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Abstract: A model of a tungsten chemical vapor deposition (CVD) system is de-
veloped to study the CVD system thermal dynamics and wafer temperature nonuni-
formities during a processing cycle. We develop a model for heat transfer in the
system’s wafer/susceptor/guard ring assembly and discretize the modeling equation
with a multiple-grid, nonlinear collocation technique. This weighted residual method
is based on the assumption that the system’s dynamics are governed by a small num-
ber of modes and that the remaining modes are slaved to these slow modes. Our
numerical technique produces a model that is effectively reduced in its dynamical
dimension, while retaining the resolution required for the wafer assembly model. The
numerical technique is implemented with only moderately more effort than the tra-
ditional collocation or pseudospectral techniques. Furthermore, by formulating the
technique in terms of a collocation procedure, the relationship between tempera-
ture measurements made on the wafer and the simulator results produced with the
reduced-order model remain clear.
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1. Introduction

This paper presents a distributed parameter system
model reduction technique developed in the context
of simulating a commercial Chemical Vapor Deposi-
tion (CVD) system. In the system studied, single
semiconductor wafers are processed in a cold-walled
chamber with wafer heating provided by one ring-
shaped incoherent lamp bank.

Numerous simulation studies aimed at understand-
ing or controlling wafer temperature uniformity in
radiant-heated systems have been conducted (Breed-
ijk et al., 1993, Cole et al., 1994, Dilhac et al., 1995;
Merchant et al., 1996; Sorrell et al., 1992). Because
of the complexity of some of the simulators developed
and the computational expenses of performing simu-
lations for process optimization and control, interest
in developing reduced-order models from the high fi-
delity simulations has emerged (Aling et al., 1996,
1997; Theodoropoulou et al., 1998). These models are
based on collecting “snapshots” of the RTP system
at points in time during processing cycles designed to
excite as many spatial temperature modes as possi-
ble, and processing them with the Proper Orthogonal
Decomposition method (Sirovich, 1987) to determine
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the dominant temperature spatial modes. Because
the original modeling equations are projected onto
these modes with Galerkin’s method, the reduced-
order models have a predictive capability not found in
models generated from purely empirical model iden-
tification schemes.

In this paper, we develop a model representing the
thermal dynamics of a commercial CVD system. We
propose a multiple-grid, nonlinear collocation tech-
nique in the context of developing a reduced-order
simulator, where the goal of the reduction proce-
dure is to minimize the number of dynamic modes
required for accurate dynamic simulations of this sys-
tem. The proposed method is implemented using nu-
merical procedures similar to the traditional collo-
cation and pseudospectral techniques. An additional
advantage of the technique is that the collocation for-
mulation retains a direct connection between temper-
ature measurements made on the wafer and simula-
tion results produced with the reduced-order model.

2. ULVAC System for Tungsten CVD

Tungsten (W) is used both as a contact plug ma-
terial and as a first-level metal for interconnects in
microelectronic devices. In the selective W CVD pro-
cesses, W selectively grows on Si but not on SiO2 sur-
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Figure 1: Geometry of the tungsten CVD reactor.

faces, thus can be used to fill via contacts in a single
step. In blanket deposition processes, a metal nucle-
ation layer is first deposited on the entire wafer. This
allows W to be blanket-deposited over the wafer sur-
face, filling the contact holes. A subsequent reactive
ion etchback step is then used to complete the plugs.

Our modeling research focuses on the BTU-
ULVAC ERA-1000 selective tungsten deposition sys-
tem, shown schematically in Fig. 1. Reactant gases
are introduced into the reactor from two sources: a
gas mixture of SiH4 and WF6 is injected through a
slit-like nozzle on the side wall, and H2 is pumped in
through a showerhead at the top of reactor chamber.
Gases mix in the chamber and react at the surface of a
4 inch diameter wafer, which is supported by a slowly
rotating quartz susceptor. A portion of the wafer
near its outer edge is covered by a quartz guard ring.
The wafer is heated to 600 K by a ring of incoher-
ent tungsten-halogen lamps through the transparent
showerhead. The CVD runs last for approximately 5
minutes after the operating temperature is reached.

