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Abstract

With the advent of high-speed networks, various switch architectures have
been proposed in order to meet the increasingly stringent performance require-
ments that are being placed on the underlying switching systems. In general,
the performance analysis of such a switch architecture is a difficult task mainly
due to the fact that a switch consists of a large number of queues which inter-
act with each other in a fairly complicated manner. In this paper, we analyze
a crossbar switch with input queueing in terms of maximum throughput, and
formalize the phenomenon that virtual queues formed by the head—of-line cells
become decoupled as the switch size grows unboundedly large. We also establish
various properties of the limiting queue size processes so obtained.

Key words: Crossbar switches; Input queueing; Asymptotics; Maximum through-
put.

1 Introduction

Rapid advances in all aspects of telecommunications, especially in the areas of trans-
mission systems and fiber optics, have led to the introduction of new switching
technologies for enabling the future B-ISDN (Broadband Integrated Services Dig-

ital Networks). In particular, space—division packet switching has been recognized
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as a key component in this ongoing evolution towards B-ISDN and multiproces-
sor interconnects. This is due to the high capacity, viz., in the range 10-100 Gps,
that space-division packet switching can achieve through the use of a highly par-
allel switching fabric with simple per packet processing distributed among many
high-speed VLSI circuits [8].

In non-blocking space-division packet switches, it is always possible to establish
a connection between any idle input and output pair. However, output contention
arises when more than one cell at different input ports demand to be routed to
the same output. As the contending cells cannot be placed on the output port at
the same time, a buffer has to be provided somewhere in the switch to store the
cell(s) which cannot be served. This is typical for an ATM switch as it statistically
multiplexes cells, and buffering must be provided to ensure that ATM cells destined
to the same output port can be stored and are not dropped. Several buffering
strategies have been reported in the literature to mitigate the effects of contention
[3, 6, 7, 13], with proposed solutions depending on a variety of factors such as the
speed of input and output lines relative to the cell transfer time across the switching
fabric, and implementation complexity.

Noteworthy among proposed buffering strategies is input queueing whereby cells
are enqueued in a buffer located at each input port [6, 8]. More specifically, con-
sider a non-blocking crossbar switch with K input and K output ports. The switch
operates in a synchronous mode with time divided into consecutive slots of equal
duration; the length of a slot coincides with the transport time of a cell across the
switching fabric. Each input port is equipped with a buffer of infinite capacity. At
the beginning of each time slot, the switch controller mediates potential output con-
tentions by randomly selecting one head—of-the-line (HOL) cell amongst the HOL
cells which have the same output address. The HOL cells selected for transmission
are then removed from their respective buffer and start being transmitted across
the fabric; this transmission is completed by the end of the time slot. At the same
time that transmission starts new cells which arrive into the system during a time
slot are enqueued by the end of the slot. These steps are repeated from slot to slot.

Even under the most simplified set of assumptions, viz., traffic to the input
ports is modeled by independent Bernoulli streams, and the output assignment is
performed randomly and uniformly across ports, evaluating the switch performance
in terms of delay and throughput is a fairly daunting task because of inter-queue

correlations. Any direct solution to this problem, either analytic or computational,



appears likely to meet with great difficulties due to the complexity of the resulting
Markov chain model, and another approach is therefore required if progress is to be
made. In [8] Karol, Hluchyj and Morgan provide such an approach by introducing
the virtual queues which are formed by HOL cells (physically located in the input
queues) with the same output destination . As these authors focus on the evaluation
of the mazimum system throughput (per port), they assume a saturated regime, i.e.,
the arrival rate per input port is 1, so that at the beginning of every slot there
always exists a cell trying to reach the HOL at each input port. Under this “heavy—
traffic” assumption, the corresponding Markov chain analysis is feasible only for
small values of K, and the next key ingredient in the analysis of [8] is then to
consider the asymptotic regime when the switch size grows unboundedly large. The
discussion, with particular reference to Appendix A of [8], suggests that the K
virtual queues asymptotically decouple as K grows unbounded, and that each such
queue in the limit becomes a discrete-time G|D|1.

