
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Collaborative Simulation for Hybrid Networks

by S. Gupta, J.S. Baras, G.C. Atallah

CSHCN T.R. 96-15
(ISR T.R. 96-80)

Collaborative simulation for hybrid networks �

Sandeep Gupta John S. Baras y

George C. Atallah z

Center for Satellite and Hybrid Communication Networks

Institute of Systems Research

University of Maryland, College Park MD

December 10, 1996

Abstract

An experiment for using more than one simulation of sub-networks

collaborating as a single large simulation is suggested, based on work

with a similar situation. The background and relevant details of the

initial solution are described to provide an outline for the solution.

Work on this method will help development of simulations for hybrid

networks, where newer pieces may be added to the simulation with-

out having to build a large, monolithic and a site-centric development

e�ort.

�This material is based upon work supported in part by the National Science Foun-
dation under Grant No. NSF EEC 94-02384, NASA-GSFC contract number NAS532378,
and by the Center for Satellite and Hybrid Communication Networks under NASA con-
tract NAGW-2777, and the State of Maryland. Some of this work was done for a similar
situation in an earlier Automatic Network Fault Management project: the time e�ciency
of the simulations. Eventually, a second approach was suggested there, and the part of
the work that did not get used there forms the basis for this note.

yAlso with Department of Electrical Engineering.
zWith the Institute of Systems Research during part of this work.

1

1 Introduction

Simulating the execution of networking code in a discrete event simulation
environment is useful for the study of the behavior of the networking protocol
implementations and may be useful for the study of the behavior of protocol
itself. The level of detail limits the size of the simulated network or the
complexity of the applications that need to be studied. This concern can be
addressed by using a faster computer, to some extent only.

>From the point of view of the design of simulations for hybrid networks,
a monolithic architecture of the simulation may constrain the development
and maintenance of the entire simulation to one location. In a collaborative
e�ort, individual pieces of software and their simulations may be developed
at di�erent places. In particular while building a hybrid network, these
pieces may be built at di�erent collaborating locations. Also, it may not be
possible to visualize the �nal simulation at the very start as pieces of these
hybrid networks, such as wireless, mobile, or high speed links continue to
keep evolving.

The individual pieces of the simulation can be quite complex, e.g., an
ATM switch, or even a hybrid link, involving high speed interfaces. Even
at some of the usual link speeds, the number of events generated can be
enormous. Some of the detail can be abstracted, e.g., for the study of the
interaction between the protocols and the application at a determined link
performance, it may not be useful or even feasible to simulate cell or packet
level behavior. Any experiment requiring the simulation of packet level be-
havior leads to handling a large number of events, unless speci�cally designed
otherwise. Even then, unless such a redesign is done at all the collaborating
nodes, the inter-operation of these simulations will be complicated. It will
be useful to make a beginning towards getting a set of simulations to work
together from the point of view of scalability, and for understanding the
inter-operability of simulations running on di�erent machines.

Several simulators come with implementations of popular or otherwise
important protocols as modules. The interesting idea would be to use exist-
ing modules, without having to rewrite them. Modules for certain complex
protocols for ATM, wireless, inter-networking and for complex link and node
behavior such as for satellite links, mobile hosts and applications are avail-
able with mature simulation products.

Avoiding a rewrite will allow the use of detailed module libraries, and
may result in saving the development e�ort if such an approach works well.
This was the motivation behind initial work to resolve a similar situation
described here. A key point is that interfaces for natural inter-operation are

2

available without having to force-�t or redesign existing pieces, even while
studying hybrid networks.

2 Available background work

The background for this work is the following method for improving the
time e�ciency of a WAN tra�c simulations by distributing sub-network
simulations over hosts. A proof of principle minimal system was written
and tested.

