TeEcHNICAL RESEARCH REPORT

Cues: File Subsystem Data Streams

by S. Gupta, J.S. Baras, S. Kelley,
N. Roussopoulos

T.R. 96-53

INIR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Cues: File Subsystem Data Streams*

Sandeep Guptal John S. Baras} Stephen Kelley} Nick Roussopoulos'?
Institute of Systems Research, University of Maryland, College Park, MD 20742
{sandeep,nick,skelley} @cs.umd. edu, baras@isr.umd.edu

July 2, 1996

Abstract

We present a system call which enables directing
high performance data transfers with in-kernel
streams. The streams are defined and run using
abstract data types called Cues, formed over the
Unix file subsystem. The system call, named
cue() , returns a descriptor, which can be used
to write requests to the newly created stream.
These requests define the flow of the stream. The
abstraction simplifies the design of applications
that transfer large amounts of data from files or
devices. It also enables high throughput when
multiple transfers are in progress. Cue code is
compact, modular, and portable. This model
also results in a simple mechanism for remotely
cueing data flow using standard connections with
peer processes. The implementation and tests
are also described in this paper.

tAlso with Department of Computer Science.

tAlso with Institute of Advanced Computer Studies.

§ Also with Department of Electrical Engineering.

*This material is based upon work supported in part
by the National Science Foundation under Grant No.
NSF EEC 94-02384, and by the Center for Satellite and
Hybrid Communication Networks under NASA contract
NAGW-2777, by the University of Maryland Institute of
Advanced Computing Studies, by ARPA under Grant
No. F30602-93-C-0177, Maryland Industrial Partner-
ships and Loral Corporation. Part of the design for this
work was also done by the first author as a summer intern
at AT&T Bell Laboratories, Murray Hill in Summer ’94.

1 Introduction

In-kernel data streaming [1] [2] is an OS service
to enable high performance transfers of data.
This is useful when the data being moved need
not be modified by the user process transferring
it from one file or device to another. We de-
scribe a new Unix system call cue() , for in-
kernel streaming of data.

Tests using the call show improved through-
put on the system for concurrent file transfers.
It turns out that scheduling of such transfers can
be done efficiently in the kernel within a process’s
time share. The performance measures reported
show up to 50% improvement over the transfers
with the standard I/O calls. Our abstraction
is over the file subsystem. This makes the con-
struct modular, and simplifies the code.

A general discussion on data streaming, in-
cluding the concept of in-kernel streaming ap-
pears in [1]. The case for such a primitive was
also made earlier, in [6]. Following this, an im-
plementation of a Unix system call, splice(),
was described in [2]. It’s implementation in-
cluded a rewrite of the file and network subsys-
tem routines. It also has a scheduling mecha-
nism for I/O from the disk for maintaining the
throughput. Data streaming through the Unix
kernel can be done at several levels, and in as
many ways. Other than the approach used in
[2], kernel abstractions such as device drivers,
System V streams modules [7] can be, and have
been used to stream data through the kernel at

client process I Server process
|
User 14 1
Kemd .
buffers : buffers
] L]
|
Disk '
g Network :
[_». v
P
|
machine A : machine B

Figure 1: Data path for user driven transfers.

interfaces and over protocol modules.

Cues, and splice [2] operate on file descriptors,
instead of lower level kernel data structures or
protocol modules.

A Cue forms a stream over the file subsystem
abstraction [5]. The transfer routines use the
kernel file objects. This places it just above the
vnode layer [4] of VFS (Virtual File System) or
it’s counterpart. Splice, on the other hand cuts
across the lower layers. The objective there was
to eliminate data copies and to take advantage
of protocol implementation specific details. This
makes it very efficient but requires an implemen-
tation for each protocol and the file subsystem
on which it is to be used.

Cue is portable across more versions of Unix as
the vnode layer is defined over different protocols
and file-systems. As a consequence of using the
standard abstraction it is extremely compact. It
performs very well for bulk data transfers.

We have not tried applications such as contin-
uous media to compare the approach with cus-
tomized rewrites of the file/network subsystem.
Splice has been well evaluated for continuous me-
dia applications [3] [6] Cues are general purpose
mechanisms that operate within the standard
Unix scheduling and file buffers framework. This
makes it easier to retain the standard accounting
and file buffering strategy.

