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Abstract

We propose a systematic approach to quantify the impact of nonuniform

tra�c on the performance of non{blocking switches with output queueing. We

do so in the context of a simple queueing model where cells arrive to input ports

according to independent Bernoulli processes, and are switched to an output

port under a random routing mechanism. We give conditions on pairs of input

rate vectors and switching matrices which ensure various stochastic comparisons

for performance measures of interest. These conditions are formulated in terms

of the majorization ordering while the comparison results are expressed in the

strong and convex increasing orderings.

Key words: Stochastic majorization, Stochastic convexity, Bernoulli rout-

ing, Crossbar switches

1 Introduction

Space{division packet switching has been recognized as a key component in the

ongoing evolution towards future high{performance communication networks [1, 5].

This is due to the high capacity, viz., in the range 10{100Gps, that space{division

packet switching can achieve through the use of a highly parallel switching fabric

with simple per packet processing distributed among many high{speed VLSI circuits.
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In non{blocking space{division packet switches, it is always possible to establish

a connection between any pair of idle input and output ports. However, output

contention arises when more than one cell at di�erent input ports demand to be

routed to the same output. As the contending cells cannot be placed on the output

port at the same time, bu�ering has to be provided in order to store the cell(s) which

cannot be served. Several bu�ering strategies have been reported in the literature

[4, 20], with proposed solutions depending on a variety of factors such as the speed

of input and output lines relative to the cell transfer time across the switching fabric,

and implementation complexity.

Noteworthy among proposed bu�ering strategies is output queueing which we

adopt in this paper. Consider a non{blocking crossbar switch with K input and L

output ports. The switch operates in a synchronous mode with time divided into

consecutive slots of equal duration. At the beginning of a time slot, new cells arrive

into the system; the destination of a cell is immediately declared upon arrival. The

switching fabric operates at K times the speed of the input and output lines, and

each output port is equipped with an in�nite capacity bu�er, thereafter referred to as

its output bu�er. Under the output queueing strategy, all cells which arrive during a

time slot and which are destined for a given output port, are transported across the

switch during that single time slot, and put into the output bu�er. This is indeed

possible under the assumption made on the speed of the switching fabric. However,

during any time slot at most one cell in each output bu�er can be transmitted on

the corresponding output line,

The simplest model of this synchronous crossbar switch with output queueing is

that of a collection of L discrete{time queues, one for each output port, operating

in parallel and fed by K independent Bernoulli processes under a random routing

assignment. The arrival process at the kth input port, k = 1; : : : ;K, is a Bernoulli

process with parameter �k, 0 < �k < 1. The output addressing scheme is described

by a stochastic matrix R � (rk`), called the switching or routing matrix, with the

following implementation in each time slot: A cell that arrives at the kth input port

at the beginning of a time slot is destined for the `th output port with probability

rk`, k = 1; : : : ;K; ` = 1; : : : ; L; this assignment is carried out independently over

time across input ports, and independently of the arrival streams which are assumed

mutually independent.

The performance analysis for this model is typically carried out under the uni-

2



form tra�c and routing assumptions, which are speci�ed by

�1 = � � � = �K � � (1.1)

and

rk` =
1

L
� uk`; k = 1; : : : ;K; ` = 1; : : : ; L: (1.2)

A distinct advantage of assuming (1.1){(1.2) is the fact that the input rate vector

and switching matrix being symmetric, it su�ces to analyze a single queue in order

to obtain information concerning most performance measures of interest.

In reality, however, tra�c o�ered to the switch is most likely to be nonuniform,

and it is not clear how this will a�ect its performance. As a case in point, with

K = L, if cells arriving at the kth input port are always routed to the kth output

port, k = 1; 2; : : :, there is no output contention and the best possible performance is

achieved. This is in sharp contrast with the worst case scenario where all incoming

cells are destined to the same output port, thereby creating severe congestion at

the corresponding output bu�er. Various attempts have been made to understand

the range of possibilities that result from nonuniform tra�c patterns. These e�orts

have been recently reported in the numerical studies [9, 10, 11, 18, 22], and have

focused on packet switches with output queueing as well as with input queueing

(and combination thereof). As nonuniform tra�c refers to any tra�c pattern dif-

ferent from (1.1){(1.2), the number of possible nonuniform tra�c patterns is simply

huge due to the large number of parameters involved, and this precludes a system-

atic exploration of all cases. In fact, most analyses under nonuniform tra�c have

considered only very speci�c tra�c patterns, e.g., bi{group tra�c [9, 11, 18, 22],

hot{spot tra�c [14, 22] and point{to{point tra�c [21, 22].

Given this state of a�airs, in the context of the simple queueing model intro-

duced earlier, we seek to understand in a more systematic manner the behavior of

the output queueing switch as a function of the input rate vector � � (�1; : : : ; �K)

and of the switching matrix R. Speci�cally, we focus on �nding conditions on pairs

(�;R) and (�0;R0) of input rate vectors and switching matrices which ensure var-

ious stochastic comparisons for the corresponding performance measures. Switch

performance is quanti�ed by output queueing delays and bu�er sizes, and we dis-

tinguish performance measures associated with output ports, e.g., the queue size at

the `th output bu�er and the delay incurred by a cell leaving through the `th output

port, from measures which are associated with input ports, e.g., the delay incurred

by a cell that enters the switch by the kth input port.
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We formulate the conditions on the pairs (�;R) and (�0;R0) in terms of the

(weak) majorization ordering. The comparison results are expressed in the strong

and convex increasing orderings for distributions, and not merely in terms of the �rst

moments of the performance measures. The results are summarized in Section 5,

where only the steady{state version is presented; however it should be clear from

the discussion given in Sections 7{9 that transient versions hold as well. The results

are derived through the combined use of recent ideas from the theory of stochastic

convexity, and of techniques from the theory of stochastic orderings. In the process

we establish several majorization properties for sums of independent Bernoulli rvs;

some of these results given in Section 6 appear to be new.