Simulation of heavy tra�c conditions on large packet switched subnet-
works using discrete event simulators can be limited in performance by the
complexity of code as well as by the rate of events the simulator can handle.
During a particular set of simulations it was found that even while simulat-
ing code as complex as transport or networking protocols running on several
nodes, the limiting factor was the host computers capability to handle the
rate of events that were generated in the simulation. Small simulations de-
signed for a particular project were taking a long time, making the initial
arrangement impractical for its application. (Later, a second solution was
suggested and used for resolving that situation.) The number of events in
this simulation were dependent on the number of simulated end-systems and
the number of applications they ran. The simulation was intended to study
both network and application behavior and this in turn limited the size of
the subnetwork that would be used in a particular run. It was required to
generate more data from the simulations and yet make it more realistic by
adding more complexity to the network, so that certain network manage-
ment algorithms may be tested. In the following, a set of routines for running
several autonomous simulations of subnetworks with a loosely synchronized
clock is described. A framework with placeholder routines was built and
tested in anticipation of using it to scale X.25 protocol based network simu-
lations. The target simulations did not get to the point where these routines
would be used. It uses a technique from parallel programming called barrier
synchronization, which can be adapted for use in other such applications.
These routines are written with Parallel Virtual Machine [1] programming
environment using its barrier synchronization functions. They did not get
tested with the entire simulation environment and are documented only in
the interest of further work. Some of the places that may require further
work are also listed. A technique like this may be particularly useful in
simulating a wide area network where otherwise disconnected subnetworks
are connected by satellite links.

3

3 Description of the Constraints

In general there may be two problems in distributing parts of a network sim-
ulation over hosts. Operation of the individual components together such
that they behave as a large simulation requires that clocks of these sim-
ulated sub-simulations be synchronized and there be a timely exchange of
information that needs to travel between them. If the simulation were to
be re-designed from the start, it may be possible to keep the above require-
ments in mind. In this case, the simulation used a lot of library modules for
the protocols, and re-working them in detail did not seem like an elegant
or then feasible solution. Instead some of the characteristics of the applica-
tion could be recognized to design the solution in this particular case. The
output information used from the simulation were the status and perfor-
mance averages from the nodes and links at �xed intervals in seconds, tens
of seconds, and summaries. The biggest problem was that the simulations
were running several times (an order of magnitude) slower than real time,
and this wasn't providing su�cient complexity for the simulation that the
project group needed.

The simulator used is run as an application process on the host, and did
not have mechanisms to interact with invocations on di�erent hosts. It was
also not possible to use standard reliable networking calls for interaction
among di�erent simulator invocations as calls with the same names are used
in the simulator for other routines. While it may be possible to work around
those mechanisms, it would require working with proprietary details of the
simulator. All work done with the simulator was done with the proper
interfaces and modules provided with the simulator.

The two interfaces that were required and were provided are read-write
with �les on the system, and the interface to generate the topology and
other information on the con�guration of the simulation. The �rst interface
is using standard Unix system calls, and the second is a built in capability
to provide a readable description of the simulation con�guration in terms of
the individual components, their attributes and their connections or \links"
with other components.

The implementaion of parallelism was done using a Parallel Virtual Ma-
chine (PVM). It is a programming environment that provides support for
the development and execution of programs that may use task and intra-task
parallelism on a set of hosts running the pvmd background process. Both
task and and intra-task parallelism are used in this method, along with the
ability of PVM to broadcast data to the set of tasks that are members of
a con�gurable group. The fact that pvmd background process is required

4

on the set of hosts that are to run a distributed program indirectly adds a
useful check by restricting the locations where the simulation may be run.

Given that the simulation was running several times an order of mag-
nitude slower than real time, and the parameters observed from the sim-
ulation were collected over simulated time in seconds, and looking inside
the modules for the purpose of redesigning was not an option, a solution
had to be devised to be able to scale this simulation. The standard reli-
able network IPC was not available for use with the simulation binaries.
The basic approach around which the routines were developed is as follows.
The simulation is to be divided over several hosts, and these individual
sub-simulations should be synchronized as well as it should be possible to
interchange data among them. This hosts may not all be identical as the
same simulator may typically run over several platforms on the LAN, and
this also means the individual simulated times at each host may proceed at
a di�erent rate. A coordination routine using PVM is used to provide the
necessary synchronization.

