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The increasing importance of network connections coupled with the lack of abundant link capacity

suggests that the day when service guarantees are required by individual connections is not far o�.

In this dissertation we describe a networking architecture that can e�ciently provide end-to-end

delay guarantees on a per-connection basis.

In order to provide any kind of service guarantee it is imperative for the source tra�c to be

accurately characterized at the ingress to the network. Furthermore, this characterization should

be enforceable through the use of a tra�c shaper (or similar device). We go one step further and

assume an extensive use of tra�c shapers at each of the network elements. Reshaping makes the

tra�c at each node more predictable and therefore simpli�es the task of providing e�cient delay

guarantees to individual connections. The use of per-connection reshapers to regulate tra�c at

each hop in the network is referred to as a Rate Controlled Service (RCS) discipline in [52]. By

exploiting some properties of tra�c shapers we demonstrate how the per-hop reshaping does not

increase the bound on the end-to-end delay experienced by a connection. In particular, we show

that an appropriate choice of tra�c shaper parameters enables the RCS discipline to provide better

end-to-end delay guarantees than any other service discipline known today.

The RCS discipline can provide e�cient end-to-end delay guarantees to a connection; however, by

de�nition it is not work-conserving. This fact may increase the average delay that is observed by



a connection even if there is no congestion in the network. We outline a mechanism by which an

RCS discipline can be modi�ed to be work-conserving without sacri�cing the e�cient end-to-end

delay guarantees that can be provided to individual connections. Using the notion of service curves

to bound the service process at each network element, we are able to provide an upper bound on

the bu�ers required to ensure zero loss at the network element. Finally, we examine how the RCS

discipline can be used in the context of the Guaranteed Services speci�cation that is currently in

the process of being standardized by the Internet Engineering Task Force.



ARCHITECTURE FOR GUARANTEED DELAY SERVICE IN

HIGH SPEED NETWORKS

by

Vinod Peris

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial ful�llment

of the requirements for the degree of
Doctor of Philosophy

1997

Advisory Committee:

Professor Armand Makowski, Chairman/Advisor
Professor Prakash Narayan
Professor Udaya Shankar
Professor Mark Shayman
Professor Leandros Tassiulas



c Copyright by

Vinod Peris

1997



Dedication

To my parents

and

Sangeeta

ii



Acknowledgements

First and foremost I would like to thank my advisor Dr. Armand Makowski for his guidance and

support throughout my Ph.D. program. He provided me with the freedom to explore a wide range

of subjects some of which have found a place in this dissertation. I greatly cherish the countless

discussions, some related to networking and some unrelated ones that will no doubt leave a deep

and lasting impression on me. His careful review of several versions of this manuscript have gone

a long way in improving the quality of this dissertation.

The seeds from which this work sprouted were sown in the summer of 1994 when I was a Summer

Intern in the Broadband Networking group at Watson. I would especially like to thank Dr. Roch

Gu�erin and Dr. Leonidas Georgiadis at I.B.M. T.J. Watson Research Center for watering this

seed and providing me with guidance as well as insights into the many practical issues related to

networking. I am grateful to all my colleagues at Watson including, Ping Pan, Raju Rajan, Shai

Herzog, Dimitris Pendarakis, Erol Basturk, Sanjay Kamat, Robert Engel, Dilip Kandlur, Kumar

Sivarajan, Debanjan Saha and Robert Haas who have probably taught me more than I need to

know about networking. I take this opportunity to thank Dr. Mark Squillante for the several

indepth discussions on multi-processor scheduling and the wonderful summer I spent at I.B.M. T.J.

Watson Research Center in 1993.

I am grateful to Dr. Prakash Narayan, Dr. Udaya Shankar, Dr. Mark Shayman and Dr. Leandros

Tassiulas for serving on my dissertation committee. I would like to thank Dr. John Baras and

Dr. Evaggelos Geraniotis for some stimulating discussions on ATM networks. I am pleased to

acknowledge the �nancial support provided by the Institute for Systems Research which allowed

me the luxury of pursuing a Ph.D. degree. This work was supported partially through NSF Grant

NSFD CDR-88-03-012 and NASA Grant NAGW-2777. I would also like to acknowledge I.B.M

Research for providing a stimulating environment that was most conducive for research.

This work has bene�tted enormously from my interactions with fellow students in both Electrical

Engineering and Computer Science. These include Lionel Banege, Nol Rananand, Young Kim, San-

jeev Khudanpur, Ramin Rezaiifar, John Bartusek, George Shuttic, Partho Mishra, Dhiraj Sanghi

and Pravin Bhagwat.

iii



Last but most certainly the most, I would like to thank my ever patient wife for putting up with me

and my computer for days on end. Without her encouragement and support this would certainly

not have been possible.

iv



Table of Contents

List of Figures vi

1 Introduction 1

1.1 Tra�c Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Service Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 End-to-end Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Network Model 10

2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Input Tra�c Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Service Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 First In First Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Fixed Priority Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Earliest Deadline First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.4 Stop-and-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Fluid Fair Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Increase in Burstiness as a Result of Scheduling . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Bounds on the Output Tra�c . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Tra�c characterization at the output of a multiplexer . . . . . . . . . . . . . 20

2.5.3 Feedback Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Tra�c Shapers 24

v



3.1 Tra�c Shaper De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Monotonicity properties of Tra�c Shapers . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Practical Tra�c Shapers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Series connection of Tra�c Shapers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Minimal shaper envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Reshaping tra�c at every hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Scheduler and Shaper Parameters 40

4.1 Rate Controlled Service Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Service Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Delay bounds for di�erent scheduling policies . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Delay bounds for a FIFO scheduler . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Delay bounds for Static Priority scheduler . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Delay bounds for the GPS scheduler . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.4 Delay bounds for the EDF scheduler . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.5 Example of delay guarantees with the priority, GPS and EDF schedulers . . . 46

4.4 Tra�c Shaper Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Schedulable Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 E�ect of tra�c shaper envelopes on the end-to-end delay guarantees . . . . . . . . . 52

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Comparison with GPS 58

5.1 Achieving GPS Delay Guarantees (Simple Case) . . . . . . . . . . . . . . . . . . . . 58

5.2 Achieving GPS Delay Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Bu�er Requirements and Work-Conserving Extensions 71

6.1 Bu�er Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Bounded Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Work Conserving RCS discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



6.3.1 Work Conserving Extension to the RCS discipline that uses an EDF scheduler 83

6.3.2 Bu�er Requirements for �WE . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 End-to-End Services 87

7.1 Guaranteed Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 User and Network Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.2 Bounds on the Delay and Bu�er Requirements . . . . . . . . . . . . . . . . . 91

7.2 RCS Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1 Parameters exported by the RCS discipline . . . . . . . . . . . . . . . . . . . 93

7.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Committed Rate service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.1 CR service with the RCS discipline . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.2 CR service with the WFQ service discipline . . . . . . . . . . . . . . . . . . . 100

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusion and Future Work 104

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vii



List of Figures

2.1 Graph representing a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Connection Tra�c Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Operation of the Stop and Go scheduling policy . . . . . . . . . . . . . . . . . . . . . 17

2.4 Increase in Burstiness at a FIFO scheduler . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Clumping e�ect at a priority scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Ring network with symmetric connections, with only a single connection shown . . . 22

3.1 The Systems S1 and S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Example illustrating the computation of W�(I)(t) . . . . . . . . . . . . . . . . . . . . 28

3.3 Graphical computation of D(IkA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Construction of the Smallest Envelope Function . . . . . . . . . . . . . . . . . . . . . 33

3.5 Original and Modi�ed System used in the proof of Theorem 3.4 . . . . . . . . . . . . 36

4.1 Components of the RCS Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Delay bound calculation using a Service Curve . . . . . . . . . . . . . . . . . . . . . 43

4.3 Tra�c envelopes for the 3 connections. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Best delay bound for connection 3, using priority scheduler. (DPRI
3 = 36). . . . . . . 48

4.5 Delay bound for connection 3, using GPS scheduler. (DGPS
3 = 31:35). . . . . . . . . . 48

4.6 Best delay bound for connection 3, using EDF scheduler (DEDF
3 = 23). . . . . . . . . 49

5.1 Delay bound for the GPS scheduling policy . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Delay Decomposition of a Class (a) Connection . . . . . . . . . . . . . . . . . . . . . 67

viii



5.3 Delay Decomposition of a Class (b) Connection . . . . . . . . . . . . . . . . . . . . . 68

6.1 Original (work conserving) system and the modi�ed system . . . . . . . . . . . . . . 82

7.1 Delay and Bu�er calculations for a (�n; �n; cn; Ln) ow at NE m. . . . . . . . . . . . 92

7.2 Schedulability check for EDF for tra�c mix in Table 7.1. . . . . . . . . . . . . . . . 96

7.3 Schedulability check for EDF for tra�c mix in Table 7.1 with the additional CR

service ows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Prioritized, WFQ implementation of the CR service . . . . . . . . . . . . . . . . . . 101

7.5 Illustration of the computation of Dm�

CR for the WFQ discipline . . . . . . . . . . . . 103

ix



Chapter 1

Introduction

The words \high-speed" in the title of this thesis are almost archaic now. About �ve years ago,

it was used to qualify networks that had links with capacity in the Megabits/sec range. It is now

fairly common for carriers to have OC-3 links (155 Mb/s) in their backbones and a few of them

even have OC-12 links (622 Mb/s). The day when they will be replaced by OC-48 links, which

carry 2.4 gigabits of tra�c every second, is not far away. Currently the link speeds are increasing

at a much higher rate than the switch speeds and there is no indication that this trend will change.

So if the link capacity is increasing at this phenomenal rate why is it that we, the end-users, seem

to be unhappy with the networking service that we receive? In today's Internet there are several

reasons for this. If we start at the end-station, we right away notice one bottle-neck, the access to

the Internet. For example, today, most users connect to their service provider through a measly

28.8 Kbps, or slower speed modem. This de�nitely does not help. However, it is not the local

access that is necessarily the problem. For instance it is far from unusual for a user to wait a

long time for the CNN web-page to be down-loaded to her1 browser. And this could be at work,

where a typical user is connected from her workstation to the LAN Switch through a dedicated

10Mbps Ethernet port. The LAN Switch is connected to a router sitting on a 100Mbps shared

FDDI ring on which there is another router that connects to the Internet through a T1 (1.5 Mb/s

link). Most likely the delay is caused by some congestion in the network. Another possibility is

that the CNN web-server is bombarded with hits from several browsers from all over the world and

is unable to keep up with the requests. However, given that our focus is on networking, we shall

conveniently ignore this possibility with the �rm belief that with the rapid advances being made

in microprocessor technology, this processing limitation will be quickly overcome.

We can draw some comfort from the fact that this phenomenon is probably experienced at some

time or another by almost everyone who has surfed the web. This may be acceptable as far as sur�ng

1the word her is used in a gender neutral sense
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the web is concerned, but it is certainly not going to be very appealing to people who are using the

Internet to conduct �nancial transactions, or remote surgery or video-conferencing or any other form

of interactive communication. One might question whether the Internet is the appropriate network

for some these applications. While there are certainly other Wide Area Networking technologies

being deployed it is becoming increasingly common for TCP/IP to run on top of these networks.

The popularity of Frame Relay and ATM among the major telecommunication carriers are a good

example of alternative networking technologies but they are mainly used to provide IP connectivity.

If the current trend is any indication of things to come the end-user will run a TCP/IP stack for

many, many years.

Soon, it is going to be increasingly important, if not imperative, for the Internet to support some

form of service di�erentiation. There are several people working on providing support for this

service di�erentiation in the Internet. In fact, there are a few working groups in the Internet

Engineering Task Force (IETF) that are addressing this problem right now and we briey touch

upon them later in this thesis.

In this thesis, we are primarily interested in building a framework that will allow the network to

e�ciently provide per-connection end-to-end Quality of Service (QoS) guarantees. There are many

ways to provide QoS support in the network depending on the underlying networking infrastructure.

At one extreme it is possible to have almost no service di�erentiation at all. Rather, assuming that

there are several ows statistically multiplexed onto the link, we can engineer the network so that

the expected bu�er occupancies are low. While this does not provide service di�erentiation, it does

provide all the ows with an acceptable level of service. Note that estimating the queue size at a

network element requires a fairly accurate statistical model of tra�c at each of the nodes in the

network, which in itself is a fairly di�cult task. On the other hand we can implement complex

scheduling policies that by design guarantee a certain QoS to a given set of ows. There are also

a large number cases in between, like a simple priority scheduler that does provide some level of

service di�erentiation among the di�erent priority levels, but does not di�erentiate between ows

that have the same priority. Whether one assumes a simple (FIFO) scheduling policy with suitable

over-engineering of the network or a complex scheduling capability in the network elements, there

are pros and cons that have to be considered. With the former approach, the existing networks

can be used with little or no changes at all in the hardware. The caveat is that the QoS guarantees

cannot be made on an individual ow basis. For a single ow to have better quality of service, it

will be necessary to provide this service to all the ows that share a common path with this ow.

In other words it has to be ensured that there are no bottlenecks along the way. On the other

hand, while the latter approach does have the capability to provide QoS on a per-ow basis, it

su�ers from the problem of increasing the complexity of the router/switch. A few years ago, this

complexity may have been hard to realize in hardware. However, currently there are several chips

in the marketplace that can perform a fairly sophisticated amount of scheduling [17, 4]. Although
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this technology is not in widespread use we are of the �rm belief that in the near future most, if not

all, networking equipment will be capable of service di�erentiation. In the subsequent chapters of

this thesis we examine how we can e�ciently support end-to-end delay and throughput guarantees

in an internet, assuming that there is some degree of scheduling support available in the networking

equipment. In the remainder of this chapter we provide a brief overview of some of the aspects

related to the provision of end-to-end delay guarantees, with the hope that it will motivate and

position the work done as part of this thesis.

1.1 Tra�c Regulation

In order to provide per-connection service guarantees, it is important for the user-speci�ed tra�c

characteristics to be enforceable at the network ingress. This is required to prevent misbehaving

ows from adversely a�ecting the service guarantees that have been provided to the conformant

ows. Apart from policing tra�c to ensure that it complies with the user-speci�cations, there is

sometimes a need to modify the tra�c stream without dropping any packets so that the resultant

stream is conformant with a pre-speci�ed tra�c characterization. We use the term tra�c regulator

to describe devices that perform this general function. Tra�c regulators are used to shape tra�c

at the network elements. In general a tra�c regulator assigns an eligibility time to an incoming

packet and queues it until it becomes eligible. Di�erent regulators are obtained based on the way

the eligibility times are computed. One of the �rst tra�c regulators to be implemented was the

Leaky Bucket [47]. The Leaky Bucket, also called (�; �)-regulator [13], ensures that the output

stream satis�es a certain pre-speci�ed (�; �) tra�c descriptor [13]. Both the ATM and the Internet

standard bodies specify tra�c descriptors of this form. Another type of regulator that was used in

the Tenet work at Berkeley is the (Xmin; Xave; I; Smax) regulator which ensures that the output of

the regulator satis�es the (Xmin; Xave; I; Smax) characterization [6].

There is another type of regulator called the Delay-Jitter type of regulator [52] which ensures that

the output tra�c of the regulator is identical to the tra�c pattern at the entry into the network.

This type of regulator requires some information to be carried in the packet so that the tra�c

pattern at the network ingress can be recreated at network elements that are deep inside the

network. This is particularly ine�cient for ATM networks where the small ATM cell size results in

a relatively large control overhead.

It is not surprising that the Leaky Bucket (or Token Bucket as it is sometimes called) is the regulator

most used in practice. One of the reasons for its popularity is that it requires only a single state

variable to be maintained for each connection. The eligibility time computation is very simple and

only depends on the state variable and the arrival time of the packet. In fact both the ATM and the

Internet standardization bodies require the use of a Leaky Bucket to police and/or reshape tra�c
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on a per-connection basis. In this thesis we look at a generalized form of Leaky Bucket regulator

and examine some fundamental properties of this device. In particular we look at the relationship

between reshaping and scheduling, and how a tra�c shaper can be used at all network elements to

improve the e�ciency of scheduling mechanisms.

1.2 Service Disciplines

When packets from a ow arrive at the network element, a service discipline is required to arbitrate

between the di�erent packets waiting to be transmitted on the link. One of the goals of scheduling

is to provide predictable delays (or more precisely, delay bounds) for packets of di�erent ows.

Some desirable aspects of service disciplines are [53]:

1. Schedulable Region: Based on the scheduling policy and the tra�c characterization used, it

should be possible to determine the number of ows that can be carried by a link without

violating any of their delay requirements.

2. E�ciency: The schedulable region should be large enough so that several calls can be carried

by the link. E�ciency can be de�ned on a relative basis. Basically, a link scheduler is

considered to be at least as e�cient as another if it can carry all the tra�c of the other

scheduler without sacri�cing any of the delay requirements.

3. Protection: The service discipline should a�ord some level of protection to conformant ows,

even in the presence of ows that do not conform to their speci�ed characteristics.

4. Implementation Complexity: The scheduling policy must be relatively simple to implement.

With the ever increasing link speeds (OC-192) the amount of time available for the scheduling

function is quite limited.

5. Signalling: In order to select the appropriate level of scheduling at each of the nodes there

has to be some signalling protocol that operates throughout the network. Upgrading the

signalling infrastructure for the entire network is a complex task which is sometimes even

more di�cult than upgrading the network hardware itself. A scheduling policy that requires

minimal signalling support is de�nitely desirable.

Several service disciplines with many of the above mentioned properties have been proposed in the

literature. In particular, in recent years there has been a proliferation of scheduling policies aimed

at providing per-connection performance guarantees [18, 20, 24, 25, 37, 56, 54]. A comprehensive

review can be found in [53]. The performance of various service disciplines has also been extensively
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studied in the past in the context of cpu-scheduling and hard real-time systems [33, 45]. In general,

it is not easy to extend results that provide delay guarantees at a single node to the multiple node

case, since the tra�c characterization at the output of a node can be quite di�erent from the tra�c

characteristics at its input. It is possible, however, to obtain a characterization of the tra�c at

the output of the scheduler [13, 32, 51]. If the delay at a single node can be computed then tra�c

characteristics at the output of the scheduler can be used to compute the delay at the downstream

node and this can be successively applied at all nodes along the path of the connection. One

drawback to this approach is that typically the bounds on the tra�c characteristics grow with the

number of hops on the path, resulting in a rather conservative estimate of the end-to-end delay.

Service disciplines can broadly be classi�ed into two categories:

1. Work conserving service disciplines

2. Non work-conserving service disciplines

A system is said to be work-conserving if the link is never idle when there are packets waiting

to be transmitted. If, even for a brief period of time, it is possible for packets to be queued in

the system while the link is idle, such a system is referred to as non work-conserving. Sometimes

the nature (or simplicity) of the scheduling algorithm causes the lack of work-conservation. For

example both the Stop-and-Go [24] as well as the Hierarchical Round Robin [29] service disciplines

are non work-conserving. They are both frame-based, in the sense that the time slots on the link

are grouped into frames. Since there are speci�c rules regarding the frames in which packets can be

placed it is possible for some frames to have idle slots even though there are packets waiting to be

transmitted. The main drawback of this type of scheduling is that the frame size determines both

the granularity of bandwidth allocation as well as the minimum delay bound that can be achieved.

However one advantage of the frame-based formulation is that there is inherently a control on the

amount of jitter that can be introduced by the network.

The Rate Based Scheduling policies like the Virtual Clock [56], or the many variants of Generalized

Processor Sharing (GPS) [37] are work-conserving service disciplines. They operate by assigning

some form of a rate guarantee to each ow. The rates are used to determine a priority ordering on

the packets that are waiting to be transmitted. The basic idea is that packets are inserted into a

sorted priority queue based on the time at which they arrive and the amount of bandwidth that they

have reserved. The scheduling policy selects the packet with the highest priority for transmission on

the link. Depending on the way in which the relative priority is computed, several di�erent service

disciplines arise. Some examples are Packetized Generalized Processor Sharing (PGPS) [37], Self-

Clocked Fair Queueing (SCFQ) [25], Start-time Fair Queueing (SFQ) [27], Worst-case Fair Weighted

Fair Queueing (WF2Q) [8], etc. One of the main complexities of these types of service disciplines

is that they require insertion into a priority queue, which in the worst case requires O(logN)
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operations, where N denotes the number of packets in the queue [31]. As far as end-to-end delay

bounds are concerned, the PGPS service discipline is the most e�cient service discipline known

today. In [37], Parekh obtained the end-to-end delay bounds for the PGPS discipline and these

serve as a benchmark for comparison with other scheduling policies.

It may be advantageous to combine some aspects of both the frame-based and the rate-based

scheduling policies. The Rate Controlled Service (RCS) Discipline, �rst proposed by Zhang as a

Rate Controlled Static Priority Discipline [52], makes such an attempt. This approach combines

the non work-conserving nature of some of the frame-based service disciplines with the dynamic

priority structure of the rate-based service disciplines. The idea is to have a regulator that reshapes

the tra�c at each node in order to ensure that the tra�c o�ered to the scheduler arbitrating local

packet transmissions conforms to speci�c characteristics. The regulators are typically used to

enforce the same tra�c parameter control as the one performed at the network access point, which

is based on the parameters negotiated during connection establishment. Reshaping makes the

tra�c at each node more predictable and therefore, simpli�es the task of guaranteeing performance

to individual connections. Since it is possible that packets are held in the system until they are

eligible for transmission, this service discipline is intrinsically non work-conserving in nature. The

main advantages of an RCS discipline, especially when compared to GPS, are exibility, lower

bu�er requirements at intermediate nodes, and typically simpler implementation [53]. However,

as pointed out in [55] one of the main drawbacks of the \naive" RCS discipline is its inability

to provide as good end-to-end delay bounds as the GPS service discipline. That is why it has

often been argued that despite its potentially greater complexity, a GPS-based service discipline

like PGPS, should be the solution of choice for providing performance guarantees to individual

connections (see for example [12]).

Our work focuses on the provision of guaranteed delay service in a network. While the PGPS service

disciplines and its variants can be used to provide delay guarantees, they are intrinsically coupled to

the rate that is reserved. For example, if a ow requires a small end-to-end delay guarantee, then it

must reserve a relatively large rate for itself. This coupling between the rate and the delay can lead

to ine�ciencies, particularly when dealing with low bit-rate ows. Also, the work-conserving nature

of the GPS-based service disciplines has the potential to introduce large amounts of jitter into the

stream. Moreover, the PGPS service discipline as proposed by Parekh [37] is fairly complex to

implement since it involves an online simulation of the corresponding uid-ow model to determine

the order in which the packets are to be served. This task can be quite di�cult to accomplish

in hardware. Many of the variants of PGPS like SCFQ and SFQ simplify the implementation of

the service discipline, albeit at the cost of slightly looser delay bounds. In this thesis we focus on

the RCS discipline and show how with the right choice of tra�c regulators, it can provide better

end-to-end delay guarantees than any other service discipline known today.
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1.3 End-to-end Service

It is not enough to identify a service discipline that provides good end-to-end delay guarantees. For

it to be practical, it is imperative to specify a connection setup protocol that picks the di�erent

parameters that are required for e�cient operation at each network element. In general, a connec-

tion may traverse network elements that are not manufactured by the same vendor. Thus several

vendors must agree on a \standard" protocol to setup and tear down connections. For several

people to agree on something is hard; having several companies agree on a standard is harder still.

Thus there are very few standards that are really implemented today. Rather than invent a new

setup protocol and try to convince the rest of the world to implement it, we tried to work within

the existing framework that is being de�ned by the Integrated Services (IntServ) working group of

the IETF [42].

The Internet is rapidly getting overloaded and the need for service di�erentiation becomes more and

more important with every passing day. The IETF has adopted a two-tier model to provide service

di�erentiation through the setup of QoS connections. One aspect is the reservation establishment

and tear-down protocol, and the other is the selection of QoS parameters. These two parts are

handled by two separate working groups in the IETF, namely the RSVP (Resource reSerVation

Protocol) and the IntServ working groups.

RSVP is a receiver oriented protocol in the sense that the reservation is made by the receiver [9].

One of the primary goals of RSVP is to e�ciently support IP multicast wherein a sender typically

does not know the identity of the receivers of a multicast session. Therefore, it is the receivers

who make the reservation by sending a message that retraces the path back to the sender. RSVP

only speci�es the signalling and setup of the connection. The actual QoS parameters depend on

the type of service requested. The IntServ working group speci�es the di�erent service types as

well as the parameters that need to be speci�ed. Currently, there are two possible service types

{ Controlled Load and Guaranteed Service. Controlled Load simply provides a qualitative service

guarantee as opposed to the more quantitative delay guarantees provided by the Guaranteed Service

Speci�cation. Since we are dealing with absolute delay guarantees in this thesis, the Guaranteed

Service Speci�cation is the one which is more applicable to us. We investigate how the Rate

Controlled Service Discipline can be e�ciently used to support the Guaranteed Service speci�cation.

In addition, we motivate the speci�cation of a new service called the Committed Rate Service that

will improve the e�ciency of the network.

7



1.4 Thesis Outline

In this thesis we propose a framework and mechanism for providing per-connection guaranteed

delay service in an internet. It is assumed that the user speci�es its tra�c characteristics at the

time of connection setup and requests a certain delay guarantee. The network may choose to reject

the connection if it deems that there are insu�cient resources to provide such a guarantee. The

delay guarantee only holds as long as the user speci�ed tra�c characterization is valid.

We start with a de�nition of the network model and then describe the tra�c characterization

that we use throughout this thesis. Since we are dealing with absolute delay guarantees, we use

a deterministic tra�c characterization called a \tra�c envelope" that can be easily enforced on

a per-connection basis. We make a brief review of the state of the art in scheduling policies and

comment on some of their features and drawbacks. We then demonstrate by way of examples how

the burstiness of a connection can increase as a result of scheduling. This prompts us to reshape

tra�c at each hop in order to smooth out some of the bursts that have been introduced by the

upstream nodes.

