping criterion of

Step 1(ii) is changed to

if (‖d̂k‖ ≤ ε) stop,

where ε > 0 is small. Finally, the details of the line search are also the same as

described in Section 3.4.

In order to judge the efficiency of algorithm FSQP′-MOC, we ran the same

numerical tests with two other algorithms differing only in the manner in which

Ωk and Ξk are updated. In the tables, the implementation of FSQP′-MOC

just discussed is denoted NEW. A simple ε-active strategy was employed in the

algorithm we call ε-ACT, i.e. we set Ωk = { ω ∈ Ω | f(xk, ω) > FΩ(x)− ε } and

Ξk = Ξε(xk) for all k, where ε = 0.1. The algorithm of Chapter 3 was applied

in algorithm FULL by simply setting Ωk = Ω and Ξk = Ξ, for all k. All three

algorithms were set to stop when ‖d0
k‖ ≤ 1 × 10−4. A uniform discretization

with 501 sample points was used in all cases. Problems cw 2, cw 3, and cw 5 are

borrowed from [10]. Problems with the prefix oet are from [45]. The problems

from [45] are more naturally posed as mini-max problems. In order to also

use them as constrained problems for Table 5.1 we used the trick discussed in

Section 4.1 and added a variable.

The first two columns of the tables are self-explanatory. A description of the

remaining columns is as follows. The third column, n, indicates the number of

variables, while m` and mn in the next two columns of Table 5.1 indicate the

number of linear SIP constraints and nonlinear SIP constraints (mn = m−m`),

respectively. Next, NF is the number of scalar objective function evaluations (i.e.
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evaluation of f(x) or some f(x, ω) for a given x and ω), NG is the number of

“scalar” constraint function evaluations (i.e. evaluation of some φj(x, ξ) for a

given x and ξ), and IT indicates the number of iterations required before the

stopping criterion was satisfied. In Table 5.1, f(x∗) indicates the value of the

objective function at the final iterate, while in Table 5.2, F (x∗) indicates the

value of the maximum objective function at the final iterate. Finally,
∑
|Ξk|

and
∑
|Ωk| are the sums over all iterations of the size of Ξk and Ωk, respectively

(they are equal to the number of gradient evaluations in the case of NEW and

FULL), |Ξ∗| and |Ω∗| are the sizes of Ξk and Ωk at the final iterate, and TIME

is the time of execution in seconds on a Sun Sparc 20 workstation. The * in

the row for problem oet 7 in Table 5.2 indicates that the algorithm failed to

converge within 500 iterations.

A few conclusions may be drawn from the results. On average, NEW requires

the most iterations to “converge” to a solution, whereas FULL requires the least.

Of course, such behavior is expected since NEW uses a simpler QP model at each

iteration. It is clear from comparing the results for
∑
|Ξk| or

∑
|Ωk| that NEW

provides significant savings in the number of gradient evaluations and the size of

the QP sub-problems. The savings for ε-ACT are not as dramatic. In almost all

cases, comparing TIME of execution confirms that, indeed, NEW requires far less

computational effort than either of the other two approaches. For problems in

which gradient evaluations are expensive, the savings in time and computational

effort would be even more dramatic than what is reported here.
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PROB ALGO n m` mn NF NG IT f(x∗) |Ξ∗|
∑
|Ξk| TIME

oet 1 NEW 2 0 1 18 18 5.382e-3 4 48 0.43

ε-ACT 9 9 5.382e-3 224 1789 0.44

FULL 6 6 5.382e-3 1002 6012 0.65

oet 2 NEW 2 0 1 4 4148 4 8.716e-2 3 17 0.14

ε-ACT 8 9573 8 8.716e-2 557 1900 0.36

FULL 4 4016 4 8.716e-2 1002 4008 0.44

oet 3 NEW 2 0 1 15 15 4.505e-3 4 86 0.38

ε-ACT 8 8 4.505e-3 1002 3572 0.61

FULL 6 6 4.505e-3 1002 6012 0.62

oet 4 NEW 2 0 1 18 22740 19 4.328e-3 5 92 0.49

ε-ACT 16 20766 17 4.295e-3 1002 6180 1.12

FULL 15 18585 16 4.296e-3 1002 16032 1.86

oet 5 NEW 2 0 1 46 54056 33 2.650e-3 4 175 0.99

ε-ACT 28 34610 28 2.650e-3 1002 19825 3.21

FULL 49 53890 36 2.650e-3 1002 36072 5.53

oet 6 NEW 2 0 1 19 25099 20 2.070e-3 5 119 0.62

ε-ACT 22 24429 21 2.073e-3 1002 15466 3.04

FULL 16 17595 15 2.073e-3 1002 15030 2.52

cw 2 NEW 2 0 1 5 2811 5 2.618 2 10 0.12

ε-ACT 8 5530 7 2.618 501 1743 0.24

FULL 5 3249 5 2.618 501 2505 0.30

cw 3 NEW 2 0 1 22 13868 25 5.335 2 48 0.35

ε-ACT 17 12923 20 5.335 501 142 0.31

FULL 22 13868 25 5.335 501 12525 0.96

cw 5 NEW 2 0 1 47 47 4.301 2 142 0.40

ε-ACT 7 7 4.301 501 2001 0.25

FULL 5 5 4.301 501 2505 0.28

Table 5.1: Numerical results for constrained problems with FSQP′-MOC.
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PROB ALGO n mo NF IT F (x∗) |Ω∗|
∑
|Ωk| TIME

oet 1 NEW 2 2 11088 10 5.382e-1 4 45 0.29

ε-ACT 6025 6 5.382e-1 224 1109 0.26

FULL 6024 6 5.382e-1 1002 6012 0.56

oet 2 NEW 2 2 4017 4 8.717e-2 3 16 0.13

ε-ACT 4017 4 8.717e-2 557 2080 0.27

FULL 4017 4 8.717e-2 1002 4008 0.38

oet 3 NEW 3 2 7035 7 4.513e-3 6 33 0.20

ε-ACT 9012 7 4.505e-3 1002 4222 0.48

FULL 5023 5 4.505e-3 1002 5010 0.47

oet 4 NEW 3 2 11054 11 4.297e-3 6 51 0.28

ε-ACT 13573 10 4.315e-3 1002 5357 0.66

FULL 8038 8 4.302e-3 1002 8016 0.83

oet 5 NEW 4 2 29134 26 2.660e-3 4 150 0.70

ε-ACT 43305 40 2.653e-3 1002 36469 4.97

FULL 43207 43 2.652e-3 1002 40080 5.20

oet 6 NEW 4 2 17174 17 2.075e-3 7 107 0.52

ε-ACT 66670 66 2.070e-3 1002 64655 10.38

FULL 49493 49 2.070e-3 1002 49098 7.90

oet 7 NEW 6 2 192511 187 6.563e-5 7 1328 6.73

ε-ACT *

FULL 71004 70 7.351e-3 1002 70140 20.49

Table 5.2: Numerical results for mini-max problems with FSQP′-MOC.
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Chapter 6

Implementation Details

6.1 Structure of the Implementation

The algorithms discussed in Chapters 3, 4, and 5 have been implemented in

ANSI C [31] following the details discussed in Sections 3.4, 4.4, and 5.5. Note

that the algorithm discussed in Chapter 5 applies equally well to problems with

large sets of “sequentially related” objectives and/or constraints, not necessarily

just discretized problems from SIP. As such, from this point forward, we will

refer to such objectives and constraints as sequentially related (SR) instead of

discretized SIP. The general problem tackled is

min
x∈Rn

max{max
i∈J

fi(x),max
i∈Jsr

max
ω∈Ωfi

fi(x, ω)}

s.t. x` ≤ x ≤ xu

gj(x) ≤ 0, j ∈ In

gj(x, ξ) ≤ 0, ξ ∈ Ξgj , j ∈ Insr

gj(x) ≡ 〈aj−mn, x〉 − bj−mn ≤ 0, j ∈ Ia

gj(x, ξ) ≡ 〈aj−mn(ξ), x〉 − bj−mn(ξ) ≤ 0, ξ ∈ Ξgj , j ∈ Iasr,
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where J = {1, . . . , p− psr}, Jsr = {p− psr + 1, . . . , p}, p is the total number of

scalar objectives and sets of sequentially related objectives, psr is the number of

sets of sequentially related objectives, In = {1, . . . ,mn −mnsr}, Insr = {mn −

mnsr +1, . . . ,mn}, Ia = {mn +1, . . . ,m−m`sr}, Iasr = {m−m`sr +1, . . . ,m},

m is the total number scalar constraints and sets of sequentially related con-

straints, mn is the total number of nonlinear scalar constraints and sets of non-

linear sequentially related constraints, mnsr is the number of sets of nonlinear

sequentially related constraints, m`sr is the number of sets of affine sequentially

related constraints, aj−mn ∈ R
n , bj−mn ∈ R, j ∈ Ia, aj−mn : Ξgj → R

n , and

bj−mn : Ξgj → R, j ∈ Iasr.