In this paper we establish only one{dimensional results, i.e., results pertaining

to a particular queue or port. However, these results can already be used to obtain

bounds on system performance. In particular, as we show in [7], under certain load

constraints, we can identify the best and worst scenarios. We refer the reader to

the companion paper [6, 8] for a collection of multi{dimensional comparison results

which yield tra�c and switch con�gurations for optimal load balancing.

The paper is organized as follows: The model of interest is described in details

in Section 2. Delay measures are introduced in Section 3, and the statistical equi-

librium for the system is discussed in Section 4. The main results are presented

Section 5, and their proofs can be found in Sections 7{9. In Section 6 we have

isolated intermediary results on sums of Bernoulli random variables which are of in-

dependent interest. Several proofs have been relegated to two technical appendices.

A few words on the notation in use: Throughout K and L denote given positive

integers. The kth component of any element x in IRK is denoted either by xk or by

xk, k = 1; : : : ;K, so that x � (x1; : : : ; xK) or (x1; : : : ; xK). A similar convention

is used for random variables (rvs). For any vector x = (x1; : : : ; xK) in IRK , let

x(1) � x(2) � � � � � x(K) denote the components of x arranged in increasing order.

For vectors x and y in IRK , we say that x is majorized by y, and write x � y,

whenever the conditions

kX
i=1

x(i) �
kX

i=1

y(i); k = 1; 2; : : : ;K (1.3)

and
KX
i=1

xi =
KX
i=1

yi; (1.4)

hold. If conditions (1.3) all hold without (1.4), then we say that x is weakly su-
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permajorized by y, and write x �w y. Additional information regarding (weak)

majorization can be found in [13].

The notation �st (resp. �icx) stands for the the strong stochastic (resp. convex

increasing) ordering on the collection of distributions [15, 19]. Finally two IR{valued

rvsX and Y are said to be equal in law if they have the same distribution, a situation

we denote by X =st Y .

2 The Model

All rvs are de�ned on some probability triple (
;F ;P), and let E denote the cor-

responding expectation operator. With K input ports and L output ports, the

queueing model of interest is parameterized by a vector of rates � (in [0; 1]L) and

by probability vectors rk = (rk1; : : : ; rkL) (in SL � fr = (r1; : : : ; rL) 2 [0; 1]L :PL
`=1 r` = 1g), k = 1; : : : ;K. We organize these K vectors into the K � L routing

matrix R given by

R =

264 r1...
rK

375 =

264 r11 : : : r1L
...

rK1 : : : rKL

375 :
With each set of such vectors, we associate f0; 1g{valued rvs fAk

t+1(�k); t =

0; 1; : : :g and f1; : : : ; Lg{valued rvs f�kt (rk); t = 0; 1; : : :g, k = 1; : : : ;K. During the

discussion we make the following assumptions: (i) For each k = 1; : : : ;K, the rvs

fAk
t+1(�k); t = 0; 1; : : :g are i.i.d. rvs with

P
h
Ak
t+1(�k) = 1

i
= 1�P

h
Ak
t+1 = 0

i
= �k

for all t = 0; 1; : : :; (ii) For each k = 1; : : : ;K, the rvs f�kt (rk); t = 0; 1; : : :g are i.i.d.

rvs with

P
h
�kt (rk) = `

i
= rk`; ` = 1; : : : ; L

for all t = 0; 1; : : :; and (iii) The 2K collections of rvs fAk
t+1(�k); t = 0; 1; : : :g and

f�kt (rk); t = 0; 1; : : :g, k = 1; : : : ;K, are mutually independent.

These quantities have a ready interpretation in the context of the output queue-

ing system described earlier: At the beginning of time slot [t; t+1), new cells arrive

into the system, with Ak
t+1(�k) cell arriving at the kth input port, k = 1; : : : ;K.

The destination of a cell arriving at the kth input port is encoded in the rv �kt (rk),

and is immediately declared upon arrival. All cells which arrive during a time slot

and which are destined for a given output port, are transported across the switch
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during that single time slot, and put into the output bu�er in random order. With

the notation

�`t+1(�;R) �
KX
k=1

1[�kt (rk) = `]Ak
t+1(�k); ` = 1; : : : ; L; t = 0; 1; : : :

we see that a batch of �`t+1(�;R) cells are destined for the `th output port during

time slot [t; t+ 1).

During any time slot at most one cell can be transmitted, or equivalently, served.

Let Q`
t(�;R) denote the number of cells present at the beginning of time slot [t; t+1)

in the `th output bu�er, ` = 1; : : : ; L. If we assume the system to be initially empty

at time t = 0, then the queue size processes evolve according to the recursions

Q`
0(�;R) = 0;

Q`
t+1(�;R) =

h
Q`

t(�;R)� 1
i+

+ �`t+1(�;R); ` = 1; : : : ; L; t = 0; 1; : : : :(2.1)

In deriving (2.1) we made the following operational assumption: If the `th output

queue were empty at the beginning of a time slot, no cell arriving at that output

queue during that time slot is eligible for transmission during the time slot. In-

stead of this \gated" transmission strategy, we could also consider a \cut{through"

strategy according to which, if the `th output queue were empty at the beginning

of a time slot, cells arriving at that output queue during that time slot are eligible

for transmission during the time slot. In that case, the dynamics (2.1) have to be

replaced by

Q`
t+1(�;R) =

h
Q`

t(�;R)� 1 + �`t+1(�;R)
i+

; ` = 1; : : : ; L; t = 0; 1; : : : :

The results derived here hold under either strategy, but for the sake of de�niteness,

we carry out the discussion only in the context of the gated strategy with queue

dynamics (2.1).

3 Delay Measures

For each ` = 1; : : : ; L, we denote byD`
n(�;R) the delay of the nth cell, n = 1; 2; : : :, to

arrive at the `th output port, i.e., D`
n(�;R) represents the time that elapses between

the arrival of the nth cell at the `th output port and the end of its transmission.

