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Abstract

A protocol mismatch occurs when heterogeneous networks try to communicate
with each other. Such mismatches are inevitable due to the proliferation of a multi-
tude of networking architectures, hardware, and software on one hand, and the need
for global connectivity on the other hand. In order to circumvent this problem the
solution of protocol conversion has been proposed. In this paper we present a system-
atic approach to protocol conversion using the theory of supervisory control of discrete
event systems, which was partially first addressed by Inan. We study the problem of
designing a converter for a given mismatched pair of protocols, using their specifica-
tions, and the specifications for the channel and the user services. We introduce the
notion of converter languages and use it to obtain a necessary and sufficient condition
for the existence of protocol converter and present an effective algorithm for computing
it whenever it exists.
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1 Introduction

There is a growing need for global communication over networks of computers. However,
the heterogeneity of existing networks does not allow direct and consistent communication
and results in mismatch of protocols. Such mismatches are inevitable due to the proliferation
of differing hardware, software and networking standards, and the desired urgency towards
global connectivity. While a possible solution to such differing standards or protocol mis-
matches would be to standardize networking protocols, such a move may not be practical,
and in any case will take years to be agreed upon worldwide, resulting in connectivity prob-
lems for the present. As a result, the alternative method of protocol conversion has been
proposed. These alternative measures of developing protocol converters will be the only form
of solution available until such time when everybody adheres to a global standard.

Green [21] argues that protocol conversion is a necessity that cannot be ignored citing
reasons that it is a little too late to standardize architectures. An established base of DECnet,
ARPAnet, IBM SNA, TCP/IP and X.25 users will find it difficult to switch to an open and
global standard simply because of the sheer effort involved, as well as rendering obsolete
many existing hardware and software solutions by numerous vendors. Different protocols
and architectures also tend to serve different communities of users, with the need to maintain
contact with the external world still being of great importance.

In Figure 1 protocol P consists of the sending end protocol F, and the receiving end
protocol P;. Similarly, the protocol @) is composed of ¢y and ;. A protocol mismatch
occurs when the sending end protocol F, of P tries to communicate with the receiving end
protocol @, of ), and similarly also when @), tries to communicate with P;.
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Figure 1: Protocol configuration

A practical solution to such a protocol mismatch is to interpose a translator or a converter
between the two protocols so that it traps all messages being sent from one system to the
other and translates the messages of the sender system in such a manner that the receiver
system can understand them without loss in consistency. This is depicted in Figure 2, where
P, denotes one of the protocols, ()1 the other of the mismatched protocols, and C' denotes
the converter. The resulting protocol conversion system has to adhere to the user service
specification, which defines the properties of the protocol system as needed by the users.



! !

o) C Qq

Figure 2: Interposing a protocol converter

Tanenbaum [28] provides a classification for such converters depending on the layer of the
protocol stack at which they are used. Repeaters are used at the physical layer; bridges are
used at the link layer; routers or gateways are used at the network layer; and finally protocol
converters are used at the transport layer.

The events that occur at the user interface are called the external events; the remaining
events are called the internal events. Let G denote the composition of F) and )1, and K
denote the user service specification. Then G is a system that evolves over external as well as
internal events, whereas K is a formal language defined only over the external events. The
composition of G with a converter C, denoted G|C, implements the service specification
K if certain safety and progress properties hold. Safety captures the notion that nothing
illegal should happen, i.e., the event traces of G||C should correspond to those allowed by
K. Progress captures the notion that the composition should not block the occurrence of an
external event whenever it is feasible in the specification K, i.e., whenever the specification
does not “block” it.

The role of the converter C' is to restrict the behavior of G so that G||C' implements K.
However, it must do so under its limited control and observation capabilities. In other words,
certain events are controllable—their enablement/disablement can be controlled by C (the
remaining are uncontrollable); similarly, certain events are observable—their occurrence can
be sensed by C' (the remaining are unobservable). Thus the design of protocol converters
can be studied in the framework of supervisory control of discrete event systems pioneered
by Ramadge and Wonham [23] and subsequently extended by other researchers (refer to the
survey articles [24, 29], and the book [12]). This is the motivation for the work presented
here.

The problem of protocol conversion has been studied by some researchers and the paper
by Calvert and Lam [2] provides a nice survey. One of the first approaches to protocol
conversion is the bottom-up approach taken by Okumura [20] and by Lam [17]. The bottom-
up approaches are heuristic in nature and may not be able to determine a converter even
when one exists. The top-down approach of Calvert and Lam [2] is algorithmic in nature.
However, the converter they design is a state machine that evolves over the set of internal
events, which implies that the set of internal events is treated as the set of controllable as
well as the set of observable events for the converter. This is unrealistic, since the converter
can observe only those events that occur at its interface, i.e., its “input” and “output”
events, and it can control only its output events. So in general these event sets are different.
This is further illustrated in the example below. The top-down approach or the algorithmic



approach is also known as the quotient approach since C' can be viewed as the “quotient of
G and K.

The protocol conversion problem was first treated by Inan in the supervisory control
framework as an important application example in [8], in further depth in [9], and the the-
oretical foundation on which this application is based was given in [10]. However, these
work of Inan only address the safety constraint of the protocol conversion problem which
requires that the projected language of the supervised system should equal the given spec-
ification language. The additional progress constraint, which requires that the supervised
system never block an external event that is not blocked by the specification itself, was also
considered as part of the protocol conversion problem in the work of Calvert-Lam [2]. We
treat both the safety and progress constraints in the work presented here. The existence of
converter requires controllability and observability conditions together with extra safety and
progress conditions implying that the work presented here also requires the generalization of
the conventional supervisory control. Rudie-Wonham [25] have also applied the supervisory
control techniques for deriving a missing portion (either sender or receiver portion) of the
protocol assuming some knowledge of it. This problem is quite similar to that of protocol
conversion but again considers safety specification only.