Tra�c can be shaped on a per-connection basis using tra�c shapers. In Chapter 3, we discuss

several properties of tra�c shapers that are key to some of the service disciplines that are examined

later in this thesis. We consider the extreme case of reshaping tra�c at every node in the network

and compute a per-connection bound on the end-to-end delay.

In Chapter 4, we describe the Rate Controlled Service Discipline (RCS) which consists of a tra�c

regulator (also called tra�c shaper) and a scheduler. We look at each of these components in detail

and derive some general guidelines on the choice of shaper parameters in the context of providing

tight end-to-end delay guarantees. In addition, we look at the tradeo� between the scheduler delay

guarantees and the shaper parameters in some speci�c cases.

In Chapter 5 we compare the end-to-end delay bounds for the RCS discipline with the best known

delay bounds for the GPS discipline. There we demonstrate how a naive use of the RCS discipline,

where the tra�c shapers have the same envelope as the input tra�c, performs much worse than the

GPS service discipline. However, with appropriate tra�c shaping, we show that the RCS discipline

can outperform the GPS discipline.

RCS disciplines, by de�nition are not \work-conserving", i.e., packets may be queued even if the

link is idle. This can increase the average delay that is experienced by a ow, but has the advantage

of making the tra�c more predictable, thus reducing the bu�ers that are needed downstream to

ensure zero packet loss. In Chapter 6 we describe some variations on RCS disciplines that are

work-conserving, yet provide the same end-to-end delay guarantees as RCS disciplines. We discuss

some of the bu�er implications of these schemes as well.
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In Chapter 7 we consider the \big picture" and examine how the service disciplines that we propose

can be used in the context of the Internet. We describe how the RCS discipline can be used without

requiring any changes to the recently proposed Guaranteed Service Speci�cation of the IETF [42].

More speci�cally, we describe how the tra�c shaper parameters for the regulators, and the delay

guarantees at each hop can be determined from the reservation made by the receiver. In addition,

we go on to describe a Committed Rate Service that can be synergetically supported by the RCS

discipline with the bandwidth left over from the Guaranteed Service ows. We conclude with a

summary of our contributions, as well as a preview of some future work in this area.

Some signi�cant assumptions as well as notational conventions are displayed in boxes in the relevant

sections and can be found on pages 13, 30, 37 and 49.
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Chapter 2

Network Model

In this chapter we �rst de�ne the network model considered in this thesis, along with the associated

service model that the end-user needs to specify its tra�c characteristics. We briey review some

of the existing scheduling policies that have been proposed in the literature to provide a guaranteed

delay service. We demonstrate the need for reshaping by examining the burstiness introduced into

a tra�c stream as a result of output contention at the link. While reshaping clearly has its bene�ts

in smoothing tra�c at each hop, thus preventing an accumulation of bursts, it potentially adds to

the delay that may be observed by any packet. In the next chapter, we show how this additional

delay introduced by the reshapers does not contribute to the worst case end-to-end delay that a

packet may experience.

2.1 Network Model

The network is modeled as a directed graph G = (V ; E), where V is a non-empty set of nodes

and E is a set of directed edges. Each node in the graph represents a switching element and the

directed edges represent transmission links, with the transmission taking place in the direction of

the edge. A duplex link is modeled as a pair of oppositely directed edges. Each switch can have

several input and output links, and packets are routed from an input to an output link, based on

information that is available in the packet header. In general, packets can be queued in the switch,

either at the input or at the output, or both. It is clear that if packets are only queued at the

input there is an inherent loss of throughput due to the blocking caused by \Head of the Line"

packets [28]. While output queueing does not su�er from this problem, it requires the switching

fabric to operate at a much higher speed than that of the input links. Most switch vendors today

implement some form of output queueing, with the switch operating at a higher speed than the

input links. In this thesis we assume that each switch is output queueing, with no internal blocking

that there is no variable delay taking place inside the switch. Thus, each output link at the switch
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can be modeled as an independent multiplexer with a scheduling policy that determines the order

of packet transmissions on the link. In the context of high-speed networks it is usually assumed

that once a packet is selected for transmission it is completely transmitted. In other words once

a packet has begun transmission it cannot be preempted by another packet. A scheduling policy

with this property is referred to as a non-preemptive scheduling policy and we are mainly interested

in such policies.

A path from node S to node D in the graph shown in Figure 2.1 represents a sequence of distinct

nodes S; v1; v2; : : : ; vM ; D, such that (S; v1), (v1; v2); : : : ; (vM�1; vM); (vM ; D) are directed edges in

E . In this thesis, we typically focus on the nodes that are on the path of a single connection, and

without loss of generality, assume that they are numbered from 1 toM , with 0 and M +1 denoting

the source and destination respectively. At connection set-up, a path is selected from source to

destination and the connection tra�c traverses this path. The process of selecting a suitable path

is referred to as routing, and this is a separate problem not addressed here.

2.2 Input Tra�c Model

Traditionally, tra�c has been characterized as a stochastic process, some examples are the Poisson

model for telephony, the ON-OFF uid model for voice, Markov modulated processes for video, etc.

These models may be appropriate if one is interested in the behavior of several connections that are

statistically multiplexed together. However, they may be quite inaccurate at characterizing tra�c

from a single source. In addition some of these models are too complex and do not lend themselves to
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analysis particularly for multi-hop connections. Recently, several simpler deterministic models have

been proposed that specify an envelope or bound on the tra�c of a source as opposed to accurately

characterizing it. The (�; �) characterization in [13] has been very popular in the literature as well

as in practice, with major networking standards like those for the Asynchronous Transfer Mode

(ATM) and the Internet Protocols (IP) specifying tra�c descriptors based on this characterization.

One of the main advantages of the (�; �) characterization is the fact that it allows tra�c from

individual connections to be regulated to ensure conformance with a given tra�c descriptor. The

tra�c model that we use is a generalization of the (�; �) characterization, and is described next.

We take the position that bit generation is a continuous process and tra�c arriving on the link is

modeled as a uid, with the understanding that a unit volume of uid corresponds to a single bit

in the real network. Let U(t) denote the volume of tra�c that arrives at the network ingress in

the interval [0; t]. We assume that the mapping t ! U(t) is non-decreasing and right continuous

on IR+, and that there exists a mapping U : IR+ ! IR+ such that

U(t+ �)� U(t) � U(�); t � 0; � � 0:

The mapping U is called an envelope of U . This idea of using an envelope to bound the burstiness

of a deterministic tra�c stream was �rst introduced by Cruz [13]. The envelope function is clearly

not unique. Chang [10, p. 915], showed that given an envelope U for a tra�c stream U , another

envelope U
0
for U can be generated, which is both increasing and sub-additive (U(�1) + U(�2) �

U(�1 + �2); �1; �2 � 0). A partial ordering on the envelope functions can be de�ned as follows:

Given two envelope functions U1 and U2, we write U1 � U2 (or U2 � U1) whenever U1(�) � U2(�)

for all � � 0. In terms of this ordering, Chang [10] developed the notion of a minimum envelope
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U
�
for a tra�c stream U , namely

U
�
(�) = sup

t�0
fU(t+ �)� U(�)g ; � � 0:

It can be easily veri�ed that the minimum envelope U
�
is increasing and sub-additive. In general,

the minimal envelope function for a given tra�c stream is not easy to compute, and therefore we do

not assume that its minimal envelope is known. However, without loss of generality, we assume that

the envelope, U is both sub-additive and increasing. Henceforth, in this thesis the word envelope,

by itself, simply denotes a mapping from IR+ ! IR+ that is both sub-additive and increasing.

The tra�c arriving on the link is viewed as a stream of bits which we model as a continuous uid

ow. However in most if not all real networks, a complete packet is received before it is processed

by the network element1. We assume that this conversion of the bit stream into a packet stream is

performed by an abstract element called a Packetizer shown in Figure 2.2. The Packetizer accepts

a stream of bits as input, and outputs a complete packet when the last bit of the packet is received.

The notion of a packetizer is introduced for the sole purpose of modeling the fact that the network

device operates on complete packets, and not on a bit-by-bit basis.

In our uid model, the input to the Packetizer is a continuous stream of uid. On receiving the

complete packet, the packetizer outputs a volume of uid equal to the length of the packet. Thus

the output process from the packetizer makes discrete jumps at the instants in time when the

complete packet is received. Let I(t) denote the volume of tra�c that is output by the packetizer

in the interval [0; t]. If L denotes the maximum length of a packet, it is clear from the operation of

the packetizer that

U(t)� L < I(t) � U(t); t � 0:

Therefore,

I(t+ �)� I(t) � U(t + �)� U(t) + L

� U(�) + L =: I(�); t; � � 0:

Because U is assumed to be sub-additive and increasing, it follows that I is also sub-additive and

increasing.

Throughout this thesis we use I to denote the tra�c envelope characterizing

the source tra�c at the network ingress (at the output of the �rst packetizer).

Also, unless explicitly stated otherwise, we assume that the maximum packet

size for all connections is the same and is denoted by L. Consequently, we

must have I(0) � L.

1We do not assume cut-through routing, since it is practical mainly for large packet sizes and relatively low-speed

links
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2.3 Service Model

The basic service model to invoke a Guaranteed Delay service is roughly the same in both the

ATM and the Internet environments: First, the end-user provides a characterization of its tra�c

by means of its tra�c envelope, and its end-to-end delay requirements. The network accepts the

user's call based on the availability of resources along the path of the connection, and on the required

end-to-end delay guarantees. Once the connection has been accepted, the network guarantees that

the speci�ed end-to-end delay bounds will be met provided the user's tra�c does not violate its

speci�ed characterization.

If the user tra�c does not conform to the characterization speci�ed at connection setup time, then

there are several possible options, many of which are currently being debated in the Integrated

Services working group of the IETF [1]. Some of them include:

� Police the tra�c, i.e., check for compliance, and drop all non-conforming tra�c at the edge

of the network.

� Police the tra�c at each switch inside the network and drop all non-conforming tra�c. This

is fairly drastic as tra�c which was conformant at the edge of the network can become non-

conformant as a result of scheduling at the switch output. However, this approach has been

suggested for cases where a switching element in the network, does not trust another switching

element at the edge of the network to have appropriately regulated the tra�c.

� Police tra�c at the edge of the network, and mark all non-conforming tra�c as Best E�ort,

i.e., a lower priority service. This, however, can result in some packets being transmitted out

of order.

� Reshape non-conforming tra�c at the edge of the network. While this scheme increases the

delay for possible conforming tra�c that arrives later, it prevents packets from arriving out

of sequence.

� Reshape non-conforming tra�c at each switch. In this case it is important to account for the

additional delay that is introduced by reshaping.

It is not clear as to which one of these policies is better or worse. In some cases the choice of a

policy may well be application dependent. For example, an audio or video playback application

may have little use for packets that are late, and so it may be best to police and drop the excess

tra�c. However, for a TCP connection it is de�nitely a bad idea to drop packets since it will cause

a retransmission of several packets and a reduction in the TCP window-size, resulting in an overall

loss of throughput. Thus, connections using TCP-like protocols may prefer to have their tra�c
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reshaped. In this thesis, we do not dwell further on the issue of policing, and make the assumption

that the source tra�c obeys the speci�ed characterization at the edge of the network, and that

once the connection is accepted by the network, its delay guarantees have to be met, without any

packet loss.

2.4 Scheduling Policies

The nature of the scheduling policy employed at the output links, greatly impacts the ability of the

network to provide e�cient end-to-end delay bounds. In addition, the tra�c characteristics of a

connection, may be drastically altered depending on the scheduling policy used. First, we quickly

describe a few well known scheduling policies, and comment on some of their features or drawbacks

in the context of providing per-connection end-to-end delay guarantees.

2.4.1 First In First Out

The First In First Out (FIFO) policy, is one of the most basic scheduling policies, and requires that

only a single queue be maintained at the output link. Each arriving packet is enqueued at the tail

of the queue, and the scheduler picks the packet from the head of the queue and transmits it on the

output link. Under the FIFO policy it is impossible to provide di�erent QoS guarantees to each

connection, since the scheduler does not distinguish between the packets of di�erent connections.

2.4.2 Fixed Priority Scheduler

This policy o�ers some ability to provide QoS guarantees to di�erent classes of tra�c, each being

associated with a given static priority. The link-multiplexer maintains a separate queue for each

priority, and serves the packets in each priority according to the FIFO policy described earlier.

However, packets in the lower priority queues, are served, only when all the higher priority queues

are empty. Di�erent variants of the policy exist, depending on whether or not the transmission of

a lower priority packet can be interrupted by the arrival of a higher priority packet.

2.4.3 Earliest Deadline First

The Earliest Deadline First (EDF) policy computes a deadline for each packet that is given by

the sum of its arrival time and the delay guarantee associated with its connection. The scheduler

always selects for transmission the packet with the smallest deadline; hence the name. The EDF

scheduler is a particular dynamic priority scheduler where the priority of the packet increases with
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the amount of time spent in the system. Thus, if a packet with a large delay guarantee is queued

for a long time it can depart earlier than a packet with a small delay guarantee that has just

arrived. This ensures that packets with loose delay requirements, obtain a better service than they

would in a �xed priority scheduler, without sacri�cing the delay guarantees provided to the packets

with tighter delay requirements. For packet networks a non-preemptive type of service is typically

assumed and the resulting policy is abbreviated as NPEDF. It is known that for any packet arrival

process, where a deadline is associated with each packet, the EDF policy is optimal in terms of

minimizing the maximum lateness of packets [19]. Here, lateness is de�ned as the di�erence between

the deadline of a packet and the time that it is actually transmitted on the link.

2.4.4 Stop-and-Go

The Stop-and-Go service discipline [24] is based on the notion that tra�c on the link can be divided

into �xed length frames. The size of each frame, denoted by T , is �xed for the entire network. A

key property of the Stop-and-Go service discipline is that for any ow, packets that are in one

frame at the source remain in a single frame all along the path. This is accomplished by ensuring

that at each network element a complete frame is received before any of the packets in that frame

are sent out, as shown in Figure 2.3. The mapping between the frames received on the input links

and those sent out on the output links is �xed. If the per-frame tra�c on the input links is known,

one can easily compute the tra�c on the output links as well.

Each ow is characterized in terms of the amount of tra�c it generates in a frame of size T . Consider

an output link at some network element: If the per-frame sum of tra�c from all connections passing

through this output link is less than the frame size, then it is possible to satisfy the key property of

the Stop-and-Go discipline outlined above. Thus the schedulability check at any particular link in

the network is a simple sum of all the tra�c characterizations of all the ows traversing that link.

The delay encountered at each network element can be bounded above by the length of a frame, as

well as the o�set between the incoming and the outgoing frames. Even though for a single network

element all the frames do not need to be synchronized, it is important that there is no drift between

the frame clocks on incoming and outgoing frames on di�erent links.

Additionally, the framing structure introduces a coupling between the delay bound at a switch and

the frame size T . Since the delay is directly proportional to the frame size, a small value of T is

desirable. However, for a maximum packet size of L, the minimum bandwidth that needs to be

reserved is L=T , which may be larger than what the connection really desires. In other words it is

not possible for a connection to obtain tight delay guarantees and reserve a low bandwidth at the

same time.
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Figure 2.3: Operation of the Stop and Go scheduling policy

Another reason for setting a large frame size would be to allow a reasonable utilization of the link.

Note that in the Stop-and-Go service discipline it is necessary for a packet to be con�ned to a single

frame, i.e., packets cannot straddle frame boundaries. Since fractional packets cannot be sent in a

frame, a signi�cant amount of link bandwidth may be wasted in every frame. A large frame size

will amortize this waste over a larger period in time, thereby improving the overall link utilization.

2.4.5 Fluid Fair Queueing

The Generalized Processor Sharing (GPS) service discipline and its many variants have received a

lot of attention recently both in the research community as well as with the Switch/Router vendors.

The reason for its popularity is the fact that tight bounds can be obtained for the end-to-end delay

for a connection. In addition, GPS provides a certain amount of isolation between the di�erent

connections that are multiplexed on a link, thereby preventing any single connection from adversely

a�ecting the performance of the other connections.

Assume there a total of N ows multiplexed onto a single link, with the ows being numbered

from 1 to N . The basic idea behind GPS is to associate a weight �i with ow i, i = 1; 2; : : : ; N ,

and to share the link resources among active ows in proportion to their weights. If r denotes the

link speed, then ow i is guaranteed to receive a clearing rate of at least �iPN

j=1
�j
r, i = 1; 2; : : : ; N .

However, at any point in time, there may not be packets from all the ows, waiting to be transmitted

on the link. Thus, there can be some unutilized link bandwidth that can be shared among the ows

that are back-logged (active ows). The GPS scheduler shares this excess capacity among the back-

logged ows in proportion to their respective weights. This should be contrasted with a static rate

allocation as in TDMA or FDMA, where it is not possible to make use of the bandwidth unutilized
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by a ow.

The GPS scheduler or Fluid Fair Queueing (FFQ) scheduler as it is sometimes called is a theoretical

construct that is de�ned for a uid tra�c model. The GPS scheduler server each uid ow at a

rate that is proportional to the weight assigned to the ow. With the weights de�ned as before,

let C(t) denote the set of ows that are back-logged at time t � 0. Then at time t � 0, ow i is

served at the rate of ri(t) given by

ri(t) =

8<:
�iP

j2C(t)
�j
r i 2 C(t);

0 otherwise:

Clearly in practice, real communication networks don't have uid ows and the purpose of the

GPS scheduler is to construct a reference model that can be used to determine the order of packet

transmissions in the real world. A packetized version of GPS abbreviated as PGPS { also referred

to as Weighted Fair Queueing (WFQ) [18] { is de�ned using GPS as a reference [37]. In the

reference system the packet arrival process is replaced by a uid ow with the jth packet of size

lj corresponding to a volume lj of uid. We say that a packet has been transmitted in the GPS

reference system, when the uid volume corresponding to that packet has been completely served.

The PGPS scheduler tries to imitate the workings of the reference GPS scheduler. To do so,

it simulates the reference GPS scheduler with the uid arrival process as described above and

computes the departure times of the packets in the reference system. If there are several packets

waiting to be transmitted out on the link, the PGPS scheduler picks the packet that would have

departed the earliest in the reference GPS system. In [37] it is shown that the PGPS scheduler

transmits packets no more than L=r time units later than the reference GPS scheduler. Thus,

delay bounds that are derived for the reference GPS scheduler, which is simpler to analyze, can

be easily extended to obtain delay bounds for the PGPS scheduler. Currently, the best known

end-to-end delay bounds are obtained when PGPS schedulers are assumed at each link [26]. This

is the reason why we extensively compare the framework presented in this thesis with PGPS in

subsequent chapters.

One advantage of the PGPS scheduler is that it has certain \fairness" properties. Roughly speaking

fairness is the notion that during periods of congestion, the scheduler will guarantee each back-

logged ow a proportional share of its service. A precise de�nition of fairness can be found in [25].

The reference GPS scheduler is typically used as a benchmark for fairness and by de�nition the

PGPS scheduler is bound to be reasonably fair. Another advantage of the PGPS scheduler is that

it lends itself to a fairly simple analysis, and tight end-to-end delay bounds can be computed on a

per-ow basis [37].

In [37] it is shown that if the input tra�c is characterized by the tra�c envelope in (2.1), then

tight end-to-end delay bounds can be obtained for the GPS discipline. These e�cient bounds are
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obtained by analyzing the delay dependencies that are present among the various nodes along the

path of the connection. In particular, it can be shown that if a ow experiences the worst case

delay at a single GPS node along the path, it will not encounter any more delay at the subsequent

nodes [37]. The main drawback of the PGPS discipline is the complexity involved in

1. simulating the reference GPS system, and

2. scheduling the appropriate packet departures.

In addition, there is an inverse relationship between the end-to-end delay bounds and the weight or

bandwidth that is reserved at each switch. Thus, a low bandwidth connection that requires a tight

delay bound is forced to reserve a large bandwidth pipe all along its path. On the other hand, the

GPS service discipline provides the best end-to-end delay guarantees known so far, particularly for

tra�c that is characterized by a tra�c envelope. There are several variations of the GPS service

discipline like Worst-case Fair Weighted Fair Queueing (WF2Q) [8], which improves on the fairness

aspect, or Self-Clocked Fair Queueing (SCFQ) [25], which lends itself to a simpler implementation,

but at the cost of looser delay bounds.

2.5 Increase in Burstiness as a Result of Scheduling

When several tra�c streams are multiplexed onto a single link, they interfere with each other

causing a potential \clumping" together of packets from the same stream at the output. This

clumping e�ect, increases the burstiness of the stream as it passes through the scheduler. For

example, consider the four connections A, B, C and D that are multiplexed onto a single link using

a FIFO scheduler as shown in Figure 2.4. Each of the connections is assumed to send packets at

regular intervals, so that there is a �xed spacing between the packets. At the output it can be

observed that the burst length of connection A is now double what it was at the input. What is

even more disturbing is the fact that as the connection passes through more and more hops, it can

potentially become more and more bursty.

The \clumping e�ect" is even more pronounced for the lower priority connections of a Priority

Scheduler. This is illustrated in Figure 2.5 which depicts a priority scheduler with two priority

levels. The high priority connections, A, B, C and D are periodic as before, but the single low

priority connection E is assumed bursty, with only a single burst consisting of three packets being

shown in the �gure. Note that the three packets of the burst are not back to back at the input to

the scheduler, because of the spacing that is imposed by the peak rate limitation of connection E,

which is lower than the link speed. The resulting output is also shown in Figure 2.5, where it can

be observed that connection E now has three packets back-to-back, resulting in a higher peak rate
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Figure 2.4: Increase in Burstiness at a FIFO scheduler

at the output. Thus even though in this case, the burst size of connection E remains the same,

the e�ect of the priority scheduler is manifested in the increased peak rate of connection E. With

multiple priorities, the clumping e�ect, in general, gets worse for the lower priority classes, as they

are subjected to the compounded impact of all the higher priority tra�c.

2.5.1 Bounds on the Output Tra�c

As demonstrated in the previous section, the tra�c of a connection can become more and more

bursty as it traverses the network. However, it may still be possible to characterize the output

tra�c based on all the tra�c that is input to the multiplexer. One of the basic approaches to

providing end-to-end delay guarantees is to �rst obtain a delay bound at a single multiplexer, given

the characterization of all the input tra�c. Next, if a bound on the characterization of the output

tra�c is available, this can be used to characterize the tra�c that will be input to the next switch on

the path of the connection. The delay at the next switch can then be computed based on this tra�c

characterization and so on. This operation can be successively applied at all the switches along the

path of the connection. The individual delay bounds obtained for the connection at each of the

switches on its path can be summed up to obtain an end-to-end delay bound for the connection.

There are several di�erent ways to characterize the output tra�c, based on the characterization of

the input tra�c, and we describe a couple of them.

2.5.2 Tra�c characterization at the output of a multiplexer

Assume that the output link is served by a work conserving service discipline, i.e., the link is never

idle when there are packets waiting to be transmitted. Let the input tra�c be characterized by an
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a�ne envelope

I(�) = � + ��; � � 0: (2.1)

Further, assume that the maximum delay experienced by the connection at this multiplexer can

be bounded above by D. In [13] it is shown that the output tra�c can be characterized by an

envelope O(�) = � + �D + �� , � � 0, and now O(�) can be used to obtain a delay bound at

the next multiplexer. Notice that the bound on the burst size which was �, at the input to the

multiplexer, is now � + �D. In other words the characterization of the connection tra�c gets

progressively more and more bursty as it traverses the network. Thus, the end-to-end delay bounds

get worse and worse as the number of hops increase. So far we have focused on the approach where

the tra�c from a connection is characterized at each switch along its path, and delay bounds at

each of the switches are independently computed. It is possible that this is a rather pessimistic

assumption, for once tra�c is signi�cantly delayed at a switch, it may not be delayed as much at

other switches along its path. In other words, there is a dependency on the tra�c characteristics of

a connection at each hop along its path, which in general, is fairly di�cult to account for. However

this has been done for a few scheduling policies, notably the GPS policy, and fairly tight end-to-

end delay bounds have been obtained for GPS, both for the deterministic [37] and stochastic tra�c

models [57]. However, these bounds only apply for the case of acyclic networks, and for the case of

networks where there are cycles, certain restrictions have to be applied [37, 57].

2.5.3 Feedback Networks

To appreciate the negative e�ects of a feedback network, consider the example of the ring network

given in [13, 37]. The ring has M nodes labeled 0; 1; 2; : : : ;M�1, with each node having two inputs
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Figure 2.6: Ring network with symmetric connections, with only a single connection shown

and two outputs. Connection m enters the network at node m and departs the network at node

m+M�1(mod)M (denoted by m� (M�1)),m = 0; 1; : : : ;M�1. This is illustrated in Figure 2.6

where only a single connection (connection 0) is shown. Note that this topology is not uncommon,

with good examples including Token Ring or FDDI networks.

For simplicity, we assume a uid tra�c model with each connection being characterized by the

same a�ne envelope process A(�) = � + �� , � � 0. The network is shown in Figure 2.6, along

with the path of a single connection. Now, assume that each of the nodes (say m) gives a low

priority to tra�c originating at that node (connection m), and a high priority to all other tra�c.

Alternatively, if GPS is the scheduling policy used, we can assume that a very small weight (� 0)

is given to the tra�c from connection m, while all the other connections have a weight of 1 at node

m. When the input and output links are operating at the same speed r, it is clear that at any

node, only the low priority connection will experience any delay. Thus the tra�c characteristics of

all connections i, i 6= m, are unchanged at node m.