At each of the output queues, we assume that batches are processed in order of

arrival, i.e., all cells in the mth batch are served before the cells in the (m + 1)rst
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batch, m = 1; 2; : : :, but the order of service within a given batch is random. As

a result, the delay process of the nth cell can be decomposed into two successive

stages: First, all the cells which have arrived in earlier time slots (and which must

belong to di�erent batches) are serviced. Then, the cells belonging to the same

batch as the nth cell are processed in random order. We can thus write

D`
n(�;R) =W `

n(�;R) +B`
n(�;R); n = 1; 2; : : : (3.1)

where the rv W `
n(�;R) counts the number of slots required for transmitting all

the cells in the batches which have arrived before that containing the nth cell, and

the rv B`
n(�;R) denotes the number of slots that the nth cell needs to wait before

it is served, once the batch to which it belongs starts being served. We can also

interpretate B`
n(�;R) as the position of the nth cell in its batch.

We also consider performance measures which are associated with the input

ports: Fix k = 1; : : : ;K. We denote by T k
n (�;R) the delay of the nth cell, n =

1; 2; : : :, to arrive at the kth input port, i.e., T k
n (�;R) represents the time that

elapses between the arrival of the nth cell at the kth input port and the end of its

transmission. This performance measure is closely related to the following notion of

virtual delay: For each t = 0; 1; : : :, let Hk
t (�;R) denote the delay of a virtual cell

to arrive at the kth input port at the beginning of the slot [t; t+ 1), i.e., Hk
t (�;R)

represents the time that elapses between the arrival of a �ctitious cell at the kth

input port at time t and the end of its transmission. We see that T k
n (�;R) coincides

with the virtual delay Hk
t (�;R) when t is the arrival time of the nth cell to arrive

at the kth input port.

We can compute Hk
t (�;R) as follows: If �kt (rk) = `, ` = 1; : : : ; L, then this

�ctitious cell is routed to the `th output port, together with cells which may have

arrived at the other input ports during slot [t; t + 1) and which are also routed to

the `th output port. There are Nk;`
t+1(�;R) such cells, with

N
k;`
t+1(�;R) �

X
j 6=k:1;:::;K

1[�jt (rj) = `]Aj
t+1(�j); ` = 1; : : : ; L; t = 0; 1; : : : ;

and this batch of Nk;`
t+1(�;R) + 1 cells therefore arrive at the `th output queue

during the time slot [t; t+1), where Q`
t(�;R) cells are already awaiting transmission.

Consequently, we have

Hk
t (�;R) =

LX
`=1

1[�kt (rk) = `]
�
Q`

t(�;R) + J
k;`
t (�;R)

�
; t = 0; 1; : : : (3.2)
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where for each ` = 1; : : : ; L, Jk;`
t (�;R) denotes the random position of the �ctitious

cell in the batch of size Nk;`
t+1(�;R) + 1. It is plain that for n = 0; 1; : : : ;K � 1,

P[Jk;`
t (�;R) = i+ 1jNk;`

t+1(�;R) = n] =
1

n+ 1
; i = 0; 1; : : : ; n

so that

P[Jk;`
t (�;R) = i+ 1] =

K�1X
n=i

1

n+ 1
P[Nk;`

t+1(�;R) = n]; i = 0; 1; : : : ;K � 1:

Moreover, the rvs Qt(�;R) � (Q1
t (�;R); : : : ; QL

t (�;R)), �kt (rk) and
�
N

k;1
t+1(�;R),

J
k;1
t (�;R), : : : ; Nk;L

t+1(�;R), Jk;L
t (�;R)

�
are mutually independent under the un-

forced operational assumptions.

4 The Steady{State Regime

As some of the results below are concerned with performance measures for the

system in statistical equilibrium, we now discuss the existence of such a steady{

state regime in some details. To set the notation, for any sequence of IRd{valued

rvs fXt; t = 0; 1; : : :g, we denote its weak limit by X (as t goes to 1) whenever

it exists and write Xt =)t X to denote this weak convergence [2]. We call X the

stationary version of the sequence fXt; t = 0; 1; : : :g.

The recursions (2.1) are very similar to the Lindley recursion for single server

queues, and by arguments similar to those used in that context, we can show the

following facts: De�ne

�`(�;R) �
KX
k=1

�krk`; ` = 1; : : : ; L (4.1)

as the o�ered load to the `th output bu�er. Whenever the conditions �`(�;R) < 1,

` = 1; : : : ; L, are satis�ed simultaneously, there exists an INL{valued rv Q(�;R) �

(Q1(�;R); : : : ; QL(�;R)) such that Qt(�;R) =)t Q(�;R). In such circumstances,

the system is termed stable and Q(�;R) is called the steady{state queue size vector

or the queue size in statistical equilibrium.

If for some ` = 1; : : : ; L, we only have �`(�;R) < 1, then the one{dimensional

convergence Q`
t(�;R) =)t Q

`(�;R) still takes place, in which case the `th output

queue is said to be stable.

8



We now turn to delay measures. Fix ` = 1; : : : ; L, and assume the stability

condition �`(�;R) < 1. For each n = 1; 2; : : :, with tn denoting the arrival epoch

of the batch containing the nth cell, we have the relation W `
n(�;R) = Q`

tn
(�;R).

Because the arrival of batches to the `th output port is governed by the Bernoulli

sequence f1[�`t+1(�;R) > 0]; t = 0; 1; : : :g, we get W `
n(�;R) =)n Q`(�;R) upon

invoking the property that Bernoulli arrivals see time average (BASTA) [12]. Hence,

W `
n(�;R) =)n W

`(�;R) with W `(�;R) =st Q
`(�;R).