In a recent work, Kumar-Fabian [11] show that the progress constraint may be expressed
using a type of nonblocking property with respect to a family of marked languages—one for
each external event. This nonblocking property differs from the conventional one used in
supervisory control [3] in two ways: first, nonblocking with respect to a family of markings
(as opposed to a single marking) is needed, and second, each type of marking depends, in
a very specific manner, on the entire closed-loop behavior (as opposed to being just those
traces of the closed-loop behavior that are marked in the open-loop behavior).

In this paper we derive a converter using the formal techniques from supervisory control of
discrete event systems. The supervisory control framework provides necessary and sufficient
conditions for the existence of supervisors (in the present setting converters) for a given plant
(in the present setting composition of the two mismatched protocols) so that the closed-loop
system (in the present setting composition of converter and the mismatched protocols) meets
a desired specification (in the present setting the user service specification). However, since
the user service specification is a partial specification, i.e., it is defined only on the subset
consisting of the external events (as opposed to the entire event set which is customary in
the supervisory control framework), the supervisory control theory results cannot be applied
directly, and appropriate extensions have been obtained in the paper.

We introduce the notion of converter languages and show that the existence of a converter
is equivalent to the existence of a converter language contained in the language of G. The
set of converter languages is closed with respect to union. So a supremal converter language
exists, and we provide an effective algorithm for computing it. The test for the existence of a
converter reduces to the test of non-emptiness of the supremal converter language. Moreover,
the generator for the supremal converter language serves as a choice for the converter. No
converter exists if the supremal converter language is empty, in which case the given service
specification may be minimally altered so that a converter exists. This problem has recently



been addressed by Takai-Takae-Kodama [27] and Kumar-Fabian [11].

We illustrate our work by the example of two incompatible protocols namely the Alternat-
ing Bit protocol and the Nonsequenced protocol [28]. These two are obviously incompatible
because the alternating bit protocol labels all data packets with sequence numbers 0 or 1,
while the nonsequenced protocol does not work with labeled data packets. Abridged versions
of the work presented here first appeared in [14, 15].

2 Motivating Example

For the example we assume that the converter is collocated with the receiving end. So, as
shown in Figure 3, the sending end Fj is the composition of the sender protocol P, and the
sender’s channel P,, whereas the receiving end (); consists of only the receiver protocol @,. In
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Figure 3: A typical protocol conversion system

general ()7 is also a composition of (), and the receiver’s channel. The mismatched protocol
components for the example are the Alternating Bit protocol sender (F;), Alternating Bit
channel (P.), and the Nonsequenced protocol receiver (@Q,). The state machines for each of
these along with that for the service specification are presented in this section. Thus in this
example G = Fy||Q1 = P|| P.|| @,

The events occurring at various interfaces for the present example are indicated in Fig-
ure 3. The external event set consists of the accept event (acc) and the deliver event (del).
Lower (respectively, upper) case letters are used for internal events occurring at the sender
(respectively, receiver) end. An event label having a negative (respectively, positive) sign
as its prefix represents a transmit (respectively, receipt) event of a protocol. However, the
sign convention for the channel is the opposite since a receipt event of the channel is a
transmit event of the adjoining protocol and vice-versa. So the receipt events of the channel
are prefixed with negative signs, whereas the transmit events of the channel are prefixed
with positive sign. Since the converter is interposed between the channel and the receiver
protocol, this fixes the events that occur at the converter interface. Thus, for instance, -di
represents a transmit event of a data packet with label i (where i = 0,1) at the sender
protocol (and a receipt event of the same data packet at the channel), whereas -A represents
a transmit event of an acknowledgment at the receiver protocol (and a receipt event of the



same acknowledgment at the converter). Other events include the timeout event (tm) and
the channel loss event (1s).
Thus in the above example the event set ¥ consists of the following:

Y = {acc,del, +di, —di,+ai,—ai,+D,—A, tm, 1s}.
A subset of ¥ consisting of the events
{+di, —ai,+D,—A}

occur at the converter interface. These constitute the set of observable events, whereas all
the remaining events are unobservable. Part of the observable events are the output events
for the converter, and their occurrence can be controlled. So the converter output events
constitute the set of controllable events, which are:

{—ai, +D}.

All the other events are uncontrollable to the converter. Note that the set of controllable
events for the converter is contained in the set of its observable events. We exploit this
property when we design the converter. Also, note that the set of controllable events and
the set of observable events are both different from the set of internal events. This distinction
is not noted in the work of Calvert and Lam [2].

The Alternating Bit sender depicted in Figure 4 has six states. The initial state is the
state 0, where it is in a position to accept data from the user. The data is transmitted
with label 0. The next data is accepted from the user after an acknowledgment with the
correct label 0 is received. Otherwise, when either the wrong acknowledgment with label
1 is received or the sender times out (due to loss of data or acknowledgment), the data is
retransmitted with label 0. This procedure is repeated after each accept event, except that
the label used alternates between 0 and 1.

Figure 4: Alternating Bit sender

The Alternating Bit channel shown in Figure 5 has six states. The channel initially
receives a data packet (events -di), which it may either lose (event 1s) sending it back
to its initial state, or may successfully transmit (events +di) sending it to the state where
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Figure 5: Alternating Bit channel

it receives an acknowledgment packet (events -ai). Acknowledgments may either get lost
(event 1s) or it may get successfully transmitted (events +ai) sending the channel back to
its initial state in either case.