4 De�ning and Coordinating the Sub-simulations

The simulation that initiated this work involved a wide area network with
sub-networks. The simulator allows hierarchical building of subnetworks,
and links from nodes in the subnetwork can be connected to nodes in other
subnetworks. Within one such network, the subnetworks can have both
inter-network as well as intra-network tra�c. A logical way to de�ne the
individual components is to subdivide the simulations using subnetworks.
As the simulation needs to run as a single large simulation, the problems
that need to be addressed are related to keeping them synchronized. First,
they need to proceed in step with each other. Second, the network tra�c
between the sub-components has to be maintained. Both problems can be
addressed, as the simulation had an extremely low e�ciency (Simulation
Time/Wall Clock time), and the parameters required from the simulation
output were averaged over seconds, tens of seconds, etc. The interaction
between the subnetworks is in terms of packets addressed to individual nodes
in the subnetworks. Reecting a real situation in networks, the sub-network
is identi�able by the destination address in the packet. Sub-dividing the
simulation by sub-networks is logical as well as inherently suited by the
physical design as within the sub-network the connectivity may be dense.
The connectivity to other sub-networks, typically using physical trunk lines,
satellite links or other point to point links are likely to be sparser.

5

The coordination routine starts a given number of tasks and provides a
mechanism for keeping the simulated times in step. This routine is written
to work with PVM, and assumes pvmd is available on the set of hosts which
are to run this distributed simulation. During startup, this routine spawns
a given number of simulations, and waits till all the instances have read
the parameters and are done with initializing the data structures. Once it
receives this indication from the simulations, it paces the simulations using
barrier synchronization [1].

4.1 Validity of interaction among sub-simulations

The interaction between the sub-simulations can be non-trivial, and ascer-
taining the validity and accuracy of these interactions is one part that will
need to be studied. The key factor that led to this solution as a sugges-
tion is that due to the low simulation e�ciency and heavy tra�c, a time
interval may be chosen over which the tra�c may be accumulated and used
in the next interval in the adjacent node. It becomes particularly easier if
the connections last over several such time intervals, and there isn't a lot of
transient behavior. The accuracy and avoidance of deadlock by approxima-
tion of the tra�c across these intervals is dependent on this time interval.
As the coordination is centralized, on a LAN such as Ethernet, it would
be easily possible to exchange messages every second for ten to �fteen such
simulations, in turn corresponding to less than a tenth of a second in simu-
lated time for each in the original simulation. The packets in the simulator
can be time stamped, so the replay on the next sub-network can also have
inter-arrival time �delity. If it is possible to exchange messages more often,
say every tenth of a second, the delay may become a non-issue, as it would
start approaching the propagation delay of a subnetwork to subnetwork link.
Exchanging data from the central coordination routine takes the form of re-
ceiving a set of messages from all the processes (simulations) and returning
a multi-cast message to the the entire group. The interval chosen also has
a bearing on what protocol behavior may or may not be studied in a given
simulation, and will require study.

4.2 Designing using the available modules

The �rst step the above attempt to design the entire simulation was by
dividing it by subnetworks over a set of machines, as described above. Syn-
chronizing the simulations becomes a matter of scheduling an event at a �xed
simulated-time interval, independent of the rest of the simulation. This can

6

take the form of an independent clock added to the subnetwork de�nition,
or a periodic event elsewhere in the subnetwork where it will schedule a
function corresponding to the barrier synchronization function in the coor-
dination routine. In the test case, for example, the clock was attached to
the packet switch that would be part of each subnetwork.

4.3 Resolution of conicting routines

If it is found that the routine names still conict in this or a later version of
PVM using this arrangement and the problem cannot be solved by separately
compiling a library, the PVM part of the code can be split into a separate
process communicating using read/write on named pipes or other equivalent
mechanisms.

4.4 Resource requirements

Other than the computers and simulators required, as implicitly mentioned
here, further work on this activity would require one to two people skilled
in using the simulator and should have an interest in developing simulations
that will inter-operate. In addition it will require supervision and evalua-
tion of the approach by a researcher who has an overview. It is desirable
that one of the two simulator programmers or the researcher have a good
understanding of program compilation, linking and execution process.

5 Outline of the solution

This section outlines the test routines and the preliminary solution using
one of the network simulators. One piece mentioned above but not included
in this discussion is the use of IPC routines. These routines are standard.