In the next section, we present the model of

=

client process : Server process
<+ commands !
User ; A
el . : @
Kemn Cue | buffers
iaw
|
filesubsystem !
|
|
:
|

Figure 2: The model for Cue.

service provided by our system call. The perfor-
mance measurements are presented in section 4.
Section 3 describes the environment of the ex-
periment and in section 5 we describe the imple-
mentation of the system call. In the concluding
section, we also outline future work.

2 The Model

Figures 1 and 2 outline the kernel streaming con-
struct. In the first figure, the path taken by data
in standard transfers is shown, and in the second,
the basic construct is outlined.

A cue() call creates a data structure that
defines a type of stream called a Cue. These
streams are formed over the vnode layer [4] (or
it’s counterpart) in the file subsystem, and are
private to the process. The call also returns a
standard descriptor which is used to write re-
quests to define and initiate the data transfer.

A write to this descriptor is used to send re-
quests from the user process to this service, as
shown by the dotted line in figure 2. In the
current implementation, requests consist of in-
teger codes which initiate different actions. One
of these actions is to perform a data transfer.
The requests used in these tests are: changing
the offset in the source file, setting the size of
individual read/write, and setting the length of
the total transfer.

Since file descriptors define a Cue’s end-points,
cue () can be used to connect a socket and a Cue
descriptor. This means another process across
the network can interact with the Cue without
having to go via a user process. This is useful for
popular applications that use file servers, viz.,
ftp, www servers, and distributed databases. In
particular it provides high performance and sim-
plifies user code. The abstraction in the kernel is
at a sufficiently high level to maintain the access
rights desired by the local process.

At invocation, cue () initializes the default pa-
rameters and context for the transfer, including
per-process kernel buffers to be used for moving
data between the network and the file-system
routines. Subsequent writes to the control de-
scriptor either modify the parameters or initiate
the transfer.

No changes are required to cue() for the sec-
ond invocation for remote cuing of the transfer.
This simplifies the code structure. Consider the
the alternative to this in the standard case. It
would require running another connection in par-
allel to the transfer, and either need to interrupt
the main transfer to check for requests, or have
routines equivalent of RPC for servicing the re-
quest. Both involve scheduling by the user pro-
cesses. Requests as simple as file or block reads
can be serviced by the kernel directly. For test-
ing this concept, the only additional line of code
required was to set the read size of service on
the second invocation (to avoid blocking), using
commands described above.

For transfers to proceed in the kernel, a mech-
anism is required to schedule the transfers. Tt
is important to ensure that transfers for a pro-
cess do not exceed it’s quantum. A very sim-
ple method was found to work well. We specify
the schedule as a repeating sequence of a fixed
number of blocks ‘k’ transferred followed by a
fixed delay ‘t’ between them. The two parame-
ters (k,t), are specific to each invocation of the
service. During the transfer, ‘k’ read/write op-
erations are executed, and then the processor is
relinquished for time ‘t’ (in addition to the time

L1 :

=

Figure 3: Remote control with two invocations.

|
local control |:| ! |:|
i , remote i
‘—‘>‘: User | control —= 5 User
| 0
- Kemel | control path Kermnel
remotely : " for remote
controlled ~ OU€ 2 | cue = <
cue | s data path
|
|
|
|

while waiting for the disk block to be read from
the disk). The transfers are executed only during
the process’s share of CPU time. Overshoots are
currently avoided by ensuring that the value of
k is set no larger than the per process time slice,
i.e., 100 mS in Unix. At CPU yield time, Cue
lowers the priority such that the Unix scheduler
can preempt it to schedule other processes.

3 Experiment Environment

We ran extensive experiments and measured
the performance obtained by the standard user
driven read/write and using Cues. These mea-
surements are for reading files from a disk on
a DEC-station 3100, 12 MB RAM running Ul-
trix 4.2. The Ultrix kernel was modified to add
the cue () system call. This machine is used for
transmitting data read from a file on the disk to
the network, on a TCP/IP socket. The data was
received on a DEC 3000 Alpha running OSF1
V3.2. On the receiver, two types of setups were
used. In one the data was simply read off the
socket, and in the second, all data was copied
to the disk. Keeping the machines asymmetric
helped ensure data was received at least as fast
as the 3100 can transmit.