Let A
m
i (�) = �mi + �, � � 0, be an envelope for connection i at the input to node m, with

m; i = 0; 1; : : : ;M � 1. Then by Remark 3 after Theorem 4.5 in [13], the burstiness of connection i
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tra�c at the input to node i� 1 is bounded above by

�i�1i = � + �

0BBB@
X

k 6=i;i�1

�ik

r �
X

k 6=i;i�1

�

1CCCA ; i = 0; 1; : : : ;M � 1; (2.2)

and this bound is tight if any single node is considered in isolation. From the symmetry of the

problem, it is clear that �ik = �k for all k 6= i; i� 1. Thus we can solve (2.2) to obtain

�k =
� (r � (M � 2)�)

r� 2(M � 2)�
: (2.3)

For large M , (2.3) blows up when � approaches r
2M , thereby restricting the total link utilization

to 1=2. In [37] it is conjectured that this result is rather conservative, since each node has been

analyzed in isolation, and the delay dependencies in the tra�c from the di�erent connections may

actually prevent the bound in (2.2) from being achieved. This is a still an open problem, and the

issue of characterizing the tra�c inside a network where there is potential for feedback can be fairly

cumbersome. In addition, guaranteeing stability when there is feedback, often comes at the price

of a lower link utilization.
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Chapter 3

Tra�c Shapers

Characterizing source tra�c has always been a di�cult problem. The literature abounds with

models, some tailored to speci�c types of sources like audio, video, etc. while there are others that

apply to sources in general. However most, if not all of them, are inherently approximate, and it is

never easy to justify results based on these models.

In this thesis we follow a slightly di�erent approach. Rather than estimate tra�c characteristics

at the source we force it to satisfy certain pre-de�ned characteristics, a process we call reshaping.

While this in itself is not new, we go a step further and recommend tra�c reshaping at every

network element. Shaping tra�c before it is presented to the link scheduler makes for a more

predictable arrival process at the link scheduler. An e�cient scheduler can then provide tight delay

bounds on a per-connection basis. Before we get too far ahead, let us precisely de�ne what we

mean by a tra�c shaper.

3.1 Tra�c Shaper De�nition

The function of the tra�c shaper is to smooth potential bursts of tra�c that may arrive at its

input. It does so by delaying the incoming packets, so that the output of the shaper is bounded by

a particular envelope function, say A, which is referred to as the shaper envelope. The tra�c shaper

outputs packets in their order of arrival with each packet being released at the earliest time that

allows A to be an envelope of the shaper output stream. More precisely, if si denotes the arrival

time of the ith packet at the shaper and fi denotes the time of its departure, we have f1 = s1 and

fi = min

8<:t � si : A(t� fj) �
iX

k=j

lk; j = 1; 2; : : : i� 1

9=; ; i = 2; 3; : : : (3.1)

where li denotes the size of the ith packet released by the packetizer in Figure 2.2, i = 1; 2; : : :.

Note that it is necessary for the shaper envelope A to satisfy A(0) � L, so that a packet of size
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L can pass through the shaper, and this is implicitly assumed in all shaper envelopes considered

throughout this thesis. Tra�c shapers exhibit a monotonicity property with respect to the arrival

process, which is the subject of the next lemma.

3.2 Monotonicity properties of Tra�c Shapers

System S1 consists of a tra�c shaper A, while system S2 consists of a \delay" subsystem and an

identical shaper A connected in series as shown in Figure 3.1. The delay subsystem delays the ith

arriving packet by an arbitrary amount �i � 0, i = 1; 2; : : :, and then delivers it to the shaper A.

Lemma 3.1 Assume that packets arrive to systems S1 and S2 according to the same arrival process

I. If d
(1)
i and d

(2)
i denote the delay of the ith packet in the tra�c shaper in systems S1 and S2,

respectively, then

d
(1)
i � d

(2)
i + �i; i = 1; 2; : : :

that is, the delay of every packet in system S1 is smaller than its corresponding delay in system S2.

Proof. Let A denote the envelope of the shaper in systems S1 and S2. Also, let s
(k)
i denote the

arrival time of the ith packet at the shaper of system Sk and let f
(k)
i denote its departure time,
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k = 1; 2. By de�nition, s
(2)
i = s

(1)
i + �i with �i � 0, and therefore it su�ces to show that

f
(1)
i � f

(2)
i ; i = 1; 2; : : :

The proof proceeds by induction on i = 1; 2; : : : Since A(0) � L, the �rst packet leaves the shaper

instantaneously in both systems, i.e., f
(1)
1 = s

(1)
1 and f

(2)
1 = s

(2)
1 , and we have f

(1)
1 � f

(2)
1 .

Now, assume that

f
(1)
i � f

(2)
i ; i = 1; 2; : : : ; m: (3.2)

for some m = 1; 2; : : :. From (3.1) we can compute the departure time of the (m+ 1)st packet in

system S1 as

f
(1)
m+1 = minft � s

(1)
m+1 : A(t � f

(1)
i ) �

m+1X
k=i

lk; i = 1; 2; : : :mg

� minft � s
(2)
m+1 : A(t � f

(1)
i ) �

m+1X
k=i

lk; i = 1; 2; : : :mg (3.3)

� minft � s
(2)
m+1 : A(t � f

(2)
i ) �

m+1X
k=i

lk; i = 1; 2; : : :mg (3.4)

= f
(2)
m+1;

where (3.3) holds because s
(2)
m+1 � s

(1)
m+1, and (3.4) follows from the non-decreasing nature of the

shaper envelope A and the induction hypothesis (3.2). Hence, (3.2) holds for the (m+ 1)st packet

and the induction step is completed.

Lemma 3.1 is an important property of the tra�c shapers considered in this thesis and is key to

establishing the general end-to-end delay bounds for RCS disciplines obtained in Corollary 3.2.

Another form of monotonicity that tra�c shapers exhibit is with respect to the shaper envelopes,

and is considered next. In general, we use the notation An to denote the envelope of shaper An.

By de�nition, a tra�c shaper has an envelope function, and so with a slight abuse of notation, we

sometimes write A1 � A2, to denote the ordering of the shaper envelopes, viz. A1 � A2.

Lemma 3.2 Assume that packets from the same arrival process I, arrive to shapers A1 and A2,

with A2 � A1. If d
(k)
i denotes the delay of the ith packet in the shaper Ak, k = 1; 2 then

d
(1)
i � d

(2)
i ; i = 1; 2; : : : ;

i.e., the delay of every packet through shaper A1 is smaller than its corresponding delay through

shaper A2.

Proof. The proof is by induction and is similar to that of Lemma 3.1. Let si denote the arrival

time, and let f
(k)
i denote the departure times of the ith packet at the shapers Ak , k = 1; 2. In
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both instances, because A
k
(0) � L; k = 1; 2, the �rst packet leaves the shaper instantaneously, i.e.,

f
(1)
1 = f

(2)
1 = si. Now, assume that

f
(1)
i � f

(2)
i ; i = 1; 2; : : : ; m (3.5)

for some m = 1; 2; : : :. From (3.1), we compute the departure time for the (m+ 1)st packet from

shaper A1 as

f
(1)
m+1 = minft � sm+1 : A1(t � f

(1)
i ) �

m+1X
k=i

lk; i = 1; 2; : : :mg

� minft � sm+1 : A1(t � f
(2)
i ) �

m+1X
k=i

lk; i = 1; 2; : : :mg (3.6)

� minft � sm+1 : A2(t � f
(2)
i ) �

m+1X
k=i

lk; i = 1; 2; : : :mg (3.7)

= f
(2)
m+1; (3.8)

where (3.6) follows from the induction hypothesis (3.5), and (3.7) is a consequence of the assumption

A2 � A1. Hence (3.5) holds for the (m+ 1)st packet and the induction step is completed.

3.3 Practical Tra�c Shapers

While the operation of a tra�c shaper has been well de�ned, it is clear from a practical point of

view that this de�nition is unusable, because the complete history of packet departures has to be

checked before determining subsequent packet departures. In a high speed network it is imperative

that the computation to determine the departure time of a packet, be performed in less than a few

microseconds. To address this concern, we now consider a more restrictive class of shapers that

lend themselves to relatively simple implementations.

The simplest form of tra�c shaper is the Leaky Bucket (or Token Bucket) which was �rst introduced

as a regulatory device in [47]. The Leaky Bucket is a simple device which can be described as follows:

� Tokens accumulate at a �xed rate (�) into a bucket that can accommodate a �xed number

(�) of tokens.

� A packet is allowed to leave the Leaky bucket if there is a token with which it can be paired.

Each departing packet decreases the number of tokens in the bucket by one. If there are no

tokens in the bucket the packet is queued until there is a token for it to depart.

The above regulator is fairly simple to implement as it requires a single state variable that represents

the number of tokens present in the bucket. They are relatively simple to implement in hardware
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Figure 3.2: Example illustrating the computation of W�(I)(t)

and most vendors' ATM adapters o�er support for Leaky Bucket regulation. Leaky Buckets are an

integral part of both IP (IntServ) and ATM standards [42, 2].

The Leaky Bucket described above is very similar to the (�; �) regulator of Cruz [13], which can be

described in terms of the backlog in a hypothetical queue served at the rate � : If tra�c I is fed to

a queue that is served at the rate of �, then the backlog in this queue, denoted by W�(I), is given

[7] by

W�(I)(t) := max
0�s�t

fI(t)� I(s)� �(t� s)g t � 0: (3.9)

The (�; �)-regulator releases the ith packet (arriving at time si) at the earliest time fi � si such

that the regulator output tra�c A satis�es the condition

W�(A)(fi) � �: (3.10)

By substituting (3.9) in (3.10) it is easily veri�ed that the (�; �)-regulator is a shaper with envelope

A given by

A(�) = � + ��; � � 0:

The condition � � L is required to ensure that a maximum sized packet passes through the shaper.

The (�; �)-regulator described here di�ers from the one de�ned in [13] in two minor respects:
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1. Packets are entering and exiting the regulator instantaneously and not at some �nite bit-rate,

and

2. The length of the ith packet exiting the regulator at time fi is included in the calculation of

W�(A)(fi).

Note that si and fi are de�ned as the times when the last (not the �rst as in [13]) bit of the ith

packet enters and exits the regulator, respectively. However, with di := fi � si, denoting the delay

that the ith packet experiences in the regulator, the analysis in [13, Appendix E] can be repeated

with minor modi�cations to show that,

di =
1

�
[W�(I)(si)� �]+ ; i = 1; 2; : : : ; (3.11)

where x+ � maxfx; 0g.

An attractive property of the (�; �)-regulators is that they can be connected in series to obtain

tra�c-shapers with more general envelopes. First, we state Theorem 5.1 of [14] without proof,

which only requires minor modi�cations to that found in [14] to account for our de�nition of the

(�; �)-regulator.

3.4 Series connection of Tra�c Shapers

Theorem 3.1 ([14]) Consider a series of (�k; �k)-regulators, k = 1; : : : ; K, and let si denote the

arrival time of the ith packet to the �rst regulator (the (�1; �1)-regulator) and let fi denote its

departure time from the last regulator (the (�K ; �K)-regulator). Then the delay encountered by

packet i is given by

fi � si = max
k=1;2;:::;K

�
1

�k
(W�k(I)(si)� �k)

+
�
; i = 1; 2; : : : (3.12)

In addition, we have

A(t+ �)� A(t) � min
k=1;2;:::;K

f�k + �k�g ; t; � � 0; (3.13)

where A denotes the tra�c stream at the output of the (�K ; �K)-regulator.

Corollary 3.1 A series of (�k; �k)-regulators, k = 1; : : : ; K, is a tra�c shaper with envelope A

given by

A(�) = min
k=1;2;:::;K

f�k + �k�g ; � � 0: (3.14)
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Proof. In order to show that the series of regulators is a shaper with envelope A we need to

show that each packet exiting the shaper, is delayed by the minimal amount necessary in order to

satisfy (3.13). Consider the delay di encountered by the ith packet, and assume that the maximum

in (3.12) is attained for some `, ` = 1; : : :K, i.e.

di =
1

�`
(W�`(I)(si)� �`)

+ :

From (3.11), we know that this is the delay experienced by the ith packet in a (�`; �`)-regulator.

But by de�nition,

A(�) � �` + �`�; � � 0;

and so from Lemma 3.2, we conclude that di is the minimum possible delay for packet i, in any

shaper with envelope A. Since the choice of packet i was arbitrary, it is clear that this series of K

regulators delays each packet by no more than a shaper with envelope A.

Note that (3.12) does not depend on the order in which the regulators are arranged. In fact, the K

regulators in series are equivalent to K regulators in parallel, with the understanding that a packet

is released only when it clears all K regulators.

In the remainder of this thesis, we restrict ourselves to shapers whose enve-

lope is a concave, increasing (i.e., A(t1) < A(t2) whenever t1 < t2), piecewise

linear function with �nite number of slopes on IR+.

Our interest in these types of shapers stems from the fact they constitute generalizations of shapers

adopted by the the Internet [44] and ATM standards [2]. Also, from Corollary 3.1, it follows that

these shapers can be easily implemented using a series of (�; �)-regulators. From (3.13) we can

obtain an upper bound on the packet delays in the shaper, when the tra�c envelope of the input

process to the shaper is known. Taking into account (3.9) in (3.12), we have

di � max
k=1;2;:::;K

(
1

�k

�
max
0�s�si

n
I(si � s)� �k(si � s)� �k

o�+)

� max
k=1;2;:::;K

8<:
 
max
��0

(
I(�)� �k � �k�

�k

)!+9=; (3.15)

= D(IkA); (3.16)

where we have set

D(IkA) := max
��0

8<:
 

max
k=1;2;:::;K

(
I(�)� �k

�k

)
� �

!+9=; : (3.17)

The quantity D(IkA) only depends on the input tra�c envelope I and the shaper envelope A.

Also, D(IkA) is indeed a tight upper bound on the maximum delay experienced by any packet in
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Figure 3.3: Graphical computation of D(IkA).

the shaper. This can be seen by assuming that the input tra�c has in�nitesimal packets (L=0)

arriving at the maximum rate allowed by its tra�c envelope, i.e.

I(t) = I(t) t � 0: (3.18)

From 3.18), (3.9) and (3.11) we conclude that the delay experienced in the shaper is indeed D(IkA).

We can write (3.17) in another form that will be useful in the sequel. From (3.14), the range of A

is [mink �k; 1) and its inverse is given by

A
(�1)

(y) = max
k=1;���;K

�
y � �k
�k

�
; y � min

k
�k: (3.19)

Extending the de�nition of A
(�1)

by setting A
(�1)

(y) = 0 whenever 0 � y < mink �k, we see from

(3.17) and (3.19) that

D(IkA) = max
��0

��
A
(�1)

�
I(�)

�
� �

�+�
: (3.20)

Graphically, (3.20) represents the maximum horizontal distance between I(�) and A(�), as illus-

trated in Figure 3.3.

When the tra�c entering shaper A is the output of a shaper A1 with envelope A1, we also use the

notation D (A1kA) � D
�
A1kA

�
. If I � A, then from (3.15) we have D

�
IkA

�
= 0 which implies

that no packet is delayed in shaper A. In particular we have

D (AkA) = 0: (3.21)
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Consider next two shapers A1 and A2 in series. Corollary 3.1 implies that this arrangement is

equivalent to a tra�c shaper A3 with envelope

A3(�) = min
n
A1(�); A2(�)

o
; � � 0: (3.22)

By equivalence, we mean that for any input tra�c stream, the delay of every packet from the time

it enters A1 to the time it exits A2 is identical to the delay of the packet in A3. We use the notation

A1 ^ A2 to denote the series connection of shapers A1 and A2.

3.5 Minimal shaper envelopes

We consider next, the problem of constructing the \smallest" shaper that can provide a speci�ed

delay bound for the input tra�c with envelope I . Speci�cally, given d � 0, we want to construct

a shaper A(d) such that D
�
IkA(d)

�
� d, with the additional requirement that A(d) � A for any

shaper A satisfying D
�
IkA

�
� d. We assume that I is an increasing, concave, piecewise linear

function with a �nite number of slopes. Later on, we explain how these assumptions on the input

tra�c envelope, essentially, do not entail any loss of generality.

For convenience, let

U(�) � I(�)� L; � � 0: (3.23)

Since I is a concave, increasing, piecewise linear function with a �nite number of slopes, the same

is true for U . Assume U has K slopes, denoted by �k, �k > �k+1, k = 1; : : : ; K � 1. Set �1 = 0

and let �k be such that at point (�k; U(�k)) the slope of the envelope U changes from �k�1 to �k,

k = 2; : : : ; K. We can then write U in the form (see Figure 3.4)

U(�) = min
k=1;:::;K

f�k + �k�g ; � � 0 (3.24)

where �1 = U(0) and

�k = �k�1 + �k(�k�1 � �k); k = 2; : : : ; K: (3.25)

According to (3.23) and (3.24) the envelope I can be written as

I(�) = L+ min
k=1;:::;K

f�k + �k�g ; � � 0:

Now, assume that tra�c with envelope I is reshaped by shaper A with envelope

A(�) = L+ min
j=1;:::;J

n
�0j + �0j�

o
; � � 0:

According to (3.17),D
�
IkA

�
=1 when minj=1;:::;J

n
�0j

o
< �K , whileD

�
IkA

�
� �K=�K whenever

minj=1;:::;J �0j � �K , and it su�ces to restrict our attention to the range 0 � d � �K=�K. For the

next theorem, it will be helpful to refer to Figure 3.4.
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Figure 3.4: Construction of the Smallest Envelope Function

Theorem 3.2 Let 0 � d � �K=�K, and de�ne

k� := min
k=1;:::;K

n
k : U(�k) � �k(�k + d) � 0

o
:

Then, the envelope of the smallest shaper A(d) such that D
�
IkA(d)

�
� d, is given by

A(d)(�) = L+ a(d)(�); � � 0;

where

a(d)(�) =

8><>:
U(�k�)

(�k� + d)
� if 0 � � < �k� + d;

U(� � d) if � � �k� + d:

Proof. From Figure 3.4, it can be seen that k� is the smallest index k such that the line with slope

�k, passing through the point Qk =
�
�k + d; U(�k)

�
has a non-negative y-intercept. The index k�

always exists because

U(�K)� �K(�K + d) = �K + �K �K � �K(�K + d)

= �K � �K d � 0:

Next, we show that A(d) corresponds to a shaper envelope function. For this, it su�ces to show

that A(d) is concave on IR+, which will follow by construction, if we show that U(�k�)
(�k�+d)

� �k� ; but
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this is a consequence of the de�nition of k�. To show that D
�
IkA(d)

�
� d, recall that according

to (3.20) we can write

D
�
IkA(d)

�
= max

��0

��
A
(�1)

(d)
�
I(�)

�
� �

�+�
;

and that by construction we have A
(�1)

(d)
�
I(�)

�
� � � d for all � � 0.

Finally, we need to show that A(d) � A for any other shaper A such that D
�
IkA

�
� d. To see

this, observe that if A(d)(�) > A(�) for some � � �k� + d, then A
(�1)

�
A(d)(�)

�
> � . Also, by

construction

A(d)(�) = I(� � d); � � �k� + d:

Therefore, from (3.20) we have

D
�
IkA

�
� A

(�1)
�
I(� � d)

�
� (� � d); � � �k� + d

> � � (� � d) = d;

a contradiction. We conclude that

A(d)(�) � A(�) � � �k� + d: (3.26)

Now, from the de�nition of tra�c shapers,

A(d)(0) = L � A(0): (3.27)

From the concavity of the shaper envelope A we know that for 0 � � � 1,

A(�(�k� + d)) � �A(�k� + d) + (1� �)A(0)

� �A(d)(�k� + d) + (1� �)A(d)(0) (3.28)

= A(d)(�k� + d); (3.29)

where (3.28) follows from (3.27) and (3.26), and (3.29) is a result of the construction, i.e.,

A(d)(�) = L+
U(�k�)

�k� + d
0 � � � �k� + d:

As mentioned earlier, in this thesis we are mainly interested in tra�c envelopes that are concave,

increasing, piecewise linear functions with �nite number of slopes. Given such an envelope, and

the maximum shaper delay that can be tolerated, the construction in Theorem 3.2 can be used

to compute the envelope for the smallest shaper. However, it turns out that Theorem 3.2 can

be extended to apply to a larger class of tra�c envelopes, viz the set of sub-additive, increasing,

piecewise linear functions with a �nite number of slopes. Such functions can approximate arbitrarily

closely any nondecreasing function IR+ ! IR in the sense of the Skorohod metric [38, Chapter VI].
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Theorem 3.3 Let bI be a non-decreasing piecewise linear function with a �nite number (say K) of

slopes such that lim�!1
bI(�)=� > 0. Now if I denotes the minimal concave function such that

I(�) � bI(�) � � 0:

and A(d) denotes the envelope of the smallest shaper such that D
�
IkA(d)

�
� d, then A(d) is

indeed the smallest shaper such that D
�bIkA(d)� � d.

Proof. Note that I is increasing, piecewise linear with a �nite number of slopes and we can use

Theorem 3.2 to construct the minimal envelope A(d).

Now, consider another shaper A such that D(bIkA) � d, and assume that there exists some � 0 � 0,

such that

A(� 0) < A(d)(� 0): (3.30)

Interpreting the inequality D(bIkA) � d, using (3.20) (alternatively, see Figure 3.3), we know that

bI(�) � A(� + d); � � 0: (3.31)

By assumption, A is a concave function; however, I is the minimal concave function such that

I(�) � bI(�) for all � � 0. Therefore,

I(�) � A(� + d); � � 0:

Using (3.20) again, we conclude that D(IkA) � d. Now, using (3.17) we have

D
�
IkA(d) ^ A

�
= max

n
D
�
IkA(d)

�
; D(IkA)

o
� d:

But the shaper A(d) ^ A has envelope

A^(�) = min
n
A(d)(�); A(�)

o
: (3.32)

From (3.30) the envelope A^ is strictly smaller than A(d), thereby contradicting the optimality of

A(d).

3.6 Reshaping tra�c at every hop

If we reshape tra�c at the source we have an e�cient characterization of the tra�c at the �rst

network element along its path. This characterization can be used by the �rst network element to

accurately estimate the amount of resources that it needs to allocate for a given ow. However, the
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Figure 3.5: Original and Modi�ed System used in the proof of Theorem 3.4

scheduling in the �rst network element perturbs the tra�c and it can no longer be e�ciently char-

acterized at the input to the second network element along its path. This problem is exacerbated

at network elements that are further downstream.

One way to provide accurate characterization of the tra�c at each hop in the network is by reshaping

the tra�c at each hop. The main issue to consider here, is whether the shaper delays have to be

added to the end-to-end delay guarantees that are obtained by summing up the single hop delay

bounds. In [55] it is shown that the shaper delays do not add to the worst case end-to-end delays,

for a connection that can be characterized by the (Xmin; Xave; I) tra�c model, where Xmin is the

minimum inter-arrival time between two packets, and Xave is the minimum average inter-arrival

time of packets measured over any interval of length I . It turns out that shaper delays do not add

to the bounds on the end-to-end delays for more general models of tra�c as well. More speci�cally,

in the next theorem we show that if the connection tra�c is reshaped at every hop to its bounding

envelope process A, then the end-to-end delay guarantee is simply the sum of the delay guarantees

provided by the schedulers at each hop. In particular, the shapers do not contribute to the worst-

case end-to-end delay bound.

Theorem 3.4 Consider the system depicted in Figure 3.5(a). Assume that the output of tra�c

shaper A1 enters a system S where it is known that the delay experienced by these packets is bounded

above by DS. The output of system S enters shaper A2. The total delay bdi that packet i experiences
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from the time it exits A1 to the time it exits A2 is bounded above by

bdi � DS +D(A1kA2); i = 1; 2; : : : (3.33)

Proof. Let di be the delay of packet i in system S, and let d
(1)
i be its delay in A2. The total

delay experienced by packet i, from the time it exits shaper A1 to the time it exits shaper A2 is

denoted by bdi = di + d
(1)
i . Consider next a modi�ed system where a delay system that delays the

ith packet by �i = DS � di, is inserted between S and A2 (see Figure 3.5). Now let d
(2)
i denote

the delay of packet i in A2 under this new arrangement. Note that �i � 0 by the de�nition of DS .

Applying Lemma 3.1 we conclude that

d
(1)
i � DS � di + d

(2)
i ;

or equivalently, bdi � DS + d
(2)
i :

Observe now that since the delay of every packet between its entrance time to S and its exit

from the delay system is di + �i = DS , the tra�c entering shaper A2 when the delay system is

inserted, is a time-shifted version of the tra�c exiting A1, and therefore has envelope A1. Hence,

d
(2)
i � D(A1kA2) and the proof of (3.33) is completed.

From (3.21) we know that when the shapers A1;A2 are identical, D(A1kA2) = 0, i.e., in this case

reshaping does not introduce extra delays. Also, from the proof we see that any shaper that has

the property of Lemma 3.1 satis�es Theorem 3.4 as well. In particular, the shaper of [55] can easily

be seen to satisfy Lemma 3.1. We refer to the combination of the per-connection shapers and the

scheduler as a Rate-Controlled Service (RCS) discipline [55].

We can now apply Theorem 3.4 to provide end-to-end delay guarantees to a connection that passes

through a network of nodes that use the RCS discipline.

In the remainder of this thesis we follow the convention that the subscript n

on a variable signi�es a reference to a particular connection (connection n).

Similarly we use the superscript m to identify the network element along the

path of the connection. For example, A
m
n denotes the tra�c shaper envelope

for connection n at the network element m hops away from the source.

Corollary 3.2 Assume connection n has a tra�c envelope of In at the input to the network and

passes through M network nodes, numbered from 1 to M , with M + 1 denoting the destination.