For each n = 1; 2; : : :, let G`
n(�;R) denote the size of the batch that contains

the nth cell to arrive at the `th output port. Interpreting B`
n(�;R) as the (random)

position of the nth cell within this batch, we readily see that

P[B`
n(�;R) = i] =

KX
j=i

1

j
P[G`

n(�;R) = j]; i = 1; : : : ;K: (4.2)

Because batch sizes are i.i.d. rvs all distributed according to the rv �`1(�;R), it is

well known [3] that G`
n(�;R) =)n G

`(�;R), where the rv G`(�;R) is distributed

according to

P[G`(�;R) = i] =
1

E[�`1(�;R)]
iP[�`1(�;R) = i]; i = 1; : : : ;K: (4.3)

Therefore, B`
n(�;R) =)n B

`(�;R) with

P[B`(�;R) = i] =
1

E[�`1(�;R)]

KX
j=i

1

j
� jP[�`1(�;R) = j]

=
1

E[�`1(�;R)]
P[�`1(�;R) � i]; i = 1; : : : ;K: (4.4)

In other words, the rv B`(�;R) is the forward recurrence time associated with

�`1(�;R).

Because for each n = 1; 2; : : :, the rvs W `
n(�;R) and B`

n(�;R) are independent,

we obtain from (3.1) that D`
n(�;R) =)n D

`(�;R) for some rv D`(�;R) given by

D`(�;R) =st Q
`(�;R) +B`(�;R) with W `(�;R) and B`(�;R) independent rvs.

In view of the independence mentioned at the end of Section 3, wheneverQt(�;R)

=)t Q(�;R), we conclude from (3.2) that there exists an INL{valued rvH(�;R) =

(H1(�;R); : : : ;HL(�;R)) such that H t(�;R) =)t H(�;R) and

Hk(�;R) =st

LX
`=1

1[�k0 (rk) = `]
�
Q`(�;R) + J

k;`
0 (�;R)

�
; k = 1; : : : ;K;
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where the rvs Q(�;R), �k0 (rk) and (Jk;1
0 (�;R); : : : ; Jk;L

0 (�;R)) are mutually inde-

pendent. Using the BASTA property, this time with respect to the arrival process

fAk
t+1(�k); t = 0; 1; : : :g, we �nd T k

n (�;R) =)n T
k(�;R) with

T k(�;R) =st H
k(�;R); k = 1; : : : ;K: (4.5)

5 The Main Results

We now present the main stochastic comparison results that describe how changes

in arrival rates and routing probabilities a�ect the various performance measures.

To simplify the presentation, for each rate vector � and routing matrix R, we write


`(�;R) � (�1r1`; : : : ; �KrK`); ` = 1; : : : ; L:

We begin with results concerning performance measures that are associated with

a single output destination; proofs are available in Section 7.

Theorem 5.1 Assume that for some ` = 1; : : : ; L, the comparison


`(�;R) �w 
`(�
0;R0) (5.1)

holds. Then, we have

Q`
t(�

0;R0) �icx Q
`
t(�;R); t = 0; 1; : : : : (5.2)

If in addition �`(�;R) < 1, then in statistical equilibrium we have

Q`(�0;R0) �icx Q`(�;R); (5.3)

B`(�0;R0) �st B`(�;R) (5.4)

and

D`(�0;R0) �icx D`(�;R): (5.5)

Under (5.1), the stability condition �`(�;R) < 1 implies �`(�
0;R0) < 1, so that

the `th output queue is stable in both systems and the comparisons (5.3){(5.5) are

indeed meaningful.

We next turn to results concerning the delay measures associated with input

ports. Throughout, for any element x in IRK we write x(k) to denote the vector in

IRK�1 obtained from x by removing its kth component, k = 1; 2; : : : ;K. The �rst

set of results is presented in Theorem 5.2 and discussed in Section 8.
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Theorem 5.2 Fix k = 1; : : : ;K. Assume that the comparisons


`(�;R) �w 
`(�
0;R0) and 
`(�;R)(k) �w 
`(�

0;R0)(k); ` = 1; : : : ; L

simultaneously hold, and that rk = r0k. If �`(�;R) < 1, ` = 1; : : : ; L, then we have

T k(�0;R0) �icx T
k(�;R): (5.6)

The conclusion (5.6) will simultaneously hold for all k = 1; : : : ;K provided the

conditions R = R0, and 
`(�;R)(k) �w 
`(�
0;R)(k), k = 1; : : : ;K, ` = 1; : : : ; L, si-

multaneously hold, in which case the conditions 
`(�;R) �w 
`(�
0;R), ` = 1; : : : ; L,

are now automatically implied [13, B.2, p. 109].

To formulate the second set of results concerning delay measures associated with

input ports, we need to place restrictions on the switching matrices: The addressing

scheme is said to be input independent if its switching matrix R has all its row

identical, say rk = r, k = 1; : : : ;K, for some vector r in SL. Bi-group and hot-

spot tra�c patterns are instances of input independent addressing schemes. Under

this constraint, we explore how the routing vector r a�ects the delay performance

measure (3.2), as the input rate vector � remains �xed. The dependency on the

pair (�;R) will be abbreviated to read (�; r), where r is the common row of R.

The main result along these lines is contained in Theorem 5.3 below, and its proof

discussed in Section 9.

Theorem 5.3 Fix k = 1; : : : ;K, and consider two input independent switching

matrices R and R0 with common rows r and r0, respectively. If �`(�;R
0) < 1,

` = 1; : : : ; L, then we also have

T k(�; r) �icx T
k(�; r0) (5.7)

provided r � r0.

From Theorem 5.3, we immediately conclude that for input delay measures, the

uniform addressing scheme U � (uk`) (given by 1.2) is best amongst all input

independent schemes.

Furthermore, in the comparison of Theorem 5.1, if the total load (4.1) to the `th

output queue is constrained to some given value, then condition (5.1) is equivalent

to


`(�;R) � 
`(�
0;R0): (5.8)

11



Theorem 5.1 thus suggests a way to obtain lower and upper bounds on the queue size

metrics (among other things) by seeking the \extremizers" in the conditions (5.8)

under certain load constraints. This leads to the generic optimization problems

discussed by the authors in [7]. There we also identify the worst and best cases,

and under some special circumstances, show that uniform addressing and uniform

tra�c patterns exhibit optimality properties.