The programs to measure the throughput per-
form a number of transfers of large files and re-
port the total transfer time, system time and
other system activity by directly reading the ap-

o 16 T T T T
= go k=4 o
o 15F 000°°godetal o3 |
b O k=2 O
Q =1 X
8 14} . kLo
e
° | _
e
T O
g 12 O -1
o
c
ERE S U 7
Q
5 +++x++++++++++++
8 1+ +X .
° XXXXXX XXX XX
e
a 0.9 | | | |

0 20 40 60 80 100

t (ms), time the cpu is relinquished after k transfers

Figure 4: Performance of four parallel transfers.

propriate kernel variables. These routines also
print out several details, such as current page
fault activity, signals received, etc., to ensure
that any readings affected by other system ac-
tivity could be rejected. The number of trans-
fers and the size of the file were chosen to ensure
that file reads were always from the disk and
not from the file-system buffer cache, (by keep-
ing the file size 12MB, approximately ten times
the buffer cache size), and that there was a rea-
sonably large transfer (Hundreds of seconds) to
eliminate transient effects.

The tests for schedules reported in section 4
last up to several minutes each. Several of these
schedules have been run for hour long transfers
separately, during initial testing.

4 Performance of Transfers

In this section we present two types of perfor-
mance measurements. First we show the perfor-
mance of the system during concurrent transfers.
Next, we estimate the load offered to the system
using a Cue transfer.

The first two subsections describe the perfor-
mance of reading data from the disk. The tests
in the first subsection are with reads from the
socket and in the second subsection we corrobo-

15 T T T T
g g O DDDDD o k=4 ¢
L gl 000 Ho o, k=3 +
= . oo s @DS k=2 O
» © k=1 X
i o
0 13 o -
i o
S
£ 12r -
£
S} X
s 111 + .
3 +
5 X+ ++
£ 00 Xy

0.9 | | | |

0 20 40 60 80 100

t (ms), time the cpu is relinquished after k transfers

Figure 5: Three parallel transfers.

rate the results with performance of file transfers
to a remote system’s from a standard file server.
In both cases we report measurements obtained
with the standard user driven I/O and cue() .

4.1 Concurrent Transfer Throughput

Figures 4-5 show two performance measurements
made on this implementation. As mentioned, it
is possible to fix the number of blocks (k) trans-
ferred during one time slice given to the user
process and the delay (t) for which the process
yields. The value of d is actually specified in
terms of system’s 1/HZ tick, and in this paper, it
is converted to ms, as in the graphs (x-axis). The
throughput reported is the aggregate of all trans-
fers, normalized to that achieved with standard
read/write on the system. A value of 1 on the y-
axis denotes throughput equal to that achieved
without in-kernel streaming with the same num-
ber of transfers. The actual values of throughput
for three and four transfers can be read off of ta-
ble 1. The results shown in these transfers (cf.
section 3) are for reading a file off of the disk
and sending it to a remote machine over a TCP
socket. Each of the transfers is done by a differ-
ent processes and it uses a different 12 MB file
from the disk.

There are three observations worth noting in

these graphs. First, there is jump in the per-
formance during schedules with ‘t’ less than 30-
40 mS. The four transfers case, fig. 4 stabilizes
around 40mS, and the three transfers case sta-
bilizes around 30mS. This suggests it is a direct
consequence of being too close to the actual seek
time of the disk, which has been measured close
to 10mS.

Second, the case with k=3 shows a very poor
performance in both these cases. In a subse-
quent experiment with only two transfers in par-
allel, (not shown here) it performs better, on an
average between the k=2, and k=4 case, with
t greater than 60mS. This may be due to disk
seek times. A guess is that read-aheads initiated
with an odd number of transfers add to the delay,
whereas the case of k=2 and 4 the block read-
ahead is taken from the buffer. At this point,
this is at best a conjecture.

Finally, with these measurement, while it is
clear that this technique maintains the systems
throughput, still, with our measurements noth-
ing concrete can be said as yet about what de-
termines an optimal schedule.

Plausible explanations include the role of the
delays introduced by the disk, including details
such as placement of the actual files, and the
fact that in the kernel the scheduling of delays is
not fine grain or synchronized with disk transfers
delays. In this case, the ~ 4ms granularity of
kernel schedules is very close to the disk seek
time, ~10ms.

4.2 File server tests

One of the most popular applications utilizing
parallel transfers like the ones tested above is an
ftp server. Cues were successfully tested to im-
prove the performance of a Unix ftp server. The
changes required to the ftp server were minimal.
The modifications involve replacing the two lines
from the data transfer loop that read and write
data.

The cue () call connect the two file descriptors
for reading and writing and a write () call initi-

No. of (KB/s)
clients in | user driven | using cue()
parallel transfer | (4,16) | (4,70)
1 410 370 200
2 300 360 350
3 240 330 300
4 240 360 317

Table 1: File server performance. Peak perfor-
mance numbers reported for standard as well as
cue () transfers. Please see text for the choices
(k=4,t=70), and (4,16).

ates the transfer. No changes were made on the
client.