Initial modeling of the ULVAC tungsten CVD sys-
tem has focused on the gas phase flow field and heat
transfer, and the wafer thermal dynamics. Because
of the short gas residence time relative to the wafer
thermal dynamics, the gas phase flow field and tem-
perature can be described by the steady-state con-
servation of total mass, momentum, and energy, and
take the form

∇ · (ρv) = 0

−∇ · µ(∇v) +∇P = 0

∇ · (ρCpvTg)−∇ · (κ∇Tg) = 0

where ρ, v, P , µ, Cp, κ represent gas density, velocity,
pressure, viscosity, heat capacity, and thermal con-
ductivity, respectively (Kleijn and Werner, 1993). A
Galerkin discretization technique was used with glob-
ally defined trial functions to solve the gas flow field
equations under the assumption of fully-developed,

laminar flow and subject to no-slip boundary condi-
tions at the chamber walls. A two-dimensional eigen-
function expansion method combined with a one-
point spanwise collocation discretization was used
to compute the gas temperature profile, subject to
the flow field calculated above and gas temperature
boundary conditions defined by representative oper-
ating conditions (Chang and Adomaitis, 1997). Typ-
ical gas temperature contours and wafer/gas energy
transfer rates are displayed in Fig. 2.
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Figure 2: Simulation of gas temperature field and
wafer/gas heat transfer rate at the centerline of reac-
tor chamber with Re = 1167.6. Gas inlet temperature
is 25oC and the wafer temperature is 323oC.

3. Wafer Assembly Temperature Model

The wafer/susceptor/guard ring assembly model is
based on assuming the assembly is thin relative to
its diameter (∆z << guard ring radius) and is de-
rived by a differential element energy balance. This
assumption implies a uniform temperature distribu-
tion across assembly thickness. Since there are differ-
ent geometric combinations of the guard ring, wafer,
and susceptor in the radial direction, an assembly
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thickness parameter (∆z) and mass-averaged, effec-
tive material properties are defined for each section
(see Figure 3) making these parameters functions of r.
Assuming no azimuthal temperature variations exist,
the wafer temperature governing equation in cylindri-
cal coordinates is

∆z(r)ρ(r)Cp(r)
∂Tw

∂t
=

1

r

∂

∂r

(
k(r)∆z(r)r

∂Tw

∂r

)
−∆Q

where the energy flux from the top and bottom of the
assembly is defined as

∆Q = Qcd +Qcv +Qem −Qlp

These quantities are listed in Table 1 for the different
regions. Note that the qlp function represents the
lamp radiant flux distribution and the lamp power
input is u(t). The temperature of chamber floor and
electrode surface (located under the wafer and used as
part of the chamber plasma cleaning cycle) is assumed
to be equal to the wall temperature by the design of
cooling system.

Because the quartz showerhead will absorb most of
the infrared component of the light emitted by the
heating lamp, we assume the primary component of
radiant energy that reaches the assembly is in the vis-
ible portion of the spectrum, meaning that little will
be absorbed by the susceptor or guard ring. How-
ever, the radiation emitted by the heated wafer will
have primarily longer-wavelength components and so
will be readily absorbed by the quartz guard ring,
susceptor, and chamber walls.

The lamp radiation intensity at specific points on
the wafer surface will depend on the lamp power out-
put, the distance from the wafer point to each bulb,
and the angle of incidence the ray makes with the
wafer surface. The procedures for computing the flux
intensity profile generated by the 6kW bulb ring is
given in Chang (1997).

The temperature equation is made dimensionless
by dividing the radial coordinate by the guard ring
radius Rgr; the assembly thickness function ∆z(r) by
the wafer thickness, Zwaf ; and time by the time con-
stant τ = (ρSiCpSiRgr)/κSi. The effective property
functions (except for the heat transfer coefficients)
are made dimensionless by dividing each function by
the corresponding thermophysical property of silicon
evaluated at ambient conditions (see the curves in
Fig. 3 and the constants listed in the center figure
legend). The constants Ccd, Ccv, Cem, and Clp result
from the nondimensionalization. The resulting wafer
assembly temperature model is as follows

ρ(r)Cp(r)
∂Tw

∂t
=

1

∆z(r)

1

r

∂

∂r

(
k(r)∆z(r)r

∂Tw

∂r

)
+Ccd

hcd(r)

∆z(r)
(Twall − Tw)

+Ccv
hcv(r)

∆z(r)
(Tg + 1− Tw)

+Cem
ε(r)

∆z(r)
(T 4
wall − T

4
w)

+Clp
α(r)

∆z(r)
qlp(r)u(t) (1)

subject to homogeneous boundary conditions

∂Tw/∂r = 0 at r = 0, 1 (2)

with initial condition Tw(r, t = 0) = T0(r) at r < 1.
The dimensionless physical and geometric constants
used in calculations are plotted in Figure 3. The di-
mensional values in SI units are obtained by multi-
plying corresponding factors listed in the legend box.
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Figure 3: Detailed sketch of the wafer/guard
ring/susceptor assembly (top), the corresponding
physical properties of the different regions (center),
and radiant energy flux distribution (bottom).
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Table 1: Heat flux components defined in different regions.