The Nonsequenced receiver is shown in Figure 6. This is a very simple state machine,
which on receiving a data delivers it to the user and sends an acknowledgment to the sender.
Since no labels are present data packets labeled by the Alternating Bit sender cannot be
interpreted consistently by the Nonsequenced receiver resulting in a protocol mismatch.

+D -A
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Figure 6: Nonsequenced receiver and Service specification

Finally, the protocol system should provide the service of loss free transmission over the
lossy channel which is accomplished by requiring that the accept and deliver events should
alternate. This service specification is depicted in Figure 6. Weaker service specifications of
the type “the order of accepted and delivered message sequences be identical” can also be
considered. However, more complex protocols will be needed to offer such a service.

3 Notation and Preliminaries

We use X to denote the universe of events. Y* denotes the set of all finite length event
sequences, called traces, including the zero length trace, denoted €. A subset of ¥*, i.e., a
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collection of traces, is called a language. For a language H, the notation pr(H), called the
prefix closure of H, is the set of all prefixes of traces in H. H is said to be prefiz closed 1f
H = pr(H ) Given a trace s € ¥* and a subset of events ¥ C ¥, the projection of s on E
denoted STZ, is the trace obtained by erasing the events not belonglng to ¥ from s.

State machines [7] are used for representing untimed behavior of discrete event systems
(such as protocol and channel systems) as well as for representing qualitative or logical
specifications (such as user service specifications). Formally, a state machine P is a quadruple
P = (X,%,a,2)), where X denotes the set of states, ¥ denotes the finite set of events,
a: X x (X U{e}) = 2% is the partial transition function, and zy € X is the initial state.
A triple (z,0,2') € X X (2 U{¢e}) x X is called a transition of P if 2’ € a(z,0); it is said
to be an epsilon-transition if ¢ = €. For x € X and % C Y, the notation Ry (P,z) C X
denotes the set of states reachable by execution of zero or more events in S from state z in
P; and the notation 3(P,z) C ¥ denotes the set of events in 3 that are executable at z in
P. The transition function is extended from events to traces a : X x ¥* — X in an obvious
way. The generated language of P is the set of all traces that it can execute starting from
its initial state, i.e.,

L(P):={s e X" | a(zo, s) # 0}.

P is called a deterministic state machine if the transition function is a partial function
of the form: o : X x ¥ — X. The completion of a deterministic state machine P, denoted
P = (X U{z4},%,@,), is the state machine obtained by “completing” the transition
function of P by adding a new state, a “dump” state, x4, and adding transitions from each
state & of P to the dump state on those events that are not defined at « in P. Formally,

a(z,0) if a(z, o) defined

Ty otherwise

Ve € X U{zy},0 € X:a(z,0) ::{

Note that L(P) = *.

Synchronous composition [6] of state machines is used to represent concurrent operation
of component systems. Given two deterministic state machines P := (Xp, Xp, ap, ¢ p) and
Q = (Xg, g, a9, 0q), composition of P and @ denoted P|Q := (X, X, o, z¢), is defined
as: X := Xp X Xg, ¥:=XpU g, zg:= (z9p,200), and for each z = (zp,z9) € X and
<IN

(ap(zp,0),ag(zg,0)) if ap(zp,0),ag(zq, o) defined, o € Xp N Xy

(2,0) = (ap(zp,0),20) if ap(zp,0) defined, o € Xp — ¥
N 9) = (zp,ag(zg,0)) if ag(zg,o) defined, o € ¥y — Xp
undefined otherwise

Thus when P and () are composed, their common events occur synchronously, while the
other events occur asynchronously. The generated language of the composition is given by:

L(P||Q) ={s € ¥ | st¥p € L(P),st¥g € L(Q)}.

Note that when YXp = ¥y = X, then L(P||Q) = L(P) N L(Q) since all events must occur
synchronously. Also note that although the state set for P||@Q is Xp x X, many of the
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states remain unreachable in P||Q. We adopt the convention that by writing P||/@ we mean
its reachable or trim component [7].

In supervisory control of discrete events systems, synchronous composition of an uncon-
trolled plant, modeled as a state machine GG, and a supervisor, modeled as a state machine
S having an identical event set as the plant, is used as a control mechanism. A certain
sublanguage H C L(G) represents the desired behavior of the plant, and the control ob-
jective is to design a supervisor S such that the controlled plant behavior L(G||.S) equals
H. The supervisor to be designed has limited control and observation capabilities in the
sense that (i) it cannot prevent the occurrence of certain uncontrollable events, and (ii) it
can only observe the occurrence of certain observable events. Letting ¥, C ¥ denote the set
of uncontrollable events and ¥, C ¥ denote the set of observable events, the following result
from supervisory control theory states a necessary and sufficient condition for the existence
of such a supervisor:

Theorem 1 [23, 18] Given a plant G, a desired behavior H C L(G), the set of uncontrollable
events Y, and the set of observable events X,, there exists a supervisor S (compatible with
control and observation capabilities) such that L(G||.S) = H if and only if

Prefix closure and Non-emptiness: H = pr(H) # 0.
Controllability: pr(H)X, N L(G) C pr(H).
Observability: Vs,t € pr(H),0 € ¥ : s18, = t1%,,s0 € pr(H),to € L(G) = to € pr(H).