6 On Sums of Bernoulli Random Variables

To prepare for the proof of Theorem 5.1 given in the next section, we begin with

several comparison results for sums of independent Bernoulli rvs; some of these facts

are well known while others appear to be new. For p in [0; 1], let X(p) denote a

f0; 1g{valued rv with P[X(p) = 1] = p. Moreover for p in [0; 1]K , we de�ne the rv

SK(p) as the sum

SK(p) �
KX
i=1

Xi(pi)

where the rvs X1(p1); : : : ; XK(pK) are assumed mutually independent. For any

mapping ' : IN ! IR, we also de�ne the mapping �K : [0; 1]K ! IR by

�K(p) � E['(SK(p))]; p 2 [0; 1]K : (6.1)

Lemma 6.1 For any mapping ' : IN ! IR, the mapping �K : [0; 1]K ! IR given

by (6.1) is

1. Schur{concave if ' is integer{convex;

2. increasing if ' is increasing.

Claim 1 is established in [13, F.1, p. 360], and Claim 2 follows by an easy coupling

argument. Lemma 6.1 easily translates into the following comparison results for

sums of independent Bernoulli rvs.

Lemma 6.2 Let p and q be vectors in [0; 1]K . Then the following statements hold:

1. If p � q, then SK(q) �cx SK(p);

2. If p �w q, then SK(q) �icx SK(p):

12



Proof. (Claim 1) For any integer{convex mapping ' : IN ! IR, the mapping �K

given by (6.1) is Schur{concave by Claim 1 of Lemma 6.1. The condition p � q

thus implies �K(q) � �K(p), and the conclusion SK(q) �cx SK(p) follows from the

de�nition of the ordering �cx.

(Claim 2) As it is well known [13, 5.A.9, p. 123], the condition p �w q is

equivalent to the existence of a vector r (a priori in IRK) such that r � p and

r � q. The constraint r � p is equivalent to rk � pk, k = 1; : : : ;K, whence rk � 1,

k = 1; : : : ;K, because p belongs to [0; 1]K . From r � q, we get min rk � min qk � 0,

so that rk � 0, k = 1; : : : ;K. Therefore, r is an element in [0; 1]K .

Consider now a mapping ' : IN ! IR which is integer{convex and increas-

ing. Upon invoking Lemma 6.1, we get from Claim 2 that �K(r) � �K(p) be-

cause r � p, and from Claim 1 that �K(q) � �K(r) because r � q. Hence,

�K(q) � �K(p) and the comparison SK(q) �icx SK(p) follows as in the �rst part

of the proof.

Taking our cue from (4.4), with each non{zero vector p in [0; 1]K , we associate

an IN{valued rv BK(p) with probability distribution given by

P[BK(p) = i] �
1

E[SK(p)]
P[SK(p) � i]; i = 1; : : : ;K:

The rv BK(p) is known as the forward recurrence time associated with SK(p). For

any mapping ' : IN ! IR, straightforward calculations show that

E['(BK(p))] =
1

E[SK(p)]

KX
i=1

'(i)
KX
j=i

P[SK(p) = j]

=
1

E[SK(p)]

KX
j=1

P[SK(p) = j]

0@ jX
i=1

'(i)

1A
=

1

E[SK(p)]
E[ b'(SK(p))]; p 2 [0; 1]K (6.2)

where the mapping b' : IN ! IR is de�ned by

b'(0) � 0; b'(j) � jX
i=1

'(i); j = 1; 2; : : : : (6.3)

Proposition 6.1 Let p and q be non{zero vectors in [0; 1]K . If p � q, then

BK(q) �st BK(p): (6.4)

13



Proof. We need to show that

E['(BK(q))] � E['(BK(p))] (6.5)

for any increasing mapping ' : IN ! IR. By Claim 1 of Lemma 6.2, the condition

p � q implies SK(q) �cx SK(p), whence

E[ b'(SK(q))] � E[ b'(SK(p))] (6.6)

for any increasing mapping ' because the mapping b' : IN ! IR is then integer{

convex. We obtain (6.5) via (6.2) upon combining (6.6) with the equalityE[SK(p)] =

E[SK(q)] derived from the condition p � q.

Under the condition p � q, the validity of (6.6) is an immediate consequence of

Lemma 6.2 once we note the equality of the means. It is then natural to wonder

whether the conclusion (6.4) still holds under the weaker condition p �w q. In order

to answer this question in the a�rmative, we need the following result.

Proposition 6.2 Let p and q be non{zero vectors in [0; 1]K . If p � q, then the

comparison BK(q) �st BK(p) also holds.

To the best of the authors' knowledge, Proposition 6.2 appears to be new; its

proof is given in Appendix A.

Proposition 6.3 Let p and q be non{zero vectors in [0; 1]K . If p �w q, then the

comparison BK(q) �st BK(p) still holds.

Proof. As in the proof of Claim 2 of Lemma 6.2, the condition p �w q is equivalent

to the existence of a vector r (in [0; 1]K) such that r � p and r � q. The desired

conclusion is now immediate once we note that by Proposition 6.1, we already have

BK(q) �st BK(r), and that BK(r) �st BK(p) holds by Proposition 6.2.

7 A Proof of Theorem 5.1

We begin by noting that under (5.1) the comparison

�`t+1(�
0;R0) �icx �

`
t+1(�;R); t = 0; 1; : : : (7.1)

14



is a simple rephrasing of Claim 2 of Lemma 6.2. Therefore the validity of (5.2) can

be established by a straightforward induction argument as is done for the Lindley

recursion [15, Theorem 8.6.2, p. 274]: The basis step follows by assumption because

Q`
0(�

0;R0) = Q`
0(�;R) = 0. Next, we assume that Q`

t(�
0;R0) �icx Q`

t(�;R) for

some t = 0; 1; : : :. Obviously,

[Q`
t(�

0;R0)� 1]+ �icx [Q
`
t(�;R)� 1]+ (7.2)

because�icx propagates under convex increasing transformations. The rvs �
`
t+1(�

0;R0)

andQ`
t(�

0;R0) (resp. �`t+1(�;R) andQ`
t(�;R)) being independent, we conclude from

(7.1) and (7.2) that the comparisonQ`
t+1(�

0;R0) �icx Q
`
t+1(�;R) holds because �icx

is preserved under convolution. This completes the induction step.