In this paper, we revisit the model of virtual queues in saturation that was
introduced by Karol, Hluchyj and Morgan. By developing a suitable representation
for the virtual queue size processes, we formalize the intuition used in [8] that the
virtual queues become decoupled as the switch size grows unboundedly large. We
then proceed to identify the limiting dynamics as a set of independent discrete-time
queues characterized by a non—standard Lindley recursion where the statistics of the
driving sequence are determined by the statistics of the recursion’s output. Various
properties of this limiting Lindley recursion are derived; in fact its stationary version
coincides with the discrete-time G|D|1 of [8].

We note that related limiting results were derived in [4] for an extension of the
model discussed here; however the approach used there should be contrasted with
the rather elementary one used in this paper. The arguments we have given may
in principle pave the way for obtaining convergence rates on the asymptotics; this
ongoing work will be reported in [9, 10].

The paper is organized as follows: The model is presented in Section 2, and its
asymptotic regime for large switch size is identified in Section 3. We discuss various
properties of the limiting process in Section 4. The paper closes with some remarks
on the maximal system throughput.

A few words on the notation used in this paper: We denote the set of non-
negative integers by IV, and the set of all real (resp. non—negative real) numbers by
R (resp. R, ). Throughout the paper, K always denotes a positive integer. The kth



component of any element & in RR¥ is denoted either by zForby z, k=1,..., K,
so that = = (z!,...,2%) or (z1,...,2K). A similar convention is used for random
variables (rvs). Finally two rvs X and Y are said to be equal in low if they have
the same distribution and we denote it by X =4 Y. The Poisson distribution with

parameter A > 0 is denoted by P()). Weak convergence is denoted by ==-.

2 The Model

The K x K switching fabric of interest is assumed saturated so that cells are always
waiting in each input queue at the beginning of every time slot. Whenever a cell is
transmitted through the switch, a new cell immediately moves to the head of the
input queue. The output assignment is random and uniform across ports, while
output contentions are resolved by randomly selecting one HOL cell amongst those
HOL cells with the same output address. .

Fix K =1,2,... and t = 0,1,.... For each k = 1,2,..., K, we denote by Bf
the number of HOL cells which are destined to output k at the beginning of time
slot [t,¢+ 1) and by Ab .1 the number of arrivals to the k" virtual queue formed by
the HOL cells waiting for transport to output port k during time slot [t,t+1). The
total number L; of HOL cells present at the beginning of time slot [t,t+ 1) is given
by

K
L=, B, (2.1)
k=1

so that there are K — L; empty HOL positions at the beginning of time slot [t,t+1),
or equivalently, K — L; fresh cells which move to the head of the line positions at
that time, and which need to be addressed to one of K output ports.

In order to provide a precise description of the model, we introduce a collection
(Uk,, t=0,1,...;k = 1,2,...} of iid. 1vs which are uniformly distributed on
[0,1]. The process {(B},.. .,Bf), t =0,1,...} evolves according to the following
recursion: For each k =1,..., K,

+
Bt =0, Bf+1=[Bf—1+A§+1] . t=0,1,... (2.2)
with KoL
L g1 .k
Af_}_]_: Z 1[—I<—_<_Ug+1<?:l, t=0,1, (23)
i=1



The form of 2.3) reflects the fact that the output assignment is random and uniform
across ports. We close this section with several relations which are found useful at

a later stage of the discussion: First, we observe that

K A K K-L; k k
S b = >y 1{—K—<U+1<K]

k=1 j=1
K-L: K
k-1 k
= S [—— <Ul, < }
ji=1 k=1 K K
K-L;
- 1=K - L. (2.4)
j=1

Next, as the involved rvs are all integer—valued, we have
[Bf -1+ 4, < 0] = [Bf = 4f = 0] (2.5)
so that

Bha = [BE-1+4b,]"
= [BE-1+4f)1 [BF -1+ 4k, 2 0]
= BF -1+ Al — [BF -1+ 4|1 (Bl = Ab, = 0]
= Bf—1+Af, +1[Bf=4f, = 0]. (2.6)

Adding these relations side by side for k = 1,..., K, we conclude from (2.4)-(2.6)
that

K K
Ly = Li—K+Y Afa+ Y 1[Bf =4k, = 0]
k=1 k=1
K
= Z1[Bf:A§+1=o]. (2.7)
k=1

Tt is plain for (2.7) that the recursion (2.2)-(2.3) is indeed well defined.