Let Am
n denote the envelope of the tra�c shaper for connection n at node m. Then the end-to-end

delay experienced by a packet from connection n satis�es the following guaranteed upper bound

Dn = D(InkA
1
n) +

M�1X
m=1

D
�
Am
n kA

m+1
n

�
+

MX
m=1

Dm
n +

MX
m=1

T (m;m+1); (3.34)
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where Dm
n denotes the scheduler delay bound for connection n at node m and T (m;m+1) denotes

propagation delay on the link (m;m+ 1).

Proof. Apply Theorem 3.4 with the system S consisting of both the scheduler at node m and

the link l = (m;m+ 1), and the shapers A1 � A
m
n , and A2 � A

m+1
n . We conclude that the delay

that a packet from connection n experiences between the time it exits shaper Am
n and the time it

exits Am+1
n is bounded above by,

Dn(m;m+ 1) = Dm
n + T (m;m+1) +D

�
Am
n kA

m+1
n

�
: (3.35)

Taking (3.35) into account we obtain

Dn = D(InkA
1
n) +

M�1X
m=1

Dn(m;m+ 1) +DM
n + T (M;M+1)

= D(InkA
1
n) +

M�1X
m=1

D
�
Am
n kA

m+1
n

�
+

MX
m=1

Dm
n +

MX
m=1

T (m;m+1):

It is important to note that the delay bounds Dm
n depend on the choice of the tra�c shapers Am

n .

Therefore, one should not conclude from (3.34) that the end-to-end delay guarantees are minimized

by choosing In as the envelope for all the tra�c shapers so that D(InkA1n) = D
�
Am
n kA

m+1
n

�
= 0.

In fact, as we will see in the next section, this choice may be quite inappropriate.

As in the policies proposed in [55], the delay bound in (3.34) is basically a sum of the worst

case delays at each node along the path of a connection. However, an individual packet may not

encounter the worst case delays at each node. Therefore, one may suspect that these bounds are

overly pessimistic and lead to ine�cient allocations when compared to bounds for other disciplines

which take into account delay dependencies between nodes along the path. In Chapter 5 we compare

the end-to-end delay bounds for the RCS discipline with those for the GPS discipline and show

that with the appropriate choice of shaper envelopes, the RCS discipline can provide as good if not

better delay bounds.

3.7 Summary

In this chapter we de�ne a tra�c shaper, which is a fundamental building block for the Rate

Controlled Service (RCS) discipline. We start with a generic tra�c shaper and derive some basic

monotonicity properties of tra�c shapers. These properties are key to proving the end-to-end delay

bounds for RCS disciplines.

From a practical point of view we need to further restrict the space of tra�c shapers so that they

can be e�ciently implemented, preferably in hardware. The Leaky Bucket or (�; �)-regulator is the
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most popular in the networking world and we mainly consider tra�c shapers that can be realized

by a series concatenation of (�; �)-regulators. We derive a bound on the delay experienced by a

connection given the input tra�c and shaper envelopes. Subsequently, we describe a construction

on how to obtain the \minimal" tra�c shaper given the input tra�c envelope and a pre-speci�ed

delay bound.

We conclude this chapter by examining Rate Controlled Service disciplines where each individual

connection is reshaped at every hop along its path and derive an end-to-end delay bound for the

connection based on local delay bounds at the schedulers at each network element. In the sequel

we will examine how we can choose shapers and schedulers so that per-connection end-to-end delay

bounds can be e�ciently provided by the network.
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Chapter 4

Scheduler and Shaper Parameters

The idea to regulate tra�c on a per-connection basis at each node, before considering it eligible

for scheduling has appeared in di�erent forms in the literature. The Stop and Go service discipline

[24] recognized the value of delaying the transmission of some packets in order to provide a more

predictable end-to-end behavior for all connections. Subsequently the Delay-EDD policy { the

EDF policy is sometimes referred to as Earliest Due Date (EDD) { was proposed in [20]. The

idea was to use the EDF policy at each node, with the deadlines being assigned with respect to

the time that the packet is expected to arrive based on its tra�c characterization, rather than its

actual arrival time at the node. The Jitter-EDD policy in [48] operated along the same lines, with

the di�erence that the tra�c pattern at the ingress into the network was recreated at each node

along the path of the connection. This was achieved by placing the di�erence between a packet's

deadline and its actual transmission time at the node, in the packet header. In the downstream

node the packet was delayed by exactly the amount of time speci�ed in its header before it was

considered eligible for scheduling. In [54] it was shown that with (Xmin; Xave; I; Smax) regulators

a Static Priority scheduling algorithm could be used to provide end-to-end delay guarantees that

were the sum of the delay bounds at each of the nodes along the path of the connection. Finally,

the term Rate-Controlled Service (RCS) disciplines was used in [55] to denote the broad class of

scheduling disciplines that use regulators at each hop to shape the tra�c of each connection, before

it is considered eligible for transmission on the link.

4.1 Rate Controlled Service Disciplines

As shown in Figure 4.1, RCS disciplines are composed of two parts:

1. A tra�c regulator (also called a rate controller), and

2. A scheduling policy.
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Figure 4.1: Components of the RCS Discipline

Tra�c that arrives on the input link, has to �rst pass through a regulator before it is considered

eligible for scheduling. In practice an entire packet is typically received, and then a simple check is

performed to determine the eligibility time of this packet. If the regulator is a leaky bucket, then

the packet is eligible right away if there are tokens in the leaky bucket, otherwise the eligibility

time is set to the arrival of the next token. If the regulator is one of the more general shapers

described in Chapter 3, the eligibility time is determined from (3.1). In this thesis, we focus on

RCS disciplines that have regulators of the kind described in Chapter 3.

If the eligibility time of a packet is less than or equal to the current time at any output link, then we

refer to it as an eligible packet. Since the tra�c shaping is done on a per-connection basis, at any

given time there arises the possibility that several packets are eligible, in which case an arbitration

mechanism is required to decide the order of transmission of these eligible packets. This is where the

scheduling policy comes in, and any scheduling policy can be used in conjunction with reshapers.

In general the performance of RCS disciplines depend both on the choice of the scheduling policies as

well as the per-connection tra�c shapers. Since the per-connection shapers decouple one scheduler

from the next we can look at the performance of the scheduler at a single node in isolation. We would

like to have scheduling policies that lend themselves to the provision of tight delay guarantees on

a per-connection basis. In this chapter we investigate the performance of some simple scheduling

in terms of the delay guarantees that can be provided to connections with pre-speci�ed tra�c

envelopes. Once we have picked a scheduling policy, we are still left with the choice of tra�c
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shaper envelopes that will be used to reshape tra�c from each connection. We will see later on

in this chapter that the shaper envelopes play a signi�cant role in the performance of the RCS

disciplines. In this chapter we also establish some guidelines that can be used to select appropriate

shaper envelopes so that tight end-to-end delay guarantees can be provided to the connection.

4.2 Service Curves

Just as the tra�c envelope characterizes the arrival process, it is possible to de�ne a service curve

to describe the service process. The notion of service curve to provide a lower bound on the service

received by a single connection was introduced by Parekh in [37], and further generalized by Cruz

in [15, 39].

Let In(t) denote the amount of tra�c input to a network element by connection n on [0; t] and let

Sn(t) denote the amount of that connection's tra�c served by the network element in the interval

[0; t]. We set Sn(0) = 0 and assume both mappings t! In(t) and t! Sn(t) to be right continuous

and non-decreasing on IR+.

De�nition 4.1 A network element is said to provide a service curve Sn : IR+ ! IR+ to connection

n, if at any time t > 0 there exists s, 0 � s � t, such that Sn(t)� In(s) � Sn(t� s).

Whereas the tra�c envelope provides an upper bound on the amount of tra�c that can arrive from

a given connection in any interval of time, the service curve provides a lower bound on the amount

of service provided to a connection over certain intervals of time. Of course, the lower bound on

the service received is contingent on the availability of packets to serve.

With the service curve Sn de�ned above, the worst-case delay Dn, experienced by connection n is

given by [15, 39]

Dn = max
t�0

�
min
��0

n
� : I(t) � Sn(t+ �)

o�
: (4.1)

In other words, Dn is simply the horizontal distance between the tra�c envelope and the service

curve for that connection as illustrated in Figure 4.2. For many scheduling policies, the delay

guarantees that can be provided to a connection can be elegantly computed using a service curve

formulation, as will be seen in the following sections.

4.3 Delay bounds for di�erent scheduling policies

In this section we look at the performance of some of the scheduling policies that were described

in Chapter 2 with respect to the provision of delay guarantees. We consider a single output link
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Figure 4.2: Delay bound calculation using a Service Curve

that operates at the rate r, and assume that there are N connections where connection n tra�c is

bounded by a tra�c envelope An, n = 1; 2; : : :N . For convenience we set An(t) = 0; t < 0; n =

1; 2; : : :N .

4.3.1 Delay bounds for a FIFO scheduler

The FIFO scheduling policy, does not discriminate between tra�c from di�erent connections, and

so they all have the same worst-case delay bounds. We can readily derive a service curve S
FIFO

that bounds from below the service provided to the aggregate tra�c that is input to the FIFO

scheduler.

Let S
FIFO

(�) = r�; � � 0. It can be readily veri�ed from De�nition 4.1 that S
FIFO

is indeed the

service curve for the aggregate tra�c. A bound on the maximum packet delay DFIFO in the FIFO

scheduler is then obtained from (4.1) as

DFIFO = max
t�0

(
min
��0

(
� :

NX
n=1

An(t) � r(t+ �)

))
: (4.2)

From (4.2) it is clear that a single bursty connection can result in poor delay bounds for all the

connections. Thus the FIFO policy is not suitable for providing per-connection delay guarantees. In

computing (4.2), we assume su�cient bu�ers to accommodate all the packets that may accumulate
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during any busy period. If the amount of bu�ers is actually limited to X , then the delay guarantee

is

DFIFO = min

(
X

r
;max
t�0

(
min
��0

(
� :

NX
n=1

An(t) � r(t+ �)

)))
: (4.3)

For a network supporting a wide variety of services, it will be necessary to dimension the bu�ers so

that the smallest delay requirement can be met. However, a small bu�er can result in a signi�cantly

high packet loss behavior, unless the link speed is comparable to the sum of the peak rates of all

the connections that are multiplexed onto the link. But this will result in a severe underutilization

of the link.

4.3.2 Delay bounds for Static Priority scheduler

For the Static Priority scheduler, let us assume that there are K distinct priorities, with priority

1 denoting the highest priority. The delay for the highest priority is similar to that in a FIFO

scheduler, and is given by (4.3), where the summation is carried out over the top priority (k = 1)

connections only. The delay bound for the queues with priority k > 1, depends only on the tra�c

from the priorities, 1; : : : ; k. Also, because the priority scheduler does not distinguish between

di�erent connections with the same priority, the delay bound will be the same for all connections

of the same priority.

Let Ck denote the set of connections with priority k; k = 1; : : : ; K. In any interval [t; t+� ], we know

that the amount of tra�c at the output link from all of the Ck connections is bounded above byP
n2Ck

An(�). In computing the delay bound for priority k tra�c we can ignore the tra�c from the

priority k + 1; : : : ; K since they will be served only in the absence of tra�c from higher priorities.

In the worst case, the tra�c from a connection with priority k that arrives in the interval [t; t+ � ],

is served only after
Pk�1

j=1

P
n2Cj An(�) amount of tra�c from the higher priorities are served.

Thus, if priority k tra�c is back-logged in the interval [t; t+ � ], it is guaranteed to receive a service

of at least
h
r� �

Pk�1
j=1

P
n2Cj

An(�)
i+

in the same interval. In other words, the aggregate priority

k tra�c is guaranteed a service curve of

Sk(�) =

24r� � k�1X
j=1

X
n2Cj

An(�)

35+ ; k = 2; : : :K:

Note that the service curve Sk is guaranteed to the aggregate of all the connections in priority class

k. The delay bound DPRI
k , for the priority k tra�c is given by the maximum horizontal distance

between the tra�c envelope for the aggregate tra�c in class k,
P

n2Ck
An, and the service curve

44



guaranteed to class k tra�c, Sk, namely

DPRI
k = max

t�0

8<:min
��0

8<:� : X
n2Ck

An(�) � Sk(t+ �)

9=;
9=; ; k = 2; : : : ; K: (4.4)

This bound is indeed tight as can be seen by assuming that tra�c from each of the connections

arrives at the maximum rate allowed by their envelopes. Unlike the FIFO policy, the Static Pri-

ority policy does allow for some level of di�erentiation in terms of the delay guarantees that can

be provided to connections. However, addition of a connection in any priority a�ects the delay

guarantees of all the connections with the same priority as well as those that have a lower priority.

4.3.3 Delay bounds for the GPS scheduler

Delay bounds for the GPS policy and its derivatives like Self-Clocked Fair Queueing (SCFQ) have

been obtained in [37, 25]. For the single node case the delay bound for the GPS policy can be

readily obtained using the service curve formulation. Recall that for the GPS policy each of the

connections is assigned a weight. Let �n denote the weight that is assigned to connection n, and

without loss of generality we assume that the weights are normalized with respect to the link speed,

i.e.,
PN

n=1 �n = r.

From the de�nition of GPS (see Section 2.4.5) connection n is guaranteed a service rate of at least

�n. Therefore

Sn(�) = �n�; � � 0

is a service curve for connection n. Again from (4.1) we conclude that a bound on the delay

experienced by connection n in the GPS scheduler is given by

DGPS
i = max

t�0

�
min
��0

n
� : An(t) � Sn(t + �)

o�
: (4.5)

4.3.4 Delay bounds for the EDF scheduler

In [21] it is shown that the EDF policy is delay optimal, i.e., if any policy can guarantee the delay

requirements of a set of connection with speci�ed tra�c envelopes, then the EDF policy can. Thus,

the EDF policy can at least provide the delay guarantees of all the policies described so far. For

communication networks it is typically assumed that a non-preemptive scheduling policy is used,

and so we are mainly interested in the NPEDF policy.

The operation of the NPEDF policy is de�ned in terms of packets, and so the delay guarantee that

can be provided to a connection depends on the maximum packet size, which we denote by L. Let
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us denote the delay bound for connection n by DEDF
n , with the connections being indexed such that

DEDF
1 � DEDF

2 � � � � � DEDF
N . Then the following condition [21],

kX
n=1

An(� �DEDF
n ) � r� � L; � � 0; k = 1; : : : ; N; (4.6)

is both necessary and su�cient for a feasible schedule to exist. The proof for the su�ciency of the

above condition is fairly involved and can be found in [21]. However, its necessity can be easily

explained. If all packets from connection n have been served before their deadline, then at any

time � , at least An(� �DEDF
n ) amount of connection n tra�c must have been served, n = 1; : : : ; N .

However, in time � the total amount of tra�c that the link could have transmitted is r� . Therefore,

it is necessary that
NX
n=1

An(� �DEDF
n ) � r�; � � 0:

Now, in the worst case the tra�c from each connection can be exactly its tra�c envelope, i.e.

An(�) = An(�); n = 1; : : : ; N . The reason for the additional L term in (4.6), is explained by the

non-preemptive nature of the scheduling policy.

The feasibility condition (4.6) needs to be veri�ed for all � � 0, which in general is a fairly daunting

task. However, for most practical tra�c shapers the feasibility condition can be reduced to a few

checks. For instance, when the tra�c envelopes are of the form An(�) = L+�n+�n� , the feasibility

check (4.6) reduces to

minfk + 1; NgL+
kX

n=1

�n � DEDF
k

 
r �

k�1X
n=1

�n

!
+

k�1X
n=1

�nD
EDF
n ; k = 1; : : : ; N: (4.7)

It is simpler to check (4.7), and we will use this form of the feasibility check for the NPEDF

scheduler, later on in this Chapter.

4.3.5 Example of delay guarantees with the priority, GPS and EDF schedulers

It is instructive to graphically compares the delay guarantees for EDF, GPS and priority schedul-

ing policies on an example. Consider 3 connections with envelopes, A1; A2, and A3 as shown in

Figure 4.3, with respect to a normalized link speed of 1. For the priority scheduler, we assume that

each connection is in a separate priority class, with 1 being the highest priority. For the purpose

of comparison with the EDF policy we assume the packet size L to be arbitrarily small. We focus

our attention on connection 3, since the delay guarantees for connection 1 and 2 are fairly close for

both the EDF and priority scheduler, and they are roughly 6 and 18 units of time, respectively. For

the GPS scheduler, we need to assign weights �n; n = 1; 2; 3, so that the required delay guarantees

are met. An assignment of �1 = 0:7, and �2 = 0:27 will result in delay guarantees for connection 1
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Figure 4.3: Tra�c envelopes for the 3 connections.

and 2 that are close to 6 and 18 units of time respectively. This leaves connection 3 with, at best,

a weight of �3 = 0:03.

The delay guarantee for connection 3 with the priority scheduler, is obtained by �rst computing the

service curve for priority 3 connections, and then computing the horizontal distance between the

service curve and the tra�c envelope for connection 3. This is shown in Figure 4.4, with the delay

bound DPRI
3 = 36 units of time. For the GPS scheduler, the only di�erence is in the computation

of the service curve, which is described in Section 4.3.3. After that, the delay is obtained in a

similar manner as for the priority scheduler and is illustrated in Figure 4.5. The delay bound for

connection 3 with the GPS discipline is DGPS
3 = 31:35 units of time. However, if an EDF scheduler

is used, a delay guarantee, DEDF
3 = 23, can be guaranteed to connection 3, and this can be veri�ed

from the feasibility check in (4.7). This feasibility check is also graphically illustrated in Figure 4.6.

A major drawback of the priority scheduler, is the fact that the delay guarantee for priority k

does not take into account the speci�c values of the delay guarantees for the tra�c with priorities

1; 2; : : : ; k � 1. From (4.4) or Figure 4.4 it can be seen that the delay guarantee for a connection

in class k depends only on the envelopes of the tra�c with priority 1; 2; : : : ; k. Thus, if the delay

requirement of some class k connection is larger than what is achievable with the tra�c that is

present in the higher priorities, the class k+1 tra�c is unable to take advantage of this fact, simply

because the scheduler itself does not make this distinction.

While the previous example demonstrated the ability of the EDF policy to provide small delay

guarantees, it is not clear how e�cient are the corresponding end-to-end delay guarantees. One of

the advantages of the GPS policy, as demonstrated in [37], is that tight end-to-end delay bounds

can be computed. If the EDF policy is simply used at each node along the path, then it is not
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Figure 4.5: Delay bound for connection 3, using GPS scheduler. (DGPS
3 = 31:35).
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Figure 4.6: Best delay bound for connection 3, using EDF scheduler (DEDF
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possible to compute the feasibility of the deadlines at downstream nodes, since the envelope of

the tra�c at the downstream node cannot be e�ciently computed. However, if the EDF policy

is used as the scheduler for RCS disciplines, then by virtue of the reshaping and Theorem 3.4,

end-to-end delay guarantees can be computed on a per-connection basis. Furthermore, the choice

of the shaper envelopes used in these RCS disciplines, greatly a�ects the end-to-end delays that

can be guaranteed. In the next section we address some properties of tra�c shapers that a�ect the

end-to-end delay guarantees that can be provided by RCS disciplines.

Since the EDF policy can provide the same or better delay guarantees than

all other policies, in the rest of this thesis, whenever we use the term RCS

discipline, we assume that the EDF scheduling policy is used.

4.4 Tra�c Shaper Parameters

In the previous section we considered the di�erent scheduling policies that can be used as the

scheduler for the RCS discipline and chose the EDF policy as best suited for providing delay

guarantees. In this section we look at how we can choose shaper envelopes that will provide e�cient

end-to-end delay guarantees. The framework of Section 3.6 provides the exibility of specifying

di�erent shaper envelopes at di�erent nodes along the path of a connection. However, it is not clear

that there is any bene�t in having di�erent shaper envelopes for the same connection at di�erent

nodes. In this section we show, that for the same connection it does not pay to have di�erent

shapers at di�erent nodes. Recall from Section 3.6 that we use the notation Am
n to denote the
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shaper used for connection n at the network element which is m hops away from the source. First,

we make the simple but important observation.

Lemma 4.1 Consider the link scheduler at the node m and let Dm
k denote the delay bound guar-

anteed to connection k; k = 1; : : : ; N at node m. If for connection n, we replace the shaper Am
n with

Bmn , with B
m
n � A

m
n , then the delay guarantee of Dm

k for connection k; k = 1; : : : ; N still holds.

Proof. Because B
m
n (�) � A

m
n (�); � � 0, it follows that A

m
n is also an envelope for the tra�c

exiting Bmn . By de�nition, Dm
k remains an upper bound on the delay of any connection k tra�c as

long as connection n still has envelope A
m
n .

Another simple observation can be made with regards to a series connection of tra�c shapers.

Lemma 4.2 Let A1 ^ A2 denote the series connection of two shapers A1 and A2. Then,

D
�
IkA1 ^ A2

�
� D

�
IkA1

�
+D (A1kA2) : (4.8)

Proof. While (4.8) can be obtained by a brute force substitution in (3.17), we follow a more

intuitive proof. Recall from (3.22) that A1 ^ A2 is a tra�c shaper. Also recall that D (A1kA2) is

a tight upper bound on the maximum delay encountered in the shaper A1 ^ A2, and is achieved

when the input tra�c arrives at the maximum rate allowed by the tra�c envelope, i.e.,

I(t) = I(t); t � 0:

When this maximum delay of D (A1kA2) is experienced, let dA1 and dA2 denote the corresponding

delay encountered in shapers A1 and A2 respectively. Therefore,

dA1 + dA2 = D (A1kA2) : (4.9)

But,

dA1 � D
�
IkA1

�
; (4.10)

and

dA2 � D (A1kA2) : (4.11)

Combining (4.9), (4.10) and (4.11) we directly obtain (4.8) and the proof is completed.

Theorem 4.1 Consider connection n that traverses nodes 1; 2; : : :M and let � denote an RCS

discipline that uses shapers Am
n , and guarantees scheduler delay Dm

n , at node m, m = 1; : : : ;M .

The RCS discipline �0 that uses the same scheduling policy at all nodes as �, but with the shapers

Bmn =
M̂

m=1

Am
n � B; m = 1; : : : ;M (4.12)

can provide to all connections, the same end-to-end delay guarantees as �.
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Proof. First, observe by (3.22) that

An � A1 ^ A2; n = 1; 2: (4.13)

Now from (4.13) and (4.12) we have Am
n � B

m
n and by Lemma 4.1, �0 can therefore guarantee the

same scheduling delays to all connections. Since the shapers remain the same for any connection

k 6= n, it follows that for those connections, policy �0 guarantees the same end-to-end delays as �.

Consider next connection n, whose envelope at the �rst shaper is denoted by In. Let the end-to-end

delay guarantee for connection n, provided by � and �0 be denoted by D�
n and D�0

n respectively.

From Corollary 3.2 we know that

D�
n = D(InkA

1
n) +

M�1X
m=1

D
�
Am
n kA

m+1
n

�
+

MX
m=1

Dm
n +

MX
m=1

T (m;m+1): (4.14)

Taking into account the fact that D
�
Bmn kB

m+1
n

�
= D (BkB) = 0, we conclude from (3.34) that

D�0

n = D
�
InkB

�
+

MX
m=1

Dm
n +

MX
m=1

T (m;m+1)
n : (4.15)

From (4.8) we also observe that

D
�
In;B

�
� D

�
InkA

1
n

�
+

M�1X
m=1

D
�
Am
n kA

m+1
n

�
: (4.16)

From (4.14), (4.14) and (4.14) we conclude that we conclude that D�0

n � D�
n .

According to Theorem 4.1 we can restrict our attention to disciplines with identical shapers at all

nodes. In the remainder of this thesis, we consider RCS disciplines that for any given connection

use identical shapers at each node, i.e., Am
n = An. Under that assumption, the end-to-end delay

guarantee for connection n becomes

Dn = D(InkAn) +
MX

m=1

Dm
n +

MX
m=1

T lm: (4.17)

A word of caution is warranted, as one should not conclude from (4.17) that the end-to-end delay

guarantees are minimized by choosing In as the envelope for all the tra�c shapers. While this choice

will certainly result in D(InkAn) = 0, the scheduler delay bounds (Dm
n ) may increase because they

depend on the choice of the tra�c shapers Am
n . Finding the shaper envelope that is optimal, in

terms of providing minimum end-to-end delay guarantees, is a complex problem for general shaper

envelopes and multi-hop connections. For the simpler case where only (�; �)-regulators are used as

shapers, we obtain a result that says that if there are \su�ciently many" hops, then it is bene�cial

to shape the tra�c to a smaller envelope than In. First, we de�ne the performance measure of

interest in a more precise manner.
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4.4.1 Schedulable Regions

The ability of a discipline to provide end-to-end delay guarantees to a given set of connections, is

best quanti�ed by the notion of schedulable region. Assume that there are NT connections in a

communication network, with the same scheduling discipline, �, operating on all the links in the

network. The input tra�c of connection n has envelope function In, and traverses path Pn of the

network, n = 1; 2; : : : ; NT . In other words the connection n is characterized by the tuple (In; Pn),

n = 1; : : : ; NT . The vector

D = (D1; : : : ; DNT
)

is said to be schedulable under discipline � if the delay bound Dn can be guaranteed under � for

all packets of connection n, n = 1; : : : ; NT . The schedulable region of discipline � is the set of all

vectors D that are schedulable under �. Note that the schedulable region of a service discipline

depends on the envelope functions In and the connection paths Pn, n = 1; : : : ; NT . The schedulable

region is de�ned in terms of delay bounds that can be guaranteed a priori, based on the knowledge

of the input tra�c envelope and the connection paths. These bounds are an integral part of the

service discipline and may in fact be signi�cantly worse than the delays actually experienced by

packets. From the point of view of admission control, it is irrelevant if in the actual operation of a

policy smaller delays are observed, since what is required at the time of connection establishment,

is to know whether the delay bounds can be guaranteed or not.