The implementation, which we will call RFSQP (for reduced FSQP) follows

the basic structure given in Figure 6.1. The user provides a main program

(main() in the figure) which sets up the problem to be solved and calls rfsqp().

Whenever the algorithm requires objective and constraint values, and their gra-

dients, it calls the user-defined functions which compute these quantities (obj(),

constr(), gradob, and gradcn() in the figure). RFSQP calls the user-defined

functions once for each scalar (objective or constraint) evaluation. This is in

contrast to many optimization algorithm implementations which make one call

to a user-defined function for all objective or constraint values. Note that the

gradients need not be provided by the user, the implementation allows the user

the option of letting it compute gradients via finite differences (see the end of

this section). We allow the user to tune the algorithm parameters by changing

them in the header file param.h. Finally, in order to solve the QP and LS sub-

problems, the implementation calls the solver QLD (qld() in the figure) due to

Powell and Schittkowski [70]. The interface to the QP solver is designed so that
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a user could relatively easily use a QP solver other than QLD.

rfsqp() qld()

User

main()

obj()

gradob()

constr()

gradcn()

param.h

Figure 6.1: Structure of the implementation.

The calling sequence to rfsqp() in main() is

inform = rfsqp(nparam,nf,nineq,nineqn,nfsr,ncsrn,ncsrl,

mesh_pts,iprint,miter,eps,bigbnd,x,bl,bu,f,g,

lambda,obj,constr,gradob,gradcn);

The input and output parameters are defined as follows

nparam (Input) Number of free variables, i.e., n in the problem statement.

nf (Input) Number of objective functions, i.e. p in the problem statement.

Note that one set of SR objectives counts as one objective.
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nineq (Input) Total number of inequality constraints, i.e., m in the problem

statement. Note that one set of SR constraints counts as one constraint.

nineqn (Input) Total number of affine inequality constraints, i.e. mn in the

problem statement.

nfsr (Input) Number of sets of SR objectives, i.e. psr in the problem statement.

Must be less than or equal to nf.

ncsrn (Input) Number of sets of nonlinear SR constraints, i.e. mnsr in the

problem statement. Must be less than or equal to nineqn.

ncsrl (Input) Number of sets of affine SR constraints, i.e. m`sr in the problem

statement. Must be less than or equal to nineq - nineqn.

mesh pts (Input) Integer array containing the number of elements in each (i)

SR objective set, (ii) nonlinear SR constraint set, and (iii) affine SR con-

straint set.

iprint (Input) Indicates amount of information to display during execution.

iprint = 0 Display nothing.

iprint = 1 Display all important output information after the final iter-

ation.

iprint = 2 Display same information as for iprint = 1 at every itera-

tion.

iprint = 3 Dump most of the important internal variables at every iter-

ation. Used for debugging.

miter (Input) Maximum number of iterations.
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eps (Input) Stopping criterion, norm requirement on the search direction d̂k.

bigbnd (Input) Used in places where “infinity” is called for, e.g. for simple

bounds in QP sub-problems where there are no simple bounds.

x (Input/Output) Double precision array which, on input, contains the user’s

initial guess, i.e. x0, and, on output, contains the computed optimal solu-

tion.

bl (Input) Double precision array containing lower bounds on the variables x,

i.e. x` from the problem statement.

bu (Input) Double precision array containing upper bounds on the variables x,

i.e. xu from the problem statement.

f (Output) Double precision array which, on output, contains the values of all

(in the order specified by the problem statement) scalar objective functions

at the solution.

g (Output) Double precision array which, on output, contains the values of

all (in the order specified by the problem statement) scalar constraints at

the solution.

lambda (Output) Double precision array which, on output, contains the values

of all multiplier estimates in the order (i) simple bounds (nparam values

since only nparam simple bounds could be active at the solution), (ii)

objective functions, and (iii) constraints.
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obj (Input) Pointer to a function computing the values of the objective func-

tions.

void

obj(int nparam, int j, double *x, double *fj)

{

/*

for given j, assign to *fj the value of the

(j+1)st objective evaluated at x

*/

return;

}

Each member of a set of sequentially related objectives is assigned a unique

value of j.

constr (Input) Pointer to a function computing the values of the constraint

functions.

void

constr(int nparam, int j, double *x, double *gj)

{

/*

for given j, assign to *gj the value of the

(j+1)st constraint evaluated at x

*/

return;

}

Each member of a set of sequentially related constraints is assigned a

unique value of j.
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gradob (Input) Pointer to a function computing the gradient of the objective

functions. Setting gradob = NULL causes RFSQP to use finite difference

gradients.

void

gradob(int nparam, int j, double *x, double *gradfj)

{

/*

for i=1 to nparam assign to gradfj[i-1] the

partial derivative of the (j+1)st objective

with respect to the ith parameter evaluated at x

*/

return;

}

Objective indexing must follow exactly that in obj().

gradcn (Input) Pointer to a function computing the gradient of the constraint

functions. Setting gradcn = NULL causes RFSQP to use finite difference

gradients.

void

gradcn(int nparam, int j, double *x, double *gradgj)

{

/*

for i=1 to nparam assign to gradgj[i-1] the

partial derivative of the (j+1)st constraint

with respect to the ith parameter evaluated at x

*/

return;

}

Constraint indexing must follow exactly that in constr().

inform (Output) Indicates status of execution.

inform = 0 Normal termination.

158



inform = 1 Failure in the QP solver.

inform = 2 Failure in the line search. The step size tk is smaller than the

machine precision.

inform = 3 Maximum number of iterations maxit reached.

inform = 4 Unable to generate a feasible initial point for nonlinear con-

straints (see Section 6.2).

inform = 5 Unable to generate a feasible initial point for affine constraints

(see Section 6.2).

In the event that the user passes a NULL pointer for gradob() and/or

gradcn(), the implementation will compute the gradients via forward finite dif-

ferences. At iteration k let xik denote the ith component of the iterate xk. Define

the perturbations δi ∈ Rn , i = 1, . . . , n, as

δji
∆
=


√
εm ·max{1, |xik|}, j = i,

0, otherwise,

where, as usual, εm denotes the machine precision. Then, for an objective fj, we

use the approximation

∂fj
∂xi
≈
fj(xk + δi)− fj(xk)

‖δi‖
.

A similar expression is used for constraints.

6.2 Infeasible Initial Point

Note that in all of the algorithm descriptions thus far we have assumed that

the user specifies a feasible initial guess, i.e. x0 ∈ X. This is a restrictive
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assumption, in general, and an implementation should be able to deal with an

infeasible initial guess. In this section we discuss the approach used in RFSQP to

generate a feasible initial point. We follow the approach used in CFSQP/FFSQP

[36, 79].

Let x0 denote the initial guess provided by the user. The first step is to

check all affine constraints to see if they are satisfied. If not, then we solve the

following convex QP

min
v∈Rn

〈v, v〉

s.t. x` ≤ x0 + v ≤ xu

〈aj−mn , x0 + v〉 − bj−mn ≤ 0, j ∈ Ia

〈aj−mn(ξ), x0 + v〉 − bj−mn(ξ) ≤ 0, ξ ∈ Ξgj , j ∈ Iasr.