3 Large K Asymptotics

Next we consider the asymptotic regime when the switch size K grows unboundedly
large. In particular, we are interested in how some fixed number of input queues

behave asymptotically as K — oo. The key convergence result for large K is
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contained in Proposition 3.1 below; its proof will be a simple consequence of the
next four lemmas.

First, some notation: For the sake of clarity, we add a superscript K on all rvs
associated with the K queue system. Let Z denote a given set of input ports; there
is no loss of generality in assuming that Z is of the form Z = {1,...,T} for some
positive integer I and that ] < K.

Fix K = 1,2,.... For each k = 1,2,...,K, we recursively define the rvs
(ZF* t=1,2,...} by

K.k _ K.k K.k k 42Kk _
zEk =0, ZXF=(Z/% B AL, t=0,1,... (3.1)

and we write
zKr =z, ..,z t=0,1,... (3.2)

For t =1,2,..., we say that condition (Z;) holds if the convergence

ZKT — e A = (2}, 2)) (3.3)
takes place where the limiting rvs 2, ...,7{ are i.i.d. rvs. Obviously, under (Z;) we
have BEK4 = b. and As+1 =K aiﬂ, i=1,...,I forall s=0,1,...,t — 1, and
in analogy with (3.1) we have

=0, 2. =(,ba,), s=01,...,t—1 (3.4)

Finally, we say that for ¢ = 1,2, ..., condition (£;) holds if

1 P
ELtK_l K N (3.5)

for some nonrandom ;.

Lemma 3.1 If both conditions (T;) and (L;) hold for somet =1,2,..., then (Ls41)
also holds.

Proof. First, from (2.7) and exchangeability, we get

var[%LtK] = var[ Z1[BH_ "=0]]

%var [1 [Btli’% = Af’l = OH
~1

K
+

cov [1[BfS] = 4{%" = 0] ;1 [BIST = 4 = 0]



Under (), (25, 2K?%) =k (2}, 22) with 2} and 2} i.id. rvs, and we readily get

lim cov [1[BS = 4 =0, 1[BY = A = o]]

K—oo
= cov [1 [b%_l =a; = 0] , 1 [b%_l =a? = OH
= 0. (3.6)

by making use of the Bounded Convergence Theorem. Therefore, limg o0 var [%Lf ] =
0 and by Chebyshev’s inequality we conclude that
1

1
LB {—Lf] RN} (3.7)

K

Next, by exchangeability,
1
o[pie] - rlptimo A=
_ 1 vk-LE 4 [gKL _
= E [(1 - ) (B = 0” : (3.8)

Condition (Z;) guarantees Btfi ’11 —>kb}_,, whereas %LtK_l N Kk A by assumption.
Together these two facts imply [1, Theorem 4.4, p. 27] that (—I%L{(_ l,BtIi ’%) =K
(X, bi_1), whence

. 1 —(1—
lim B {?Lf] = e 1P b, = 0] = A4, (3.9)
and it is now plain from (3.7) and (3.9) that (L£¢41) holds. [ |

Lemma 3.2 If (Z;) hold for some t = 1,2,..., then the convergence
((Z5 BEY, . (2 BN = (i), b)) 310)

takes place where the limiting rvs (z{,b}),..., (zf,b]) are i.i.d. rvs.