Let

Pn = f(In; Pn); n = 1; : : : ; NTg

denote the set of connections in the network. We say that service discipline �1 is at least as good

as discipline �2, if the schedulable region of �1 is a superset of �2, for any given set of connections

P . If, in addition, the schedulable region of �1 is a strict superset of �2 we say that �1 is better

than �2.

4.5 E�ect of tra�c shaper envelopes on the end-to-end delay guar-

antees

In Theorem 4.1 we saw that if we had di�erent tra�c shapers along the path of a connection we

could replace all of them by the \smallest" one. Substituting a smaller tra�c shaper at a node

ensured that the scheduler delay guarantees at that node would still be valid. In this section we

look at the more general tradeo� between shaper envelopes and the scheduler delay guarantees

that can be provided at a node. A smaller shaper will in general allow the schedulers to provide

tighter delay guarantees at each of the nodes along the connection's path. However, reshaping the
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connection tra�c to a smaller envelope will incur an additional delay at the �rst reshaper that the

connection encounters.

With a general tra�c envelope as de�ned in Section 2.2 it is hard to make quantitative statements

about this trade-o�, so we focus on a simpler tra�c envelope given by

In(�) = L+ �n + �n�; � � 0; n = 1; : : : ; NT :

Also we restrict the space of tra�c shapers ( Am
n ) to those with envelopes of the form

A
m
n (�) = L+ �mn + �mn �; m = 1; : : : ;M; n = 1; : : : ; NT :

We wish to �nd out what e�ect, if any, the choice of the tra�c shaper parameters has on the

end-to-end delay that can be guaranteed to a connection.

Consider the parameters of the shaper envelope for some connection i at node m. Clearly, we

cannot choose �mi < �i since it is possible for the source to inject tra�c into the network at an

average rate of �i, thereby causing a net accumulation of tra�c in the shaper at node m. Of course,

we can have �mi > �i, but from (4.7) it follows that this will only result in an increase in the delay

guarantees that can be made to the other connections and will therefore reduce the schedulable

region. Choosing �mi > �i will result in a similar decrease in the schedulable region.

The e�ects of choosing �mi < �i are not so clear. If we only consider node m, the other connections

may bene�t from the smaller envelope that we have chosen for connection n. However, in doing

so, connection i has incurred a potential delay of
�i��

m
i

�i
at the �rst shaper along the path. For

the network to be able to provide the same end-to-end delay guarantee Di to connection i, it is

necessary that some or all of the nodes along the path of connection i now provide smaller delay

guarantees to connection i.

Choose fmi ; 0 � fmi � 1; m = 1; : : : ;M such that

MX
m=1

fmi = 1;

and assume that a fraction fmi of the shaper delay
�i��

m
i

�i
is accounted for at node m. In other words,

the local delay guarantee at node m for connection i, is reduced from Dm
i to Dm

i �
fm
i
(�i��mi )
�i

. We

need to verify whether this reduction in the delay guarantee for connection i still results in a feasible

schedule at node m. Without loss of generality we assume that there are a total of Nm connections

at node m numbered from 1; 2; : : : ; Nm, which are ordered such that their delay guarantees are

Dm
1 � Dm

2 � : : : � Dm
Nm

: (4.18)
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Let rm denote the link speed at node m. From (4.7) we observe that the following inequalities need

to be veri�ed to determine if there is a feasible schedule at node m:

(k + 1)L+
kX

n=1

�n � Dm
k

 
rm �

k�1X
n=1

�n

!
+

k�1X
n=1

�nD
m
n ;

k = 1; : : : ; l� 1; (4.19)

(l+ 1)L+
l�1X
n=1

�n + �mi �

�
Dm
i �

fmi (�i � �mi )

�i

� 
rm �

l�1X
n=1

�n

!

+
l�1X
n=1

�nD
m
n , (4.20)

(k + 2)L+
kX

n=1

�n + �mi � Dm
k

 
rm �

k�1X
n=1

�n � �i

!
+

k�1X
n=1

�nD
m
n

+ �iD
m
i �f

m
i (�i � �mi ); k = l; : : : ; i� 1, (4.21)

minfk + 1; NmgL+
kX

n=1
n 6=i

�n + �mi � Dm
k

 
rm �

k�1X
n=1

�n

!
+

k�1X
n=1

�nD
m
n

�fmi (�i��
m
i ); k = i+1; : : : ; Nm: (4.22)

where the index l is chosen such that Dm
l�1 < Dm

i �
fmi (�i��mi )

�i
� Dm

l and it is assumed that i < Nm.

A few words about these inequalities will be helpful in understanding them. Note that by changing

Dm
i to Dm

i �
fm
i
(�i��mi )
�i

, we may be changing the relative ordering of the deadlines, and that is why

the inequality for Dm
i is moved up to the lth position. If i = Nm, there are a few minor changes

in (4.19)-(4.22) and for the sake of brevity we assume that i < Nm, for the rest of the discussion;

however, the results are true for i = Nm as well.

Theorem 4.2 If fmi � �i=(r
m �

Pl�1
n=1 �n), then a feasible schedule still exists at node m.

Proof. We need to show that any vector (Dm
1 ; D

m
2 ; : : : ; D

m
Nm

) that satis�es (4.7), also satis�es

the inequalities (4.19)-(4.22). For clarity we divide the proof into speci�c cases based on the range

of index k.

Case (i) k = 1; : : : ; l� 1.

There is no di�erence between the inequalities (4.7) and (4.19) and so there is nothing to be shown

here.

Case (ii) k = l; : : : ; i� 1.

In order to verify (4.21), it is su�cient to show that the following inequality

(i+ 1)L+
i�1X
n=1

�i + �mi � Dm
k

 
rm �

k�1X
n=1

�n � �i

!
+

k�1X
n=1

�nD
m
n + �iD

m
i

� fmi (�i � �mi ) (4.23)
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holds for k = l : : : ; i� 1. To show that (4.23) is true for k = l, consider (4.30), i.e.,

(i+ 1)L+
i�1X
n=1

�n + �mi

�

�
Dm
n �

fmi (�i � �mi )

�n

� 
rm �

l�1X
n=1

�n

!
+

l�1X
n=1

�nD
m
n

=

�
Dm
n �

fmi (�i � �mi )

�i

� 
rm �

l�1X
n=1

�n � �i

!
+Dm

i �i � fmi (�i � �mi )

+
l�1X
n=1

�nD
m
n

� Dm
l

 
rm �

l�1X
n=1

�n � �i

!
+

l�1X
n=1

�nD
m
n +Dm

i �i � fmi (�i � �mi ):

We proceed by induction on k = l; : : : ; i� 2. Assume that

(i+ 1)L+
i�1X
n=1

�i + �mi � Dm
j

0@rm � j�1X
n=1

�n � �i

1A+
j�1X
n=1

�nD
m
n + �iD

m
i

� fmi (�i � �mi ) k = l; : : : ; j; (4.24)

holds for some j = l; : : : ; i� 2. Then,

(i+ 1)L+
i�1X
n=1

�n + �mi

� Dm
j

0@rm � j�1X
n=1

�n � �i

1A+
j�1X
n=1

�nD
m
n + �iD

m
i � fmi (�i � �mi )

= Dm
j

0@rm � jX
n=1

�n � �i

1A+
jX

n=1

�nD
m
n + �iD

m
i � fmi (�i � �mi )

� Dm
j+1

0@rm � jX
n=1

�n � �i

1A +
jX

n=1

�nD
m
n + �iD

m
i � fmi (�i � �mi ); (4.25)

where (4.25) follows from (4.18). Hence, the induction hypothesis (4.24) holds for k = j + 1 and

the induction step is completed.

Case (iii) k = i.

To verify (4.20), we start with k = i in (4.7), namely

(i+ 1)L+
iX

n=1

�i � Dm
i

 
rm �

i�1X
n=1

�n

!
+

i�1X
n=1

�nD
m
n : (4.26)
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Adding �mi � �i to both sides we obtain,

(i+ 1)L+
Pi�1

n=1 �n + �mi

� Dm
n

 
rm �

i�1X
n=1

�n

!
+

i�1X
n=1

�nD
m
n � (�i � �mi ) (4.27)

� Dm
i

 
rm �

i�1X
n=1

�n

!
+

l�1X
n=1

�nD
m
n +

i�1X
n=l

�nD
m
i

� (�i � �mi ) (4.28)

= Dm
i

 
rm �

l�1X
n=1

�n

!
� (�i � �mi ) +

l�1X
n=1

�nD
m
n

=

 
Dm
i �

(�i � �mi )

rm �
Pl�1

n=1 �n

! 
rm �

l�1X
n=1

�n

!
+

l�1X
n=1

�nD
m
n (4.29)

�

�
Dm
i �

fmi (�i � �mi )

�i

� 
rm �

l�1X
n=1

�n

!
+

l�1X
n=1

�nD
m
n (4.30)

Inequality (4.28) follows from (4.27) and (4.18), and (4.30) follows from (4.29) because

fmi �
�i

rm �
Pl�1

n=1 �n
:

Since the deadline of connection i was reduced, we must have l � i and so (4.20) follows directly

from (4.30).

Case (iv) k = i+ 1; : : : ; Nm.

Since 0 � fmn � 1, (4.22) follows directly from (4.7).

It is possible for bursts to be completely smoothed out of the tra�c by the �rst hop tra�c shaper,

introducing an up front reshaping delay. However, this additional delay can be amortized over the

nodes traversed by the connection since the smoother tra�c will enable the schedulers to provide

better delay guarantees. If there are su�cient number of hops to amortize the reshaping delay then

e�cient end-to-end delay guarantees can still be provided and Theorem 4.3 quanti�es the number

of hops that are required.

Theorem 4.3 If
MX

m=1

�i=r
m � 1, the schedulable region of the RCS discipline � is not reduced if

the shapers for connection i are restricted to ones with envelopes such that �mi = 0, m = 1; 2; : : :M .

Proof. Assume that the vector (D1; D2; : : : ; DNT
) is schedulable under �. Now consider connec-

tion i and assume that it has shapers Am
i with envelopes

A
m
i (�) = L+ �mi + �i�; � � 0; m = 1; : : : ;M;
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and is provided the end-to-end delay guarantee of Di. Let Dm
i denote the delay guarantees for

connection i at the individual nodes along its path. Hence,

Di =
MX
m=1

Dm
i :

Now, let

A
�
i (�) = L+ �i�; � � 0

and assume that the shapers for connection i are modi�ed such that they have the same envelope

A
�
i at each node along the path. Then, in the worst case connection i may encounter an additional

delay of �i
�i

at the �rst node. Using Theorem 4.2 we can amortize this extra delay over the nodes

along the path of connection i.

In particular we know from Theorem 4.2 that node m can now provide connection i with the delay

guarantee of Dm
i �

�i
rm

�
�i
�i

�
, m = 1; : : : ;M . Hence, the end-to-end delay guarantee that can be

provided to connection i is

�i
�i

+
MX
m=1

�
Dm
i �

�i
rm

�
�i
�i

��
= Di +

�i
�i

 
1�

MX
m=1

�i
rm

!
� Di:

4.6 Summary

Rate Controlled Service disciplines are mainly composed of a Tra�c Shaper and a scheduler. In

this chapter we investigate each of these components in turn. First we consider a few di�erent

scheduling policies and examine their performance in terms of providing end-to-end delay bounds.

We �nd the EDF policy to be best suited for providing tight delay guarantees and consider it to

be the scheduler of choice for RCS disciplines.

In the second part of this chapter we consider the implications of having di�erent tra�c shaper

envelopes at each of the nodes along the path of a connection. It turns out that it is better to have

the same tra�c shaper for the connection at all the nodes that it traverses.

Previously we examined the two components of RCS disciplines { the shapers and the schedulers

{ in isolation. Clearly there is some interrelation between the two, but in general, it is di�cult

to account for both of them in computing e�cient end-to-end delay guarantees. We were able to

obtain some quantitative results by narrowing the problem space and considering tra�c envelopes

of the form A(�) = �+ ��; � � 0. We found that if the connection traverses a \su�cient" number

of hops it is advantageous to smooth out all the bursts before tra�c is admitted into the network.
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Chapter 5

Comparison with GPS

The GPS discipline has received a lot of attention in the recent literature. Part of the reason for

this is the fact that tight end-to-end delay bounds have been obtained for the GPS discipline. Thus,

it has been argued that the GPS discipline is the scheduling discipline of choice for the provision

of end-to-end delay guarantees in packet networks. In the next section, we demonstrate how with

the choice of suitable shaper envelopes, an RCS discipline can provide the same end-to-end delay

bounds as a GPS discipline. In addition, we show that the RCS discipline can accept connections

with delay requirements that cannot be accepted by GPS. This demonstrates the advantage of RCS

over GPS in providing e�cient end-to-end delay guarantees, as well as provides some insight into

the choice of tra�c shapers for the provision of e�cient end-to-end delay guarantees.

In this chapter, we assume for comparison purposes that the tra�c of connection n entering the

�rst node packetizer has envelope Un(�) = �n + �n� . Therefore, the envelope of the tra�c that

enters the �rst tra�c shaper is In(�) = L+ �n + �n� . We also assume that connection n traverses

nodes m = 1; 2; : : : ;M and that the propagation delays are all zero. For de�nitions and notation

relating to GPS we refer the reader to [35, 36]. Let Cm;l denote the set of connections that pass

through the output link l of node m. Denoting the speed of this link as rm;l, we will assume the

stability condition X
n2Cm;l

�n � rm;l

throughout the remainder of this section .

5.1 Achieving GPS Delay Guarantees (Simple Case)

The GPS policy operates by allocating weight �mn for connection n at node m. These weights

are used to determine the rate at which tra�c from connection n is served when a set Bm;l of

connections is back-logged at the output link l of node m through which connection n passes.
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Speci�cally, the service rate of connection n is given by

gmn =
�mnP

k2Bm;l �mk
rm;

where for simplicity in notation we denote rm;l as rm when there is no possibility of confusion. PGPS

is a non-preemptive policy that tracks GPS. In general the procedure developed in [35] to obtain

delay bounds given the weights �mn is complicated and imposes certain restrictions on these weights.

Moreover, the practically more important inverse procedure of specifying appropriate weights, that

satisfy predetermined delay bounds, is even more cumbersome. However, a simple bound can be

obtained in the special case of non-preemptive PGPS, where �mn = �n at all nodes through which the

connection passes. Since each connection is served in proportion to this weight at each node along

its path, the service discipline is sometimes called Rate Proportional Processor Sharing (RPPS)

discipline. Speci�cally, the end-to-end delay bound D�
n obtained under non-preemptive RPPS is

given [36, 26] by

D�
n =

�n +ML

�n
+

MX
m=1

L

rm
: (5.1)

From formula (5.1) we can already see the weakness of the RCS disciplines relative to RPPS, if

the tra�c shapers for connection n at every node have envelopes that are identical to the input

envelope In. In this case D(IkAn) = 0 and since propagation delays are assumed zero, from (4.17)

we obtain

Dn =
MX
m=1

Dm
n :

At node m, even if the entire link bandwidth of rm was somehow dedicated to connection n, the

scheduler delay bound Dm
n is no less than (�n+L)=rm, and the end-to-end delay bound guaranteed

by the RCS discipline satis�es the inequality

Dn �
MX
m=1

�n
rm

+
MX

m=1

L

rm
:

Since �n can be much larger than L, the bounds provided by the RCS discipline under the scenario

considered here can be much worse than those obtained under RPPS. For example, assume that

all the link speeds are the same, i.e., rm = r; m = 1; : : : ;M . If �n = 50L and �n = 0:8r, we have

Dn

D�
n

�
40:8�M

50 + 1:8�M
:

Therefore, when M = 2 we already have Dn=D
�
n � 1:52, and for large M , Dn=D

�
n � 22:67. This

discrepancy is due to the fact that the bounds for RPPS take into account delay dependencies at

the various nodes, while the bounds for the RCS disciplines are based on independently summing

the worst case bounds at each node.
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The previous example notwithstanding, we show next that we can design RCS disciplines that

provide the same delay guarantees as RPPS by employing tra�c shapers with envelopes that are,

in general, di�erent from that of the input tra�c.

We design the RCS discipline � as follows. For each link we use the NPEDF scheduling policy. We

choose the same tra�c shaper An for connection n at each node along its path with envelope given

by

An(�) = L+ �n�; � � 0:

Assume that connection n is routed through output link l at node m and let rm denote the speed

of this link. For connection n, we specify the delay bounds at node m for the NPEDF scheduling

policy as

Dm
n = L=�n + L=rm: (5.2)

As we now show, these bounds can be guaranteed by the NPEDF policy at every node. Consider

output link l at node m. Denote by N the total number of connections multiplexed on this link,

and index the connections by i1; i2; : : : ; iN such that Dm
i1
� Dm

i2
� : : : � Dm

iN
. We only need to

verify (4.7). Using (5.2) we have

Dm
ik

 
rm �

k�1X
n=1

�in

!
+

k�1X
n=1

�inD
m
in

= L
rm �

Pk�1
n=1 �in

�ik
+ L

rm �
Pk�1

n=1 �in
rm

+ (k � 1)L+ L

Pk�1
n=1 �in
rm

= L
rm �

Pk�1
n=1 �in

�ik
+ kL

� (k + 1)L;

where the last inequality follows from the stability condition
PN

n=1 �n � rm. By design, the tra�c

shapers have �mn = 0 and therefore (4.7) is veri�ed.

We now proceed to derive the end-to-end delay bounds for the connections. Recall that we have

assumed zero propagation delays, so from (4.17) we obtain

Dn = D
�
InkAn

�
+

MX
m=1

Dm
n :

For the delay D
�
InkAn

�
, using (3.15), we have

D
�
InkAn

�
= max

��0

(
In(�)� L� �n�

�n

)
=

�n
�n
:
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Therefore, taking into account (5.2) we now obtain

Dn =
�n
�n

+
MX

m=1

L

�n
+

MX
m=1

L

rm

=
�n +ML

�n
+

MX
m=1

L

rm
: (5.3)

Since (5.1) is identical to (5.3) we see that the proposed RCS discipline � can guarantee the same

end-to-end delays as RPPS.

From the previous argument we see that if the delay bounds in (5.1) are required by the connections

in the network, then the RCS discipline � can be used. It provides the exibility of easily specifying

other delay bounds, whereas the bounds in RPPS are tied to the rate �n of a connection. In addition,

since reshaping is performed at each node, bu�er requirements will typically be lower than those

of RPPS as will be seen in Chapter 6.

If the end-to-end delay requirements of connection n are smaller than (5.1), a slightly more general

version of RPPS can be used. Rather than providing a rate of �n to connection n, better delay

performance can be obtained by giving it a rate of gn � �n at each node. The end-to-end delay

bound is then given by

D�
n =

�n +ML

gn
+

MX
m=1

L

rm
: (5.4)

The previous analysis still applies with very little modi�cation and can be used to specify an RCS

discipline that guarantees the bounds in (5.4). In this case, all tra�c shapers have envelopes

A
m
n (�) = L+ gn� and the delay guarantees at the scheduler of node m are

Dm
n = L=gn + L=rm:

The intuition behind choosing tra�c shapers of this kind is as follows. If the RPPS discipline

guarantees a clearing rate of gn to connection n, then somewhere along the path, say at node m,

the connection n may only receive a service rate of gn. This congested link behaves like a tra�c

shaper that has an envelope of A
m
n (�) = L+ gn� . Based on Theorem 4.1, we know that for an RCS

discipline it is bene�cial to choose the \smallest" shaper at all the nodes, so that they can all take

advantage of the smaller tra�c envelope. Since in RPPS the smallest rate that a connection can

be given at any node is gn, a natural choice for the shaper envelopes of the RCS discipline is then

L+ gn� .

In addition to being able to provide the same bounds as RPPS, the RCS discipline also has the

advantage of allowing additional connections to be accepted, albeit with looser delay requirements.

Speci�cally, the schedulability check for RPPS is now
P

l2Cm
n
gl � rm, m = 1; : : : ;M , where Cm

n
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denotes the set of connections that are multiplexed on the same link as connection n at node m.

This implies that some amount of bandwidth, namely rm�
P

l2Cm
n
�l, cannot be utilized by RPPS.

However, this bandwidth can be used by an RCS discipline to accept additional connections that

require relatively larger end-to-end delay guarantees. At the end of this chapter we provide a

speci�c example of this bene�t of RCS disciplines over the more general GPS disciplines.

5.2 Achieving GPS Delay Guarantees

In [36, Section VIII], tight bounds on per connection packet delays are developed for GPS under

a fairly general assignment of weights, �mn , called Consistent Relative Session Treatment (CRST).

These bounds are achieved in certain node con�gurations, and even in the special case of RPPS,

they can be much tighter than those provided by (5.1). However, the calculation of the bounds

is much more cumbersome as they take into account the e�ect of all the other connections along

a connection's path. We will show that even with these tight bounds, an RCS discipline can be

designed that guarantees the same end-to-end delay bounds.

To simplify the discussion and to avoid obscuring the main idea of the argument, we assume a

continuous ow model. As far as the design of tra�c shapers is concerned, this basically amounts

to setting L = 0. Before proceeding with the design of the RCS discipline, recall the delay bound

for the GPS discipline provided in Section 4.3.3. First, the service curve, Sn was obtained in terms

of the simpler tra�c envelopes and then the delay bound in (4.5) was obtained in terms of this

service curve. As stated in [35] for the GPS discipline the service curve Sn(t) is a piece-wise linear

function, convex in the range [0; tB] where tB is the end of the �rst busy period of connection n,

when all the N connections are greedy. In this range, Sn is characterized by the pairs (sk ; bk),

k = 1; : : : ; k; where sk is the slope of the kth segment, bk its duration, and kn is the number of line

segments in Sn. By the convexity of Sn we have that

s1 � s2 � : : : � skn :

For our purposes, the case where An(�) = minfcn�; �n + �n�g, with cn � �n and �n � ��n will be

of interest. For convenience, we summarize in the next lemma two speci�c cases of (4.5) that are

useful in the remainder of this section.

Lemma 5.1 Assume that N connections are multiplexed on a link that is using the GPS schedul-

ing policy, with connection n having the envelope An(�) � ��n + ��n�; � � 0; n = 1; 2; : : :N .

Furthermore, assume that An(�) = minfcn�; �n + �n�g; � � 0.

1. If s1 � cn, then D�
n = 0.
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Figure 5.1: Delay bound for the GPS scheduling policy

2. If sk < cn; k = 1; : : : ; j � 1; sj � cn, and

Sn

0@j�1X
k=1

bk

1A � en := (cn�n)=(cn � �n);

then D�
n =

Pj�1
k=1 bk � �, where � = Sn

�Pj�1
k=1 bk

�.
cn.

Proof. The �rst part of the lemma follows by observing that s1 � cn implies An(�) � Sn(�) and

therefore

min
t��

n
t : Sn(t) � An(�)

o
= �:

A geometric interpretation of the second part is given in Figure 5.1.

The development of GPS bounds for connection n is based on the Universal Service Curve (USC)

for that connection [36, Section VIII]. Just as Sn characterizes the service that connection n receives

at a single node, the USC of a connection characterizes the end-to-end service that it receives. We

summarize here the method by which the USC is obtained when all the nodes use a GPS discipline

[36] .

1. Under a CRST weight assignment, an algorithm is developed by which an envelope function,

�mn + �n�; is guaranteed for every connection n tra�c entering node m [36, page 142]. For
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our purposes, it is important to note that

�1n = �n; �mn � �n; m = 2; : : : ;M: (5.5)

2. Given envelope functions of the form �m� +��� , for any connection � that is multiplexed with

connection n at node m (� and n are on the same output link at node m), the service function

S
m
n (�) for connection n, is calculated. Let (smk ; b

m
k ), k = 1; : : : ; kmn ; be the set of slopes that

characterize S
m
n (�).

3. The USC bSn(�) for connection n is given by the formula

bSn(�) = min
n
GM
n (�); I(�)

o
; � � 0;

where GM
n (�) =1 for � >

PM
m=1

Pkmn
k=1 b

m
k , and for � �

PM
m=1

Pkmn
k=1 b

m
k , G

M
n (�) is composed

of the segments (smk ; b
m
k ),m = 1; : : : ;M , k = 1; : : : ; kmn of S

m
n (�), arranged in a nondecreasing

order of slopes [36, page 144]. We denote by (bsk;bbk), k = 1; : : : ;
PM

m=1 k
m
n this nondecreasing

order.

Let kq be such that bskq � �n, and

bsk < �n; k = 1; : : : ; kq � 1: (5.6)

We are now ready to design an RCS discipline that is at least as good as GPS. Consider �rst

the design of tra�c shapers. Recall from the beginning of this chapter that for the purpose of

comparison with GPS we assume that the envelope of connection n tra�c entering the �rst tra�c

shaper is of the form In(�) = �n + �n� (L = 0). For connection n, at each node m on the path, we

choose tra�c shapers that have the same envelope, i.e., A
m
n (�) = min fcn�; �n + �n�g. To specify

how the parameter cn is picked, we need to distinguish between two classes of connections.

1. Class (a). Connection n belongs to this class when

bSn
0@kq�1X

k=1

bbk
1A < �n; (5.7)

where the USC bSn is de�ned as above. In this case, the delay bound for connection n tra�c

under GPS is given by the solution of the equation [37, p. 136] (see Figure 5.2.i),

D�
n :

bS(D�
n) = �n:

Let k� � kq, be the index of the slope of the USC at time D�
n. If at time D�

n there is a change

in slope, then de�ne k� as the index of the smaller of the two slopes (in fact either slope would

work). We set cn = bsk� .
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2. Class (b). Connection n belongs to this class when

bSn
0@kq�1X

k=1

bbk
1A � �n;

in which case, the delay bound for connection n tra�c under GPS [37, p. 136] (see Figure

5.3.i) is given by

D�
n =

kq�1X
k=1

bbk � bSn �Pkq�1
k=1

bbk�� �n

�n
:

We then set cn = �n.