The numbers in this section are reported from
four to five tests of the 12MB file. Since FTP is
layered over a TCP socket application, we used
just enough tests to reconfirm the numbers ob-
tained in the above tests which are already rig-
orous. These numbers were very all close to the
above averages. In table 1 we have reported the
peak numbers. We do that because these num-
bers are taken off of the client reports, and they
are not as consistent as the numbers we report
in section 4. In those tests, we closely controlled
the measurements, and these numbers are very
close to the above tests.

It is alright to measure them this way with-
out being very rigorous because the numbers are
close, and are a reconfirmation. The difference
in the readings at the client versus the server
has to be negligible. This is so because the win-
dow used by tcp is orders of magnitude smaller
than the individual transfer sizes tested (=~ 10K
10 MB), and the client reports mea-
surements after writing the retrieved file to the
disk. The two schedules chosen are (4,16), which
showed one of the best performances, and (4,70).
Note that (4,70) is a conservative schedule for
four transfers.

versus =~

4.3 System Overhead

An important evaluation of a new read/write
primitive such as cue() , is to compare it’s per-
formance with the standard read/write calls, not
just in terms of time but also with respect to the
load it offers to the system. It is possible us-
ing several techniques, including Cues to use the
processor very aggressively. One intuitive mea-
sure is the costs of this transfer while delivering
the baseline performance (provided by the ex-
isting primitives). On the other hand it is dif-
ficult to make an exact comparison of the load
offered to the system. The transfers are sched-
uled differently and the comparison is especially
complicated as one of the two methods involves
a user level scheduling of the process. To keep
the comparison meaningful, we want a schedule
with an acceptable equivalence with the stan-
dard transfers. We describe the results id mea-
surements obtained by using one such equivalent
schedule. A description of the heuristics used for
arriving at this schedule as a comparable one to
standard transfers is described following these
The test designed to compare
the load offered to the system by the in-kernel
streaming primitive starts a process that trans-
fers a large file (nearly 12 MB) from the disk
sixty times using user driven as well as in-kernel
transfers. In parallel, it forks a process that calls
(gettimeofday()) in a loop, and maintains a
count of the calls. At the beginning and end
of each of the sixty transfers, the first process
sends a signal to the second process. The pro-
cess receiving the signal prints out the current
count and resets the count to zero before resum-
ing. The system call loop was chosen to ensure
most timely delivery of the signals. It is hard
to otherwise meter the progress of the parallel
process synchronized with the duration of the
transfer in the first one. The numbers of syscalls
reported by the parallel process during the dura-
tions of the in-kernel and user driven transfers,
help us compare how much of the processor was
available for other system activity during each

measurements.

of these transfers. This type of transfer, with
a metering process in parallel, maintains a full
utilization of the processor. The total time for
this set of tests in averaged 3200 seconds for each
run.

The schedule chosen for this comparison
(k=4,t=70) takes almost equal time as user
driven transfers (on an average 1.7% more). This
amounts to around 16 seconds more on an aver-
age. We notice an average of 5% increase in the
number of calls made by the metering process
showing two million extra calls over the transfer.
This corresponds to an approximate gain of 4%,
in spite of this marginally extra time spent, rea-
soning as follows: The number of calls the meter-
ing process makes, were it left to run on it’s own
is roughly 32,000 per second. At this rate, 16
seconds of extra time gives it a chance to make
less than half a million more calls. After sub-
tracting this number from the surplus calls that
we see in the in-kernel transfer, we see cpu cycles
amounting to 4% more system calls available to
the other process, with only a single transfer in
progress.

4.4 Pacing of transfers

An informal but interesting made during the
above tests is that Cue transfers also seem to
pace themselves very well relative to each other.
This is true of user read/write driven transfers
even with their performance drops. Such pacing
is a good sign, indicating fair use of the system’s
resources. This can be taken as a hint that as
far as bulk data are concerned, it is possible to
rely on Unix kernel scheduling with the simple
mechanism of this implementation (explained in
section 5). The schedule can easily be made user-
customizable in the current implementation of
the user interface. In the current version we do
not have tests for different connections pacing at
rates predicted by a simple use of schedules. If
this tests out well, it could be provided to the
user or to the system user to prioritize transfers.
Safely providing such a flexibility to the user only

entails very simple checks for transfer requests to
be no more aggressive than a preset (k, t).