Proof. For each K =1,2,..., we note that

(Z5, B = (Z B -1+ AT
= F(zFY, i=12,...,1 (3.11)



for some mapping F; : IN 2ty N2HL which depends only on ¢ and not on K or on
i. This mapping is automatically continuous as it is defined on discrete spaces, and

therefore preserves weak convergence [2]. Hence (Z;) immediately yields

(25, BEY, ... (2 BED) = (e, Fulad)) (3.12)
where the limiting rvs Fy(z}),---» F,(z]) are obviously i.id. Tvs. The conclusion
(3.10) holds with (2}, b}) = Fy(z),i=1,2,...,1. ]

A little more can be extracted from the proof of Lemma 3.2. Indeed, the argu-

ment given above also shows that
b= bl — 1 +aflt, =11 (3.13)

Lemma 3.3 If both conditions (1) and (L4) hold for somet =1,2,..., then (Zy4+1)
also holds.

Proof. Fix u; and 2, ¢ = 1,...,1, in the unit interval [0,1], and consider a
bounded mapping ¢ : IV 2tf _, R, With F; denoting the o-field generated by the
rvs {Ud, j=1,2,...; 8= 1,2,...,t}, we observe that
AK,i1 1 K—L{(
E [l;IIzi t+1 | }‘t] = (1 - _f{_ziel(l - zz)) . (3.14)
)

A simple conditioning argument then shows that

K,I BK”' AK,z‘
E{w(Zt ) [Tuwt = ”‘}

1€l
BK’i AK,i
= E {(p(ZtK’I) Muw'® E {H z .7-}”
1€l i€l

K K-L¥
= E l(p(ZtK’I) Huft (1 - }K_Ziez(l - z,)) ] . (3.15)
1€T

By Lemma 3.1, %Lf P At+1 while (Z;) guarantees (3.10) by virtue of Lemma 3.2,
and together these two facts imply [1, Theorem 4.4, p. 217)

1
(—I;Lff (ZN B, <zf<”,Bf<”)) i (Mt (201, (E0D) - (316)
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Invoking the Bounded Convergence Theorem, we obtain

lim Elw(ZtK’I)HUf “K] = E[w(zﬂnu?’inexp(—(l—Am)(l—zi))

K—o0 :
1€ i€Z 1€l

= E [go(ztz) H usi] H exp(—(1 — A1) (1 — 25))

1€l 1A
_ . K1 K,I 1 I
and this establishes the convergence (Z,,,..., Zy1) = (2441 -+ %141)- In par-
ticular, it follows that (4.91,..., A1) => (al41,...,aly,), and we have
b a}
E |:‘P(ztz) [Tw I1 tH] = l o(zf HU ] [T exp(—(1 = Ay1)(1 = 2)) (3.17)
i€l €T 1€l i€l

Upon specializing p =1 and u; = 1,4 =1,...,1, in (3.17), we readily get

E[H “t“} TTexp(=(@ = A4 — 2)) HE[ “t“] (3.18)

1€T 1€LT 154

and this last relation, in conjunction with (3.17) implies

E[w(zf)Hu?iz?i“]: [ ¢(zf) HU“‘] [H *} (3.19)

€T i€l €T
Tt is now plain from (3.18) and (3.19) that the rvs a}, ,...,af,; are ii.d. rvs which
are independent of the i.i.d. rvs (z},b}),...,(2f,bf), and this completes the proof
that (Z;41) holds. [ |

Lemma 3.4 Both conditions (Z;) and (L) hold for allt =1,2,....

Proof. The proof proceeds by induction on ¢: Here, Bé( " = 0 so that L¥ =0, and
(L) trivially holds for ¢ = 1 with A; = 0. To establish the validity of (Z;) for ¢ =1

it suffices to show that (Af',.. LAY — (al,...,a]) where the 1vs a},...,af
are i.i.d. To that end, for z1,...,2 in [0, 1], we have
AK 1 K
E H 1| = [1 - ?Zig(l - zi)] (3.20)
1€l
so that

lim E [H zAKl] Hexp (1—2z)). (3.21)

K
7 lier €T



and the desired conclusion follows.