Note that this QP is consistent if, and only if, a point exists which satisfies all

of the affine constraints for the original problem. If so, then the unique solution

of the QP is the smallest perturbation of the initial guess provided by the user

which is feasible for the affine constraints. Letting v∗ denote the solution, we set

x′0 = x0 + v∗.

The next step is to check whether x′0 satisfies all nonlinear constraints. If so,

then we may proceed with x′0 as the initial point. Otherwise, we iterate (using

the algorithms presented in this dissertation) on the problem

min
x∈Rn

max{max
i∈In

gi(x), max
i∈Insr

max
ξ∈Ξgi

gi(x, ξ)}

s.t. x` ≤ x ≤ xu

〈aj−mn, x〉 − bj−mn ≤ 0, j ∈ Ia

〈aj−mn(ξ), x〉 − bj−mn(ξ) ≤ 0, ξ ∈ Ξgj , j ∈ Iasr,

using x′0 as the initial point. Of course, it is not necessary to iterate on this

problem until a KKT point is detected. Instead, after the line search in each
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iteration k′ is performed, we check to see whether

G(xk′+1)
∆
= max{max

i∈In
gi(xk′+1), max

i∈Insr
max
ξ∈Ξgi

gi(xk′+1, ξ)} ≤ 0.

If so, then we immediately stop, set x′′0 = xk′+1, and begin iterating on the

original problem using x′′0 as the feasible initial point.

6.3 BFGS Updates for Cholesky Factors

At each iteration of our algorithms, in order to solve the QP and the two least

squares problems, the solver(s) must typically perform a Cholesky decomposition

(see [17]) of the Hessian estimate Hk, i.e. compute

Hk = RT
kRk,

where Rk ∈ Rn×n is upper triangular. Of course, repeating this procedure (which

requires O(n3) operations) three times is wasteful, especially for problems where

n is large. Thus, it would be ideal if we could maintain and update the Cholesky

factor Rk instead of Hk itself. Several authors (see, e.g., [16, 14]) have proposed

schemes for performing rank-two updates (such as the BFGS update given in

Section 3.4) on the Cholesky factors of a positive definite matrix. In the im-

plementation RFSQP we use the approach from [14], which we briefly review

here.

We will actually update the equivalent LkDkL
T
k factorization of Hk, where Lk

is lower triangular with all ones on the main diagonal and Dk is diagonal. From

this factorization, it is a trivial matter to obtain the Cholesky factor, specifically

Rk = D
1/2
k LTk .

161



Recall that we are interested in the rank-two update

Lk+1Dk+1L
T
k+1 = LkDkL

T
k − uu

T + vvT ,

where, from Section 3.4,

u
∆
=

Hkδk+1√
δTk+1Hkδk+1

, v
∆
=

ξk+1√
δTk+1ξk+1

.

These vectors may be efficiently computed from the factorizations of Hk directly.

For ease of notation we will dispense with the subscript k and let R, L, and D

denote the respective matrices at the current iteration and R+, L+, and D+

denote the updated matrices. The update is completed in two major steps, one

for each dyad, positive and negative. First, we obtain L̄ and D̄ from L and

D using the positive correction vvT . Let L = [`i,j] and D = diag{d1, . . . , dn},

similarly for L̄ and D̄. The following procedure is from [14].

set τ0 = 1, ν1 = v

for j = 1, . . . , n do {

pj = νjj

τj = τj−1 + p2
j/dj

d̄j = djτj/τj−1

βj = pj/(djτj)

for r = j + 1, . . . , n do {

νj+1
r = νjr − pj`r,j

¯̀
r,j = `r,j + βjν

j+1
r

}

}
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The update for the negative correction −uuT is a more involved since care

must be taken to ensure that rounding errors don’t cause any of the elements

of D+ to become zero or negative (in which case Hk+1 would not be positive

definite). Let L+ = [`+
i,j] and D+ = diag{d+

1 , . . . , d
+
n }. The following procedure

is also from [14].

solve L̄p = u and set τn+1 = 1− pT D̄−1p

if (τn+1 ≤ εm) then set τn+1 = εm

for j = n, . . . , 1 do {

τj = τj+1 + p2
j/d̄j

d+
j = d̄jτj+1/τj

βj = −pj/(d̄jτj+1)

ujj = pj

for r = j + 1, . . . , n do {

`+
r,j = ¯̀

r,j + βju
j+1
r

ujr = uj+1
r + pj ¯̀r,j

}

}

Note that the first step requires the solution of the linear system L̄p = u.

As L̄ is lower triangular, solving this system is just a simple matter of forward

substitution. Finally, R+ is readily computed from L+ and D+. Thus, we have

a procedure for updating the Cholesky factors of Hk. Of course, this update

is more expensive computationally than directly updating Hk, but the savings

gained by not having to perform Cholesky factorizations in each of the three

sub-problems outweighs the increase in computation required for the update.
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Our implementation RFSQP gives the user the option (through the header file

param.h) of either updating Hk directly, or the Cholesky factor Rk.

6.4 A Note on the Linear Algebra

It is not difficult to see that solving the least squares problems for d̂ 0 and d̃ is

equivalent to solving linear systems of the form H AT

A 0


 d

λ

 =

 r1

r2

 . (6.1)

In this section we discuss an efficient method due to Gay, Overton, and Wright

[13] for solving such systems. Note that this method has not yet been imple-

mented in RFSQP.

The first step is to perform a QR decomposition (see, e.g., [17]) of AT . Sup-

pose that 0 < H = HT ∈ Rn×n and A ∈ Rm×n . Then

AT = QR = [Q1 Q2]

 R1

0

 ,
where Q ∈ Rn×n is orthogonal, R ∈ Rn×m , Q1 ∈ Rn×m , and R1 ∈ Rm×m is upper

triangular. We may write d = Q1d1 +Q2d2. Hence

Ad = AQ1d1 +AQ2d2

= [RT
1 0]

 QT
1

QT
2

 (Q1d1 +Q2d2)

= RT
1 d1.

Thus, d1 may be obtained by forward substitution from the triangular system

RT
1 d1 = r2. (6.2)
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Now, from the first equation in (6.1), we have

r1 = Hd+ATλ

= HQ1d1 +HQ2d2 +ATλ.

Multiplying by QT
2 and noting that QT

2A
T = 0,

QT
2 r1 = QT

2HQ1d1 +QT
2HQ2d2.

Defining v = QT
2 r1 − QT

2HQ1d1 and substituting the Cholesky factorization

H = RTR (which we already have, see Section 6.3), gives

QT
2R

TRQ2d2 = v.

We would like to solve this equation for d2. To begin, define z = RTRQ2d2, and

consider solving QT
2 z = v. Writing Q = [q1, . . . , qn], where qi ∈ Rn , i = 1, . . . n,

it is not difficult to show that

z =
n−m∑
i=1

viqm+i. (6.3)

We may then use forward substitution to solve the triangular system

RTy = z (6.4)

for y, and the immediately use back substitution to solve

Rw = y (6.5)

for w. Finally, we are left with w = Q2d2, hence d2 = QT
2w and we have d =

Q1d1 +Q2d2 = Q1d1 +w. Now, in order to compute λ, note that ATλ = r1−Hd.

Thus, substituting the QR decomposition, we have the triangular system

R1λ = QT
1 (r1 −Hd), (6.6)

which may be solved via back substitution to obtain λ. Summing up, solving

(6.1) involves the following steps
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1. Obtain QR decomposition of AT .

2. Use forward substitution to solve (6.2) for d1.

3. Form z according to (6.3).

4. Use forward substitution to solve (6.4) for y.

5. Use back substitution to solve (6.5) for w.

6. Form d = Q1d1 + w.

7. Use back substitution to solve (6.6) for λ.

For large problems the QR decomposition dominates the other steps in terms

of computational cost. The two least squares problems for d̂ 0 and d̃ will likely

have similar, or identical, “A” matrices (H is the Hessian estimate Hk in both

cases). When they are different, it is typically only by the addition and/or dele-

tion of a few rows. In this case, instead of computing the QR factorization from

scratch each time, it may make more sense to employ updating and downdating

procedures as described in Section 12.6 of [17].