5 Implementation Details

The syntax of the call for creating the service is:
c = cue (s, d);

where s and d are descriptors pointing to the
source and destination file (or socket), respec-
tively. The return value c is the descriptor that is
used to direct the transfer. Simple integer codes
are written to this descriptor using the standard
unix write() call to start the transfer, set the
offset and transfer size, or to set the size of the
read/write unit. The following example summa-
rizes the code for a typical application.

int sd, fd, c, commands[CSIZE];

/* Open connections, etc. x/
sd = socket (AF_INET,SOCK_STREAM,O0);
connect(sd, &addr, sizeof(addr));
fd = open ("file", O0_RDONLY);

¢ = cue(fd,sd);
/* At this point the call is ready */
/* for transfers. */

/* Commands to transfer 4000 KB */
commands [0] = WRITE;
commands [1] = 4096000;

/* The following statement starts */

/* the transfer */
write (c, commands, 2*sizeof(int));

/* Dismantle the service */
close (c);

Actual user code includes the error checks for
return values from the system calls, i.e., socket,
connect, open, cue, write and close. The code
for initiating read and write sits directly on top
of the vnode layer of VFS.

On invocation with appropriate descriptors for
the file and the socket, the call instantiates a
Cue to maintain context for this transfer and
creates an entry in the descriptor table for the
control descriptor. It also allocates a file table
entry. The fileops structure points to the rou-
tines for handling Cue operations instead of the
inode/socket fileops structure. The control de-
scriptor is returned to the user. On a subsequent
write call to this control descriptor, the routines

that schedule the transfer are invoked The write
request on the control descriptor may ask for as
large a transfer as it needs. The call transfers a
preset number of blocks and then goes to sleep
for the preset interval before resuming. The pri-
ority is raised during this time such that other
processes ready to run may get the processor.

The code for the basic implementation, includ-
ing the code for interpreting writes to the control
descriptor and scheduling transfers is around 400
lines of C code. This does not require any modi-
fication to the file subsystem below the the VFS
wrapper. Most of the implementation is free
of proprietary system details and can be made
available with appropriate substitutions of the
proprietary code.

The return value from the system call is a de-
scriptor just like any other descriptor. It is sim-
ple to connect this descriptor to a remote socket
using the call itself. This allows sending com-
mands from a remote system to control the file
transfer. The transfers operate with descriptors
over the vnode layer and are executed only in
the context of the process. As a consequence of
this abstraction, the flags to check the read/write
permission on the file are available to the Cue
operations.

6 Conclusion

The implementation and tests show use of this
concept for improving the performance as well
as for a simplifying the interface for an impor-
tant application. The implementation uses the
standard abstractions. This makes it simple
and portable and it delivers good performance.
The model also allows a modular composition of
this service for simplifying distributed control of
transfers.

The schedule values chosen right now (k,t),
are heuristic or at best empirically derived magic
numbers. Determining the optimal schedule, es-
pecially on the fly would be on the immediate
to-do wish list.

Future extensions to this work may focus on

use of additional buffering, particularly if we
want to evaluate it for some time sensitive trans-
fers. Pacing transfers at different rates would be
a very useful. We are also looking at extending
the Cue ADT to do more than single input single
output streams.

References

1]

[4]

[5]

Peter Druschel, Mark B. Abbott, Michael
Pagels, and Larry L. Peterson. Network Sub-
system Design: A Case for an Integrated
Data Path. IEEE Network, July 1993.

Kevin Fall and Joseph Pasquale. Exploit-
ing In-kernel Data Paths to Improve I/O
Throughput and CPU Availability. In Win-
ter Conference, pages 327-333. USENIX,
January 1993.

Kevin Fall and Joseph Pasquale. Improv-
ing Continuous-media Playback Performance
with In-kernel Data Paths. In Multimedia
Conference. IEEE, March 1995.

S. R. Kleiman. Vnodes: An Architecture for
Multiple File System Types in Sun Unix. In
Summer Conference. USENIX, June 1986.

Leffler, et al. The Design and Implementa-
tion of the 4.8 BSD UNIX Operating System.
Addison-Wesley Publishing Company, 1989.

Joseph Pasquale. 1/O System Design for In-
tensive Multimedia I/O. In Workshop on
Workstation Operating Systems, Key Bis-
cayne, FL, 1992. TEEE.

Dennis M. Ritchie. A Stream Input-Output
System. ATET Bell Laboratories Technical
Journal, 63(8):1897-1910, 1984.