For connection n, we assign the scheduler delay at node m, Dm
n , to be equal to the maximum delay

that would be experienced by the connection under the GPS scheduling policy at that node, when

the conditions of Lemma 5.1 are satis�ed. The next theorem establishes that with this assignment

the resulting in an RCS discipline provides the same end-to-end delay bounds as GPS.

Theorem 5.1 Consider connection n and let the nodes traversed by this connection be numbered

1; : : : ;M . The EDF scheduler is employed throughout the network and for connection n at node m

we choose a tra�c shaper with envelope

A
m
n (�) = min fcn�; �n + �n�g ; � � 0;

and assign a delay guarantee Dm
n , m = 1; : : : ;M , as follows:

� If sm1 � cn, then set Dm
n = 0.

� If smk < cn, k = 1; : : : ; jm � 1, smjm � cn, then assign

Dm
n =

jm�1X
k=1

bmk � �; where � = Smn

0@jm�1X
k=1

bmk

1A, cn:

Then the resulting RCS discipline provides the same delay bounds as GPS to all the connections.

Proof. The proof is a direct consequence of Lemmas 5.2 and 5.3. In Lemma 5.2 we establish that

the speci�ed delays can be guaranteed by the EDF policy at each node. Instead of verifying (4.6)

to ensure a feasible schedule, it is simpler to argue indirectly as follows: we show that the speci�ed

delays are guaranteed when the RCS discipline uses GPS as the scheduling policy at each node.

Since EDF is better than GPS in the single node case, it follows that the same delay guarantees

can at a minimum be provided when the EDF scheduling policy is employed.

In Lemma 5.3 we establish that the end-to-end delay guarantee of the RCS discipline as given by

(4.17), does not exceed D�
n, the end-to-end delay bound for GPS obtained in Lemma 5.1.
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Lemma 5.2 The delay assignment in Theorem 5.1 results in a feasible schedule at each node.

Proof. According to (5.5), we have Av(�) � �mv + �v�; � � 0, for any connection v that is

multiplexed with connection n on the same output link of node m. It is also true that cn � �n.

This follows by de�nition for a connection in class (b). For a connection in class (a), observe that

because of (5.6) and the fact that bsk , k = 1; 2; : : :, is nondecreasing we have cn = bsk� � bskq � �n.

Applying Lemma 5.1 (where we replace ��  �mn ), we conclude that the delay Dm
n = 0 can be

guaranteed under the GPS policy for any node m for which sm1 � cn. For a node m, where

smk < cn, k = 1; : : : ; jm � 1, smjm � cn, we apply part 2 of Lemma 5.1 and, therefore, we �rst need

to show that

Smn

0@jm�1X
k=1

bmk

1A � cn�n
cn � �n

:

This is trivially true for a connection in class (b) since cn�n=(cn��n) =1. If connection n belongs

to class (a), observe that from the de�nition of bsk� , jm and bSn(�), we have (see Figure 5.2),
Smn

0@jm�1X
k=1

bmk

1A � bSn
 
k��1X
k=1

bbk
!

� �n

�
bsk��nbsk� � �n

:

Thus, we have established that in both cases (a) and (b), the speci�ed delay bound can be guar-

anteed at node m.

Lemma 5.3 The end-to-end delay guarantee of the RCS discipline as given by (4.17), does not

exceed the end-to-end delay bound D�
n, for GPS.

Proof. Recall that the input tra�c envelope In for connection n is given by

In(�) = �n + �n�; � � 0:

Therefore from (3.17), we obtain

D
�
Ink An

�
=
�n
cn
:

Therefore, it su�ces to show that

�n
cn

+
MX

m=1

Dm
n = D�

n; (5.8)

where D�
n is obtained from Lemma 5.1.

66



D
n

*
_

D
n

m

sk
^
*

s
m1

^ s
m2

^

hm2

s
m

3

^ h1
m

h2
m

h3

m

hm1

h
m

3

n

m

S  (J)

End-to-End Delay Scheduler delay at node m

S  (J)^
n

h
0

A B

s1
m

s
2
m

s
m

3

s
4
m

F

D
n

*
n *

n
c
n

E

*
n

m_

_ _

JJ

(i) (ii)

D
n

s
m4

^

Figure 5.2: Delay Decomposition of a Class (a) Connection

Let M0 be the set of nodes for which Dm
n > 0, so that

PM
m=1D

m
n =

P
m2M0

Dm
n . Assume �rst

that connection n belongs to class (a). Observe that the set of slopes bsk; k = 1; : : : ; k� � 1, can be

partitioned into subsets Fm for each index m in M0, where

Fm = fbsl : bsl = smk ; for some k = 1; : : : ; jm � 1g :

We denote by mk the index l for which bsl = smk , i.e., bsmk
= smk . For the rest of the discussion, it is

best to use geometric arguments. Referring to Figure 5.2(i), draw lines with slope bsk� from all the

points in bSn(�) where the slope changes and remains less than bsk� . These lines intersect segment

AB (corresponding to the delay D�
n) and divide it into segments of length hk , 0 � k � k��1, where

segment hk corresponds to slope bsk, 1 � k � k� � 1. Denote by hmk
the segment that corresponds

to bsmk
. Since by construction h0 = �n=cn, we then have

D�
n =

�n
cn

+
X

m2M0

jm�1X
k=1

hmk
: (5.9)

Similarly, in Figure 5.2(ii), draw lines with slope bsk� from all the points in Smn (�) where the slope

changes and remains less than bsk� . These lines intersect segment EF (corresponding to the delay

Dm
n ) and divide it into segments hmk , 1 � k � jm � 1 (in the �gure we have jm � 1 = 3). We can
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Figure 5.3: Delay Decomposition of a Class (b) Connection

then write,

Dm
n =

jm�1X
k=1

hmk : (5.10)

Using the facts bsmk
= smk and bbmk

= bmk , it can be easily seen that hmk
= hmk . Taking into account

(5.9) and (5.10), we conclude the correctness of (5.8).

Similar arguments can be made for a connection that belongs to class (b). The main di�erence is

that we now draw lines with slope �n. Figure 5.3 illustrates the construction in this case.

These derivations established that an RCS disciplines can be constructed that provides the same

delay bounds as GPS, but the arguments used were more involved than for the simpler case of

RPPS. As a result, it is much harder to gain some insight into why and how this is achieved. A

possible (and partial) explanation is that the reshaping peak rate cn for connection n, should be

set to the service rate in the Universal Service Curve of the GPS policy, that corresponds to the

maximum delay value. Using a larger value will not help since service, and hence reshaping, at

that rate will be encountered. Using a smaller value will result in higher delays.

In the course of the previous argument, we showed that the delay guarantees provided by a pure

GPS policy can also be achieved by an RCS discipline working with worst case delays at each
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node, where the scheduling policy at each node is GPS. If we replace GPS with the (simpler) EDF

scheduling policy at each node, we are not only assured that we can still guarantee the GPS end-

to-end delays, but we also create a service discipline that is better than GPS. This is due to the

fact that in the single node case, EDF is better than GPS [21]. That is, there are delay vectors

that can be guaranteed by EDF but cannot be guaranteed by GPS no matter what weights are

chosen. For example, consider a link of capacity r, where two connections are multiplexed and

In(�) = �n + �n� , n = 1; 2, with �1 + �2 � r. Using (4.7) with L = 0, we can see that the delays

that can be guaranteed by the EDF policy are

D1 =
�1
r
; D2 =

�2
r � �1

+
�1
r
;

For GPS on the other hand, it can be seen from the construction in [35, Section VI.C], that in

order to guarantee D�
1 = �1=r we need to specify �2 = 0, and then the minimum guaranteed delay

for connection 2 is

D�
2 =

�2
r � �1

+
�1

r � �1
: (5.11)

The di�erence between the GPS and EDF delay guarantees for connection 2 is

D�
2 �D2 =

�1�1
r(r� �1)

;

which can be quite large. Similar examples can be given for the packetized model when comparing

PGPS to NPEDF. The better bounds of EDF in this simple example, are essentially a reection

of the fact that, in the single node case, EDF is the optimal policy. This is in part due to EDF's

ability to, unlike GPS (or its variants), decouple delay and rate guarantees. In the above example,

this di�erence is expressed in the �1=(r � �1) term of (5.11). This term reects the behavior of

GPS, which serves all new packets of connection 1 at rate r, irrespective of the fact that they may

have just arrived and, therefore, are in no danger of being excessively delayed. In contrast, the

EDF policy exploits this knowledge to improve the delay guarantee it gives to connection 2. In

the multiple node case, the bene�t of decoupling delay and rate guarantees is still obtained, while

the problem of summing up worst case node delays has been alleviated by suitably reshaping the

connection tra�c.

5.3 Summary

Tight end-to-end delay bounds have been previously obtained for GPS and its many derivatives.

Until now these were the best available end-to-end delay guarantees. In this chapter we �rst

demonstrated how a naive use of the RCS discipline where the shaper envelopes were chosen to

be identical to the input tra�c envelope, could lead to rather poor end-to-end delay guarantees.
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However, we showed that with the right choice of tra�c shapers the RCS discipline can provide

better end-to-end delay guarantees than the GPS discipline.
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Chapter 6

Bu�er Requirements and Work-Conserving Extensions

In the previous chapter we demonstrated how an RCS discipline with an EDF scheduler can pro-

vide tight end-to-end delay guarantees to individual connections. There is a large body of liter-

ature in the recent past devoted to the study of scheduling policies and their end-to-end delay

performance[25, 27, 35, 46, 50]. However, a delay bound is only part of the story, and is relevant

only if there are su�cient bu�ers to hold the tra�c that is delayed. If a network element is bu�er

constrained then it may well be that the size of the bu�er determines the maximum amount of

delay that can be experienced by a ow. In the framework adopted in this thesis, we assume that

the network, before accepting a connection, ensures that it has su�cient bu�ers in order not to

lose any packets of that connection. In the �rst half of this chapter, we look at the bu�ers required

at each network element to ensure that no packets are lost. Since the RCS discipline consists of a

shaper and a scheduler, we need to compute these bu�er requirements, both at the shaper as well

as the scheduler. Another QoS parameter that is closely related to delay is jitter. In this chapter

we briey investigate the natural bene�ts a�orded by the RCS discipline in terms of limiting the

jitter experienced by a connection.

The many bene�ts and properties of the RCS discipline, mostly arise from the fact that tra�c is

regulated at each hop. Regulating tra�c at each hop, however, comes at a price in that packets

may be delayed in the regulator even though the link is idle. The per-connection tra�c reshapers

and the link scheduler can be combined, and together viewed as a single server system, where the

service process corresponds to the transmission of the packet on the link. A single server system

is said to be work-conserving, if the server is never idle when there are packets in the system. It

is clear that the system in consideration here, is not work-conserving since the server may be idle,

i.e. the link could be idle, even when there are packets in the system. This non-work-conserving

nature of the RCS discipline might increase the average delay that is experienced by packets of all

connections. In the latter part of this chapter we examine some simple modi�cations to the RCS

discipline to make it work-conserving without compromising the end-to-end delay guarantees that
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can be provided.

6.1 Bu�er Requirements

In Chapter 5 we briey introduced the notion of a service curve to lower bound the service received

by a connection at a network element. This service curve was then used to compute a bound on

the delay experienced by a connection at a network element. Service curves of individual network

elements can be convolved to compute a network-wide service curve which is then used to elegantly

compute the end-to-end delay bounds for a connection. The idea of using service curves to bound

the service process �rst appeared in [37] and further development of the theory of service curves

can be found in [39, 15, 11]. In this section we use the service curve formulation to compute the

per-connection bu�er requirements at both the shaper and the scheduler. First, we de�ne the term

bu�er requirement.

Consider connection n and recall that In(t) denotes the volume of connection n tra�c that is input

to a network element in the interval [0; t]. Let On(t) denote the volume of connection n tra�c that

is output by the network element in the interval [0; t]. We assume both mappings t ! In(t) and

t ! On(t) to be non-decreasing and right continuous on IR+. Then the bu�er requirement Bn for

connection n is de�ned as

Bn � max
t�0
fIn(t)� On(t)g : (6.1)

If tra�c from connection n has a separate queue at the network element and is guaranteed Bn

amount of bu�er, then it is guaranteed to never overow its bu�er. In practice we do not know

the exact nature of the arrival process In nor the output process On. However, we might know

the tra�c envelope of the input and a service curve that describes the service process. The next

theorem summarizes some results on service curves, the proofs of which are to be found in [39, 15].

Theorem 6.1 [16] Assume that tra�c with an envelope of In is input to a network element which

guarantees it a service curve of Sn. Then, for connection n, the following bounds can be obtained:

� The bu�er requirement Bn to ensure that there is no cause for bu�er overow is given by

Bn = max
��0

n
In(�)� Sn(�)

o+
(6.2)

� The maximum delay bound Dn is given by

Dn = max
��0

min
n
� : � � 0 and In(�) � Sn(� + �)

o+
(6.3)
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� An envelope, On, for the connection n tra�c at the output of the network element is given

by,

On(�) = max
��0

n
In(� + �)� Sn(�)

o+
; � � 0: (6.4)

In other words, the delay bound for connection n is the maximum horizontal distance from the

tra�c envelope In to the service curve Sn. Similarly, the bu�er requirement for connection n is

given by the maximum vertical distance from Sn to In.

Theorem 6.2 [16] Assume now, that connection n tra�c passes through a series of M network

elements, each of which guaranteeing it a service curve of S
m
n ; m = 1; 2; : : :M . The entire set of

network elements can be viewed as a single entity that guarantees a service curve Sn = S
1
n
S

2
n � � �


S
M
n , where the operator 
 is de�ned as follows:

S
1
n 
 S

2
n(�) = min

0����

n
S
1
n(�) + S

2
n(� � �)

o
; � � 0: (6.5)

The proof for Theorem 6.2 can be found in [16]. Now, let us try and apply some of these results

in our setup which assumes that the RCS discipline is used at all nodes in the network. As usual,

we focus on a single connection, n, with input tra�c envelope In. Without loss of generality we

assume that connection n traverses nodes 1; 2; : : :M . Let rm denote the link speed at node m,

m = 1; : : : ;M . Recall that we use the same tra�c shaper with envelope An at all nodes along the

path. Because An is piece-wise linear, increasing and concave we can write it in the form

An(�) = min
k=1;:::;K

f�k + �k�g; � � 0; (6.6)

with �1 � �2 � � � � � �K . Furthermore, we assume that

�1 � rm (6.7)

which is a reasonable assumption if the input and output links operate at the same speed, since

tra�c can never arrive at a rate that is higher than the link speed. We can now compute the bu�er

requirements for connection n at node m.

Theorem 6.3 The bu�er requirement Bm
S;n for connection n at the scheduler at node m, is given

by

Bm
S;n = An(D

m
n ); m = 1; : : : ;M:

The bu�er requirement Bm
A;n for the shaper at node m, is given by

Bm
A;n =

8<:max
��0

n
I(�)�An(�)1[� > 0]

o+
m = 1,

An(Dm�1
n ) m = 2; : : : ;M;

(6.8)
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where

1[� > x] �

�
0 if � � x

1 if � > x.

Proof. The RCS discipline at any node m consists of two parts, the shaper and the scheduler.

For clarity we drop the subscript n from the service curves, but it should be emphasized that the

service curves are guaranteed to a particular connection. Assuming that a feasible schedule exists,

the EDF policy at node m guarantees that all packets from connection n will be transmitted before

the local delay guarantee of Dm
n . Therefore, the EDF policy guarantees connection n a service

curve [39] of

S
m
S (�) =

�
0 if � � Dm

n

1 if � > Dm
n .

(6.9)

Using (6.2) we readily compute the bu�er requirements for connection n at the scheduler at node

m to be An(D
m
n ).

From the de�nition of the tra�c shaper in (3.1) it is clear that the shaper guarantees a service

curve of

S
m
A(�) = An(�)1[� > 0]: (6.10)

To compute the bu�er requirements at the �rst shaper, i.e., m = 1 we can directly apply Theo-

rem 6.1 and (6.2) gives the bu�er requirements. In order to compute the bu�er requirements for the

shaper at node m+1,m = 1; : : : ;M �1, we need to have an envelope for the tra�c that is input to

this shaper. For this, we �rst compute the service curve of the combination of the scheduler at node

m and the link from node m to node m + 1. Recall that the link that is traversed by connection

n at node m, is assumed to be operating at a constant rate rm and so the service curve S
m
� of the

link is given by

S
m
� (�) = rm�; � � 0: (6.11)

Using (6.5) we can obtain a combined service curve for the link and the scheduler at node m, which

is

S
m
S 
 S

m
� (�) = rm(� �Dm

n )1[� > Dm
n ]; � � 0: (6.12)

From (6.4) we compute a tra�c envelope O
m
n for the connection n tra�c exiting node m, namely

O
m
n (�) = max

��0

n
An(� + �)� S

m
S 
 S

m
� (�)

o+
(6.13)

= max
��0

n
An(� + �)� rm(��Dm

n )1[� > Dm
n ]
o
; � � 0: (6.14)

Applying Theorem 6.1 we obtain the bu�er requirement Bm+1
A;n for the shaper at node m+ 1

Bm+1
A;n = max

��0

n
O
m
n (�)� An(�)1[� > 0]

o
= max

��0

�
max
��0

n
An(� + �)� rm(��Dm

n )1[� > Dm
n ]
o
�An(�)1[� > 0]

�
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= max
��0

�
max
��0

n
An(� + �)� rm(��Dm

n )1[� > Dm
n ]� An(�)1[� > 0]

o�
= max

��0

�
max
��0

n
An(� + �)�An(�)1[� > 0]� rm(��Dm

n )1[� > Dm
n ]
o�

= max
��0

n
An(�)� rm(��Dm

n )1[� > Dm
n ]
o

(6.15)

= An(D
m
n ); (6.16)

where (6.15) follows from the concavity of An and (6.16) follows from (6.6) and (6.7).

The important conclusion to be drawn from this exercise is that with the RCS discipline the bu�er

requirements at a node are independent of the number of hops traversed by the connection. This

is in sharp contrast to most of the other rate-based service disciplines like PGPS, SCFQ, SFQ

[25, 27, 35], where the bu�er requirements keep increasing with the number of hops between the

network element and the source. The reason for this bene�t lies in the fact that with an RCS

discipline tra�c is being reshaped at each hop, and so bursts are not allowed to accumulate. In

fact, as seen shortly in Section 6.3, if we relax the requirement of holding back packets in the

shaper, we lose some of the bene�ts of reshaping.

6.2 Bounded Jitter

For a large number of applications it is important to bound the jitter, i.e., the variation in the delay

that is experienced at the receiver. This is particularly important for audio and video applications

that need to be supplied with a constant data stream. Typically these applications maintain a

playback bu�er that holds the incoming packets and plays them out at a constant rate. The size of

this playback bu�er depends on the jitter that the network might introduce into the ow. In this

section we will briey examine how RCS disciplines have a nice property of limiting the jitter.

We begin by de�ning exactly what we mean by jitter. Let ai denote the time at which the ith

packet enters the network, and let fi denote the time at which it is received at its destination,

i = 1; 2; : : : : The jitter experienced by the ith packet is then de�ned as

Ji = j(fi � fi�1)� (ai � ai�1)j; i � 2: (6.17)

Jitter is typically of consequence for tra�c generated at a constant rate. In this section, we assume

packets are generated by the source at a constant rate � and that the packets are of �xed size L.

Therefore,

ai = �i; i = 1; 2; : : :

It turns out that the reshapers in this case closely resemble playback bu�ers, and this is apparent

when we look at a very simple property of the reshapers. For convenience we assume a reshaper is
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located at the destination as well, and assume that fi denotes the time at which packet i clears the

reshaper at the destination. Let D denote a bound on the end-to-end delay for the connection. The

delay incurred by the ith packet is denoted by di := fi � ai. The next lemma makes an interesting

observation about the individual packet delays.

Lemma 6.1 Under an RCS discipline, the packet delay di, i = 1; 2; : : : is non-decreasing in i, and

is bounded above by D, i.e.,

di � dj � D; i < j: (6.18)

Proof. The upper bound for the delay is simply a consequence of using RCS disciplines. To

verify the monotonicity in the packet delays, observe that the reshaper at the destination ensures

fi+1 � fi + �. Therefore,

di+1 = fi+1 � ai+1

� fi + �� ai+1

= fi � ai (6.19)

= di;

where (6.19) follows from the fact that packets are sent at a constant rate, i.e., ai+1 = ai + �.

Rearranging the terms in (6.17) and using (6.18, we get

Ji = di � di�1; i = 2; : : : (6.20)

Now applying Lemma 6.1, we conclude to the following result. result.

Theorem 6.4 Consider a connection where tra�c is generated at a constant rate and assume

that it is provided an end-to-end delay guarantee D by an RCS discipline. Then the total jitter

experienced by all the packets of this connection, is bounded above by the end-to-end delay guarantee,

i.e.,
1X
i=2

Ji � D:

Proof. From the de�nition of jitter (6.17) we have

1X
i=2

Ji =
1X
i=2

jdi � di�1j (6.21)

=
1X
i=2

(di � di�1) (6.22)

= lim
i!1

di � d1 (6.23)

� D; (6.24)

where (6.22) follows from (6.20) and the limit (6.23) exists by monotonicity of di.
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Thus, it is clear that once any packet has experienced the maximum delay guarantee, all subsequent

packets experience zero jitter. It should be noted that we are measuring the jitter just after the

reshaper at the destination. However, it may well be that the receiver does not have a reshaper.

In this case we can apply the result to the last hop node traversed by the connection and the jitter

experienced at the receiver is only bounded by the local delay guarantee at the last hop. Another

important observation is that the bound on the jitter only requires a reshaper to be present at the

receiver and not at the various intermediate nodes along the path. However, if there is only a single

reshaper at the receiver, then applying Theorem 6.3 we see that large amount of bu�ers are needed

to ensure that there is su�cient amount of memory to hold the packets until they have cleared

the reshaper. Having reshapers at each hop along the path, prevents large bursts from building up

because tra�c is smoothed out at each hop.

6.3 Work Conserving RCS discipline

As we pointed out earlier, the RCS discipline is not work-conserving. So far, when we talked of

delay guarantees we have only assumed that the applications require packets to be delivered within

a certain amount of time. It is not relevant to the application if in the course of operation, packets

are indeed delivered early since what counts is the a priori delay bound that is guaranteed to the

connection. This is typical for applications like audio and video playback that have a playback

bu�er and delay packets to ensure a smooth stream of data at the output of the playback bu�er.

However, there are also a large class of applications that, in addition to a hard delay guarantee,

are interested in receiving packets as early as possible. The RCS discipline as it stands is not work-

conserving and so even though it provides excellent end-to-end delay guarantees, the average delays

that packets experience could be larger than other work-conserving disciplines. In this section we

describe a modi�cation to the RCS discipline that will make it work conserving, without sacri�cing

the tight end-to-end delay guarantees that it provides.

Consider any network element that uses the RCS discipline. At any instant of time, if there are

packets in the system that have not cleared their reshapers, we refer to them as ineligible packets.

For simplicity assume that we have a synchronous link where �xed size packets are transmitted in

�xed length slots (e.g. SONET framing). If the link is idle for one slot, it means that a packet

transmission opportunity is lost. Transmitting an ineligible packet in that slot therefore does not

have an adverse impact on the delays experienced by the other packets. For the more general

case of variable length packets it is not clear, a priori, whether choosing an ineligible packet for

transmission whenever the link is idle, a�ects the delay guarantees of the other connections. Indeed,

were a very long ineligible packet selected for transmission when there were no eligible packets in

the system, any eligible packet that has to be transmitted shortly thereafter, will have to wait until
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this ineligible packet is completely transmitted due to the non-preemptive nature of the scheduling

policy.

Assuming that the delay guarantees to all connections at a single node are not violated by sending

ineligible packets out whenever the link is idle, it is not clear whether the end-to-end delay guarantee

of (4.17) still hold. In the rest of this section we describe a simple modi�cation to the RCS discipline

that will make it work-conserving without sacri�cing the end-to-end delay guarantees that can be

provided to individual connections.

To clarify the exposition, we describe a particular implementation of the RCS discipline [30]. Where

there is no cause for confusion, we drop the superscript m that identi�es the node along the path

of the connection. We do not concern ourselves with the individual shapers for each connection;

rather, as each packet arrives into the system, the shaper for that connection simply places a time-

stamp on the packet that corresponds to the time at which the packet would have left the shaper.

We refer to this time-stamp as the eligibility time of the packet. At any time t, only packets with

eligibility time greater than or equal to t are considered eligible for transmission on the link.

Based on their eligibility time we can divide the packets in the system at any time t, into two sets:

Qe(t) is the set of eligible packets, i.e., packets whose eligibility time is greater than or equal to

t, and Qi(t) is the set of ineligible packets, i.e., those with eligibility time less than t. The link-

scheduler only selects packets inQe for transmission on the link, and once a packet has completed its

transmission it is removed from Qe. Since the eligibility time of a packet is computed based on the

connection's tra�c envelope, it is clear that packets from each connection enter Qe in conformance

with their respective tra�c envelopes. The call admission criteria ensures that a feasible schedule

exists for all packets in Qe.

We now develop a work-conserving discipline �W , by modifying the link-scheduler in the non-work-

conserving RCS discipline �NW as follows:

Operation of Work-Conserving Extension to RCSD (�W )

1. A non-preemptive priority mechanism is used to arbitrate between the two sets, Qe(t) and

Qi(t), with Qe(t) being the one with the higher priority, i.e., at any time t, a packet from

Qi(t) is selected for transmission only if Qe(t) is empty.

2. When Qe(t) is non-empty, packets are selected only from Qe(t) for transmission, based on

the scheduling policy that is used in �NW .