Finally, the induction step is a direct consequence of Lemmas 3.1 - 3.3. [ ]

The proof of Lemma 3.3 and Lemma 3.4 also shows that for eacht =0,1,...,
the i.i.d. rvs aj,q,.- .,a{,, are Poisson rvs with E [ai ] =1— g1, 5 =1,..., 1
In order to obtain an alternate expression for these constants, we need the following

technical lemma.

Lemma 3.5 For eacht = 0,1,..., the rvs {BtK’k, k=12,...,K; K=12,...}

are uniformly integrable.

Proof. Fix K=1,2,...and¢=0,1,.... Foreach k=1,..., K, the bound

K
Kk
Al < Z [_ Ul <7 (3.22)

and standard properties of binomial distributions readily yield

UAM‘ ] < 2KK_ Lo (3.23)

;From the obvious inequality Bf,; < BE + Af,,, we get

<2E []Bt] ] +2E UAt“ﬂ L t=0,1,... (3.24)

UBt+1|

2
and an argument by induction now show that supg ; E “Bf' ] < oo, thereby im-
plying the stated uniform integrability. [ ]

By exchangeability, for each ¢t =0,1,..., we have

1 x| _ K1 —
E[?Lt]—E[Bt |, K=12,... (3.25)
so that
. 1 K
Ay = Jim B2l
— K1 1
= Kh_]f:[clm}z[zs’t | =E 4] (3.26)

10



where the last step made use of the convergence BtK L — & b} and of the uniform
integrability stated in Lemma 3.5.

Combining Lemma 3.4 with the remark following its proof and with (3.13), we
conclude that for large values of K, the processes {B{{’i, t=0,1,...},1=1,...,1,
are asymptotically independent, and that each one is well approximated by a process
generated through a Lindley type recursion driven by a sequence of time-varying

independent Poisson rvs. Formally, we have

Proposition 3.1 For any finite set T = {1,...,I} and t = 0,1,..., we have the

convergence
Y SR . .
((Bf”,Asjl), ieT, s= 0,1,...,t) - ((b’;,a’;+1), i€T, s=0,1,...,1)

with the following properties for the limiting processes: The processes { (b, ai+1), § =
0,1,...,t}, 1 =1,...,1I, are mutually independent, and for each i = 1,...,1, the
rvs {bi, t=0,1,...} satisfy the Lindley recursion

. . . . +
=0 b;+1=[b;—1+ag+1] . t=0,1,.... (3.27)

where the rvs {ai,;, t = 0,1,...) are independent Poisson rvs with E[al, (] =
1-E[p) forallt=0,1,....

4 Properties of the Process {b;, t =0,1,.. N

We now analyze the limiting recursion (3.27) which we find useful to generalize
somewhat: Let B denote the collection of all IV _valued rvs b (or equivalently, their
distributions) such that 0 < E[b] < 1. The process {b;, t =0,1,...} of interest is

generated through the recursion
b() =b; bt+1 = [bt e 1+at+1]+, t=0,1,... (41)

where we assume that (i) the initial condition b is an element of B; (ii) the rvs
{as41, t = 0,1,...} are independent Poisson rvs with E [a;41] = 1 — E[b] for each
t =0,1,..., and (iii) the initial condition b is independent of the rvs {ast1, T =
0,1,...}.

This recursion (4.1) differs from the standard Lindley recursion for GI/GI/1
queues in that here the statistics of the driving sequence {ai+1, t = 0,1,.. .} are

determined recursively from the statistics of the recursion’s output.

11



As was the case with the recursion (3.27), because all involved rvs are IN-valued,

we have
[b — 1+ at41 < 0] = [by = ag41 = 0] (4.2)
so that
biy1 = by — 14 agpr +1[by = agy1 = 0]. (4.3)

This relation readily leads to the following fact.

Proposition 4.1 If the initial condition b is an element of B, then the rv b; is also
an element of B for allt = 1,2,..., with

E bi1] = P [b; = 0]exp (—(1 — E[by])) (4.4)

and the recursion (4.1) is therefore well defined.