I II III IV
Qcd hcd2s(Tw − Twall) hcd2g(Tw − Twall) hcd2g(Tw − Twall) hcd2g(Tw − Twall)
Qcv hcv2g(Tw − Tg) a hcv2g(Tw − Tg) hcv2g(Tw − Tg) hcv2g(Tw − Tg)
Qem εSiσ(T 4

w − T
4
wall) (εSi + εSiO2)σ(T 4

w − T
4
wall) 2εSiO2σ(T 4

w − T
4
wall) 2εSiO2σ(T 4

w − T
4
wall)

Qlp αSiqlpu(t) αSiqlpu(t) αSiqlpu(t) αSiO2qlpu(t)
a. Average heat transfer coefficient to gas phase, calculated in Chang and Adomaitis (1997).

4. Interior Collocation Solution

We represent solutions to the wafer assembly ther-
mal dynamics model by the trial function expansion

Tw(r, t) =
∞∑
j=1

aj(t)ψj(r). (3)

where the trial functions ψj(r) are chosen as the nor-
malized Bessel functions of the first kind of order 0:

ψj(r) =
J0(γjr)√

〈J0(γjr), J0(γjr)〉
.

The γj are computed as solutions to J1(γ) = 0; this
choice of trial functions means that the guard-ring
edge no-flux boundary condition and the condition of
symmetry at r = 0 are satisfied by each trial function.
The trial functions form an orthonormal sequence un-

der the inner product 〈f, g〉 =
∫ 1

0 fg rdr.

4.1. Interior Collocation Formulation
We now write the wafer temperature in terms of

the orthonormal function series ψj , truncated after

the Nth term, in vector notation TNw = ψ1×NaN×1.
The transformation array QN×N is defined by Qi,j =
ψj(ri) which equates mode amplitudes aN×1 to N

discrete temperature points on the wafer Tw
N×1 by

Tw = Qa. Temperature derivatives and the heat
equation operator∇2 can be written in terms of these
discrete temperature values through the use of the
differentiation arrays A and B defined by

A =

[
dQ

dz

]
Q−1 B =

[
∇2Q

]
Q−1.

The N interior collocation points are chosen as the
roots of the ψN+1 trial function (Villadsen and Stew-
art, 1967), and the discretized nonlinear modeling
equation can be written as

dTwj
dt

= { [AΘ]j + κj∆zjBjTw

+Cemεj(T
4
wall − T

4
wj

)

+Ccdhcd(Twall − Twj ) (4)

+Ccvhcv(Tg + 1− Twj )

+Clpαjqlpju(t) } /ρjCpj∆zj

= F(Tw)

subject to initial conditions Twj = 1, j = 1, . . . , N .
Note that [AΘ]j = [Aj(κ∆z)][AjTw], j = 1, . . . , N
in the above equation, and that Aj denotes the jth
row of the discretization array A.

5. Nonlinear Weighted Residual Methods

The wafer temperature modeling equation (1) can
be rewritten as

Ṫw(t, r) = G(Tw). (5)

Solutions are sought in the form of the truncated trial
function expansion TNw = ψa. In the Galerkin solu-
tion procedure, the residual, defined by substituting
TNw into (5), is projected onto the trial functions to
obtain the same number of ordinary differential equa-
tions in time:

〈TNw , ψn〉 = 〈G(TNw ), ψn〉. (6)

By writing out (6) explicitly, we obtain

ȧsl = gl(a
s,af ) l = 1, . . . , L, L < N

ȧfn = hn(a
s,af ) n = L+ 1, . . . , N

and can make a distinction between the relatively
“fast” dynamical modes afn and the slower modes
asl . The fast modes are associated with the highly-
oscillatory (spatial) trial functions ψn which dissipate
more quickly by heat conduction through the wafer
relative to the slower, less spatially-oscillatory modes.
If we assume the system’s dynamics are governed by
the slower modes, the fast modes can be slaved to the
slow by setting ȧfn = 0. This means solutions TN(t, r)
are constrained to the manifold in phase space defined
by the nonlinear equations

0 = hn(a) n = L+ 1, . . . , N. (7)

Integrating the remaining ordinary differential equa-
tions in time subject to (7) defines the nonlinear
Galerkin procedure (Aling, et al. 1997; Deane, et al.,
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1991; Dettori, et al., 1995; Graham, and Kevrekidis
1996; Sirovich, 1991).

At this point we note there are no obvious connec-
tions between the collocation-discretized equations
and the combined slow and fast dynamics sets of or-
dinary differential equations in time produced by the
Galerkin procedure. In other words, there is no guar-
antee that the fast modes would be slaved to the slow
if Ṫwn were set to zero at N−1−L interior collocation
points. Moreover, no obvious selection procedure for
choosing these points is apparent in this formulation.