The controllability condition requires that extension of any prefix of 4 by an uncontrol-
lable event that is feasible in the plant should also be a prefix of H. This is because the
occurrence of uncontrollable events cannot be prevented. A pair of traces is called indistin-
guishable if each trace in the pair has identical projection on the set of observable events.
The observability condition requires that extensions of a pair of indistinguishable prefixes
of H by a common feasible event should either both or neither be prefixes of H. This is
because identical control action must be taken following an indistinguishable pair of traces.
Note that H is controllable (respectively, observable) if and only if pr(H) is controllable
(respectively, observable). Tests for controllability and observability conditions are known
when G has finitely many states and H is a regular language so that it admits a finite state
machine representation. In fact if G has m states and H has a state machine representation
with n states, then controllability can be tested in O(mn) time, whereas the observability
can be tested in O(mn?) time [30, 16]. In case the desired behavior H fails to satisfy any
of the required conditions, a mazimally permissive supervisor is designed that achieves a
maximal sublanguage of H satisfying the required conditions. It is known that controlla-
bility is preserved under union so that a unique maximal controllable sublanguage, called
supremal controllable sublanguage of a given language exists [22]; however, observability is
not preserved under union, so maximal observable sublanguages are not unique [18]. Hence
sometimes normal sublanguages instead of observable sublanguages are considered [18]:

Normality: Vs,t € ¥* : 518, = 18,5 € pr(H),t € L(G) =t € pr(H).

9



Normality requires that traces of G that are indistinguishable from a prefix of H must
themselves be prefixes of H. Normality is preserved under union so that the supremal
normal sublanguage of a given language exists [18, 1, 13] and it can be tested in O(mn?)
time [12, p. 103]. Moreover, normality implies observability, and the converese holds in the
presence of controllability when the controllable events are also observable:

Theorem 2 [9, Proposition 4.2] Given G and H C L(G), if ¥ — ¥, C X,, then H is
controllable and observable if and only if it is controllable and normal.

A similar result also appeared in [12, Theorem 4.3] and in the timed setting in [19, Proposition
4].

4 Existence and Computation of Converter

In this paper we are interested in solving a slightly different supervisory control problem,
where the objective is to obtain a supervisor, which we refer to as a converterin this context,
so that the closed-loop system implements a given service specification defined on the subset
of external events.

Definition 1 Given P := (X,Y,a, (), a set of external events ¥, C ¥ and a service
specification K C X¥, P implements K if the following hold:

Safety: L(P)tY. = pr(K).
Progress: Vs € L(P),0 € X, : (st¥.)o € pr(K) = It € (¥ — X.)* s.t. sto € L(P).

Safety requires that each generated trace of P should correspond to a prefix of the specifi-
cation, i.e., no “illegal” traces should occur in P. Since K is a partial specification (defined
only on the external event set), there may exist more than one trace of P that correspond
to the same prefix of K. Progress requires that if an external event is possible after such a
prefix of K, then it should also be possible “eventually”, i.e., after occurrence of zero or more
internal events following each corresponding trace of P. Note that safety only guarantees
that such an external event is eventually possible following at least one (and not all) of the
corresponding traces of P.

Remark 1 The definition of “implements” given above is equivalent to that given in [2]
but is stated differently for simplicity. For example the definition of safety given in [2] uses
containment instead of equality. However, containment can be replaced by equality since
the reverse containment follows from progress. Similarly, the definition of progress given in
[2] uses a “state characterization” instead of a “language characterization”. This is because
in [2] P is represented as a nondeterministic state machine over only external events by
replacing each transition on an internal event by an epsilon-transition. So a language based
characterization of progress is not possible and a state based characterization is used. In our
case P is a state machine over both external and internal events.
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In the following theorem we provide a necessary and sufficient condition for the existence
of a converter for a given pair of mismatched protocols and a given service specification. We
first introduce the notion of converter languages. As described above the notation G is used
to denote the composition of the mismatched protocols, and K is used to denote the service
specification.

Definition 2 Given a pair of mismatched protocols GG, a service specification K C ¥*, a
set of uncontrollable events ¥, and a set of observable events ¥,, a language H C L(G) is
called a converter language if the following hold:

Controllability: pr(H)X, N L(G) C pr(H).

Observability: Vs,t € pr(H),c € ¥ : s1¥, = t1¥,,s0 € pr(H),to € L(G) = to € pr(H).
Safety: pr(H)tX. = pr(K).

Progress: Vs € pr(H),0 € X, : (s1X.)o € pr(K) = 3t € (¥ — X.)* s.t. sto € pr(H).

Note that H C L(G) is a converter language if and only if its prefix closure is also
a converter language. Using the result of Theorem 1 we next show that a necessary and
sufficient condition for the existence of a converter is the existence of a nonempty converter
language.

*

., aset

Theorem 3 Given a pair of mismatched protocols GG, a service specification X C X
of uncontrollable events ¥, and a set of observable events ¥,, there exists a converter C
(compatible with control and observation capabilities) such that G||C' implements K if and

only if there exists a nonempty converter language.

Proof: We first prove the necessity. Suppose there exists a converter C' such that G| C
implements K. We claim that H := L(G||C) is the the required converter language. Since
C' is control and observation compatible, from the necessity part of Theorem 1 it follows
that H is nonempty, prefix closed, controllable and observable. Furthermore since G|C
implements K, it follows from Definition 1 that H = L(G||C) also satisfies the safety and
progress properties of Definition 2. Thus H is a nonempty converter language.

In order to see the sufficiency, suppose there exists a nonempty converter language H C
L(G). Then pr(H) is nonempty, controllable and observable. So from the sufficiency of
Theorem 1 it follows that there exists C' which is control and observation compatible such that
L(G||C) = pr(H). Furthermore, since H is a converter language, it follows from Definition 2
that it satisfies the safety and progress properties, which implies G||C implements K as
desired. |

Since the set of controllable events for a converter is a contained in the set of its observable
events, i.e., ¥ — X, C ¥, it follows from Theorems 2 and 3 that a language is a converter
language if and only if it satisfies the properties of controllability, normality, safety, and
progress. This fact can be used to obtain the following corollary which states that the set of
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converter languages is closed under union so that a supremal one exists. Define the following
set of converter sublanguages of L(G) which implement the specification K:

Conv(G,K) := {H C L(G) | H is a converter language}.