Under (5.1), the stability condition �`(�;R) < 1 implies �`(�
0;R0) < 1, so

that the `th output queue is stable in both cases. It is simple matter to show

(say by transform techniques) that the steady{state queue size rvs Q`(�;R) and

Q`(�0;R0) both have all their moments �nite. On the other hand we also note that

Q`
t(�;R) �st Q

`
t+1(�;R) �st Q

`(�;R) for all t = 0; 1; : : :; this monotonicity result

follows by an easy induction argument [19, Theorem 2.2.8, p. 48] which is omitted

for the sake of brevity. Combining these remarks, we readily conclude that the rvs

fQ`
t(�;R); t = 0; 1; : : :g are uniformly integrable, whence

lim
t!1

E
h
Q`

t(�;R)
i
= E

h
Q`(�;R)

i
;

and Proposition 1.3.2 of [19, p. 10] can now be applied on (5.2) to yield the conclu-

sion (5.3).

The comparison (5.4) is a restatement of Proposition 6.3; in particularB`(�0;R0)

�icx B`(�;R) by virtue of the fact that the ordering �st is stronger than �icx.

Finally, the comparison (5.5) follows from (3.1) (in statistical equilibrium) upon

combining this last remark with the independence of the rvs.

8 A Proof of Theorem 5.2

The steps leading to (5.6) can be traced back to the following remark which readily

follows from (3.2): For any mapping ' : IR! IR, the expression

E['(Hk
t (�;R))] =

LX
`=1

rk`E
h
'
�
Q`

t(�;R) + J
k;`
t (�;R)

�i
; t = 0; 1; : : : (8.1)

15



holds for each k = 1; : : : ;K. This fact suggests the need for the following interme-

diary lemma.

Lemma 8.1 Fix k = 1; : : : ;K; and ` = 1; : : : ; L. If the condition


`(�;R)(k) �w 
`(�
0;R0)(k) (8.2)

holds, then

Jk`
t (�0;R0) �icx J

k`
t (�;R); t = 0; 1; : : : : (8.3)

Proof. By Claim 2 of Lemma 6.2, the comparison

Nk`
t+1(�

0;R0) �icx N
k`
t+1(�;R); t = 0; 1; : : : (8.4)

holds under (8.2).

Next, for any mapping ' : IR! IR, straightforward calculations show that

E['(Jk;`
t (�;R))] =

K�1X
i=0

'(i+ 1)
K�1X
n=i

1

n+ 1
P[Nk;`

t+1(�;R) = n]

=
K�1X
n=0

P[Nk;`
t+1(�;R) = n]

1

n+ 1

nX
i=0

'(i+ 1)

= E['av(N
k`
t+1(�;R))]; t = 0; 1; : : : (8.5)

where we have set

'av(n) �
1

n+ 1

nX
i=0

'(i + 1); n = 0; 1; : : : : (8.6)

In Appendix B, we show that the mapping 'av : IN ! IR is integer{increasing

convex whenever the mapping ' : IR! IR is increasing convex. Therefore, for every

increasing convex mapping ' : IR! IR, the inequality (8.4) yields

E['av(N
k;`
t+1(�

0;R0))] � E['av(N
k;`
t+1(�;R))]; t = 0; 1; : : :

and the conclusion (8.3) immediately follows via (8.5).

The next result can be interpreted as a transient version of Theorem 5.2.
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Proposition 8.1 Fix k = 1; : : : ;K and assume conditions (5.1) and (8.2) to hold

for each ` = 1; : : : ; L. If rk = r0k, then

Hk
t (�

0;R0) �icx H
k
t (�;R); t = 0; 1; : : : : (8.7)

Proof. Fix ` = 1; : : : ; L and t = 0; 1; : : :. Combining Theorem 5.1 and Lemma 8.1

we immediately get under the enforced independence that

Q`
t(�

0;R0) + J
k;`
t (�0;R0) �icx Q

`
t(�;R) + J

k;`
t (�;R)

as we recall that �icx is closed under convolution. Therefore, for each ` = 1; : : : ; L,

we have

E
h
'(Q`

t(�
0;R0) + J

k;`
t (�0;R0))

i
� E

h
'(Q`

t(�;R) + J
k;`
t (�;R))

i
(8.8)

for every increasing convex mapping ' : IR ! IR. In that case, with rk = r0k, we

combine (8.1) and (8.8) to get

E
h
'(Hk

t (�
0;R0))

i
� E

h
'(Hk

t (�;R))
i

and the conclusion (8.7) is obtained.

We are now in position to complete the proof of Theorem 5.2: Assume the system

to be stable, i.e., �`(�;R) < 1, ` = 1; : : : ; L. It was already pointed out in Section 7

that for each ` = 1; : : : ; L, the rvs fQ`
t(�;R); t = 0; 1; : : :g are uniformly integrable.

On the other hand, for each k = 1; 2; : : : ;K, the rvs fJk;`
t (�;R); t = 0; 1; : : :g

all have bounded support f1; : : : ;Kg, whence are uniformly integrable, and it is

plain from (3.2) that the rvs fHk
t (�;R); t = 0; 1; : : :g are also uniformly integrable.

Applying Proposition 1.3.2 of [19, p. 10] to the transient comparison (8.7), we get

Hk(�0;R0) �icx H
k(�;R); t = 0; 1; : : :

in statistical equilibrium, and the conclusion (5.6) is now immediate from (4.5).