Proof. Consider t = 0,1,... such that 0 < E[b;] < 1 - note that this property
holds for ¢ = 0. Taking expectations on both sides of (4.3), we get

E [bt+1] =P [bt = at+1 = 0] =P [bt - 0] P [at+1 = 0] (45)

where we have used the independence of the rvs b; and a;41, and the fact E [a11] =
1 — E[b;]. The expression (4.4) is a simple consequence of the Poisson character of
the v as11, and the stated conclusions readily follow by induction. [ |

In the case of a Lindley recursion driven by an i.i.d. sequence, or even a station-
ary ergodic one, it is well known [11] under what conditions the output sequence
converges weakly to a honest rv — the so—called stable case. As these classical results
do not apply here, we embark now on establishing a similar convergence result for
the recursion (4.1). We begin by investigating the existence of stationary solutions
to the recursion (4.1). This is best achieved by considering the probability gener-

ating function of the distributions of interest. For ¢ = 0,1,... and z in [0, 1], we
set
A1 (2) = B2 = exp (—(1 — E [b])(1 - 2)) (4.6)
and
Bi(z) =E [zbt] . (4.7)

12



Fix t =0,1,... and 2 in the interval (0,1): Using (4.2) we see that
th+l = 1 [bt —1 -+ Ot41 Z 0] th_1+at+1 -+ 1 [bt = a1 = 0]
= PhiFe L (b = agyy = 0] (L —271). (4.8)

Taking expectations on both sides of this last relation and using the independence
of the rvs b; and ay41, we get

Buii(2) = 2 By(2) Ara (2) + (1 - )Pl =0]Plag1 =0].  (49)

An IN-valued rv b in B is said to be a stationary solution to the recursion (4.1)
if the rvs {b;, t =0,1,...} generated by the recursion with by = b form a stationary
sequence; of course in that case we have by =4 b for allt =0,1,....

Proposition 4.2 The recursion (4.1) admits exactly one stationary solution b in
B; its probability generating function B is given by

_ A= 2)
BE) = A na-) -

2€(0,1) (4.10)

with
A=v2-1=E[). (4.11)

Proof. Let b be an element in B, and let a denote a Poisson rv with parameter
1 — E [b); its probability generating function A is given by

A(z) =E[z%] =exp(-(1 —E[b])(1 — 2)), z€][0,1]. (4.12)

Fix t = 0,1,... and z in the interval (0,1). If b is a stationary solution to the
recursion (4.1), then b; =4 b, so that E[b] = E[b] and Bi(z) = B(z), with B
denoting the probability generating function of b. Reporting this information into

(4.9), we obtain the relation
B(z) = 2 B(2)A(z) + (1 - z”l) P[b=0]Pla=0]. (4.13)
Rearranging terms, we get
(1-27"4(2)) B() = (1-2")Pl=0]Pla=0] (4.14)

or equivalently,
——_—ZP [b=0]P[a=0]. (4.15)



Upon noting from (4.4) that E[b] = P [b=0]P [a = 0], we conclude from (4.15)

that
z—1

T - A(z)
To complete the determination of B(z) we need to evaluate E[b]: We first dif-
ferentiate both sides of (4.16) with respect to z and find that

B(z) E[. (4.16)

14 (z —1)A(2) — A(z)

B(z) :E[b] (z—A(z))2

(4.17)

Next, letting z 1 1 in this last relation and using I Hospital’s rule twice, we obtain

E[f] = lim B(z)

_ o 14 (2 — l)A(z) — A(2)
= E[b lle ( (z — A(z))2 )

_ A1)
= E[ S A (4.18)

It is plain from (4.12) that A(1) = 1-E[b] and A(1) = (1-E [b])?, and substituting
these expressions into (4.18) leads to the relation 2E []> = (1 — E[])2. The only
positive solution to this quadratic equation is given by (4.11), and the relation (4.10)

is now an immediate consequence of (4.16). [ |

Proposition 4.8 For any initial condition b in B, if by =>t b, then the limiting
v b is the unique stationary solution (4.10)—(4.11) to (4.1) in B.