6.5 Full QP for the Maratos Correction

There may be times where it would be preferable to use a full QP model for d̃,

as is done in [51], instead of the least squares problem we use here. This may

be the case, for example, if function evaluations are very expensive. In such a

situation, it is important to use the best possible model of the problem at each

iteration in order to (i) reduce the total number of iterations, and (ii) increase
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the likelihood that a full step of one will be accepted in the line search. Both

properties have the effect of reducing the total number of function evaluations.

The implementation RFSQP allows the user the option of using a full QP

for d̃. Still, not all objectives and constraints need to be included in the QP,

only those which are active for Q̂P and those which are close to active for the

original problem. Define

F (x)
∆
= max{max

i∈J
fi(x),max

i∈Jsr
max
ω∈Ωfi

fi(x, ω)}.

Now define the index sets of objectives which were active for Q̂P ,

Ĵk = { j ∈ J | fj(xk) + 〈∇fj(xk), d̂k〉 − F (xk)− γ̂k > −
√
εm },

Ω̂
fj
k = { ω ∈ Ω

fj
k | fj(xk, ω) + 〈∇fj(xk, ω), d̂k〉 − F (xk)− γ̂k > −

√
εm },

j ∈ Jsr,

and constraints which were active for Q̂P ,

Înk = { j ∈ In | gj(xk) + 〈∇gj(xk), d̂k〉 − γ̂k · η
j
k > −

√
εm },

Ξ̂
n,gj
k = { ξ ∈ Ξ

gj
k | gj(xk, ξ) + 〈∇gj(xk, ξ), d̂k〉 − γ̂k · η

j
k > −

√
εm }, j ∈ Insr,

Îak = { j ∈ Ia | 〈aj−mn, xk + d̂k〉+ bj−mn > −
√
εm },

Ξ̂
a,gj
k = { ξ ∈ Ξ

gj
k | 〈aj−mn(ξ), xk + d̂k〉+ bj−mn(ξ) > −

√
εm }, j ∈ Iasr.

Following [36, 79], let f bk be the value at xk of the first objective which has a

positive multiplier in Q̂P and let ∇f bk denote its gradient at xk. Now define the

index sets of objectives which are “close” to active for the original problem,

J̄k = { j ∈ J | |fj(xk)− f bk| ≤ 0.2‖d̂k‖·‖∇fj(xk)−∇f bk‖},

Ω̄
fj
k = { ω ∈ Ω

fj
k | |fj(xk, ω)− f bk| ≤ 0.2‖d̂k‖·‖∇fj(xk, ω)−∇f bk‖}, j ∈ Jsr.

Finally, define the set of indices of constraints which are “close” to active for the
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original problem,

Īnk = { j ∈ In | |gj(xk)| ≤ 0.2‖d̂k‖·‖∇gj(xk)‖ },

Ξ̄
n,gj
k = { ξ ∈ Ξ

gj
k | |gj(xk, ξ)| ≤ 0.2‖d̂k‖·‖∇gj(xk, ξ)‖ }, j ∈ Insr,

Īak = { j ∈ Ia | |〈aj−mn, xk〉+ bj−mn | ≤ 0.2‖d̂k‖·‖aj−mn‖ },

Ξ̄
a,gj
k = { ξ ∈ Ξ

gj
k | |〈aj−mn(ξ), xk〉+ bj−mn(ξ)| ≤ 0.2‖d̂k‖·‖aj−mn(ξ)‖ },

j ∈ Iasr.

Let F̃k be the maximum value of all objectives which we will be used in the

computation of d̃, evaluated at xk + d̂k, i.e.

F̃k
∆
= max{ max

i∈Ĵk∪J̄k

fi(xk + d̂k), max
i∈Jsr

max
ω∈Ω̂

fi
k ∪Ω̄

fi
k

fi(xk + d̂k, ω)}.

The full QP used to compute d̃k in the RFSQP implementation (when the user

chooses not to use the least squares option) is as follows,

min
d̃∈Rn,γ̃∈R

〈d̂k + d̃, Hk(d̂k + d̃)〉+ γ̃

s.t. x` ≤ xk + d̂k + d̃ ≤ xu

fj(xk + d̂k) + 〈∇fj(xk), d̃〉 ≤ F̃k + γ̃, j ∈ Ĵk ∪ J̄k,

fj(xk + d̂k, ω) + 〈∇fj(xk, ω), d̃〉 ≤ F̃k + γ̃, ω ∈ Ω̂
fj
k ∪ Ω̄

fj
k , j ∈ J

sr,

gj(xk + d̂k) + 〈∇gj(xk), d̃〉 ≤ −min{10−2‖d̂k‖, ‖d̂k‖τ}, j ∈ Înk ∪ Ī
n
k ,

gj(xk + d̂k, ξ) + 〈∇gj(xk, ξ), d̃〉 ≤ −min{10−2‖d̂k‖, ‖d̂k‖τ},

ξ ∈ Ξ̂
gj
k ∪ Ξ̄

gj
k , j ∈ Insr

〈aj−mn, xk + d̂k + d̃〉 − bj−mn ≤ 0, j ∈ Îak ∪ Ī
a
k

〈aj−mn(ξ), xk + d̂k + d̃〉 − bj−mn(ξ) ≤ 0, ξ ∈ Ξ̂
gj
k ∪ Ξ̄

gj
k , j ∈ Iasr,

where τ ∈ (2, 3).
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Chapter 7

Application to Engineering Design

7.1 Introduction

m ∈ {1, . . . ,M} m̂ ∈ {1, . . . ,M}

n[t]

Transmitter Receiver
sm[t] y[t]

Figure 7.1: Model of a communication system.

Consider the simple communication system model shown in Figure 7.1. The goal

is to transmit one of M possible symbols, i.e. an M-ary signaling system, over a

memoryless additive noise channel. We will assume all signals are discrete-time

with T samples. The transmitter assigns a unique signal sm : {1, . . . , T} → R to

each symbol m ∈ {1, . . . ,M}. It is this signal that is sent through the channel.

At the other end, the received signal is

y[t] = sm[t] + n[t], t = 1, . . . , T,
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where n : {1, . . . , T} → R is a noise process, and the job of the receiver is

to decide which symbol was transmitted. Our goal is to apply the algorithms

developed in this dissertation to design a set of signals sm, m = 1, . . . ,M , which

maximizes, subject to constraints on the signals, the probability of a correct

decision by the receiver given a particular channel noise distribution.

Of course, in order to design an optimal signal set, the action of the channel

and the receiver must be completely specified. For the channel, we assume the

noise process is independent and identically distributed (iid) with distribution

pN . Further, we assume that the noise process is independent of the symbol

being transmitted. Our detection problem falls into the class of M-ary Bayesian

hypothesis testing problems where, form = 1, . . . ,M , the hypotheses are defined

as follows,

Hm : y[t] = sm[t] + n[t], t = 1, . . . , T.

To simplify notation, define the received signal vector

y
∆
= (y[1], . . . , y[T ])T .

Finally, it is assumed that the receiver was designed using the minimum average

probability of error criterion (or the uniform cost criterion). It is well known that

(see, e.g., Section IV.B of [59]), under our assumptions, the optimal receiver is

the maximum a posteriori probability (MAP) detector. Specifically, the optimal

receiver chooses

m̂(y) = arg max { p(Hm| y) | m = 1, . . . ,M } ,

i.e. the hypothesis with the largest probability given the observation y.

Clearly, the receiver will make an error if hypothesis Hm is true, but

p(Hm′| y) > p(Hm| y),
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for some m′ 6= m. Thus, the probability of a correct decision under hypothesis

Hm is

p({correct decision} | Hm) = p ( { p(Hm| y) > p(Hm′ | y), ∀m′ 6= m} | Hm)

= p

( {
ln
p(Hm| y)

p(Hm′ | y)
> 0, ∀m′ 6= m

} ∣∣∣∣ Hm

)
,

where, in order to put things in terms of the familiar log-likelihood ratio, we

have assumed p(Hm′ | y) > 0 for all y, m′ ∈ {1, . . . ,M}. For the signal set

design problem considered here, no knowledge of the prior distribution on the

hypotheses Hm, m = 1, . . . ,M , will be assumed . Of course, the conditional

distribution p(Hm | y) is known since, given a signal set, this distribution is

completely determined by the distribution on the channel noise. Specifically, in

view of our assumptions,

p(Hm | y) =
T∑
t=1

pN(y[t]− sm[t]).