3. When Qe(t) is empty, if there is a packet in Qi(t) it is transmitted. If there are several

packets in Qi(t), any policy can be used to select a packet for transmission.

Let us concentrate on a single node, saym, and for the moment assume that there areN connections
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multiplexed on a single outgoing link. Tra�c from connection n is conformant with a tra�c envelope

of An, and is guaranteed a local delay bound of Dm
n , n = 1; : : : ; N , by the service discipline �NW .

First, we establish that even with �W , the scheduler delay bounds that were obtained for �NW

remain valid.

Theorem 6.5 Under discipline �W , packets of any connection n, n = 1; : : : ; N , are not delayed

by more than Dm
n at the scheduler at node m.

Proof. Dm
n must be larger than the transmission time of a packet from connection n, and so

packets that start transmission before they become eligible can never miss their deadline. So we

need to show that once a packet becomes eligible it does not miss its deadline. If Qe(t) is non-

empty at time t, then de�ne a Qe-busy period to be the largest closed interval [ts; tf ], ts � t � tf ,

such that Qe(t) 6= � for any t in the interval [ts; tf ]. All the eligible packets begin transmission in

Qe-busy periods, and so it su�ces to show that the packets transmitted in Qe-busy periods do not

miss their respective deadlines.

We say that an ineligible packet has arrived at the scheduler, when it is promoted toQe or when it is

selected for transmission. Let [ts; tf ] be a Qe-busy period. If an eligible packet starts transmission

at ts, then the tra�c of all connections arriving at the scheduler in [ts; tf ] are conformant with their

respective tra�c envelopes. By de�nition, the operation of the scheduler in �W during a Qe-busy

period is identical to that in �NW , and therefore it follows that eligible packets do not miss their

deadlines.

Now, on the other hand, it is possible that at time ts an ineligible packet from some connection j,

is being transmitted. Let p0 denote this ineligible packet and let t0 denote the time at which p0

begins transmission. We are done if we can show that all the packets that were transmitted in the

interval [t0; tf ] arrived at the scheduler in conformance with their respective tra�c envelopes.

Let An(t) denote the amount of tra�c from connection n that is promoted toQe in the interval [0; t].

Let bAn(t) denote the connection n tra�c that arrives at the scheduler in the interval [0; t]. As bAn(t)

includes the ineligible packets that are transmitted we have bAn(t) � An(t). For n = 1; 2; : : : ; N , we

need to show that bAn(�2)� bAn(�
�
1 ) � An(�2 � �1); t0 � �1 � �2 � tf ;

where An(�
�
1 ) := lim�#0An(�1 � �).

By the de�nition of An, we have

An(�2)� An(�1) � An(�2 � �1); 0 � �1 � �2;

while from the de�nition of a Qe-busy period, only a single ineligible packet p0 is transmitted in
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[t0; tf ] and that packet is from connection j. Therefore,

bAn(�2)� bAn(�
�
1 ) � An(�2 � �1); ts � �1 � �2 � tf ; n 6= j:

Since, in addition cAn(t
�
s )�

cAn(t0) = 0 for n 6= j, we have,

bAn(�2)� bAn(�
�
1 ) � An(�2 � �1); t0 � �1 � �2 � tf ; n 6= j: (6.25)

Consider next connection j, and let tl0 denote the local eligibility time of packet p0. If t
l
0 � tf , then

clearly bAj(�2)� bAj(�
�
1 ) � L � Aj(0); t0 � �1 � �2 � tf ;

since no more packets from connection j will be transmitted in [t0; tf ]. Now suppose t0 � tl0 < tf .

Then, all other packets of connection j will arrive to the scheduler only after tl0. For the case when

t0 � �1 � tl0 and tl0 � �2 � tf , we have

cAj(�2)� cAj(�
�
1 ) � Aj(�2 � tl0) � Aj(�2 � �1):

The other cases can be similarly veri�ed.

Thus, for the single node case, we have shown that transmitting packets before they have cleared

their respective reshapers does not adversely a�ect the other tra�c passing through that node.

However, we cannot directly apply Theorem 3.4 to conclude that the end-to-end delay guarantees

are still met, since we are not actually reshaping the tra�c at each hop. Further, it is not true that

every packet in the work-conserving system will see a smaller end-to-end delay than it would in

the corresponding non-work conserving system, so we cannot make a pathwise comparison either.

Still, it turns out that the end-to-end delay bound for �W is the same as that for �NW and this is

the content of the next theorem.

Theorem 6.6 Discipline �W can provide the same end-to-end delay bounds as �NW , i.e., if the

nodes traversed by a connection are numbered as 1; 2; : : : ;M , then the end-to-end delay guarantee

for connection n is given by

Dn = D(InkA
1
n) +

M�1X
m=1

D
�
Am
n kA

m+1
n

�
+

MX
m=1

Dm
n +

MX
m=1

T (m;m+1): (6.26)

Proof. For clarity in the exposition we assume that the propagation delays T (m;m+1), m =

1; : : : ;M , are zero. We focus our attention on connection n and let pi denote the ith packet of

connection n. We denote by tl;mi , the time at which pi will be eligible for transmission at node m;

so that tl;mi is the time at which packet pi would leave shaper Am
n in conformance with the tra�c

envelope A
m
n . The actual time that pi leaves Qm

i (to be transmitted on the link or promoted

to Qm
e ) is denoted by ta;mi . If the link is idle, the packet may be transmitted before it becomes
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eligible, i.e., ta;mi � tl;mi . The departure time of the ith packet from the scheduler is denoted as

td;mi . Similarly, let ta;0i be the arrival time of pi at the �rst tra�c shaper on its path, and let td;Mi
be the time it arrives at its destination. Since ta;Mi � tl;Mi we can write

td;Mi � ta;0i � tl;Mi � ta;0i + td;Mi � ta;Mi

=
M�1X
m=1

�
tl;m+1
i � tl;mi

�
+ tl;1i � ta;0i + td;Mi � ta;Mi : (6.27)

By de�nition, tl;1i � ta;0i � D
�
InkA

1
n

�
, and td;Mi � ta;Mi � DM

n according to Theorem 6.5, and so

we have

td;Mi � ta;0i � D
�
InkA

1
n

�
+

M�1X
m=1

�
tl;m+1
i � tl;mi

�
+DM

n : (6.28)

Comparing (6.28) with (6.26) and noting that we have assumed the propagation delays, T (m;m+1)

to be zero, it su�ces to show that

tl;m+1
i � tl;mi � Dm

n +D(Am
n kA

m+1
n ) m = 1; : : : ;M � 1: (6.29)

Let Sm be the system consisting of the scheduler at node m. Consider the modi�ed system which is

same as the work conserving system operating under �W except for a delay system inserted between

Sm and shaper Am+1
n as shown in Figure 6.1. The delay system delays pi by �i := Dm

n + tl;mi � td;mi ;

therefore, pi departs the delay system at time btd;mi := Dm
n + tl;mi . First we verify that �i � 0.

Indeed,

�i = Dm
n + tl;mi � td;mi

� Dm
n + ta;mi � td;mi (6.30)

� 0 (6.31)

with (6.30) following from the fact that packets never depart the shaper later than they are supposed

to, i.e., tl;mi � ta;mi , and (6.31) following from Theorem 6.5. Let btl;m+1
i be the eligibility time of pi

in the modi�ed system. From Lemma 3.1, we conclude that

tl;m+1
i � td;mi � btl;m+1

i � td;mi : (6.32)

Adding td;mi � tl;mi to both sides of (6.32) we have

tl;m+1
i � tl;mi � btl;m+1

i � tl;mi

= btl;m+1
i � btd;mi + btd;mi � tl;mi : (6.33)

Since btd;mi = t
l;m
i +Dm

n , i = 1; 2; : : :, it follows that the tra�c exiting the delay system has envelope

A
m
n , whence btl;m+1

i � btd;mi � D(Am
n kA

m+1
n ): (6.34)
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Figure 6.1: Original (work conserving) system and the modi�ed system
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Form (6.33) and (6.34) it follows that

tl;m+1
i � tl;mi � D(Am

n kA
m+1
n ) +Dm

n :

When T
(m;m+1)
n > 0, the same reasoning applies, provided that system Sm consists of the scheduler

at node m, and the link (m;m+ 1), i.e., the bound on the delay at Sm is now Dm
n + T

(m;m+1)
n .

We have described a general procedure for making RCS disciplines work conserving regardless of

the scheduling discipline that is used { of course, the scheduling discipline, by itself needs to be

work conserving. In keeping with this generality, we have not speci�ed the exact order in which

packets from the ineligible queue can be served. Based on the scheduling discipline that is used, as

well as the behavior that is desired for the ows in general, some speci�c ordering of the ineligible

packets may be appropriate. If the EDF scheduling policy is being used at the link scheduler, then

the ineligible packets can also be ordered based on their deadlines. In fact, if the EDF policy is

used as the scheduler a simple modi�cation to the RCS discipline can make it work conserving and

this is the subject of the next section.

6.3.1 Work Conserving Extension to the RCS discipline that uses an EDF

scheduler

When the EDF policy is used at the scheduler, it is possible to come up with a very simple

implementation of a work conserving RCS discipline. This implementation might well be simpler

than the non-work conserving RCS discipline that uses an EDF scheduler since it it eliminates the

need for a separate tra�c shaper. All that is required is a slight modi�cation in the computation

of the deadlines.

Operation of a Work-Conserving RCSD that uses an EDF scheduling policy (�WE)

1. For each connection the system maintains the necessary state to ensure compliance with the

tra�c envelope. For example, if the tra�c characteristics are in terms of a leaky bucket, then

the number of tokens in the leaky bucket is maintained. This state is used to determine the

eligibility time of the next arriving packet.

2. As each packet arrives into the system a timestamp (deadline) is placed on the packet. This

timestamp is the sum of the packet's eligibility time and the local delay guarantee for that

connection at the network element.

3. The scheduler (EDF) picks the packet with the smallest timestamp (deadline) and transmits

it on the link. Ties are broken, arbitrarily.
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It is clear that the above system is work-conserving since the link is never idle if there are packets

in the system. However, Theorem 6.5 cannot be used to conclude that the packets do not miss their

deadlines since with �WE there may be cases where ineligible packets with small delay guarantees

get transmitted even though there are eligible packets with larger delay guarantees waiting in the

system. Nevertheless, it turns out that the deadlines are indeed met as we now show.

Theorem 6.7 If the feasibility conditions for the EDF policy (4.6) are met, then under �WE all

packets are transmitted before their deadlines.

Proof. Recall that An(t) denotes the amount of tra�c that has arrived from connection n until

time t. Let On(t) denote the amount of tra�c from connection n that has left the system by time

t. The connection n backlog at time t is denoted by Bn(t) := An(t) � On(t). Therefore, at any

time t, the total backlog in the system is given by B(t) :=
PN

n=1Bn(t).

Assume that a packet missed its deadline, and let tf be the deadline of the �rst packet that missed

its deadline. Now, let ts denote the start of the busy period containing tf , i.e.

ts := min ft : t � tf and B(�) > 0; t � � � tf g :

Furthermore, let th be the start time of the last packet transmitted in the interval [ts; tf ] that had

a deadline greater than or equal to tf . Let th0 denote the time at which this packet completed its

transmission. If no such packet exists, set th0 = th = ts. Now, let X [th0; tf ] denote the total amount

of tra�c that is in the system during the interval [th0 ; tf ] and has a deadline less than or equal to

tf . Note that X [th0 ; tf ] includes the packet whose deadline tf was missed.

By the de�nition of th0 and tf , it follows that only packets with deadlines in [th0 ; tf ] are served in

the same interval, which is actually part of a busy period; therefore

X [th0; tf ] > r(tf � th0); (6.35)

where r denotes the speed of the link. The strict inequality in (6.35) is due to the fact thatX [th0 ; tf ]

includes the packet with the missed deadline that was not transmitted by time tf .

Observe that only those connections that are not back-logged at time th (i.e. n such thatBn(th) = 0)

can contribute to X [th0 ; tf ]. This is because the EDF policy, by de�nition, selects the packet with

the smallest deadline for transmission, and so if at time th there were packets in the system from

back-logged connections, they must have all had deadlines larger than tf . Therefore,

X [th0 ; tf ] �
X

n:Bn(th)=0

An(tf �Dn � th) (6.36)

�
NX
n=1

An(tf �Dn � th)
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� r(tf � th)� L (6.37)

� r(tf � th0); (6.38)

where (6.36) holds because An(tf �Dn � th) is the maximum amount of connection n tra�c that

can arrive in the interval [th; tf ] and be assigned a deadline no larger than tf . Also, (6.37) follows

from the feasibility check for the EDF policy as given in (4.6), and (6.38) follows from the fact

that r(th0 � th) � L, the maximum packet size. Since (6.38) is in direct contradiction to (6.35) we

conclude that our assumption was incorrect and therefore no packet misses its deadline.

The Work-Conserving extensions to the RCS discipline described in this chapter, should reduce

the average delay that is experienced by packets, since packets are no longer held up when the link

is idle. However, this improvement does come at a price, viz. tra�c is no longer guaranteed to

conform to a tra�c envelope at any point along its path. Therefore, tra�c from a connection can

get more and more bursty as it progresses through the network and the bu�ers required to ensure

lossless service will increase. In the next section, we compute a bound on the bu�er requirements

at each network element if the �WE discipline is used.

6.3.2 Bu�er Requirements for �WE

The bu�er requirements for the �WE discipline can be easily computed using the service curve

framework. The service-curve guaranteed by the �WE discipline to a connection n at node m,

is a combination of the shaper and scheduler service curves, S
m
A and S

m
S , respectively. Using

Theorem 6.2 we can obtain the service curve for the combination of the shaper and the scheduler

to be

S
m
A 
 S

m
S (�) =

(
0 if � � Dm

n

An(� �Dm
n ) if � > Dm

n .
(6.39)

Now, to compute the bu�er requirements at node m + 1, we need to compute the output tra�c

envelope at node m. Since we do not know the envelope for the tra�c that is input to node m,

we are forced to compute the service curve from the �rst node at which we do know the tra�c

envelope. In other words we need to compute the service curve S
1;m

for the tandem of network

elements, 1; 2; : : : ; m. This is readily computed using (6.5) as

S
1;m

(�) =

(
0 if � �

Pm
i=1D

i
n

An(� �
Pm

i=1D
i
n) if � >

Pm
i=1D

i
n.

(6.40)

Assuming that the shaper envelope satis�es the constraints (6.6) and (6.7) we can apply almost

identical arguments as found in the proof to Theorem 6.3 to obtain the bu�er requirement of

An(
Pm

i=1D
i
n) for the shaper at node m + 1. This is clearly much larger than the corresponding

bu�er requirement for the non-work conserving RCSD which is An(Dm
n ). Additionally, this has
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the disconcerting property of growing with the number of hops along the path. Thus, the work-

conserving extension to RCS discipline su�ers the same drawback as most of other work-conserving

policies, like GPS, SCFQ, namely the bu�ers required to guarantee zero loss to a connection typi-

cally increase with the number of hops along the path.

6.4 Summary

In the �rst half of this chapter we examined some aspects related to bu�er requirements and jitter

performance of RCS disciplines. By using the service curve framework of [15, 39] we were able to

obtain a a bound on the bu�er requirements at a network element to ensure that no packets are

lost due to bu�er overow. In the next chapter we consider some speci�c examples that provide

some insight into typical bu�er requirements and delay bounds. Another performance metric that

is closely related to the end-to-end delay is the end-to-end jitter that is experienced by successive

packets. In this chapter we showed how the RCS discipline limits the amount of jitter that is

experienced by a Constant Bit Rate (CBR) connection.

By the nature of its operation the RCS discipline is non-work conserving. In the second half of

this chapter we explored some modi�cation to the RCS discipline that make it work conserving.

We described a general modi�cation that can be applied to any RCS discipline, provided that its

scheduler component, by itself, is work-conserving. Finally, we described a simple implementation

of a work-conserving RCS discipline that uses the EDF scheduler. This implementation is relatively

the most simple to implement as it only involves marking a deadline on each incoming packet and

serving the packet with the smallest deadline �rst. Finally, we obtained the per-connection bu�er

requirements for this implementation as well.
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Chapter 7

End-to-End Services

In this chapter we look at the big picture which is the provision of service guarantees in the context

of an internet. The Internet today is quite ubiquitous as there are hardly any computers left

without some form of connectivity to the \net". Even though the last few years have witnessed

a rapid increase in the backbone capacity of the Internet, the growth in the number of users has

also been quite substantial. In addition, with the ever increasing popularity of the Web, today's

Internet tra�c is predominantly composed of http sessions. A typical http session lasts for a very

short amount of time { the amount of time it takes to download the contents of a Web-page. Thus

Web tra�c is intrinsically bursty in nature and it is well known that bursty tra�c does not make

the best use of the link resources. The rapidly increasing audio-visual content in Web pages is

going to further increase the amount of data transferred to load a single Web page. It is common

experience to click on a hypertext link and have to wait several minutes before the page is loaded

in the Web browser. Most often, it is not the Web-server, but rather the network that is the cause

of this delay. In other words, there simply is not enough bandwidth for all users to be satis�ed

with the service that they receive and this situation is unlikely to end soon.

The Internet is also rapidly becoming more and more commercial, and it is not hard to envision

the day when a signi�cant amount of our commerce will be conducted over the Internet. With

the banking and �nancial industries also moving towards the Internet, the need to provide secure

and guaranteed service will become imperative. Thus, it is more and more important to be able to

provide some service di�erentiation between the di�erent ows that are carried by the network.

On the other hand, some argue that most applications of the future will be adaptive in nature

and will sense the current state of the network and appropriately adjust their tra�c parameters

to obtain the desired level of service. While this type of behavior may be acceptable today, it

will become less and less e�ective as the amount of tra�c and the commercial use of the Internet

increases.
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An analogy with the highways around most of the densely populated cities of the Eastern U.S. is

probably appropriate. As roads get more and more congested around these cities the Transportation

Authorities build additional highways and charge a per-vehicle toll for their use. The tollway or

turnpike as it is typically called, provides a \better" service at an increased cost to the user. People

could simply have increased the amount of time that they allocated for their commute and stuck

to the more congested routes. However, quite to the contrary, most people prefer to take the faster

route even though they have to pay a rather high toll. Hopefully, the same will be true for the

Internet, so that when given a choice, many users will prefer to have some service di�erentiation,

rather than a one-size �ts all type of service.

There are several ways to provide service di�erentiation at the network level. One very simple

solution, which was adopted by the ATM Forum for UNI 3.1 was the notion of providing �ve

di�erent service classes [2]. However, with a few di�erent classes of service it is not easy for the

user/application to map its requirements onto one of these service classes. The user is typically

interested in end-to-end performance and does not really care or know about how packets are han-

dled at the network layer. If there are �xed service classes, the end-to-end service that is obtained

will depend not only on the service class that is chosen, but also the number of hops, propagation

delays, etc. The end-user or application cannot be expected to factor all these possibilities while

choosing a service class, since in most cases it is not even aware of the network level events taking

place. For these reasons the UNI 4.0 Signalling for ATM networks has been designed to support

the signalling of end-to-end QoS Parameters [3].

The Internet Engineering Task Force (IETF) is a kind of \standards" body for the Internet. One

of the working groups of the IETF, known as the IntServ Working Group has speci�ed several new

service de�nitions to support quality-of-service (QoS) guarantees in the Internet [42, 41, 43, 49].

Some of them are the

1. Guaranteed (G) Service,

2. Predictive Delay (PD) Service,

3. Controlled Delay (CD) Service, and

4. Controlled Load (CL) Service.

Of these the two that are close to becoming a proposed standard are the G Service and the CL

service. We focus on the G service speci�cation, since this service is meant to provide deterministic

end-to-end delay guarantees. In particular, we would like to examine how the RCS discipline can

be e�ectively used to support the G service, without having to change any of the signalling and

setup mechanisms that are being standardized today.
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7.1 Guaranteed Services

First, we briey outline the workings of the G service speci�cation [42]. In order to better motivate

the speci�cations in [42], as well as provide a better understanding of the end-to-end signalling that

is involved, we use the Resource reSerVation Protocol (RSVP) as an example. RSVP is a resource

reservation setup protocol designed for an internet that supports integrated services [9]. A primary

design goal for RSVP was to support multicast with receivers being able to add themselves to a

multicast session at will. In keeping with this philosophy, RSVP is a receiver-initiated protocol, with

the resource reservation being made by the receivers. For simplicity, in this thesis, we consider an

RSVP session that has a single sender1 with multiple receivers in its distribution list. Furthermore,

we only describe the reservation aspects of RSVP, and do not venture into describing the \�ltering"

of packets from di�erent senders, as that will take us too far a�eld.

We use the term ow to refer to the stream of data tra�c that is transported from a sender to

one or more receivers. Path messages are sent from the sender to all the receivers in the multicast

distribution list along the default routing path of the internet. These messages contain information

about the ow, i.e., a owspec that describes the ow's characteristics in terms of leaky bucket

parameters [47]. In addition, they contain an adspec, that can be modi�ed by the di�erent network

elements (NE) traversed by the Path message. A receiver who decides to join an RSVP session needs

to send a Resv message that speci�es the amount of resources that it wishes to reserve for itself.

The receiver uses the information in the owspec and the adspec previously received to compute

the level of resources that it needs to reserve. The Resv message sent by the receiver retraces the

path of the Path message (details are in [9]) and establishes the required reservation.

The role of the G service speci�cation is to allow the receiver to make an intelligent choice about

the level of resources it needs to reserve in order to obtain an upper bound on the end-to-end packet

delay. The amount of resources to be reserved are a function of:

� User Characteristics : This has to do with the owspec of the ow and the end-to-end

delay and/or throughput requirement of the receiver.

� Network Characteristics : These include factors like the number of hops on the path, the

scheduling policy employed at each hop, the end-to-end latency that is present, etc.

7.1.1 User and Network Characteristics

The User Characteristics consist of the owspec which speci�es the tra�c envelope of the input,

and an RSpec which indicates the level of resources that have to be reserved for this ow. For

1RSVP supports multiple senders and multiple receivers, as long as they are supported by the underlying internet.
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now, it su�ces to say that the RSpec is a rate R, and a slack term S { the full meaning of these

terms will become clear when we describe the Network Characteristics. The owspec speci�es

the characteristics of the ow in terms of leaky bucket parameters. Speci�cally it consists of the

following parameters (�; �; c; L), where � is the token bucket size, � is the token accumulation rate,

c is the maximum peak rate of the ow and L is the maximum packet size. In terms of the tra�c

envelope characterization that is used in this thesis, the owspec parameters basically specify the

tra�c envelope for the ow, which is given by

I(�) = maxfL+ c�; � + ��g; � � 0:

The Network Characteristics are signalled to the receiver in the adspec element which, in the case

of RSVP, is carried in the Path messages that traverse the NEs along the path of the ow. At any

given time there can be numerous Path messages passing through an NE, most of which do not

result in any resource reservation Thus, it is necessary that the network characteristics signalled

in the adspec element be independent of the other Path messages that may be passing through the

NE. Also, it is possible that a large number of Resv messages from di�erent ows reach a particular

NE in a rather short span of time. So, basing the Network Characteristics on the current load

at the NE can be equally meaningless. The solution adopted by the IntServ Working Group of

the IETF is to de�ne a characterization of the NE that is independent of the other ows that are

passing through it, and is described next.

A Network element exports parameters C and E2, that qualify the level of service that it can

provide to ows that traverse it. These exported parameters are carried by the adspec element and

are interpreted in the context of the reserved rate R that a potential receiver might reserve for a

ow. Typically, C and E capture the deviation of the service provided by the NE, from a uid

server that is operating at the rate R. More generally, a network element that advertises C and E

values, guarantees each ow that has a reserved rate of R a service curve S given by

S(�) =

��
� �

C

R
�E

�
R

�+
= [(� �E)R� C)]+ ; � � 0: (7.1)

It should be pointed out that the C and E parameters exported by the network element only account

for the queueing and transmission delays, and do not account for the propagation delay on the link.

If the propagation delay is known, it can be signalled separately, and is not a mandatory requirement

of the service speci�cation. The above signalling scheme is called a One Pass With Advertisement

(OPWA) scheme since the receiver chooses the level of service based on the advertised C and E

values that it has received [40].

2Actually this is referred to as the D parameter in the G Services speci�cation. However, we use the term E in

this thesis to avoid confusion with our notation for delay guarantees
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Consider ow n that has a owspec of (�n; �n; cn; Ln). In other words the ow has a tra�c envelope

of In given by

In = maxfLn + cn�; �n + �n�g; � � 0:

Without loss of generality assume that the nodes traversed by this ow are numbered 1; : : : ;M and

let Cm
n and Em

n be respectively the parameters C and E advertised by node m; m = 1; : : : ;M . Now

assume that the receiver makes a reservation for rate Rn for this ow. We can compute bounds on

the delay and bu�er requirements for ow n.

7.1.2 Bounds on the Delay and Bu�er Requirements

Let S
m
n denote the service curve guaranteed to ow n by NE m. From Theorem 6.2 it follows that

a service curve, S
1;m
n , can be calculated for the tandem of NEs 1; 2; : : : ; m, m = 1; : : : ;M as

S
1;m
n = S1n 
 S

2
n 
 � � � 
 S

m
n :

Using (7.1) we obtain,

S
1;m
n (�) =

240@� � mX
j=1

Ej
n

1ARn �
mX
j=1

Cj
n

35+ ; � � 0: (7.2)

The service curve S
1;m
n can then be used to compute an upper bound on the delay incurred by a

packet of ow n from the time it enters the network until the time it leaves NE m. In addition,

S
1;m
n can be used to calculate the bu�er requirements at NE m.