Corollary 1 Given G, sets X, %,,%,, and K C ¥¥ the supremal converter language
sup Conv(G, K) exists.

Proof: First note that since ) is a converter sublanguage, Conv(G, K) # (. Let A be an
indexing set such that for each A € A, Hy C L(G) is a converter language. We claim that
Uxea H) is also a converter language, i.e., it satisfies the conditions of controllability, normal-
ity, safety, and progress. The first two properties follow from the fact that controllability and
normality are preserved under union. Safety follows from the following series of equalities:

[P?‘(LAJ H))E. = [L/\\JPT(HA)]TEe = LAJ[PT(HA)TZe] = pr(K),

where we have used the fact that prefix closure and projection operations commute with
arbitrary union, and each H) satisfies safety. Finally, to see progress, pick s € pr(Uy Hy) =
Uxpr(H,) and ¢ € ¥ such that (stX.)0 € pr(K). Then there exists A € A such that
s € pr(Hy). Also, since Hy is a converter language, it satisfies progress. So there exists
t € (¥ —X,)" such that sto € pr(Hs) C U, pr(Hy) = pr(Uy Hy). u

The following theorem provides a concrete condition for the existence of a converter and
forms a basis for the test developed in this paper. It also specifies a choice for a prototype
converter.

Theorem 4 Let G, K, Y., %,, %, be as in Theorem 3. Then there exists a converter C' such
that G||C implements K if and only if sup Conv(G, K) is nonempty, in which case C' can be
chosen to be a generator of sup Conv(G, K).

Proof: In order to see the necessity suppose there exists a converter. Then from the
necessity part of Theorem 3 there exists a nonempty converter language H € Conv(G, K),
which implies sup Conv(G, K) is nonempty. Sufficiency follows from the sufficiency part of
Theorem 3 since sup Conv(G, K) is a converter language and it is given to be nonempty.
Finally, let C' be any generator of sup Conv(G, K), i.e., L(C) = sup Conv(G, K), then

L(G||C) = L(G) N L(C) = L(G) N sup Conv(G, K) = sup Conv(G, K),

where the last equality follows from the fact that sup Conv(G, K) C L(G). Consequently,
L(G||C) satisfies the safety and progress properties of Definition 2, which implies G|/C
implements K. [ ]

From Theorem 4 the task of checking the existence of a converter as well as that of design-
ing one when it exists reduces to the task of computing the supremal converter language and
verifying its non-emptiness. We next present an algorithm for computing sup Conv(G, K)
assuming that G has finitely many states, say m, and K is a regular language so that it
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admits a finite state machine representation say S := (Y, Y., 3,v,) with say n states. For
the motivating example, the state machine representation for K consists of only two states
as shown in Figure 6.

As with the computation of the supremal controllable sublanguage given in [13], the
algorithm for the computation of sup Conv(G, K) has two steps: In the first step it constructs
a sufficiently “refined” version of the state machine G; ! and in the next step, it Temoves
certain “bad” states from this refined state machine.

Initially certain states which correspond to traces that violate safety are marked “bad”,
i.e., these are the states that are reachable by execution of traces whose projection on external
event set are not prefixes of K. If there are no such bad states, then sup Conv(G, K) equals
L(G). Otherwise, a converter must be designed to restrict the behavior of G so that only
those “good” states remain reachable which correspond to traces that also satisfy progress,
controllability, and normality conditions.

Progress requires that the set of external events that can be executed following the
execution of zero or more internal events from a certain good state should contain the set of
external events executable at the corresponding point in K. If a good state fails to satisfy the
progress, it is marked bad. Controllability requires that no bad state should be reachable
from a good state on an uncontrollable event, since execution of an uncontrollable event
cannot be prevented and the system can uncontrollably reach a bad state from a good state.
So in order to compute sup Conv(G, K) if there exists an uncontrollable transition from a
good state to a bad one, then that good state is marked bad. Finally, normality requires
that the states corresponding to a set of indistinguishable traces should either be all good
or all bad. So if a good state and a bad state can be reached by the execution of pair
of indistinguishable traces, then that good state is marked bad. The algorithm terminates
when there are no more additional bad states to be marked. Then sup Conv(G, K) consists
of traces corresponding to the remaining good states, and it is nonempty if and only if the
set of good states is nonempty.

It is clear that the state machine representation of GG needs to be sufficiently refined
so that the states corresponding to the traces violating either of the conditions can be
unambiguously identified. First in order to deal with safety, progress and controllability
conditions we refine the machine G' by composing it with the state machine S obtained by
completing the transition function of S. For the motivating example, the state machine S is
shown in Figure 7, in which the dump state is explicitly depicted. Note that L(S) = ¥ as
expected, and given a trace s € ¥*, s € pr(K) = L(S) if and only if its execution does not
result in the dump state in S. Let Gy := S||G, then since ¥, C X, we have

L(Gy) ={s € L(G) | st¥. € L(S)} = L(G),

where the last equality follows from the fact that L(S) = ¥%. For notational simplicity let
G1:=(Z,%,7,2). Z := (Y U{ya}) x X, where y, is the dump state of S, denotes the state

IGiven two state machines G; := (X5, X, ;. 20,4), (1 = 1,2), Gy is said to be a refined version of Gy if
L(G4) = L(G3) and there exists a function h : Xy = X5 such that h(ai(z,0)) = as(h(z), o) for each € X4
and o € X.
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acc

del

del acc

acc, del

Figure 7: Completion of service specification

set of Gy, v : Z x ¥ — Z is the transition function, and 2y = (z, o) is the initial state.
Note that given a trace s € L(G;) = L(G), its execution leads to a state z = (y4, z) in Gy if
and only if stE, & pr(K).