If the prior distribution were known, the quantity to be maximized could be

expanded as

p({correct decision}) =
M∑
m=1

p({correct decision} | Hm) · p(Hm).

As p(Hm) is not assumed to be known, the worst-case prior distribution will be

used to compute p({correct decision}) for any given signal set. In particular, let

S
∆
=

{
γ ∈ RM

∣∣∣∣∣
M∑
m=1

γm = 1, γm ≥ 0, m = 1, . . . ,M

}
.

The goal will be to find signal sets which maximize

min
γ∈S

M∑
m=1

p({correct decision} | Hm) · γm.

171



It is not difficult to show that this is equivalent to maximizing

min
m∈{1,... ,M}

p( {correct decision} | Hm). (7.1)

A standard assumption in transmitter design is that the signals are restricted

to be of the form

sm[t]
∆
=

K∑
k=1

αm,kφk[t], (7.2)

where φk : {1, . . . , T} → R, k = 1, . . . , K, are given basis functions and αm,k ∈

R, m = 1, . . . ,M , k = 1, . . . , K, are the free parameters. Finally, due to power

limitations in the transmitter, the signals are forced to satisfy some type of

power constraint, either peak amplitude or average energy. In this chapter, we

will assume a peak amplitude constraint, i.e.

|sm[t]| ≤ C, m = 1, . . . ,M, t = 1, . . . , T, (7.3)

where C > 0 is given. Note that we could just as easily have considered an

average energy constraint in our formulation. Our design problem is thus reduced

to choosing parameters αm,k in order to maximize (7.1), subject to the constraints

(7.3).

7.2 The Optimization Problem

In this section we go through the steps of framing the problem discussed in

the previous section in such a way that it may be efficiently solved using the

algorithms developed in this dissertation. The design of optimal signal sets un-

der the assumption of Gaussian noise has been well studied (see, e.g., [63]). In

fact, a gradient-based first-order algorithm was developed and analyzed in [12]
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for the case of Gaussian noise, K = 2 basis functions, and an average energy

constraint on the signals. The performance of optimal detectors in the presence

of non-Gaussian noise (as a function of signal set choice) was first studied by

Johnson and Orsak in [29]. It was shown in [29] that the dependence of detector

performance on the signal set is related to the Kullback-Leibler (KL) distance

between distributions for the various hypotheses. Based on this work, Gocken-

bach and Kearsley [15] proposed the nonlinear programming (NLP) formulation

of the signal set design problem which is considered here.

Given our assumptions on the noise process, the log-likelihood ratio may be

written

ln
p(Hm| y)

p(Hm′ | y)
=

T∑
t=1

ln
p(Hm| y[t])

p(Hm′ | y[t])
.

Note that, since randomness only enters the received signal through the additive

noise process, when hypothesis Hm is true, the receiver computes

p(Hm| y[t]) = pN(n[t]),

and, for m′ 6= m,

p(Hm′ | y[t]) = pN(n[t] + (sm′ [t]− sm[t])).

Thus, upon substitution, the statistic of interest to us is

ln
p(Hm| y)

p(Hm′ | y)
=

T∑
t=1

ln

(
pN(n[t])

pN(n[t] + (sm′ [t]− sm[t]))

)
. (7.4)

Now, assuming the variance of the statistic (7.4) does not change as we vary

m′ 6= m, maximizing p({correct decision} | Hm) is equivalent to maximizing the

expected value of the statistic (7.4) for each m′ 6= m. That is, under hypothesis

Hm, the probability of correctly choosing Hm is maximized if we maximize

min
m′ 6=m

E

{
T∑
t=1

ln

(
pN (n[t])

pN (n[t] + (sm′ [t]− sm[t]))

) ∣∣∣∣∣ Hm

}
.
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Thus, the objective function for the signal design problem considered here is

min
m∈{1,... ,M}

min
m′ 6=m

E

{
T∑
t=1

ln

(
pN(n[t])

pN(n[t] + (sm′[t]− sm[t]))

) ∣∣∣∣∣ Hm

}
.

Define the function KN : R → R as

KN(δ)
∆
=

∫
R

ln

(
pN (τ)

pN(τ + δ)

)
pN (τ)dτ,

i.e. the KL distance between the noise distribution and the noise distribution

shifted by −δ. Note that if we assume a symmetric distribution for the noise

(this is not a restrictive assumption), then KN(·) will be an even function. It is

not difficult to see that

E

{
T∑
t=1

ln

(
pN (n[t])

pN (n[t] + (sm′ [t]− sm[t]))

) ∣∣∣∣∣ Hm

}
=

T∑
t=1

KN(sm′ [t]− sm[t]).

Define

α
∆
= (α1,1, . . . , α1,K , . . . , αM,1, . . . , αM,K) ∈ RMK .

Substituting the expansion (7.2), we see that, under our assumptions, the signal

set design problem is equivalent to solving the optimization problem

min
α∈RMK

max

{
−

T∑
t=1

KN

(
K∑
k=1

(αm
′,k − αm,k)φk[t]

) ∣∣∣∣∣ m,m′∈{1,... ,M}, m′>m

}

s.t.

(
K∑
k=1

αm,kφk[t]

)2

≤ C2, m = 1, . . . ,M, t = 1, . . . , T.

(SS)

It is only necessary to consider m′ > m since KN(·) is an even function.

Note that (SS) may be solved by the constrained mini-max algorithm of

Chapter 4. It turns out, though, that it is better to use the constrained mini-

max algorithm of Chapter 5 (Section 5.4, Algorithm FSQP′-MOC) due to

the possibly large number of objectives and constraints. Using the notation of
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Section 6.1 for the general problem tackled by the implementation RFSQP, let

J = ∅, Jsr = {1}, Ωf1 = {1, . . . ,M(M − 1)/2}, and Ξg1 = {1, . . . ,MT}. Define

the mappings

m1 : Ωf1 → {1, . . . ,M},

m2 : Ωf1 → {1, . . . ,M},

m : Ξg1 → {1, . . . ,M},

t : Ξg1 → {1, . . . , T},

in any way so that (m1(ω),m2(ω)) is a one-to-one mapping from Ωf1 onto

{ (m′,m′′) | m′,m′′ ∈ {1, . . . ,M}, m′′ > m′ }, and (m(ξ), t(ξ)) is a one-to-

one mapping from Ξg1 onto { (m′, t′) | m′ ∈ {1, . . . ,M}, t′ ∈ {1, . . . , T} }.

Such mappings are not difficult to construct. Now define

f1(α, ω)
∆
= −

T∑
t=1

KN

(
K∑
k=1

(αm2(ω),k − αm1(ω),k)φk[t]

)
, ω ∈ Ωf1 ,

and

g1(α, ξ)
∆
=

(
K∑
k=1

αm(ξ),kφk[t(ξ)]

)2

− C2, ξ ∈ Ξg1.

Simple bounds on the variables α are defined in Section 7.3. Thus, letting

n = MK, m = mn = mnsr = 1, and m`sr = 0, the problem is completely

specified in a form which can be tackled by the implementation RFSQP. C

code which computes the objective and constraint function values is included in

Appendix A.

7.3 Global Algorithms

Problem (SS) is an ideal application for the algorithms developed in this dis-

sertation. To begin with, there are few algorithms available to directly handle

the constrained mini-max problem. At first glance it may seem as though there
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is no reason to require feasible iterates for (SS). In fact, feasible iterates are

desirable, but for an “algorithmic” reason instead of an application-oriented one.