For the simulation using this solution it is required that the network
model be modi�ed to include a synchronization activity. All protocol mod-
ules remain the same, only the overall network (sub-network) simulated has
an extra component. This may be added as a separate piece in the network,
or as in the case tested, it was placed with the switch module by adding a
synchronization event every one second. Such a placement may be useful
for subnetworks where the switch is the focal point for tra�c exchange. In
hybrid networks, the counterparts are easy to �nd. In this case, for example
the model of the WAN packet switching fabric (X.25 cloud) was included to
schedule synchronization events every second.

7

The coordination routine runs several such simulations augmented with
the synchronization event. As an example, a routine was written to run
several copies of the same simulation. The parts of the routine that may
be used in other simulations are included, and the rest is outlined next.
The discussion following the code assumes availability of the PVM run time
environment con�gured to use a set of hosts, upto the availability of the
PVM command-line. The following use does not need or make any more as-
sumptions about the details of setting up or programming PVM beyond the
ability to compile a PVM application and link it with the simulation.1 The
command line to execute the coordination routine with identical simulations
(taken for an example only) using PVM may be:

spawn syncRun number simulation

where number denotes the count of simulations to be run and simulation
denotes the actual command for executing the simulation. The outline of
code corresponding to the above synopsis is:

/*--*/

#include <system include files>

#include <pvm3.h>

main (argc, argv) int argc; char * argv[];

{

int ctid[32];

int howmany, i, w, s, n;

/* group names: */

char *sae = "StartAndEnd"; /* initialization and wrap-up */

char *es = "EverySecond"; /* synchronization */

/* Get task id */

i = pvm_mytid();

if (i < 0) {

pvm_perror(argv[0]);

return -1;

}

/* form the synchronization groups */

w = pvm_joingroup(sae);

if (w < 0) {

/* exit as above */

1The linking may be done by placing the object �les in the appropriate place in the
compilation / linking process.

8

}

/* similarly */

s = pvm_joingroup(es);

/* if this process is the first to start, */

/* then start the others. */

if (w == 0) {

int newArgc;

char *newArgv[];

int c;

/* get the number of tasks from the original */

/* command line. */

howmany = atoi (argv[1]);

/*

newArgv, newArgc are assigned from the

commandline, by stripping the count of task

*/

n = pvm_spawn (argv[2], newArgv, PvmTaskDefault, "",

howMany -1, ctid);

/* wait for this to be done, and let others know */

while (pvm_gsize(sae) < howmany);

c = pvm_initsend (PvmDataDefault);

c = pvm_pkint(&howmany, 1, 1);

c = pvm_bcast(sae, 1);

/* error checks after each line skipped */

} else { /* not the first to start */

/* get the total number of tasks. */

pvm_recv (-1, 1);

pvm_upkint (&howmany, 1, 1);

}

/* Initialization and other stuff happens before this */

/* synchronization */

pvm_barrier (sae, howmany);

while (the simulation time lasts)

pvm_barrier (es, howmany);

/* Wrapup */

pvm_barrier (sae, howmany);

.

.

}

9

The condition in the inner while loop, (while the simulation lasts) can
be derived in may ways, one example being the broadcast of the simulation
duration variable given to the real simulation. To use the coordination
routine with a set of simulations the code may be seen in three parts:

� Initializing the routines, and startup. All upto �rst synchronization
call,

� Synchronizing periodically: The while loop with the inner call for
barrier synchronization and �nally,

� Wrapping up, with the �nal synchronization call.

In the simulation, once the initial synchronization is complete, the peri-
odic call using barrier synchronization call corresponds to the synchroniza-
tion call in the simulators. These calls should perform a blocking read/write
on the named pipes. The tra�c statistics can also be exchanged between
the simulations using simple pvm send() and pvm recv() calls.

6 Summary

In this note a method for an experiment for collaborative simulation us-
ing smaller simulations of hybrid networks is suggested and many relevant
details are outlined. A successful test of an application of this work and fur-
ther study may lead to the development and inter-operation of a group of
complex simulations, potentially developed and run at di�erent sites. The
suggestion is based on work and tests in a similar situation which is also
described.

References

[1] PVM: Parallel Virtual Machine.
Or equivalent programming environment providing the subset of services

described above.

10