Next in order to deal with the normality condition we further refine (G;. First we obtain
a nondeterministic state machine G5 that generates all traces that are indistinguishable from
the traces of GG;. Since a trace remains indistinguishable when unobservable events are either
inserted or erased, the following construction yields the desired G:

Algorithm 1 Given Gy := gHG, add transitions in (G; to obtain (G5 as follows:

1. For each z € Z and 0 € ¥ — %, add a self-loop transition (z, 0, 2).

2. For each transition (z,0,2') of Gy such that z # 2’ and 0 € ¥ — %, add an epsilon-
transition (z, €, 2').

Step 1 (respectively, 2) in the algorithm has the effect of inserting (respectively, erasing)
unobservable events.

Remark 2 Note that if 2 is reachable by execution of a trace s in (G1, then z is also reachable
by execution of all traces that are indistinguishable from s in G5. So if s’ € L(G) is a trace
indistinguishable from s and if 2’ is reachable by execution of s’ in G1, then 2’ is also reachable
by execution of s in G (since s is indistinguishable from s’). In fact the set of states reachable
by execution of s in (5 is the set of states that are reachable in (G; by execution of those
traces in (47 that are indistinguishable from s.

Next using the power-set construction [7] we obtain a deterministic state machine Gj
with the same language as L(G>). Finally we construct the machine G4 := Gy||G3. Since
L(G3) = L(G2) D L(Gy) = L(G), L(G4) = L(G1) N L(G3) = L(G). We show below that G4
is a sufficiently refined version of G. We first outline the construction of G4 in the following
algorithm:
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Algorithm 2 Given G := (X, X, o, xy) and a deterministic generator S := (Y, X, 5, vo) of
pr(K), obtain Gy as follows:

1. Obtain S by adding a dump state and completing the transition function of S. (Then

L(S)=1%%)
2. Obtain Gy := S||G. (Then L(Gy) = L(G), and the state set of G} is denoted Z.)

3. Obtain the nondeterministic state machine G5 by adding transitions in (G as described
in Algorithm 1. (Then L(G3) D L(Gh), and the state set of Gy is Z.)

4. Obtain G3 by “determinizing” G; using the power set construction. (Then L(G3) =
L(G5), and the state set of G3 is 27.)

5. Obtain G4 as G1||G3. (Then L(G4) = L(G), and the state set of G4 is Z x 2%.)

Clearly, G4 is a refined version of GG. For notational simplicity, let Gy := (R, X, 4, ),
where R = Z x 2% is the state set for G4. Note that each state r in G4 is of the form
r=(z, Z), where z € Z and Z C Z. § : R x ¥ — R denotes the transition function of Gj.
The initial state of Gy is ro = (20, {20}), where 2z := (yo, zo). In the following lemma we list
some of the properties of G4 which demonstrate that it is a sufficiently refined version of G.
We first define the concept of a matching pair of states.

Definition 3 A pair of states r; = (21, Zl), ro = (22, Zg) € R of G4 are said to be a matching
pairif Zy = Zs.

Lemma 1 The following hold for G4 which is the state machine constructed in Algorithm 2:
1. L(Gy4) = L(G).

2. Consider s € L(Gy); then 513, € pr(K) if and only if » = ((y,z), Z) := 8(r¢, s) is such
that y # yg4.

3. If r = (2,Z) € R is a state of Gy, then z € Z.

4. Consider a matching pair of states ry,7o € R. Then for each s; € L(G) such that
8(rg, s1) = 71, there exists so € L(G) such that so1%, = s11%, and 6(r, s2) = 7.

Proof: The first part follows from the construction and is proved above. In order to see the
second part, consider s € L(Gy) and let r = ((y,z), Z) := 8(ry,s). Then execution of s13,
in S results in the state y of S. Since L(S) = pr(K), the assertion follows from the fact that
st¥. € L(S) = pr(K) if and only if y # y,.

In order to see the third part, let s € L(Gy4) be such that 6(rg,s) = r = (Z,Z). Then
execution of s results in the state z in G and state 7 in (3. Since (3 is obtained by
“determinizing” the state machine G5, this implies that execution of s results in each state
2€Zin (5. (Recall that G, is nondeteArministic.) Since (G is obtained by adding transitions

in (1, 2z is one such state. Hence 2z € 7.
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Finally in order to see the fourth part, consider a matching pair of states r; = (z;, Z),
¢t = 1,2. From the third part we have that z;,2, € Z. Consider s1 € L(G4) such that
§(ro,81) = r1. Then execution of s; results in state z; in Gy, and each state Z € 7 in G
(including the states z; and z3). Then from Remark 2 concerning (s, there exists a trace
sy € L(G) indistinguishable from sy, i.e., $27¥, = $1T%,, such that its execution results in
the state zo in Gy. (If no such trace exists, then z; cannot be reached by execution of s; in
(5.) Finally, since s, is indistinguishable from s, its execution in G5 also results in the set
of states Z. So the execution of $o results in the state 7o = (22, 2) in (G4 as desired. [

We are now ready to present the algorithm that iteratively marks bad states in G4, and
upon termination yields a generator for sup Conv(G, K). The notation RF C R is used to
denote the set of bad states at the kth iteration.

Algorithm 3 Consider G4 := (R, X, 6, ) obtained in Algorithm 2.