Specifically, it was observed in [15] that outside of the feasible region, the lin-

earized constraints for problem (SS) are often inconsistent, i.e. no feasible solu-

tion exists. Of course, with feasible iterates, the linearized constraints are always

consistent and the solutions of the QP sub-problems are always well-defined. For

practical instances of the problem, the number of objective functions and non-

linear constraints is large, which makes the problem an excellent candidate for

the application of Algorithm FSQP′-MOC. Finally, we note that Algorithm

FSQP′-MOC is preferable to CFSQP [36] for solving (SS) because function

evaluations are relatively cheap and are dominated by the computational cost of

generating a new iterate.

The only difficulty in applying Algorithm FSQP′-MOC is that problem

(SS) has many local solutions which may prevent convergence to a global solu-

tion. In an attempt to overcome this problem, we will use a stochastic two-phase

method (see, e.g., [4]) where random initial points are generated in the feasible

region and Algorithm FSQP′-MOC, the local method, is repeatedly applied

to a subset of these points. Such an approach may be thought of as simply a

“smart” way of generating many initial points for our fast local algorithm with

the hopes of eventually identifying a global solution. Specifically, we will use

the Multi-Level Single Linkage (MLSL) approach [4, 30], which is known to

find, with probability one, all local minima (hence the global minima) in a finite

number of iterations.

LetM denote the cumulative set of local minimizers identified by the MLSL

algorithm. At iteration `, for some integer N > 0 fixed, we generate N points
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α(`−1)N+1, . . . , α`N distributed uniformly over the feasible set X for (SS). For

each of the points αi ∈ {α1, . . . , α`N} we check to see if there is another point

αj within a “critical distance” r` of αi which also has a smaller objective value.

If not, then the local algorithm FSQP′-MOC is applied with initial point αi

and the computed local minimizer is added to the set M. After all points are

checked, r` is updated, ` is set to `+1 and the process is repeated. At any given

iteration, the local maximizer with the smallest objective value is our current

estimate of the global solution. For ease of notation, define the (mini-max)

objective

F (α)
∆
= max

ω∈Ωf1
f1(α, ω).

Further, let FSQP′-MOC(α) denote the local minimizer obtained when Al-

gorithm FSQP′-MOC is applied to problem (SS) with initial point α. The

following algorithm statement is adapted from [4].

Algorithm MLSL

Step 0. set `← 1,M← ∅.

Step 1. generate N points α(`−1)N+1, . . . , α`N uniformly over X.

set i← 1.

Step 2. if (∃j s.t. F (αj) < F (αi) and ‖αi − αj‖s < r`) then goto Step 3.

else setM←M∪ {FSQP′-MOC(αi)}.

Step 3. set i← i+ 1.

if i ≤ `N then goto Step 2.

else set `← `+ 1 and goto Step 1.
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It remains to specify how we select the critical distance r`, the definition of

the metric ‖ · ‖s we use for signal sets (as parameterized by α), and how we

generate the sample points. Following [4], we use

r` =
1
√
π

(
Γ(1 + n/2) ·m(X) ·

ζ ln(`N)

`N

)1/n

,

where n is the number of variables (MK for our problem), m(X) is the volume of

the feasible region, and ζ > 2. To compute m(X), note that in view of symmetry

with respect to the signals,

m(X) = AM ,

where A is the volume of the feasible region for the parameters corresponding

to one signal (recall, M is the number of signals). The quantity A is easily

estimated using a Monte Carlo technique.

Note that, for our problem, as far as the transmitter is concerned, a given

signal set is unchanged if we were to swap the coefficients αm1,k, k = 1, . . . , K,

with αm2,1, k = 1, . . . , K, where m1 6= m2. The distance “metric” we use in Al-

gorithm MLSL should take this symmetry into account. Consider the following

procedure for computing the distance between signal sets parameterized by α1

and α2.

function dist(α1, α2) {

for i = 1, . . . ,M − 1 do {

di = min

{
K∑
k=1

(αi,k1 − α
j,k
2 )2

∣∣∣∣∣ j ∈ {1, . . . ,M} \ {j1, . . . , ji−1}

}

ji = arg min

{
K∑
k=1

(αi,k1 − α
j,k
2 )2

∣∣∣∣∣ j ∈ {1, . . . ,M} \ {j1, . . . , ji−1}

}

}
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return

(
M∑
i=1

di

)1/2

}

This is not a metric in the strict sense of the definition, though it suffices for our

purposes and we will set

‖α1 − α2‖s
∆
= dist(α1, α2).

To aid the generation of sample points, before starting the MLSL loop we

compute the smallest box which contains the feasible set X. By symmetry with

respect to the signals, we can do this by solving 2K linear programs. Specifically,

let ᾱk ∈ R, k = 1, . . . , K be defined as the optimal value of the linear program

(LP)

max
α1,1,... ,α1,K

α1,k

s.t.
K∑
q=1

α1,qφk[t] ≤ C, t = 1, . . . , T,

K∑
q=1

α1,qφk[t] ≥ −C, t = 1, . . . , T,

(Uk)

and let αk ∈ R, k = 1, . . . , K be defined as the optimal value of the LP

min
α1,1,... ,α1,K

α1,k

s.t.
K∑
q=1

α1,qφk[t] ≤ C, t = 1, . . . , T,

K∑
q=1

α1,qφk[t] ≥ −C, t = 1, . . . , T.

(Lk)

Then, it should be clear that

X ⊆ B
∆
= { α ∈ RMK | αm,k ∈ [αk, ᾱk], k = 1, . . . , K, m = 1, . . . ,M }.
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Using standard random number generators, it is a simple matter to choose sam-

ples from the uniform distribution on the box B. Thus, for Step 1 of Algorithm

MLSL, we repeatedly generate samples from the uniform distribution on B,

discarding those which do not lie in X, until we find N which do lie in X. It

should be clear that such a procedure is equivalent to drawing N samples from

the uniform distribution on X.

7.4 Numerical Results

Following [15], we consider the noise distributions pN listed in Table 7.1. For the

definition of the Generalized Gaussian distribution, the constant a is defined as

a
∆
=

(
σ2Γ(1/4)

Γ(3/4)

)1/2

.

For our numerical experiments, we assume σ = 1. The case K = 2 is of common

interest, and we use either a sine-sine basis{√
2

T
sin(2πω1t/T ),

√
2

T
sin(2πω2t/T )

}
,

or a sine-cosine basis{√
2

T
sin(2πω1t/T ),

√
2

T
cos(2πω1t/T )

}
,

where ω1 = 10 and ω2 = 11. When K = 2 we can display the results in the

plane as familiar signal constellations. Finally, we run experiments forM = 8, 16

signals, T = 50 samples, and with an amplitude bound of C =
√

10. Note that,

for M = 16, problem (SS) has 32 variables, 120 objective functions, and 800

constraints.

We ran Algorithm MLSL for 20 different problem instances. The algorithm

was stopped after it appeared that no better local minimizers would be found
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pN (τ) KN (δ)

Gaussian
1

√
2πσ2

exp

(
−τ2

2σ2

)
δ2

2σ2

Laplacian
1
√

2σ2
exp

(
−
√

2 · |τ |

σ

) √
2 · |δ|

σ
+ exp

(
−
√

2 · |δ|

σ

)
− 1

Hyperbolic Secant
1

2σ
sech

(πτ
2σ

)
−2 ln

(
sech

(
πδ

4σ

))

Generalized Gaussian
1

2Γ(5/4)a
exp

(
−τ4

a4

)
Γ2(3/4)

Γ2(1/4)

(
6
δ2

σ2
+
δ2

σ4

)

Cauchy
1

πσ(1 + (τ/σ)2)
ln

(
1 +

δ2

4σ2

)

Table 7.1: Noise distributions and the associated KL distance function

(i.e. the estimate of the global minimum remained constant for several MLSL

iterations). In Tables 7.2 and 7.3 we list our computed minimum values for

instances of (SS) with M = 8 and M = 16, respectively. Note that our solutions

agree with those reported in [15]. In all cases, execution was terminated after

no more than 10 to 15 minutes. In Figures 7.2 through 7.7 we show the optimal

signal constellations for several of the instances of (SS) corresponding to the

optimal values listed in Tables 7.2 and 7.3.