The next three lemmas prepare the proof of Proposition 4.3.

Lemma 4.1 For any initial condition b in B, if by == boo, then Plbe=0] >0
and lim,_,  E [b;] > 0.

Proof. We begin by noting the easy relations
P[bt#O] SE[bt] and E[bt+1] SP[bt=O], t=0,1,.... (419)

If lim; P [b; = 0] = 0, then the first inequality implies lim; E [b;] = 1 whereas the

second inequality yields lim; E[b;] = 0, a clear contradiction and we must have

14



lim; P [b; = 0] > 0. The second part of the statement is now immediate from the
bound
P [bt = 0] < el [bt+1] s t= 0, 1, e (420)

Lemma 4.2 Consider the discrete-time Markov chain {Bs41, s = 0, 1,...} gov-
erned by the Lindley recursion

Bo=0; Bsy1=[F—1+ a1ty s=0,1,... (4.21)

where the rvs {ast1, s = 0,1,...} are i.id. rvs which are P(y)-distributed, and
independent of the initial condition 3. If ¥ < 1 and (3 is integrable, then the rvs
{Bs, s=0,1,...} are uniformly integrable.

Proof. If B = 0, then it is well known [12] that B¢ <s¢ Biq1 for all t = 0,1,....
Hence the rvs {8, s = 0,1,...} converge weakly, say to some rv B, and by
making use of the Monotone Convergence Theorem, we can easily conclude that
lims—yoo E[Bs] = E[Bx]. When v < 1, standard z-transform arguments readily
yield E [Bs] < 0o and the uniform integrability of {8s, s =0,1,...} follows (5].
We now consider the case when j is arbitrary. Let {8, s=0,1,...} denote the
output to the recursion (4.21) when the initial condition is zero. It is easy to check

by induction that
B <18l +B, t=01,... (4.22)

and the uniform integrability of {8s, s = 0,1,...} is implied by that of the sequence
{6, s=0,1,...} and by the integrability of 3. ]

Lemma 4.3 For any initial condition b in B, if by => boo, then the rvs {by, t =
0,1,...} are uniformly integrable, and we have

Jim B (6] = E o] - (4.23)

Proof. By Lemma 4.1, for some ¢ > 0, there exists an integer t. such that
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E[b] > ¢ for all ¢ > t.. Next we consider the recursion (4.21) with Gy =4 be,
and {as41,5 = 0,1,...} i.id. rvs which are P(1 — e)-distributed. Noting [12] that
at, 541 <ot 0541 for all s =0,1,..., we readily conclude by an induction argument
that

bt€+5+1 <st ,65+1, s = 0, 1, SISO (4.24)

The desired result is then an easy consequence of these bounds and of the fact that
the rvs {Bs,s = 0,1,...} are uniformly integrable as established in Lemma 4.2. The
convergence (4.23) is a well-known consequence of the uniform integrability of the
rvs {b;, t =0,1,...} [2, Theorem 16.13, p. 220]. [ ]

Proof. Our point of departure is the relation (4.9): The convergence by =
beo already implies lim; P [b; =0] = P[bo = 0] and with an obvious notation,
lim; By(#) = Boo(z) for all z in [0, 1]. We let ¢ go to oo in (4.9), and using (4.23) we
conclude that

Boo(2) = 7~ Boo(2) Aso(2) + (1 - 271 P oo = 0] P a0 = 0] (4.25)

where ao, is a Poisson 1v with Efas] = 1 — E [bs], and probability generating
function A. It is plain from (4.4) and (4.23) that E [bo] = P [boo = 0] P [aoo = 0].
After substitution of this fact into (4.25), we get the functional equation

z—1

Boo(z) = Z——A—OO-(T)E [boo]a zZ e (0, 1). (426)

This equation has the same form as (4.16), whose unique solution 1s the unique
stationary solution (4.10) of the recursion (4.1), whence beo is indeed the unique
stationary solution to the recursion (4.1). [ |