1. Initialization step:
Ry :={r=((v,2),2) € R|y=wa}; k:=0.
2. Iteration step:
Ritt = R}
U {reR-Rf|30eX,st (o) € Rf}
U {7’: (2,Z)e R—Ri | I =(2',2) € R,lj}
U {7“ = ((y,2),2) € R— R} | %.(S,y) € UWG[?RE—E”(G4,r)}ﬁ[RmeEe(G4vT’)}

3. Termination step:
If R} = RF, then stop; else k := k + 1, and go to step 2.

The algorithm initially sets the iteration counter k& = 0 and marks a state r = ((y, ), 7z ) €
R to be a bad state if its first coordinate is the dump state, i.e., if y = y4. This is because if
s € L(G4) = L(G) is any trace such that §(r¢, s) = r, then from the second part of Lemma 1,
st¥. & pr(K), i.e., s violates the safety condition. The set of bad states at the kth iteration
is denoted by RY.

In the kth iteration step, a good state 7 = ((y,z), Z) € R — R} is marked bad if any of
the following hold: (i) If there exists an uncontrollable event from r to a bad state. This
is because if s € L(G4) = L(G) is any trace such that 6(ry,s) = r, then s violates the
controllability condition. (ii) If there exists a matching bad state 7' € RF. This is because if
s € L(G4) = L(G) is any trace such that §(rg, s) = r, then from the fourth part of Lemma 1,
there exists a trace s' indistinguishable from s such that 6(rg,s’) = 7/, i.e., s violates the
normality condition. (iii) If the set of external events that are executable at state y in S is
not contained in the set of external events that are executable from those good states that
are reached by the execution of zero or more internal events from r in G4. This is because if
s € L(G4) = L(G) is any trace such that §(rg, s) = r, then s violates the progress condition.
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The algorithm terminates if no additional bad states are marked in the kth iteration;
else, the iteration counter is incremented by one and the iteration step is repeated. Note
that since G4 has finitely many states, the algorithm is guaranteed to terminate in a finite
number of iterations. Also, since the algorithm marks a state to be a bad state if and only
if all traces that lead to it violate either safety, progress, controllability, or normality, the
state machine obtained by the removal of the terminal set of bad states (and all transitions
leading towards or away from them) from G4 generates the language sup Conv(G, K'). Hence
we obtain the following result stating the correctness of the algorithm.

Theorem 5 Given a finite state machine G and a regular language K C %7, Algorithm 3
terminates in a finite number of steps, and the state machine obtained by removal of the
states Ry C R from G4 generates sup Conv(G, K), where R; denotes the set of bad states at
the termination of the algorithm.

Remark 3 Let m be the number of states in G and n be the number of states in the
state machine representation of K. Then the computational complexity of Algorithm 3 is
O(m?2n?22m) since the number of states in Gy is O(mn2™"), which implies that there are
O(mn2™") number of iterations with equally many computations in each iteration. Also,
unless P = NP, no algorithm of polynomial complexity exists. This follows from the fact
that in the special case when ¥, = ¥, the converter design problem reduces to the standard
supervisory control problem under partial observation with the desired behavior constraint
specified as a range of languages, which is known to be an NP-complete problem [30].

5 Implementation Issues and Example Converters

Since the computation of sup Conv(G, K) is intractable, a computationally tractable
heuristic approach to converter design is desirable. We propose two heuristics and utilize
each to design a converter for the motivating example.

Since the computational intractability arises due to the presence of partial observa-
tion, one possibility is to first compute the supremal sublanguage of L(G) satisfying safety,
progress, and controllability, and next verify whether it is also normal, each of which can
be done in polynomial time. In case the language is also normal, then it equals the desired
supremal converter language and we are successful in computing it in polynomial time.

We next outline a polynomial time computation of the supremal sublanguage of L(G)
satisfying safety, progress, and controllability. Clearly, this language equals sup Conv(G, K)
when all events are observable (so that normality trivially holds). Note that when all events
are observable, G5 equals GGy, i.e., no transitions are added when Algorithm 1 is invoked, so
(G4 also equals (G;. Hence the following modification of Algorithm 3 computes the desired
supremal sublanguage of L(G) satisfying safety, progress, and controllability.

Algorithm 4 Given G := (X, X, o, xy) and a deterministic generator S := (Y, X, 5, vo) of
pr(K), let Gy = (Z,%,7,2) := S||G.

17



1. Initialization step:

Zy ={z=(y,x) € Z|y=ya}; k:=0.

2. Iteration step:

k41 . _ k
Zb - Zb

U {z€Z—2}|30€Sust y(z0) € Zf}
U {Z =(y,2) € Z—Z} | 5.(S,y) Z Uz/e[%g_gn(Gl,z)}ﬁ[ZfZ{j]EE(GlaZI)}

3. Termination step:
If Z¥*' = ZF, then stop; else k := k + 1, and go to step 2.

Using the fact that G has O(mn) states, the computational complexity of Algorithm 4
can be determined to be O(m?n?). The algorithm computes the supremal sublanguage of
L(G) that satisfies safety, progress, and controllability (but may violate normality). The
test whether this language is also normal (with respect to the given set of observable events)
can be performed in O(m(mn)?) = O(m>®n?) time [12, p. 103]. In case the test for normality
fails, then as in the work of Cho-Marcus on iterative computation of supremal controllable
and normal sublanguage [4], we can iterate between the supremal normal sublanguage com-
putation and the computation of the supremal language that meets safety, progress, and
controllability until a fixed point is reached, which however will result in an exponential
computational complexity. This is outlined in the following algorithm:

Algorithm 5 Given G and K C ¥*, compute the sup Conv(G, K) as follows:
1. Hy:= L(G); k :=0.