In order to judge the efficiency of the RFSQP implementation, we compared

its performance on the signal sets problem with two other widely available SQP

codes. The first was VF02AD from the Harwell subroutine library [38], a stan-

dard SQP code based on Powell’s algorithm [61]. As the code does not directly

solve mini-max problems, we used the formulation suggested in [15] and solved
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Noise Basis F (α∗)

Gaussian sine-sine -69.793

sine-cosine -97.551

Laplacian sine-sine -63.122

sine-cosine -84.463

Hyperbolic Secant sine-sine -61.093

sine-cosine -83.196

Generalized Gaussian sine-sine -189.09

sine-cosine -264.18

Cauchy sine-sine -22.731

sine-cosine -30.673

Table 7.2: Optimal computed values for signal set design with M = 8

the problem

min
α∈RMK ,γ∈R

−γ2 − εr‖α‖2
2

s.t. f1(α, ω) ≤ −γ2, ∀ω ∈ Ωf1 ,

g1(α, ξ) ≤ 0, ∀ξ ∈ Ξg1,

γ ≥ 0,

where εr, a “regularization” parameter, is small (possibly zero). In Table 7.4, we

list the number of times VF02AD successfully converged to a local minimizer out

of 20 trials for a given noise distribution and basis (and regularization param-

eter). For each trial the initial point was drawn from the uniform distribution

over the feasible set. It is clear from the table that the standard SQP algorithm

had little success converging to a local solution. The failures were essentially

always due to inconsistent constraints in the QP sub-problem. As mentioned in
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Noise Basis F (α∗)

Gaussian sine-sine -29.314

sine-cosine -39.742

Laplacian sine-sine -32.370

sine-cosine -44.076

Hyperbolic Secant sine-sine -29.577

sine-cosine -40.500

Generalized Gaussian sine-sine -57.829

sine-cosine -76.138

Cauchy sine-sine -11.426

sine-cosine -15.688

Table 7.3: Optimal computed values for signal set design with M = 16

Noise sine-sine sine-cosine sine-cosine

(εr = 0) (εr = 0) (εr = 10−6)

Gaussian 4 0 1

Laplacian 6 0 1

Hyperbolic Secant 5 0 0

Generalized Gaussian 6 0 0

Cauchy 2 0 0

Table 7.4: Number of successful runs for VF02AD out of 20 trials.
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Section 7.3, this was a strong motivation for applying an algorithm generating

feasible iterates to this problem. In our trials, RFSQP (as well as CFSQP) never

failed to converge to, at least, a local solution.

In Table 7.5 we compare the average performance of RFSQP on the signal sets

problem to that of CFSQP [36], an implementation of the feasible SQP algorithm

due to Panier and Tits [51] (see also Section 2.4). For this table, we restricted

our attention to the case of a sine-cosine basis and the generation of M = 16

signals. For each noise distribution, 10 initial points were drawn from the uniform

distribution on the feasible set and both algorithms were run for each generated

initial point. In the table we report the average number of iterations required to

converge to a local solution, the average amount of time required, and the average

amount of time per iteration. Averaging over the noise distributions, RFSQP

took 74 iterations versus only 42 for CFSQP. This is to be expected, though,

since RFSQP, an implementation of the algorithm FSQP′-MOC (see Chapter 5)

uses an incomplete model at each iteration. On the other hand, RFSQP required

only 39 seconds on average to converge to a local solution, versus 107 seconds

for CFSQP. This clearly demonstrates the superiority of the algorithm FSQP′-

MOC in cases where the time required to compute function evaluations does not

dominate the time required to generate a new iterate. In these trials, RFSQP

was approximately five times faster per iteration than CFSQP. As an aside,

if it were the case that function evaluations were very expensive, then it would

make more sense to use the FSQP′-MM algorithm in RFSQP. The performance

would then be very similar to that reported for CFSQP.
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Figure 7.2: Optimal constellation for Gaussian noise, M = 8, sine-sine basis
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Figure 7.3: Optimal constellation for Generalized Gaussian noise, M = 8, sine-

sine basis
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Figure 7.4: Optimal constellation for Laplacian noise, M = 8, sine-cosine basis
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Figure 7.5: Optimal constellation for Cauchy noise, M = 16, sine-sine basis
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Figure 7.6: Optimal constellation for Cauchy noise, M = 16, sine-cosine basis
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Figure 7.7: Optimal constellation for Hyperbolic Secant noise, M = 16, sine-

cosine basis

187



CFSQP RFSQP

Gaussian Iterations 47 73

Time (sec) 119 35

Time/Iteration 2.53 0.48

Laplacian Iterations 39 71

Time (sec) 102 37

Time/Iteration 2.62 0.52

Hyperbolic Iterations 37 75

Secant Time (sec) 98 43

Time/Iteration 2.65 0.57

Generalized Iterations 36 78

Gaussian Time (sec) 84 40

Time/Iteration 2.33 0.51

Cauchy Iterations 52 73

Time (sec) 133 38

Time/Iteration 2.56 0.52

Table 7.5: Average performance of RFSQP versus (non-SR) CFSQP.
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Chapter 8

Conclusions

8.1 Overview

Motivated by problems from engineering analysis and design, we have developed

a new SQP-type algorithm generating feasible iterates. The primary advantage

of the algorithms presented in this dissertation is a dramatic reduction in the

amount of computation required (over existing feasible SQP algorithms) in order

to generate a new iterate. While this may not be very important for applications

where function evaluations dominate the actual amount of work to compute a

new iterate, it is very useful in many contexts. In any case, preliminary numerical

results seem to indicate that decreasing the amount of computation per iteration

did not come at the cost of increasing the number of function evaluations, and

iterations, required to find a solution. It was shown that the basic algorithm is

globally convergent and locally superlinearly convergent.

The basic algorithm was extended to handle problems with competing objec-

tive functions, i.e. the constrained mini-max problem. The mini-max structure

was exploited in order to make the generation of a new iterate more efficient and
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maintain the objective descent properties of the basic algorithm. Again, the re-

sultant algorithm was shown to be globally convergent and locally superlinearly

convergent. The final extension involved incorporation of a scheme aimed at

making the solution of problems with very many objectives and/or constraints

more efficient. The idea was to carefully choose a small subset of “critical” objec-

tives and constraints in order to construct the search direction at each iteration.

The result was a dramatic reduction in the size of the QP sub-problems and

number of gradient evaluations, without sacrificing any of the global and local

convergence properties. The algorithms were all implemented in the portable

ANSI C code RFSQP.

Finally, the implementation was used to solve a signal set design problem

for detection in the presence of non-Gaussian noise. In that context, it was

demonstrated that the algorithm performs very well as a local method embedded

in a stochastic global optimization algorithm.

8.2 Future Work

A number of avenues exist for future work. To begin with, as with any optimiza-

tion algorithm, the algorithms presented here are works in progress. Various

extensions are possible, parameter tuning is necessary, and the implementation

efficiency can always be improved. A few of the more important areas are listed

below.

• It is possible to extend the class of problems (M) which are handled by

the algorithm to include nonlinear equality constraints. Of course, we

will not be able to generate feasible iterates for such constraints, but a
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scheme such as that studied in [34] could be used in order to guarantee

asymptotic feasibility for equality constraints while maintaining feasibility

for all inequality constraints.

• Using a method along the lines of those in [66], the algorithms of Chapter 5

could be used in an algorithm for directly tackling semi-infinite program-

ming problems (without discretization).

• Work remains to be done to exploit the close relationship between the

two least squares problems and the quadratic program as discussed in Sec-

tion 6.4. A careful implementation should be able to use these relationships

to great advantage computationally.

• More extensive testing and tuning of the algorithms should be done. Specif-

ically, it would be useful to hook the implementation to the CUTE test set

[6].
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Appendix A

Code for the Application Example

Included in this appendix is the code used to evaluate the objective and con-

straint functions for the problem (SS) as given in Section 7.2. The code for

the main program which calls RFSQP (and the implementation of the global

algorithm) is not included, nor is any of the RFSQP code.

A.1 Main Header File

The following header file, signals.h, defines the main data structure for the

problem and provides function prototypes for the utility functions given in Sec-

tion A.3.