9 A Proof of Theorem 5.3

The proof of Theorem 5.3 relies on several notions of stochastic convexity which

have recently received a great deal of attention [16, 17]: With � denoting a convex

subset of IR, we say that the collection fX(�); � 2 �g of IR{valued rvs is

17



1. stochastically increasing and convex { in short SICX { if for any increasing

and convex function ' : IR ! IR, the mapping � ! E['(X(�))] is increasing and

convex on � (whenever de�ned);

2. stochastically increasing and convex in sample path sense { in short SICX(sp)

{ if for any four values �i, i = 1; 2; 3; 4; in �, satisfying �1 � �2 � �3 � �4 and

�1 + �4 = �2 + �3, there exist four rvs bXi; i = 1; 2; 3; 4; de�ned on a common

probability space such that bXi =st X(�i), i = 1; 2; 3; 4, and the four rvs satisfy the

inequalities bX2 + bX3 � bX1 + bX4 and bXj � bX4; j = 1; 2; 3:

The reader is referred to [16, 17] for proofs and additional details concerning these

notions of stochastic convexity. For our purpose here, the single most important

fact relates to the stochastic convexity of Bernoulli rvs, a property �rst pointed out

in [16, Example 4.4, p. 438]:

Lemma 9.1 For 0 � p � 1, let X(p) denote a f0; 1g{valued Bernoulli rv with

P[X(p) = 1] = p. Then fX(p); p 2 [0; 1]g is SICX(sp).

Next, consider an arrival vector � and a switching matrix R which is input

independent, with common row vector r. For each k = 1; : : : ;K; and ` = 1; : : : ; L, in

the notation of Lemma 9.1, we have 1[�kt (rk) = `] =st X(r`) so that the distribution

of the rvs �`t+1(�; r) and N
k;`
t+1(�; r) are fully determined by the vectors r`� and

r`�
(k), respectively. We account for this dependency by modifying the notation to

�`t+1(r`�) and N
k;`
t+1(r`�

(k)), respectively; similar modi�cations are made for derived

quantities.

Lemma 9.2 Fix k = 1; : : : ;K; ` = 1; : : : ; L and t = 0; 1; : : :. For every input rate

vector �, the following statements hold:

1. The collection of rvs fJk`
t (r`�

(k)); r` 2 [0; 1]g is SICX;

2. The collection of rvs fQ`
t(r`�); r` 2 [0; 1]g is SICX.

Proof. (Claim 1) By Lemma 9.1, the collection of Bernoulli rvs f1[�jt (rj) = `]; r` 2

[0; 1]g is SICX(sp), and so is the collection of rvs fAj
t+1(�j)1[�

j
t (rj) = `]; r` 2 [0; 1]g,

j = 1; : : : ;K. Because the SICX(sp) property is stable under convolution [16,

Theorem 3.10, p. 436], the collection of rvs fNk`
t (r`�

(k)); r` 2 [0; 1]g is SICX(sp),
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thus also SICX [16, Theorem 3.6, p. 435]. The desired conclusion readily follows

from this last fact, the relation (8.5) and Lemma B.1.

(Claim 2) By the argument given in the proof of Claim 1, the collection of rvs

f�`t+1(r`�); r` 2 [0; 1]g is SICX(sp). Because this property is preserved under convex

increasing transformations [16, Proposition 3.5, p.434], an easy induction argument

using the recursion (2.1) shows that the collection of rvs fQ`
t(r`�); r` 2 [0; 1]g is

SICX(sp), thus SICX [16, Theorem 3.6, p. 435].

Proposition 9.1 Fix k = 1; : : : ;K, and consider two input independent switching

matrices R and R0 with common rows r and r0, respectively. If r � r0, then

Hk
t (�; r) �icx H

k
t (�; r

0); � 2 [0; 1]K ; t = 0; 1; : : : : (9.1)

Proof. Fix the input rate vector � and t = 0; 1; : : :. For any mapping ' : IR! IR,

we can use (8.1) to write

E
h
'(Hk

t (�; r))
i
=

LX
`=1

r`�
k
t (r`�); r 2 SL

where for each ` = 1; : : : ; L, we have set

�k
t (r`�) � E

h
'
�
Q`

t(�; r) + J
k;`
t (�; r)

�i
; r` 2 [0; 1];

these expectations are indeed independent of `.

Under the enforced independence assumptions, we see by Lemma 9.2 that the

collection of rvs fQ`
t(r`�) + J

k;`
t (r`�

(k)); r` 2 [0; 1]g is also SICX [17, Theorem 5.3,

p. 521]. Therefore, for any increasing and convex mapping ' : IR ! IR, the

mappings r` ! �k
t (r`�), ` = 1; : : : ; L, are increasing and convex, and the mappings

r` ! r`�
k
t (r`�), ` = 1; : : : ; L, are therefore convex on the interval [0; 1]. By a well{

known result of Schur [13, C.1., p. 64], the mapping r ! E
h
'(Hk

t (�; r))
i
is thus

Schur{convex on SL, whence

E
h
'(Hk

t (�; r))
i
� E

h
'(Hk

t (�; r
0))
i

whenever r � r0, and the conclusion (9.1) follows from the de�nition of �icx.

The �nal step to establish (5.7) from (9.1) is simply as in the proof of Theo-

rem 5.2, and is therefore omitted.
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A Appendix

Let pK = (p1; : : : ; pK) denote an arbitrary element of [0; 1]K . For any function

' : IN ! IR, we de�ne

�?
K(p

K) � E
h
'(BK(p

K))
i
=

b�K(p
K)

E[SK(pK)]
; pK 2 [0; 1]K

where with the notation (6.3), we have set

b�K(p
K) � E

h b'(SK(pK))i ; pK 2 [0; 1]K :

The main result is contained in Lemma A.1.

Lemma A.1 Consider an increasing mapping ' : IN ! IR. For each K = 1; 2; : : :,

the mapping �?
K : [0; 1]K ! IR is increasing, or equivalently, BK(p

K) �st BK(q
K)

whenever pK � qK in [0; 1]K .