2. Compute the supremal sublanguage H, of H, satisfying safety, progress, and control-
lability using Algorithm 4. If Hj, is normal, then sup Conv(G, K) = Hy, and stop; else
go to step 3.

3. Compute the supremal normal sublanguage Hj.; of H k- If Hjyq satisfies safety and
progress (Algorithm 6 given below provides a test for safety and progress), then
sup Conv(G, K) = Hyy1, and stop; else replace G by the generator of Hp.q, set
k:=k+ 1, and go to step 2.

Remark 4 Note that in the above algorithm we do not need to check the controllability of
Hj.11 in step 3 since it is known that the supremal normal computation preserves controlla-
bility [5, Proposition 3.9]. Also, in step 3 if Hy,; does not satisfy safety and progress, then
we need to compute its supremal sublanguage satisfying safety and progress. We can use
Algorithm 4 for doing this (although in this case the controllability trivially holds). How-
ever, we need to replace G by the generator of Hj,; since Algorithm 4 only computes the
supremal sublanguage of L(G) satisfying safety, progress, and controllability.
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We have written a C-program for Algorithm 5 (and the associated Algorithm 4) that
utilizes a finite state machine library originally developed for supervisory control [26]. Using
the program for Algorithm 4 we first computed the supremal sublanguage of L(G) satisfying
controllability, safety, and progress for the example. The state machine G, which is the
composition of Alternating Bit sender, Alternating Bit channel, and Nonsequenced receiver
contains 66 states. The composition of G with S (which has three states) contains 198 states.
The initial iteration of the safety check disqualified 66 states. The next iteration which
performs controllability and progress checks disqualified additional 34 states. No additional
states were disqualified in the next iteration of controllability and progress checks. This
resulted in a test converter with 198 — (66 + 34) = 98 states. The test converter also passed
the normality test; thus qualifying it as a valid converter.

A second possible heuristic is to guess a test converter C' and verify its correctness by
checking whether L(G||C) is a converter language, which as we show below can be done in
polynomial time. First note that it is not difficult to guess a converter; a simple possibility is
to design a system that emulates the missing portions of the mismatched protocols, i.e., the
receiver protocol P, of P and the sending protocol @, of (). For the motivating example the
“guess converter” we consider below emulates the functions of the Alternating Bit receiver
and the Nonsequenced sender.

In order to test whether L(G||C) is a converter language, we must check whether it satis-
fies controllability, normality, safety, and progress. Polynomial time tests for controllability
and normality can be found in [12, pp. 75, 103]. Here we present a polynomial time test for
safety and progress. For notational simplicity let Gy := G||C and let its state set be ®. We
first refine G5 by composing it with .S. For notational simplicity, let Gg := S||G5 and let its
state set be © := (Y U {ya}) x ®. Note that since ¥, C ¥,

L(Gg) = {s € L(Gs) | s18. € L(S)} = L(Gs),

where the last equality follows from the fact that L(S) = £¥. Also, given atrace s € L(Gg) =
L(G5), its execution leads to a state 0 = (yq4, ¢) if and only if stX. & pr(K). So for L(G5)
to satisfy safety, no state @ of G should be of the form (y4,¢). Also for L(Gs) to satisfy
progress, the set of external events that can be executed following the execution of zero or
more internal events from each state § = (y,¢) in G4 should contain the set of external
events executable at the corresponding state y in S. So we have the following algorithm for
checking safety and progress:

Algorithm 6 Consider the composition of mismatched protocols GG, a test converter C', and
a deterministic generator S of pr(K).

1. Construct G; := GJ|C, and denote its state set by ®.
2. Construct G := S||G5, and denote its state set by ©.

3. Then L(G||C) satisfies safety and progress if and only if

V0 = (y,¢) € O : [y # ya A [Zc(sa y) C UQ'E?RE_EE(GG,Q)ZC(G670,):| :
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If the number of states in the converter is p, then the computational complexity of the algo-
rithm is O(m?n2p?) since G has O(mnp) states and equally many reachability computations
need to be performed.

A test converter for the motivating example is shown in Figure 8. The converter adopts

Figure 8: A test converter

the following simple conversion strategy. Initially when one or more data packets with label
0 arrive (event +d0), it removes the label and forwards a single data packet to the receiver
(event +D). No action is taken at this point if more copies of the same data packet arrive
(due to a sender timeout). When the receiver transmits an acknowledgment (event -A),
the converter attaches the label 0 and puts it onto the sender’s channel (event -a0). The
procedure is repeated when data packets with a different label arrive (except for the difference
in the label used). However, if another data packet with the same label arrives (due to a
sender timeout or a loss of acknowledgment in the channel), then the same acknowledgment
is retransmitted.

We have verified that L(G||C') (where G = P;||P.||Q,) satisfies safety, progress, control-
lability, and normality, i.e., it is a converter language. Since L(G||C') is obviously nonempty,
it follows from Theorem 3 that C' is indeed a valid converter.

6 Conclusion

In this paper we have studied the problem of designing protocol converters that need
to be interposed between a pair of mismatched protocols. Our approach is systematic and
is based on the recent theory of supervisory control of discrete event systems. The work
presented here provides a new framework for protocol converter designers on one hand, and
serves as an application for the supervisory control theorists on the other hand. The basic
concepts of controllability, observability, normality, and computation of supremal languages
from supervisory control, and safety, and progress from protocol design play important role
in the protocol conversion problem. The converter that we derive is maximally permissive

20



in the sense that any other converter will further restrict the behavior of the entire system.
However, the maximally permissive converter may not have a minimal number of states.
Design of such minimal converters is an interesting problem for future research.
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