/****************************************************************/

/* Main header file for optimal signal sets computation */

/* */

/* Craig Lawrence - June/July 1998 */

/****************************************************************/

/* Includes */

#ifndef _MATH_H

#include <math.h>

#endif

#ifndef _STDIO_H
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#include <stdio.h>

#endif

#ifndef _STDLIB_H

#include <stdlib.h>

#endif

/* Macros */

#ifndef TRUE

#define TRUE 1

#define FALSE 0

#endif

/* Data structure defs */

enum basis_types {SIN_SIN, SIN_COS};

enum density_types {Gaussian, Laplacian, Hyperbolic_Secant,

Generalized_Gaussian, Cauchy};

struct SS_info_ {

enum basis_types basis;

enum density_types density;

int K; /* Number of basis functions */

int M; /* Number of signals to be designed */

int N; /* Number of time samples */

double C; /* Bound on signal amplitude */

double sigma; /* Standard deviation for density */

double *frequ; /* Basis function frequencies */

} *SS_info;

/* Function prototypes */

void Initial_Alpha(double *, double *, double *);

double SS_basis(int, int);

double SS_signal(int, int, double *);

double SS_kldist(double);

double SS_klderiv(double);

A.2 Parameter Definition Header File

In this section, the header file which sets all of the algorithm parameters for

RFSQP, param.h, is given in the form used for the signal sets design problem.
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/****************************************************************/

/* CFSQPR1 - Algorithm parameter definition header */

/****************************************************************/

/* Tilting Parameter */

#define ETA_0 1.e-2

#define C_0 1.e0

#define C_MIN 1.e-3

#define C_MAX 1.e3

#define C_FACTOR 1.e1

/* Second order correction dtilde */

#define TAU 2.5

#define LS_DTILDE 1 /* 1 = use LS problem for dtilde

0 = use full QP for dtilde */

/* Line Search */

#define ALPHA 0.1e0

#define BETA 0.5e0

/* SR algorithm */

#define DELTA_SR 1.e-6

#define EPSILON_SR 1.e0

/* Parameters for testing discretized SIP algorithm */

#define USE_FULL 0 /* 1 = use all constr/obj at each

iteration

0 = standard SIP algorithm

(or eps-active) */

#define EPS_ACT 0 /* 1 = use eps-act constr/obj at each

iteration

0 = standard SIP algorithm

(or full) */

#define EPS_ACT_EPS 1.e-1 /* Tolerance for eps-active SIP

approach */

/* BFGS Update */

#define CHOLESKY 0 /* 1 = Maintain and update Cholesky

factors of Hessian approx. */

#define FSQP_TIME /* Keep track of time of execution */
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A.3 Utility Functions

The following functions compute basis function values, signal values, KL dis-

tances, and derivatives of KL distances.

/****************************************************************/

/* Utility functions for optimal signal sets computation */

/* */

/* Craig Lawrence - June - August 1998 */

/****************************************************************/

#include "signals.h"

double sech(double);

double SS_basis(int j, int t)

{

double f, pi, factor, dt;

pi = 3.14159265358979e0;

f = SS_info->frequ[j];

factor = sqrt(2.e0/SS_info->N);

dt = 1.e0/SS_info->N;

switch (SS_info->basis) {

case SIN_SIN:

return sin(2.e0*pi*f*t*dt)*factor;

case SIN_COS:

if (j==0) return sin(2.e0*pi*f*t*dt)*factor;

else return cos(2.e0*pi*f*t*dt)*factor;

}

}

double SS_signal(int m, int t, double *x)

{

int j;

double signal=0.e0;

for (j = m*SS_info->K; j < (m+1)*SS_info->K; ++j)

signal += x[j]*SS_basis(j - m*SS_info->K, t);

return signal;
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}

double SS_kldist(double s)

{

double sig = SS_info->sigma;

switch (SS_info->density) {

case Gaussian:

return s*s/(2.e0*sig*sig);

case Laplacian:

return fabs(s)*sqrt(2.e0)/sig

+ exp(-fabs(s)*sqrt(2.e0)/sig) - 1.e0;

case Hyperbolic_Secant:

return -2.e0*log(sech(atan(1.e0)*s/sig));

case Generalized_Gaussian:

return 0.11423664526112*(6.e0*s*s/(sig*sig)

+ s*s*s*s/(sig*sig*sig*sig));

case Cauchy:

return log(1.e0 + s*s/(4.e0*sig*sig));

}

}

double SS_klderiv(double s)

{

double sig = SS_info->sigma;

double c1, d;

switch (SS_info->density) {

case Gaussian:

return s/(sig*sig);

case Laplacian:

c1 = sqrt(2.e0)/sig;

d = c1 - c1*exp(-fabs(s)*c1);

if (s < 0) return -d;

else if (s==0) return 0;

else return d;

case Hyperbolic_Secant:

return 2.e0*atan(1.e0)*tanh(atan(1.e0)*s/sig)/sig;

case Generalized_Gaussian:

return 0.11423664526112*(12.e0*s/(sig*sig)

+ 4.e0*s*s*s/(sig*sig*sig*sig));

case Cauchy:
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return 0.5e0*s/(sig*sig*(1.e0 + 0.25e0*s*s/(sig*sig)));

}

}

double sech(double x)

{

return 2.e0/(exp(x) + exp(-x));

}

A.4 Objective and Constraint Functions

Finally, in this section, we provide the functions which compute the actual ob-

jective and constraint values. These particular functions are written so that

they may be called by RFSQP (see Section 6.1 for an explanation of the calling

sequences).

/****************************************************************/

/* Objective and constraint evaluation functions for the */

/* optimal signal set design problem (RFSQP format) */

/* */

/* Problem posed as a true minimax problem with nonlinear */

/* constraints */

/* */

/* Craig Lawrence August, 1998 */

/****************************************************************/

#include "signals.h"

void

SS_obj(int nparam,int j,double *x,double *fj)

{

int ind, m1, m2;

double delta;

j++;

ind = j;

m1 = 1; m2 = 2;

while (ind > 1) {

if (m2 >= SS_info->M) {

m1++;
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m2 = m1 + 1;

}

else m2++;

ind--;

}

m1--; m2--;

*fj = 0.e0;

for (ind=0; ind < SS_info->N; ind++) {

delta = SS_signal(m1, ind, x) - SS_signal(m2, ind, x);

*fj -= SS_kldist(delta);

}

return;

}

void

SS_grob(int nparam,int j,double *x,double *gradfj)

{

int ind, m1, m2, t, k;

double delta;

j++;

ind = j;

m1 = 1; m2 = 2;

while (ind > 1) {

if (m2 >= SS_info->M) {

m1++;

m2 = m1 + 1;

}

else m2++;

ind--;

}

m1--; m2--;

for (ind=0; ind<SS_info->M*SS_info->K; ++ind)

gradfj[ind] = 0.e0;

for (t=0; t < SS_info->N; t++) {

delta = SS_signal(m1, t, x) - SS_signal(m2, t, x);

for (k=0; k<SS_info->K; ++k) {

ind = m1*SS_info->K + k;

gradfj[ind] -= SS_klderiv(delta)*SS_basis(k, t);
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ind = m2*SS_info->K + k;

gradfj[ind] += SS_klderiv(delta)*SS_basis(k, t);

}

}

return;

}

void

SS_cntr(int nparam,int j,double *x,double *gj)

{

int t, m;

double s;

j++;

t = (j - 1)%SS_info->N;

m = (j - 1)/SS_info->N;

s = SS_signal(m, t, x);

*gj = s*s - SS_info->C*SS_info->C;

return;

}

void

SS_grcn(int nparam,int j,double *x,double *gradgj)

{

int t, m, l, k, ind;

j++;

t = (j - 1)%SS_info->N;

m = (j - 1)/SS_info->N;

for (l=0; l<SS_info->M; ++l) {

for (k=0; k<SS_info->K; ++k) {

ind = l*SS_info->K + k;

if (l==m) gradgj[ind] =

2.e0*SS_basis(k, t)*SS_signal(m, t, x);

else gradgj[ind] = 0.e0;

}

}

return;

}
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