Proof. For each K = 0; 1; : : :, we view any element pK+1 = (p1; : : : ; pK ; pK+1) of

[0; 1]K+1 as the concatenation of the vector pK = (p1; : : : ; pK ; ) (in [0; 1]K) with the

scalar pK+1 (in [0; 1]). With this notation, we �nd that

b�K+1(p
K+1) = E[ b' �SK(pK) +XK+1(pK+1)

�
]

= pK+1E[ b'(SK(pK) + 1)] + (1� pK+1)E[ b'(SK(pK))]
= pK+1E[ b'(SK(pK) + 1)� b'(SK(pK))] +E[ b'(SK(pK))]
= pK+1E['(SK(p

K) + 1)] +E[ b'(SK(pK))]; (A.1)

and

E[SK+1(p
K+1)] = E[SK(p

K)] + pK+1: (A.2)

Therefore,

�?
K+1(p

K+1) =
pK+1E['(SK(p

K) + 1)] +E[ b'(SK(pK))]
pK+1 +E[SK(pK)]

: (A.3)

To show that the mapping �?
K+1 : [0; 1]K+1 ! IR is increasing, it su�ces to

show that �?
K+1 is increasing in pK+1 (with p

K �xed). Di�erentiating (A.3) with

respect to pK+1, we �nd

@

@pK+1
�?
K+1(p

K+1) =
E[SK(p

K)]E['(SK(p
K) + 1)]�E[ b'(SK(pK))]

(pK+1 +E[SK(pK)])
2
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and the desired conclusion now follows if we can show

E[SK(p
K)]E['(SK(p

K) + 1)]�E[ b'(SK(pK))] � 0; pK 2 [0; 1]K : (A.4)

We shall prove that this is indeed the case by induction on K.

� The basis step: When K = 1, we see that

E[S1(p1)]E['(S1(p1) + 1)]�E[ b'(S1(p1))]
= p1('(1)(1 � p1) + '(2)p1)� p1'(1)

= ('(2) � '(1))p21 � 0

because the mapping ' : IN ! IR is assumed increasing.

� The induction step: Next, suppose that (A.4) holds for some K = 1; 2; : : :.

We then observe from (A.1){(A.2) that

E[SK+1(p
K+1)]E['(SK+1(p

K+1) + 1)] �E[ b'(SK+1(p
K+1))]

= (pK+1 +E[SK(p
K)])

�
pK+1E['(SK(p

K) + 2)]

+ (1� pK+1)E['(SK(p
K) + 1)]

�
�
�
pK+1E['(SK(p

K) + 1)] +E[ b'(SK(pK))]�
= pK+1

�
pK+1 +E[SK(p

K)]
��
E['(SK(p

K) + 2)] �E['(SK(p
K) + 1)]

�
+ E[SK(p

K)]E['(SK(p
K) + 1)]�E[ b'(SK(pK))]

� 0

because E['(SK(p
K)+2)] � E['(SK(p

K)+1)] by the monotonicity of ', and upon

using the induction hypothesis. This completes the proof of the induction step.

B Appendix

With any mapping ' : IN ! IR, we associate the \averaged" mapping 'av : IN ! IR

introduced in (8.6). The following result, which is used in the proof of Proposi-

tion 8.1, shows how several properties of ' are inherited by 'av .

Proposition B.1 For any mapping ' : IN ! IR, the mapping 'av : IN ! IR

de�ned by (8.6) is

1. integer{increasing if ' is integer{increasing;
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2. integer{convex if ' is integer{convex.

Proof. (Claim 1) For n = 0; 1; : : :, we have

'av(n+ 1)� 'av(n) =
1

n+ 2

"
'(n+ 2)�

1

n+ 1

nX
i=0

'(i+ 1)

#
� 0 (B.1)

because ' is integer{increasing.

(Claim 2) For n = 0; 1; : : :, using (B.1), we can write

'av(n+ 2)� 2'av(n+ 1) + 'av(n)

=
1

n+ 3

"
'(n+ 3)�

1

n+ 2

n+1X
i=0

'(i + 1)

#

�
1

n+ 2

"
'(n+ 2)�

1

n+ 1

nX
i=0

'(i+ 1)

#

=
1

n+ 3
'(n+ 3)�

1

n+ 2
'(n+ 2)

�
1

n+ 2

"
1

n+ 3

n+1X
i=0

'(i + 1)�
1

n+ 1

nX
i=0

'(i+ 1)

#

=
1

n+ 3
'(n+ 3)�

1

n+ 2
'(n+ 2)

�
1

n+ 2

"
1

n+ 3
'(n+ 2)�

2

(n+ 1)(n+ 3)

nX
i=0

'(i+ 1)

#

=
1

n+ 3

"
'(n+ 3)�

n+ 4

n+ 2
'(n+ 2) +

2

(n+ 1)(n+ 2)

nX
i=0

'(i + 1)

#
: (B.2)

Setting

e'av(n) � '(n+ 3)�
n+ 4

n+ 2
'(n+ 2) +

2

(n+ 1)(n+ 2)

nX
i=0

'(i+ 1); n = 0; 1; : : : ;

we see from (B.2) that the integer{convexity of 'av is equivalent to

e'av(n) � 0; n = 0; 1; : : : : (B.3)

We shall prove this claim by induction on n.

� The basis step: For n = 0, we have e'av(0) = '(3)�2'(2)+'(1) � 0 because

' is integer{convex.
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� The induction step: Suppose that (B.3) holds for some n = 0; 1; : : :. Because

'(n+ 4) � 2'(n+ 3)� '(n+ 2) by the integer{convexity of ', we observe that

e'av(n+ 1)

= '(n+ 4)�
n+ 5

n+ 3
'(n+ 3) +

2

(n+ 2)(n+ 3)

n+1X
i=0

'(i+ 1)

� 2'(n+ 3)� '(n+ 2)�
n+ 5

n+ 3
'(n+ 3) +

2

(n+ 2)(n+ 3)

n+1X
i=0

'(i+ 1)

=
n+ 1

n+ 3
'(n+ 3)�

(n+ 1)(n+ 4)

(n+ 2)(n+ 3)
'(n+ 2) +

2

(n+ 2)(n+ 3)

nX
i=0

'(i + 1)

=
n+ 1

n+ 3
e'av(n) � 0

upon using the induction hypothesis. This completes the proof of the induction

step.
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