As was the case for the classical Lindley recursion, we can also establish the
following convergence result whose proof is available in [9, 10]; the convergence can

also be extracted from the results of [4]:

Proposition 4.4 Under the foregoing assumptions, for any initial condition b in B,

we have the convergence by == bo-
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5 Steady State Results

For each K = 1,2,..., under the enforced assumptions the rvs {(B},...,Bf), t=

0,1,...} form a discrete-time Markov chain with finite state space Sk given by

K
Sk = {(z1,...,zx) € {0,1,..., K} Y 1[z> 0] (mx +1) < K} (5.1)
k=1

This chain is irreducible and aperiodic, hence ergodic and we have the convergence
(BKY,..., BE¥y =, (BE!,..., BXY). (5.2)

As in Section 3, we are interested in the asymptotic behavior of the system in
steady—state for large K. In view of Proposition 3.1, we would expect the following
result to hold.

Proposition 5.1 For any finite set T = {1,...,I}, we have
(BK1, .. BET) =k (b, .- 1 bh) (5.3)

where bl_, ..., bl denote iid. rvs, each distributed like the unique stationary point
in B of the recursion (4.1).

We begin with a useful technical fact:

Lemma 5.1 Thervs{(BtK’k,%Lf{), K=12,...; k=1,...,K; t:O,l,...} con-

stitute a tight collection of rvs.

Proof. Fixt=0,1,...and K =1,2,.... Thervs Bf(’l,...,BtK’K are obviously

exchangeable, whence

1
B[Bf] = =B[B|=E [—ELff} <1 (5.4)
where in the last step we have used the fact 0 < Lf{ < K. Tightness is now im-
mediate as we note that these bounds are uniform in ¢ =0,1,..., K=1,2,...and
E=1,2,.... |
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6 System Throughput

In this section we are concerned with the (maximal) system throughput per port
which can be defined as the average number of cells coming out of the system per
time slot normalized with respect to switch size K. We denote by TH(K) (resp.
TH) the system throughput when the switch size is K (resp. 00). Accordingly,
TH(K) can be expressed by

TH(K) = —I%E [i 1[BEF 4+ A > 0]}
k=1
= P[B!+ 45" >0
= 1—P[B£1=A§4=0]
= 1-E [1 [BE! = o] (1- i)K—Li‘o] (6.1)
while

TH = P [boo+ oo > 0]
= 1—P [boo = oo = 0]

= 1P [beo = 0] exp(—(1 — E [bo])- (6.2)
We note that
|TH(K)—-TH)|
= [e[1[pEr =00 - " ] P [bee = 0)exp(~(1 ~ B b))
< [e[x [BK’l ]{ K-1E _ exp(~(1 - Blbwl) ||
+|p[BE =0 -P |exp( (1 — E [boo]))
1 LK

< E U(l — 2V exp(~(1 ~ E[bac) H +[P[BE = 0] =P =0]].
Next we observe that
B[ - )< —exp(-(1 - B b))

K
— 8 [ern- (6 — ) M) — expl—1 - B D)
K- (-8

IA

E[(K—ng)ln(K
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K
= E[(1—E[boo]>—K(l—%)ln(KK_'l)ﬂ
K
- E[<1—E[bw1>+(1—%{°—q>1n<1—%)’<]

< (1-Ebe]) <1 +1In(1 — %)K) 4

K
In(1 — —}%)K’ E HE [boo] — L?”

] .

1 1 1
lim (1 1- =)&) = ith 1 — Ko = ,
Kl_gréo( + In( K) ) 0 with 14In(1 K) 5K (6.3)

It is easy to see that 1 — ?1{— <e K forall K =1,2,..., and that

Hence, TH(K) converges to TH at a rate which is determined by that of the con-
vergences limg oo P [BE" = 0] = P [boo = 0] and limg o0 B [|E o] - Lz =0

Work is in progress on these rates of convergence will be reported in (9, 10].
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