5.1. Nonlinear Collocation
At the start of each time step during numerical

integration of the N -mode discretized wafer temper-
ature equation, we would like to take a smaller num-
ber L of points on the solution curve TNw (r, t) and
compute the time derivatives at these points based
on the temperature profile Tw defined on the inter-
mediate grid r that is generated when the (spatially)
higher-frequency modes are slaved to the slow in a
quasi steady-state manner (see Fig. 4). These dy-
namic modes are defined using the most-coarse grid
r̃l (typically determined as the roots of ψL+1) with
l = 1, . . . , L. The discretized equations defining the
time derivatives at the coarse-scale grid points are

dT̃w

dt
= Q̆Q

−1
[F(Tw)]

with Q̆i,j = ψj(r̃i), i = 1, . . . , L, j = 1, . . . , N , and
F(Tw) defined by (4). The vector Tw corresponds
to values of TNw (r, t) defined on the intermediate-
resolution grid rn, n = 1, . . . , N . The N solution
points Twn defining this temperature profile are com-
puted from the N equations:

[L equations:] TNw (r, t) passes through the points
(r̃l, T̃wl), l = 1, . . . , L;

[N − L equations:] ȧn = 0 for n = L+ 1, . . . , N .

This can be done in the physical space by the follow-
ing N equations for Tw at the start of each time-step:

0 = T̃w − Q̆Q
−1

Tw

0 = ¯̄P
[
F̂(Tw)

]
.

In this set of nonlinear equations, F̂(Tw) is the resid-
ual produced by the N -mode collocation solution
evaluated on the finest grid r̂ and is defined as

F̂j(Tw) = { [ÂΘ̂]j + κ̂j∆̂zj B̂jTw

+Cemεj(T
4
wall − T̂

4
wj

)

+Ccdhcd(Twall − T̂wj )

+Ccvhcv(Tg + 1− T̂wj)

+Clpα̂j q̂lpju(t) } /ρ̂jĈpj∆̂zj

with j = 1, . . . ,M . The f̂j notation refers to the r-
dependent parameter and state variables evaluated on
the finest grid. The points r̂m are determined as the
roots of ψM+1(r); [ÂΘ̂]j are elements of the M × 1
vector produced by the term-by-term product of the
vectors Âκ̂∆̂z and ÂTw.

Using this finer grid (M > N) allows for resid-
ual calculations that are more accurate than would
be possible using the intermediate-resolution grid.
Therefore, a more accurate discrete analog to the
Galerkin projection can be developed to satisfy the
N − L equations: ȧn = 0 for n = L+ 1, . . . , N .

To compute the fine-grid residual values corre-
sponding to a solution defined on the original,
intermediate-resolution grid r, we define the interpo-
lation array T̂M×1

w = Q̂M×NaN×1 = Q̂Q−1Tw with
Q̂m,n = ψn(r̂m), n = 1, . . . , N , and m = 1, . . .M .

This defines the transformation array Q̂Q−1 that
takes the function Tw(r) defined by the intermediate-
discretization grid (r) values of Twn and exactly in-
terpolates the function to the fine grid. Similarly,
we can generate the non-square discretization array
necessary for computing the residual by

Â =

[
dQ̂

dr

]
Q−1 and B̂ =

[
1

r

d

dr
r
dQ̂

dr

]
Q−1.

The discrete Galerkin projection is implemented by

defining the nonsquare array ¯̄P
(N−L)×M

by rows L+
1 through N rows of P̂−1, in other words, ¯̄Pn,m =

[P̂−1]n,m, n = L+ 1, . . . , N , and m = 1, . . . ,M with

P̂i,j = ψj(r̂i) with i, j = 1, . . . ,M .

6. Results and Conclusions

Representative results in the form of snapshots
showing the wafer assembly temperature profiles dur-
ing the startup and soak phases of a processing run
are presented in Fig. 5. We conclude that the numeri-
cal technique developed produces accurate, low-order
simulation results, especially at the collocation points
of the coarse grid r̃ which is most relevant to com-
parisons with experimental measurements. Further
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Figure 5: Wafer temperature profiles (oC) computed with the different collocation methods. (a) Interior collocation
with 3 modes. (b) Interior collocation with 10 modes. (c) Multiple grid, nonlinear collocation with 3 dynamic modes.

refinements to the numerical technique are currently
under investigation, such as using the “acceleration”
POD modes in place of the Bessel’s functions ψn (Al-
ing, et al. 1997; Sirovich, 1991).
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