Applying Theorem 6.1 we obtain a closed form expression for an upper bound on the delay incurred

by a packet of ow n, until and including the delay at NE m, as

D
1;m
n =

8>>>>><>>>>>:

(�n � Ln)

Rn

(cn � Rn)

(cn � �n)
+
Ln
Rn

mX
j=1

"
Cj
n

Rn

+Ej
n

#
if cn > Rn,

Ln
Rn

+
mX
j=1

"
Cj
n

Rn

+ Ej
n

#
if cn � Rn,

(7.3)

which is the length of the segment IF in Figure 7.1.

In a similar manner, the bu�er requirement for the ow n at the NE m (GH in Figure 7.1), is given

by

Bm
n = Ln +

(cn �Xn)

(cn � �n)
(�n � Ln) +

mX
j=1

"
Cj
n

Rn
+Ej

n

#
Xn; (7.4)
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Figure 7.1: Delay and Bu�er calculations for a (�n; �n; cn; Ln) ow at NE m.

where,

Xn =

8>>>>>><>>>>>>:

�n if
(�n � Ln)

(cn � �n)
�

mX
j=1

"
Cj
n

R
+Ej

n

#

Rn if
(�n � Ln)

(cn � �n)
>

mX
j=1

"
Cj
n

Rn
+Ej

n

#
and cn > Rn

cn otherwise.

(7.5)

The delay bounds in (7.3) are an intrinsic part of the G Service speci�cation. The assumption here

is that the user (receiver) has some idea of the end-to-end delay that it desires. The receiver then

chooses a level of service, namely a rate Rn, so that the end-to-end delay bound obtained from

(7.3) is what it desires. It is conceivable that the receiver requires a delay guarantee that is so large

that even a choice of Rn = �n provides a smaller delay guarantee than it requires. The receiver

cannot really choose a rate Rn that is less than the average rate �n since it might lead to a build-up

of packets at some node. The G Service speci�cation was modi�ed to allow the receiver to signal

a slack term that can be used by the upstream nodes to reduce their resource allocations for this

ow. This slack term can be quite e�ectively used by schedulers which are delay-based like the

EDF scheduler, as opposed to rate-based schedulers like GPS. We do not wish to digress into the

use of this slack term since it is not directly related to the material in this thesis. For now, su�ce it

to say that certain rules must be observed when propagating the slack term upstream particularly
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at split points (of multicast ows) [42].

7.2 RCS Discipline

Our �rst task is to examine whether the RCS discipline can be used e�ciently in the framework

of [42]. If so, we need to determine the C and E parameters that can be advertised by the RCS

discipline so that the end-to-end delay guarantees as speci�ed in (7.3) can be met.

7.2.1 Parameters exported by the RCS discipline

As mentioned in Section 7.1 the service curve that is guaranteed by a NE is speci�ed in terms of

the parameters C and E. An important observation about this service curve is that it depends on

the rate Rn reserved by the connection n. The higher the reserved rate Rn, the larger the service

curve that is guaranteed to connection n. In contrast, the service curve that is guaranteed by the

RCS discipline depends on the deadline that is assigned to the ow as given by (6.12). Therefore we

need to map the reserved rate Rn to the deadline that needs to be assigned by the EDF scheduler.

It turns out that the mapping that was used in Section 5.1 can be used with a minor modi�cation

and that it satis�es the end-to-end delay guarantee of (7.3) as well.

If the following steps are observed:

1. The tra�c envelope for the reshaper for this ow is set to

An(�) = minf�n + �n�; Ln +minfcn; Rng�g; � � 0: (7.6)

2. A deadline of Ln=Rn + bLm=r is used at the EDF scheduler for this ow, and

3. the terms C and E exported by NE m are given by:

Cm
n = Ln;

Em
n = bLm=rm; (7.7)

where bLm denotes the Maximum Transmission Unit (MTU) of the link at node m that ow m is

routed on to and rm denotes the link speed. From the de�nition of the EDF scheduler, it is clear

that the maximum delay encountered by a packet from the time it is released from the reshaper,

until it is completely transmitted out on the link, is no more than Ln=Rn + Lm=rm units of time.

Note that (7.7) is obtained by comparing the service curve guaranteed by the RCS discipline and

the speci�cation of the terms C and E in the G service speci�cation.
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Using (4.6) it can be checked that as long as the sum of the reserved rates (R) of all the ows

passing through this NE are less than the link speed, rm, the deadline assignment in step 2 always

results in a feasible schedule.

Applying Corollary 3.2 we obtain an end-to-end delay bound Dn that can be written as

Dn =

8>>>>><>>>>>:
(�n � Ln)

Rn

(cn �Rn)

(cn � �n)
+

MX
m=1

"
Ln
Rn

+
bLm
rm

#
if cn > Rn,

MX
m=1

"
Ln
Rn

+
bLm
rm

#
if cn � Rn,

(7.8)

where bLm, and rm, are respectively, the MTU and speed of the link that is traversed by ow n at

node m, m = 1; : : : ;M . It can be readily veri�ed that (7.8) results in a slightly tighter bound on

the end-to-end delay than what is obtained by substituting (7.7) in (7.3).

In the next example, we illustrate these calculations using a reasonably representative set of ows.

Also we demonstrate how with the G service speci�cation regardless of the scheduling policy em-

ployed, a large amount of bandwidth may not be utilized. Subsequently, we outline how with an

RCS discipline this excess bandwidth can be utilized to support another type of service called the

Committed Rate (CR) service [5]. Finally, we show how with a simple extension, the WFQ policy

can also e�ciently support the CR service.

7.2.2 Example

As an example, consider an OC-3 (155 Mb/s) output link at an NE. For simplicity, we assume that

the G service tra�c at this link is comprised of only the 3 types of ows that are listed in Table 7.1.

For voice, we assume a standard 64Kb/s constant bit rate ow, while for Stored Video, we use

typical values from MPEG traces of a movie like Star Wars, that roughly correspond to 3 Mb/s

average rate and a burst size of around 100 Kbytes [34]. The Video Conference ow we consider,

has an average rate of about 1.5 Mb/s and a maximum burst size of 10 Kbytes. We assume that

the peak rate for both types of Video ows is only limited by the speed of the media to which the

source is attached (say 10-base T Ethernet), i.e., 10Mb/s. The maximum packet size for voice is

limited to 100 byte packets, while for both the Video ows, we limit the packet size to 1500 bytes

(Ethernet MTU). With each of the ows, there is an associated end-to-end delay requirement, that

needs to be translated into a reservation rate R. In order to make this translation, it is necessary

to make some assumptions about the propagation delay and the number of hops traversed by each

of the ows. For simplicity, we make identical assumptions for each of the ows, namely assume

that each of the ows traverses 5 hops, with a total propagation delay of 20ms. We also assume

that the MTU on all links traversed by the ows is 1500 bytes. The owspecs for each of the ows

are listed in Table 7.1.
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Subtracting the propagation delay from the end-to-end delay requirement, for each of the ows,

we obtain the allowable end-to-end queueing delays. Substituting the end-to-end queueing delay

in (7.8), we can solve for the rate, R, that needs to be reserved for each ow. Table 7.2 lists the

ows' delay requirements along with the corresponding rate, R, that needs to be reserved for each

of them.

Tra�c Type L kB � kB � Mb/s c Mb/s

64 Kb/s Voice 0.1 0.1 0.064 0.064

Video Conference 1.5 10 0.5 10

Stored Video 1.5 100 3 10

Table 7.1: Flow characteristics for 3 types of ows.

Tra�c Type e2e Delay (ms) R (Mb/s)

64 Kb/s Voice 50 0.162

Video Conference 75 2.32

Stored Video 100 6.23

Table 7.2: End-to-end delay requirements and the rate reserved for each ow

If the entire 155 Mb/s of bandwidth could be used for G service tra�c and the NEs were using the

RCS discipline with EDF as the scheduler, then from (4.6) it can be veri�ed that the following mix

of tra�c is feasible: 200 Voice ows, 26 Video Conference ows, 10 Stored Video ows.

Figure 7.2 graphically depicts the schedulability check of (4.6) at NE m for the tra�c mix listed

above. The straight line passing through the origin has a slope of 155 Mb/s, corresponding to the

speed of the OC-3 link. The other curve is the sum of all the tra�c envelopes, i.e.,X
n2ows

An(� �Dm
n );

where the scheduler deadline, Dm
n , is given by the Ln=Rn + bLm=rm value corresponding to ow

n. It is clear from Figure 7.2, that quite a bit of link bandwidth remains available for ows that

do not have too stringent delay requirements. In particular, observe that the sum of the reserved

rate for the above sample tra�c mix is around 155 Mb/s which is the link capacity. However,

if you consider the average throughput, it is only 55.8 Mb/s, which means that only a third of

the link is utilized. This poor utilization is not peculiar to the type of tra�c mix that we have

chosen. On the contrary, any ow that has a reserved rate R signi�cantly larger than its average
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Figure 7.2: Schedulability check for EDF for tra�c mix in Table 7.1.

rate, �, contributes to the low utilization of the link. For the ows that we have considered in our

example, the reserved rate R varies with the maximum packet size that is assumed for each ow.

Table 7.3 lists the rate R that needs to be reserved for each ow, assuming di�erent maximum

packet sizes, with everything else remaining the same. However, note that we assume that there

is no fragmentation, i.e., the MTU on all the links is large enough to accommodate the maximum

packet size of all the ows. This is unlikely to be true in practice for large packet sizes, e.g., 50kB.

In such cases, fragmentation would take place so that the maximum packet size to consider would

then be the MTU on the path of the ow.

Going back to the example, it is possible to add a ow with a deadline of 111 ms, and a throughput

as high as 99 Mb/s, without a�ecting the maximum delays seen by the other ows that have been

considered so far. It is this available capacity that we feel should be utilized by a new service, that

would provide the same rate guarantees as the G service, but with a much looser delay guarantee.

We refer to this as the Commmitted Rate (CR) service, and in the next section, describe it in some

detail.
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Max. Pkt Reservation Rate R (Mb/s)

Size 64 Kb/s Video Stored

L (kB) Voice Conf. Video

0.1 0.16 1.40 5.91

0.5 0.81 1.66 6.00

1.0 1.62 1.99 6.11

1.5 2.43 2.32 6.23

5.0 8.35 4.87 7.07

10.0 17.50 9.15 8.36

25.0 50.96 24.71 16.31

50.0 140.37 57.01 35.77

Table 7.3: Variation of the Reserved Rate with the packet size

7.3 Committed Rate service

In this section, we describe a service that provides rate guarantees to ows, but unlike the G service,

does not provide explicit delay guarantees. More precisely, a user making a Committed rate (CR)

reservation for x Mb/s will be able to obtain a throughput of x Mb/s when measured over a fairly

large period of time. This di�ers from a best e�ort type of service in that the user is guaranteed a

certain amount of bandwidth that it will receive. No explicit guarantee is made as to the packet

loss, but the bu�ers in the NEs should be engineered so that the packet loss can be made to be

fairly small.

There are a number of applications that would bene�t from a CR service. For example, an http

session may be satis�ed with such a kind of service guarantee, where the requested bandwidth

depends on the size of the �le that is being transmitted. For a large �le, say a compressed movie clip,

it would be preferable to have a much larger \bandwidth pipe" so that the entire �le can be received

in a few seconds. On the other hand it would be wasteful to have such a large pipe for a small �le

that contained only ascii text. With the G service, bandwidth and delay guarantees are coupled,

and therefore it is not appropriate for applications that require only bandwidth guarantees. This

is because such a coupling is typically more expensive in terms of resources than if only bandwidth

guarantees are provided. In general, the CR service is suitable for most applications that like to

have bandwidth guarantees, but for whom the G service would be an overkill.

At this point, it is worthwhile to contrast the CR service with the Controlled Load (CL) service

proposed in [49]. The CL Service, requires the user to provide a owspec that may be used for
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Figure 7.3: Schedulability check for EDF for tra�c mix in Table 7.1 with the additional CR service

ows.

admission control, but once a ow is accepted, it expects to see an \unloaded" network [49]. In

other words, each ow will experience fairly small delays (and losses) as long as it conforms to its

owspec. The CR service on the other hand does not promise small end-to-end delays. Instead it

only guarantees a certain throughput over some reasonable period of time. As a result, the delays

experienced by a CR ow can temporarily be fairly large. This is because in order to use most

of the bandwidth left available by the G service but without impacting the delay guarantees of

the G service, it is necessary that the CR service be willing to tolerate occasional large delays.

However, because of the worst case nature of the G service guarantees, instances where many G

service packets are present and need to be sent out ahead of the CR service packets, should be

relatively rare.

While we have demonstrated the availability of link bandwidth to support the CR service, it is not

clear a priori whether this can be used to provide bandwidth guarantees over a reasonable period

of time. In the next sections we investigate ways in which this service can be supported by both

the RCS as well as the WFQ disciplines.
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7.3.1 CR service with the RCS discipline

Consider Figure 7.3, that duplicates the schedulability check of Figure 7.2 for the G service ows at

NE m. In addition, Figure 7.3 depicts a potential CR ow that can be added to the mix of G ows,

assuming it is given a local deadline (at the EDF scheduler) of Dm
CR and has a tra�c envelope,

ACR := �CR + �CR�; � � 0. This ow can be considered as representing the aggregate of all the

CR service ows. It is clear from Figure 7.3 that as long as �CR + 55:8 � 155, we can �nd some

Dm
CR � 0 so that no deadlines of the G service ows will be violated at the EDF scheduler. In

general, the parameters Dm
CR, �CR, and �CR must be carefully determined to ensure that the CR

service has a minimal impact on the G service ows carried by the NE.

The �rst step is to determine the local deadline Dm
CR that can be assigned to the CR service ows,

so that they have absolutely no impact on the delay guarantees for G service ows at this NE.

Consider a set of G service ows, numbered 1; : : : ; N , that are multiplexed onto the output link

under consideration. Let a ow n, have a owspec of (�n; �n; cn; Ln), and a reserved rate of Rn,

n = 1; : : : ; N . From (7.6), we know that the envelope for ow n at this NE is given by

An(�) = minfLn + �n�; �n +Rn�g; � � 0; n = 1; : : : ; N;

where �n := minfcn; Rng. The deadline associated with ow n at the EDF scheduler at node m

is determined from Section 7.2.1 as Ln=Rn + bLm=rm =: Dm
n , where r

m is the speed of the link.

We assume that the deadlines for all the N Guaranteed Services ows are feasible at the EDF

scheduler, which by (4.6) implies that the following constraint is satis�ed:

NX
n=1

min
�
Ln + �n(� �Dm

n )
+; �n + �n(� �Dm

n )
+	+ bLm � rm�; � � 0; (7.9)

where (x)+ � maxfx; 0g.

Now, assume that a CR service ow with an envelope of ACR, and a local scheduler deadline of

Dm
CR, is multiplexed with the G service ows de�ned above. In order for a feasible schedule to exist,

the following schedulability check has to be veri�ed:

NX
n=1

min
�
Ln + �n(� �Dm

n )
+; �n + �n(� �Dm

n )
+	

+ �CR + �CR(� �Dm
CR)

+ + bLm � rm�; � � 0; (7.10)

Letting � !1 in (7.10), we get the following condition on �CR:

�CR � rm �
NX
n=1

�n: (7.11)
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Given the total burst size, �CR, of the aggregate CR service ows, in order for a feasible schedule

to exist, the local deadline assigned to the CR service ows must satisfy,

Dm
CR � min

t�0

(
min
0���t

(
� :

NX
n=1

An(t�Dm
n ) + ACR(t� �) + bLm � rmt

))

Assuming �CR = 100 Kbytes, and �CR = 99 Mb/s, for the example considered in Section 7.2, we

must have Dm
CR � 111 msec. Figure 7.3 illustrates how the addition of this CR service ow with

a deadline of around 111 msec to the schedulability check in Figure 7.2, still results in a feasible

schedule.

From the previous discussion, it is clear that the values of Dm
CR and �CR and �CR are local decisions

that have to be made at each NE, depending on the G service ows that it typically carries. In

particular, for the example considered in Section 7.2.2, we computed the appropriate values for

these parameters. So far, we have described the CR service and explained how it can be e�ciently

supported by the RCS discipline. The question remains, as to whether this service, can be supported

by other service disciplines. In the next section, we demonstrate that with a minor extension, the

many variants of GPS, which sometimes are generically called Weighted Fair Queueing (WFQ)

disciplines, can also be made to support the CR service.

7.3.2 CR service with the WFQ service discipline

The CR service can also be o�ered if the WFQ scheduling discipline is used at the NE. One way in

which it can be o�ered, is to have two priorities. One for the G service ows, and the other for the

CR service ows, with the CR ows being served only if there are no packets from the G service,

that are waiting to be served. Figure 7.4, gives a possible representation of the scheduler, with

HIGH denoting the higher priority for the G service ows, and LOW denoting the lower priority

queues for the CR service ows. When a packet from any of the G Service ows is present, the

CR service ows (indicated by the shaded queues in Figure 7.4) are completely ignored in the

calculation of the weights for the WFQ discipline. The CR ows are served only when there are

absolutely no packets in the G service queues, at which time, the WFQ discipline only uses the

weights that are in the non-empty CR service ows to schedule packet transmissions. For purposes

of illustration, each ow is depicted as having a queue dedicated to it, but the bu�ers can be shared

among the di�erent ows. However, it is advisable to separate the bu�ers used for the CR and the

G service, so as to ensure that the CR service has a minimal impact on the G service.

Considering a single link m at a network element, we assume that there are N , G Service ows and

N 0, CR service ows multiplexed onto an output link operating at the rate rm. Let R1; R2; : : :RN ,

denote the rates reserved for the G service ows and �1; �2; : : :�N 0, denote the rates committed to
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the CR service ows. The schedulability check for the G service is simply

NX
n=1

Rn � rm: (7.12)

For the CR service it is necessary to check that there is su�cient capacity for both the ows, namely

NX
n=1

�n +
N 0X
n=1

�n � rm: (7.13)

Since the WFQ implementation for the CR service ows comes into play only when there are no G

service packets, it is clear that there is almost no impact on the G service ows that are currently

being carried by the NE. At most a G service packet has to endure an extra packet delay while

the server is o� serving the CR service ows. But this extra packet delay is already accounted for

in the delay bounds that are known for WFQ and so there is really no di�erence in terms of the

end-to-end delay guarantee [36, 26].

On the other hand, the worst case delay encountered by the CR service ows are a�ected by the G

service tra�c, and this can be analyzed using the service curve framework [15]. Clearly, the service

curves for each of the CR service ows, strongly depends on the tra�c characteristics of the G

service ows. Let us assume that the G service ows can be characterized by the envelopes An; n =
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1; : : : ; N . Note that, these envelopes can in general, be di�erent from the ow characteristics at

the network ingress, since they have to account for the possible increase in burstiness caused by all

the NEs on the path. If the ows are being reshaped at each hop, then they can be characterized

by the envelopes of the reshapers themselves.

Given the tra�c envelopes of the G service ows, we know that if the CR service queues are

back-logged in the interval [t; t+ � ], then they collectively receive a service of at least

S
m�

CR(�) =

"
r� �

NX
n=1

An(�)

#+
; � � 0:

Assuming that the aggregate CR service tra�c is characterized by the envelope ACR, then the

delay encountered by any CR service packet is upper bounded by

Dm�

CR = max
t�0

�
min
��0

n
� : ACR(t) � S

m�

CR(t+ �)
o�

(7.14)

Equation (7.14) is simply the horizontal distance between the tra�c envelope, ACR, and the service

curve S
m�

CR (see Figure 7.1 for a graphical illustration of the delay computation). For the example

considered in Section 7.2, we can readily compute the upper bound on the delay experienced by the

CR ows to be Dm�

CR = 111 msec, as before, and this is illustrated in Figure 7.5. The value of Dm�

CR

(or Dm
CR for the RCS discipline), gives an indication of the bu�er requirements that are needed to

ensure that packets from the CR service ows are not lost. Regardless of which scheduling discipline

is used, i.e., RCS or WFQ, it is necessary to have su�cient bu�ers to ensure fairly low packet loss

for the CR service ows. Since the value of Dm�

CR (or Dm
CR) can be quite large, it may no longer

be possible to engineer the bu�er sizes based on a worst case analysis of the ows. In light of this

the CR service should not be used by applications that require very stringent loss guarantees to be

provided by the network. In general, if tight delays are not a requirement, it is much more e�cient

to have an end-to-end recovery mechanism for the lost packets, a good example being TCP/IP.

7.4 Summary

In this chapter, we examined how delay guarantees can be provided to the end-user in the context of

the Internet. The delay requirements of the user have to somehow be translated at the network level

so that individual network elements can reserve su�cient resources to provide a satisfactory level

of service to the end-user. We considered the Guaranteed Services speci�cation[49], which is soon

to become a proposed standard for the Internet and demonstrated how an RCS discipline enables

the network element to e�ciently support this service. In addition, through the help of an example

we demonstrated how the Guaranteed Services speci�cation only allows a limited utilization of the

link. We proposed that this unutilized bandwidth be used to support another type of service called
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Figure 7.5: Illustration of the computation of Dm�

CR for the WFQ discipline

the Committed Rate service[22]. We outline how the Committed Rate Service can be be provided

by both the RCS disciplines as well as the GPS-based service disciplines.
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Chapter 8

Conclusion and Future Work

One of the primary goals of this thesis was to establish a framework in which the network can

e�ciently provide end-to-end delay guarantees to individual connections. Towards this end we

established that Rate Controlled Service (RCS) disciplines o�er a powerful solution. Speci�cally,

we established that with the right choice of scheduler and shaper parameters, the RCS discipline

provides better end-to-end delay guarantees than any other scheduling discipline that is known

today.

An RCS discipline has two main components which are the per-connection tra�c shapers and a

link scheduler. We examined each of these with respect to their impact on the end-to-end delay

guarantees. Intuitively, it might seem that the per-hop tra�c shapers add to the end-to-end delay

guarantees that can be obtained by summing up the scheduler delay bounds along the path of the

connection. However, by deriving some general properties of tra�c shapers we showed that if the

connection encountered the same tra�c shapers at all nodes, then it is only the �rst one that adds

to the end-to-end delay bound. Furthermore, we established that for the same connection it does

not pay to have di�erent tra�c shapers at each of the nodes.

A Tra�c Shaper is characterized by a shaper envelope. Given the shaper envelope as well as an

envelope on the input tra�c we obtained a bound on the delay experienced in the shaper. In

addition we tackled the inverse problem of �nding the \minimal" shaper given a certain maximum

delay that could be tolerated by the connection.

We identi�ed the Earliest Deadline First (EDF) scheduler as being the scheduler of choice for the

RCS discipline. For an RCS discipline employed an EDF scheduler, we found that if there are a

su�cient number of hops along the path of a connection, it is advantageous to smooth the tra�c

to its average rate at the �rst shaper itself. We also derived shaper envelopes that can be used to

provide better end-to-end delay guarantees compared to GPS-based service disciplines which, until

now, provided the best known end-to-end delay guarantees.
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The delay guarantees that we have computed assume su�cient bu�ering in the network to hold all

the packets that are delayed. So, in addition to providing a delay guarantee, the network element

has to ensure that it has su�cient bu�ers to accommodate the ow. On a per-connection basis,

we computed the bu�ers required at each network element to ensure that packets are not dropped.

Also, we demonstrated that for a constant bit rate stream the total jitter that could be introduced

by the RCS disciplines was bounded above by the end-to-end delay guarantee.

RCS disciplines are basically non-work-conserving. We outlined a modi�cation to the RCS discipline

that makes it work conserving without sacri�cing the end-to-end delay guarantees that can be

provided. Additionally, if the link scheduler uses an EDF policy we developed a relatively simple

service discipline that also provides the same end-to-end delay guarantees. We also analyzed the

bu�er requirements for each of these disciplines, which, as expected, were found to be larger than

those required for RCS disciplines.

We concluded this thesis by examining how RCS disciplines can be used in the Internet, which

is by far the most ubiquitous network today. We observed that the RCS disciplines can be used

to support the Guaranteed (G) services speci�cation which is currently a proposed standard for

the Internet. We determined the parameters that need to be exported by a network element that

employs the RCS discipline. By considering a typical example we observed that if the network only

supports the G services ows, its links are likely to be signi�cantly underutilized. We proposed

a Committed Rate (CR) service that utilizes the bandwidth left over by the G service ows. We

demonstrated how the CR service could be supported by both RCS and WFQ disciplines, although

RCS disciplines were found to o�er the bene�t of an implementation synergetic with the support

for G service.

8.1 Future Work

In this thesis we developed a framework in which e�cient end-to-end delay guarantees can be

provided. However, several applications may be satis�ed with an end-to-end delay quantile, as

opposed to �rm delay guarantees. A useful continuation of this work would be to extend the

framework developed here to provide statistical delay guarantees on a per-connection basis.

One of the basic assumptions in this thesis was the decoupling between routing and Quality of

Service (QoS) support. This assumption is also made in the speci�cation for Integrated Services

support for the Internet. Ideally, we would like the best possible route to be chosen given the QoS

required by the connection. Within the framework developed here, it would be useful to identify

the parameters that the RCS discipline would need to export to the routing layer so that QoS can

be taken into account during the route selection process.
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In this thesis we examined the tradeo� between the shaper envelopes and the end-to-end delay

guarantees for some speci�c types of tra�c envelopes. It would be useful to know what the optimal

shaper envelopes are so that the best possible delay bounds can be guaranteed for a given set of

connections and paths.

With the rapid escalation in the speed of links we are already at the stage where switch technology

can no longer keep up. If switches are not signi�cantly faster than the input links one cannot a�ord

to only have queueing at the output of the switch. With input queueing we need to consider the

well known head-of-the-line blocking problem. One possible solution to this problem is to maintain

several queues at the switch input, one corresponding to each switch output. However, we then need

a switch scheduler to arbitrate between the several queues at each of the inputs. We are currently

investigating scheduling policies that can provide delay and throughput guarantees through the

switch fabric in cases where there is both input and output queueing.
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